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1. Introduction 

The art of analyzing a software system for security and robustness flaws can be a 

daunting task, and often begs a question: when is the analysis complete? Commonly a 

researcher or analyst answers this question by determining whether they have run out of 

budget, time, or have found bugs. However, these are not empirical pieces of evidence, what 

is really required is to understand how much of the software that is attackable was exercised. 

Through this paper I will illustrate a theoretical means to determining how much of the 

useable attack surface is exercised by an analyst. Using a method like this is far from failsafe, 

as covering all pieces of code does not mean that there are no bugs, however it acts as a way 

to measure how effective your testing process is. I will outline what the attack surface is, what 

aspects of the surface are relevant (what I call the “useable attack surface”), current code 

coverage techniques and a way to tie code coverage to an attack surface. 

As most software systems that are in widespread use today are either networked 

client/server applications or file parsing applications the paper will be based on testing 

applications that fall into the networked class. The secondary reason is that the highest level 

of risk is exposed by networked applications which can be accessed remotely and require no 

user interaction for compromise. I will also focus on Windows applications for analysis; 
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however the technique can be applied to any operating system and architecture. 

2. Attack Surface 

A software system’s attack surface is the subset of resources that an attacker can use 

to attack the system [1].It is important to differentiate the classic definition of attack surface 

and what I call the useable attack surface.  

The classic attack surface definition assumes all entry points into the software system; 

this can include certain Windows registry keys, open handles to windowed objects, or 

command-line parameters. The classic definition is an excellent means to track robustness 

across the entire system and to determine to what level you are willing to grant access to 

certain code areas to un-trusted users [2]. However, from a realistic perspective there would 

be no business model that would accept additional development time to ensure that Windows 

registry keys should be filtered before being used, for example, as this would become a very 

time consuming and burdensome part of the development cycle.  This is not to say that it 

should not be done, rather there are very few circumstances where it is absolutely necessary. 

The model of the classic attack surface makes it difficult to extract useful code 

coverage information specifically for a surface. The notion of a “useable attack surface” 
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means that it is the portion of the attack surface that an attacker could use to crash the 

software, access sensitive information or gain access to the host machine remotely.  It is 

these particular areas of code that we are interested in exercising as they pose the highest 

degree of risk. It is also independent of configuration, and specification [3], as we are testing 

the connected code to a particular input source. 

In the case of a networked application we will focus our attention on the system’s 

socket receive operations, and the resulting packet parsing routines. It is here that most 

vulnerabilities, with the highest degree of risk, are found. In order to measure the total code 

coverage of this particular area, we need to first determine what functions are responsible for 

receiving packets on the network, and how the resulting data is passed along to the internal 

routines of the software.  We also need to fully understand what code coverage is and how to 

apply it in this circumstance. 

3. Code Coverage 

Code coverage is a metric used in software testing that describes how much of the 

code in a program has been executed or tested [4]. In most cases, code coverage is 

considered a white box metric, as it involves instrumentation of the source code. However, 

code coverage metrics can be applied in a black box testing scenario, which is the method 
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that will be discussed throughout the course of this paper.  However, it is important for the 

reader to fully understand code coverage techniques. 

4. Testing and Code Coverage Methods 

3.1 White-Box Testing  

White-box testing involves the tester having internal knowledge, and source code of 

the application. This gives the tester the ability to “see inside the box”, allowing them to fully 

understand the internal workings of the system [5].  In a typical QA environment this means 

that you have access to the source tree, and you are able to not only statically analyze the 

source code but also build test cases around the known paths inside the software. White-box 

testing is generally accepted as the primary method a QA team tests a product internally. 

 Using a white-box testing methodology allows for the testing team to write test cases 

based on units or components of the system that need to perform a certain task or function. It 

also allows for a very high resolution overview of code coverage, stability, resource usage 

and overall quality. 

