
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

SuSE Linux on a PowerBook G4 Workstation
by David F. Beck

This paper discusses the installation and configuration of Linux on a Apple Macintosh
PowerBook G4 laptop workstation computer (“Titanium”). The actual hardware used in
developing the paper had a processor speed of 500 MHz, 1 GB of built-in RAM, and a 30
GB internal ATA hard disk. The primary purpose of the Linux installation is as a portable
network testing and security monitor using programs like “tcpdump.” In addition, the
laptop will be configured for use in a laboratory environment in evaluating MacOS-9 and
–X vulnerabilities. Notes on the operating system (OS) software selected can be found
under Step 1.1 below.

In the discussions that follow below, actions related to the security posture of the
machine are often stated as being an element of a detect-delay-respond (DDR) cycle—the
classical elements found in protection system design.1 Alternatively they might be cast in
terms of: protect-detect-react used by SANS; protect, detect, react, defend, reconstitute,
and recover used by the DoD; or even prepare, detect, contain, eradicate, recover, and
lessons learned used by CERT. Also noted will be actions that provide deterrents and
defense-in-depth. Even quality comes into play as it can help avoid mistakes that might
otherwise introduce security vulnerabilities or increase risks of existing vulnerabilities.

Step 1. Before Installation

Step 1.1 General considerations

The availability of Linux distributions for a PowerPC-based computer is much more
restricted than for the more popular Intel machines. At the time this project began, the
only 2.4 kernel available to me on CD was the SuSE Linux 7.1,2 and is thus the basis of
this paper. On August 27, 2001, it was announced that Mandrake Linux 8.0 became
available.3 Reportedly the Yellowdog4 2.0 distribution comes with a 2.4.4 kernel, and
even others might be found with a more exhaustive search. The latest “Redhat-like”
release from linuxppc.org, the so called “2000 Q4” distribution,5 only comes with a 2.2
kernel. Of course the linuxppc distribution could be installed and updated with a new
kernel from their software download site,6 but then the issues associated with software-

1 For example, Garcia, Mary Lynn, 2001, The Design and Evaluation of Physical Protection Systems,
Butterworth-Heinemann, Boston.
2 http://www.suse.de/us/products/susesoft/ppc/
3 http://www.linux-mandrake.com/en/fnews.php3
4 http://www.yellowdoglinux.com
5 http://linuxppc.com/ or http://cable.linuxppc.org:8080/
6 http://ftp.linuxppc.org/kernels/titanium/

-1-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

download security would have to be addressed (or ignored; see section on software
updates for more discussion).

Step 1.2 General security considerations

Step 1.2.1 Physical security

The integrated design and use of a LCD display in laptops provide them some security
advantages over the typical desktop models deployed today; for example, simple ~$100
in-line keyboard sniffers7 won’t work, and TEMPEST8 concerns are far less. However,
due to the intrinsic and very desired nature of the portability of laptops (i.e., size and
weight), they are a prime target for theft, which is the second leading cause of computer
losses.9 In 1997 laptop thefts reached 309,000,10 in 1999 the number rose to more than
319,000,11 and in 2000, approximately 387,000 were stolen;12 based on production
rates,13 this suggests, very roughly, that 1 out of 50 laptops will be subject to theft. While
most of these will head straight for a pawnshop, informal surveys indicate that about 10-
15% of stolen laptops are taken by criminals intent on selling the data. A number of
individual laptop thefts have even been newsworthy.14 Perhaps most surprising, however,
is that more of these thefts occur within the office than outside it, and as much as 75% of
all of these thefts, in and out of the office, are committed by people with insider
information.15

Although various firms advertise products that are intended to help track down and
recover stolen computers, the best advice is still not to let a laptop out of your sight. The
most promising aid for keeping a laptop “in sight” is a portable, two-piece anti-theft
system using a key-chain transmitter and a miniature receiver with a 110+ decibel siren
that “goes off” if the two are separated by more than ~40 feet.16 For situations where the
laptop must left unattended at home or in the office, storing it out-of-sight in a strong,
locked cabinet is probably the best choice. Use of a security cable and locking device can
also provide theft deterrence; there is no excuse not to use one at your desktop at least for
protection during those “coffee” breaks. A minor security advantage is also available on

7 For example, http://www.zdnet.co.uk/news/2000/12/ns-14347.html
8 TEMPEST is a “code word” that relates to specific standards used to reduce electromagnetic emanations.
See, for example, http://www.eskimo.com/~joelm/tempest.html
9 http://www.safeware.com/index.htm
10 http://www.notebookreview.com/security.html
11 http://www.idg.net/idgns/2000/08/11/StolenLaptopSparksAntiTheftTechnology.shtml
12 http://www.securityfocus.com/frames/?focus=basics&content=/focus/basics/articles/laptop1.html
13 http://www.forbes.com/global/2001/0402/024.html
14 http://www.business2.com/webguide/0,1660,43819|125|0|0|1|a,00.html
15 http://www.exsys.co.il/it_woffa_overview.htm
16 For example, http://www.trackitcorp.com/

-2-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

the PowerBook G4 laptop: a keyboard locking mechanism, when engaged, hinders access
to internal components of the computer, including the memory (see boot protection below
for the importance of this in addition to outright theft of components).17

Step 1.2.2 Initial network security

During operating system (OS) installations, there may be a period of time during which
network services may be available before security protections are fully in place or
configured.18 The length of this period of time depends on the installation process
itselfhow much time the installer devotes to the actual installation and security
configuration. This vulnerability may be exploited by attacks that could even escape
detection since logging and other security services would likely not yet be functional. The
approach taken for this installation is to follow the best security practice of keeping the
system disconnected from the network until after the installation and security
configurations are complete.

Step 1.3 System boot protection

Apple’s current boot firmware19 is based on IEEE Standard 1275 known as “Open
Firmware.” Originally developed in 1988 by Sun Microsystems as a way to deal with the
maintenance and support problems associated with a wide range of hardware and
software configurations, Open Firmware provides processor and system independent boot
firmware through a FORTH-based virtual machine. (If you are used to IBM or “clone”
PCs, think BIOS.) As implemented by Apple, Open Firmware security options allow a
machine to be fully password protected; booting from any device, or executing any boot
firmware command for that matter, is not then possible without first entering the
password (i.e., it does not matter whether you are using hard drives or removable media,
or built-in or external devices, booting requires the password). Apple even went beyond
the Open Firmware 1275 specification by adding a progressive delay technique to
discourage brute force attacks against the Open Firmware password.

A word of caution: the old adage applies that if someone has
physical access to your computer they can eventually gain access
to your data. While “zapping” the PRAM by itself (through use of
‘Command’ + ‘Option’ + ‘P’ + ‘R’ keys or by use of third-party
programs) will not disable or remove the password protection,
changing the amount of RAM in the computer followed by three PRAM
resets will.20 Or if they have a user account on the computer, it
is possible to retrieve the boot password by reading the contents
of the NVRAM itself and decrypting it, such as by using the

17 2001, Getting Started With Your PowerBook G4, Apple Computer, p.58.
18 Cf. http://www.infowar.com/iwftp/xforce/advise23.html
19 http://bananajr6000.apple.com
20 http://www.msec.net/archives/of_pwd_bypass.html

-3-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

freely available FWSucker21 tool. However, it should also be noted
that use of an Open Firmware password does provide protection
from certain kinds of network attacks—those that require a
machine reboot—because the computer will now dutifully wait at
the Open Firmware prompt for local user input.

In order to enable password protection for system boot, take the following actions:

1. Boot into Open Firmware by simultaneously pressing the Command, Option, ‘O,’
and ‘F’ keys during a system startup. The screen display should present
something similar to the following:
Apple PowerBook3,2 4.1.8f5 BootROM built on 03/21/01 at 11:49:53
Copyright 1994-2001 Apple Computer, Inc.
All Rights Reserved.

Welcome to Open Firmware.
To continue booting, type “mac-boot” and press return.
To shut down, type “shut-down” and press return.

Ok
0 > _

2. At the prompt (0 >) enter the command password. You will then be asked to first
enter, and then reenter, the desired password.

A note about passwords: they should not be guessable and should
be of a reasonable number of characters in length (say 8). Good
passwords have a mix of alphanumeric characters, and even
punctuation marks and such taken from the ASCII character set.
Theoretically, a completely random string that makes use of all
available characters is the best choice.22 However, due to the
propensity of people to write down hard to remember (read random)
passwords, I believe the best (read lowest risk) scheme is to
think of a short phrase and turn it into an acronym through some
character selection scheme (e.g., first, third, or last letter of
a word, and the use of some character substitution scheme, like
the “3l33t” alphabet, for governing the use of numeric
replacements of certain alpha characters). For example, the
phrase “Hey diddle diddle, the cat and the fiddle” could become
hddtcatf; and if we have a rule of replacing each ‘t’ with a ‘7’
and each ‘f’ with a ‘4’ and then capitalize the first alpha
character, we end up with Hdd7ca74. It goes without saying that
your source for phrases should not be obvious, your particular
substitution cipher should be secret, you should not have written
copies of the password (or at the very least no uncontrolled
copies), etc.

21 http://www.securemac.com/file-library/FWSucker.sit
22 For example, even at this point it would be possible to use a password produced from an external random
generator; this could be code running on another UN*X platform (e.g., http://members-http-
5.rwc1.sfba.home.net/denisl/passwdgen/download/passwdgen-2.2.tar.gz or
http://www.multicians.org/thvv/tvvtools.html#gpw) or on a handheld device (e.g., “passwdGen Pocket” at
http://members-http-1.rwc1.sfba.home.net/denisl/passwdgen/).

-4-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

3. At the prompt (0 >) enter the command string setenv security-mode full

4. Reboot the computer, such as by using the Open Firmware command reset-all

5. The computer will now always boot into Open Firmware (you no longer have to
press the Command, Option, ‘O,’ and ‘F’). The screen display should now present
something similar to the following:

Apple PowerBook3,2 4.1.8f5 BootROM built on 03/21/01 at 11:49:53
Copyright 1994-2001 Apple Computer, Inc.
All Rights Reserved.

Welcome to Open Fir
Full security mode. (emphasis mine to highlight the change)

mware.

To continue booting, type “mac-boot” and press return.
To shut down, type “shut-down” and press return.

Ok
0 > _

6. Assuming that you still have an intact Mac OS on the computer, follow the Open
Firmware instructions and enter the command mac-boot to start the boot process. You
will then be asked to enter your password before the command is processed.

Step 1.4 Disk partitioning

While your “mileage may vary,” the procedure followed herein is for a PowerBook with
a single, 30-GB internal hard drive that is to be formatted for three operating systems
(OS): the “classic” Macintosh OS-9, OS-X (read 10), and Linux.

On system start, insert the “PowerBook G4 Software Install” CD into the CD drive. At
the prompt (0 >) enter the mac-boot command, enter your password, then immediately
hold down the ‘C’ key during the boot process. The computer will boot off of the OS it
finds on the CD.

The Drive Setup program, found in the Utilities directory on the CD, is then used to
partition the drive. As shown in the graphical user interface (GUI) illustrated below, the
hard drive is selected to initialize (here named “ThoreauBU,” yours may be “Untitled,”
“Macintosh HD,” or whatever; the other drive shown in the illustration is the CD-ROM).

