GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

Practical OSSEC
GIAC (GCIH) Gold Certification

Author: Chad Robertson, chadrober@gmail.com
Advisor: Egan Hadsell

Accepted: July 5, 2011

Abstract

OSSEC is a simple to install host-based intrusion detection system. The difficulty is in
tuning the installation so that the resulting alerts are pertinent to the environment. Agents
can be installed on a variety of systems; Web servers, mail servers, VMWare servers,
WAFs. All of these server types likely produce logs with very different syntax. Each log
type requires custom decoders and rules to be created for OSSEC to alert appropriately
if none are included by default or found within the community. Resulting alerts must be
ranked by level of criticality based on not only one single log event but possibly the
presence of other events occurring during small windows of time. All of this must result
in notification being sent to the appropriate party and at the appropriate level to allow
them to respond to the incident. This paper will briefly discuss installing OSSEC agents
on both Windows and Linux systems. It will then explore how to configure rulesets and
decoders for various commonly found enterprise servers. Finally, it will describe the

process of tuning rulesets so that the resulting alerts are both valuable and pertinent.

Practical OSSEC | 2

1. Introduction

“OSSEC is an Open Source Host-based Intrusion Detection System. It performs
log analysis, file integrity checking, policy monitoring, rootkit detection, real-time
alerting and active response” (Trend Micro, 2010). Large organizations with equally
large budgets might utilize a SIEM (“Security Information and Event Management”) or
STRM (“Security Threat Response Management”) to accomplish these tasks (Swift,
2006). OSSEC provides similar functionality and because it is open source allows access
even if budget is an issue. Also, if a SIEM / STRM is present OSSEC will integrate into it
to provide additional benefit. As such, OSSEC is a solid alternative solution or a
valuable complement to protect resources and still satisfy compliance requirements such

as PCI-DSS (Third Brigade Inc., 2009)

Leveraging OSSEC to produce meaningful results across diverse systems can be
difficult. Disparate enterprise applications oftentimes do not provide a similar
mechanism for logging events (Xavier, 2008). To utilize OSSEC, applications must first
be identified or configured to provide a common logging supported format. OSSEC only
supports text-based logs with the exception of the Windows EventLog (Cid & Ozturk,
2000).

After identifying supported applications there remains the challenge of tuning
decoders within OSSEC to parse those logs for useful data. OSSEC provides a number
of decoders to users by default, but if a decoder for a particular application does not
already exist one must be created using delimiters that exist within the logs (Klein, 2009).
Those applications that do not, by default, create logs with clear delineation will result in
convolution and must be reconfigured or require the logs be reformatted by external

means such as sed or awk (Bhatia, 2010).

Once the logs have been parsed and the relevant data identified then the rules
within OSSEC must be tuned to prevent deluging administrators with irrelevant alerts.
Tuning OSSEC includes customizing rulesets and creating local rule overrides to existing

signatures (Cid D. B., 2010).

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 3

This paper will briefly cover how OSSEC is architected (agents and servers)
within a Windows and Linux environment. Then it will explain how to configure
OSSEC to monitor a variety of both default and custom log sources. It will then take a
look at the results of the default OSSEC configuration on reviewing those logs. Next it
will demonstrate how to tune OSSEC to provide more useful data to administrators.

Finally, it will show how to create signatures based on dynamic input.

2. Architecting a OSSEC environment

Before installing OSSEC it’s important to carefully consider each system that
will become an agent to assess what OSSEC functions are necessary. It’s also
important to review where the server will be located to access any need for

additional firewall access between differing security level environments.

2.1. System requirements

OSSEC utilizes a client / server architecture. Communication occurs on UDP
port 1514 and is encrypted using the symmetric key Blowfish algorithm (Brenton, 2010).
Monitoring agents may be installed on a variety of operating systems, but the

management server to which the agents communicate with must be installed on a

BSD/Linux/Unix system (Hay, Cid, & Bray, 2008).

g § g &

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 4

2.2. Server Roles

It’s important to consider the server’s role within the organization when designing
an OSSEC environment. If your organization must abide by Payment Card Industry
Digital Security Standards (henceforth PCI-DSS) then you are mandated to one primary
function per server (PCI Security Standards Council, 2010). Each server may generate

unique log files that may require custom configuration to be monitored by OSSEC.

There may be situations where the server’s role is such that it is unnecessary to
monitor some aspects of its functionality. For example, if the agent is running on a web
server you may not require non-web-related logs to be monitored. OSSEC provides the

ability to ignore, both recursively and directly, any monitored file.

2.3. Testing

When customizing OSSEC it is useful to test the customizations to verify the
fields are being identified correctly. OSSEC comes with a tool that provides that
functionality. The testing binary “ossec-logtest” exists within the /bin directory and can
be ran without any parameters being passed to it. It starts in interactive mode and allows

pasting in strings and then responds with how that string would be interpreted by OSSEC.

The following log is generated when a network interface card enters promiscuous

mode.

