GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

Using OSSEC with NETinVM

GIAC (GCIH) Gold Certification

Author: Jon Mark Allen, jm@allensonthe.net
Advisor: Antonios Atlasis

Accepted: 17 September 2010

Abstract

We've long heard OSSEC was an excellent option for HIDS, but there is a scarcity of
detailed documentation on how to set up an OSSEC system. This paper will step through
the installation, configuration, and use of OSSEC in a NETinVM environment. As a side
effect, we will also see the benefits of having a NETinVM environment available for
testing network attacks and defenses. We will very quickly review an OSSEC install
(with some special considerations for the NETinVM environment), and jump right into
developing an OSSEC policy. Once complete, we will develop a customized OSSEC
configuration, based on our policy. To test our setup, we will launch an attack and see
what OSSEC alerts are generated. Next, we will configure OSSEC to automatically

respond to detected attacks and test the results.

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 2

1.Introduction

The days of installing a firewall at the “edge” of the network and monitoring traffic
from a single point have long vanished into the history books. Today's security “edge”
has collapsed all the way to the desktop and traffic from practically every system in the
network must be monitored, analyzed, and acted on to maintain a secure posture
(Cummings, 2004). This type of intense monitoring requires a combination of intrusion

detection systems (IDS), event correlation, and analysis.

For many organizations, OSSEC provides a low-cost, flexible Host IDS, including the
ability to respond to attacks without requiring administrator intervention. (“About
OSSEC,” n.d.) The architecture is simple to understand and the configuration is easy to
setup and maintain. But care must be taken when implementing changes to monitoring
rules and responses, as any misstep could potentially significantly disrupt normal

business operations (and/or your plans for the weekend).

What is needed is a simple yet flexible lab network, where changes can be made and
reverted quickly and easily. VMWare snapshots provide the ability to revert a system to
a given state and host networking allows virtual machines to communicate via an
“internal” network isolated from the “real” production network. But this would still
require enough resources to run a full installation of each guest operating system (OS)
and does not easily allow for configurable firewalls between guests. NETinVM allows
an administrator that flexibility without requiring a lot of expensive hardware. NETinVM
guest machines can share configurations quickly and easily, and firewall rules are

managed by a full standard iptables firewall.

2.0verview of Tools

OSSEC

According to OSSEC's website, OSSEC is “a scalable, multi-platform, open source
Host-based Intrusion Detection System (HIDS). It has a powerful correlation and analysis
engine, integrating log analysis, file integrity checking, Windows registry monitoring,

centralized policy enforcement, rootkit detection, real-time alerting and active response.”

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 3

(“About OSSEC,” n.d.) OSSEC was originally developed by Daniel Cid and has since
been purchased by Third Brigade and Trend Micro in sequence. Currently, the project
averages more than 5,000 downloads per month and “is being used by ISPs, universities,
governments and neven large corporate data centers as their main HIDS solution. In
addition to being deployed as an HIDS, it is commonly used strictly as a log analysis tool,

monitoring and analyzing firewalls, IDSs, web servers and authentication logs.” (ibid.).

OSSEC utilizes a simple client-server architecture. The configuration files are
standard XML files, allowing for easy comprehension and maintenance. The project is
under active development, and is frequently supported via an active community mailing
list, though Trend now offers some official support channels. (“OSSEC Commercial

Support,” n.d.)

The latest version as of this writing is 2.4, released April 1, 2010 (no, really. It's not
an April Fool's joke....). The single best resource for OSSEC documentation is the online

manual at http://www.ossec.net/main/manual.

NETinVM

NETinVM was announced in June of 2008 by Carlos and David Perez. They
describe it on their website as “a single VMware virtual machine image that contains,
ready to run, a series of User-mode Linux (UML) virtual machines which, when started,
conform a whole computer network inside the VMware virtual machine. ... NETinVM
has been conceived mainly as an educational tool for teaching and learning about

operating systems, computer networks and system and network security...” (D. Perez &

C. Perez, n.d.)

The UML model allows an administrator to run multiple guests, while requiring
minimal storage space and modest memory resources. The NETinVM network consists
of two protected network segments and one “external” segment, all of which must route
through a guest firewall (also a standard UML virtual machine) to communicate across
segments. The VMWare machine has network interfaces on each UML segment, but
does not route traffic between them. This arrangement makes traffic monitoring and
troubleshooting simple, while still enforcing network security best practices within the

lab.

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 4

The latest version of NETinVM was released in April of 2009. We will certainly
cover all aspects required to understand NETinVM for this project, but a comprehensive
explanation of NETinVM, including the architecture and design, are available on the

NETinVM website. (ibid.)

3.Understanding the NETinVM Environment

In order to fully take advantage of NETinVM, it is necessary to spend a little bit of
time more fully discussing its network architecture, file system design, and key

directories.

The NETinVM Network

As stated above, the NETinVM network consists of three networks, who are
interconnected via a UML firewall, fw (itself a UML guest). Traffic from the internal
and “secure server” network (aka DMZ) are routed through the firewall out through to the
SuSE linux VMWare instance, hereafter referred to as base .example.net or simply
base. Each guest is named after the network segment on which it resides, i.e. inta,
dmza, dmzb, exta, or simply £w. This is perhaps better understood by referring to the

diagram in Appendix A, graciously provided by the NETinVM authors.

