
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Dennis Beach
Advanced Incident Handling Practical

Sans DC 2000

Exploit Details

Name: CGI-World Poll It Internal Variable Override Vulnerability
Variants: None Known
Operating System: All platforms running Perl
Protocols/Services: TCP/IP, HTTP, CGI
Brief Description:
A programming error allows to incoming variables to overwrite internal program
variables. Input values can be passed which allow the client to view any file on the server
for which the web server has read permissions.

Protocol Description

Hypertext Transfer Protocol (HTTP) operates over TCP/IP connections, usually to
port 80, although other ports are frequently used. Many HTTP servers may operate on the
same computer using different port numbers. The protocol is used to transfer documents
between web servers and clients.

To conduct an HTTP session, the client first initiates a connection to the server. Once
connected, the client sends a request message to the server, the server responds and closes
the connection. HTTP is a stateless protocol meaning that each request requires a new
connection, and the server does not keep track of you. The large majority of HTTP
connections require no authentication making it an anonymous protocol as well.

HTTP 1.1 supports persistent connections which allow a client to make multiple requests
over the same connection without being disconnected. This optional feature reduces the
overhead of establishing connections. This feature does not maintain any state between
the client and server beyond the existence of a connection.

In HTTP 1.0, there are only three kinds of requests:

1. GET - returns whatever information is requested.
2. HEAD - returns only the server's header information of the requested document.
3. POST - used for sending HTML form entries. This is the only request that sends a

body with the request.

HTTP 1.1 supports additional request types.

An HTTP session can be manually executed over Telnet:

• First the telnet client connects to the server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Once connected, the client sends the request GET /index.html "HTTP/1.0" and
enters a blank line to end the request.

• The server responds with a series of headers followed a single blank line, then the
content requested. Then the session is terminated.

Transcript of HTTP Telnet session

> telnet www.lines.com 80
Trying 209.249.146.102...
Connected to www.lines.com.
Escape character is '^]'.
GET /index.html HTTP/1.0

HTTP/1.1 200 OK
Date: Wed, 16 Aug 2000 03:32:35 GMT
Server: Apache/1.3.9 (Unix)
Connection: close
Content-Type: text/html

<HTML>
<HEAD>
<TITLE>INFINITE LINES</TITLE>
</HEAD>
 ...
more body content
 ...
Connection closed by foreign host.

The Common Gateway Interface (CGI) is a standard for interfacing external
applications with HTTP servers. CGI provides a means for an executable to run and have
its output sent back to the requesting client.

A plain HTML document is static. A CGI program can be executed for each request, so it
can output dynamic information. This provides for interactive sessions allowing searches,
databases interactions, session tracking, state maintenance and more.

The CGI/1.1 Specification defines 4 methods of communication between the web server
and the external program:

• Environment variables:
Environment variables are used to send parameters to your program. the 2 most
important are QUERY_STRING and PATH_INFO.

QUERY_STRING contains the contents of the request string following the first ?
. For the request http://someserver.com/cgi/some.cgi?a=3&b=fred the
QUERY_STRING would contain a=3&b=fred.

The arguments following the ? can either be hardcoded in a link or the results of
an HTML form submission with the method of GET.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Additional information can be embedded in the path portion of the request. This
extra information is made available in the PATH_INFO variable.

PATH_INFO is frequently used to indicate the location of files or file paths to the
CGI program. The program can determine the location of the document relative to
the DocumentRoot via the PATH_INFO environment variable.

An example which uses both environment variables is server-side image map
processing. The request will be in the form
http://www.someserver.com/cgi/imagemap/path_to_mapfile/mapfile?x=3.4&y=4
5.
PATH_INFO will contain /path_to_mapfile/mapfile - the path and name of the
mapfile
QUERY_STRING will contain the map coordinates(x,y) where the imagemap
was clicked.

• The command line:
The command line is only used for ISINDEX queries where the request has only a
single argument in the form: /path_to_cgi/cgi?argument. The CGI is passed the
single argument on the command line.

• Standard input:
POST or PUT request sends its arguments as a block of data which is passed to
the CGI program via standard in rather than in the QUERY_STRING.

• Standard output::
The CGI program returns it's results to the web server via standard output.

The CGI program must parse the incoming data to extract the name/value pairs. For GET
requests the QUERY_STRING will be in the form name=value&name=value. Form
POST data comes in as a single block in the format from which the pairs must be
extracted.

In both cases, the input may contain url-encoded characters. Because certain character
have special meaning, ie, the character "&" separates name/value pairs, these characters
are encoded using hex values. Additionally, spaces are treated as the end of a request
string, so spaces are replaced with + signs. Within the CGI program, these values must be
converted backe to their original ASCII representations, for example, a "/" is substitued
for %20 in the incoming data.

