
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih


© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices 

GIAC (GCIH) Gold Certification 

Author:	
  Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
  
Advisor:	
  Antonios	
  Atlasis	
  

Accepted:	
  	
  September	
  22nd,	
  2011	
  

	
   Abstract	
   	
  
Android	
  has	
  become	
  a	
  very	
  popular	
  operating	
  systems	
  for	
  smartphones	
  and	
  tablets	
  

but	
  at	
  the	
  same	
  time	
  threats	
  associated	
  to	
  this	
  platform,	
  like	
  malware,	
  are	
  also	
  

growing.	
  Devices	
  based	
  on	
  Android	
  has	
  been	
  adopted	
  by	
  companies	
  and	
  

organizations	
  due	
  to	
  their	
  friendliness	
  and	
  the	
  convenience	
  they	
  offer.	
  However,	
  not	
  

many	
  companies	
  have	
  implemented	
  security	
  policies	
  for	
  using	
  Android	
  in	
  a	
  secure	
  

fashion,	
  endangering	
  the	
  security	
  of	
  the	
  company.	
  During	
  this	
  paper	
  it	
  will	
  be	
  

described	
  how	
  it	
  is	
  possible	
  to	
  improve	
  the	
  security	
  of	
  Android	
  so	
  it	
  can	
  be	
  safely	
  

used	
  in	
  business	
  where	
  security	
  is	
  a	
  high	
  priority.	
  



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   2 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

1. Introduction 
Nowadays it is necessary for most companies to provide e-mail/Internet access to 

employees outside of the office, hence many business provide their staff with 

BlackBerrys, iPhones, Android or other smartphones with Internet connectivity. But, how 

can these comply with the enterprise’s security policies? How is it possible to provide 

such functionality without putting the security of the company at risk? Some vendors 

such as Apple have released tools (Apple, 2010) which permit a security baseline to be 

defined for the handset, security policies to be managed remotely and the iPhone to be 

wiped remotely or located through GPS. 

Google has released a tool, through Google Apps for business (Google, 2011) that 

can implement some security policies in the mobiles; nonetheless, the security baseline 

that can be set through Google Apps is insufficient as some of the most risks are not 

mitigated. 

It is very important to take into consideration that a smartphone must implement 

security controls (such as password protection or auto wipe) in case it is stolen. However, 

this is not enough. What happens if the device is compromised by malware while 

connecting to the Internet? How to reduce the risk of this happening? How to detect it? 

How safe is it to plug in an external SD card if the business does not allow the plugin of 

any external USBs? Is it safe to allow the user to have bluetooth running? These are some 

examples of the kind of questions that should be considered when permitting the use of 

smartphones in an enterprise environment. 

In this paper we will present a set of steps to improve the security of Android in 

different areas. This work is part of the final project (practicum) for the Master in 

Security and Forensic (MSSF) at School of computing in Dublin City University (DCU). 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   3 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

2. Android: threats, architecture and some tools 
2.1. Security threats in Android 

Android is an Operating System (OS) based on Linux so it has the same 

functionalities as any desktop running a modern OS with Internet access, but with some 

additional hardware such as camera, GPS, etc. This means that the same threats that 

apply to modern OS can be extrapolated to Android, like malware or exploits. 

Nevertheless, in the case of smartphones, there is an important difference which can have 

a high impact: mobility. Mobility means that a static network is not assigned to the 

device, as in the case of desktops or servers; hence, connecting to any networks through 

3G/UMTS or WiFi exposes the handset to any kind of network attack (sniffing, spoofing, 

etc). Because the device is not assigned to any fixed network, this gives the user some 

flexibility to move/travel. However, this also results in a lack of some security layers of 

protection such as external firewalls, perimetrical antivirus or IDS/IPS which are found in 

many companies.  

The article by Knings, Nickels and Schaub (2011) describes a good example of 

how it is possible to exploit a vulnerability in Android through a WiFi connection. They 

explain how an attacker can eavesdrop and access the Google Calendar content and even 

impersonate the user.  

Applications in Android can be installed in different ways. The most popular one 

is the official Google repository, Market (https://market.android.com/). It is also feasible 

to install packages from the shell connected to the USB. Any developer can deploy an 

application, even malware, and distribute it via the repository, as has happened in the past 

(Wyatt, 2011). Some Spanish security researchers introduced malware in Android as PoC 

in order to demonstrate the lack of security in the Market (Jesus, 2011). Because this is 

the most critical part in the security chain, the end user must never be able to introduce 

any application and only authorized software should run in the device. ‘The Current State 

of Mobile Device Security’ report by Nachenberg (2011), a researcher from Symantec, 

highlights the same issue.  