While NETinVM is capable of running up to 19 UML instances, our lab will only
require the use of five: a firewall (fw), two DMZ guests (dmza and dmzb), one internal
guest (inta), and one external guest (exta) used to launch attacks. We will use the
default domain, example.net, as provided by NETinVM. All UML guests are running
linux kernel 2.6.18 on Debian, while base is running SuSE 10.3, which will be our

OSSEC server.

A Brief Explanation of File Storage in NETinVM

You can imagine that if NETinVM used separate files for each UML guest's file
system, our VMWare machine would very quickly run out of disk space. Instead,
NETinVM uses what are known as “sparse files”. The concept is similar to a “growing”
VMDK VMWeare disk file, in that a sparse file is a “disk file that saves space by storing

only actual data in the sectors and not storing consecutive runs of non-data (nulls). When

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 5

a file system supports sparse files, it saves meta-data about the file that indicates where
the runs of non-data are located. The reported file size is always the size of the entire

file.” (PCMag, 2010)
We can see the real space used by including the -s option to 1s:

userl@base:~/uml/data> 1ls -1lsh uml root fs
755M -r--r--r—- 1 userl users 1.0G 2009-04-01 10:25 uml root fs

The far left field shows the actual size of the data stored on disk, while the “virtual”

size of the file is reported in the normal size column.

Each UML guest shares the same root file system (or “Reference File System” per the
NETinVM authors), but changes to the file system are actually written to a “copy-on-
write” (COW) disk instead of the original file. NETinVM stores the COW files in
/home/userl/uml/machines/<machine>/cow. The COW files are also sparse

files:

userl@base:~/uml/machines/inta> ls -1lsh cow
46M -rw-r--r—-- 1 userl users 1.1G 2010-08-07 11:17 cow

This provides the ability to have different programs and configurations on each UML

guest, but still maintain a low disk usage profile.

NETinVM Directory Notes
The core of the NETinVM files reside in several directories under
/home/userl/uml. We will review items pertinent to our lab here, but if you want to

dive deeper, there is a full description on the official NETinVM site.

The UML control scripts are stored in the bin directory. While there are several
scripts there, we currently only need to make note of a few. uml.sh and uml halt.sh
are used to start and stop individual UML guests, while uml run all.shis used to
start fw, exta, inta, dmza, and dmzb simultaneously. The latter script is great for
when all the guests have already been configured and you want to pick up on a lab where
you left off. Of course, all of these are simple bash scripts and can easily be modified if

desired.

The data directory is where the UML reference file system is stored, uml root fs.

When we create a new file system for the OSSEC install, that will be stored here as well.

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 6

The machines directory contains subdirectories for each UML configured guest:

userl@base:~/uml> ls machines
dmza dmzb exta fw inta

Inside each of these directories is a COW and swap memory file for each guest. To
reset a guest and have the initial configuration scripts re-run, simply delete the machine's

subdirectory from here, like so:

userl@base:~/uml/machines> rm -rf inta
The mntdirs directory contains three subdirectories — config, data, and tmp —

which are made available to each UML guest as /mnt/config, /mnt/data, and
/mnt/tmp respectively. Changes made in these directories are shared between all UML

guests.

The /mnt/config directory is where NETinVM stores guest and network specific
configuration instructions, found in the commands to run. sh file for each location. As
an example, configuration commands intended for every system in the DMZ should be
placed in network dmz/commands to_ run.sh, while commands specific to the
firewall are in fw/commands to run.sh. This script is run the first time a “new”
UML guest is started. (The guest is considered “new” if it does not have a subdirectory in

the uml/machines directory.)

We will not utilize the /mnt/data directory here, and the /mnt/tmp directory is

self-explanatory.

With these details laid out, we can begin developing an OSSEC Policy, and then we
will be ready to install the OSSEC server.

4.Creating an OSSEC Policy

One of the keys to a good OSSEC install is a good policy, and a critical aspect of a
good policy is knowing what you need to protect (Danchev, 2003). While in an ideal
world your client (or company) would already know all the services running on the
network or particular host, it has been my experience that is rarely the case. Therefore, I
would like to briefly highlight the process of service discovery since I believe it is so

critical to a good HIDS implementation.

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 7

There are many methods to gather a list of running services, and I highly recommend

the use of more than one, as any single source may not present a complete picture of the

environment. A good first step is to review the network documentation.

From the diagram in Appendix A, we see that dmza runs an HTTP server while dmzb

runs an FTP service. There are no known services running on the internal network, and

no version information is included in the available documentation. This could certainly

represent the level of detail available in some environments and therefore highlights the

need for multiple sources of information.

