
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler (GCIH)
Practical Assignment Version 3

Combating the Nachia Worm in Enterprise
Environments

Written by: Brad Johnson
January 26, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 2

Table of Contents

TABLE OF FIGURES: ... 3

1.0 STATEMENT OF PURPOSE... 4

2.0 THE EXPLOITS ... 4

2.1 NAME... 4
2.2 OPERATING SYSTEMS.. 6
2.3 - PROTOCOL/SERVICES/APPLICATIONS.. 6

2.3.1 - Netbios RPC & DCOM Protocols ... 7
2.3.2 – WebDav Protocol .. 9
2.3.3 – TCP/IP & ICMP Protocol ... 9
2.3.3.1 - TCP/IP Protocol .. 9
2.3.3.2 - ICMP Protocol... 10

2.4 - VARIANTS... 12
2.5 - DESCRIPTION.. 12
2.6 - SIGNATURES OF THE ATTACK ... 14

3.0 THE PLATFORMS/ENVIRONMENTS ... 19

3.1 - VICTIM’S PLATFORM .. 19
3.2 - SOURCE NETWORK ... 19
3.3 - TARGET NETWORK & NETWORK DIAGRAM .. 20

4.0 STAGES OF THE ATTACK... 21

4.1 - RECONNAISSANCE... 24
4.2 - SCANNING .. 24
4.3 - EXPLOITING THE SYSTEM... 24
4.4 - KEEPING ACCESS.. 25
4.5 - COVERING TRACKS ... 26
4.6 – EXPLOITS IN ACTION... 26

4.6.1 - RPC/DCOM Exploit Example:.. 27
4.6.2 - WebDav Exploit ... 30

5.0 - THE INCIDENT HANDLING PROCESS.. 34

OVERVIEW.. 34
5.1 - PREPARATION... 35
5.2 - IDENTIFICATION ... 37
5.3 - CONTAINMENT .. 41
5.4 - ERADICATION.. 42
5.5 - RECOVERY ... 42
5.6 - LESSONS LEARNED ... 43

APPENDIX A – CISCO CONFIGURATION EXPECT SCRIPT 48

APPENDIX B: SCRIPTS TO PATCH PC’S FOR NACHIA ERADICATION...... 56

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 3

Table Of Figures:

FIGURE #1 – RPC/DCOM PROCESS DIAGRAM .. 8
FIGURE #2 – DCOM/RPC CLIENT/SERVER EXAMPLE... 8
FIGURE #3 – TCP HANDSHAKE EXAMPLE... 10
FIGURE #4 – ICMP PACKET DIAGRAM ... 11
FIGURE #5 – SNORT NACHIA ICMP ALERT EXAMPLE .. 15
FIGURE #7 – SNORT IDS RULE FOR RPC/DCOM ATTACK...................................... 16
FIGURE #8 – SNORT IDS RULE FOR WEBDAV EXPLOIT ... 17
FIGURE #9 – WEBDAV EXPLOIT PACKET TRACE ... 17
FIGURE #10 – W2K EVENT VIEWER AFTER WEBDAV EXPLOIT.................................. 18
FIGURE #11 – DISPLAY OF THE NETSTAT –AN IN A COMMAND SHELL.......................... 18
FIGURE #12 – SOURCE NETWORK DIAGRAM... 19
FIGURE #13 – NETWORK DIAGRAM.. 21
FIGURE #14 – NACHIA NETBIOS SYN SCAN ... 25
FIGURE #15 – WEBDAV EXPLOIT PACKET EXAMPLE ... 25
FIGURE #16 – RPC/DCOM EXPLOIT COMMAND LINE OPTIONS............................... 27
FIGURE #17 – RPC/DCOM EXPLOIT IN ACTION... 27
FIGURE #19 – EVENT VIEWER ALERT AFTER RPC/DCOM EXPLOIT.......................... 29
FIGURE #20 – WEBDAV EXPLOIT BATCH FILE TO START NETCAT.............................. 30
FIGURE #21 – TFTPD DAEMON USED IN THE WEBDAV ATTACK 30
FIGURE #22 – WEBDAV EXPLOIT IN ACTION ... 31
FIGURE #23 – NETCAT LISTENER STARTED ON PORT TCP/666.................................. 31
FIGURE #24 – WEBDAVGUI INTERFACE TO INITIATE ATTACK 32
FIGURE #25 – CMD SHELL ACCESS WITH THE USE OF NETCAT................................ 32
FIGURE #26 – NETSTAT –AN OUTPUT AFTER EXPLOITATION OF WEBDAV.................. 33
FIGURE #27 – EVENT VIEWER AFTER THE WEBDAV EXPLOIT 34
FIGURE #28 – CISCO ROUTER QOS CONFIGURATION.. 37
FIGURE #29 – NACHIA IMPACT ON FAST ETHERNET ROUTER INTERFACE................... 38
FIGURE #31 – CISCO NBAR OUTPUT FROM NACHIA WORM 39
FIGURE #32 – IP CACHING STATISTICS DURING NACHIA INFECTION 40

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 4

1.0 Statement of Purpose

The purpose of this paper is to describe the impact of the Nachia Worm and its
effect on enterprise networks. This paper will focus on how my security team
dealt with the Nachia worm in our enterprise network. It will explain why the
Nachia worm was so successful in wreaking havoc on many enterprise networks
and explain methods we used to identify the worm in our network and how we
used the six step incident handling process to process this security incident.

The Nachia worm infected our network through a vpn connection from a home
user. We will look at the architectures that allowed the Nachia worm to infect our
internal network. We will look at the mechanisms that allowed us to detect the
existence of the worm and how the various tools were used to perform
containment and eradication of the Nachia worm.

First, we will look at the vulnerabilities the Nachia worm exploited, the operating
systems affected by the worm and the underlying protocols and applications.
This section will focus on the technical details that enabled the attacks to occur.
We will look at the Netbios RPC protocol, DCOM architecture and the Microsoft
implementation of WebDav.

Secondly, we will look in detail at the exploitation of RPC DCOM vulnerability and
the Microsoft WebDav vulnerability. The attack will be analyzed to determine
how, what and why of the Nachia worm.

Lastly, we will look at how the incident handling process was used and how it
affected the way the incident was handled. During this process we will look at
the methods of preparation, identification, containment, eradication, recovery and
lessons learned from this incident.

2.0 The Exploits

2.1 Name

The name of the exploit is the “Nachia Worm”. This worm is known as
W32.Nachia.A (Computers Associates), Worm_MSBLAST.D (Trend Micro) and
W32.Welchia Worm (Symantec).

The Nachia Worm exploits two known vulnerabilities, which are identified below:

Common Vulnerability & Exposure (CVE)

RPC DCOM Vulnerability:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 5

Microsoft WebDav Vulnerability:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0109

CERT Alerts:

Microsoft RPC DCOM Vulnerability:
http://www.cert.org/advisories/CA-2003-19.html

WebDav Vulnerability:
http://www.cert.org/advisories/CA-2003-09.html

CERT Vulnerability Notes:

Microsoft RPC DCOM:
http://www.kb.cert.org/vuls/id/568148

Microsoft Alerts:

Microsoft RPC DCOM Security Alert:

http://www.microsoft.com/technet/treeview/?url=/technet/sec
urity/bulletin/MS03-026.asp

Microsoft WebDav Security Alert:

http://www.microsoft.com/technet/treeview/default.asp?url=/t
echnet/security/bulletin/ms03-007.asp

Exploit Code Links:

WebDav Exploit Code:
http://www.securiteam.com/exploits/5SP0L159FC.html

WebDav Exploit Code:
http://www.xfocus.org/exploits/200303/19.html

RPC/DCOM Exploit Code from LSD:
http://www.metasploit.com/tools/dcom.com

Multiple Exploits of RPC/DCOM -
http://illmob.org/0day/RPC%20exploit/

WebDav GUI Exploit: http://illmob.org/exploits/WebDavin-1.01.zip

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 6

2.2 Operating Systems

The operating systems that were affected by this worm are as follows:

MS03-026 – RPC DCOM MS03-007 - WebDav
Windows NT 4.0 Windows NT 4.0
Windows NT 4.0 Terminal Server
Edition

Windows NT 4.0 Terminal Server Edition

Windows 2003 (Server &
Professional)

Windows 2000

Windows XP Windows XP
Windows 2003

The Microsoft RPC DCOM vulnerability affects all Windows NT 4.0 platforms,
Windows 2000 platforms, Windows XP and Windows 2003 platforms. This
vulnerability is considered critical on these operating systems because the
vulnerability, when exploited, can give attackers command level access under
the Windows system user account (admin level). The technical details will be
outlined later in the paper to explain the true impact of this exploitable
vulnerability.

The Microsoft WebDav vulnerability exists in Windows NT 4.0 platforms,
Windows 2000 Platforms and Windows XP. The Windows NT 4.0 and Windows
XP operating systems share the same vulnerability but as of this paper’s writing,
it was not exploitable. The technical details of this vulnerability will be addressed
later in this paper. The Windows 2000 operating systems are critically vulnerable
to the exploitation of this vulnerability.

2.3 - Protocol/Services/Applications

The Nachia worm exploited the following applications/services and protocols to
not only allow remote control of the systems, but a network based denial of
service attack through the volume of the ICMP traffic. In order to understand
how the exploit works we need to first understand the function and role that each
of these protocols/services/applications play in the normal operation of day to
day functions.

• Microsoft Netbios RPC over TCP/IP port 135
• Microsoft DCOM Protocol & Architecture
• Microsoft Implementation of WebDav protocol
• ICMP Protocol

Now lets discuss more about the functions and roles of client/server
communication in regards to distributed computing.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 7

It is important to understand the terms client and server. A client is an entity
requesting access to a centralized resource. A server is nothing more than a
grouping of centralized resource or resources for clients to communicate with for
one purpose or another. This architecture enables programmers and developers
to write applications that distribute the roles and functions for applications across
multiple systems.

2.3.1 - Netbios RPC & DCOM Protocols

The Microsoft implementation of remote procedure calls (RPC) is a core
foundation for any Windows based client/server model applications. RPC is not
specific to Microsoft. RPC is a standard in which many organizations (Microsoft,
Sun, etc..) have chosen to enhance, which supports distributed application
support on their specific platforms. For additional information on the RPC
standard, the IETF web site is very good. http://www.ietf.org/rfc/ This web site
has all the IETF standards and drafts, for many of the protocols, applications and
services that computers use to communicate with each other.

The RPC protocol is used to allow applications in a client/server model to
seamlessly communicate with one another without having to rely on the various
transport mechanisms that allow the systems to communicate. Through the use
of RPC, it is possible to execute code on another computer. RPC is the protocol
that enables two or more systems to interoperate and run distributed
applications. The graphic below illustrates the role of the Microsoft RPC
communications process.

Client ComponentProxy Object

DCE RPC

Protocol Stack

Stub

DCOM network-
protocol

Security
Provider

DCE RPC

Protocol Stack

Security
Provider

SCM SCM

OLE32

"CoCreateI
nstance"

(Remote)
Activation

"CoCreateInstance"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 8

Figure #1 – RPC/DCOM Process Diagram1

Figure number one graphically displays how the DCOM protocol provides a
common interface to integrate different transports and functions to provide a
consistent interface to any distributed application. This application could be
simply someone logging on to a web based asset control application, online
purchasing e-commerce site, etc… The whole purpose of DCOM is to ensure
the application for both client and servers, can communicate without worrying or
managing the transport mechanisms and details of communication. The
application below shows multiple clients accessing an application that
authenticates the user using the Security Provider sub-system under the
Windows operating systems. DCOM is the foundation of communication
between client/server apps and operating systems servicing simple services such
as Dhcp (Dynamic Host Configuration Protocol – automatically assigns TCP/IP
Addresses to end systems), Wins (Windows Internet Naming Server maps IP
address to Netbios names, File & Print Sharing, etc) These ancillary services are
fundamental to communication over a network between systems. DCOM
interfaces with the RPC protocol DCE/RPC to enable communication and
application functionality between network systems. So, understanding that RPC
is the transport for DCOM is key and that DCOM is the middleware that allows
applications to seamlessly communicate.

Figure #2 – DCOM/RPC Client/Server Example2

1 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnDCOM/html/msdn_DCOMarch.asp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 9

RPC communications cannot be disabled in a Windows environment because it
is the mechanism that allows systems to talk to one another. This protocol is
very dangerous to be left open to any untrusted systems. (Untrusted system is
defined as a resource that is not totally controlled. Control is the key to security).
This protocol serves a very good purpose but access to it needs to be controlled.
We will see exactly how dangerous RPC communications can be in any
Windows architecture through the exploitation of vulnerabilities related to RPC.
Now that we have an understanding of the purpose and existence of RPC and
DCOM we need to look at the Microsoft Implementation of the WebDav protocol.

2.3.2 – WebDav Protocol

 The WebDav protocol is an extension to html.3 The specifications are outlined
for vendors to use in rfc 2518. The WebDav protocol specifications can be found
at ftp://ftp.rfc-editor.org/in-notes/rfc2518.txt. WebDav stands for World Wide
Web distributed authorizing and versioning. HTML is the programming language
used to create and modify web based content. This content is view through a
web browser. (examples – Netscape, Mozilla, Microsoft Internet Explorer)
WebDav allows an administrator to make changes to web site content remotely.
This is extremely useful when making changes or developing web sites. This
protocol simplifies the administration necessary to update web-based material.
The Microsoft implementation of WebDav and its associated interaction is the
cause for concern. The Microsoft implementation is an attack vector for a buffer
overflow condition in the Ntdll.dll core operating system component. It is
important to understand that WebDav is not the problem. The true problem is the
implementation of the Ntdll.dll.

2.3.3 – TCP/IP & ICMP Protocol

The Nachia worm utilizes the TCP/IP and ICMP protocol to determine if a host is
alive by issuing a ping packet and compromising the end systems through the
TCP/IP protocol.