Feb 7 12:27:11 TEST-SERVER kernel: [14544.590716] device eth1 entered promiscuous mode

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 5

When that log is tested against OSSEC, the following is shown:

user@TEST-SERVER:~# /var/ossec/bin/ossec-logtest

2011/06/22 15:31:18 ossec-testrule: INFO: Reading local decoder file.
2011/06/22 15:31:18 ossec-testrule: INFO: Started (pid: 21550).
ossec-testrule: Type one log per line.

Feb 7 12:27:11 TEST-SERVER kernel: [14544.590716] device eth1 entered
promiscuous mode

**Phase 1: Completed pre-decoding.

full event: 'Feb 7 12:27:11 TEST-SERVER kernel: [14544.590716] device
ethl entered promiscuous mode'

hostname: 'TEST-SERVER'

program_name: 'kernel’

log: '[14544.590716] device eth1 entered promiscuous mode'

**Phase 2: Completed decoding.
decoder: 'iptables'

**Phase 3: Completed filtering (rules).

Rule id: '5104'

Level: '8’

Description: 'Interface entered in promiscuous(sniffing) mode.'
**Alert to be generated.

From the example above it can be seen that the log is decoded as “iptables” and a
rule triggered. This method of testing can help track down errors in customized rules

without affecting the running processes.

2.4. Unknown log errors

If OSSEC receives a log that it doesn’t know how to decode it will generate an
event 1002 — “Unknown problem somewhere on the system.” When OSSEC receives
new logs (or a few hundred of them) that it does not understand it will send the
administrator with these alerts. The solution is to configure a minimal decoder to identify
a unique field within the log so that OSSEC no longer considers the log unknown. (see

the first decoder shown in the section 5.2 below)

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 6

3. Decoders

OSSEC must first understand what is in a log before it can determine if an alert is
required. It accomplishes this by parsing the log and normalizing the data contained
therein using default and custom decoders. Decoders contain parameters that match

syntax within logfiles to be forwarded to the rules for processing.

3.1. Default Decoders
OSSEC comes with an assortment of decoders by default. These decoders can
parse a wide array of logging sources such as Apache, SSH, and Windows event viewer.

They provide basic HIDS functionality to an assortment of applications.

Within this sections the SSH decoder will be reviewed and the XML tags
contained within it will be defined. This section isn’t designed to provide the reader with
comprehensive knowledge OSSEC decoder formats. Instead, it will describe how the
default tags within the SSH decoder find and parameterize information for later

processing by the rules.

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 7

3.1.1. SSH decoder
Let’s take a closer look at how a OSSEC decoder works. Below is the major

portions of the SSH decoder that ships with OSSEC (as of version 2.5.1).

<decoder name="sshd">
<program_name>"sshd</program_name>
</decoder>

<decoder name="sshd-success">
<parent>sshd</parent>
<prematch>"Accepted</prematch>
<regex offset="after_prematch">" \S+ for (\S+) from (\S+) port </regex>
<order>user, srcip</order>
<fts>name, user, location</fts>
</decoder>

<decoder name="ssh-denied">
<parent>sshd</parent>
<prematch>"User \S+ from </prematch>
<regex offset="after_parent">"User (\S+) from (\S+) </regex>
<order>user, srcip</order>
</decoder>

<decoder name="ssh-failed">
<parent>sshd</parent>
<prematch>"Failed \S+ </prematch>
<regex offset="after_prematch">*for (\S+) from (\S+) port \d+ \w+$</regex>
<order>user, srcip</order>
</decoder>

<decoder name="ssh-error">
<parent>sshd</parent>
<prematch>"error: PAM: Authentication \w+ </prematch>
<regex offset="after_prematch">*for (\S+) from (\S+)$</regex>
<order>user, srcip</order>

</decoder>

<decoder name="ssh-invalid-user">
<parent>sshd</parent>
<prematch>"Invalid user|*Illegal user</prematch>
<regex offset="after_prematch"> from (\S+)$</regex>
<order>srcip</order>

</decoder>

First, basic terminology needs to be explained. The decoders within OSSEC are
written in XML format. They are organized into related blocks making them easier to
understand. As is common to XML formats, each section is be opened, then defined, and

then closed. For more information on the XML format please see Appendix 1.