Once documentation has been reviewed, it would be wise to verify the documentation

accurately reflects the services running in production. One method of verification is the

use of netstat. A list of listening network services and their ports and processes can be

obtained from each individual linux system by running netstat as root (output trimmed):

dmzb:~# netstat -atunp

tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp6
udp
udp
udp
udp
udp
udp

[clolololololNololNololololoNeNe]

[cNolNoNolololoNoloNololololoNe)

e PO O OO O OO0

OO OO OO

e ~JO OO OO

[oNoNoNoNoNe)

OO OO OONIODODODODOO OO

[oNoloNololoNoNe)

[oNoNoNoNoNe)

:2049
:871
:3019
:111
: 80
: 21
12935
.1:25

:2048
:2049
:2050
: 964
:868
:111

The first portion of the output shows the TCP services, where

v OO O OO OO

OO OO OO

. OO O ODODOO OO

[oNoNoNoNoNe)

[ololoNolololoNe)

OO OO OO

g LISTEN

g LISTEN

g LISTEN

g LISTEN

g LISTEN

g LISTEN

g LISTEN

g LISTEN
LISTEN

0 g *

0 g *

0 g #

0 g *

0 g #

O.*

1116/rpc.mountd

946/portmap
1259/apache
1288/vsftpd
1212/rpc.statd
1176/master
1193/sshd

1212/rpc.statd
1212/rpc.statd
1116/rpc.mountd
946/portmap

we verify the FTP

service, but also see RPC, portmap, SSH, and Apache services running. The RPC and

portmap services aren't surprising for a default linux install, but in the real world should

be verified with the server administrators and added to the OSSEC policy if appropriate.

There is also a postfix process running (shown under the master name), listening only

on the loopback interface and is only accessible from the local machine. In our lab

environment, we will choose not to monitor this process. Under the UDP listings we see

more RPC services and a portmap service, which should also be verified with the

administrators and added to the policy if necessary. The same process (or equivalent)

should be carried out on all monitored hosts.

© 2010 The SANS Institute

Author retains full rights.

Using OSSEC with NETinVM | 8

Lastly, it may be a good idea to run a network scan to verify network activity and
look for services listening that did not show up from the local copy of netstat. An
excellent option for this is an nmap scan with version detection. Of course, if you wanted
to run this in your production environment, be sure to get permission first. This again
highlights one of the benefits of a NETinVM lab, as you are the only person you need

permission from!

This scan targeted the DMZ network from base.example.net. Iran the scan as:

the full output of which can be found in Appendix B.

In this case, the scan report (with the abbreviated results shown below) is consistent

with our results from the netstat command and verifies our previous findings:

Now that the running services have been determined, specific goals should be

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 9

documented to list which services or other host logs should be monitored. SSH, Apache,
ftp, rpcbind, and nfs services should be monitored for all guests running these services on
the example.net network. Lastly, OSSEC will monitor critical system files on all systems
in an attempt to detect rootkit activity. (Normally, firewall logs are a natural and logical
area to monitor and report on, but the default iptables rules on fw do not log any packets.
You will need to modify the iptables configuration if you wish to include this area in your

lab.) The NETinVM sample OSSEC policy is listed in Appendix C.

Of course, one of the advantages to running VMWare is the ability to create and
restore snapshots. I recommend creating a snapshot at the start of installation, and at

various points during the process as you are comfortable.

5.0SSEC Server Installation

Configuring the Firewall

The first step is to configure the iptables firewall (on base) to permit the OSSEC
agents to communicate with the server. This is most easily done through the standard
configuration utility for SuSE linux: YaST. Based on the network diagram in Appendix
A, we know the agent traffic will be traversing the tapl and tap2 interfaces on base. The
stated purpose of this firewall, per the NETinVM authors, is to maintain the routing
integrity of the lab environment, while also permitting ease of network monitoring on
each segment. For this reason, base is configured to filter certain types of traffic from
all three three tap interfaces. This is accomplished by the use of “zones” in the YaST
configuration. By default, each interface is added to the external, or “EXT”, zone on the

base firewall.

Adding a rule to permit OSSEC traffic from the EXT zone would permit any guest in
the NETinVM lab network to contact the OSSEC server service, including guests on the
“external” NETinVM segment (10.5.0.0/24). Since this is a lab “external” segment, all
devices are still under the full control of the lab administrator and this rule is seen as
permissible in order to significantly ease the administrative setup of the lab. This also
has the added benefit of permitting an OSSEC agent on any of the external guest virtual

machines if desired.

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 10

First, create a rule to permit traffic to base on UDP port 1514 (the default OSSEC

server listening port), and then restart the firewall:

Firewall service settings can be verified with:

OSSEC Installation and Configuration

Next, download the desired version of OSSEC and verify the MD5 sums. OSSEC
installation is a simple “wizard-type” interface, but requires the GNU C compiler, gcc,
which is already installed on both base and all UML guests. Extract the download file,

change to the new directory, and enter (still as root):

There is no need for email notifications in this environment and we will start with
active response disabled, so these are the only two options that need modified during
installation. See Appendix D for a full sample installation output. The default

installation directory is /var/ossec, and all primary OSSEC utilities will be installed in

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 11

the bin subdirectory during the install script. Do not start the OSSEC server when

complete, as we have a number of steps to complete to customize the lab, first.