3.2 White-Box Code Coverage 

White-box code coverage is the method of collecting a line-by-line code execution 

metric. Most code coverage tools are integrated into the development environment, and 
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provide a detailed analysis of what areas of code have been hit and what lie untouched. The 

white-box code coverage metric is useful for both QA and development teams to determine 

refactoring points, areas of code that can be removed as well as areas of code that can be 

improved in terms of performance. Although it is a useful metric for internal teams, it does not 

indicate the likelihood that a bug will be present in any particular area but it does provide 

excellent insight into the software the team is producing. 

In white-box code coverage there are five primary metrics that can produce an overall 

code coverage number: function coverage, statement coverage, condition coverage, path 

coverage and entry/exit coverage. In function coverage the tester is try to determine how 

many functions have been exercised. Statement coverage involves a line-by-line analysis of 

how many lines of code have been executed. Condition coverage is a measure of how many 

decision points have been exercised. For example in a code block if there is a statement to 

test whether a number is higher than 0, condition coverage would be achieved with test cases 

of -1,1. Path coverage is determining if every route through the application has been covered 

and entry/exit coverage measures if every call and return from a function has been executed. 

It is important to determine what type of coverage that you are attempting to achieve. 

For example, the following code example from Wikipedia best illustrates this: 

 
 
void foo(int bar) 
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{ 
    printf("This is ");  
    if (bar <= 0) 
    { 
        printf("not "); 
    } 
    printf("a positive integer.\n"); 
    return; 
} 

 

If function “foo” was called with “1” as its parameter we would achieve 33% condition 

coverage but only 80% statement coverage, as we would not hit the “printf (“not “);”. With a 

parameter of -1 we would then achieve 100% statement coverage but only 33% condition 

coverage. To achieve full statement and condition coverage we would then have to use three 

test cases: foo(1),foo(0),foo(-1). This is a very simplified example but it shows that white-box 

testing must have a clear target for a specific class of coverage in order to be effective.  

It is helpful for the reader to understand that throughout the rest of this paper, we will 

be exploring function level coverage from a black-box perspective. There are a multitude of 

reasons why we are determining coverage in this way, all of which will be explained in the 

next section. 

 

 

3.2 Black-box Testing 

Black-box testing is the method whereby the tester has no knowledge of the inner 
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workings of the software they are testing [5]. However, the tester generally has a known 

specification for testing the software, and can determine correct and incorrect behavior 

based on that specification. Black-box testing is a necessary method to apply inside a QA 

environment as it is generally much faster than testing at a white-box or source level, while 

still having access to necessary internal information such as log files, error reports, etc.  

In the case of vulnerability researchers, they are forced to approach the software 

system in the purest of black-box forms, as they have no inner knowledge, and no access 

to source should they need it. For the purpose of this paper it is essential to take this 

perspective in order for black-box code coverage to be utilized correctly. 

 

3.3 Black-box Code Coverage 

Typically black-box code coverage is handled at the assembly level, and is completely 

outside of the normal internal testing cycle. No tools currently exist, or are necessary, inside 

of a development IDE that facilitate black-box code coverage, as one can get a much 

higher resolution of coverage from a white-box perspective. 

In order to understand black-box code coverage, one must first understand how a 

binary is broken down from an assembly perspective. Inside of each binary’s code 

segment, there are functions and basic blocks. Functions can be thought of just as their C 
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counterpart: you give parameters to a function, you call the function and it gives a return 

value. There is not any difference from an assembly perspective either, although there are 

subtle differences in how functions are called in some compiler implementations, but this is 

beyond the scope of this paper.  