2.3.3.1 - TCP/IP Protocol

The TCP/IP (Transmission Control Protocol/ Internet Protocol) protocol is used to
allow systems to talk together over networks. This protocol provides a common
language for different systems to communicate together. We will focus primarily
on the TCP portion of the IP protocol suite. Both exploits are executed over the

2 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnDCOM/html/msdn_DCOMtec.asp
3 http://WebDav.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 10

TCP Stack. TCP provides connection-oriented methods of communication. The
TCP protocol is reliable whereas the IP protocol is unreliable. For details on the
TCP/IP protocol refer to www.IETF.org or TCP/IP Illustrated Volume I.

Below is a description of the TCP 3-way handshake.

1. Step One, sends a packet from pc a to pc b with the syn bit
(synchronization) set.

2. Step Two, pc b sends a packet to pc a, with the syn and ack bit set, with
the initial sequence number (ISN). (ack bit is the acknowledgement)

3. Step Three, pc a sends a packet to pc b with an ack bit set. Now a tcp
connection has been established.

Figure #3 – TCP Handshake Example

2.3.3.2 - ICMP Protocol

The ICMP protocol was created for troubleshooting purposes. ICMP stands for
Internet Control Message Protocol. This protocol provides added reliability to a
protocol that is considered unreliable. The ICMP protocol was developed to
provide the ability to notify endpoints about potential problems. The Icmp
protocol provides a valuable service in detecting problems and alerting the
parties involved. This extension to the IP protocol suite provides added
reliability. ICMP is used for many purposes such as troubleshooting network
connectivity and system connectivity problems and mapping out networks to
detect what type of systems are online, number of devices, etc… For more
information about the ICMP Protocol, refer to rfc 792 at
http://www.faqs.org/rfcs/rfc792.html. The ICMP Header information is diagramed
below. This pdf can be downloaded from
http://www.sans.org/resources/tcpip.pdf

Step 1 - SYN

Step 2 – SYN/ACK

Step 3 – ACK

PC
A PC

B

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 11

Figure #4 – ICMP Packet Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 12

We now have a foundation about the protocols, services and applications that
are affected by the Nachia worm. The understanding of what the RPC protocol
does and what DCOM does helps us better understand how systems
communicate. It is hard to understand how an exploit or attack works without
understanding the underlying technologies and purposes for that technology. We
will now learn more about the exploits and attacks of the Nachia worm and how it
manipulates the technology to reverse engineer the function or purpose targeted
by the vulnerability.

2.4 - Variants

The Nachia worm is a variant of the MSBlaster Worm. The original MSBlaster
worm only exploited the RPC/DCOM vulnerability. The Blaster worm infected
systems vulnerable to the exploit and would create a backdoor command shell
port used to propagate the worm to other systems while trying to perform a denial
of service on Windowsupdate.com The Nachia variant of the Msblaster worm is
more effective. The Blaster worm used one vulnerability to exploit as opposed to
the two vulnerabilities the Nachia worm exploits. The Nachia worm is a much
more refined tool for finding target machines, by using the Icmp protocol to ping
potential victim machines. The Nachia variant is more effective and much more
direct and lethal. The Nachia worm removes the blaster worm and attempts to
patch the system. Additional details of the Blaster worm can be found at
http://www.eeye.com/html/Research/Advisories/AL20030811.html

2.5 - Description

Let us now look at the details of the Nachia worm and the vulnerabilities it
exploits. More importantly we need to look at why the worm was possible and
how the vulnerabilities were exploited. The Nachia worm exploits the
vulnerabilities of the RPC/DCOM protocols and the WebDav protocol on selected
Microsoft Operating Systems. Lets look at each exploit in detail to understand
why the vulnerability exists. Both of these vulnerabilities are characterized as
application buffer overflows. These buffer overflows are what enable the
vulnerability to be exploited through attack code. Let us look at what a buffer
overflow is and why it might be used to attack a particular vulnerability.

The RPC/DCOM and WebDav vulnerabilities exist because of the buffer
overflow in the DCOM interface with RPC and the implementation of the Ntdll.dll
in IIS’s (Internet Information Server) handling of WebDav requests. What is a
buffer overflow? Lets see.

A buffer overflow is a condition when a memory buffer is sent more data than is
allocated for the specific memory buffer. This can be caused because of a lack
of input validation and bounds checking for the specific memory buffers. This

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 13

condition can cause the process to use memory already allocated for another
process. Now the overflow into the adjacent memory buffer could be used in a
different system context than was originally designed.

Example:

Application ABC has a variable that is entered by the user and this
process is run in the context of account abc. This variable has a
memory buffer allocation of 128 characters. If the user enters more
data than 128 characters, the application memory buffer can spill
into an adjoining process memory buffer. This adjoining process
could be system management applications that are running under
the context of the system administrator. This buffer overflow can
cause the system to crash or arbitrary code could be executed with
the context of the neighboring system management process
memory buffer.

The RPC/DCOM exploit takes advantage of a buffer overflow vulnerability in the
RPC buffer handling process. This overflow condition is in the handling of
DCOM object requests through the RPC protocol. This exploit allows attackers
to gain system level access through a command shell. The attacker now can run
any command he/she would like because the command shell is opened in the
context of the system account. In the Windows architecture the system account
is used to perform system functions, thus having access to anything a local
administrator would be able to access.

The WebDav exploit takes advantage of vulnerability in the ntdll.dll function call
RtlDosPathNameToNtPathName_U.4 This vulnerability can be exploited through
a buffer overflow attack. In this particular case it is not the implementation of
WebDav by Microsoft that is problematic. It is the function call that WebDav
makes to the NT kernel through the ntdll.dll. The function that is misused is
RtlDosPathNameToNtPathName_U. The exploit for this vulnerability send a
specially crafted message to execute a command shell in the context of the
system account. Which we know from the RPC/DCOM vulnerability will permit
attackers to arbitrarily issue commands, start process, etc…

Now that we have looked at the two vulnerabilities that the Nachia worm
exploited, it is important to note that this worm used an efficient means of
identifying potential targets through the use of the ICMP protocol and in particular
the ping command.5 The worm would use the local address first 2 octets (class b
address space) to determine who to scan for potential attacks. These scans
were performed via Icmp ping with the usage of the same payload 0xAA in

4 http://www.giac.org/practical/GCIH/David_Smithers_GCIH.pdf
5 http://www.faqs.org/rfcs/rfc792.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 14

hexadecimal (170 in decimal). This form of enumeration was very targeted and
caused extensive network congestion and denial of service in some cases.

2.6 - Signatures of the Attack

The signature of the Nachia worm is not simply just one IDS (Intrusion Detection
System) signature or an event log. The worm exploits the RPC/DCOM and
WebDav vulnerability. The Nachia worm has three separate methods for
detection. The three methods of detection are Icmp payload detection,
RPC/DCOM detection and WebDav detection. Below are sample packets and
IDS rules to detect the three components. Throughout this section packet
examples and IDS rules are shown.

Below are packet alerts from Snort IDS System. These Snort alerts are detecting
the Icmp packets. This trace shows the signature of the same payload length (
92 bytes in the datagram payload6). The Icmp protocol is a catalyst for targeting
victim machines and is not vulnerability. ICMP provides a valuable service to
detect problems, etc.. It is important to understand the purpose of Icmp so
administrators do not shut off Icmp and then wonder why things that worked
before do not work now. Many applications ping the client prior to accepting
connections, such as Cisco tn3270 server application on Cisco routers and hpux
workstations, servers, etc...

[**] [1:483:2] ICMP PING CyberKit 2.2 Windows [**]
[Classification: Misc activity] [Priority: 3]
11/02-08:59:42.234783 65.95.179.178 -> 65.94.176.XXX
ICMP TTL:121 TOS:0x0 ID:59987 IpLen:20 DgmLen:92
Type:8 Code:0 ID:768 Seq:50857 ECHO
[Xref => http://www.whitehats.com/info/IDS154]

[**] [1:483:2] ICMP PING CyberKit 2.2 Windows [**]
[Classification: Misc activity] [Priority: 3]
11/02-08:59:55.885556 65.95.182.52 -> 65.94.176.XXX
ICMP TTL:121 TOS:0x0 ID:29101 IpLen:20 DgmLen:92
Type:8 Code:0 ID:512 Seq:52905 ECHO
[Xref => http://www.whitehats.com/info/IDS154]

[**] [1:483:2] ICMP PING CyberKit 2.2 Windows [**]
[Classification: Misc activity] [Priority: 3]
11/02-09:00:11.517493 65.93.34.177 -> 65.94.176.XXX
ICMP TTL:119 TOS:0x0 ID:35940 IpLen:20 DgmLen:92
Type:8 Code:0 ID:768 Seq:55213 ECHO

6 http://cert.uni-stuttgart.de/archive/intrusions/2003/11/msg00050.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 15

[Xref => http://www.whitehats.com/info/IDS154]

[**] [1:483:2] ICMP PING CyberKit 2.2 Windows [**]
[Classification: Misc activity] [Priority: 3]
11/02-09:00:14.677723 65.94.134.214 -> 65.94.176.XXX
ICMP TTL:125 TOS:0x0 ID:28549 IpLen:20 DgmLen:92
Type:8 Code:0 ID:1024 Seq:929 ECHO
[Xref => http://www.whitehats.com/info/IDS154]

Figure #5 – Snort Nachia ICMP Alert Example7

Detailed ICMP packet traces are illustrated below. It is important to recognize
the consistent pattern. The payload is the same in all the Icmp packets.8

 7065 415f b3b2 415e b078 0800 d900 0300
 c6a9 aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa 7c11 df93 594e 4f54 0000 6b45 b90d
 a53f fafd

 e689 415f b634 415e b078 0800 d200 0200
 cea9 aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa 0000 df93 594e 4f54 0000 6b45 b90d
 a53f fafd

 6158 415d 22b1 415e b078 0800 c7fc 0300
 d7ad aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa c0af 3001 415e b078 0035 dac2 b7a5
 c931 3a03

Figure #6 – ICMP Payload Example9

7 http://www.whitehats.com/info/ids154
8 http://cert.uni-stuttgart.de/archive/intrusions/2003/11/msg00050.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 16

Below are Snort IDS rules to detect the DCOM exploit. These rules are looking
for the command shell that gets spawned by the buffer overflow exploit. Other
snort alerts are available that detect the exploit code being executed over ports
135,137,139,445, etc…

Snort Alerts for RPC DCOM Exploit10

alert tcp any 4444 -> any any (msg:"ATTACK-RESPONSE
successful DCOM RPC System Shell Exploit Response";
flow:from_server,established; content:"|3a 5c 57 49 4e 44 4f 57 53
5c 73 79 73 74 65|"; classtype:successful-admin;)

alert tcp any 3333 -> any any (msg:"ATTACK-RESPONSE
successful DCOM RPC System Shell Exploit Response";
flow:from_server,established; content:"|3a 5c 57 49 4e 44 4f 57 53
5c 73 79 73 74 65|"; classtype:successful-admin;)

Figure #7 – Snort IDS Rule for RPC/DCOM Attack

The RPC/DCOM exploit can be detected on Windows systems by viewing the
event log. The event log will show the crashing of the RPC process. It is
common that when a machine has been attacked, Windows functionality such as
mapping network drives by Netbios name and other network functions will not
work properly until the victim system has been shutdown and restarted. For
detection purposes it is important to view netstat to determine if any open
connections exist. Comparing this information with the system baseline of
services offered is important.

Snort Signatures for WebDav Exploits. These snort rules will allow the detection
of the vulnerability potentially being exploited.11

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS
$HTTP_PORTS (msg:"WEB-IIS
view source via translate header"; flow:to_server,established;
content:
"Translate|3a| F"; nocase; reference:arachnids,305;
reference:bugtraq,1578; classtype:web-application-activity;
sid:1042;
rev:6;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS
$HTTP_PORTS (msg:"WEB-MISC

10 http://www.counterpane.com/alert-v20030801-001.html
11 http://seclists.org/lists/pen-test/2003/Mar/0130.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 17

WebDav search access"; flow:to_server,established; content:
"SEARCH ";
depth: 8; nocase;reference:arachnids,474;
classtype:web-application-activity; sid:1070; rev:5;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 80
(msg:"Miscellaneous long HTTP
WebDav request"; content:" /"; content:!"|0a|"; within:30000;
flow:to_server; reference:Bugtraq,7116; rev: 2;)

Figure #8 – Snort IDS Rule for WebDav Exploit

Below is a packet trace of the WebDav exploit in action.12

12/22-04:04:33.702226 xxx.xxx.xxx.xxx:2543 -> xxx.xxx.xxx.xxx:80
TCP TTL:64 TOS:0x10 ID:60018 IpLen:20 DgmLen:262 DF
AP Seq: 0x6E0098 Ack: 0x4D92C091 Win: 0x7FB8 TcpLen:
20
53 45 41 52 43 48 20 2F 20 48 54 54 50 2F 31 2E SEARCH /
HTTP/1.
31 0D 0A 48 6F 73 74 3A 20 77 68 69 74 65 68 61 1..Host:
whiteha
74 73 2E 63 6F 6D 0D 0A 43 6F 6E 74 65 6E 74 2D
ts.com..Content-
54 79 70 65 3A 20 74 65 78 74 2F 78 6D 6C 0D 0A Type:
text/xml..
43 6F 6E 74 65 6E 74 2D 4C 65 6E 67 74 68 3A 20 Content-
Length:
31 33 33 0D 0A 0D 0A 3C 3F 78 6D 6C 20 76 65 72 133........
3C 67 3A 73 71 6C 3E 0D 0A 53 65 6C 65 63 74 20 ..Select
22 44 41 56 3A 64 69 73 70 6C 61 79 6E 61 6D 65
"DAV:displayname
22 20 66 72 6F 6D 20 73 63 6F 70 65 28 29 0D 0A " from scope()..
3C 2F 67 3A 73 71 6C 3E 0D 0A 3C 2F 67 3A 73 65

Figure #9 – WebDav Exploit Packet Trace

12 http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids474&view=research

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 18

Figure #10 – W2k Event Viewer after WebDav Exploit

The Windows 2000 Event Viewer is shown after the WebDav vulnerability has
been exploited. These alerts indicate that the IIS processes have been restarted.