OSSEC encrypts all communication between the server and agents through the use of
agent keys. (“OSSEC Manual manage agents tool,” n.d.) For simplicity, we will
configure one key for the £w guest and one for each of the two protected network
segments in the lab: int and dmz. These keys are stored on the server in the
client.keys file, located in the etc subdirectory of the OSSEC install. Agent keys
are created with the manage agents utility. The process of adding an agent will look

something like this (with user keystrokes in bold)':

base:/var/ossec/bin # ./manage_agents

R I 2 e b b b b AR A b b R dh I b b e A b b b b b A b b 4

* OSSEC HIDS v2.3 Agent manager. *
* The following options are available: *
R e b b b b b b b b b b b b b i b4
(A)dd an agent (A).
(E)xtract key for an agent (E).
(L)ist already added agents (L).
(R) emove an agent (R).
(Q)uit.
Choose your action: A,E,L,R or Q: A

- Adding a new agent (use '\g' to return to the main menu) .
Please provide the following:
* A name for the new agent: int
* The IP Address of the new agent: 10.5.2.0/24
* An ID for the new agent[004]:
Agent information:
ID:004
Name:int
IP Address:10.5.2.0/24

Confirm adding it?(y/n): y
Agent added.

Simply repeat the steps above for each agent. Once configured, the client.keys

file will look something like this (keys shortened here for display):

001 fw 10.5.2.254 6£9172734169909d24fb505087a0919bbal0c357861. ..
002 dmz 10.5.1.0/24 876480835ff75bd6efada7bf6b0a66206785acdblc. ..
003 int 10.5.2.0/24 bdbl11209067£fd2b2bleObbb8743a9£8b37d66f6cc4. ..

Create a directory under /home/userl/uml/mntdirs/config called
ossec-config and copy the client.keys file there. Be sure to change the owner of

the copied file back to user1 and a group ownership of users, or the UML guests will

1 The version number shown here for the example manage agents script is exactly as found in OSSEC
release v2.4 and is not a typo. I imagine this will be resolved in a later release.

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 12

not be able read it. We will use this file when copying the keys to the OSSEC agents

during the installation script.

We still need to configure the ossec. conf file before starting the server for the first
time. This is a standard XML file, so to disable a line or feature, simply enclose the line
or lines with <! -- and -->. Based on our policy, we disable all rules except the those

required, making the active <rules> portion of ossec.conf look like:

Since all the linux devices in our lab our debian based, we can also disable the non-

debian portions of the <rootcheck> element, as follows®:

The last modification required for this file is to add an <allowed-ips> element to

the <remote> section:

Because we disabled the anti-virus rules in the above configuration, we need to make

2 The base device is SuSE, but there is no CIS syscheck file included by default.

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 13

one modification to prevent the server choking on a now invalid OSSEC alert group.
Comment out rule 40113 in attack rules.xml, located in the rules subdirectory of

the OSSEC install path:

<!-- <rule 1d="40113" level="12" frequency="6" timeframe="360">
<if matched group>virus</if matched group>
<description>Multiple viruses detected - Possible
outbreak.</description>
<group>virus, </group>
</rule> -->

Lastly, because our UML guests have a potential to be reset on a regular basis (that is
the point of a lab...), we need to make a change in the internal options.conf file

on the server. Disable the option to have the server verify message IDs from the clients:

Verify msg id (set to 0 to disable it)
remoted.verify msg id=0

Now we can start the OSSEC server (as root) and verify it is listening on the network:

base:/var/ossec/bin # ./ossec-control start

Starting OSSEC HIDS v2.4 (by Trend Micro Inc.)...
2010/04/10 05:22:02 ossec-maild: INFO: E-Mail notification
disabled. Clean Exit.

Started ossec-maild...

Started ossec-execd...

Started ossec-analysisd...

Started ossec-logcollector...

Started ossec-remoted...

Started ossec-syscheckd...

Started ossec-monitord...

Completed.

base:/var/ossec/bin # netstat -anp | grep -i ossec

udp 0O 0 0.0.0.0:1514 0.0.0.0:* 7834/ossec-remoted

The entire ossec. conf file is included in Appendix E for reference.

Modifying the NETinVM Startup Scripts

As we've already seen, NETinVM is designed for a flexible, dynamic configuration.
To take advantage of this flexibility, we need to take a few extra steps for the initial agent
installation, which helps automate subsequent agent installs. While these tasks may seem
numerous, once complete, they will make future labs much easier to configure and/or

reset.

Each UML guest only has around 1 gigabyte of space on the / partition which, after
the Debian install, leaves only around 260 megabytes free. To allow enough space for
the OSSEC installation and subsequent logs, we need to create another sparse file system

to be mounted at /var/ossec. This is actually a fairly simple process.

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 14

First, create a new 1 gigabyte sparse file in the /home/userl/uml/data directory,

which we discussed when reviewing the NETinVM file structure. dd performs this trick

nicely:

Next, we need to create a file system inside this newly created file:

Now that the file system is created, we need to tell the UML startup scripts to mount
the new file system in the guests. Make a copy of the um1 . sh script’ in the
/home/userl/uml/bin directory and call it uml ossec.sh. We will add both the file
system and the COW file parameters to the script, using two new variables,

VM _OSSEC_COW and UBD2, as highlighted below:

Next, find the line further down the script, in the run vm () function, that reads (all

on one line):

3 A patch in unified diff format is available for the uml.sh script in Appendix G

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 15

ubdl=SUBD1”
Append the newly created ubd2 variable before the closing quotes:

VM="S$LINUX xterm=$XTERM umid=$UMID mem=S$MEM $ETH ubd0=S$UBDO
ubd1=$UBD1 ubd2=$UBD2”
Now, our new ext2 file system will be presented to the UML guest as the partition

/dev/ubdc and is ready to be used for storing the OSSEC install.