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 8

<parent> tag

The code shown begins by defining the name of the decoder and the program in
which it is associated. This definition is then used as a parent to subsequent sections
within the decoder block. The <parent> tag is used to link a subordinate codeblock to its
parent. As you can see within Figure X, “ssh-success” is linked to the “sshd” decoder by

the parent tag.
<prematch> tag

The prematch tag attempts to find a match within the log for the string defined. In
the case of sshd-success, the regular expression (for more information about regular
expressions see appendix 2) the word “Accepted” is looked for at the beginning of the

string.
<offset> tag

This tag is used to speed up processing by requiring a match to have already taken
place before trying to match additional text. In the case of this decoder, the regex type of
the offset tag is utilized to match text after the prematch tag has been matched. So, in this
example, if and only if the string begins “Accepted” is the string matched for the offset

regex.
Parenthesis ()

Parenthesis are used within OSSEC decoders to define something that OSSEC
needs to retain and pass to the rules portion of the process. Within the sshd-success
decoder, the first \S+ in the line is not retained. The thing that the decoder expects to see
is the word “for” which is also not retained. If the string has matched what is expected
up until now then the next \S+ should be the user and is necessary for rules processing
later. It must therefore be retained and is thus surrounded by parenthesis. The next word,
“from” is expected but unnecessary. The next \S+ is expected to be the source IP address
and is required for later rules processing. It is therefore surrounded by parenthesis and

retained by the engine.

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 9

<order> tag

The order tag defines what the previous parenthesis groups contain and the order
in which they were received. In our example, two pieces of the alert were retained by the
engine; the username used when the login occurred and the IP address from which the
login took place. The order tag labels those strings as “user” and srcip so that OSSEC

understands what the strings being retained represent.
<fts> tag

The fts tag is used to designate a decoder as one in which the first time it matches
the administrator would like to be alerted. In the sshd-success, the administrator will be

alerted the first time the decoder matches either the user or location.

4. Rules
After an OSSEC decoder has identified the important details within the log string,
the next step is for it to use the configured rules to determine if an alert should be

generated.

4.1. Default Rules
OSSEC comes with an extensive ruleset by default. Because of that OSSEC can
detect a great many potential incidents out of the box. However, the large number of

rules also cause OSSEC to produce an equally large number of false positives.

Below, this paper will take a closer look at a sampling of rules associated with the

previously examined decoder.

4.1.1. SSH Rules
Following the above SSHd decoder, below are three rules. Each rule shown is
related to the other and that relationship will be defined. As before, I will note the rules

and then define the XML tags and how they interrelate.

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 10

<group name="syslog,sshd,">
<rule id="5700" level="0" noalert="1">
<decoded_as>sshd</decoded_as>
<description>SSHD messages grouped.</description>
</rule>

<rule id="5710" level="5">
<if_sid>5700</if_sid>
<match>illegal user|invalid user</match>
<description>Attempt to login using a non-existent
user</description>
<group>invalid_login,authentication_failed,</group>
</rule>

<rule id="5712" level="10" frequency="6" timeframe="120"
ignore="60">
<if_matched_sid>5710</if_matched_sid>
<description>SSHD brute force trying to get access to
</description>
<description>the system.</description>
<same_source_ip />
<group>authentication_failures,</group>
</rule>

<group> tag

The group tag, as you might suspect, creates a logical grouping of rules. This is

for use within the rules configuration file only.
<rule id> tag

This tag associates a number to the rule. The numeric range of included rules is
from 00000 to 99,999. Custom rules should range from 100,000 to 119,999. If you chose
another ID for a custom rule your rule might conflict with the default rules (Cid &

Ozturk, ossec.net, 2006). See appendix 3 for a list of rule ranges and their category.

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 11

The rule ID tag is also where the level of the rule is defined. Levels note the
criticality of a rule and act as a threshold for various reporting and alerting functions. For
example, one might define that only level 14 and up alerts should generate an email,

while anything below that threshold is silently ignored.

The rule id tag is also where the noalert option can be included. This prevents
alerts from being generated for that particular rule. This is particularly useful for testing

custom rules or temporarily disabling rules that need additional tuning.

The frequency option is used to count the number of occurrences of a particular
rule matching. It is always seen with the timeframe option since the number of

occurrences must be contained within a set timeframe.

The timeframe option provides a mechanism to limit the time in which a certain
number of log entried can match a particular rule. In the example above the rule will

only match the 6™ occurrence of the trigger within the 120 second timeframe.
<decoded as> tag

The decoded as tag allows OSSEC to know which decoder to associate the rule.
In the example above the rules are being associated with the sshd decoder. This means

that all logs decoded as sshd will fall within the scope of these rules.
<description> tag

The description tag provides a space for the rule author to note the purpose of the

rule. The text contained therein will be included in the event alert if one is generated.
<if_sid> tag

The if_sid tag creates a dependency on a previously defined rule. In the example
above, the if_sid tag makes rule id 5710 dependent upon rule 5700. If rule 5700 was not
triggered then rule 5710 will be ignored. If rule id 5700 was triggered then any rule

marked as dependent will be within scope.

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 12

<match> tag

The match tag acts as a simple text match . If the log string contains the text
noted within the match tag then the rule will be triggered. In this example, if the log
contains either “illegal user” OR “invalid user” (because of the pipe character (l), See

appendix 2) the rule will be triggered.
<group> tag

The group tag is used to define a subgroup within the rule. See appendix 4 for a
complete list of available groups. There are other places within OSSEC that one might
wish to reference a specific group of rules. For example, one might wish to create active

response rules for a particular group of rules (Dave, 2010).
<if_matched_sid> tag

This associates the current rule with a previously defined one. In the case of the
rules shown above, the rule 5712 is associated with rule 5710. This nesting of rules is
necessary so that dependent conditions can trigger an event. In the example above, if the
illegal user rule is triggered once the resulting response level is 5, however, if that rule is
triggered 6 times in 2 minutes, then rule 5712 is triggered with a level of 10. While a

level 5 event may be considered benign, the level 10 event is much more concerning.