-5-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

After selecting the correct drive in the GUI and “pressing” the Initialize… button, a
second GUI appears as shown below.

At this point the Custom Setup… function should be selected, and a third GUI will
appear:

-6-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

This GUI, under the “Partitioning Scheme” control, will allow selection of the number of
partitions the disk is to be initialized to. As shown here, 8 partitions have been selected
for the purposes of the project described by this paper, as set forth in the table below. For
each volume, the appropriate volume type was selected and the size entered. After
pressing OK, you are returned to the second GUI, where the Initialize function is then
invoked.

Again, your names may differ, and you may prefer a different partitioning scheme. The
question of how many partitions continues to spark debate within the Linux and broader
UN*X community. It is probably fair to say that there are almost as many partition
layouts as there are people discussing the issue.

The SuSE recommendation23 is to have: (1) a large partition for Mac OS (in the case here
this becomes two in order to maintain the desired separation between Mac OS-9 and –X);
(2) a small MacOS partition of approximately 30 MB in size for a Linux boot partition in
HFS format;24 (3) a swap partition of 4 MB to 128 MB in size (note, however, that most
recommended partitioning schemes suggest the swap space should at least equal the
installed RAM size as here; some even suggest a swap size of twice the RAM, or more);

23 The recommendations are found in the SuSE Linux 7.1 PowerPC Edition—the Handbook, pp. 20-21.
24 Full support for the Mac OS Extended file system (HFS+ or HFS Plus) in a kernel level module for
Linux PPC releases is not yet available; progress in the implementation effort can be tracked at
http://www.sourceforge.net/projects/linux-hfsplus. However, there are utilities that allow HFS+ file
systems to be accessed in the compressed tarball http://penguinppc.org/projects/hfsplus/hfsplus.src.tar.gz.

-7-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

and (4), a partition for SuSE Linux itself of recommended size 1.5 GB to 3 GB, or of 6
GB for those who want to install “almost everything” (the 2.783 GB used here is close to
the upper end of 3 GB, and was basically selected to allow space for three more, equally
and evenly sized partitions as discussed below).25

Volume Name Volume Type Volume Size (MB) purpose

untitled Mac OS Extended 8000 OS-9

untitled 2 Mac OS Extended 9000 OS-10

untitled 3 Mac OS Standard 32 yaboot

untitled 4 A/UX Swap 1000 swap

untitled 5 A/UX Root 2783 /

untitled 6 A/UX User 2600 /usr/local

untitled 7 A/UX User 2600 /var

untitled 8 A/UX User 2600 /home

The reasoning behind the additional three partitions for this project is as follows. First,
/var will contain all of the log files, which can grow quite large. Operating systems tend
to choke up or even become non-responsive if the file system they are on fills up. So,
having /var on a partition that is separate from the root file system (/) can help to avoid
this problem. Second, it is envisioned that there may be considerable use or evaluation of
software that is not part of the SuSE distribution. It is desirable to keep this software
separate from the OS for update, backup, and even system rebuild purposes. For this
project all such software will be loaded into the separate /usr/local partition. Third and
final, some software development may take place on this machine. This work will be
segregated into the /home partition. The sizes used for each of these three partitions
(2600 MB) was simply an even division of the available disk space. While it might be
argued that more should have been allocated to the root file space, the fact is that the
installation discussed below only consumes 670 MB (26%), and so it has plenty of room
for growth.

After the initialization was completed, OS-9 was installed on both Mac OS Extended
partitions. The machine was then rebooted from the OS-X CD, and OS-X was installed
on the second Mac OS Extended partition; after booting in OS-X, the OS-9 system on the
OS-X partition was configured to be used by OS-X when running classic Mac programs.

25 See, for example, Securing Linux Step-by-step for additional discussion of this issue. Available at
http://www.sansstore.org/

-8-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

Since OS-X makes changes to OS-9 files, having two OS-9 installations in this manner
allows booting in a “virgin” OS-9 environment for testing purposes.

A further note about Open Firmware: At this point there are two
boot systems available. Typing “mac-boot” within Open Firmware
will startup the system last pointed to with the Startup Disk
control panel available under Mac OS. For other options it is
necessary to explore the system a little with the Open Firmware
commands printenv and devalias. When OS-9 is the default system
to boot, from printenv we find that one of the lines reads:

Boot-device /pci@f2000000/mac-io@17/ata-4@1f000/@0:9,\\:tbxi

Here the string of information up to the first colon is the hard
drive identifier, which devalias then can tell us is also pointed
to by the name ‘hd.’ The ‘9’ after the first colon is the
partition number. How convenient (as in easy to remember)! OS-9
on partition number 9, and by inference (although it could be
verified in a similar manner by changing the default boot system
with the Startup Disk control panel), OS-X will be on the 10th
partition. Yaboot (the Linux boot script on PPC architectures)
will thus be installed on partition 11. (Because Apple makes use
of a number of small partitions on a disk, the initialization
method used above actually setup partitions 9 through 16!) The
“tbxi” at the end of the boot-device string points to a file of
type tbxi, which happens to be the Mac OS ROM file.

With this information, from the Open Firmware prompt we can now
boot up in OS-9 with the command:

boot hd:9,\\:tbxi

or in OS-X with the command:

boot hd:10,\\:tbxi

While this paper is not about securing Mac OS, at this point in the process, two Mac
operating systems are, never-the-less, installed, and it behooves us to take some basic
precautions26 as outlined below.

1. Under OS-9:

(a) “File Sharing” control panel. Turn file sharing off. Establish owner name
and password.

(b) “Multiple Users” control panel. Enable feature. Under options “Other” tab,
select “When logging in, users type their names” (i.e., so as not to provide
a listing of usernames on login screen) and deselect “allow a guest user
account.” Under options “Login” tab, deselect voice entry or verification

26 For a start in dealing with Mac-specific security concerns, see, for example,
http://www.sans.org/infosecFAQ/mac/ac_list.htm

-9-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

of any type (no data is available on the security robustness of this feature);
a simple warning banner could be entered here if desired. Other user
accounts can be set up here as well (if any).

(c) Install and configure a third-party screen saver. Setting Sun27 is one such
program that has proven effective. The desired features are timeout (I set
mine to 5 minutes), “hot corners” (to lock screen under password
protection if I need to leave my desk for a while, but don’t want to
completely log out), and a display that does not reveal the desktop or any
information about what is being worked on. The timeout feature available
under the Mac OS-9 “Multiple Users” control panel only has the timeout
feature, and thus the need for a third-party solution.

2. Under OS-X:

(a) Setup users, as necessary, under the “System Preferences,” “Users”
control panel.

(b) Under the “Login Window” tab of the “System Preferences,” “Login”
control panel, deselect “Automatically log in” and “Show password hint…
.” Select “Disable Restart and Shutdown buttons.”

(c) In the “System Preferences,” “Screen Saver” control panel, under the
“Activation” tab, set the slider for the desired timeout (again, I set mine at
5 minutes), and select the “use my user account password” option. Under
the “Hot Corners” tab, set up the desired hot corners.

At this point the laptop, still disconnected from the network, is protected from
unauthorized use by passwords at system boot time, user login, and at the user desktop.

Step 2. Install Linux

Step 2.1 Install yaboot

Under Mac OS, copy (drag) the “suseboot” directory from SuSE LINUX 7.1 PowerPC
EDITION CD number 1, to the Mac OS Standard partition (the name of the partition is
not important; rename it as you see fit). The required files are: Finder, System, vmlinux-
2.4, yaboot, and yaboot.conf. All other files and subfolders can be deleted to avoid
confusion if desired. If the suseboot folder icon does not appear to be “blessed” (no
smiling Mac face superimposed over a file folder icon), drag the “Finder” file out of the
folder to the desktop, and then drag it back in. The file yaboot.conf should be edited to
match the installation as follows:

timeout = 100
default = linux

27 http://www.webthing.net/settingsun

-10-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

bootfolder = suseboot\
2.4.2
image=vmlinux-2.4

label=linux
root=/dev/hda13
video=aty128fb

In this case, the fact that the ‘root’ file system will be at /dev/hda13 can be inferred from
knowledge about the Mac and other partitions as discussed above. Note the use of Open
Firmware notation for the “bootfolder” directory entry. The video directive used here is
compatible with the Titanium notebook hardware.

With yaboot in this location, once Linux is installed it is booted with the command:

boot hd:11,\suseboot\yaboot

after which you will soon see the boot prompt (if you are used to Linux on an Intel
platform, think “lilo”):

Welcome to yaboot version 1.1.1.SuSE
boot: _

at which point you will be able to enter `linux` to complete the boot process (other boot
parameters could also be passed at this time; e.g., to boot into a “single user” mode type
`linux single` or `linux 1`).

Unfortunately, you will also notice the following output appearing before the boot
prompt:

Config file read, 155 bytes
Config file error: Syntax error near line 4 in file \suseboot\yaboot.conf
Syntax error or read error config

In spite of this warning, yaboot will still allow you boot correctly. However, you will
have to enter `linux` in order for the boot process to proceed (yaboot cannot find the
kernel with a simple return at this point, nor is the timeout feature functional as an
indirect result of this error). The problem that yaboot is reporting stems from the “\” in
the “bootfolder” directive. However, if the “\” is removed, this version of SuSE yaboot
cannot resolve the location of the kernel and, rather that typing in `linux` to boot, you will
have to type in the Open Firmware pathname of `\suseboot\vmlinux-2.4` (yaboot does
remain it the correct partition, just not in the correct directory). If you choose this method
just in order to avoid the warning, the “bootfolder” directive might as well be deleted
from the yaboot.conf file altogether.

Note: due to the security issues associated with having an
unprotected (except by the Open Firmware security implemented
above) command-line yaboot process that cannot, furthermore,
automatically load the Linux kernel (see the discussion under

-11-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

Step 2.3), it is strongly recommended28 that a copy of the
graphical yaboot that comes with the “2000 Q4” linuxppc
distribution be used; no errors, no loosing its way! (Although
you may want to keep the SuSE yaboot somewhere for recovery
purposes.) The yaboot.conf file described above will work;
however, there is no need for the “bootfolder” directive, and it
can be safely removed. If you continue to use the SuSE command-
line version of yaboot, at least always make sure the system has
booted and is presenting a login prompt before walking away.

Step 2.2 Install SuSE Linux
Reboot the computer. On system start, if not already mounted, insert the SuSE LINUX 7.1
PowerPC EDITION CD number 1 into the CD drive. At the prompt (0 >) enter the mac-
boot command, enter your password, then immediately hold down the ‘C’ key during the
boot process. The computer will boot off of the OS it finds on the CD, which in this case
is the SuSE version of yaboot. The screen display should present something similar to the
following:

Welcome to yaboot version 1.1.1.SuSE
Boot:

Press the ‘return’ key, and the computer will proceed to boot up off of an image of a
‘safe’ version of Linux located on the CD. After boot up, something similar to the
following will be displayed on the screen:

Selecting the graphical, YaST2 installation interface will then present a screen something
like the following:

28 Another option would be to build your own yaboot from the latest source and instructions available at
http://www.alaska.net/~erbenson/ybin/

-12-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

For my own installation, I selected ‘English (US)’ as highlighted in the figure above.
Following this step, there are seven more primary stages in the installation process. As
they all have a nice GUI, things are fairly straightforward. However, each stage is
summarized below:

• Select keyboard (to match the language selection) and local time zone

• Select ‘New Installation’

• Prepare the Hard Disk

o Select “Custom partitioning” and specify A/UX partition usage (e.g.,
mount points) as previously determined in Step 1.4 above.