Camera and GPS are not insecure by default, unless the software running or 

drivers are vulnerable. The biggest issue with them is the lack of privacy, since GPS can 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   4 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

be used to track the device and the photos taken with the camera can be stolen. Bluetooth 

is a different story because it allows the user to send and receive traffic, hence it can be 

used to control the device, steal confidential data, etc. Bluetooth is also useful to connect 

external devices like headphones or to connect to the car handsfree. Those scenarios will 

not be considered and are out of the scope of this paper; for that reason, bluetooth will be 

disabled.  

Another point to address is the physical security of the device. The same controls 

applied to laptops should be applied to smartphones: encryption, passwords policies to 

login, etc, and if possible remote wiping and GPS localization. The main problem is that 

versions of Android below 3.0 do not support encryption by default; as a result it is not 

possible to encrypt the device itself.  

It must be taken into consideration if the SD card attached to the device is secure 

or not. Some of the points to keep in mind are that the information stored in the SD card 

is not encrypted and that the file system used is FAT. This means that all the applications 

with read permissions on the SD card have access to the whole data stored and 

consequently there is not any access list enforced through file permissions. 

The latest point to address is how to manage and administer the smartphone from 

a centralized location. For instance, this will permit the security administrator of the 

business to upload authorized software on the smart phone. Android can be accessed 

from the shell with the SDK toolkit (http://developer.android.com/sdk/index.html), but 

this gives the end user the possibility of also accessing the device through USB, and this 

is a security breach of the policies. 

2.2. Android architecture: The security model 
Android is composed of four layers, as can be seen in figure 1: 

• Application: This is the layer for the application installed (i.e. phone, mail, 

etc).   

• Application Framework: provide different packages of service 

applications.  



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   5 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

• Android Runtime and Libraries: contains a core component called the 

Dalvik virtual machine and each process is executed in a separated 

instance in the VM. Also, in this layer, there are some libraries like SSL, 

SQLite or libc.  

• Linux Kernel: it abstracts the hardware from the software.  

 

 

 

Figure	
  1:	
  Android	
  architecture	
  
 

Android follows the same idea of user/permissions like a normal Linux system. 

This is very well explained in Android Developers guide, there are some key differences 

though. Android is not a multiuser system unlike traditional Unix/Linux systems where 

multiple external users are connected to the system. Instead, it uses the concept of UID 

and GID to assign permissions to each application and process and hence, there is 

isolation between processes/applications. Whenever a new application is installed, some 

specific permissions should be allowed. For example, if the application needs to access 

the GPS, it will request access to the GPS but it is the user who installs the application 

who takes the decision. Whenever a new application is installed, specific UID and GID 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   6 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

will be assigned to it as if it were a normal user in Linux. Applications have a UID higher 

than 10000 and system accounts have a UID lower than 10000. The concept of 

permission is similar to the permissions on the Linux file system and this is extended to 

be able to perform actions. It is the developer who decides which permissions the 

applications needs through the file AndroidManifest.xml (full documentation in 

http://developer.android.com/guide/topics/manifest/manifest-intro.html), which is read at 

installation time. Android runs a Mandatory Access Control Model and there is a 

reference monitor to check and implement the policies described in the 

AndroidManifest.xml. The Android security architecture, by default, implements a deny 

policy. So there is no permission to perform any operations that would adversely impact 

other applications, the operating system or the user.  

On account that there are different permissions for each process and application, it 

can be said that the security model is robust and from an OS point of view the isolation is 

performed efficiently and effectively. But the main problem is when the user installs a 

new application that asks for more permissions than necessary. This is the high risk part 

of the model where the security of Android can be broken. Another problem is when a 

developer creates an application that uses more permissions than necessary because it 

might be possible to create an application (e.g. malware) which asks for privileges to 

everything (but the user has to agree with those permissions). 

A higher granularity might improve the security. For instance, the user should 

decide what privileges to permit for each application. With the current model all the 

permissions are granted or denied.  

Mobile Security Application (Dwivedi, Clark, and Thiel, 2010, p. 16-47) is a 

good reference book which explains in detail Android architecture and other mobile 

technologies like iPhone. 