Figure #11 – Display of the netstat –an in a command shell.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 19

You can see the established session on tcp port 666 in figure # 11. This is a
command shell used by exploit for the WebDav vulnerability

3.0 The Platforms/Environments

The specific platforms and environment will be outlined below. This information
will include a description of the attacking machine which was a home pc infected
through a broadband ISP (Internet Service Provider). The target network is the
corporate enterprise network that the home user connects to for remote access.
Diagrams will be provided to show how connectivity is allowed from end-to-end.

3.1 - Victim’s Platform

The original victim machine in this paper is a home users’s Dell pc. This Dell pc
is running Windows 2000 Professional with Service Pack 3. The user is a
manager. This pc has not been patched since the user purchased it from Dell
Computer Company.

3.2 - Source Network

The source network diagrammed below is the home users network that was
setup when his/her broadband cable modem was installed.

Home Ethernet - 192.168.1.0/24

Home PC
Win2k Professional

192.168.1.104

Broadband ISP

Cable Modem
DHCP Server

Figure #12 – Source Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 20

The above diagram displays the user has no firewall. The cable modem is a
Linksys broadband cable router. This router will provide Dhcp to any clients
connected to the hub which is represented by the Home Ethernet Network
above. The firewall was installed so that the user could play games online. This
workstation has been setup as the dmz host. This means the Dell workstation is
not protected at all. This workstation was infected with the Nachia worm. While
still infected, the remote user logged into the corporate vpn. Through the vpn
connection, the internal corporate network was infected with the Nachia worm.

3.3 - Target Network & Network Diagram

The target network is the corporate network that the remote user has been given
access to via the Cisco vpn client. The remote user has been provided a digital
certificate and existing domain credentials to authenticate the vpn session from
home. The corporate network was designed to allow remote users access to all
internal resources via the vpn. The equipment involved in the target network is
as follows:

• Network Equipment
o Cisco 3640 Routers – Distribution Site Routers

♣ Running Cisco IOS 12.2.17A – IP Plus
o Cisco 2611 Routers – Remote Site Access Routers

♣ Running Cisco IOS 12.2.19A – IP Plus
o Cisco 7206 Routers – HQ Wan Routers

♣ Running Cisco IOS 12.2.8 - Enterprise
o Cisco 3550 Series Switches – Remote Site Switches

♣ Running Cisco IOS 12.0.5 - EMI
o Cisco 6500 Series Switches – HQ Core L3 Switches

♣ Supervisor Cat OS 6.7
♣ IOS L3 MSFC runs 12.1.2 - Enterprise

o Cisco PIX 525 Firewalls
♣ PIX IOS 6.3

o Cisco 3030 VPN Concentrators
♣ Concentrator IOS – 4.0.1
♣ VPN Client – 4.0.2

• Servers
o IBM E-Series Servers running Windows 2000 Server with SP3

• Workstations
o IBM workstations running Windows 2000 Professional with SP3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 21

Below is a diagram of the target network.

Server VLAN-172.18.1.0/24

Public DMZ - 192.168.1.0./24

Internal Subnet
172.19.1.0/24

External Public Network
10.10.10.0/24

SiSi

Internet Firewall

Internet Router

Public SMTP GW
Public DNS

Web Server

Private DNS

Server
Farm

.1

.2

.1

.3

.4

.1

.2

.1

.2

WAN
300 Sites

Typical
Remote Router

LAN

W2k Professional

VPN

DS-3's

WAN Routers
T1's

Internet
Service

Provider

DS-3

HOME Cable
ISP

Figure #13 – Network Diagram

Now we will focus on the attack and understanding how the worm identified and
exploited the vulnerabilities documented in the previous exploit section. To
illustrate the attack we will use exploit code manually for the RPC/DCOM exploit
and the WebDav exploit. Throughout this process, the impact and functionality of
the worm will be explained.

4.0 Stages of the Attack

The Stages of the Attack portion of this paper will focus on how the Nachia worm
identified and targeted victim machines. We will look at the exploits in detail.
There will be screenshots of the RPC/DCOM exploit and the WebDav exploit.
The previous sections explained the underlying technologies and purposes for
these application, protocols and services. It is very common for attackers to use
a structured process for identifying and attacking machines, via a five step

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 22

process. This planned process provides staggering results, based on logic not
emotions.

Five Step Attack Process
• Step One

Reconnaissance – This step is where an attacker will start to identify
potential targets. A great tool for researching information is the Google
search engine. This is commonly referred to as the “Google factor”.
During this step, information is gathered. Typically, they would search
for domain information via DNS (Domain Name Service – Mapping of
domain names to TCP/IP addresses). Information gathered here can
start to form a picture for the attacker. A great tool is Sam Spade.

• Step Two
Scanning – The scanning step uses the information gathered in the
recon process. This step will use tools like Nmap, Nessus, Superscan,
etc… These tools take the target information gathered in the recon
step and will start to probe the target system. These tools will check
for open TCP/IP ports. The information gathered can help an attacker
identify vulnerable systems. For example, if an attacker identifies a
target that has tcp port 80, 135, 139, 445 open from an nmap scan,
the attacker can now direct efforts for potential attack vectors because
those ports indicate a Windows box and more specific a win2k system.
During this process the information gathered helps the attacker to build
a plan of attack and then download the necessary tools and exploits to
attack the target system.

• Step Three
Exploiting Vulnerabilities – Now that we know the system is a Windows
2000 box, we can download tools to exploit RPC services, default
admin accounts, iis services, etc… After successful exploitation, the
focus is to keep access to the compromised system.

• Step Four
Keeping Access – after the attacker has gained access, focus is on
keeping access to the compromised system. During this process
Trojans and Rootkits are installed to provide access and allow the
system to perform normally. Keeping access is not limited to Trojans,
Rootkits, adding user accounts, etc... It is important to make access
transparent so the end user of the system does not detect it. After
successful backdoor access is obtained it is important to try and
remove evidence of the attackers existence.

• Step Five
Covering Tracks – The last step in the process is to eliminate a trail of
evidence indicating system compromise. It is common to remove log
entries and patch systems so administrators don’t expect any
problems.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 23

Now that we know how attackers target systems we can build a robust defense.
Any attack today can be tracked using this approach (not counting script kiddies
who typically don’t think logical, they let their emotions drive their actions). We
will apply this process to the analysis of the Nachia worm attack of August 2003.
The worm process is outlined below:

Worm Attack Process from compromised machine13

• Scan Class B IP network for potential target machines
• Receive ping response back from target machine
• Send TCP connect to 135 via RPC (go through 3way handshake
• After successful connection via tcp, send RPC/DCOM exploit data.

Receive command shell to obtain access. The command shell is from a
port range of tcp 666-765. The worm is instructed to download the worm
from the compromised machine via tftp.

• Create RPCPath_Mutex to ensure the machine does not continuously get
infected with the Nachia worm.

• To Keep Access two services are created to keep access. These services
are added by setting registry keys for each service.(Keep Access)

♣ HKLM\System\CurrentControlSet\Services\RPCTftpd\Image
Path=”%system%\wins\svchost.exe”

♣ HKLM\System\CurrentControlSet\Services\RPCPatch\Image
Path=”%system%\wins\dllhost.exe”

o Network Connections Sharing Service – provides tftp server using
svchost.exe This file is copied to %system%/wins directory
(%system% is a variable for c:\winnt or wherever the operating
system was installed). The tftpd dameon in the
%system32/dllcache directory is copied as svchost.exe.

o Wins Client Service – used to replicate the worm to other systems
through the dlhost.exe. Dllhost.exe is copied to the
%system%/wins directory. This file is typically 5k not the 10k after
the worm infection.

• The worm kills the msblast.exe process and deletes the msblast.exe file
out of the system directory. After the deletion of the file, the worm attempts
to download the patch for ms03-026 (RPC/DCOM). The worm checks the
machine language, service pack level to download the appropriate patch
for the system. The worm patches the security hole due to the
vulnerability.

• The worm now scans machines to exploit via Tcp & Icmp scan. The Tcp
scan uses Tcp/135 Netbios RPC port to find vulnerable machines. If the
RPC/DCOM exploit does not work, then the worm will try the WebDav
exploit. Once the next system is exploited the worm starts all over again.

13 http://www3.ca.com/virusinfo/virus.aspx?ID=36372

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 24

Lets see how the worm process falls into the five step process used for targeting
and attacking computers.

4.1 - Reconnaissance

The Nachia worm, through the infected machine uses the Icmp protocol to
perform reconnaissance on potential targets. The worm performs
reconnaissance by examining the infected workstation ip address and then using
it to target machines that are active.

4.2 - Scanning

The worm now moves on to scanning potential targets based on the class b
address of the compromised machine. The compromised machine’s ip was
192.168.1.0, it would then scan the 192.168.0.0 255.255.0.0 network. This
scanning is very noisy in regards to detection. All the scan packets have the
same payload and could be easily detected by IDS systems. This traffic caused
a very high volume of traffic on networks. The scanning caused numerous denial
of service attacks because of the volume of data traversing the enterprise
network. This worm was much more efficient. The worm used normal Icmp echo
(type 8) and Icmp echo-reply (type 0) packets with a payload length of 92 bytes.
Below is an Icmp packet show the details:

 7065 415f b3b2 415e b078 0800 d900 0300
 c6a9 aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa 7c11 df93 594e 4f54 0000 6b45 b90d
 a53f fafd

Now, the ping responses would come back to the compromised system and
builds a list of devices to target with the exploit code of the worm.

4.3 - Exploiting the System

Using information from scanned systems the targets are identified. The worm
sends traffic to target machines to exploit the RPC/DCOM buffer overflow.

RPC/DCOM Scan

Aug 18 14:10:12 xx.xx.xx.102:10231 -> xx.xx.xx.104:135 SYN ******S*
Aug 18 14:10:13 xx.xx.xx.102:10232 -> xx.xx.xx.192:135 SYN ******S*
Aug 18 14:10:13 xx.xx.xx.102:10233 -> xx.xx.xx.111:135 SYN ******S*
Aug 18 14:10:14 xx.xx.xx.102:10234 -> xx.xx.xx.109:135 SYN ******S*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 25

Aug 18 14:10:14 xx.xx.xx.102:10235 -> xx.xx.xx.228:135 SYN ******S*
Figure #14 – Nachia Netbios SYN Scan

WebDav Packet to exploit buffer overflow

01/22-04:02:33.707726 xxx.xxx.xxx.xxx:2543 -> xxx.xxx.xxx.xxx:80
TCP TTL:64 TOS:0x10 ID:60018 IpLen:20 DgmLen:262 DF
AP Seq: 0x6E0098 Ack: 0x4D92C091 Win: 0x7FB8 TcpLen: 20
53 45 41 52 43 48 20 2F 20 48 54 54 50 2F 31 2E SEARCH / HTTP/1.
31 0D 0A 48 6F 73 74 3A 20 77 68 69 74 65 68 61 1..Host: whiteha
74 73 2E 63 6F 6D 0D 0A 43 6F 6E 74 65 6E 74 2D ts.com..Content-
54 79 70 65 3A 20 74 65 78 74 2F 78 6D 6C 0D 0A Type: text/xml..
43 6F 6E 74 65 6E 74 2D 4C 65 6E 67 74 68 3A 20 Content-Length:
31 33 33 0D 0A 0D 0A 3C 3F 78 6D 6C 20 76 65 72 133........
3C 67 3A 73 71 6C 3E 0D 0A 53 65 6C 65 63 74 20 ..Select
22 44 41 56 3A 64 69 73 70 6C 61 79 6E 61 6D 65 "DAV:displayname
22 20 66 72 6F 6D 20 73 63 6F 70 65 28 29 0D 0A " from scope()..
3C 2F 67 3A 73 71 6C 3E 0D 0A 3C 2F 67 3A 73 65

Figure #15 – WebDav exploit packet example

This detect identifies a compromised machine of xx.xx.xx.102 sending a syn
request to establish a tcp session on port 135. This port is used for Netbios RPC
communications.

After sending exploits, the attacker machine will receive a command shell under
the system account. (admin level access) Once a command shell has been
established via a tcp port between 666-765, the target machine is instructed to
download the worm code. Once the worm code is downloaded to the target
machine the worm executes. The execution of the worm code is meant to keep
access and propagate. This is outlined below.

4.4 - Keeping Access

Now that the worm is copied to the machine, the code is executed. This code
creates a mutex called RPCPatch_Mutex. This is intended to prevent the worm
from opening multiple instances which could possibly disable itself by virtue of a
denial of service. This mutex creates two services. Adding the following registry
keys creates the two services:

• Network Connection Sharing
HKLM\System\CurrentControlSet\Services\RPCTftpd\ImagePath=”%syste
m%\wins\svchost.exe”

• Wins Client
HKLM\System\CurrentControlSet\Services\RPCPatch\ImagePath=”%syst
em%\wins\dllhost.exe”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 26

The svchosts.exe file copies the tftpd.exe from %system%/dllcache directory to
%system%/wins directory. This is just to start a tftp server so additional
machines can download the worm from itself. The dllhost.exe file is used to
propagate the worm.

By setting these items up as services, the worm will propagate even if the system
is restarted. This portion keeps the worm embedded in the system. After the
components to ensure the worm to propagate (tftp server and worm code), the
worm tries to remove the msblaster worm. It kills the msblast.exe process and
then deletes the %system%/msblast.exe. Next the worm will get system
information so it can download the patch for ms03-026 to fix the RPC/DCOM
vulnerability with the appropriate language and service pack level. Lastly the
worm will attempt to replicate itself by scanning via Icmp and tcp scan for port
135. The worm will try to connect via the RPC/DCOM and if that does not work,
it will use the WebDav exploit to gain system access to propagate the worm.