• Select software to install

o A good choice would be to select the YaST2 option “Standard System.”

Other prepackaged options are: “Minimal system” (text interface
only); “Standard System with Office;” and “Almost everything.”
For the purposes of the security configuration discussions that
follow below, it is assumed that networking and ‘X’ windows are
installed, along with security services like “shadow” and PAM
(all included in the “Standard System”). However, a safe
workstation configuration will be developed even if you install
everything. You can also safely ignore X-specific portions if X
is not installed. My personal choice is the “Select single
packages …” option (hand pick everything), although this requires
considerable work and is heavily dependent upon what the intended
use of the computer is. Of course you can always add packages by
mounting the appropriate CD (`mount -r -t iso9660 /dev/hdc

-13-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

/cdrom`) and running `rpm` (rpm -i package_name). Or you can
delete unwanted packages by using `rpm` (rpm -e package_name).
One good source for descriptions of the various “rpm” packages
can be found on CD#1 in the “docu” directory in the form of the
file “pkg_English.ps.gz (`gunzip` it and read it with ghostscript
(`gs`), `ghostview` or `gv`). Individual packages can also be
queried in order to determine their contents with the command
`rpm -qlp package_name` and for additional information with `rpm
-qip package_name`; installed packages can be queried by using
the command `rpm -q --filesbypkg package_name`. You can determine
which packages you have installed by using the command `rpm -qa`
(for reference purposes, the final installation for this project
is listed in Appendix A, as created using `rpm -qa | sort >
packagelist.txt` followed by use of `wc`, `split`, and several
applications of `paste` in order to generate the multi-column
listing). Note that if you select packages during the
installation process based on need, many additional packages will
be installed because of various dependencies as determined by rpm
(e.g., if you want cron, sendmail has to be installed, but
sendmail, in turn, requires procmail). Finally, you can determine
which package an installed file belongs to with the command `rpm
-qf filename` or what documentation was installed for it with
`rpm -qdf filename`. Consult the rpm “man” page for additional
options.

• Set up a user account

• Specify the ‘root’ (system administrator username) password

Note: use strong passwords for both the user and root accounts.
See note about passwords in section 1.3 for a suggested method.
Also make sure that the boot password for the machine is
different from the root password which is to be different from
user passwords and which should be different from those on other
machines!

• Confirm the settings

o Until you confirm with ‘Yes – install’ at this stage, YaST2 has made no
changes and you can safely choose to ‘Abort Installation.’ After beginning
the install, YaST2 will require some interaction in order to fulfill CD
change requests.

Step 2.3 Configure security at the desktop

Step 2.3.1 ‘X’ windows

At this point SuSE Linux has been installed with password protected accounts, and is also
already configured to require the root password to be entered when changing OS levels to
the single user mode.

Note: Yet again comes the warning about physical access. It is
still (always!?) possible to boot up a system as root without a

-14-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

password. For example, when the SuSE yaboot “boot:” prompt
appears enter `linux rw init=/bin/sash` (or place the kernel
arguments in an append=” “ statement in the yaboot.conf script)
and you basically have full run of the root file system. What
this does is to tell the kernel to use /bin/sash as the “init”
script; since the real `init` is not run, “gettys” & c. are not
started and thus “login” is never called to provide access
control. This can be very useful for repairing corrupted files.
Here I have also specified the “sash” shell since it is a fairly
complete, statically linked shell which can be an important trait
when trying to recover a “sick” system; however, you could
specify a different shell (e.g., bash) if you so desire. Perhaps
safer (to allow reliable file system checks during system
startup), you could log in with the simpler command `linux
init=/bin/sash` ; however, if you need to make changes that
involve writing to the file system, you will have to do something
like: `mount / -n -o remount,rw` , make the desired changes, and
then `mount / -n -o remount,ro` before rebooting. The bottom line
from a security standpoint: having the Open Firmware password (or
abrogating Open Firmware security as discussed above) is
essentially equivalent to having system administrator access to
the Linux OS for knowledgeable local users.

The computer is standing by, and the graphical ‘k’ desktop environment (KDE) login is
displayed waiting for a user to login. However, it will be noticed that this KDE login
GUI, as configured, displays the account names for all to see and it provides a “button”
that allows anyone to shutdown the computer.29 While it is possible to configure the KDE
login in a way that will avoid these security concerns, I prefer to use the ‘X’ display
manager (xdm) and associated xlogin GUI in order to make it a non-issue. This is
accomplished as outlined below.

Note: If for some reason there is a delay in accomplishing this
step, a quick, partial solution is to edit /etc/inittab as root
to change the line ‘id:5:initdefault’ to read ‘id:3:initdefault’
and reboot the machine. This will cause the computer to startup
in run level 3, which will display a login prompt on a console
interface. (‘X’ can still be started by logging in and issuing
the ‘startx’ command, but at least the usernames aren’t exposed.)

1. Login and ‘su’ to root in an xterm window. (I always make it a habit to login as a
normal user and then ‘su’ to root, when possible. On a single-user system, this
helps to limit accidental privilege misuse. When operating in a multi-user
environment, this also helps to maintain accountability through the system
logging and accounting mechanisms.)

29 Granted there are many ways to reboot or shutdown a computer, as discussed later in this paper, but there
really are people walking around that have a hard time resisting the temptation to “press a button” just to
see what will happen, even when there are big red signs posted saying to only press in an emergency. Then
there are dyslexics and the accident prone that if you make it too easy to shutdown or reboot will do so on
occasion quite unintentionally.

-15-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

Note: Most if not all configuration steps that follow below
throughout this paper require the operator to have ‘root’ or
system administration privileges. In general, the reader will not
be reminded of this again.

2. Edit /etc/rc.config to specify DISPLAYMANAGER=“xdm” (it is also possible to
change the default window manager at this time; I prefer DEFAULT_WM=
“fvmw2” because of code size and responsiveness (and perhaps a little because I
don’t like the default “wintel” look of certain other packages).

3. Edit /etc/X11/xdm/Xsession to add the following line after the ‘xsetroot’ calls:

xautolock –time 5 –locker xlock –corners 0+-0 –cornerdelay 1 –cornerredelay 10 –cornersize 10 &

Since the Xsession script is run as the ‘user’ during the startup of all ‘X’ sessions
after a login, this will invoke a password protected screen saver (“xlock”) after 5
minutes (“-time 5”) of no keyboard input or if the cursor is placed in the top right
corner of the display (the + in “-corners 0+-0”; note the ‘-’ here means that xlock
will never be called if the cursor is in the bottom left corner). Read the ‘man’
pages for ‘xautolock’ for further details on the configuration options.

4. If desired, a simple warning banner can be placed in the /etc/X11/xdm/Xresources
script at this point (the default greeting found under SuSE reads “Welcome at
linux” [sic]). Computer usage warning banners are a topic that follows in more
detail below.

Step 2.3.2 Virtual terminals

In addition to ‘X’ running on /dev/tty7, SuSE Linux starts six gettys (actually `mingetty`;
see /etc/inittab) that provide six additional virtual consoles or terminal devices. These
devices can be accessed under SuSE on the Mac PowerBook with a ctrl-command-fn-F1
through F7 key sequence. Note the ‘fn’ key should be pressed after ‘ctrl’ and ‘command’
are pressed and before ‘Fx’ is pressed as it is a modifier key (most ‘Fx’ keys are
otherwise coded on the PowerBook to control functions like screen brightness). Also note
that tty1 is where the boot script was executed. Each of these consoles is a potential point
of attack, and must be protected as accomplished for ‘X’ above. While there is a `vlock`
program that can be invoked on a terminal (or `vlock –a` to simultaneously lock all six
virtual devices), it is probably safer30 to simply “^D” (logout) of a console when you are
done or have to leave the area. In order to protect these access points into the system from
accidentally not logging out—since all but one tty is out of sight this has a high
probability of occurrence—the `autolog` program can be called from `cron` to close any
inactive login sessions.

1. Edit /etc/autolog.conf to add a control statement that reads:

30 Bugtrak and other archives have records of security concerns with vlock that were posted several years
ago. Searches yielded no clues as to the current status, or of any effort whatsoever to resolve the issue.

-16-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

line=tty[1-6] idle=4 warn grace=60 nomail log

Here the 4 minute idle time (as determined from the wtmp log entry) plus the 60 second
grace period after a warning is issued gives an effective 5 minute idle time that is
consistent with the `xautolock` configuration discussed in Step 2.3.1 above.

2. `Touch` /var/log/autolog.

3. Edit /etc/crontab to add a control statement to have cron run autolog every minute
(so this plus the 5 min. above really gives us a variable 5- to 6-min. window):
*/1 * * * * root /usr/sbin/autolog

Step 2.4 Configure ‘XF86’

While ‘X’ does work following the SuSE installation, it is best to configure the software
to match the hardware. An example XF86Config file for the “Titanium” can be found at
http://ftp.linuxppc.org/kernels/titanium/XF86Config-TiBook-nakashin2 which makes the
task easier. (Call it up on another machine for comparison, print it out, or even configure
one of the installed Mac OSs to retrieve the file and copy it over by mounting the disk it
is on while running under Linux.) I had five changes to make based on the actual SuSE
installation: correct the ‘truetype’ font path (case error); delete the ‘tt’ font path; and
delete the ‘GLcore,’ ‘glx,’ and ‘drm’ module load calls.

Once this point is reached we have a stable and “secure”
standalone (non-networked) Linux workstation. While this security
could be compromised by a knowledgeable individual that has
access to the machine, we have established a minimum number of
barriers that will serve both as a deterrence and as a delay
(assuming there is someone coming around with a reasonable
frequency that might discover their access attempts). And,
without forgetting to use our security cable, we are in a state
that gives us a “warm fuzzy feeling” that it is OK to make a “pit
stop” and grab another coffee or soda.

Step 3. Additional Security Configuration Steps
On continuing our effort to configure the various security options available under Linux,
there are several things yet to do. Some of these will add additional protection measures
for a “standalone” machine (remember, we are not yet networked!). Others will be done
in anticipation of networking, yet are accomplished before we ever get to network
services per se.

Step 3.1 Other “standalone” single-user considerations

Step 3.1.1 Console rebooting

A line in the /etc/rc.config script that purports to control the behavior of the ‘ctrl-alt-del’
sequence (CONSOLE_SHUTDOWN=“reboot”); setting this variable to “ignore” and
running /sbin/SuSEconfig will presumably comment out the

-17-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

ca::ctrlaltdel:/sbin/shutdown… line in /etc/inittab. To be safe both scripts should be so
altered manually as a matter of course. However, it appears that this is simply a leftover
from adapting scripts originally developed for “wintel” machines. The default behavior
under SuSE on a “PPC” is for the ‘ctrl-alt-command-delete’ sequence to logout the user
from an xsession (‘ctrl-alt-del’ itself has no effect irregardless). Artifacts are one thing,
but, unfortunately, it appears that there is no way to avoid the Mac “three-finger salute:”
‘ctrl-command-power’ will cause an unconditional, forced reboot!