In Perl this conversion can be accomplished by the following regular expressions:

$value = ~ s/ /+/g; # Convert plusses back to spaces
$value =~ s/%([A-Fa-f0-9]{2})/pack("c",hex($1))/ge; # Map hex encoded
characters back to ASCII

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

NOTE: Some exploits use url-encoding to disguise the actual data being sent to the CGI.
This can allow the expoit code to escape detection by simple Intrusion Detection Systems
and other text based filtering.

A CGI program can return many types of data, the most common is HTML, but it may
return a text document or a generated image. So, the first line of the program's output
must contain a header to tell the web server what type of data it is returning.

This header is passed to the client by the web server so the client knows how to handle
the content, ie, display as HTML, launch a helper program, etc. The header is ASCII text
and can span multiple lines. The entry is terminated by a single blank line. After which
follows the content from the CGI program.

The CGI program can be written in nearly any language including Perl and C, as long as
the program can conform to the CGI specification.

Description of variants

No variants of this attack are known. However, it is possible that other input variable
based attacks would succeed due to the lack of input validation.

How the exploit works

Pollit is a Perl CGI script which provides online polls. The adminstrative function allows
web-based poll creation and management. Visitors may vote on polls and see the real-
time results. The poll questions and results are stored on the server in text files.

The program works by reading template files from its data directory, placing content in
the templates if necessary, then returning the pages to the web server.

The exploit takes advantage of 3 problems in this program:

1. A programming error which allows the the overwriting of predefined variables
2. Lack of form input validation
3. The "Poison null-byte" vulnerability in Perl

Near the beginning of the script, the variable $data_dir is defined. This variable contains
the path to the directory from which the program reads its data and template files.
Because the program imports input variables directly into the main namespace, the
incoming data_dir value replaces the predefined value.

The code excerpt below(sub ReadForm) shows portions the routine used by the program
for handling incoming form values: the programming error is in the line $$name =
$value. This causes GLOBAL variables to be assigned for each variable sent in the
request. So the incoming data_dir value gets assigned to the GLOBAL $data_dir

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

overwriting the existing value. Note that there is no validation or cleaning of dangerous
characters from incoming data. There is none anywhere else in the program.
==

sub ReadForm {

 my($max) = $_[1]; # Max Input Size
 my($name,$value,$pair,@pairs,$buffer,%hash); # localize
variables

...

 @pairs = split(/&/, $buffer); # Split
into name/value pairs
 foreach $pair (@pairs) {

 ($name, $value) = split(/=/, $pair); # split into $name
and $value
 $value =~ tr/+/ /; # replace "+" with
" "
 $value =~ s/%([A-F0-9]{2})/pack("C", hex($1))/egi; # replace
%hex with char

...
 $$name = $value;
 }

 return %hash;

 }
==
Now that the $data_dir has been assigned to the value desired by the attacker, the
program calls the Template subroutine to open the template:
 &Template("$data_dir/_ssi_poll.html",'html');

The subroutine Template now attempts to open the file "/etc/passwd\0/_ssi_poll.html":
 open(FILE, "<$_[0]");

The Perl runtime environment interprets this string as "/etc/passwd" truncating the string
at the \0 (NULL). This is known as the "Poison NULL byte" vulnerability. The program
then reads in the contents of the /etc/passwd file and sends the contents back to the
browser as it would with any template file.

To understand the existence of the "Poison NULL byte" vulnerability, one must
understand the mechanics of Perl script execution. When a Perl script is run, the Perl
executable is called to first interpret, then execute that script. The program Perl itself is
written in C.

The Perl executable parses the text of the script to create a plan for execution known as a
"parse tree". The nodes on the parse tree are called opcodes, the smallest executable unit
Perl deals with. These opcodes are then passed to the Perl runtime environment. The

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

runtime environment uses C functions to perform the necessary operations to implement
the opcodes.

This figure shows the parse tree
representation of assigning the exploit
value into the $data_dir variable.

Each of the circles is a single opcode.

In the C programming language, a null byte (\0) signifies the end of a string, so any
characters following the null are ignored. When the Poll It CGI is executed, the string
"/etc/passwd\0/_ssi_poll.html" is sent to the Perl runtime environment to be opened by a
C system level open command. The C function sees the string ending at "/etc/passwd"
and opens that file.

Even on a well secured server, this exploit can cause great harm. The administrator
password for Poll It is stored within the Poll_It_v2.0.cgi script. The web server must have
read and execute permissions to run this script, so the exploit would allow an attacker to
read that script.

With the administator password the attacker could alter the poll or the results data. Also,
the script's administrator may use the same password in other places. The exploit would
also lay open source code to other scripts and script data on the server, as the server must
also have permissions for these files in order to run them. These may yield database
passwords or passwords to connect to other machines.