4.5 - Covering Tracks

Lastly, the worm tries to cover its track by patching the system for ms03-026.
Also, January 1, 2004 the worm will remove itself from the compromised
machine. The worm does not try to delete logs, etc.. In the future, it is very likely
that the worms of the future will not only try to protect itself, but cover its track by
cleaning log files, etc…

4.6 – Exploits in Action

Now that we have gone through the analysis, below are the screenshots for each
of the exploits that the Nachia worm utilizes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 27

4.6.1 - RPC/DCOM Exploit Example:

Figure #16 – RPC/DCOM Exploit Command Line Options

This shows the usage of the well know dcom.c exploit available from
http://www.metasploit.com/tools/dcom.c This exploit was compiled with the
source code written in the c programming language. I compiled the code using
cygwin. Cygwin is a port of UNIX functionality onto the Windows platform. It was
compiled user the gnu c compiler with the standard command of gcc DCOM.c –o
DCOM. Once the compile is finished you can execute it with ./DCOM.exe as
seen below.

Figure #17 – RPC/DCOM Exploit In Action

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 28

The exploit is executed with ./DCOM.exe 3 192.168.1.105. This command uses
the differing information from w2k sp1-4 and xp with service pack 0 or 1. It is
important to put the right target number; the target number is very specific
because the buffer overflow exploit will not work because each service pack
updates the kernel, thus, changing the memory buffer pointer address. This is
paramount for the buffer overflow to be successful. You can see the exploit was
successful by giving the attacker a system level access command shell.

Figure #18 – RPC/DCOM Command Shell output of netstat -an

This screen shows the command shell connected on tcp port 4444 from the
attackers address of 192.168.1.100.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 29

Figure #19 – Event Viewer alert after RPC/DCOM Exploit

This is an event in the System Event Log on the compromised system. This is
one of the indications that the system is compromised. The message shows the
RPC service was terminated. This occurred when the buffer overflow was
executed from the attacker. This is the normal defense that the Windows kernel
does to try to protect other applications. In this case, the kernel saw the buffer
overflow and its response was to kill the process.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 30

4.6.2 - WebDav Exploit

The WebDav exploit being used is WebDavin1.01 from 0day. The exploit can be
downloaded at http://oday.com/files/WebDavin101.zip. The exploit unzips
several files. This zip uses multiple batch files to simplify the exploit. The
davit.bat file seen below is used to start a netcat session on tcp port 666.

Figure #20 – WebDav Exploit Batch File to start netcat

Davit.bat file is used to start Netcat for later usage in the exploit. This will provide
command shell access via Netcat shell.

Figure #21 – tftpd daemon used in the WebDav attack

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 31

Figure #22 – WebDav Exploit in Action

Figure 22 shows the command line used to start WebDav exploit. The screen
below shows the Netcat cmd shell that is spawned by the batch file.

Figure #23 – Netcat Listener started on port tcp/666

Netcat Listener is spawned by the davit batch file. This will provide command
line access to the compromised system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 32

Figure #24 – WebDavGui Interface to initiate attack

The WebDav-gui.exe sends the WebDav queries to exploit the weakness in the
ntdll.dll buffer overflow.

Figure #25 – CMD Shell Access with the use of Netcat

The command shell was produced from the successful exploit of the buffer
overflow. This shows direct system access to the compromised system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 33

Figure #26 – Netstat –an Output after exploitation of WebDav

The netstat –an output shows the command shell on port 666 as seen in the
batch file (davit.bat)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 34

Figure #27 – Event Viewer after the WebDav Exploit

Event Viewer logs show the crashing of the IIS (Internet Information Server)
processes. This shows the system being compromised. The logs are the key to
identifying a compromised machine, via the System log in the Event Viewer.

The exploits demonstrated above show how dangerous the Nachia worm was
and the effect of the worm should not be a surprise. Both of the vulnerabilities
allowed the attacker to run arbitrary code on the target system. Vulnerabilities
have become a common weakness for the Microsoft Windows architecture. In
the next section, a clear and concise method for dealing with these vulnerabilities
and the handling of any security events will be discussed.

5.0 - The Incident Handling Process

Overview
The focus of this section is to apply the structured SANS six step approach to the
handling of the Nachia worm. This six step approach is outlined below:

• Preparation
o The preparation phase discusses existing measures implemented

to allow the organization to limit the risk of exploitation of
vulnerabilities. Examples of these controls and measures are:

♣ Technical
• Security Mechanisms
• Infrastructure components

♣ Operational
• Day-to-Day Operations
• Guidelines & Procedures

♣ Management
• Policies (Acceptable Use, Internet Usage, etc..)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 35

• Business Impact Analysis (Identify Critical IT
Systems Classification and Evaluation)

• Identification
o How security incidents are detected in the organization is the goal

of this step. Good examples for identification components are:
♣ Network Management Systems
♣ End-Users & Administrators managing resources
♣ Security Information Management Systems – System Logs,

Firewall Logs, etc…
• Containment

o The containment step is focused upon what mechanisms are used
to contain the impact of the security event.

• Eradication
o The eradication is the process of removing the action that has

caused a security event.
• Recovery

o This is the action of returning the environment back to pre-incident
state. During this stage, the infrastructure affected by the security
event is monitored to insure integrity.

• Lessons Learned
o This section focuses on learning from the incident. This step builds

action items to help an organization prevent the reoccurrence of the
same event or similar events from occurring again. The security
controls and measures focus on ways to protect by identification
and containment mechanisms. It is understood that you can not
prevent all security incidents from occurring, these steps are used
to better assist the organization in securing I.T. assets.

This six step process is a growing lifecycle. The lessons learned provides the
information and roadmap for the organization to better prepare for other
incidents. This information is used to fill the preparation step. Now, we will
apply this six step process to the handling of the Nachia worm incident in our
enterprise environment.

5.1 - Preparation

Our enterprise computing environment as displayed in the network diagram
earlier in this document, was built to support a centralized mainframe application.
When the network was built it was not designed with security in mind. After the
initial network implementation, many functions were added to the network to
ensure integrity. These functions ensured the reliability of supporting the tn3270
mainframe application. Below is some information about our organization. This
information will help to understand what the organization was equipped to
handle.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 36

• There are no formal policies. The executive management has chosen not
to implement policies because they did not see the need.

• Established procedures for securing perimeter systems – NT, W2k, HPUX
• Established procedures for security network elements – routers, switches,

firewalls & remote access servers
• Anti-Virus solution for workstation. The operations group is responsible

for installing, updating and support all 3000 workstations.
• Anti-Virus solution for all servers. The server group is responsible for

installing, updating and support of all 220 servers (nt 4.0, w2k, linux &
hpux)

• No patch management solution for internal resources. The perimeter
systems are patched manually by the server support group.

• Internet Firewall implemented and support by wan support group.
• Internet VPN Concentrator implemented to support remote access to the

enterprise network
• No policy for VPN Connectivity or Remote Access
• Implemented network based quality of service to ensure critical application

access to network resources, regardless of other types of traffic.
o Frame Relay Traffic Shaping was configured with Priority queueing

♣ Frame Relay traffic shaping is a feature used in the routers
to control traffic engineering. The network is set to start
prioritizing traffic when the traffic on the wan interface
reaches the CIR (Committed Information Rate).

♣ Priority Queueing is a QoS strategy for engineering specific
traffic to receive specific bandwidth. Our mission critical
traffic was set to be prioritized to the highest level. It was set
to starve all traffic until the mission critical apps were given
bandwidth during periods of congestion

♣ QoS Configuration Example:

interface Serial0/1.1 point-to-point
description pvc to HQ
bandwidth 28
ip address 172.20.2.66 255.255.255.252
no ip directed-broadcast
frame-relay interface-dlci 123 IETF
class 28kcir

map-class frame-relay 28kcir
frame-relay traffic-rate 28000 56000
frame-relay adaptive-shaping becn
frame-relay priority-group 1
!
priority-list 1 protocol ip high tcp telnet – TN3270
priority-list 1 protocol ip high tcp 2065 - DLSW
priority-list 1 protocol dlsw high

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 37

priority-list 1 default low

Figure #28 – Cisco Router QoS Configuration

• Implementing Syslog Server for central logging.
• Implement Concord Network Management Server for Reporting and Fault

Management
• No established Incident Handling Process

Overview
The organization focused upon threats from the Internet. The Internet presence
was hardened extensively. A great deal of focus was given to external threats
but not to internal threats. The external router has a Cisco ACL (Access Control
List) used to filter traffic before it reaches the firewall. Any user is allowed to vpn
from home without ensuring anti-virus, host based ids, etc.. All remote users
have broadband internet connections through local ISP’s.

5.2 - Identification

In August of 2003, the Nachia worm affected hundreds of thousands of
workstations. Once we learned of the worm and its effect, we patched all of the
perimeter systems. The organization did not have any patch management
systems to patch the internal 3000 workstations and 220 servers. On August
19th, the network management station running Concord E-Health network
management software started flooding the the wan administrator’s email with
alerts from the internal router used to route the vpn vlan.

The network management system was reporting excessive increase in traffic on
the fast Ethernet interface of the vpn vlan. This alert was based upon the
network traffic baseline used by the system for fault management. Once, the
wan administrator received the alerts via email, he started investigating the vlan
router interface. Below is the screen output from the initial troubleshooting.

FastEthernet0/0 is up, line protocol is up
 Hardware is i82543 (Livengood), address is 0007.4f87.0008 (bia
0007.4f87.0008)
 Internet address is x.x.x.x/16
 MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
 Keepalive set (10 sec)
 Full-duplex, 100Mb/s, 100BaseTX/FX
 ARP type: ARPA, ARP Timeout 04:00:00
 Last input 00:00:00, output 00:00:00, output hang never
 Last clearing of "show interface" counters 1w2d

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 38

 Input queue: 0/75/10/0 (size/max/drops/flushes); Total output
drops: 0
 Queueing strategy: fifo
 Output queue: 0/40 (size/max)
 30 second input rate 4520000 bits/sec, 1000 packets/sec
 30 second output rate 4278000 bits/sec, 1100 packets/sec
 775352095 packets input, 13700021451 bytes
 Received 333264375 broadcasts, 0 runts, 0 giants, 1 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
 0 watchdog
 0 input packets with dribble condition detected
 557938777 packets output, 1288591425 bytes, 0 underruns
 0 output errors, 0 collisions, 0 interface resets
 0 babbles, 0 late collision, 0 deferred
 0 lost carrier, 0 no carrier
 0 output buffer failures, 0 output buffers swapped out

Figure #29 – Nachia impact on Fast Ethernet Router Interface

The above screen output caused alarms to be generated. The traffic traveling
through this interface was extremely high. The normal throughput was normally
between 400k input and 340-450 output at any given time. The input/output
rates are 4.5 mbits input and 4.2 mbits output. This is a 1000 percent increase in
normal traffic. This was cause for concern. It was time to now get the wan group
architect involved in trying to determine what has causing the increase in
bandwidth usage. While getting the architect, emails from 100 routers came in
with the same alert message from concord e-health fault management
application. Now before we look at some of the initial signs of the worm’s
infection, we need to understand what tools we have at our disposal to gather
network based statistics.

All the routers in the network are Cisco. The models are 3640, 7206, 7513,
2611. All routers are configured to used NBAR as a means of detection. NBAR
is Network Based Application Recognition. This feature allows the router to
watch the traffic and identify well know traffic per flow, by application. Each
router has ip based cache flow enabled on its interfaces. This allows someone to
look at the router to determine not only if there is a spike in network traffic but
what type of application is causing that increase in traffic, how much of an
increase in traffic, packet counts, etc… By enabling these features on all ports, it
allows us to monitor usage statistics by application for troubleshooting, QoS
planning, capacity planning etc. These features can be looked at in more detail
at the following links:

http://www.Cisco.com/en/US/partner/products/sw/iosswrel/ps1835/products_configuration_guide_
chapter09186a00800c75d0.html - NBAR Information
http://www.Cisco.com/en/US/partner/products/sw/iosswrel/ps5187/products_command_reference
_chapter09186a008017cf45.html#1066187 - IP Cache Flow Information

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 39

Using these tools the information below was gathered.

wan-1#sh ip nbar protocol-discovery stats bit-rate

 FastEthernet0/0
 Input Output
 Protocol 30 second bit rate (bps) 30 second bit rate (bps)
 ------------------------ ------------------------ ------------------------
Icmp 800000 1000000
http 510000 525000
Netbios 300000 3252341
telnet 2000 2000
snmp 2000 1000
notes 1000 2000
secure-http 0 0

Figure #31 – Cisco NBAR Output from Nachia Worm

This graphic shows a large amount of Icmp traffic and Netbios and web traffic.
This graphic shows a gross amount of traffic using the protocols previously
mentioned. To gather additional information, the wan architect was able to drill
down with this information through the use of ip cache flow information. (This is
possible because ip cache flow was enabled on each interface) The output
below is only partial. This output is from our core Cisco 7206VXR Router. The
same results were being seen in all core and distribution routers.

hq-wan-1#
hq-wan-1#sh ip cache flow
IP packet size distribution (1439M total packets):
 1-32 64 96 128 160 192 224 256 288 320 352 384 416 448 480
 .000 .395 .168 .090 .056 .047 .023 .020 .017 .004 .014 .002 .002 .001 .004

 512 544 576 1024 1536 2048 2560 3072 3584 4096 4608
 .009 .007 .016 .017 .099 .000 .000 .000 .000 .000 .000

IP Flow Switching Cache, 4456704 bytes
 300 active, 65236 inactive, 197323265 added
 4069415550 ager polls, 0 flow alloc failures
 Active flows timeout in 30 minutes
 Inactive flows timeout in 15 seconds
 last clearing of statistics never
Protocol Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)
-------- Flows /Sec /Flow /Pkt /Sec /Flow /Flow
TCP-Telnet 7718497 1.7 7 486 13.4 9.5 14.7
TCP-FTP 12328 0.0 31 69 0.0 15.0 8.2
TCP-FTPD 42985 0.0 71 1003 0.7 5.9 1.8
TCP-WWW 16477418 3.8 11 611 44.3 3.4 5.4
TCP-SMTP 146552 0.0 16 436 0.5 1.8 2.8
TCP-X 257 0.0 246 196 0.0 92.0 7.9
TCP-BGP 74 0.0 2 44 0.0 1.0 8.7
TCP-NNTP 74 0.0 2 44 0.0 1.0 8.8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 40