That word of caution again: the old adage still applies that if
someone has physical access to your computer they eventually can
do anything they want. In this case, they could choose to power
off or reset your computer. Even if the “three-finger salute”
could be circumvented, there is still the reset button on the
back of the machine, or one could simply remove the battery and
unplug the power cord! While it would be nice to be able to keep
someone from maliciously shutting down or rebooting your
computer, the options generally available for any platform or OS
really only help to protect the computer against inadvertent
reboots from people who are too much in the habit of pressing
‘ctrl-alt-del’ as a way to recover from “hung” programs and the
like.

Step 3.1.2 Protecting your identity

An “iron-clad” identity (ID) is based on something you are, something you have, and
something you know. Implementing an authentication system with anything less than this
combination is going to be with an increased risk that the ID can be forged. Typical
computer access is granted based solely on one of these three items—something you
know; this is generally in a combinational form of username and password. Recognizing
this limitation or risk, what can be done to minimize our exposure by only using this
single ID factor?

First, we should consider if it makes any sense to protect our username. For example, we
might be able to reduce the risk of username exposure that could result from distractions
during a virtual console login31 by setting the variable LOGIN_TIMEOUT (say 10) found
in the configuration file /etc/login.defs (or as in our changing from KDE environment to
xdm). In most organizations of any size, however, usernames are probably fairly trivial to
obtain directly or to accurately guess. They are also frequently used as a person’s email
“handle.” (Given an account on a multi-user system, file system structures or world-
readable files will also give this information away.) Unless you are able to protect and

31 Unfortunately, security under SuSE (Linux in general?) is not consistently implemented across all user
interfaces. In the example here, LOGIN_TIMEOUT does impact the response of the login program that a
user would find on a virtual console, but if, as is most likely, the machine is configured to boot to a run
level of 5 and present a xlogin prompt, LOGIN_TIMEOUT has no effect. And this is just one example
from the set of parameters that can be found in /etc/login.defs. A better solution, it would seem, would be a
complete transition to the paradigm available with pluggable authentication modules (PAM), which are
discussed in more detail later in this paper.

-18-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

use different usernames from published email name lists or other user databases, the risk
is very high that your login name can be readily discovered by anyone who cares to try.

More generally, protecting your identity from forgery relies on the use of secret, strong32
passwords. Even on a single-user machine, threats like “shoulder surfing” or repeated
password guessing attempts at the console over an extended period of time can result in
the compromise of a login password and thus system. Further exposure can occur if the
same password is used on a different computer (shame!). From the field of cryptography
comes the answer: one time passwords (OTP). However, while computer login OTP
solutions do exist,33 many are not well developed and none are widely deployed due to
the attendant increase in infrastructure costs. And, unless you only plan to logon a very
few times, or unless you have an incredible memory (unlike me), implementing OTP will
require changing the ID system to use two factors: something you know and something
you have (be it a list of passwords or a password generator—token—of some type, which
will further increase infrastructure costs). While you may later choose to implement some
type of two- or even three-factor authentication system, for this project we are relegating
ourselves to making do with reusable passwords.

However, even though passwords may be reusable, that does not mean they have to be
fixed or permanent. Most if not all computer systems deployed provide some means to
change passwords. The tradeoff to be made is between the OTP ideal and the human part
of the system. As the frequency of replacement increases the risk decreases until a point
is reached where the typical human operator either: (1) finds the burden onerous; or (2),
is unable to remember new passwords reliably and will begin to use “aids” (e.g., writing
the password down or choosing simple passwords). Further decreasing password life
below this inflection point will only serve to increase (probably rapidly) the risk of
password compromise. The million-dollar question is, where in the spectrum between a
OTP and a permanent password can the human part of the system operate? I am not sure
that this question has ever been answered satisfactorily. However, typical policy
suggestions for maximum password life range from 30 to 180 days (say 90 days for our
purposes; although again note that this is without any quantitative or even semi-
quantitative basis).34

Unfortunately, it is a human trait to dislike change, and some users will try to revert to
their old password. This tendency can be combated in part35 by having a policy that
specifies a minimum number of weeks that a password must be in use before it can be
changed again by the user (this makes the assumption that, given sufficient time in use,
the new password will become acceptable enough to use so that the strong desire to

32 See the introduction to the topic of passwords in Step 1.3 above.
33 For example, http://www.inner.net/opie as well as various commercial solutions.
34 Password aging is also important for protecting inactive accounts from compromise. See Step 3.2.4.
35 Best would be support to prevent password reuse altogether. While this is not possible under the SuSE
distribution, the latest versions of PAM do support this feature. Available at
http://www.kernel.org/pub/linux/libs/pam/pre/library/Linux-PAM-0.75.tar.gz

-19-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

change it back will have passed; say 14 days). In an attempt to be more user friendly,
policy may also choose to warn users that their password is about to expire (say 7 days).
Also, because a user may be gone on travel or what have you on the day their password
actually expires, some people consider it acceptable to keep such accounts active for a
period of time in order to provide an initial chance to login and change their password
when they return without requiring superuser action (say 21 days). (An alternative view,
that I endorse, is that this additional password exposure cannot be justified; users should
change their password with the `passwd` command when they are given a warning. Also,
to enable and thus allow users to wait until the system forces them to change their
password would seem to only tend to breed a lack of concern and understanding of the
importance of a password to security, and will in some measure reduce the reliability of
actually having the password changed.)

Note: all of these time periods are for illustration purposes
only. The actual periods should be consistent with your password
policy. However, all of the illustrations used here and elsewhere
in this paper for security settings are typical of those found in
the open literature and can be used as a starting point for those
that do not have an existing security policy.

While it is possible to enter this data manually into /etc/shadow (shadow passwords are
enabled by default under SuSE; see man page for shadow for format information), two
UNIX commands are available to make this easier: ‘passwd’ and ‘chage.’ For example,
the illustrative policy discussed above might be implemented for a user named “johndoe”
as follows (here “johndoe” would be an existing account):

passwd –x 90 –n 14 –w 7 –i 21 johndoe

or by:
chage –m 14 –M 90 –I 21 –W 7 johndoe

Other options exist for ‘chage’ (read man page). The configuration file /etc/login.defs
also includes global definitions for some of these variables (read man page for
login.defs). The commands ‘useradd’ and ‘usermod’ can also be used to specify an
expiration date and the inactive time (see man pages).

Note: when an account has expired and that person tries to login
under ‘X’, the display (at least under SuSE) will go blank. The
system administrator will have to login under one of the virtual
consoles, set the person’s password to a temporary value, and
stop/start ‘X’.

Step 3.1.3 Dealing with forgery attempts in cyberworld

If someone does set about to try and guess your strong password through a console or ‘X’
login prompt (assuming you followed advice similar to that in section 1.3 above, and that
they all ready know or are guessing your username as well), and if all is working as
planned (don’t forget quality and testing!), the computer will not give them access to any
computer resources until it checks their identity (delay); if the ID is determined to be
bogus (detect), the login attempt will be rejected (respond).

-20-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

It is possible for the cyber system to make it tougher on would be identity thieves by
inducing human-scale delay into this process. Increased delay generally means there is an
increased likelihood of interruption (e.g., of someone observing the activity and calling
the guards (detect) who then show up and arrest the perpetrator (respond)). For virtual
console login, this can be done by setting the parameters FAIL_DELAY (say 10, as in
seconds) in the /etc/login.defs configuration file.

In some cases (such as for this project, where a login denial of service might be a bother
but would not be too serious of a situation), a better solution is to simply lockout or
prevent further login attempts by that user or until the situation is evaluated and action
taken by the system administrator (often called “black listing”). Under the SuSE Linux
installation (and most other Linux and some other UN*X versions), most authentication
services are implemented using Pluggable Authentication Modules (PAM).36 To effect a
black list policy, insert the following two lines in all of the PAM modules37 found in the
/etc/pam.d directory:

auth required /lib/security/pam_tally.so no_magic_root
account required /lib/security/pam_tally.so deny=5 no_magic_root

Then `touch` and `chmod 600` the log file /var/log/faillog.

By placing these lines in all of the /etc/pam.d configuration scripts, if someone manages
to gain access to a shell on your computer because you were careless and stepped away
for just a “moment,” some protection from password-guessing attacks against other
sensitive commands is still available. Related /etc/login.defs configuration entries include
LOGIN_RETRIES (say 5) and PASS_CHANGE_TRIES (say 5; although this did not
work in the tests conducted, thus requiring the 2nd pam_tally line entry in
/etc/pam.d/login).

Step 3.1.4 Another way to deal with forgery attempts in the real world

Since the odds are very-very poor for someone to actually guess a strong password, they
will generally have to make many-many attempts (delay). This would imply that if you
have and actually use the right system logging tools (detect), the odds are in your favor
such that you will notice their attempts and be able to take appropriate action (respond)
before they can actually compromise your system. The following suggestions are made
for console login protection under SuSE Linux. In /etc/login.defs find the appropriate
lines to make the following settings:

36 For reference purposes, the PAM configuration files used in the project reported in this paper are
provided in Appendix-B. Further information can be found in the /usr/share/doc/packages/pam directories
(e.g., `netscape /usr/share/doc/packages/pam/html/index.html &`).
37 Actually, because of the way SuSE has implemented the login program, and the way it will be
configured below, only the second line should be placed in the /etc/pam.d/login file. Also, due to some
(unknown at this time) problems with the SuSE distribution of the xlock and vlock programs, black listing
does not work for them, and so these lines might as well be left out of /etc/pam.d/vlock and xlock until the
problem is resolved ("pam_tally[1147]: Error opening /var/log/faillog for update").

-21-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

FAILLOG_ENAB yes
LASTLOG_ENAB yes
FTMP_FILE /var/log/btmp
HUSHLOGIN_FILE

In /etc/syslog.conf add the line:
 auth,authpriv.* /var/log/security

(Note that while the ‘auth’ facility is supposedly deprecated, it is still used at least under
SuSE Linux; the numerical value of ‘auth’ and ‘authpriv’ is actually different, so
invoking only one will not log information sent to the other facility. Also be warned that
although the available documentation indicates that “white” space in syslog.conf can be
spaces or tabs, some implementations may have trouble parsing the file unless tabs alone
are used.)

As noted previously, however, the login.defs configuration file is for SuSE-unique
implementations of certain programs like “login” and is not global in scope. In order to
get a history of bad login or other password use attempts, add the following line38 at the
end of every PAM module found in the /etc/pam.d directory:

session required /lib/security/pam_unix.so

Make sure the appropriate files exist by doing, for example, a ‘touch’ on /var/log/lastlog,
/var/log/btmp, and /var/log/security (/var/log/faillog was treated in the previous step).
Also ‘chmod’ the permissions on each of them to 600 (in general, only root should have
access rights to see the sensitive information that log files contain).