5. Custom rules and decoders

The previous section explored the XML components of default rules and
decoders. This section will look at a log generated by an application currently not
supported within OSSEC and then detail how to write a decoder for the application and

rules to alert based on decoded information.

5.1. Application - WS_FTP
WS_FTP is a Windows based file transfer server solution. It provides the ability

to transfer files over FTP, SSL, SSH, and HTTP/S transfer protocols (Ipswitch, 2010).
WS_FTP is used by more than 40 million customers transferring billions of files every
week (Ipswitch, 2010). The widespread use of WS_FTP OSSEC’s lack of native support

makes it an ideal candidate for custom rules and decoders.

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 13

Any external facing FTP server should be secured from intrusion and have
mechanisms in place to review the log files produced. The logs files produced by
WS_FTP are text based which make it easy to integrate into OSSEC. Below is a sample
log generated by WS_FTP. The log file shows a remote user attempting to login as an

anonymaous user.

Jun 20 15:42:17 FTP-SERVER SSH: Sent server version: SSH-2.0-WS_FTP-SSH <SessionID=8416817,
Listener=192.168.0.2:22, Client=217.25.214.12:58251>

Jun 20 15:42:17 FTP-SERVER SSH: Connection established <SessionID=8416817, Listener=192.168.0.2:22,
Client=217.25.214.12:58251>

Jun 20 15:42:17 FTP-SERVER SSH: Received client version: SSH-2.0-PuTTY_Local:_Nov_21_2010_15:53:55
<SessionID=8416817, Listener=192.168.0.2:22, Client=217.25.214.12:58251>

Jun 20 15:42:17 FTP-SERVER SSH: Began Key Exchange <SessionID=8416817, Listener=192.168.0.2:22,
Client=217.25.214.12:58251>

Jun 20 15:42:19 FTP-SERVER SSH: Completed Key Exchange. New keys in place <SessionID=8416817,
Listener=192.168.0.2:22, Client=217.25.214.12:58251>

Jun 20 15:42:19 FTP-SERVER SSH: No User. Possible reasons: Invalid username, invalid license, error while
accessing user database <SessionID=8416817, Listener=192.168.0.2:22, Client=217.25.214.12:58251,

User=anonymous>

Jun 20 15:42:20 FTP-SERVER SFTP: Invalid User <Host= FTP-SERVER,

User=anonymous><Command=NOTIFICATION, Parameters=default>

Jun 20 15:42:20 FTP-SERVER SSH: No User. Possible reasons: Invalid username, invalid license, error while
accessing user database <SessionID=8416817, Listener=192.168.0.2:22, Client=217.25.214.12:58251,

User=anonymous>

Jun 20 15:42:20 FTP-SERVER SFTP: Invalid User <Host=FTP-SERVER,

User=anonymous><Command=NOTIFICATION, Parameters=default>

Jun 20 15:42:20 FTP-SERVER SSH: Connection closed <SessionID=8416817, Listener=192.168.0.2:22,
Client=217.25.214.12:58251>

Jun 20 15:42:20 FTP-SERVER SSH: Close Transport <SessionID=8416817, Listener=192.168.0.2:22,
Client=217.25.214.12:58251>

Practical OSSEC | 14

Anonymous and brute-force FTP login attempts are a common occurrence on
externally facing FTP servers. An administrator should be concerned with and alerted to
suspect authentication attempts that meet certain criteria. The method used to write
OSSEC rules to alert both to anonymous login attempts and to login attempts that pass a

certain threshold will be demonstrated below.

5.2. WS_FTP Decoder

First, some unique portion of the log must be identified. This unique token must
be used to identify the log by an OSSEC decoder. It is often easiest to identify a field to
define within a decoder by dumping the log into ossec-test and see how it interprets it by
default. At times the log syntax will conflict with existing customizations and those

conflicts must be considered.

To identify this log format the decoder shown below was created:

<decoder name="WS-FTP">
<program_name>SSH|SFTP</program_name>
</decoder>

Testing this decoder results in the following:

user@TEST-SERVER:~# /var/ossec/bin/ossec-logtest

2011/06/22 16:43:24 ossec-testrule: INFO: Reading local decoder file.
2011/06/22 16:43:24 ossec-testrule: INFO: Started (pid: 21685).
ossec-testrule: Type one log per line.