In summary, the model is quite robust and it is well constructed. Nevertheless, as 

in many other cases, the human factor is the problem. If a user allows applications to 

access everything or if a developer deploys an application with permissions to access 

everything, the security is broken. The solution for this problem is to control which 

applications can be installed and not allow the user to install other applications. 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   7 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

2.3. Tools for Android to enforce security 
There are some tools that can improve the security of the Android. Google Labs 

can define and establish a password policy including complexity of the password, 

expiration time, historical, screen lock time out and a limit on the number of invalid 

password before wiping the device (Google, n.d.). It also permits the smartphone to be 

located through GPS, the device to be locked remotely, to turn the alarm on or the mobile 

to be wiped remotely. Other kind of applications can be found on the Market, like Norton 

Mobile Security, AVG Antivirus, Lookout, or Autowipe. 

These applications include antivirus/antimalware software, which scan the 

application installed and protect the smartphone while browsing, as well as applications 

that can lock and wipe of the phone and SD card remotely through SMS or via web. 

Other tools permit to backup the information. Furthermore, there are tools to wipe of the 

mobile if the SIM is changed or wipe of the mobile after a set number of failed logins in 

order to protect confidentiality of the user data in these cases. 

3. Improving the security of Android 
3.1. Objectives of this work 

The main objectives of this study, aiming at improving the security of Android 

devices, were the following:  

1. Implement a security channel of communication (VPN) with OpenVPN 

(OpenVPN Technologies, 2002) and enforce all the traffic through this 

tunnel. Implement filters on the incoming and outgoing traffic.  

2. Lock out access to the device and centralize the access management. 

Access to the device will only be granted to security administrators 

through SSH with keys.  

3. Disable the installation of software. Only authorized software must be run 

and the user will not be able to install any software.  

4. Enforce a policy password within the company standards. The smartphone 

will be wiped after a set number of trials. 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   8 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

5. Enable remote secure functionalities. It must be possible to wipe, locate 

and lock the smartphone remotely from the Internet and sending an SMS.  

6. Include Antivirus and Antimalware tools. It must be possible to scan the 

applications installed and protect the smartphone while browsing.  

7. Disable unnecessary services/devices. Services like bluetooth must be 

disabled as they are not necessary. SD card, if not necessary, might be 

disabled as well. 

	
  
In the rest of this section it will be explained the lab setup and the set of tools and 

steps taken to harden the system. 

3.2. The lab 
The lab is composed of an HTC desire with a 3G card and WiFi connection. The 

main firmware/ROM is CyanogendMod 7.0.3 (Cyanogenmod, 2011) build based on 

Android 2.3.3. All the setup and tests will be done with Android SDK toolkit running on 

Ubuntu 11.04, Snow Leopard and Windows 7. A Virtual Private Server (VPS) hosted in 

The Netherlands is used as the endpoint and management server. Moreover, a set of 

different security tools like OpenVPN, iptables and a SSH server for Android named 

Dropbear (Johnston, 2011) are used. 

3.3. Encrypting the network channel and implementing firewall 
policies 

As it was mentioned previously, the basic idea is to send all the traffic from the 

Android device, either via the 3G (rmnet0) interface or the wireless one (eth0) through a 

VPN tunnel built with OpenVPN. In order to do this, there will be a VPN end-point, 

controlled by the company, running OpenVPN. The user of the smartphone will have to 

establish the tunnel with the endpoint or he/she will not have access to the Internet. The 

way to enforce the network policy is through iptables in the Android smartphone and at 

the endpoint (VPS). An example of the architecture is in the figure below: 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   9 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

!"#

!"#$$%!"&

%!&$$%'()(
'(#%!$$%*+

%!&$

,--."/%0123%/45)647)!"#$
864"%9:;%6.#/

)46',68%<=0>%9?1@%90%;9:@
,--."/%A@5BB*5C*%9?1@

864"%9:;%6.#/

!"#$$%!"&

 

Figure	
  2:	
  Network	
  connectivity	
  channel	
  
	
  

3.3.1. Configuring OpenVPN at endpoint with certificates 
The encryption in a VPN connection can be established in 2 ways, with digital 

certificates (public/private key pair) or with a shared key. The main reason for using 

digital certificates instead of a shared key is because it is more flexible and if any user 

loses the smartphone, the certificate can be revoked. PKI also escalates better with a 

higher number of users. Another interesting point is that if the company has its own CA, 

this could be used to create the certificates for the server and for all the users instead of 

using new ones.  

In the OpenVPN web page it is possible to find the manual (OpenVPN 

Technologies, 2002) to build the CA, the server certificate and the client certificate but 

the main steps are the following: First configure the ’vars’ that will contain the 

parameters of the certificate (ie. country, email, etc). Then, initialize the PKI and build 

the CA. Build the server keys and certificate, and the client certificate/keys (one per each 

client). For each client, package its key/cert and the server cert in a ’.p12’ file (this is the 

standard used in Android to import the certificates).  