Check these logs with commands like `last`, `lastb`, `faillog`, and `tail /var/log/security`.
Console logins will also now display the last time “you” successfully logged in and how
many failed login attempts occurred since that time. In a related check, try the command
‘last reboot’ in order to see if there are any surreptitious machine reboots that may be
indicative of someone trying to get control of your computer. A different check is
possible by issuing a `cat /proc/device-tree/options/security-#badlogins`. During the
initial system startup you can also issue the `printenv` command (before the boot
command) and see what value is returned for “security-#badlogins” in order to try and
detect password guessing attempts under Open Firmware.

However, be warned that not all of these logging or reporting
mechanisms (e.g., `last` or `lastb`) give a full and accurate
summary of all login attempts (good or bad) or even machine
reboots (e.g., a `halt` or `reboot` with a ‘-d’ switch will not
write the wtmp record). This is especially true of logins made
under SuSE through an ‘X’ interface (xdm/xlogin). The final and
best bet seems to be the use of records PAM places in
/var/log/security. It is not clear whether this is a SuSE-

38 The last login module would also be nice to use, but it was not functional under the SuSE distribution
(lastlog was unable to resolve symbols pam_sm_authenticate and pam_sm_setcred).

-22-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

specific issue or not. And, of course, if someone has actually
gained access to your computer, the logs may not mean anything.

Step 3.1.5 Additional logging considerations

While Step 3.1.4 implemented logging specifically to meet a security threat, it is also
worthwhile to add additional system instrumentation (logging) both as a means of
supporting general troubleshooting as well as provide information that may help identify
attacks. The following are additional suggestions for /etc/syslog.conf (you may want to
eliminate redundancies or logging for unimplemented services; also ‘touch’ and ‘chmod’
the specified log files as above):

#send all “warning”and higher level messages to one file

*.warning /var/log/syslog

#send all kernel messages to one log

kern.* /var/log/kernel

#print real-time display of security, warning, and kernel

#messages on console

auth,authpriv.*;*.warning;kern.* |/dev/xconsole

#send emergency messages to all users currently logged on

#system with the ‘wall’ feature (* in action field)

*.emerg *

Rather than piping syslog output to ‘xconsole,’ or in addition to it, you may wish to send
these messages to one of the virtual terminal device files (say /dev/tty2).

To activate these changes immediately, I suggest you next execute `/etc/rc.d/syslog stop`
and then `/etc/rc.d/syslog start`.

In order to manage these log files that will otherwise grow to very large sizes, it is also
suggested that that they be “rotated” (i.e., make a compressed copy and then start over
with a new file). Under the default SuSE installation, log rotation is already setup using
‘cron’39 and a ‘zip’ program.40 All that has to be done is to make sure the configuration
file, /etc/logfiles, accurately reflects the logs you want to rotate (the default file has many
logs listed that may or may not reflect your needs—comment them out or delete them as
desired). For the log files created above, edit /etc/logfiles to include the following lines:

39 The SuSE version of cron (in what appears to be a modification or adaptation of Paul Vixie’s cron)
seems to be well suited for the frequent reboots and shutdown periods a machine like the laptop discussed
in this paper sees. Other Linux distributions may need to consider other versions like hc-cron.
40 In contrast, recent RedHat installations are configured to use ‘logrotate.’

-23-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

/var/log/security +4096k 600 root.root

/var/log/syslog +4096k 600 root.root

/var/log/kernel +4096k 600 root.root

Depending upon your disk space and desires, you may want to change the rotation
schedule (here driven by reaching a log size of 4096K bytes). Based upon your own site
policy, you may also want to change the record (log copies) retention period. Under
SuSE, edit /etc/rc.config and set MAX_DAYS_FOR_LOG_FILES=“365” to the desired
value. You may also want to periodically make backup copies of these files on removable
media.

Step 3.1.6 Legal notices

Most government and many commercial organizations now require warning banners to
be displayed at all login (system user access) points. Think of this like the “no
trespassing” sign often seen on fences, gates, doors, or other entry points into controlled
areas. These warning banners serve two purposes. First, they can act as a deterrent to the
simply curious from going where you don’t want them (although conceivably it may also
serve to infuriate and even motivate certain types of individuals to violate your space).
Second and by far foremost, organizations require the banner in order to give them a “leg
up” in prosecuting unauthorized users. Warning banners should be developed under
consultation with your legal counsel.41 However, they typically contain statements about
what is considered to be proper use, about system monitoring, and about privacy
expectations (read none). For our machine in its present state, warning banners need to
appear at console and xlogin prompts. Console logins are easy to take care of: put the
desired contents of the warning banner in /etc/issue (you may also choose to put them in
/etc/motd, but that is not necessary for our purposes here). For xlogin, a little more work
is required. I chose to place the contents of the warning banner in the file
/etc/X11/xdm/legalnotice.rtf. I then edited the file /etc/X11/xdm/Xsession and placed the
following lines immediately before the ‘xautolock’ call (see Step 2.3):

xmessage –center –file /etc/X11/xdm/legalnotice.rtf \
-buttons “consent:3, :4,reject:6” –default reject
XMANS=$?
if [$XMANS –ne 3]; then
kill –9 $$
fi

The spaces (actually I used 61 of them) and ‘:4’ cause ‘X’ to display an unlabeled button
between the consent and reject buttons just to arrange the message window to suit me.
The message appears after login and will restart xdm (and thus give a new xlogin prompt)
unless the warning banner is consented to (as indicated by the action of pressing the
‘consent’ button; the separation of this button from the ‘reject’ button also helps to avoid

41 http://ciac.llnl.gov/ciac/bulletins/j-043.shtml includes banners for U.S. Department of Energy systems
that could provide a good starting point. The statutory banner from the TITAN security package is another
possibility (http://www.fish.com/titan/).

-24-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

the “I meant to press the ‘reject’ button” scenario). You could, perhaps, improve on this
script by repeating the message if the center button was pressed. You might also “play”
around with its location in Xsession in order to have it appear before the login prompt if
so desired (but then how do you know that it was not someone else who first consented
with the warning but did not log on?).

Step 3.2 Dealing with multi-user concerns

In a multi-user (and network) environment, every account on a system is a potential
intrusion point. Compromise of any account will increase the possibility that other
accounts could be subverted, data obtained, and the system taken over. (In networked
environments we could add that other systems on the network may be at increased risk
for compromise.) This suggests that additional measures (beyond the single-user steps
above) need to be taken to protect all user accounts.

Step 3.2.1 Additional identity (password) protection

Passwords have to be stored in order for a system to perform authentication. These
passwords must be encrypted and should be retrievable only by the system (delay). On
Linux and most UN*X platforms this is implemented by using “shadow” passwords—
and it is the method employed by the SuSE installation. While the default installation is
probably correct, it doesn’t hurt to verify ‘shadow’ is, in fact, being used (the easiest is
simply to verify the presence and use of /etc/shadow to store encrypted passwords). It is
also an easy matter to verify the appropriate ownership on the files. The file /etc/passwd
should be owned by root and belong to the group root. The file /etc/shadow should be
owned by root and belong to the group shadow (at least under SuSE; some installations
may have /etc/shadow as belonging to root).

In terms of file protections, many UN*X security guides state that the permissions on
/etc/passwd should be 444 and that on /etc/shadow should be 400. Be warned:
implementing these file protection levels under SuSE Linux (and maybe others) will
break some programs, including the screen locking program enabled above. Rather,
make sure permissions do not allow the “world” any permissions on /etc/shadow, and
check that the entries in /etc/group does not inadvertently give permissions to others.
Only the file owner (root) should ever have write permissions for either /etc/passwd (say
644) or /etc/shadow (say 640).

However, if a clever attacker somehow manages to obtain a copy of /etc/shadow, the
default use of the “crypt” algorithm for encrypting passwords makes it easy with
available tools to perform a fairly rapid “brute-force” dictionary attack. Additional delay
can be introduced by employing a much harder (more computationally intensive)
algorithm. Fortunately PAM includes support for use of the MD5 algorithm for password
“encryption” (really a hash). Configuring the system to use MD5 is accomplished by

-25-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

adding the option “md5” to every “password” rule in the PAM configuration files located
in /etc/pam.d.42

Unfortunately it is also necessary to add a little quality control (Q) to make sure that all
users are using strong passwords (delay). (It was assumed above that a single user/owner
would be responsible in following appropriate guidance, but will all of your users abide
by such a policy as a matter of course?) The actions to be taken are two fold. In
/etc/login.defs find the appropriate lines and make or verify the following settings:

PASS_MIN_LEN 8
OBSCURE_CHECKS_ENAB yes
PASS_ALWAYS_WARN yes

In /etc/rc.config set:
PASSWD_USE_CRACKLIB yes

Then run ‘SuSEconfig’ which will update all “password” rules in the PAM configuration
files with the “use_cracklib” option. (Don’t ask me why the MD5 option is not set up this
way! Maybe in a future release.) These configuration settings are also used by an
apparently SuSE-unique PAM module pam_pwcheck.so (the current release of PAM
includes the module pam_cracklib.so that performs similar functions).

Besides the ‘Q’ added to provide assurance that the delay associated with strong
passwords as first introduced in Step 3.1 is maintained, we must also revisit one other
consideration from that step: password aging. The addition of other users to the system
has added another exposure to our passwords. While we have added delay (as above) to
provide protection, is our choice for aging (respond) appropriate? We can hope that our
instrumentation (e.g., logging, process monitoring, computational loads, etc.) would
allow us to detect attempts to “sniff” passwords or gain access to /etc/shadow, but the
reality is that if someone is cleaver enough to compromise an account they have a good
chance of being capable enough to cover their tracks. This may be a case where you want
to assume /etc/shadow is under a dictionary attack (“detect”). Is it then possible to select
a maximum password age (respond) that will give favorable odds at thwarting this
attack? (I don’t have the answer and can still only refer you to the typical policy values
given in Step 3.1.2 above. What odds are you comfortable with?)

Step 3.2.2 Tightening authorization with unique user groups

By belonging to a group(s), a user has access to all of the programs and data files
belonging to the same group as an account as long as the group permissions on these files
permits the access. Thus group access needs to be minimally defined in order to help
protect (delay) against an account compromise. For example, only users with full system
administrator privileges should be assigned to group ‘root.’ While the default installation
is probably correct, it doesn’t hurt to verify the appropriate file protection: /etc/group
should be owned by root, belong to the group root, and have permissions no more “open”

42 In addition to Appendix-B, SuSE provides examples in /usr/share/doc/packages/pam/md5.config

-26-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

than 644. In addition, all users should be defined in a separate and unique group. By
doing this, only the user will have access to their files by default (delay). It is suggested
that the group numeric and name should be the same as the user’s numeric and name for
ease of administration.

Step 3.2.3 Tightening authorization by restricting use policies

Each and every account on a system has a potential—some more and some less—of
being exploited. One way to reduce this potential is to place restrictions on what a uses a
particular account is authorized for. PAM provides an interface that can be used for such
purposes (although not so used in this paper). Several standard PAM modules are
available along these lines: pam_time.so and the corresponding configuration file
/etc/security/time.conf might be called to restrict the times users can connect (e.g., to
normal working hours; although note that the module did not function correctly in the
limited tests conducted for this paper); and pam_limits.so with /etc/security/limits.conf
can be used to place resource limits on a user.