Jun 20 15:42:17 FTP-SERVER SSH: Sent server version: SSH-2.0-WS_FTP-SSH
<SessionID=8416817, Listener=192.168.0.2:22, Client=217.25.214.12:58251>

**Phase 1: Completed pre-decoding.

full event: 'Jun 20 15:42:17 FTP-SERVER SSH: Connection established
<SessionID=8416817, Listener=192.168.0.2:22, Client=217.25.214.12:58251>'

hostname: 'FTP-SERVER'

program_name: 'SSH'

log: 'Connection established <SessionID=8416817, Listener=192.168.0.2:22,
Client=217.25.214.12:58251>'

**Phase 2: Completed decoding.
decoder: "WS-FTP'

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 15

Now that the logging messages are being identified (grouped), OSSEC need to
know what parts of the log are relevant. To accomplish that we write the two additional

decoders shown below:

<decoder name="WS-FTP-Client-Connected">
<parent>WS-FTP</parent>
<prematch>Connection established</prematch>
<regex offset="after_prematch">Client=(\d+.\d+.\d+.\d+)</regex>
<order>srcip</order>

</decoder>

<decoder name="WS-FTP-User">
<parent>WS-FTP</parent>
<prematch>Invalid User</prematch>
<regex offset="after_prematch">User=(\S+)></regex>
<order>user</order>

</decoder>

The test below demonstrates the “WS-FTP-Client-Connected” decoder capturing
the IP addess from the log.

user@TEST-SERVER:~# /var/ossec/bin/ossec-logtest

2011/06/22 19:18:50 ossec-testrule: INFO: Reading local decoder file.
2011/06/22 19:18:50 ossec-testrule: INFO: Started (pid: 21982).
ossec-testrule: Type one log per line.

Jun 20 15:42:17 FTP-SERVER SSH: Connection established <SessionID=8416817,
Listener=192.168.0.2:22, Client=217.25.214.12:58251>

**Phase 1: Completed pre-decoding.

full event: 'Jun 20 15:42:17 FTP-SERVER SSH: Connection established
<SessionID=8416817, Listener=192.168.0.2:22, Client=217.25.214.12:58251>'

hostname: 'FTP-SERVER'

program_name: 'SSH'

log: 'Connection established <SessionID=8416817, Listener=192.168.0.2:22,
Client=217.25.214.12:58251>'

**Phase 2: Completed decoding.
decoder: "WS-FTP'
srcip: '217.25.214.12'

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 16

The test has shown that the source IP (srcip) has been identified correctly. Next,

the “WS-FTP-User” decoder must be tested:

user@ TEST-SERVER:~# /var/ossec/bin/ossec-logtest

2011/06/22 19:20:44 ossec-testrule: INFO: Reading local decoder file.
2011/06/22 19:20:44 ossec-testrule: INFO: Started (pid: 22487).
ossec-testrule: Type one log per line.

Jun 20 15:42:20 FTP-SERVER SFTP: Invalid User <Host=FTP-SERVER,
User=anonymous><Command=NOTIFICATION, Parameters=default>

**Phase 1: Completed pre-decoding.

full event: 'Jun 20 15:42:20 FTP-SERVER SFTP: Invalid User <Host= FTP-SERVER,
User=anonymous><Command=NOTIFICATION, Parameters=default>"'

hostname: 'FTP-SERVER'

program_name: 'SFTP'

log: 'Invalid User <Host=FTP-SERVER
User=anonymous><Command=NOTIFICATION, Parameters=default>"'

**Phase 2: Completed decoding.
decoder: "WS-FTP'
dstuser: 'anonymous’

Now that both decoders have been verified to work as expected, we must write

rules to utilize the newly decoded fields.

5.3. WS_FTP Rules

The relevant fields within the log have been identified by the decoder. Now
rules must be created that alert when those captured values match specific patterns. The
three rules shown here will alert to two very common events that occur on an FTP server.
The first rule will group the subsequent rules similar to the method used within the
custom decoder aboe. The second rule will trigger when someone attempts to log into the
server using invalid credentials. The final rule will depend upon the previous and only
trigger after the previous rule has triggered six times.

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 17

The first rule is shown below.

<group name="local,syslog,">

<rule id="100066" level="0" noalert="1">
<decoded_as>WS-FTP</decoded_as>
<description>WS-FTP messages grouped.</description>
</rule>

This rule is intended to group the WS_FTP rules together. It also functions to
identify all logs belonging to WS_FTP to prevent a frustrating and very common alert
from being generated.

The next rule will trigger if two conditions are met. The first condition is that
100066 must have already triggered. The second condition is that the text string “Invalid
User” is found within the log.

<rule id="100067" level="14">
<if sid>100066</if_sid>
<match>Invalid User</match>
<description>Attempt to login using a non-existent
user</description>
<group>invalid_login,authentication_failed,</group>
</rule>

The last rule will trigger only if 100067 has triggered six times within the past
120 seconds.