TCP-Frag 9 0.0 18 402 0.0 5.8 15.3
TCP-other 71165231 16.5 11 216 185.0 2.2 13.5
UDP-DNS 2324772 0.5 1 64 1.0 0.3 15.5
UDP-NTP 1091326 0.2 1 75 0.2 0.0 15.5
UDP-TFTP 2772 0.0 1 65 0.0 0.0 15.5
UDP-other 73332266 17.0 2 215 34.2 0.8 15.5
ICMP 222222250034 5.1 1 105 9.8 0.1 15.6
IP-other 2758412 0.6 71 60 45.6 316.9 13.2
Total: 197323007 45.9 7 256 335.2 6.2 13.9

SrcIf SrcIPaddress DstIf DstIPaddress Pr SrcP DstP Pkts
AT1/0.5 10.254.82.9 Fa0/0 10.1.250.1 01 000 0800 11111345
Fa0/0 10.1.250.1 AT1/0.7 10.254.65.18 01 000 0800 2235869
AT1/0.7 10.254.65.2 Fa0/0 10.1.250.1 01 0000 0800 42506
Fa0/0 10.1.251.1 AT1/0.5 10.254.38.22 01 0000 0800 29541
Fa0/0 10.1.251.1 AT1/0.5 10.254.38.14 01 0000 0800 10032
Fa0/0 10.1.250.1 AT1/0.7 10.254.65.2 01 0000 0800 2103
Fa0/0 10.1.251.1 AT1/0.5 10.254.38.10 01 0000 0800 41003
Fa0/0 10.1.251.1 AT1/0.5 10.254.38.30 01 0000 0800 520012
AT1/0.7 10.254.65.34 Fa0/0 10.1.250.1 01 0000 0800 1003
Fa0/0 208.210.219.135 AT1/0.5 10.38.14.20 01 0000 0800 512
Fa0/0 10.1.250.1 AT1/0.7 10.254.46.1 01 0000 0800 2002
Fa0/0 10.1.251.1 AT1/0.9 10.254.51.14 01 0000 0800 138492

hq-wan-1#
Figure #32 – IP Caching Statistics during Nachia infection

Based on this output, the highlighted portion indicates Icmp traffic. The number
of packets are very alarming. The full output from the Cisco command show ip
cache flow, showed huge amounts of Netbios, Icmp and Http traffic. We now
were sure that we had a problem because all of the sites had called in with
complaints that the network was slow, but not down. The wan architect got the
security architect involved in this troubleshooting. The security engineer said that
based on the information from CERT, SANS and other organizations, it was
definitely the Nachia worm. For confirmation we had a meeting with department
heads from the Server, PC, WAN and Security group to bring everyone up to
speed. All the managers meet with the two engineers from the wan group and
security group who were handling the incident. Everyone had agreed that this
was an infection from the Nachia worm originating from the VPN vlan. It was
also confirmed that none of the workstations or servers on the internal network
were patched, leaving 1200 possible infections to vulnerable systems. Now a
dedicated team was put together to combat the worm. The team members are
as follows:

Security Engineer (Lead Handler)
Wan Engineer (Secondary Handler)
WAN Manager (Liason to Help Desk and CIO)
PC Manager (Liason to support for all pc’s and servers)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 41

5.3 - Containment

Now that the problems affecting the network were identified, the team handling
the incident formed the following plan of action for the Internal Network (The
external network was not vulnerable):

• Get information from Microsoft on how to identify infected systems
• Determine how to mitigate the worm’s affect on the network
• Implement network changes to stop worm spread, if possible

The team now had seen all of the network sites in the field reporting problems.
All 300 sites would now need to be addressed. The huge influx of ICMP traffic
was causing extreme slowdown on the network. This denial of service was now
affecting mission critical job functions. The team finished the research from the
above items. Here were the actions taken:

• Microsoft had released a tool to detect infected machines. Eeye digital
security released a tool to use, as well. The team downloaded the
Microsoft tool to use. The tool was used to identify that 389 workstations
were infected out of a possible 1200 workstations that were vulnerable.

• The team downloaded the patches for the Windows 2000 systems.
(MS03-026 and MS03-07)

• The team had downloaded the Trend Micro tool to remove the Nachia
worm from workstations

• Based on information received from CERT and other security related news
groups – SecurityFocus, an access-list to block all Icmp traffic was
created. This would reduce the congestion on the network and also allow
for identification of infected sites. An expect script was written to log into
all 300 routers and apply this access list to the Ethernet interfaces. The
script is in Appendix A. The access-list that was configured is below:

Access-list 199 deny Icmp any any log
Access-list 199 permit ip any any
Int e0/0
Ip access-group 199 in
Int e0/1
Ip access-group 199 in

Once these action items were completed, a significant reduction of network traffic
was noticed. ICMP had been disabled through the network, while this caused
hardship in troubleshooting, it allowed the network to stay up running. These
measures did not block the Netbios RPC scans to tcp/135 from the worm. It was
not possible to disable Netbios or http because of the demand for the services
those protocols provide to the end user community. To fix the problem, a plan for
eradication of the worm was developed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 42

5.4 - Eradication

Now the worm had been contained, in relation to its impact to the network. The
traffic was still significantly above the baseline, the network was able to function
normally because of the actions taken to contain it through the use of QoS
(Frame Relay Traffic Shaping and Priority Queueing) and IP based access lists.
The following steps were taken to eradicate the worm from the network:

• The PC Group wrote scripts that would log into all workstations and do the
following: (The scripts are in Appendix B)

o Identify if the workstation was Windows 2000
o Download the security patches to the workstation
o Download the cleaner tool
o Run the patch (MS03-026) – Reboot the workstation
o Run the worm cleaner (Symantec) – Reboot the workstation

• The Server Admins manually patched all 220 servers by putting the patch
on the Primary Domain Controller of the Windows NT 4.0 Domain and
setting up replication to all the other servers in the network. The patches
and cleaner tool was distributed through this replication to all 220 servers.
Once, the replication completed, system administrators manually logged
on to all the servers and manually patched the system and ran the cleaner
tool. The MS03-026 (RPC/DCOM Patch) and MS03-07 (WebDav Patch)
were the specific patches sent to all the servers.

• The Server group immediately pushed out a new virus file to all
workstations from Trend Micro

Once, the scripts finished running and the workstations were rebooted we saw
the network traffic return to its normal baseline levels.

5.5 - Recovery

This stage of the process is recovery. The recovery stage is used to monitor and
ensure that the worm was completely removed. The following tasks were
performed during this stage:

• Monitor network traffic with the Concord E-Health network management
• Monitor traffic going through routers using ip cache flow and network

based application recognition
• Remove access lists from all the routers after eradication was complete.

By monitoring the network, we were able to ensure that the incident was
concluded. Lastly, we need to take the information that we have learned and
make the necessary changes to prevent another occurrence.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 43

5.6 - Lessons Learned

The last step of this six step process for handling incidents is the most important.
The lessons learned step allows us to learn from our mistakes and enhance the
integrity of the enterprise network and the services offered to our clients. This
information is used to enhance the organizational preparation necessary to offer
an environment based on a secure infrastructure.

We have learned many lessons.

• Need for Incident Handling Policy & Procedure. This will allow for a timely
successful analysis of any security events.

• Need for policies to enforce end-to-end security. There is no
accountability without policies. The integrity of the enterprise demands
policies to ensure the security of the organization. The need for
measurement is key to control. Without policies and standards it is
impossible to provide a secure infrastructure.

• Intrusion Detection needs to be deployed to detect security events. This
will provide the capability to detect malware and new exploits. This
includes network based and host based intrusion prevention IDS products.

• Remote Access was the root cause of the incident. Policy and
Procedures need to be developed to restrict and control remote access to
the enterprise network. Remote computing standards need to be
developed. These standards need to include anti-virus solution, host
based protection (personal firewall, host based ids) and administrative
access to remote systems to ensure configuration management.

• Patch Management is fundamental in trying to maintain configuration
management. Configuration management is the key to information
assurance. If you cannot rely upon your configuration management plan
then you have no information assurance. This is needed for both servers
and workstations

In conclusion, we have learned many lessons in dealing with this incident. The
organization’s weakness has been identified. The lack of support from
management facilitated the framework for problems. The need to provide an
infrastructure that provides a high level of availability, integrity and performance
has been identified. The task above outlines direct steps necessary to prevent
these types of attacks from occurring. The key concept that was learned from this
event was information assurance cannot be achieved without policies and
procedures. These policies and procedures will dictate the need for configuration
management. The configuration management is the key! You need to be able to
control all endpoints that access critical resources.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 44

7.0 Works Cited & References

Books

Stevens, W. Richard. TCP/IP Illustrated, Volume 1, Reading: Addison Wesley
Longman, Inc, 1994. (ISBN: 0201633469)

Wenstrom, Michael. Managing Cisco Network Security. Indianapolis: Cisco
Press, 2001. (ISBN: 1-57870-103-1)

Kaeo Merike. Designing Network Security. Indianapolis: Cisco Press, 1999.
(ISBN: 1-57870-043-4)

Cole, Eric. Hackers Beware, Indianapolis: New Riders Publishing, 2001.(ISBN:
0-7357-1009-0)

Vegesna, Srinivas, IP Quality of Service. Indianapolis: Cisco Press 2001. (ISBN:
1-57870-116-3)

Northcutt, Stephen, Network Intrusion Detection: An Analyst’s Handbook,
Second Edition. Indianapolis: New Riders Publishing, 2001. (ISBN: 0-7537-
1008-2)

Northcutt, Stephen, Inside Network Perimeter Security. Indianapolis: New Riders
Publishing, 2003. (ISBN: 0-73571-232-8)

Skoudis, Ed. “SANS Coursebook 4.1 – Incident Handling Step-by-Step and
Computer Crime Investigation”. 2003

Cisco Systems, Inc. “Cisco IOS Quality of Service Solutions Guide”.
Indianapolis:2003.

Web Resources

Bourbeau, Linda. “RPC Overflow Vulnerability – Examining the Nachi Exploit”. 5
October, 2003. URL:
http://www.giac.org/practical/GCIH/Linda_Bourbeau_GCIH.pdf

Young, Brandon. “WebDav: The new nemesis of IIS Administrators”. 4 October,
2003. URL: http://www.giac.org/practical/GCIH/Brandon_Young_GCIH.pdf

Hines, Eric. “ Analysis of the ntdll.dll WebDav Exploit”. 25 March, 2003. URL:
http://www.fatelabs.com/library/fatelabs-ntdll-analysis.pdf

Smithers, David. “Deconstructing the NTDLL.DLL Vulnerability”. 8 August,
2003. URL: http://giac.org/practicals/GCIH/David_Smithers_GCIH.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 45

Porter, K. Brian. “RPC-DCOM Vulnerability & Exploit”. 2 November, 2003. URL:
http://www.giac.org/practical/GCIH/Brian_Porter_GCIH.pdf

One, Aleph. “Smashing the Stack for Fun and Profit”.
URL://www.insecure.org/stf/smashstack.txt

WebDav Exploit Code: URL:
http://www.securiteam.com/exploits/5SP0L159FC.html

www.microsoft.com. “Microsoft Security Bulletin MS03-026”. September 10,
2003 (Revised). URL:
http://www.microsoft.com/technet/treeview/?url=/technet/security/bulletin/MS03-
026.asp

www.microsoft.com. “ Microsoft Security Bulletin MS03-027”. May 30, 2003
(Revised) URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/ms03-007.asp

www.IETF.org. The Internet Engineering Task Force. URL:
http://www.IETF.org/rfc/

www.IETF.org. “RFC1831: RPC: Remote Procedure Call Protocol Specification
Version 2”. 1995. URL: http://www.IETF.org/rfc/rfc1831.txt?number=1831

Horstmann, Markus; Kirtland, Mary. “DCOM Architecture”. 23 July, 1997.
Microsoft Solution Developer Network. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnDCOM/html/msdn_DCOMarch.asp

Microsoft.com, “DCOM Technical Overview”. November 1996. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnDCOM/html/msdn_DCOMtec.asp

www.ietf.org. “RFC2518: http extensions for Distributed Authoring – WebDav”.
1999. URL: http://www.IETF.org/rfc/rfc2518.txt?number=2518

WebDav Resources: www.WebDav.org

www.ietf.org. “RFC 792: Internet Control Message Protocol. 1981. URL:
http://www.IETF.org/rfc/rfc0792.txt?number=792

SANS Institute TCP/IP Handbook - http://www.sans.org/resources/tcpip.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 46

eEye Digital Security. “Blaster Worm Analysis” 8 August 2003. URL:
http://www.eeye.com/html/Research/Advisories/AL20030811.html

Whitehats.com. “ Arachnids Intrusion Detection Database”. 2003. URL:
http://www.whitehats.com/info/ids154

Montcalm, Erika. “Logs: GIAC GCIA Version 3.3 Practical Detect (Montcalm)
Detect #1 ---Welchia Pings”. 7 November 2003. URL: http://cert.uni-
stuttgart.de/archive/intrusions/2003/11/msg00050.html

CounterPane.com. “Microsoft RPC DCOM Remote Shell Vulnerability”. 1 August
2003. URL: http://www.counterpane.com/alert-v20030801-001.html

Huger, Alfred. “Penetration Testing: Microsoft Windows 2000 WebDav buffer
overflow vulnerability signature available”. 20 March 2003. URL:
http://seclists.org/lists/pen-test/2003/Mar/0130.html

Whitehats.com. “arachnids – Intrusion Detection Event Database – IDS474 –
Web-WebDav-Search”. URL:
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids474&view=research

Computer Associates. “Virus Information Center – Win32.Nachia.A”. 27 August,
2003. (Revised) URL: http://www3.ca.com/virusinfo/virus.aspx?ID=36372

Oday. WebDav Exploit. URL: http://oday.com/files/WebDavin101.zip (Dec
15,2003)

Cisco Systems. “ NBAR Configuration Notes”. 2002. URL:
http://www.Cisco.com/en/US/partner/products/sw/iosswrel/ps1835/products_confi
guration_guide_chapter09186a00800c75d0.html