Step 3.2.4 Tightening authorization by eliminating unwanted “users”

As noted above, user accounts on a system are potential points of exploit. The best way to
minimize this potential is to simply eliminate the accounts that are not wanted. Files that
are associated with these accounts should also be removed or have ownership changed
(especially executables that might be exploited; others simply to ease system
administration). This effort is two-fold: initially delete “users” that are part of the default
installation; and, in the longer term, delete users that at one time were authorized to use
resources on the computer, but are so no longer.

In terms of initial “users,” I prefer to manually edit /etc/passwd, /etc/shadow,
/etc/gshadow, and /etc/group43 (make a backup first!). For each user determine which
groups they belong to, and which files they are associated with (e.g., `find / -user
username` and `find / -group groupname`). That information, along with some
understanding of the system will allow files, groups and users to be safely removed. (In
my particular SuSE installation, 39 “users” and associated groups were eliminated! Only
the users root, bin, daemon, lp, man, at, nobody, and appropriate local usernames were
left in /etc/passwd and /etc/shadow. The entries in /etc/group left were: root, bin, daemon,
tty, disk, lp, kmem, mail, uucp, shadow, dialout, audio, at, video, nogroup, and
appropriate local user groups.)

While eliminating the initial but unwanted user accounts takes considerable time, in the
long term, managing other users will likely become the bigger problem (assuming you
actually have multiple user—real people—accounts on your system). These users include
those no longer in your organization or company, those on extended absences, and those
that have been reassigned to different tasks and no longer require access. That inactive
accounts such as those belonging to people on extended absence or reassignment can be a

43 You can use `grpck` to verify the integrity of group files when you are through.

-27-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

risk by their existence is well attested to in records of incidents.44 But insiders in general,
and one can only presume that people who have left a company in particular (voluntarily
or not), account for roughly one-half of the threat45 to information technology systems.
The key is to somehow work with management and personnel to develop a procedure that
will alert system administrators immediately of such changes in status. It would then be
incumbent upon system administrators to quickly take appropriate action upon receipt of
such notifications. (In general, account deletion should be specified, although account
deactivation—e.g., `passwd –l username` or otherwise mangle the /etc/shadow password
field of an account record, say with =NP= or *LOCK*—is a possibility for cases of
extended absence.) While any such procedure will be very specific to your organization
and is thus not appropriate to discuss here, it should be pointed out that password aging
(see Step 3.1.2) will help to some small degree in reducing this risk (especially for
inactive accounts provided the maximum password lifetime is reasonably small).

Step 3.2.5 Noshell

While it might be theoretically possible to reduce system users down to two, ‘root’ and
one local user, most UN*X computers are configured to use additional system process
accounts, such as “bin” and “daemon.” These system accounts are not intended to be a
standard user account—never used for login purposes—and thus should never be
configured with a usable password. In addition, to further protect against the possibility
of misuse of these accounts—such as may occur from a buffer-overflow exploit—a
functional shell (e.g., /bin/bash) must not be started by the system. Often this is
accomplished by making an entry such as /bin/false or /dev/null in the shell field of the
process account record in /etc/passwd. Of course, if an attacker can establish a real shell
program at or linked to such a path, they can exploit this entry.

A better solution is to point to a compiled program (not a shell script!) that will write to
‘syslog’ if anyone tries to invoke the shell (which should never happen—delay). This
could be very useful in identifying exploit attempts for those of you who routinely
evaluate your logs. If an entry is found indicating this program was invoked (detect), the
system logs should be further scrutinized in order to identify and fix the problem
(respond), as well as to look for other unauthorized activity. An example of such a
program is ‘noshell’ from the TITAN security package:46

/* This tool suite was written by and is copyrighted by Brad Powell, Matt */
/* Archibald, and Dan Farmer 1999 */
/* The copyright holder disclaims all responsibility or liability with */
/* respect to its usage or its effect upon hardware or computer */
/* systems, and maintains copyright as set out in the “LICENSE” */

44 For example, Stoll, Cliff, 1989, The Cuckoo’s Egg, Simon & Schuster, Inc., New York.
45 For example, Dalton, G., 1998, “Acceptable Risks,” August 31, Copyright 1999, CMP Media Inc.
(article found at
http://www.informationweek.com/shared/printArticle?article=infoweek/698/98prrsk.htm&pub=iwk) places
insider threat level at 58% while Rapalus, P., 2000, “Computer Security Institute press release,” March 22
(found at: http://www.gocsi.com/prelea_000321.htm) suggests insiders are 38% of the problem.
46 http://www.fish.com/titan/

-28-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

/* document which accompanies distribution. */
/* Titan version 3.0.7 April 25 11:21:02 PDT 1999 */

#include <syslog.h>
#include <unistd.h>
#include <signal.h>

#ifndef lint
static char sccsid[] = “@(#)noshell.c bpowell- Titan 3.0.7 5/11/99”;
#endif /* not lint */

#define perrorexit(s) { perror(s); exit(1); }

main (int argc, char **argv)
{
extern char **environ;
int i;

/*
 * Fix the environment.
 */
if (environ != 0)
 environ[0] = 0;

/*
 * Fix the signals.
 */
for (i = 1; i < NSIG; i++)
 (void) signal(i, SIG_IGN);

/*
 * Log the login attempt.
 */
openlog(argv[0], LOG_PID, LOG_AUTH);
syslog(LOG_AUTH, “Titan warning: user %d login from a disabled shell”, getuid());
exit(0);
}

Step 3.2.6 System accounts

In UN*X, the system account known as ‘root’ requires the most protection as it provides
essentially total access to resources on a system. Thus this account needs to be tightly
controlled, and giving the root password to more than one person is strongly discouraged.
Distributing a password increases its exposure and thus its risk of compromise. (For
recovery purposes, having a sealed record of the password locked in a safe under
appropriate access controls may be acceptable.) If multiple people must be granted
system administrator (root) privileges, it is strongly suggested that ‘z’ accounts be used.
A ‘z’ account is a system account (uid/gid of 0/1) with a ‘z’ appended to the end of a user
name (e.g., usernamez or username_z). This will not reduce the risk of having a “root”
account password inadvertently exposed, as just as many copies of an administrator-level
password would be distributed as in the case of simply passing out the real root password.
If a copy of the /etc/shadow file is somehow obtained by a threat agent, having an
additional account may actually reduce the time required to compromise the system.
However, the additional accountability provided by maintaining separate administrator
accounts is thought to reduce the overall security risk of a system.

-29-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

Step 3.3 In further anticipation of networking

At this point we are ready to think of security-related configurations that are specific to
network-connectivity concerns. All of the single- and multi-user security steps taken in
Step 3.1 and Step 3.2 above (with the exception of 3.1.1) are very important for the
security posture of a networked system in terms of general user authentication and
authorization (A&A). The next step before connecting is to actually configure network
services and establish system and additional user A&A controls. Just as in the fact that
every user account provides a potential intrusion point, so every service and authorization
provided for network connectivity is a potential vulnerability that might be exploited.
Measures must be taken to protect any such exposures.

“Securing workstations is primarily a process of eliminating
network services… A typical workstation operates on the client
end of client-server network communications. There is almost
never a need to provide a service.”47

Securing a workstation includes eliminating internet daemon services like the Berkeley
“r” programs (rsh and rlogin) and ftpd. It also includes the elimination of run-time
programs like DNS, mail servers, print servers, NFS, and http servers. If a system is
installed following after Appendix A, most of these have already been dealt with.
However, the steps below will help assure network services are eliminated whichever
installation option is selected.

Step 3.3.1 Stop Internet daemon services

The desired configuration for the workstation this paper is concerned with has no need
for the services provided by the Internet daemon.

The vulnerabilities associated with these services are eliminated by simply making them
unavailable. This is accomplished in several steps as follows.

1. Disable (comment out) all services in /etc/inetd.conf. In the standard SuSE
installation, the services to be disabled are: time, ftp, telnet, shell, login, talk,
ntalk, pop3, finger, http-rman, and swat.

2. If inetd was installed, remove it with the command `rpm –e inetd`. (A different
method—the hard way—is to remove the files by hand; but be warned, the rpm database
will not be up to date. First, run `/etc/init.d/inetd stop` and `/bin/rm /etc/init.d/inetd
/etc/init.d/rc[0-6].d/*inetd`; the script links could also be removed in this case under
SuSE with the command `insserv –r inetd`. In a similar manner remove rusersd and
rwhod with their associated rc?.d links. Another alternative is to set START_INETD=”no”
in /etc/rc.config and run `SuSEconfig`; this will not, however, remove the files.)

47 The SANS Institute, 2000, Securing Linux Step-by-step, version 1.0, p. 18.

-30-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

3. Finally, any installed inet associated daemons should be removed (`rpm –e
package_name`), where the packages to remove (depending on the actual install
configuration used) may include nkitserv, inetd, proftpd, wuftpd, and ftpd. (A
different method—the hard way—is to remove the files by hand; but be warned, the rpm
database will not be up to date. First, locate the desired files (e.g., use `which`, `whereis`,
and the `find` commands) and delete them (`rm`) in order to prevent inadvertent use (or
unauthorized startup). This includes all of the “in.*” files in /usr/sbin and /usr/sbin/vboxd,
and any others listed in /etc/inetd.conf installed.)

Step 3.3.2 Disallow Internet daemon connections

Although strictly unnecessary without any Internet services running, it is possible to take
several simple steps to—read “no excuse not to”—remove any connectivity
authorizations that may exist. This will provide a second layer of protection or “defense
in depth” in case the services are somehow installed and started (maliciously or not48).

1. To provide protection for TCP wrapped services (SuSE installs by default),
remove all authorization lines in /etc/hosts.allow and place the line “ALL : ALL”
as the sole configuration entry in /etc/hosts.deny.

2. Run `tcpdchk –v` to verify that it is the /etc/inetd.conf file that is in use (Step
3.3.1) and that the configuration is to deny all daemons, clients and access. This
should look something like:
linux: # tcpdchk –v
Using network configuration file: /etc/inetd.conf

>>> Rule /etc/hosts.deny line 3:
daemons: ALL
clients: ALL
access: denied

3. To provide protection from access to Berkeley “r” programs, make sure that no
/etc/hosts.equiv or .rhosts files exist on the system (use `ls` and `find` to locate
them and `rm` to remove them).

Step 3.3.3 Stop runtime-network daemon services

The desired configuration for the workstation that this paper is concerned with also has
no need for runtime-network services.

The vulnerabilities associated with these services are eliminated by simply making them
unavailable. This is accomplished in several steps as follows.

1. The first thing to do is remove the following packages, if they were part of a
default installation (use `rpm –e package_name): lprold, lprng, plp, portmap, nfs-

48 For example, misuse of `rpm` or other software update program may inadvertently reinstall software that
had been removed for security reasons.

-31-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

server, nfsutils; other possibilities include samba, thttpd, and apache. (A different
method—the hard way—is to remove the files by hand; but be warned, the rpm database
will not be up to date. First, to shutdown the portmapper and line printer daemons, the
easiest method is to set START_PORTMAP=”no” and START_LPD=”no” in /etc/rc.config
and run `SuSEconfig`. Or you can stop the services using the scripts in /etc/init.d and
remove the start and stop scripts in /etc/init.d/rc[0-6].d as described above for the inet
daemon above. The actual daemons and associated files should be deleted as well. The
files related to the standard installation to remove include: /usr/sbin/rpc*;
/usr/sbin/pmap*; /usr/bin/rpc*; and /sbin/portmap.)