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   10 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

The OpenVPN manual explains in detail how to configure the server through the 

’server.conf’ file, nonetheless, some important decisions must be made. First of all, the 

port and the protocol to use. In our study, it was decided to choose 80/tcp instead of using 

the default 1194/udp, since this port usually is not filtered in firewalls (there might be 

some situations where web content filters are installed and the traffic is drop, but this port 

could be changed to other port such as 53/UDP). The second decision that we should 

make is about the algorithms to use. It was decided to use AES with CBC and a key of 

256 bit (AES-256-CBC) as it is the default cipher and mode used by OpenVPN. 

Moreover, the compression was enabled and all the traffic is routed through the VPN; for 

this last reason, it is necessary to propagate a route ’0.0.0.0/0.0.0.0’. Likewise, static IP 

was assigned per user to enhance security. Finally, it is necessary to create a file with the 

virtual IP assigned for each user. This will help when creating specific firewalls rules 

based on the user/role.  

3.3.2. Configuring OpenVPN in the smartphone with certificates 
When the certificates for the clients are packaged, it is essential to protect them 

with a passphrase. The certificates will be copied to the SD card and imported to the 

smartphone. Then, it is needful to setup the VPN creating a new connection according to 

our previous selection of settings.  In them, we should only add the IP of the VPN server 

and the redirect gateway, through which all the traffic will be routed.  

3.3.3. Implementing firewall policies in Android 
The objective is to apply a DENY default policy. In order to do that, only the 

IN/OUT traffic going through the interfaces eth0 and rmnet0 from/to the VPN’s IP is  

ACCEPT and the rest is DROP. The traffic allowed is necessary to establish the VPN 

tunnel. Regarding the flows going through tun0, the virtual interface, all the OUT traffic 

is allowed to any IP to route the traffic to the endpoint, and the incoming traffic to port 

22/tcp is allowed to permit SSH access. 

 With these rules it is guaranteed that when connecting through a public WiFi or 

3G, the traffic will not go on clear, avoiding sniffing. Also, any other traffic from the 

local network or Internet will be denied. 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   11 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

3.3.4. Implementing firewall policies at the endpoint 
The security admin will enforce access control to the Internet through the 

endpoint. It is possible to create rules to allow traffic only to specific ports (like HTTP/S) 

and deny the rest of the flows. It is also practicable to create granular specific rules per 

user, with a static IP assigned to each user in the OpenVPN server (e.g. allow sysadmin 

traffic to SSH). It might be viable to configure a proxy (e.g. squid) as HTTP/s content 

filtering. However, this is outside of the scope of this work.  

In the case of this study some basic rules were set up, allowing traffic forwarding 

from tun0 to eth0 to route the traffic to the Internet. Also it is created a rule to NAT the 

traffic from tun0 to eth0, in order to have access to the Internet with the public IP of the 

endpoint. Additionally, a few set of rules are implemented to accept all incoming HTTP, 

HTTPS and DNS traffic in tun0 interface and deny the rest of the traffic.  

With this set of policies, any connection from the device that isn’t HTTP/s (e.g.  

Messenger, Skype, etc), will be denied. 

3.4. Granting access through SSH authenticated with keys 
The version of the ROM used, Cyaongenmod version 7.0.3, contains the ssh 

server binary, Dropbear and so, further compiling is not required. The manual that 

explains how to build, configure and run the server is at ‘Connect to the device with SSH, 

(2011)” In the case of this work, it will not be used passwords but keys to access SSH. 

This is a more robust and secure way.  

The set of steps to create this set up starts with the generation of the pair of SSH 

keys for each machine from which we want to connect from (in the case of this work, 

keys are created for the management server, the VPN tunnel). Then the public key has to 

be exported to the SD card of Android, included in the ’authorized_keys’ file and the 

proper permissions has to be set to be readable by root. On the other hand, the SSH server 

keys has to be created and this is done with the ’dropbearkey’ command in the smart 

phone. The last part is to run the dropbear process enforcing the authentication with keys 

and disabling passwords. 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   12 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

With this setup, it will only be possible to access the smartphone from SSH with 

the correct key. Moreover, as firewall rules have been enforced with iptables, the SSH 

port (22/tcp) is only reachable on the tun0 interface, the VPN interface. With the purpose 

of starting dropbear once the system is booting, it is mandatory to include the command 

in an init script (like in any UNIX/Linux system).  

3.5. Disabling bluetooth 
The easiest way to disable bluetooth is to just remove the permission in the 

bluetooth device. Bluetooth is managed by the kernel through the devices /dev/ttyHS0 

and /dev/ttyMSM0 and these devices have set read and write permissions (660) for the 

user and group bluetooth. If those permissions are removed, the device will not be 

reachable. This must be done when booting the system since the /dev directory is reset 

during reboot. 