6.0SSEC Agent Installation

Preparation

We need to create a compiled installation of an OSSEC agent, which can then be
copied to the other agents. This can be done on any UML guest, as we will create a tar
file of the install and then reset the configuration for that system. Copy the OSSEC install
tarball (the same one used to install the server) to the uml /mntdirs/tmp directory,

where it can be accessed by the UML guests. Start the UML guest:

userl@base:~> uml ossec.sh -d 5 a int
This will start UML guest inta on virtual desktop #5 in the KDE window manager.

Switch to the console window that opens in that desktop and login as root with the

password “You should change this passphrase” (minus the quotes, obviously).

As already stated, there isn't enough space in the root UML file system, so we need to

mount our new file system at the /var/ossec directory:

inta:~# mkdir /var/ossec
inta:~# mount -t ext2 /dev/ubdc /var/ossec

Then install OSSEC in agent mode:

inta:~# tar xzf /mnt/tmp/ossec-hids-2.4.tar.gz -C ~/
inta:~# cd ossec-hids-2.4
inta:~/ossec-hids-2.4# ./install.sh

Follow the sample agent install script, as found in Appendix F. If the process detects

that the /var/ossec directory already exists, do not delete it when prompted.

Once the compile is finished, there are a few edits we need to make before creating
the tar file for distribution. Open the ossec.conf file and replace the OSSEC server IP
inside the <server-ip> element (located at the top of the file) with “0OSSEC_SERVER”

(minus the quotes). Then move down the file to the <active-response> block and

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 16

replace it with:

<command>
<name>firewall-drop</name>
<executable>firewall-drop.sh</executable>
<expect>srcip</expect>
<timeout allowed>yes</timeout allowed>
</command>
<active-response>
<disabled>yes</disabled>
<command>firewall-drop</command>
<location>local</location>
<level>6</level>
<timeout>120</timeout>
</active-response>

This will greatly simplify enabling active response when the time comes.

Now we can proceed with creating a portable archive, to be installed on future UML
guests. One way to accomplish this is found on page 56 of the OSSEC book, which I
have modified slightly below:

inta:~/ossec-hids-2.4# cd /; tar --exclude client.keys \
—-exclude lost+found -cvzf /mnt/tmp/ossec-agent.tar.gz \
var/ossec etc/init.d/ossec etc/ossec-init.conf

Back on base, move the agent archive, ossec-agent.tar.gz, to the
uml/mntdirs/config/ossec-config directory where it will be accessed during the

startup sequence.

Creating the Startup Scripts

Now we will add a new script to automate the installation of the OSSEC agent on the
UML guests. This script, configure-ossec. sh, should be placed in the
uml /mntdirs/config/ossec-config directory. Be sure to change permissions on

the script to make it executable:
userl@base:~/uml/mntdirs/config/ossec-config> chmod 755 \

configure-ossec.sh
This script requires two arguments, the network segment name (INT, DMZ, or FW) and

the OSSEC server IP, and performs the following tasks:

1. Adds the /dev/ubdc partition (which is the newly-created uml ossec fs file

system) to /etc/fstab, to be automounted on future startups.

2. Creates the /var/ossec directory and mounts /dev/ubdc, since the

/etc/fstab has already been processed for this boot sequence.

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 17

3. Creates the required OSSEC users and group.
4. Extracts the ossec-agent.tar.gz binary install.
5. Inserts the proper OSSEC server IP into ossec.conf.

6. Extracts the correct OSSEC agent key (based on the network segment name) and

places it into the agent's client.keys file.
7. Configures OSSEC for the proper runlevels (start and stop sequences).
8. Starts the OSSEC agent.
The full configure-ossec.sh script is found in Appendix H.

Configuring the guest to actually run the OSSEC install script is simple. Edit the
commands-to-run. sh script for each guest or network where an agent should be

installed, appending this line:

/mnt/config/ossec-config/configure-ossec.sh <NETWORK> <OSSEC-IP>
where <NETWORK> can be INT, DMZ, or FW; and OSSEC-1IP is 10.5.2.1 for the internal

network or firewall, and 10.5.1.1 for the DMZ.

Now start a new agent (we will use dmza as an example):

userl@base:~> uml ossec.sh -d 3 a dmz
Creating directory: /home/userl/uml/machines/dmza
Creating swap file of 256M: /home/userl/uml/machines/dmza/swap

This starts dmza on KDE desktop #3. Switch to the console there and you should see
OSSEC installing as shown here:

[other startup messages]
-—— Applying network-specific UML configuration ---
Running commands.. .
Adding the ubdc disk to fstab
Making /var/ossec directory
Mounting /dev/ubdc on /var/ossec
Adding the OSSEC users and group
var/ossec/
var/ossec/logs/
var/ossec/logs/ossec.log
var/ossec/bin/
[tar extraction output trimmed]
Editing ossec.conf to use the proper OSSEC server
Copying client.keys file
Adding OSSEC to startup process
System startup links for /etc/init.d/ossec already exist.
Starting OSSEC HIDS v2.4 (by Trend Micro Inc.)...
Started ossec-execd...

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 18

Started ossec-agentd...
Started ossec-logcollector...
Started ossec-syscheckd...
Completed.