<rule id="100068" level="14" frequency="6"
timeframe="120" ignore="60">
<if_matched_sid>100067</if matched_sid>
<description>WS-FTP brute force
attempt!</description>
<same_source_ip />
<group>authentication_failures,</group>
</rule>

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 18

The newly created rule should be tested before the service is restarted to verify
they work as expected. Rule 100068 cannot be tested using ossec-test since it relies on
another rule.

The results of the rule test are shown below:

root@TEST-SERVER:~# /var/ossec/bin/ossec-logtest

2011/06/22 20:23:45 ossec-testrule: INFO: Reading local decoder file.
2011/06/22 20:23:45 ossec-testrule: INFO: Started (pid: 22995).
ossec-testrule: Type one log per line.

Jun 20 15:42:20 FTP-SERVER SFTP: Invalid User <Host=FTP-SERVER,
User=anonymous><Command=NOTIFICATION, Parameters=default,
Client=217.25.214.12:58251>

**Phase 1: Completed pre-decoding.

full event: 'Jun 20 15:42:20 FTP-SERVER SFTP: Invalid User <Host= FTP-SERVER,
User=anonymous><Command=NOTIFICATION, Parameters=default,
Client=217.25.214.12:58251>"

hostname: 'FTP-SERVER'

program_name: 'SFTP'

log: 'Invalid User <Host=FTP-SERVER, User=anonymous><Command=NOTIFICATION,
Parameters=default, Client=217.25.214.12:58251>"

**Phase 2: Completed decoding.
decoder: "WS-FTP'
dstuser: 'anonymous'

**Phase 3: Completed filtering (rules).

Rule id: '100067"

Level: '14'

Description: 'Attempt to login using a non-existent user'
**Alert to be generated.

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 19

The result of the test proves that the custom decoder and rules work as expected.

6. Advanced Customizations

There are many sites that track sources of malicious traffic. Some of these sites
provide mechanisms to download routinely updated lists of blacklisted IPs. These
blacklists can be utilized by security personnel to monitor for malicious connectivity to
protected resources by writing scripts to import them into OSSEC rules automatically. A

method to automatically create rules based on web available blacklists is shown below.

6.1. Scripts

The following script will download a list of malicious IPs from Emerging Threats.

#!/bin/bash
Clean-up and remaining items from the last run
rm /var/ossec/logs/blacklists/cleaned.lst

Create file
touch /var/ossec/logs/blacklists/cleaned.lst

Grab the list of IPs from Emerging Threats and output into a working directory

wget http://rules.emergingthreats.net/fwrules/emerging-Block-[Ps.txt -O
/var/ossec/logs/blacklists/shunlist.lst

The emerging threats file contains text other than IPs. The following section cleans that
up. It also verifies that the file downloaded is in fact a text file and not something possibly
malicious.

file=$(file -ib /var/ossec/logs/blacklists/shunlist.Ist)

if ["$file" == "text/plain; charset=us-ascii" |

then

cat /var/ossec/logs/blacklists/shunlist.Ist | grep -v '#'
/var/ossec/logs/blacklists/shunlist.Ist | grep -v '*$' >
/var/ossec/logs/blacklists/cleaned.lst

sort -u /var/ossec/logs/blacklists/cleaned.lst > /var/ossec/logs/blacklists/sorted.lst
else

exit

fi

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 20

The script creates a nicely formatting list of malicious IPs. This list can then be
easily iterated through to create rules within OSSEC.

The script below creates rules based on the IP list.

#!/bin/bash
Set the field separator to a newline

[FS="
Begin creating rules at #100499
calc="100499"

Create a variable to the sorted IP list
file="/var/ossec/logs/blacklists/sorted.lst"

The following section loops through the IPs contained in the list
above creating rules for each, beginning at 100499

cat ${file} | \
while read IP
do

calc=$(($calc+1))

echo "<group name=\"web\">"

echo "<rule id=\"$calc\" level=\"14\">"

echo "<if sid>31100</if_sid>"

echo "<srcip>$IP</srcip>"

echo "<description>Shunnnnnnn!</description>"
echo "</rule>"

echo "</group>"

echo

done

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 21

The output of that file is then redirected into a file to be included in the OSSEC
rules library. A sample of the finished xml-formatted file is shown below:

<group name="web">

<rule id="100671" level="14">

<if sid>31100</if_sid>
<srcip>115.68.17.0</srcip>
<description>Shunnnnnnn!</description>
</rule>

</group>

<group name="web">

<rule id="100672" level="14">

<if sid>31100</if_sid>
<srcip>115.68.21.172</srcip>
<description>Shunnnnnnn!</description>
</rule>

</group>

<group name="web">

<rule id="100673" level="14">

<if sid>31100</if_sid>
<srcip>115.68.4.20</srcip>
<description>Shunnnnnnn!</description>
</rule>

</group>

<group name="web">

<rule id="100674" level="14">

<if sid>31100</if_sid>
<srcip>115.86.180.47</srcip>
<description>Shunnnnnnn!</description>
</rule>

</group>

This is just one creative way to utilize OSSEC. In this example once a source is
known to be malicious and is noted within the Emerging Threats site any matching log
entries will generate an alert. Administrators can then review other related information
and react accordingly.