Each function is comprised of one or more basic blocks. Basic blocks are small 

portions of the function which are terminated by a branch instruction, a call or a return [6]. In 

Figure 1. you see the addnum() function from the default calculator shipped with Windows 

XP. 
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(Fig. 1. - IDA Pro 5.1 Representation of a function and its basic blocks) 

 

 The top node in the graph is the head of the function, and you can see it takes in 

parameters just like in C. Each of the nodes below it are the basic blocks of the function. 
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Black-box code coverage is measured in two different ways: function level coverage 

and basic block level coverage. Using a function level coverage routine, the tester would 

determine the addresses of each of the function heads inside of the binary, and then set 

breakpoints on each address. Every time a breakpoint is hit, it is deemed a code coverage 

hit, and then execution is allowed to continue [7]. Using this method, you are able to 

determine a fairly high-level measure of the code coverage during a testing run. The 

method for measuring basic block level code coverage is no different, however one must 

first find all of the functions, and then determine all of the function’s basic blocks, and set 

the breakpoints on the basic block heads. This provides a much higher resolution code 

coverage metric, but also is a much more lengthy process as each breakpoint interrupts the 

processor on the tester’s machine, and there can be tens of thousands of basic blocks in 

even the simplest applications. 

 Using our previous example for code coverage, where we had the function “foo()” 

which accepted an integer as a parameter, it produces the following disassembly using IDA 

Pro 5.1: 
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0x00401000 sub_401000       

0x00401000 arg_0 = dword ptr  8 

0x00401000 push    ebp 

0x00401001 mov     ebp, esp 

0x00401003 push    offset aThisIs  ; "This is " 

0x00401008 call    _printf 

0x0040100D add     esp, 4 

0x00401010 cmp     [ebp+arg_0], 0 

0x00401014 jg      short loc_401023 

 

0x00401016 push    offset aNot     ; "not " 

0x0040101B call    _printf 

0x00401020 add     esp, 4 

 

0x00401023 push    offset aAPositiveInteg ; "a positive integer.\n" 

0x00401028 call    _printf 

0x0040102D add     esp, 4 

0x00401030 pop     ebp 

0x00401031 retn 

 

For this simple case, we can cross-reference the disassembly to the source code easily. 
We see the function begins at 0x00401000, and that IDA has detected it takes a single 
parameter (“arg_0 = dword ptr 8”). We can also clearly see the first printf() being called 
exactly as it is shown in the source code.  

The interesting part of the code begins at 0x00401010 where we see a “cmp 
[ebp+arg_0],0”. In pseudocode this means “compare the value of the function parameter to 
zero.” The CMP instruction in x86 assembly will set the zero-flag register depending upon the 
evaluation. If the comparison is true (in our test case 0 or -1), it will set the ZFlag register to 1. 
Likewise, if the comparison is false (in our test case 1), it will set the register to 0. The next 
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instruction at 0x00401016 “jg short loc_401023” tests whether the CMP instruction evaluated 
to true or false by checking the ZFlag register. In pseudocode this would be “if the comparison 
was true then continue executing, if the comparison was false then jump to the next printf() 
call.”  

 We can now see and understand the translation between what we see as source code, 
and what we see in a black-box or disassembled format. Again, this is a very simple example, 
but as the code complexity increases the gap between white-box and black-box widens and it 
becomes more difficult to determine how to achieve 100% decision, statement, path and 
entry/exit coverage. For example, in our source code, we really only have 5 lines of 
executable code inside of the function foo() but the disassembly contains 14 lines of 
executable code, this makes it difficult to accurately use statement coverage in a black-box 
fashion. This is also why we choose function-level coverage, as we can easily decode the 
beginning of a function, and measure when we have hit it by using breakpoints. In this case 
we would set a breakpoint on 0x00401000 and when that breakpoint was hit we know that 
function foo() had been executed. 

As a side note, one could also pull in the functions and basic blocks for an application, and 
using some simple heuristics determine decision coverage by the number of basic blocks that 
were executed based on whether the basic block was reached by a conditional jump, but this 
is a very slow and painstaking process, and does not lend itself to quickly measuring the 
amount of code attached to an attack surface. 