3.6. Avoiding the installation of software. Removing the access 
to the device through USB 

As it has been explained in section 2.2, the greatest security issue in Android is 

the installation of software. Applications in Android are packaged in ’apk’ files and this 

can be installed in several ways, from the Internet through a repository like Market (or 

Appbrain) or through a USB connection. To prevent users from installing any software 

outside of the standard build, it is essential to remove and disable Android Market, the 

application that permits to install from the Google repository, and the binary file that 

manages packages in Android from the shell, this is ’pm’ (/system/bin/pm). Also, in order 

to disable the access to the shell through the USB, it is required to disable the 

binary/daemon /sbin/adbd.  

 To remove the Market application from the Android it is needed to set the 

permissions of the container to 000; this will stop the possibility of running the Market.  

If the execution permission is removed from the ’pm’ (/system/bin/pm) binary, it 

will not be feasible to run it. If this same idea is applied to the binary /system/adbd, it will 

not be viable to install packages from the shell or to access the Android by USB.  



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   13 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

Disabling permission on binary files of the core system is done at booting time, as 

the /sbin directory is mounted with read only permissions and it is reset every time the 

system is booted. This step has to be done at the end of the hardening process and after 

the SSH is configured, since once this step is applied there will no be access to the shell 

except through SSH.  

3.7. Disabling the SD card 
 Connecting an external device (USB stick, SD card, etc) to a ’secure’ system can 

be a big security risk whether it is a smartphone, a desktop or a server. In the case of 

Android, the situation is the same, or even worse. By default, Android mounts the SD 

card as a FAT file system, with ’noexec’, ’nodev’ permissions. The first question is why 

use FAT instead of ext3 or ext4, but apart from that, is the ’noexec’ permission enough to 

prevent running the applications? Mario Ballano, a security researcher from Symantec, 

published a very interesting article about how it is possible to use the SD card to hijack 

privileges from other applications in order to steal information or execute malicious code 

(Ballano, 2011) Moreover, in the problem described by Mario, there is an additional 

issue, the lack of encryption on the SD card.  

In order to disable the SD card, it is necessary to unmount it during the boot 

process. 

 

3.8. Disabling unnecessary binaries 
As part of any hardening process, it is a good practice to remove compilers and 

unnecessary packages, set proper permissions to binaries (especially setuid/setgid), etc. 

 In the case of Android, the binaries with network access, editors and sniffers will 

be taken into considerartion. The affected binaries are the following: irsii, nano, nc, 

netserver, netperf, opcontrol, scp, rsync, sdptest, ssh, strace, tcpdump, vim, bluetoothd, 

iptables, and ping. Some of these will be just removed and for some others (e.g. ping) the 

permissions will be setup only for root. 

 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   14 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

3.9. Remove unnecessary software 
By default, Cyanogenmod doesn’t contain many applications installed. For 

example, the Market application is not installed. It depends on the company policies and 

standards to decide which software can be installed and which software must be removed.  

Many companies have a software registry with the applications that are approved 

and this is applied to the standard workstation or desktop build. The idea here is the 

same: define a set of standards applications and remove the rest.  

The main application which will be allowed that aren’t part of the core system 

(like the settings application or clock/alarm) are a browser, a mail client, a calculator, a 

calendar, a camera application, contacts, gallery, messaging, phone and voice dialer. If 

there is any need to install an additional application (e.g. twitter for the Marketing 

department or SSH for sysadmins), the security administrator will install it. To do it, the 

security admin will upload the ’apk’ file with SCP through the VPN connection, change 

the permissions of the ’pm’ binary to executable, install the application, rollback the 

permissions of ’pm’ and remove the ’apk’ file from the device. This model is very 

flexible and robust, because it is secure and any software can be installed remotely 

without any interaction from the user.  

In order to remove the unnecessary software, it is necessary to remove the ’apk’ 

and the directory where the application is stored. The system application packages are in 

/system/app and the data is in /data/data. A good approach to enable rollback in case in 

the future  an application needs to be run, is to change the permissions of the directory to 

000 instead of removing it. For example, for the bluetooth application might be: chmod 

000 /data/data/com.android.bluetooth. 

	
  

4. Additional security controls 
As it was mentioned in section 2.3, there are some existing tools that can add 

security to Android. In this work some of them will be included. 

 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   15 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

4.1. GoogleApps for business: enforcing a password policy 
It was not able to find an external application to enforce password policies in 

Android, nothwithstanding GoogleApps for business can be used to do this (the cost is 

40$/year).  