[more startup messages]

Login to the guest as root with the same default password as before: “You should

probably change this passphrase” (again, minus the quotes).

Verifying Communication
Communication between the OSSEC server and agents can be verified at both

endpoints. Progress can be followed on the agent with:

dmza:/var/ossec/logs# tail -f ossec.log

[output trimmed]

2010/08/07 19:21:55 ossec-agentd(4102): INFO: Connected to the
server (10.5.1.1:1514).

On the server, run (as root):

base:/var/ossec/bin # ./agent_control -1

OSSEC HIDS agent control. List of available agents:
ID: 000, Name: base (server), IP: 127.0.0.1, Active/Local
ID: 001, Name: int, IP: 10.5.2.0/24, Inactive

ID: 002, Name: dmz, IP: 10.5.1.0/24, Active
ID: 003, Name: fw, IP: 10.5.2.254, Inactive

Follow this process for each guest you want to run.

At this point, you probably want to modify the uml run all.sh script to use the
modified uml ossec. sh launch script instead of um1 . sh. Or simply rename

uml ossec.sh touml.sh.

7.Testing OSSEC

Now it's time to have some fun! To generate some alerts, we will start exta and then

install some security scanners and to run against the servers in the “DMZ”.

Generating Alerts via (Malicious) Web Traffic

Nikto is a web server vulnerability scanner which “performs comprehensive tests
against web servers for multiple items, including over 6400 potentially dangerous
files/CGls, checks for outdated versions of over 1000 servers, and version specific
problems on over 270 servers”. (“Nikto2 | CIRT.net,” n.d.) It is also a great choice for

testing basic functionality, as it is small and makes no attempt to be stealthy by default.

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 19

(ibid.)
Our attacking host, exta, is plagued with the same storage limitation as the other

UML guests. But here we can “cheat” and use the same file system we created for

OSSEC to house any required additional tools needed:

exta:/# mkdir /tools
exta:/# echo “/dev/ubdc /tools ext2 defaults 0 1” >> /etc/fstab
exta:/# mount -t ext2 /dev/ubdc /tools

This works because changes to the /dev/ubdc file system are written to the COW
file, so OSSEC is not in the way on exta and neither do the attack tools interfere with

the OSSEC installation on the other UML guests.

The NETinVM UML guests do not have access to the Internet by default. First, I
chose to download Nikto* onto base and saved it to uml /mntdirs/tmp so it can be

accessed from exta. Installation is a simple tar command:

exta:/# tar xzf /mnt/tmp/nikto-2.1.2.tar.gz -C /tools/
Once finished, launch a basic Nikto scan against the web server (dmza):

exta:/tools/nikto-2.1.2# ./nikto.pl -Format html \
-output /mnt/tmp/nikto-scan.html -host 10.5.1.10 \
-vhost www.example.net -port 80

This will also save the results of the scan on /mnt/tmp/nikto-scan.html, which

can be viewed with the browser on base.

Once the scan has completed, review the alerts.log file in /var/ossec/logs on
base. While the default Apache installation on dmza doesn't generate a lot of terribly

“interesting” entries in Nikto, the scan generated roughly 5900 alerts in OSSEC!

A visual inspection of the alerts first reveals a handful of alerts generated by rule

31101:

** Alert 1281208821.136962: - web,accesslog,

2010 Aug 07 21:20:21 (dmz) 10.5.1.0->/var/log/apache/access.log
Rule: 31101 (level 5) -> 'Web server 400 error code.'

Src IP: 10.5.0.10

User: (none)
10.5.0.10 - - [07/Aug/2010:21:20:20 +0200] "GET /2BPt9ZCF.nn
HTTP/1.1" 404 289 "-" "Mozilla/4.75 (Nikto/2.1.2) (Evasions:None)

(Test:map codes)" "-"
This single entry is a level 5 alert, which by itself is probably normally just noise.

This rule simply shows that the web server issued a 400 class error, in this case the

4 Nikto is available at http://cirt.net/nikto2

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 20

famous “404 File Not Found” error. A busy web server would certainly generate these

codes all the time, but further down the list we see an alert from rule 31153:

Now we see that there are several 400 class errors being generated by the same web
client. More importantly, that client is sending requests associated with common web

attacks. This alert is rated as more severe (level 10) and might deserve some attention.

A basic review of the logs reveal OSSEC fired 506 level 10 alerts, from three

different rules:

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 21

Generating Alerts via Brute Force Password Attacks

While Nikto is a good, small(er) footprint web scanner, no security administrator's
tool set is complete without Nmap. With the addition of the Nmap Scripting Engine
(NSE), Nmap has grown into a powerful vulnerability and pentest scanner. (Lyon, 2009)
We already used Nmap to verify services running in the NETinVM network, but that was
from base. And since we will be launching attacks this time, and eventually telling
OSSEC to automatically block traffic from the attacking machine, it is preferable to
install Nmap locally on exta, so OSSEC's Active Response doesn't disconnect the agents

from the server!