2. Next, while it would be nice to remove sendmail as this project has no need to
send mail, let alone receive it, the SuSE cron package has sendmail dependencies,
and so it must be kept. However, make sure that sendmail does not startup in the
daemon mode by editing /etc/rc.config and make sure that SMTP=“no”. I would
also suggest that any rc scripts are removed as described above.

3. Finally, while we want to have ‘X’ available on the local terminal, we do not want
it to act as an X server for other network devices; ‘X’ has proven to be a very
vulnerable service (tunnel it over ssh if you really need to). To secure the ‘X’
server, edit the file /etc/X11/xdm/Xservers and add “-nolisten tcp” to the line “:0
local /usr/X11R6/bin/X :0 vt07” so that it reads:
:0 local /usr/X11R6/bin/X :0 vt07 -nolisten tcp

After completing these steps run the commands `netstat –at` and `lsof –i +M` to check for
listening network services. If you have followed the steps outlined above successfully,
you will find that no services are listening on any ports.

Step 3.3.4 Disallow network connections

While Internet daemons are generally configured with TCPwrapper controls, PAM
supports access control based on both the identity of the network user and system (here
limiting all logins to local). Edit the file /etc/security/access.conf so that the configuration
lines read:

+:ALL:LOCAL
-:ALL:ALL

and place the command line:
account required /lib/security/pam_access.so

in the xlogin and xdm PAM configuration files. If access takes place locally to the
machine (LOCAL), the first line in the configuration enables login (+) for all valid users
(ALL). If access takes place over the network, the first line does not match, but the
second one does (the 2nd ALL), but login is disabled (-) for all users (the 1st ALL).

It is also considered good practice to restrict root logins to local consoles. This is
accomplished with the command line:

auth required /lib/security/pam_securetty.so

-32-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

that is also placed in the xlogin and xdm PAM configuration files, and by placing a list of
the authorized terminals in the /etc/securetty file. If you want ‘root’ to be able to login at
the ‘X’ and virtual consoles, the /etc/securetty file will have seven lines or entries; one for
the ‘X’ display (:0), and one for each virtual console (tty1 through tty6).

Step 4. Configuring the network interface

Step 4.1 Kernel configuration

The first step in establishing a network connection is to configure the kernel to start the
network interface card (NIC). For the Titanium PowerBook G4, edit the
/etc/modules.conf and add the line:

alias eth0 gmac

When the machine has been booted with this configuration set, you should be able to
determine that it has started correctly with the command `cat /proc/net/dev`.

Step 4.2 Network configuration

In order to configure the network software interface, some information must be gathered
(here we are configuring a fixed IP address machine). For illustration purposes ONLY,
consider the following table.

parameter value (for illustration purposes ONLY)

hostname aqua

domain name waterworks.com

IP address 192.14.64.11

gateway address 192.14.64.254

netmask 255.255.255.0

name server address 192.14.64.1

To configure the system with this data, three choices exist under SuSE: YaST, edit
/etc/rc.config and run SuSEconfig, or edit the configuration files manually. YaST is a
menu driven system configuration tool; after starting it, select “System administration,”
“Network configuration,” then “Network base configuration.” The ‘tab’ and ‘Fx’ keys are
used to move around through the submenus found at that level to enter in the data. YaST
actually writes the data to rc.config and runs SuSEconfig for you. If you wish to edit (or
inspect) the rc.config file, look for the following parameters: NETCONFIG, IPADDR,
NETDEV, IFCONFIG, and FQHOSTNAME. To verify (or edit manually) the network
configuration files manually, consider the file listings that follow below. If the manual
method is used, I suggest that you first stop routing and networking (‘/etc/rc.d/route stop`

-33-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

and `/etc/rc.d/network stop`), and then restart them once the configuration is complete (in
Step 4.4 below).

/etc/hosts
127.0.0.1 localhost
192.14.64.11 aqua.waterworks.com aqua

/etc/resolv.conf
nameserver 192.14.64.1
search waterworks.com

/etc/HOSTNAME
aqua

/etc/route.conf
127.0.0.0 0.0.0.0 255.255.255.0 lo
192.14.64.11 0.0.0.0 255.255.255.0 eth0
default 134.253.14.254

It is now time to connect the Ethernet interface to your local network and restart the
network service!

Step 4.3 Monitoring the interface

Once we provide Ethernet connectivity, can reach the computer and its resources through
two access points: the terminal (here meant to include all virtual consoles as well) or the
network. Terminal access controls (login, xdm, vlock, xlock) include instrumentation
(e.g., pam_unix.so and associated entries in /var/log/security) that will let us know when
someone is “jiggling the door knob” to try and get in (i.e., password guessing attempts).
Instrumentation is also needed for the network interface—we would like to know when
someone was “shaking the fence” to try to find a hole to get in. The instrumentation
explored here is PortSentry, which is useful to monitor for such things as connection
attempts (but we have no network daemons running, so why would someone try?) or port
scans (what are they looking for?). PortSentry can be configured to monitor TCP and
UDP protocols. Granted that there are other ways to shake the fence (protocols), this will
catch the vast majority of the intrusion problem observed in networked systems today.
Note that the intent here is to use PortSentry for its logging capability through syslog().
However, PortSentry is also of interest for its ability to actively respond to attacks
(through TCPwrapper, `route`, and packet filtering). While not of immediate use for the
planned use of this machine—network testing and security monitoring—conceivably the
purpose could change and this at-hand functionality could be put to good use.

Step 4.3.1 Obtain the software

Warning: many organizations have security policies that forbid downloading
software from external organizations. (This was alluded to in Step 1.1 when discussing
the Linux distribution selection.) However, for the purposes of this paper it will be

-34-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

assumed that your organization has a more moderate stance that allows downloads
provided file source and integrity can be verified to some extent. PortSentry is available
from http://www.psionic.com/abacus/portsentry. You should obtain a copy of the binary
(portsentry-1.1.tar.gz), binary signature (portsentry-1.1.tar.gz.sig), and public key
associated with the signature (crowland.new.asc); place them in a suitable directory (I
used /usr/local/src/portsentry). (If you have to use this computer—the one you are
presently configuring—you will have to start the network and routing services as
described in Step 4.4 at this point and connect the Ethernet interface to your LAN.)

Step 4.3.2 Verify the file integrity

Before the updates are installed they should be checked to verify their integrity.49 First,
import the key with the command `gpg –import crowland.new.asc`. Then, check the
signature by running the command `gpg –verify portsentry-1.1.tar.gz.sig`. The output
from gpg should be something like:

gpg: Signature made Wed 11 Jul 2001 12:07:59 PM MDT using DSA key
ID BFB08FDA
gpg: Good signature from "Craig H. Rowland
<crowland@psionic.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs
to the owner.
gpg: Fingerprint: AFA2 D8A6 272B 4432 2BF4 FF43 F8A9 9B91 BFB0
8FDA

From this you know that the triplet of files belong to each other and that the binary was
not somehow replaced or corrupted in transit. However, you have no way of knowing if
the key is really the public key of crowland@psionic.com (and thus the warning from
gpg). The best thing to do here would be by an “out of band” means—email, telephone,
or in person—independently verify the MD5 fingerprint;50 this will give a higher level of
assurance that the server was not spoofed and trojaned software downloaded.

 Step 4.3.3 Install the software

The first thing to do when installing PortSentry is to edit the configuration files. The
settings for the installation described in this paper follow below.

In portsentry_config.h find and edit the syslog() facility line to read:
#define SYSLOG_FACILITY LOG_LOCAL3

edit /etc/syslog.conf to add the command:
local3.* -/var/log/portsentry

49 For a more general discussion on file signature verification, see
http://the.wiretapped.net/security/cryptography/ssh/SSH/HOWTO-CHECK-SIGNATURES
50 Some software distribution sites use, as an alternative, one or more of the common PGP keyservers (e.g.,
http://wwwkeys.pgp.net).

-35-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

and `touch /var/log/portsentry`. This will send the output of PortSentry to a unique log
file in order to facilitate analysis of connection or probing attempts.

In order to configure PortSentry to be in a logging mode only (generate no traffic itself
nor take any active action against perceived threats), change the appropriate lines in
portsentry.conf to read:

RESOLVE_HOST = “0”
BLOCK_UDP=”0”
BLOCK_TCP=”0”
#KILL_HOSTS_DENY=”ALL: $TARGET$”

Next run `make linux` and `make install`. PortSentry is now ready to use. For the
installation described herein, I have configured PortSentry to start automatically in an
advanced stealth mode for both TCP and UDP by using the “rc” scripts that run during
system startup; a copy of the /etc/init.d/portsentry script is provided in Appendix C. After
the script is generated, run the command `insserv /etc/init.d/portsentry` to create the
appropriate rc?.d links, and edit /etc/rc.config to add the line:

START_PORTSENTRY=”yes”

Step 4.4 Connect the interface

The system is now in an acceptable state to connect the Ethernet interface to your local
network and start the related control and monitoring programs (`/etc/init.d/network start`,
`/etc/init.d/portsentry start` and ‘/etc/init.d/route start`)! This will likely be necessary in
order to complete portions of the remaining steps (at least unless you use a different
system for the required downloads and “burn” a CD with the software—a more secure
way if you can). However, such connectivity should be minimized as a matter of
principle until the remaining steps are completed.

Step 5. Software updates
Warning: again note that many organizations have security policies that forbid
downloading software from external organizations. The illustration here will be based
on an update of the SuSE distribution installed above, and will not address except in
passing other variations to this problem (e.g., downloading the latest kernel from
linuxppc.org).

Step 5.1 Find and download security-related updates

Even though you just purchased the latest Linux release available on CD, that does not
mean that you have the latest version of the software. SuSE updates can be found and
retrieved through the web at http://www.suse.com/us/support/download/updates/index.html by
selecting the correct distribution (version and platform); in our case the correct choice is
the 7.1 PPC release. This will bring up a listing of all of the update rpm packages
available, including source. Of particular interest here are those updates that are red-
tagged “Security-Update!” Compare this list against the installed packages (`rpm –qa`),

-36-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

and download the needed updates. (The standard location is /usr/src/packages/RPMS/ppc
for the binaries and /usr/src/packages/SRPMS for the source.)

It should be noted that if you are interested in the topic of updates in general, you cannot
rely solely on the SuSE site. A small sampling of other but important sites include:
www.kernel.org; www.linux.org; www.penguinppc.org; www.gnu.org; and www.x.org. In
addition, many of the individual packages installed under SuSE also have their own home
pages. One good way to help understand this complex web of sources that goes into a
Linux distribution is to check out the information available at www.linuxfromscratch.org.
However, before installing software from any of these other (non-SuSE) sites, you would
be well advised to make sure that they are compatible (i.e., SuSE may have made changes
to the base code such that they are no longer compatible with the standard open-source-
tree distributions and development activities; it would be nice if SuSE had this
documented and readily available).