The policies are defined in the Google Apps web page and these are remotely  

synchronized /enforced  automatically through the Internet. However, to do this it is 

needed to install in Android an application from the market, called ‘device policy’. The 

set of functionalities that must be configured, are the following: 

• Require the users to set passwords on the devices.  

• Password complexity / strength (at least one number, one letter and one 

punctuation).  

• Number of days before password expires (90 days). Number of historical 

password that are blocked (3 passwords).  

• Automatically lock the device after a timeout expires (10 minute).  

• Number of invalid passwords before the device is wiped (10 times). 

• Allow camera (yes). 

 

4.2. GoogleApps for business: remote control of the device 
Another set of features of the ’device policy’ is the possibility to control the 

device remotely in case the device is stolen or lost. The set of functions are the 

localization of the device through GPS and Google Maps, lock the device, reset the 

password, turn on a noisy alarm and wipe the mobile remotely. 

4.3. Autowipe 
Autowipe is a tool that can wipe the phone and SD card.  

We are interested in two functionalities provided by Autowipe (VesperaNovus, 

2011), the remote wipe through SMS with a passphrase and the autowipe if the SIM card 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   16 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

is changed. On the contrary, the ability to wipe the SD card is not used because, the SD 

card is disabled for the reasons explained in section 3.7. 

With this setup, if the phone is lost or stolen and someone changes the SIM card, 

the phone will be wiped. In addition to this, if the phone is lost and there is not Internet 

access, it is possible to send a text message from someone else’s phone to wipe it. 

4.4. Antivirus: AVG Mobile 
A very important layer of security in a defense-in-depth architecture is the 

Antivirus. The popular Antivirus company AVG has created a version for Android 

(AVG, 2011) which can scan applications, files and media in real time. Moreover, it has 

an option to browse the web securely. There is a function to find/locate the phone via 

Google maps, backup/restore all the valuable apps and data and lock/wipe the device to 

protect the privacy. 

For the purpose of this work the only interesting feature is the AV engine and the 

secure browsing. The other functionalities have been covered with other tools. 

 

5. Steps to harden Android from scratch 
Once the tools and the instructions how the system will be hardened has been 

defined, it is necessary to describe the steps to follow in order to do that. 

5.1. The boot process in Android 
Android boot system is well explained in ’The Android boot process’ (Enea, 

2009). The main issue with Android is that the init script (init.rc) is part of the ramdisk 

and can’t be modified. In order to modify it, it is necessary to rebuild the ramdisk. 

Nevertheless, in Cyaongenmod firmware, it is possible to create a ’userinit.sh’ script (in 

/data/local) that will execute when booting. This script will run the necessary commands 

and will call the rest of the scripts 

5.2. userinit.sh 
	
  



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   17 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

A copy of the script can be found in the appendix. Basically, the script contains 

the following commands: run SSH (dropbear) at booting time, disable the permissions of 

bluetooth device, kill the market process if running, harden the TCP/IP stack, remove 

unnecessary binaries, run the iptables script (iptables.sh) stored in /data/local, run the 

script to remove unnecessary application (removesoftware.sh), disable the ’pm’ (package 

management) binary to avoid the installation of any software, disable the ’adbd’ daemon 

to avoid the installation of any software through USB and access to the shell through 

USB and disable the SD card.  

The scripts iptables.sh and removesoftware.sh can be found in the appendix. 

5.3. Putting all together 
The set of steps to have the system configure and run the system are as following: 

1. Install Cyanogenmod.  

2. Install Google Apps.  

3. Install the Google App Device Policy application.  

4. Install the Antivirus application.  

5. Install the Autowipe application.  

6.  Setup Google App Device Policy with the enterprise account. A secure 

password to access the device will be introduced at this stage.  

7.  Setup the Antivirus: configure the update/auto-scan frequency, setup the 

real-time scanner and safe surfing. 

8.  Setup the Autowipe: enable SMS text wipe, choose a passphrase, enable 

the subscriber ID change and enable password protect to access the 

application.  

9. Configure the VPN: import the certificate, setup the VPN parameters (IP, 

port, protocol, cipher algorithm, key size, LZO enable).  

10. Configure SSH: generate the ssh keys, import the public key to authorized 

keys.  



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   18 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

11. Copy the iptables.sh, removesoftware.sh and userinit.sh script to 

/data/local. Change permissions to 700.  

12. Reboot the system and the system and it will be hardened. 

 

6. Conclusions 
During this project it has been able to improve the security of Android in different 

areas making the platform usable in business where a high level of security is required. 