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 22

7. Conclusion

OSSEC is a powerful tool that those concerned with security can utilize to protect
critical infrastructure. Using the knowledge contained within this document should allow
readers to get started writing custom rules and decoders for a custom environment. It
also hopefully inspires the reader to think of creative ways to extend OSSEC
functionality beyond its standard uses.

This document has covered only a small portion of OSSEC rich featureset.
Readers are encouraged to explore OSSEC’s additional functionality to see the other
ways it can help protect users and data.

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 23

8. References

.(2011). Retrieved from www.ossec.net:
http://www.ossec.net/wiki/Know_How:RuleIDGroupin
B.,]. (2010, 11 3). . Retrieved
from INetU Managed Hosting: http://blog.inetu.net/2010/11/payment-card-
industry-new-pci-dss-v-2-0-updates/
Bhatia, S. K. (2010). Retrieved from
www.cs.umsl.edu:

www.cs.umsl.edu/~sanjiv/classes/cs2750/lectures/re.pdf
Brenton, C. (2010, 02 17). Retrieved from

chrisbrenton.org: http://www.chrisbrenton.org/2010/02/combining-
logwatch-and-ossec-%E2%80%93-part-3/

Cid, D. (2007). . Retrieved from www.ossec.net:
http://www.ossec.net/wiki/Know How:Regex Readme
Cid, D. B. (2010). Retrieved from

ossec.net: http://www.ossec.net/wiki/Know_How:Ignore_Rules
Cid, D. B., & Ozturk, A. (2006, 05 12). Retrieved from ossec.net:

http: //www.ossec.net/ossec-docs/ossec-hids_oahmet_eng.pdf
Dave. (2010, 04). . Retrieved from osdir.com:

http://osdir.com/ml/ossec-list/2010-04 /msg00029.html
Hay, A, Cid, D., & Bray, R. (2008).

Syngress.

[pswitch. (2010). . Retrieved from http://www.ipswitchft.com:
http://www.ipswitchft.com/Products/Ws_Ftp_Pro

Itlibitum Corp. (2006). . Retrieved
from www.xml.su: http://www.xml.su/

Klein, J. C. (2009, 10 13). Retrieved from

madirish.net: http://www.madirish.net/?article=434
PCI Security Standards Council. (2010, 10 28).
Retrieved from www.pcisecuritystandards.org:
https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf
Swift, D. (2006, 12 23).
. Retrieved from sans.org:
http: //www.sans.org/reading_room/whitepapers/logging/practical-
application-sim-sem-siem-automating-threat-identification_1781
Third Brigade Inc. (2009, 02 25). . Retrieved from ossec.net:
http: //www.ossec.net/ossec-docs/ossec-PCI-Solution.pdf
Trend Micro. (2010). . Retrieved from http://www.ossec.net/
Xavier. (2008, 03 27). . Retrieved from rootshell.be:

http://blog.rootshell.be/2008/03 /27 /log-correlation-for-free/

Chad Robertson, chadrober@gmail.com

Appendix 1 (Itlibitum Corp, 2006)

Practical OSSEC | 24

Structure of XML Document

‘7xml version="17.0" encoding="UTF-8"
idalone="no" 7>

1-- Comments -->

root_element>

<subElement>
.rext...

<subSubElement attr_name="attr_value">

<![CDATA[...any characters (including
‘kup)..]1>
</subSubElement>

</subElement>

iptyElement/>
Jroot_element>

XML Declaration

White space characters (space, carriage return, line feed, tab, etc)
Comments

Open tag of "root_element"

Open tag of "subElement"

Data
Open tag of "subSubElement" with attribute "attr_name" equal

"attr_value"

CDATA Section

Close tag of "subSubElement"
Close tag of "subElement"
Tag of empty element

Close tag of "root_element"

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 25

Appendix 2 (Cid D. , 2007)
The following expressions are supported:

\w > A-Z, a-z, 0-9 characters
\d -> 0-9 characters

\s -> For spaces " "

\t -> For tabs.

\p -> ()*+,-.;;<=>7[] (punctuation characters)
\W -> For anything not \w

\D -> For anything not \d

\S -> For anything not \s

\. -> For anything

Each regular expression can be followed by:

+ -> To match one or more times (eg \w+ or \d+)

* -> To match zero or more times (eg \w* or \p*)

The following special characters are also supported:

A -> To specify the beginning of the text.
$ -> To specify the end of the text.

| -> To create an "OR" between multiple patterns.