Diagram of the exploit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1. The client makes an HTTP request:
http://www.somehost.com/cgi-
bin/pollit/Poll_It_SSI_v2.0.cgi?data_dir=/etc/passwd%00

2. The web server launches the Poll_It_SSI_v2.0.cgi Perl CGI process, passing the
data_dir=/etc/passwd%00 via the QUERY_STRING environment variable

3. The Perl interpreter compiles the Poll_It_SSI_v2.0.cgi into opcodes
4. The Perl runtime environment is passed the string to open

"/etc/passwd\0/_ssi_poll.html"
5. The program executes a system level open in C on "/etc/passwd" file and reads in

the contents, because C sees the \0 null byte as the end of the string
6. The Perl CGI returns the contents of the file to the web server and terminates
7. The web server returns the file contents to the client

How to use the exploit

The exploit can implemented via any text or graphical web browser, or through telnet
session to the HTTP port, typically port 80.

The basic format of the HTTP request(exploit) is:
http://servername/path_to_cgi?data_dir=desired_file%00
NOTE: Only files readable by the web server user or group can be viewed

To get the /etc/passwd file on the server www.somehost.com, the request string would be:
http://www.somehost.com/cgi-bin/pollit/Poll_It_SSI_v2.0.cgi?data_dir=/etc/passwd%00

The Poll It script was set up on a test server to illustrate the exploit.
This is the normal display page when the script is called with no arguments:
http://www.somehost.com/cgi-bin/pollit/Poll_It_SSI_v2.0.cgi

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The next figure shows the display when script is called with the exploit request:
http://www.somehost.com/cgi-bin/pollit/Poll_It_SSI_v2.0.cgi?data_dir=/etc/passwd%00
(additional usernames have been blacked out)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Signature of the attack

Two items the same request string identify this attack:

1. The name of the cgi script: Poll_It_SSI_v2.0.cgi (unless it has been renamed)
2. %00 in request string or \0 after the query string has been unencoded

How to protect against it

The recommended patch is to move Line 78: %in = &ReadForm to line 66 before the
internal variables are assigned. This solves the immediate problem of the internal
variables being overwritten. However, this hack does not address the basic security issues
with this program.

More secure protections:
1 - Scope Script Variables - Protect variables in the main namespace from collision with
incoming variables or variables in other subroutines.

• Use CGI.pm: Perl 5 supports modules. Modules are code libraries which are
invoked in a separate namespace. Variables in the main namespace can be
explicitly referred to as main::$variable_name while variables in a module name
other would be referred to as other::$variable_name.

CGI.pm handles importing of incoming data placing name/value pairs in a
separate namespace. The values can be safely used and examined without
bringing them into the main namespace.

Usage: use CGI.pm qw(standard);
Input values can be accessed by: param(variable_name);

• Use strict: The strict pragma requires variables to be predeclared as global to the
program or local to a subroutine. If a variable is not scoped, the program will give
errors and exit without executing the script. This is a very helpful tool for any
level programmer to ensure correct scoping.

• Use constant: Perl 5 supports constants by creating an anonymous subroutine that
returns the value when called. The value the subroutine returns cannot be altered
after compilation, so the constant is protected from being overwritten.

Usage:
use constant DATA_DIR => "/path/to/data/dir/";

$a=DATA_DIR;
$a now contains "/path/to/data/dir/"

2 - Validate form input - Form input should always be checked, any CGI program is
potentially susceptible to problems from malformed input values, malicious or not.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Use Taint: Taint mode can be used to enforce input validation. All data is initially
considered tainted. The data must be untainted via a regular expression before it
can be used in any operations. Taint can be invoked as a command line switch.

Usage: #!/usr/bin/perl -T

To untaint a variable it must be assigned after a regular expression check.
For example:
$a = param('a'); # $a is a tainted variable
$a =~ /^(\d*)$/ ;# regular expression match for digits only
$a = $1; # $a is now untainted, it has been assigned the result of the pattern match

• The null byte can be safely removed from any data by the following expression:
$incoming_variable =~ s/\0//g;

• Only access expected variables
If you know what variables should be coming in, look at those variables and leave
the rest. One easy way to do this is to create an array of acceptable input variable
names, then iterate over the array.

Example:
@accept_vars = qw(a b c d);
foreach (@accept_vars) {
$a = param($_);
}

3 - Limit webserver privileges:

• Run the web server as a non-privileged user. This will limit the files the
webserver is able to access. Do NOT run the web server as root.

• A more advanced solution would be to create a "Sandbox" for the CGI Scripts to
run in. Chroot can been used to create a virtual root directory. The CGI
application could not access above this root directory. See www.freebsd.org for
more information.

Source code/ Pseudo code

Due to licensing restrictions, the source code is not included in this document, but can be
downloaded from http://www.cgi-world.com/pollit.html

Additional Information

• Original BugTraq Mailing List Posting
• BugTrak Database Entry
• Discussion of Poison NULL byte and Metacharacters by Rain Forest Puppy
• Perl Home
• CGI.pm Homepage

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Perldoc Security Reference
• WWW Security FAQ
• CGI Specification
• Ch 18 Compiling

Programming Perl, 3rd Edition
Larry Wall, Tom Christiansen & Jon Orwant
3rd Edition July 2000
ISBN 0-596-00027-8