Implementing a security channel, control the traffic, reducing the risk of installing 

software, removing the unnecessary software and configuring a central point to manage 

all the devices are some of the key points achieved during this project. In addition to this, 

the use of some existing applications like Google Apps or Antivirus increased the layers 

of security.  

Some scripts have also been created to lockout the operating system and enhance 

the security. These scripts can be adapted to each specific situation or business in order to 

align the configuration to the company polices, such as the kind of traffic allowed or the 

software permitted. The possibility of applying different firewall rules with granularity 

(e.g. per user) from a centralized system gives the platform a high grade of flexibility. 

The security admins can also upload software through SCP and install without having 

physical access to the device. 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   19 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

7. References 
Apple. (2010). iPhone in Business. Retrieved from 

http://www.apple.com/iphone/business/integration/ 

AVG. (2011). Antivirus-free [software]. Retrieved from 

http://www.appbrain.com/app/anti-virus-free/com.antivirus 

Ballano M., (2001, June 29). Android Class Loading Hijacking [web blog]. Retrieved 

from http://www.symantec.com/connect/blogs/android-class-loading-hijacking  

Connect to the device with SSH. (n.d). Howto: connect to device with SSH [web blog] 

Retrieved from http://bit.ly/nJheuA 

CyanogenMod. (May 2011). CyanogenMod ROM [software]. Retrieved from 

http://www.cyanogenmod.com/  

Dwivedi, H, Clark, C, & Thiel, D. (2010). Mobile application security. McGraw-Hill 

Osborne Media. 

Enea. (2009, June 11). The Android boot process [web blog]. Retrieved from  

http://www.androidenea.com/2009/06/android-boot-process-from-power-on.html 

Google. (2011). Google Apps for Mobile. Retrieved from 

http://www.google.com/apps/intl/en/business/mobile.html  

Google (n.d).  Device Policy Administration for Android. Retrieved from 

http://www.google.com/support/a/bin/answer.py?answer=1056433 

Jesus Y. (2001, June 6). The harsh reality of Android Market [web blog]. Retrieved from 

http://bit.ly/o3PYme 

Johnston M. (2011) Dropbear: SSH for Android (version 0.52) [software]. Retrieved 

from http://matt.ucc.asn.au/dropbear/  

Knings B., Nickels J. and Schaub. (2011, May 30). Catching AuthTokens in the Wild The 

Insecurity of Google’s ClientLogin Protocol. Retrieved from           

http://www.uni-ulm.de/en/in/mi/staff/koenings/catching-authtokens.html 

Nachenberg C. (2011, June 28). The Current State of Mobile Device Security [web blog]. 

Retrieved from http://bit.ly/iZceu4 

OpenVPN Technologies. (2002). OpenVPN [software]. Retrieved from  

http://openvpn.net/ 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   20 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

VesperaNovus. (2011). Autowipe: delete remotely the device [software]. Retrieved from 

http://bit.ly/mSy1Qq  

Wyatt T. (2011, May 30) DroidDreamLight, New Malware from the Developers of 

DroidDream [web blog]. Retrieved from 

http://blog.mylookout.com/2011/05/security-alert-droiddreamlight-new-malware-

from-the-developers-of-droiddream/ 

  

    



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   21 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

8. Appendix 
8.1. Userinit.sh 
#!/system/bin/sh 

# Customize some parameters and lockout the SO 
# July 2011 

 
mount -o rw,remount /system 

# run dropbear / SSH 
/system/xbin/dropbear -g -s  

# Disable Bluetooth 
chmod 000 /dev/ttyMSM0 

chmod 000 /dev/ttyHS0 
# stop market if running 

killall com.android.vending 
# hardening TCP/IP stack for IPV4 

sysctl -w net.ipv4.icmp_echo_ignore_broadcasts=1 #ICMP broadcast 
sysctl -w net.ipv4.conf.all.accept_redirects=0 # ICMP redirects ipv4 

sysctl -w net.ipv6.conf.all.accept_redirects=0 #ICMP redirects ipv6 
sysctl -w net.ipv4.conf.all.send_redirects=0 # ICMP redirects 

sysctl -w net.ipv4.conf.all.accept_source_route=0 #source routing disable 
sysctl -w net.ipv4.conf.all.forwarding=0 #Forwarding traffic 

sysctl -w net.ipv4.conf.all.rp_filter=1  
sysctl -w net.ipv4.conf.all.log_martians=1 #filter martians 

sysctl -w net.ipv4.tcp_max_syn_backlog=1280 # TCP syn half-opened 
sysctl -w net.ipv4.ip_forward=0 