Cisco Systems. “IP Cache Flow Configuration Notes” 2002. URL:
http://www.Cisco.com/en/US/partner/products/sw/iosswrel/ps5187/products_com
mand_reference_chapter09186a008017cf45.html#1066187

Exploit References:

cve.mitre.org. “CAN-2003-0352”, URL: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2003-0352

cve.mitre.org. “CAN-2003-0109”, URL: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2003-0109

www.cert.org. “CERT Advisory CA-2003-19 Exploitation of Vulnerabilities in
Microsoft RPC Interface”, July 31, 2003. URL: http://www.cert.org/advisories/CA-
2003-19.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 47

www.cert.org. “CERT Advisiory CA-2003-09 Buffer Overflow in Core Microsoft
Windows DLL”, March 17, 2003. URL: http://www.cert.org/advisories/CA-2003-
09.html

www.cert.org. “Vulnerability Note VU#568148, Microsoft Windows RPC
vulnerable to buffer overflow”, http://www.kb.cert.org/vuls/id/568148 (Dec 15,
2003)

WebDav Exploit Code: http://www.securiteam.com/exploits/5SP0L159FC.html
(Dec 10, 2003)

WebDav Exploit Code: http://www.xfocus.org/exploits/200303/19.html (Dec 10,
2003)

RPC/DCOM Exploit Code from LSD: http://www.metasploit.com/tools/dcom.c
(Dec 10, 2003)

Multiple Exploits of RPC/DCOM - http://illmob.org/0day/RPC%20exploit/ (Dec 10,
2003)

WebDav GUI Exploit: http://illmob.org/exploits/WebDavin-1.01.zip (Dec 10,
2003)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 48

Appendix A – Cisco Configuration Expect Script

#!/usr/bin/expect --
#
IOSconfigV2.exp -- configuration for Cisco Routers
#
usage:
#
IOSconfig.exp list.of.routers tacacsID tacacsPasswd vtypasswd \
enablepasswd commandfile AlertMailID
#
Dependencies -
#
- uses the file ~commandfile specified on the command line which contains
the desired global configuration commands.
#
created on July 30, 2003 by Mark Leighty
#
Special thanks to Don Libes and NIST for the creation of Expect!!!!!
Expect can be obtained at http://expect.nist.gov
#
#
Variable Definitions
#
argv[0] --> file containing list of IOS devices to apply the global commands
argv[1] --> tacacs+ User ID
argv[2] --> tacacs+ Password
argv[3] --> vty password
argv[4] --> enable password
argv[5] --> file containing the global commands
argv[6] --> Mail account that will receive any alerts/failures
#
proc Usage { Definition } {

 puts -nonewline "\n"
 puts -nonewline "\n"
 puts -nonewline "\n"
 puts -nonewline "$Definition\n"
 puts -nonewline "\n"
 puts -nonewline "\n"
 puts -nonewline "Usage:\n"
 puts -nonewline "\n"
 puts -nonewline "IOSconfigV2.exp routers tacacsID tacacsPasswd vty enable command-file
mailaccount"
 puts -nonewline "\n"
 puts -nonewline "\n"
 puts -nonewline "Example\n"
 puts -nonewline "\n"
 puts -nonewline "IOSconfigV2.exp ./routers router-sweep Cisco vty enable snmp.update
scripting@harfordtechnology.com"
 puts -nonewline "\n"
 puts -nonewline "\n"
 puts -nonewline "\n"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 49

 exit ;# exit the script

}

#
Check usage ... if argc < 7 exit with usage display
#

set argc [llength $argv]

if { $argc < 7 } {

 Usage "IOSConfigV2.exp http://www.harfordtechnology.com"

}

#
Set up variables passed via the command line in argv
#

set routers [lindex $argv 0] ;# list of routers/IOS devices
set tacacsID [lindex $argv 1] ;# tacacs+ user ID
set tacacsPasswd [lindex $argv 2] ;# tacacs+ Password
set vty [lindex $argv 3] ;# current vty passwd
set enable [lindex $argv 4] ;# current enable passwd
set COMMAND [lindex $argv 5] ;# Command File
set MAIL [lindex $argv 6] ;# mail account for failure notification

#
Toggle the debug capability. OFF by default
#

#exp_internal 1

#
Other system wide variables
#

#set console_prompt "(\[0-9]|\[a-z]|\[A-Z])+>$" ;# pattern match for console prompt
set console_prompt ">$" ;# pattern match for console prompt
set enable_prompt "(\[0-9]|\[a-z]|\[A-Z])+#$" ;# pattern match for enable prompt
set config_prompt "(config.*)#$" ;# Variable for config prompt

set timeout -1 ;# eliminate timeout issues

#
#
Load the list of Commands into memory. This will allow MUCH faster processing and
place less rick on our source file in the event of a system crash

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 50

#
#

if [catch { set file [open $COMMAND] } message] { ;# open the specified command file

 Usage "$message\n\n\n\n" ;# if there is an error print with usage info

} ;# end the if block

foreach line [split [read $file] "\n"] {

 if { [string first "#" $line] == 0 } { ;# omit entire line comment

 continue ;# next loop iteration

 } elseif { [string first "#" $line] > 0 } { ;# omit mid line comment

 set position [string first "#" $line]
 set temp [string range $line 0 [incr position -1]]

 lappend CONFIG [string trimright $temp] ;# append command to our list

 continue ;# next loop interation

 } elseif { [string length $line] <= 0 } { ;# Handle EOF condition

 } else {

 lappend CONFIG [string trimright "$line" "\n"] ;# append command to our list

 } ;# end if block

} ;# end for loop

close $file ;# close $COMMAND file

#
#
Load the list of Commands into memory. This will allow MUCH faster processing and
place less rick on our source file in the event of a system crash
#
#

if [catch { set ROUTERS [open $routers] } message] { ;# open the specified list of devices

 Usage "$message\n\n\n\n" ;# if there is an error print with usage info

}

foreach line [split [read $ROUTERS] "\n"] {

 if { [string first "#" $line] == 0 } { ;# omit entire line comment

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 51

 continue ;# next loop iteration

 } elseif { [string first "#" $line] > 0 } { ;# omit mid line comment

 set position [string first "#" $line]
 set temp [string range $line 0 [incr position -1]]

 lappend ROUTER [string trimright $temp] ;# append device to our list

 continue ;# next loop interation

 } elseif { [string length $line] <= 0 } { ;# Handle EOF condition

 } else {

 lappend ROUTER [string trimright "$line" "\n"] ;# append device to our list

 } ;# end if block

} ;# end foreach loop

close $ROUTERS ;# close $routers file

foreach router $ROUTER { ;# Set up looping structure to process each
router in list

 if [catch { spawn telnet $router } msg] { ;# Start telnet process to the specified
switch & catch any errors

 exec echo "Subject: Config Failure\n$router" | /usr/lib/sendmail $MAIL
 continue

 }

#
#
Test the response.
#
We are expecting a tacacs+ prompt or the legacy prompt.
#
If we get anything else, it is considered undefined. If that is the case we will 'bail out' and send
an email
to the System administrator as defined in the command line and move on to the next device.
#
#

 expect {

 -re "User Access Verification.*Password: $" {

 send "$vty\r"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 52

 expect {

 -re $console_prompt {

 } default {

 exec echo "Subject: Config Failure - Apparent Incorrect Password
$router\n$router\n$expect_out(buffer)" | /usr/lib/sendmail $MAIL

 if [catch { close } msg] {} ;# close the telnet session programatically
 if [catch { wait } msg] {} ;# wait for the child process to die

 continue

 }

 }

 send "enable\r"

 expect {

 -re "Password: $" {

 } default {

 exec echo "Subject: IOS Undefined State - $router\n\n$router\n$expect_out(buffer)" |
/usr/lib/sendmail $MAIL

 if [catch { close } msg] {} ;# close the telnet session programatically
 if [catch { wait } msg] {} ;# wait for the child process to die

 continue

 }

 }

 send "$enable\r"

 expect {

 -re $enable_prompt {

 } default {

 exec echo "Subject: Config Failure - Apparent Incorrect Password
$router\n$router\n$expect_out(buffer)" | /usr/lib/sendmail $MAIL

 if [catch { close } msg] {} ;# close the telnet session programatically
 if [catch { wait } msg] {} ;# wait for the child process to die

 continue

 }

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 53

 }

 } -re "Username: $" {

 send "$tacacsID\r"

 expect {

 -re "Password: $" {

 } default {

 exec echo "Subject: Config Failure - Apparent Incorrect Password
$router\n$router\n$expect_out(buffer)" | /usr/lib/sendmail $MAIL

 if [catch { close } msg] {} ;# close the telnet session programatically
 if [catch { wait } msg] {} ;# wait for the child process to die

 continue

 }

 }

 send "$tacacsPasswd\r"

 expect {

 -re $enable_prompt {

 } -re $console_prompt { ;# Handle the CiscoSecure Enable Password
Schema

 send "enable\r" ;# Send the enable command

 expect -re "Password: $" ;# Expect the password prompt

 send "$tacacsPasswd\r" ;# Send the enable password

 expect -re $enable_prompt ;# Expect the enable prompt

 } default {

 exec echo "Subject: Config Failure - Apparent Incorrect Password
$router\n$router\n$expect_out(buffer)" | /usr/lib/sendmail $MAIL

 if [catch { close } msg] {} ;# close the telnet session programatically
 if [catch { wait } msg] {} ;# wait for the child process to die

 continue

 }

 }

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 54

 } default {

 exec echo "Subject: Config Failure - $router\n$router\n$expect_out(buffer)" |
/usr/lib/sendmail $MAIL

 if [catch { close } msg] {} ;# close the telnet session programatically
 if [catch { wait } msg] {} ;# wait for the child process to die

 continue

 }

 } ;# close the expect block

 send "configure terminal\r" ;# enter configuration mode

 expect {

 -re $config_prompt {

 } default {

 exec echo "Subject: Config Failure - $router\n\n$router\n\nIOS Undefined
State\n$expect_out(buffer)" | /usr/lib/sendmail $MAIL

 if [catch { close } msg] {} ;# close the telnet session programatically
 if [catch { wait } msg] {} ;# wait for the child process to die

 continue

 }

 }

 foreach command $CONFIG {

 send "$command\r"

 expect {

 -re $config_prompt {

 } default {

 exec echo "Subject: Config Failure - $router\n\n$router\n\nIOS Undefined
State\n$expect_out(buffer)" | /usr/lib/sendmail $MAIL

 break
 break

 }

 }

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 55

 }

 send "\032"

 expect {

 -re $enable_prompt {

 } default {

 exec echo "Subject: Config Failure - $router\n\n$router\n\nIOS Undefined
State\n$expect_out(buffer)" | /usr/lib/sendmail $MAIL

 if [catch { close } msg] {} ;# close the telnet session programatically
 if [catch { wait } msg] {} ;# wait for the child process to die

 continue

 }

 }

 if [catch { close } msg] {} ;# close the telnet session programmatically
 if [catch { wait } msg] {} ;# wait for the child process to die

} ;# end of foreach loop

exit ;# exit the expect shell .. we're done

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 56

APPENDIX B: Scripts to Patch PC’s for Nachia Eradication

NACHIA Eradication Batch Programs FlowChart

1. 2kupdate.bat performs the “net view” command for the domain, which gives a list
of all the pc’s on our domain and outputs it to a text file.

2. It then calls croplist.bat to trim the data down to just computer names.
3. It then strips out the first computer in the cropped list and sets it as a variable.
4. The program uses the variable as the computer name and (using administrator

rights) looks for the C$ share and if found runs update1.bat if not found it goes
back to the crop list and sets the next computer name as a variable. If C$ is not
found it either means that it is not a Windows 2000 pc or that we do not have
admin rights to it, either of which we would not want to apply the patch to it
anyways.

5. The update batch files check to see if it’s corresponding patch has been applied. If
not it uploads the files and schedules a task to run it at a designated time. If all the
patches have already been applied then it simply moves on to the next computer
in the crop list

6. After update1.bat finishes it calls update2.bat, then update2.bat calls update3.bat
and so on.

7. Upon completion of the updates it returns to 2kupdate.bat and moves on to the
next computer name in the list.

8. When the list becomes empty and all pc’s in the list have been updated it returns
to the top of 2kupdate.bat and starts the process all over. This is necessary in case
there were some pc’s that were not turned on at the time.