5. Attack Surface Determination 

For the purpose of this paper we will determine the attack surface of an application, 

based on the network port(s) that it is listening on. Using a tool called Immunity Debugger, we 

can easily see what port a process listens on (see Figure 2). 
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(Fig. 2 – Immunity Debugger’s view of all running processes) 

 

 This makes it very easy for us to attach to a process and know that we have a 

particular port open and awaiting input. In order to make use of that particular piece of 

information, we need to understand what an open and listening port really means at the 

binary level, and where we want to monitor code coverage. 

 

4.1 Hooking Win32 Socket Operations 

 In order for us to focus solely on the network level attack surface, we have to begin 

trapping code coverage metrics at the point when a packet has been received and is 

traversing memory into the application’s logic. There are four standard Windows socket 
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routines that are generally used in networked applications: recv() (TCP), recvfrom() (UDP), 

WSARecv() (TCP) and WSARecvFrom() (UDP). All four of these functions are exported from 

the system library WS2_32.dll which is located in the C:\WINDOWS\system32\ directory. 

 To hook any of these functions, we are merely setting a breakpoint at the function head 

of those calls and then monitoring where the function returns. The return point of the function 

will be the point at which we want to begin monitoring code-coverage, as it will be the main 

application that has made the call to the receive functions in order to receive and process 

packets from the network.  

The addresses of both the call to the receive operation and the return from it are easily 

accessible in IDA and Immunity Debugger, just by searching for the socket operation function 

name and setting a breakpoint. If you are doing the hooking at runtime, then it is important to 

set two hooks: the first hook is at the head of the receive operation, when that hook gets hit, 

you then set a hook on the stack pointer ([ESP]) which points to the return address of the 

calling function. You are now prepared to begin tracking code coverage from the point the 

packet has been received off the network, and is about to be processed by the application. 

6. Measuring Attack Surface Code Coverage 

5.1 Determining Overall Code Area 
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To begin a code coverage run, it is generally useful to acquire the total number of 

functions and basic blocks contained within the application. After we have determined the 

overall code area, we can then move on to determining what portion of the code are is the 

attack surface we are looking to analyze. Figure 3 depicts the usage of the Immunity 

Debugger’s ability to analyze a binary and retrieve a total function count: 

 

*** Immunity Debugger Python Shell v0.1 *** 

Immlib instanciated as 'imm' PyObject 

READY. 

>>>main_module = imm.getModule(imm.getDebuggedName()) 

>>>imm.analyseCode(main_module.getCodebase()) 

>>> 

>>>func_list = imm.getAllFunctions(main_module.getCodebase()) 

>>>print len(func_list) 

145 

 

(Fig. 3 – Immunity Debugger pyShell depicting a function count) 

 

 From this small script we are able to see that the currently running process has 145 

total functions that can be reached. To achieve code coverage on the binary as a whole, we 

would then iterate that list and set a breakpoint on each address. Keep in mind this is only the 

coverage information for the primary executable, if it includes other dynamic libraries (in the 
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case of Win32 these are DLLs) that are not system flagged, then we would have to make sure 

to analyze and set breakpoints inside those libraries as well. 

 

5.2 Determining Attack Surface Code Area 

In order to determine the code area of the attack surface, we have to recursively 

determine all code cross-references stemming from the reception of a packet. An illustrative 

example would be this: 

1) Address “A” is the return address from a WS2_32.recv call. 

2) Determine the cross-references to the function where address “A” resides. Let’s say 

that there are three function addresses that are cross-references, we will call them 

X, Y, and Z.  

3) Now begin recursively determining the cross-references to X,Y and Z, thus building 

a list that would look like [X1,X2,X3…], [Y1,Y2,Y3…] and [Z1,Z2,Z3…]. For each of 

the items in the resulting lists we then have to determine the cross-references to 

them, and so on.  

4) Adding up all of the cross-references gives us the total function count that is related 

to the attack surface we are analyzing. 
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Now that we have determined how many functions comprise the attack surface we are 

able to again simply add breakpoints for each of those addresses. We have completely 

reduced the amount of code coverage area that we have to monitor. This is a very targeted 

set of coverage points, as opposed to having to manually filter out extraneous function calls 

which may not be related to the handling of received network data. 