# Removing/ disabling unnecessary binaries. Some of them have access to Internet 
rm -f /system/xbin/irsii 

rm -f /system/xbin/nano 
rm -f /system/xbin/nc 

rm -f /system/xbin/netserver 
rm -f /system/xbin/netperf 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   22 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

rm -f /system/xbin/opcontrol 
chmod 740 /system/xbin/scp 

chmod 740 /system/xbin/rsync 
chmod 740 /system/xbin/sdptest 

chmod 740 /system/xbin/ssh 
chmod 740 /system/xbin/strace 

chmod 000 /system/xbin/tcpdump 
chmod 740 /system/xbin/vim 

chmod 000 /system/bin/bluetoothd 
chmod 750 /system/bin/iptables 

chmod 750 /system/bin/ping 
chmod -s /system/bin/ping 

# Run Iptables 
/data/local/iptables.sh 

## This is the last step of the hardening 
## This will be uncommented only when the system is configured 

## This will lockout the system and will only give access through SSH 
# Removing unnecessary software 

# This must be uncomment at last step  
# do a backup before 

/data/local/removesoftware.sh 
# disable the Packet Management binary  

chmod -x /system/bin/pm 
# Disable the adbd daemon 

mount -o rw,remount -t rootfs rootfs / 
chmod -x /sbin/adbd 

mount -o ro,remount -t rootfs rootfs / 
# disable the SD card 

umount /mnt/sdcard/.android_secure 
umount -l /mnt/sdcard 

mount -o ro,remount /system 
 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   23 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

8.2. iptables.sh 
#!/system/bin/sh 

/system/bin/iptables -F 

# Traffic to localhost allowed 

/system/bin/iptables -A INPUT -i lo -j ACCEPT 

/system/bin/iptables -A OUTPUT -o lo -j ACCEPT 

# Default deny policy 

/system/bin/iptables --policy INPUT DROP 

/system/bin/iptables --policy OUTPUT DROP 

/system/bin/iptables --policy FORWARD DROP 

# All the established sessions are allowed 

/system/bin/iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT 

/system/bin/iptables -A OUTPUT -m state --state ESTABLISHED,RELATED  -p 6 --

sport 22 -j ACCEPT 

# Traffic from the tunnel is allowed 

/system/bin/iptables -A INPUT -i tun0 -p 6 --dport 22 -j ACCEPT 

/system/bin/iptables -A INPUT -i tun0 -p 1 -j ACCEPT 

# Traffic going to the VPS is allowed 

/system/bin/iptables -A OUTPUT -d 46.249.37.120/32 -j ACCEPT 

# Traffic going through the tun0 interface is allowed 

/system/bin/iptables -A OUTPUT -o tun0 -j ACCEPT 

	
  

8.3. removesoftware.sh 
#!/system/bin/sh 

# Remove and disable unnecessary software 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   24 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

# July 2011 

cd /system/app/ 

rm /system/app/AndroidTerm.apk 

rm /system/app/Bluetooth.apk 

rm /system/app/Development.apk  

rm /system/app/FM.apk 

rm /system/app/CarHomeGoogle.apk 

rm /system/app/GoogleFeedback.apk  

rm /system/app/GoogleQuickSearchBox.apk 

rm /system/app/FileManager.apk 

rm /system/app/HTMLViewer.apk 

rm /system/app/MarketUpdater.apk 

rm /system/app/Music.apk 

rm /system/app/RomManager.apk 

rm /system/app/SoundRecorder.apk 

rm /system/app/Talk.apk 

rm /system/app/Torch.apk 

rm /system/app/Vending.apk 

chmod 000 /data/data/com.android.bluetooth 

chmod 000 /data/data/jackpal.androidterm2 

chmod 000  /data/data/com.android.development 

chmod 000 /data/data/com.android.fm 

chmod 000 /data/data/com.android.htmlviewer  

chmod 000  /data/data/com.android.music 

chmod 000 /data/data/com.android.musicvis  

chmod 000  /data/data/org.openintents.cmfilemanager 

chmod 000 /data/data/com.android.soundrecorder 

chmod 000 /data/data/com.google.android.carhome 

chmod 000  /data/data/com.google.android.apps.books 

chmod 000 /data/data/com.google.android.googlequicksearchbox 

chmod 000 /data/data/com.android.vending 



© 2
011
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Securely deploying Android devices	
   25 
	
  

Angel	
  Alonso-­‐Parrizas,	
  parrizas@gmail.com	
   	
   	
  

chmod 000 /data/data/com.android.vending.updater 

chmod 000  /data/data/com.koushikdutta.rommanager 

 