W2kUpdate.bat

@echo off

rem Script created by Jason P. Lippard

:getcpuz

if exist 2kmstr.txt type 2kmstr.txt>2kcpuz.txt

if exist not2kmstr.txt type not2kmstr.txt>not2kcpuz.txt

if exist pos2kmstr.txt type pos2kmstr.txt>pos2kcpuz.txt

if exist cpulist.txt del cpulist.txt

net view | find "\\" > cpulist.txt

echo sorting not2kcpuz.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 57

if exist not2kcpuz.txt set sortfile=not2kcpuz.txt

if exist not2kcpuz.txt call 2ksort.bat

echo sorting 2kcpuz.txt

if exist 2kcpuz.txt set sortfile=2kcpuz.txt

if exist 2kcpuz.txt call 2ksort.bat

echo sorting pos2kcpuz.txt

if exist pos2kcpuz.txt set sortfile=pos2kcpuz.txt

if exist pos2kcpuz.txt call 2ksort.bat

call croplist.bat

if exist 2kcpuz.txt type 2kcpuz.txt >> cpulist.txt

if exist 2kcpuz.txt del 2kcpuz.txt

if exist not2kcpuz.txt type not2kcpuz.txt >> cpulist.txt

if exist not2kcpuz.txt del not2kcpuz.txt

if exist pos2kcpuz.txt type pos2kcpuz.txt >> cpulist.txt

if exist pos2kcpuz.txt del pos2kcpuz.txt

if exist dntpatch.txt set sortfile=dntpatch.txt

if exist dntpatch.txt call 2ksort.bat

:sortlist

echo e 100 "set cpu2upgr="> script

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 58

echo rcx>> script

echo d>> script

echo n setcpu.txt>> script

echo w>> script

echo q>> script

debug < script > nul

del script

:fltrcpuz

copy /b setcpu.txt + cpulist.txt filter.txt > nul

type filter.txt | find "set cpu2upgr=">setcpu.bat

type filter.txt | find /v "set cpu2upgr=">cpulist.txt

del filter.txt

call setcpu.bat

if defined cpu2upgr goto 2kcheck

goto end

:2kcheck

if exist %cpu2upgr%\c$\winnt\options\updates\not2k.txt echo
%cpu2upgr%>>not2kcpuz.txt

if exist %cpu2upgr%\c$\winnt\options\updates\not2k.txt goto fltrcpuz

if exist %cpu2upgr%\c$\ntldr goto upgrade

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 59

echo %cpu2upgr%| find /I /v "j-">>not2kcpuz1.txt

type not2kcpuz1.txt| find /I /v "g-">>not2kcpuz2.txt

type not2kcpuz2.txt| find /I /v "c-">>not2kcpuz3.txt

type not2kcpuz3.txt| find /I /v "scv-">>not2kcpuz4.txt

type not2kcpuz4.txt| find /I /v "cav-">>not2kcpuz.txt

if exist not2kcpuz1.txt del not2kcpuz1.txt

if exist not2kcpuz2.txt del not2kcpuz2.txt

if exist not2kcpuz3.txt del not2kcpuz3.txt

if exist not2kcpuz4.txt del not2kcpuz4.txt

echo %cpu2upgr%| find /I "j-">>pos2kcpuz.txt

echo %cpu2upgr%| find /I "g-">>pos2kcpuz.txt

echo %cpu2upgr%| find /I "c-">>pos2kcpuz.txt

echo %cpu2upgr%| find /I "scv-">>pos2kcpuz.txt

echo %cpu2upgr%| find /I "cav-">>pos2kcpuz.txt

goto fltrcpuz

:upgrade

echo Currently updating %cpu2upgr%

if exist prevat*.txt del prevat*.txt

call update1.bat

if exist prevat*.txt del prevat*.txt

:nextcpu

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 60

echo %cpu2upgr%>>2kcpuz.txt

goto fltrcpuz

:end

del setcpu.txt

del setcpu.bat

del cpulist.txt

echo *****************this is the end******************

net time \\oestime|find /i "current">>passes.txt

if exist 2kcpuz.txt type 2kcpuz.txt>2kmstr.txt

if exist not2kcpuz.txt type not2kcpuz.txt>not2kmstr.txt

if exist pos2kcpuz.txt type pos2kcpuz.txt>pos2kmstr.txt

:skip2

goto getcpuz

CROPLIST.BAT

@echo off

rem Script created by Jason P. Lippard

rename cpulist.txt cpulist1.txt

:start

if defined errorlog set errorlog=

set 0A=

set 0B=

set 0C=

set 0D=

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 61

set 0E=

set 0F=

set 10=

set 11=

set 12=

set 13=

set 14=

set 15=

set 16=

set 17=

set 18=

set 19=

set 1A=

set 1B=

set 1C=

set 1D=

set 1E=

set 1F=

set 20=

set 21=

set 22=

set 23=

echo e 100 "set array="> script

echo rcx>> script

echo A>> script

echo n setarray.txt>> script

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 62

echo w>> script

echo q>> script

debug < script > nul

del script

:fltrcpuz

copy /b setarray.txt + cpulist1.txt filter.txt > nul

type filter.txt | find "set array=">setarray.bat

type filter.txt | find /v "set array=">cpulist1.txt

del filter.txt

:varfind

if defined 23 goto errorlog

if defined 22 set crop=23

if defined 22 goto cropvar

if defined 21 set crop=22

if defined 21 goto cropvar

if defined 20 set crop=21

if defined 20 goto cropvar

if defined 1F set crop=20

if defined 1F goto cropvar

if defined 1E set crop=1F

if defined 1E goto cropvar

if defined 1D set crop=1E

if defined 1D goto cropvar

if defined 1C set crop=1D

if defined 1C goto cropvar

if defined 1B set crop=1C

if defined 1B goto cropvar

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 63

if defined 1A set crop=1B

if defined 1A goto cropvar

if defined 19 set crop=1A

if defined 19 goto cropvar

if defined 18 set crop=19

if defined 18 goto cropvar

if defined 17 set crop=18

if defined 17 goto cropvar

if defined 16 set crop=17

if defined 16 goto cropvar

if defined 15 set crop=16

if defined 15 goto cropvar

if defined 14 set crop=15

if defined 14 goto cropvar

if defined 13 set crop=14

if defined 13 goto cropvar

if defined 12 set crop=13

if defined 12 goto cropvar

if defined 11 set crop=12

if defined 11 goto cropvar

if defined 10 set crop=11

if defined 10 goto cropvar

if defined 0F set crop=10

if defined 0F goto cropvar

if defined 0E set crop=0F

if defined 0E goto cropvar

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 64

if defined 0D set crop=0E

if defined 0D goto cropvar

if defined 0C set crop=0D

if defined 0C goto cropvar

if defined 0B set crop=0C

if defined 0B goto cropvar

if defined 0A set crop=0B

if defined 0A goto cropvar

set crop=0A

:cropvar

if %crop%==0A echo e 100 20 20 20 20 20 20 20 20 0D 0A> script

if %crop%==0B echo e 100 20 20 20 20 20 20 20 20 20 0D 0A> script

if %crop%==0C echo e 100 20 20 20 20 20 20 20 20 20 20 0D 0A> script

if %crop%==0D echo e 100 20 20 20 20 20 20 20 20 20 20 20 0D 0A>
script

if %crop%==0E echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 0D 0A>
script

if %crop%==0F echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 0D
0A> script

if %crop%==10 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0D
0A> script

if %crop%==11 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
0D 0A> script

if %crop%==12 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 0D 0A> script

if %crop%==13 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 0D 0A> script

if %crop%==14 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 0D 0A> script

if %crop%==15 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 0D 0A> script

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 65

if %crop%==16 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 0D 0A> script

if %crop%==17 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 0D 0A> script

if %crop%==18 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 0D 0A> script

if %crop%==19 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20

if %crop%==19 echo e 115 20 0D 0A> script

if %crop%==1A echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20> script

if %crop%==1A echo e 115 20 20 0D 0A>> script

if %crop%==1B echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20> script

if %crop%==1B echo e 115 20 20 20 0D 0A>> script

if %crop%==1C echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20> script

if %crop%==1C echo e 115 20 20 20 20 0D 0A>> script

if %crop%==1D echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20> script

if %crop%==1D echo e 115 20 20 20 20 20 0D 0A>> script

if %crop%==1E echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20> script

if %crop%==1E echo e 115 20 20 20 20 20 20 0D 0A>> script

if %crop%==1F echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20> script

if %crop%==1F echo e 115 20 20 20 20 20 20 20 0D 0A>> script

if %crop%==20 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20> script

if %crop%==20 echo e 115 20 20 20 20 20 20 20 20 0D 0A>> script

if %crop%==21 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20> script

if %crop%==21 echo e 115 20 20 20 20 20 20 20 20 20 0D 0A>> script

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 66

if %crop%==22 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20> script

if %crop%==22 echo e 115 20 20 20 20 20 20 20 20 20 20 0D 0A>> script

if %crop%==23 echo e 100 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20> script

if %crop%==23 echo e 115 20 20 20 20 20 20 20 20 20 20 20 0D 0A>>
script

 if %crop%==0A echo e 10B 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20>> script

if %crop%==0B echo e 10C 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20>> script

if %crop%==0C echo e 10D 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20>> script

if %crop%==0D echo e 10E 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20>> script

if %crop%==0E echo e 10F 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20>> script

if %crop%==0F echo e 110 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20>> script

if %crop%==10 echo e 111 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20>> script

if %crop%==11 echo e 112 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20>> script

if %crop%==12 echo e 113 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20>> script

if %crop%==13 echo e 114 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20>> script

if %crop%==14 echo e 115 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20>> script

if %crop%==15 echo e 116 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20 20
20>> script

if %crop%==16 echo e 117 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20
20>> script

if %crop%==17 echo e 118 0D 0A 20 20 20 20 20 20 20 20 20 20 20 20>>
script

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 67

if %crop%==18 echo e 119 0D 0A 20 20 20 20 20 20 20 20 20 20 20>>
script

if %crop%==19 echo e 11A 0D 0A 20 20 20 20 20 20 20 20 20 20>> script

if %crop%==1A echo e 11B 0D 0A 20 20 20 20 20 20 20 20 20>> script

if %crop%==1B echo e 11C 0D 0A 20 20 20 20 20 20 20 20>> script

if %crop%==1C echo e 11D 0D 0A 20 20 20 20 20 20 20>> script

if %crop%==1D echo e 11E 0D 0A 20 20 20 20 20 20>> script

if %crop%==1E echo e 11F 0D 0A 20 20 20 20 20>> script

if %crop%==1F echo e 120 0D 0A 20 20 20 20>> script

if %crop%==20 echo e 121 0D 0A 20 20 20>> script

if %crop%==21 echo e 122 0D 0A 20 20>> script

if %crop%==22 echo e 123 0D 0A 20 20>> script

if %crop%==23 echo e 124 0D 0A 20>> script

echo rcx >> script

echo 23 >> script

echo n array.txt >> script

echo w >> script

echo q >> script

type script | debug setarray.bat > nul

del script

type array.txt | find /I /V " "> array2.txt

del array.txt

:setvar

echo e 100 "set %crop%=" > script

echo rcx >> script

echo 7 >> script

echo n crop.txt >> script

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 68

echo w >> script

echo q >> script

debug < script > nul

del script

copy /b crop.txt + array2.txt array.bat > nul

 del crop.txt

 del array2.txt

call array.bat

del array.bat

:varend

if defined %crop% goto varfind

:varend2

set varlngth=%crop%

echo e 1%crop% 0D 0A > script

echo rcx >> script

echo %varlngth% >> script

echo w >> script

echo d >> script

echo q >> script

type script | debug setarray.bat > nul

del script

CALL SETarray.BAT

:varend3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 69

set 0A=

set 0B=

set 0C=

set 0D=

set 0E=

set 0F=

set 10=

set 11=

set 12=

set 13=

set 14=

set 15=

set 16=

set 17=

set 18=

set 19=

set 1A=

set 1B=

set 1C=

set 1D=

set 1E=

set 1F=

set 20=

set 21=

set 22=

set 23=

goto sortend

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 70

:errorlog

call setarray.bat

echo this computer exceeded the maximum 24 character computer name.
(%array%)>>arraylog.txt

set errorlog=bad

goto varend3

:sortend

del setarray.bat

del setarray.txt

if defined errorlog goto start

if defined array echo %array%>> cpulist.txt

if defined array goto start

:end

del cpulist1.txt

2kSort.bat

@echo off

rem Script created by Jason P. Lippard

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 71

copy %sortfile% srt2k.txt > nul

echo e 100 "set srt2k="> script

echo rcx>> script

echo A>> script

echo n setsrt2k.txt>> script

echo w>> script

echo q>> script

debug < script > nul

del script

:fltrcpuz

copy /b setsrt2k.txt + srt2k.txt filter.txt > nul

type filter.txt | find "set srt2k=">setsrt2k.bat

type filter.txt | find /v "set srt2k=">srt2k.txt

del filter.txt

CALL setsrt2k.BAT

if not defined srt2k goto end

rename cpulist.txt cpulist1.txt

type cpulist1.txt | find /I /V "%srt2k%" > cpulist.txt

del cpulist1.txt

if defined srt2k goto fltrcpuz

:end

del srt2k.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 72

del setsrt2k.txt

del setsrt2k.bat

update1.bat

@echo off

rem Script created by Jason P. Lippard

if exist %cpu2upgr%\c$\Windows\$NtUninstallKB823980$\spuninst\spuninst.inf GOTO
UPDTEND

if exist %cpu2upgr%\c$\winnt\$NtUninstallKB823980$\spuninst\spuninst.inf GOTO UPDTEND

if exist %cpu2upgr%\c$\winnt\options\updates\update1\patched.txt goto setat

if exist %cpu2upgr%\c$\winnt\options\updates\update1\atcheck.txt goto setat

del %cpu2upgr%\c$\winnt\options\updates\update2\virus.log >nul

del %cpu2upgr%\c$\winnt\options\updates\update1\patched.txt >nul

if not exist %cpu2upgr%\c$\winnt\options\updates md %cpu2upgr%\c$\winnt\options\updates

if not exist %cpu2upgr%\c$\winnt\options\updates\update1 md
%cpu2upgr%\c$\winnt\options\updates\update1

if not exist %cpu2upgr%\c$\winnt\options\updates\gettype.exe xcopy /y /e /s /h /k /c
.\basefile\gettype.exe %cpu2upgr%\c$\winnt\options\updates*.*

if not exist %cpu2upgr%\c$\winnt\options\updates\keypress.com xcopy /y /e /s /h /k /c
.\basefile\keypress.com %cpu2upgr%\c$\winnt\options\updates*.*

if not exist %cpu2upgr%\c$\winnt\options\updates\shutdown.exe xcopy /y /e /s /h /k /c
.\basefile\shutdown.exe %cpu2upgr%\c$\winnt\options\updates*.*

if not exist %cpu2upgr%\c$\winnt\options\updates\update1\blastfix.exe xcopy /y /e /s /h /k /c
.\update1\blastfix.exe %cpu2upgr%\c$\winnt\options\updates\update1*.*

xcopy /y /e /s /h /k /c .\update1\blastpatch.bat %cpu2upgr%\c$\winnt\options\updates\update1*.*

xcopy /y /e /s /h /k /c .\update1\warn1.bat %cpu2upgr%\c$\winnt\options\updates\update1*.*

xcopy /y /e /s /h /k /c .\update1\runupdt1.bat %cpu2upgr%\c$\winnt\options\updates\update1*.*

xcopy /y /e /s /h /k /c .\update1\delhotfx.inf %cpu2upgr%\c$\winnt\options\updates\update1*.*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 73

xcopy /y /e /s /h /k /c .\update1\shutdown.bat %cpu2upgr%\c$\winnt\options\updates\update1*.*