I chose to download the latest stable version of Nmap (as of this writing) from the
official site, http://nmap.org/download/, (again, using base) and placed it in

uml/mntdir/tmp, so exta could extract from there:

exta:/mnt/tmp# tar xjvf nmap-5.21.tar.bz2 -C /tools
exta:/mnt/tmp# cd /tools/nmap-5.21

exta:/tools/nmap-5.21# ./configure —--prefix=/tools/nmap \
--without-zenmap && make && make install

To avoid a litany of dependencies and keep things lite, I disabled the graphical
interface for Nmap, by using the --without-zenmap flag during the configure
process. Once the install was complete, I launched an FTP brute force password attack,

this time against dmzb:

exta:/tools/nmap/bin# ./nmap -sS -PN -p 21 --script=ftp-brute \
--script-args=passlimit=100 --reason 10.5.1.11

This uses the default usernames.1lst and passwords. 1st files distributed with
nmap and located in the nmap/share/nmap/nselib/data directory. This script can
take awhile, so for this demo I limited the password guesses to 100 per user account. The

results on my system were as follows:

Starting Nmap 5.21 (http://nmap.org) at 2010-08-18 04:26 CEST
NSE: Script Scanning completed.

Nmap scan report for 10.5.1.11

Host is up, received user-set (0.051s latency).

PORT STATE SERVICE REASON

21/tcp open ftp syn-ack

| ftp-brute:

| anonymous: IEUser(@

Nmap done: 1 IP address (1 host up) scanned in 51.16 seconds
A new review of the the alerts.1log showed a plethora of alerts from rules 11401

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 22

and 11402:

Once again, these are level 3 alerts, simply logging an FTP session has started and
even a successful authentication to the FTP service. These are certainly normal (and
frequent) events during the course of a regular business day, and by themselves are very

uninteresting. But very soon thereafter I found a level 10 alert from rule 11452:

OSSEC has detected several connections from the same client — a behavior that is not
normal for a regular FTP session. I verified the range and number of alerts in similar

fashion as before:

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 23

At this point, we literally have thousands of alerts to sift through, and a lot of noise
that makes it more difficult to find the important information and respond appropriately.
Instead of trying to respond to these attacks by hand, we can enable OSSEC's Active

Response and automatically block the offending client.

8.Active Response

Overview and Options

As described in the OSSEC book, “Active response allows a scripted action to be
performed whenever a rule is matched in your OSSEC HIDS rule set.” (Hay, Cid, &
Bray, 2008) In fact, if you desired, it is possible to fire off more than one response for

any given alert or set of alerts.

There are a number of pre-configured response scripts that ship with OSSEC, one of
which is the firewall-drop.sh script. This script will accept from the rule the
offending IP address and append a local host firewall rule to drop any traffic from that
address, optionally for a given amount of time. Shown here again for review is the

initial active response configuration:

<command>
<name>firewall-drop</name>
<executable>firewall-drop.sh</executable>
<expect>srcip</expect>
<timeout allowed>yes</timeout allowed>
</command>

<active-response>
<disabled>yes</disabled>
<command>firewall-drop</command>
<location>local</location>
<level>6</level>

<timeout>120</timeout>
</active-response>

Once enabled, this configuration will fire the response, firewall-drop, when an alert of
level 6 or greater is received against a given address. The response script is also
configured to remove the firewall drop rule after the given timeout of 120 seconds.

When a response rule fires, it is logged to an agent-local, dedicated file for active

response, /var/ossec/logs/active-response.log.

Other response scripts include host-deny . sh, which requires a given service

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 24

support tcpwrappers. Alternatively, the route-null. sh script will simply modify
the agent's local routing table, preventing reply traffic from being delivered. This is an
excellent option when the host-deny.sh or firewall-drop.sh scripts are not an
option. If the attack is utilizing a specific account, the disable-account. sh script
may be appropriate. But my favorite “toy” response is the recently added
ossec-tweeter. sh script, which as you probably guessed, sends a “tweet” to a
specified account, as a notification of the alert. While probably not terribly practical, it is

fun to play with and demonstrates the possibilities of active response scripts.

With almost all of the responses (the possible exception being a twitter message), you
should take care in how an active response command is configured, as you can easily
create a self-inflicted denial of service (DoS). To safeguard against just such a
possibility, it is recommended to add any hosts that should never be blocked to the
<white 1list> element (one address per element) in ossec.conf (“OSSEC Manual
Active Response,” n.d.). A good example of an IP that could be placed here is the
OSSEC server itself. It should be noted that alerts will still be generated for these hosts,

but no active responses will fire.

Enabling Active Response
We already included the required configuration for active response when we setup the
agent install process, but left it disabled. To enable it we just need to replace the “yes”

with a “no” in the <disabled> element:

<disabled>no</disabled>
This should be done on the agents and the server, and then restart OSSEC on each

system:

base:/var/ossec/bin # ./ossec-control restart
Now we can return to exta and re-run the Nikto attack, then follow the logs on

dmza:

dmza:/var/ossec/logs# tail -f active-responses.log

Mon Aug 9 03:26:39 CEST 2010 /var/ossec/active-
response/bin/firewall-drop.sh add - 10.5.0.10 1281317198.9984758
31151

Mon Aug 9 03:29:40 CEST 2010 /var/ossec/active-
response/bin/firewall-drop.sh delete - 10.5.0.10
1281317198.9984758 31151

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 25

Here we see the date and time of the action, as well as the script that fired and the
actions it performed. The last number of the line (“31151” in this case) shows the rule

that triggered the response:

Likewise, re-run the Nmap scan from exta and follow the active-

responses. log file again, this time showing the trigger rule of 11452:

And notice the difference in the Nmap scan results after Active Response was

enabled:

This time, Nmap did not report any valid users for the FTP service, even though

anonymous access is enabled.