Any of the following characters must be escaped with a "\" before use:
$->\$
(>\(
) >V
\ >\

Chad Robertson, chadrober@gmail.com

(Know_How:RuleIDGrouping, 2011

Rule ID Range

General Category

00000 - 00999

Internally reserved for ossec

01000 - 01999

General syslog

02100 - 02299

NFS

02300 - 02499

Xinetd

02500 - 02699

Access control

02700 - 02729

Mail/procmail

02800 - 02829

Smartd

02830 - 02859

Crond

02860 - 02899

Mount/Automount

02900 - 02929

Dpkg logs

02930 - 02959

Yum logs

03100 - 03299

Sendmail

03300 - 03499

Postfix

03500 - 03599

Spamd

03600 - 03699

Imapd

03700 - 03799

MailScanner

03800 - 03899

Ms Exchange (IIS SMTP)

03900 - 03999

Courier (imapd/pop3d/pop3-ssl)

09900 - 09999

vpopmail

09800 - 09899

vm-pop3d

09700 - 09799

Dovecot

Chad Robertson, chadrober@gmail.com

Practical OSSEC

26

04100 - 04299

Generic Firewall

04300 - 04499

Cisco PIX/JFWSM/ASA Firewall

04500 - 04699

Netscreen Firewall

04700 - 04799

Cisco I0S

04800 - 04899

SonicWall Firewall

05100 - 05299

Kernels (Linux, Unix, etc)

05300 - 05399

Su

05400 - 05499

sudo

05500 - 05599

Pam unix

05600 - 05699

Telnetd

05700 - 05899

sshd

05900 - 05999

Adduser or user deletion.

06100 - 06199

Solaris BSM Auditing

06200 - 06299

Asterisk

06300 - 06399

MS DHCP logs

07100 - 07199

Tripwire

07200 - 07299

Arpwatch

07300 - 07399

Symantec Anti Virus

07400 - 07499

Symantec Web Security

07500 - 07599

McAfee VirusScan Enterprise

07600 - 07699

Trend Micro OSCE (Office Scan)

07700 - 07799

Microsoft Security Essentials

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 27

09100 - 09199

PPTP

09200 - 09299

Squid syslog

09300 - 09399

Horde IMP

09400 - 09499

Roundcube

09500 - 09599

Wordpress WPsyslog2

09600 - 09699

cimserver

10100 - 10199

FTS

11100 - 11199

FTPd

11200 - 11299

ProFTPD

11300 - 11399

Pure-FTPD

11400 - 11499

vs-FTPD

11500 - 11599

MS-FTP

12100 - 12299

Named (bind DNS)

13100 - 13299

Samba (smbd)

14100 - 14199

Racoon SSL

14200 - 14299

Cisco VPN Concentrator

17100 - 17399

Policy

Chad Robertson, chadrober@gmail.com

Practical OSSEC

28

18100 - 18499

'Windows system

19100 - 19499

Vmware ESX

20100 - 20299

IDS

20300 - 20499

IDS (Snort specific)

30100 - 30999

Apache error log.

31100 - 31199

'Web access log

31200 - 31299

/eus web server

31300 - 31399

Nginx error log.

35000 - 35999

Squid

40100 - 40499

Attack patterns.

40500 - 40599

Privilege scalation.

40600 - 40999

Scan patterns.

50100 - 50299

MySQL.

50500 - 50799

PostgreSQL

60000 - 60299

Atomic Secured Linux.

Chad Robertson, chadrober@gmail.com

Practical OSSEC

29

100000 - 109999

User defined rules

Chad Robertson, chadrober@gmail.com

Practical OSSEC | 30

Appendix 4 (Cid & Ozturk, ossec.net, 2006)

Practical OSSEC | 31

Group Type Group Name Description
Reconnaissance connection_attempt Connection attempt
web_scan Web scan
recon Generic scan
Authentication
Control authentication_success Success
authentication_failed Failure
invalid_login Invalid
login_denied Login denied
authentication_failures ~ Multiple failures
adduser User account added
account_changed User account changed or removed
Attack/Misuse automatic_attack Worm (nontargeted attack)

Access Control

Network Control

System Monitor

exploit_attempt
invalid_access
spam
multiple_spam
sql_injection
attack
rootcheck

virus

access_denied
access_allowed
unknown_resource
firewall_drop
multiple_drops
client_misconfi
client_error

new_host
ip_spoof

service_start
service_availability
system_error
system_shutdown
logs_cleared
invalid_request

Chad Robertson, chadrober@gmail.com

Exploit pattern

Invalid access

Spam

Multiple spam messages
SQL injection

Generic attack

Rootkit detection

Virus detected

Access denied

Access allowed

Access to nonexistent
Firewall drop

Multiple firewall drop
Client misconfiguration
Client error

New host detected
Possible ARP spoofing

Service start

Service availability at risk
System error

Shutdown

Logs cleared

Invalid request

Group Type Group Name

Practical OSSEC | 32

Description

promisc
policy_changed
config_changed
syscheck
low_diskspace
time_changed

Policy Violation login_time
login_day

Chad Robertson, chadrober@gmail.com

Interface switched to promiscuous mode
Policy changed

Configuration changed

Integrity checking

Low disk space

Time change

Login time
Login day