if exist "%cpu2upgr%\c$\documents and settings\all users\start
menu\programs\startup\blastpatch.lnk" del "%cpu2upgr%\c$\documents and settings\all
users\start menu\programs\startup\blastpatch.lnk"

set chk=yes

if not exist %cpu2upgr%\c$\winnt\options\updates\keypress.com set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\shutdown.exe set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update1\blastfix.exe set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update1\blastpatch.bat set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update1\warn1.bat set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update1\runupdt1.bat set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update1\shutdown.bat set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\gettype.exe set chk=no

if %chk%==no goto updtend

echo Patch installed for the lovsan worm virus.>
%cpu2upgr%\c$\winnt\options\updates\update1.txt

if exist %cpu2upgr%\c$\winnt\options\updates\update1.txt echo %cpu2upgr% was updated at>>
updt1lst.txt

if exist %cpu2upgr%\c$\winnt\options\updates\update1.txt net time \\oestime|find /i "current">>
updt1lst.txt

if exist %cpu2upgr%\c$\winnt\options\updates\update1.txt echo.>> updt1lst.txt

:setat

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 74

at %cpu2upgr% /delete /yes

echo previously set>prevat1.txt

if not exist %cpu2upgr%\c$\winnt\options\updates\update1\warn1.txt at %cpu2upgr% 11:00
/interactive c:\winnt\options\updates\update1\warn1.bat

if not exist %cpu2upgr%\c$\winnt\options\updates\update1\patched.txt at %cpu2upgr% 12:00
/interactive c:\winnt\options\updates\update1\blastpatch.bat

at %cpu2upgr% 12:05 c:\winnt\options\updates\update1\shutdown.bat

if exist %cpu2upgr%\c$\winnt\options\updates\update1\atcheck.txt echo %cpu2upgr% was
rescheduled at>> updt1res.txt

if exist %cpu2upgr%\c$\winnt\options\updates\update1\atcheck.txt net time \\oestime|find /i
"current">> updt1res.txt

if exist %cpu2upgr%\c$\winnt\options\updates\update1\atcheck.txt echo.>> updt1res.txt

if exist %cpu2upgr%\c$\winnt\options\updates\update1\atcheck.txt echo rescheduled 1

echo loaded at 1 and 2 >%cpu2upgr%\c$\winnt\options\updates\update1\atcheck.txt

:updtend

if exist update2.bat call update2.bat

UPDATE2.BAT

@echo off

rem Script created by Jason P. Lippard

if exist %cpu2upgr%\c$\winnt\options\updates\update2\virus.log goto updtend

if exist %cpu2upgr%\c$\winnt\options\updates\update2\atcheck.txt goto setat

if not exist %cpu2upgr%\c$\winnt\options\updates md %cpu2upgr%\c$\winnt\options\updates

if not exist %cpu2upgr%\c$\winnt\options\updates\update2 md
%cpu2upgr%\c$\winnt\options\updates\update2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 75

if not exist %cpu2upgr%\c$\winnt\options\updates\gettype.exe xcopy /y /e /s /h /k /c
.\basefile\gettype.exe %cpu2upgr%\c$\winnt\options\updates*.*

if not exist %cpu2upgr%\c$\winnt\options\updates\keypress.com xcopy /y /e /s /h /k /c
.\basefile\keypress.com %cpu2upgr%\c$\winnt\options\updates*.*

if not exist %cpu2upgr%\c$\winnt\options\updates\shutdown.exe xcopy /y /e /s /h /k /c
.\basefile\shutdown.exe %cpu2upgr%\c$\winnt\options\updates*.*

if not exist %cpu2upgr%\c$\winnt\options\updates\update2\fixwelch.exe xcopy /y /e /s /h /k /c
.\update2\fixwelch.exe %cpu2upgr%\c$\winnt\options\updates\update2*.*

xcopy /y /e /s /h /k /c .\update2\fixwelch.bat %cpu2upgr%\c$\winnt\options\updates\update2*.*

xcopy /y /e /s /h /k /c .\update2\runupdt2.bat %cpu2upgr%\c$\winnt\options\updates\update2*.*

set chk=yes

if not exist %cpu2upgr%\c$\winnt\options\updates\keypress.com set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\shutdown.exe set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update2\fixwelch.exe set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update2\fixwelch.bat set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update2\runupdt2.bat set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\gettype.exe set chk=no

if %chk%==no goto updtend

echo Patch installed for the welch worm virus. >>
%cpu2upgr%\c$\winnt\options\updates\update2.txt

if exist %cpu2upgr%\c$\winnt\options\updates\update2.txt echo %cpu2upgr% was updated at >>
updt2lst.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 76

if exist %cpu2upgr%\c$\winnt\options\updates\update2.txt net time \\oestime|find /i "current">>
updt2lst.txt

if exist %cpu2upgr%\c$\winnt\options\updates\update2.txt echo.>> updt2lst.txt

:setat

if not exist prevat1.txt at %cpu2upgr% /delete /yes

echo previously set>prevat2.txt

at %cpu2upgr% 13:00 c:\winnt\options\updates\update2\fixwelch.bat

echo set at for virus>%cpu2upgr%\c$\winnt\options\updates\update2\atcheck.txt

:updtend

if exist update3.bat call update3.bat

UPDATE3.BAT

@echo off

rem Script created by Jason P. Lippard

if exist %cpu2upgr%\c$\Windows\$NtUninstallKB824146$\spuninst\spuninst.inf GOTO
UPDTEND > nul

if exist %cpu2upgr%\c$\winnt\$NtUninstallKB824146$\spuninst\spuninst.inf GOTO UPDTEND >
nul

if exist %cpu2upgr%\c$\winnt\options\updates\update3\patched.txt goto setat > nul

if exist %cpu2upgr%\c$\winnt\options\updates\update3\atcheck.txt goto setat > nul

del %cpu2upgr%\c$\winnt\options\updates\update3\patched.txt >nul

if not exist %cpu2upgr%\c$\winnt\options\updates md %cpu2upgr%\c$\winnt\options\updates

if not exist %cpu2upgr%\c$\winnt\options\updates\update3 md
%cpu2upgr%\c$\winnt\options\updates\update3

if not exist %cpu2upgr%\c$\winnt\options\updates\gettype.exe echo copying gettype.exe

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 77

xcopy /y /e /s /h /k /c /d .\basefile\gettype.exe %cpu2upgr%\c$\winnt\options\updates*.* > nul

if exist %cpu2upgr%\c$\winnt\options\updates\gettype.exe echo 1 File(s) copied

if not exist %cpu2upgr%\c$\winnt\options\updates\keypress.com echo copying keypress.com

xcopy /y /e /s /h /k /c /d .\basefile\keypress.com %cpu2upgr%\c$\winnt\options\updates*.* > nul

if exist %cpu2upgr%\c$\winnt\options\updates\keypress.com echo 1 File(s) copied

if not exist %cpu2upgr%\c$\winnt\options\updates\shutdown.exe echo copying shutdown.exe

xcopy /y /e /s /h /k /c /d .\basefile\shutdown.exe %cpu2upgr%\c$\winnt\options\updates*.* > nul

if exist %cpu2upgr%\c$\winnt\options\updates\shutdown.exe echo 1 File(s) copied

if not exist %cpu2upgr%\c$\winnt\options\updates\update3\patch3.exe echo copying patch3.exe

xcopy /y /e /s /h /k /c /d .\update3\patch3.exe %cpu2upgr%\c$\winnt\options\updates\update3*.*
> nul

if exist %cpu2upgr%\c$\winnt\options\updates\update3\patch3.exe echo 1 File(s) copied

if not exist %cpu2upgr%\c$\winnt\options\updates\update3\patch.bat echo copying patch.bat

xcopy /y /e /s /h /k /c /d .\update3\patch.bat %cpu2upgr%\c$\winnt\options\updates\update3*.* >
nul

if exist %cpu2upgr%\c$\winnt\options\updates\update3\patch.bat echo 1 File(s) copied

if not exist %cpu2upgr%\c$\winnt\options\updates\update3\warn3.bat echo copying warn3.bat

xcopy /y /e /s /h /k /c /d .\update3\warn3.bat %cpu2upgr%\c$\winnt\options\updates\update3*.* >
nul

if exist %cpu2upgr%\c$\winnt\options\updates\update3\warn3.bat echo 1 File(s) copied

if not exist %cpu2upgr%\c$\winnt\options\updates\update3\runupdt3.bat echo copying
runupdt3.bat

xcopy /y /e /s /h /k /c /d .\update3\runupdt3.bat
%cpu2upgr%\c$\winnt\options\updates\update3*.* > nul

if exist %cpu2upgr%\c$\winnt\options\updates\update3\runupdt3.bat echo 1 File(s) copied

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 78

if not exist %cpu2upgr%\c$\winnt\options\updates\update3\delhotfx.inf echo copying delhotfx.inf

xcopy /y /e /s /h /k /c /d .\update3\delhotfx.inf %cpu2upgr%\c$\winnt\options\updates\update3*.*
> nul

if exist %cpu2upgr%\c$\winnt\options\updates\update3\delhotfx.inf echo 1 File(s) copied

if not exist %cpu2upgr%\c$\winnt\options\updates\update3\shutdown.bat echo copying
shutdown.bat

if not exist prevat1.txt xcopy /y /e /s /h /k /c /d .\update3\shutdown.bat
%cpu2upgr%\c$\winnt\options\updates\update3*.* > nul

if exist prevat1.txt xcopy /y /e /s /h /k /c /d .\update3\shutdown.alt
%cpu2upgr%\c$\winnt\options\updates\update3*.bat > nul

if exist %cpu2upgr%\c$\winnt\options\updates\update3\shutdown.bat echo 1 File(s) copied

set chk=yes

if not exist %cpu2upgr%\c$\winnt\options\updates\gettype.exe set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\keypress.com set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\shutdown.exe set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update3\patch3.exe set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update3\patch.bat set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update3\warn3.bat set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update3\runupdt3.bat set chk=no

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 79

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update3\delhotfx.inf set chk=no

if %chk%==no goto updtend

if not exist %cpu2upgr%\c$\winnt\options\updates\update3\shutdown.bat set chk=no

if %chk%==no goto updtend

echo %cpu2upgr% was updated at>> updt3lst.txt

net time \\oestime|find /i "current">> updt3lst.txt

echo.>> updt3lst.txt

:setat

if not exist prevat*.txt at %cpu2upgr% /delete /yes

echo previously set>prevat3.txt

rem del %cpu2upgr%\c$\winnt\options\updates\update3\warn3.txt

rem del %cpu2upgr%\c$\winnt\options\updates\update3\patched.txt

if not exist prevat1.txt if not exist %cpu2upgr%\c$\winnt\options\updates\update3\warn3.txt at
%cpu2upgr% 11:00 /interactive c:\winnt\options\updates\update3\warn3.bat

if not exist prevat1.txt if not exist %cpu2upgr%\c$\winnt\options\updates\update3\patched.txt at
%cpu2upgr% 12:00 /interactive c:\winnt\options\updates\update3\patch.bat

if exist prevat1.txt if not exist %cpu2upgr%\c$\winnt\options\updates\update3\patched.txt at
%cpu2upgr% 12:01 c:\winnt\options\updates\update3\patch.bat

at %cpu2upgr% 12:05 c:\winnt\options\updates\update3\shutdown.bat

if exist %cpu2upgr%\c$\winnt\options\updates\update3\atcheck.txt echo %cpu2upgr% was
rescheduled at>> updt3res.txt

if exist %cpu2upgr%\c$\winnt\options\updates\update3\atcheck.txt net time \\oestime|find /i
"current">> updt3res.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 80

if exist %cpu2upgr%\c$\winnt\options\updates\update3\atcheck.txt echo.>> updt3res.txt

if exist %cpu2upgr%\c$\winnt\options\updates\update3\atcheck.txt echo rescheduled 3

echo loaded at 1 and 2 >%cpu2upgr%\c$\winnt\options\updates\update3\atcheck.txt

:updtend

if exist update4.bat call update4.bat

fixwelch.bat

@echo off

rem Script created by Jason P. Lippard

c:\winnt\options\updates\gettype.exe

if %errorlevel%==8 echo not a 2k workstation>c:\winnt\options\updates\not2k.txt

if %errorlevel%==7 echo not a 2k workstation>c:\winnt\options\updates\not2k.txt

if %errorlevel%==6 echo not a 2k workstation>c:\winnt\options\updates\not2k.txt

if %errorlevel%==5 echo not a 2k workstation>c:\winnt\options\updates\not2k.txt

if %errorlevel%==4 echo not a 2k workstation>c:\winnt\options\updates\not2k.txt

if %errorlevel%==3 echo not a 2k workstation>c:\winnt\options\updates\not2k.txt

if %errorlevel%==2 echo not a 2k workstation>c:\winnt\options\updates\not2k.txt

if %errorlevel%==1 start /wait /min c:\winnt\options\updates\update2\runupdt2.bat

:end

if exist c:\winnt\options\updates\update2\updt2dun.txt del
c:\winnt\options\updates\update2\runupdt2.bat

if not exist c:\winnt\options\updates\update2\updt2dun.txt goto :end

if exist c:\winnt\options\updates\update2\updt2dun.txt del
c:\winnt\options\updates\update2\updt2dun.txt

del c:\winnt\options\updates\update2\atcheck.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
Combating the Nachia Worm in Enterprise Environments 81

RUNUP2DT.bat

@echo off

rem Script created by Jason P. Lippard

c:\winnt\options\updates\keypress passwordhere/r

runas /User:%computername%\usernamehere "c:\winnt\options\updates\update2\fixwelch.exe
/silent /start /log=c:\winnt\options\updates\update2\virus.log"

if %errorlevel%==0 goto domain

goto end

:domain

c:\winnt\options\updates\keypress passwordhere/r

runas /User:domainhere\usernamehere "c:\winnt\options\updates\update2\fixwelch.exe /silent
/start /log=c:\winnt\options\updates\update2\virus.log"

:end

echo done > c:\winnt\options\updates\update2\updt2dun.txt

exit