9.Conclusion

OSSEC is a useful tool to detect and automatically act on attacks against hosts on the

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 26

network. It also provides a powerful, flexible framework for automating responses to an
attack or aggregated event. Paired with a solid understanding of the network and a good
policy, OSSEC's scriptable nature and simple architecture make it an excellent option for

protecting the network on a shoe-string budget.

Because OSSEC's Active Response can create undesirable outages if not configured
properly, it is preferable to perform initial tests in a lab environment. NETinVM
provides that lab in a neatly wrapped, flexible package for testing various network
settings, attacks, and defenses, without requiring a great deal of hardware. With a little
additional effort, the combination of these two solutions provides a security administrator
an excellent, dynamic platform to test configurations and learn from mistakes, without

costly repercussions.

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 27

Appendix A

NETinVM Network Diagram (provided by Carlos and David Perez)

etha
18.5.8.18
C&:FE:QB: BB B8 BA

-

exta
ethe
18.5.8. 254
CA:FE:BH:08:88:FE
ethl
18.5.1.254
CH:FE:BB:BE:B1:FE
fw
eth
18.5.2.254

Ch:FE:QB:0B:BI:FE

ethe
18.5.1.18
CA:FE:B9:98:a1l:8A

=

dmza

www.example.net
HTTF, HTTPS

ethl
18.5.2.18
CA:FE:BE:BO:B2:8A

.

inta

ethi
18.%.8.11
CA:FE:BH:08:88: BB

_——

ethi
18.5.1.11
CA:FE:B@:B0:01: 08

=

dmzh

ftp.example.neat
FTP

ethl
18.5.2.11
Ch:FE:BB:86:82:08

-

intb

External network (“Internet®)

.5.0.0/24

etha
18.5.8.1%
CA:FE: 00 0G0 88:BF

16.5.1.8/24

ethi
18.5.1.15
CA:FE:BO:80:91:9F

E

dmz £

tap2
18.5.2

DNS,

uml switch dmz

DHCP

192.168.10.08/24

Internal network =— |

uml switch int

ethl
18.5.2.15
Ch:FE:BE:BE B2 BF

uml switech ext

ethd

192.16H.18.138

DHS, DHCP
182.168.18.2

vmnetd

wnnetd
192, 16E.18.1

REARL COMPUTER

example.net

Author retains full rights.

© 2010 The SANS Institute

Using OSSEC with NETinVM | 28

Appendix B

Full listing of nmap service discovery scan against the DMZ.

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 29

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 30

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 31

Appendix C

Example.Net OSSEC Policy

Hosts and Services

Host: dmza
Services: SSH, Apache, rpcbind, nfs

Host: dmzb
Services: SSH, ftp, rpcbind, nfs

Host: inta
Services: SSH, Apache, rpcbind, nfs

Goals

Monitor critical system files on all hosts for signs of rootkit activity
Monitor SSH logs on all hosts for signs of attempted account compromise
Monitor Apache logs on host dmza for signs of intrusion attempts/successes
Monitor FTP logs on host dmzb for signs of intrusion attempts/successes

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 32

Appendix D
Sample OSSEC Server Installation

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 33

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 34

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 35

Appendix E

Sample ossec.conf for base.example.net

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 36

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 37

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 38

Appendix F
Sample OSSEC agent install script output

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 39

Appendix G
UML Startup Script Patch

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 40

Appendix H
configure-ossec.sh, to be placed in the
/home/userl/uml/mntdirs/config/ossec-configure directory, along with the

ossec-agent.tar.gz file created in the OSSEC Agent Install Preparation steps.

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 41

© 2010 The SANS Institute Author retains full rights.

Using OSSEC with NETinVM | 42

Bibliography
About OSSEC. (n.d.). Retrieved March 26, 2010, from http://www.ossec.net/main/about/

Cummings, J. (2004, September 27). “Security in a world without borders”. Network
World, Retrieved August 12, 2010 from
http://www.networkworld.com/buzz/2004/092704perimeter.html

Hay, Andrew, Cid, Daniel, & Bray, Rory. (2008). Ossec host-based intrusion detection
guide. Syngress.

Lyon, G. (2009). Nmap network scanning (Online Edition), Retrieved August 17, 2010,
from http://nmap.org/book/nse.html#nse-intro

Nikto2 | CIRT.net. (n.d.). Retrieved August 11, 2010, from http://cirt.net/nikto2

OSSEC Commercial Support. (n.d.). Retrieved August 12, 2010, from
http://www.ossec.net/main/get-commercial-support/

OSSEC Manual Active Response. (n.d.). Retrieved August 12, 2010, from
http://www.ossec.net/main/manual/manual-active-responses/

OSSEC Manual manage agents tool. (n.d.). Retrieved August 10, 2010, from
http://www.ossec.net/main/manual/manual-manage agents-tool/

Perez, D., & Perez, C. (n.d.). NETinVM. Retrieved March 14, 2010, from

http://informatica.uv.es/~carlos/docencia/netinvm/

© 2010 The SANS Institute Author retains full rights.