 

5.3 Fuzzing for Attack Surface Coverage 

 Generally, code coverage data is useful from the perspective of a tester when they 

want to ensure that they don’t have any extraneous code that needs re-factoring or is no 

longer used. From the perspective of a security engineer, code coverage is more interesting 

for measuring the effectiveness of a fuzzing run. One can measure the effectiveness of their 

fuzzing tool not only by the number of bugs it finds, but also on the amount of code coverage 

that was exercised during a fuzzing run. Again, the main caveat is that 100% code coverage 

does not ensure there are no bugs. 

 To gain an understanding of the code coverage before and after a fuzzing run, it is 

important to first pass the application a piece of data that is correctly formed. By sending the 

right packet and measuring the coverage we are able to determine the common path that a 
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normal packet will take through the application’s logic. Once we have determined the code 

coverage count from a regular packet, we can then begin mutating that packet to see if we 

can begin exercising other chunks of code that are not normally executed, for example error 

handling routines, or logging functions. From personal experience, most developers put a lot 

of time and effort into making sure the packet parsing is done correctly, but when displaying 

an error message will blindly pass the user-supplied data into a buffer for display, which is 

generally a bad idea. 

5.3.1 Genetic Fuzzing and Code Coverage 

 The newest form of fuzzing that has begun to take hold is genetic fuzzing. Genetic 

fuzzing is the method of testing whereby the inputs are generated based on a genetic 

algorithm that uses various metrics (for now only code coverage) to determine the fitness 

level of the input being sent to the application. This enables the fuzzer to become “smarter” 

over time and to provide inputs that cover greater amounts of code over each new generation. 

 An excellent example of a genetic fuzzer is EFS [8]. EFS fully utilizes a reverse 

engineering framework called PaiMei to trap code coverage data on each packet that is sent 

to the target application. It then uses this code coverage information to create the best 

packets that will drive the deepest into the application’s logic, and this has been proven to be 

a very powerful method for robustness testing a software application. 
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 An interesting way to make the EFS system even more powerful would be to apply our 

attack surface code coverage method to the PaiMei framework, which is responsible for the 

function resolution and breakpoints. This would generate a very small subset of the total code 

coverage paths and EFS would then have a fine-grained list of coverage points that would 

only be relevant to the attack surface we wish to test. This would also alleviate the current 

problem where you have to do pre-test runs using PaiMei to manually determine what code 

coverage hits should be filtered out before EFS fires up. 

 

7. Attack Surface and Incident Handling 

Typically, an incident handler is not working in close association with the QA or 

development teams in terms of testing metrics, coverage and other software development 

lifecycle areas. In the case of attack surface, it can be useful for an incident handler during 

their preparation phase to be able to determine what an application’s attack surface looks like 

(what network ports does it listen on, does it read environment variables, etc.). It can also be 

very useful for a handler to have an idea of how well the development team has exercised the 

attack surface, and to understand where they can obtain further information about the 

application’s health should an attack or incident occur.  
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We may soon see the gap being bridged between incident handlers, application testers 

and development staff. It is crucial that there is no knowledge gap between all teams, and the 

attack surface of deployed applications is a very relevant nugget of information that should be 

shared. 

 

8. Conclusion 

We have demonstrated an easy, and repeatable method for not only determining the 

amount of code attached to a particular attack surface, but also how to practically use that 

information as a testing metric to find bugs in software applications.  The attack surface itself 

is a difficult to define part of an application, but using the approach as outlined in this paper, 

we can begin honing in on only the most interesting (and risky) parts of an application. 

In the future, we should expect to see fuzzers more heavily relying on code coverage 

metrics, and the black-box methods may soon overtake the white-box methods. Software 

security testing is an interesting and exciting field, and I hope that there is a continued effort 

to develop smarter methodologies for finding bugs. 
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