Step 5.2 Verify the updates

Before the updates are installed they should be checked to verify their integrity. This
requires the use of “gpg” and the public key tied to the SuSE build; try `gpg –list-public-
keys` to verify that “<build@suse.de>” shows up, or else import the copy of the public
key found in the root directory of CD#1 into gpg. (The public key is also available on the
SuSE web site; the more paranoid could compare the pre-installed key with the CD key
with the web key in order to increase confidence that they really have a valid SuSE key.)
Next change your working directory to the location where the binaries were downloaded.
Then run `rpm –v –checksig *.rpm` to verify all of the files that were retrieved are intact
as created by SuSE, and thus are unlikely to be Trojans. (Note: you may see warnings
about an untrusted key, just as in Step 4.3.2 above, but the files should all verify. If you
want to eliminate the warning, you can sign the SuSE key yourself—`gpg –gen-key`,
`gpg –edit-key build@suse.de`, `trust`, `4`—say on the basis of comparing the CD and
web site keys.)

Step 5.3 Install the updates

The now-verified files can be installed by running the command `rpm –U *.rpm`.

Step 6. “Material” controls
The security configurations that have been discussed up to this point fit principally into
the category of protection elements—functions designed to keep unauthorized personnel
away from protected assets (information or information processing capabilities). They do
little or nothing to protect said assets from users who have access granted to them by the
system; whether they enter with valid or forged credentials, the system still thinks of
them as authorized users (it knows no difference). The general class of techniques used to
protect assets from people that have access to them are called material controls; they
include functions like providing independence of control from controlled (think
separation of system administrator from users), two-person rules, auditing, and
inventorying.

-37-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

Step 6.1 Protecting the installed software base from
unauthorized change

The two very much related functions of auditing and inventorying are introduced here. (In
this context, auditing is not referring to functions like reviewing access logs generated by
PAM library calls discussed above.) The packages introduced provide a detect function
for the type of attacks that require system files to be changed, added or deleted (e.g., the
installation of back doors, Trojans, or scripts, in order to gain certain user privileges or
exploit system resources). The packages introduced do not, however, provide any
capability to detect other classes of attack, such as data theft by copying (for a start, this
would require some form of a complete file access journaling program).

Step 6.1.1 System software inventory

What is there to inventory? The installed software, of course. While there may be some
software on the system that did not originate with the SuSE distribution (e.g., PortSentry
and user data), by far the majority of the system software, at least, was installed using
rpm packages. Because of the design of rpm—a program that creates a database of all
software it installs as an aid to manage said software—the system can be inventoried to
determine if the original software is still installed. The database is a list of files (including
directory structures and links) along with information that includes (but is not limited to)
such things as file size, MD5 sum, permissions, type, owner, and group. A system
software inventory is conducted by running `rpm –Va`. The output at this point in our
setup will run somewhere around a hundred lines, and look something like:

…
S.5....T c /etc/hosts
S.5....T c /etc/hosts.deny
S.5....T c /etc/inetd.conf
S.5....T c /etc/pam.d/other
S.5....T c /etc/securetty
…

As shown, the output format is a string of 8 characters, a possible ‘c’ denoting a
configuration file, and the file name. Missing files are simply reported as “missing” along
with their file name. Only files that failed in some way are output. A ‘.’ in the output
indicates one of the eight tests passed. Other characters in the string indicate which test or
tests failed, as follows:

S file size
M mode (permissions or file type)
5 MD5 sum
D device
L symlink
U user
G group
T mtime

-38-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

I suggest that the first time you use rpm to check the inventory of your system software,
you save a copy (say as /root/run_date.rpmverify.report) to check against (`diff`) in
future runs. The first time you run the report you should also take the time to understand
the test failures rpm is complaining about (the majority if not all of the cases will be due
to changes in configuration files).

6.1.2 System-wide data audit

In the context here, data audit refers to data of any and all forms (programs, databases,
etc.) as stored on the computers mounted, read-write mass storage devices (e.g., hard
drives) that are being audited to identify unauthorized changes. By far the most popular
program of this type is probably “Tripwire,” which was developed at Purdue in 1992. The
software was eventually commercialized,51 and is available for a number of platforms.
Recently, an updated, open-source Tripwire development project52 was launched that
specifically targets the Linux community. Unfortunately the latest source version (2.3.1-2
as of this writing, release date of 03MAR01) will not compile on the PPC platform (it
complains when trying to compile the cryptographic libraries that both BIG_ENDIAN and
LITTLE_ENDIAN are defined), and we are left to use the Purdue version 1.2 (patch level 2)
as supplied with the SuSE distribution (it is in the installed base listed in Appendix A).
However, from a pure functionality standpoint, the biggest difference between version 1
and 2 was added support to cryptographically protect the database that Tripwire produces
as a baseline for the file system; some form of protection is needed to prevent tampering
that may occur as part of an attack to cover “tracks” that may otherwise have been left.
Solutions to this problem do exist for version 1: store the database on write-protected
removable media or use a program such as gpg to encrypt the database files (both of
which are discussed below).

The first step is to create a configuration file, /var/adm/tripwire/tw.config, that will tell
Tripwire which files to monitor. The details needed for creating this file can be found in
the tw.config man page; however, an example file from this project is provided for
reference purposes in Appendix D (the objective being to eliminate hits by Tripwire from
simply rebooting the machine while covering a significant fraction of the system file
space). Second, run the command `/var/adm/tripwire/bin/tripwire –initialize` in order to
create the initial database (about a five minute process for the hardware/software used in
this paper), which will appear as /var/adm/tripwire/bin/databases/tw.db_yoursystemname.
Move this database file to the directory /var/adm/tripwire/db. You are now ready to begin
monitoring your system for changes. This is done simply by running the command
`/var/adm/tripwire/bin/tripwire` (or `/var/adm/tripwire/bin/tripwire > diff.file.name`). The
output on the display will show something similar to:

Phase 1: Reading configuration file
Phase 2: Generating file list
Phase 3: Creating file information database

51 http://www.tripwire.com
52 Source available at http://sourceforge.net/projects/tripwire and precompiled binaries for several platforms
are available at http://www.tripwire.org

-39-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

Phase 4: Searching for inconsistencies

Total files scanned: 62616
Files added: 0
Files deleted: 0
Files changed: 59278

After applying rules:
Changes discarded: 59278
Changes remaining: 0

Phase 5: Generating observed/expected pairs for changed files

Here the “Changes remaining: 0” means that, under the conditions of the
configuration file, no reportable changes were found (and diff.file.name will be empty).

In terms of protecting the databases, I suggest that you (1) encrypt them, removing the
originals except when conducting an integrity test, and (2) copy the encrypted files to a
removable media for backup purposes.53 The commands `gpg –c tw.config` and `gpg –c
tw.db_yoursystemname` from within the appropriate directories will create encrypted files
with a .gpg extension—you will be asked to supply a pass phrase54—while to un-encrypt
the files use `gpg tw.config.gpg` and `gpg tw.db_yoursystemname.gpg` with the same pass
phrase when prompted. Before encrypting, you may want to compress the files with a
program such as “bzip2;” this will save considerable space that could be important when
saving the files on removable media.

Step 6.1.3 Data backup for recovery

In general, information security is concerned with many types of threats, including
hardware failures, supporting utility failure, natural disasters, human errors, and
neighboring hazards. For most of these threats, backup and recovery are key elements in
reducing the risks associated with the potential data loss that could occur. For the threat
specifically addressed in this step—tampering—the same holds true. But why recovery
and not response? While it may be possible that inventory and audit (I&A) activities
could discover an attack in progress and so be able to interrupt the activities, it is not
clear that I&A can discriminate between an attack that is in progress from one that has
been completed. Trying to reconstruct the events is the subject of incident response, and
is beyond the scope of this paper. However, on the other side of such activities is the
eventual need to restore the system, and the ability to do that relies on data backup.

For the purposes of the project described in this paper, I rely on three methods of
recovery, depending upon the nature of the problem. First, if it appears from the reports

53 Unfortunately, the only writeable drives—CD and DAT tape—available to me are “FireWire” devices
which I have yet to get working under SuSE Linux. My choices are to mount the MacOS Standard format
hard drive, copy the files over, and write the media while booted under MacOS, or to use the “scp” client
(ssh copy command) to move the files to another machine where they can be written to appropriate media.
54 I suggest using a unique one that is different from the root password in order to provide protection in the
case that the root password was what was compromised in order to gain the access being exploited.

-40-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

that only a few rpm packages are affected, I prefer to cleanly install said packages from
the original distribution CDs (or CD containing downloaded updates). If, rather, it
appears that there is extensive corruption of the OS across the file structure, I prefer to
use a CD image of the installed system. Finally, if the problem seems to be related to a
particular branch of the file structure, I rely on a tarball for that branch; this last technique
is also useful for providing backups of user data. (Note: the Linux source files kept in
/usr/src are always recovered from CD, and are not included in the system CD image or
tarballs.) Creation of the CD image and tarballs is discussed below. Several things should
be noted: (1) other backup methods exist (e.g., ufsdump/ufsrestore, dump, dd, and cpio);
(2) backups should be coordinated with I&A; (3) the frequency of backups should be tied
to changes in the data (for the present use of this machine—network testing and security
monitoring—the installed base is stable); and (4), store the backup media in a secure
location that is not subject to the same set of physical threats if at all possible.

Creating an image of the system was done within the /tmp directory by issuing the
command `mkisofs -o cd.iso -log-file cd.iso.log -R -x /usr/src -x /proc /`. (The installed
system, as described in this paper, easily fits within the capacity of a single CD.) Tarball
images are created directory by directory (bin, boot, dev, etc, home, lib, opt, root, sbin,
usr, var). To create the image, change your location (`cd`) into the directory of choice
(say bin for the example here) and enter the command `tar –zcvpf /bin_archive.tar.gz .`.
Here this places a compressed tar image of the bin directory in the root directory using
relative paths and preserving ACL and permission information. (Using a relative path is
important if you want to untar the file in a temporary location, and not simply write over
all of an existing bin tree.) For the usr directory, I also add the switch –exclude=src after
the “.” to keep from including the Linux source tree in the tarball. Finally, move the
newly created archive files off of the machine to appropriate media where they will be
safe and available, but hopefully never needed.53 Backup media should also be read
before this task is considered complete, so as to provide assurance that recovery can
really take place.

Step 7. Final thoughts
If all of the recommendations preceding this step were successfully implemented, you
should have a fairly high confidence that you now have a secure installation. However,
there are several additional actions that you can take to maintain that confidence, as
outlined below.

Step 7.1 Staying abreast

Information security is a rapidly changing field. One way to keep current—I suggest a
minimal way—would be through subscriptions to the SuSE security mailing lists found at
http://www.suse.com/us/support/mailinglists/index.html and through a periodic review of the
listings at www.susesecurity.com. A good list of general Linux security-related newsletters
to consider can be found at http://www.linuxsecurity.com/resources/forums-1.html; the
weekly summaries come highly recommended. A number of other popular lists
(including Linux specific) can be found at http://www.securityfocus.com/cgi-bin/forums.pl.

-41-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

Step 7.2 Log review and processing

An important part of maintaining a secure installation is actually making use of the
instrumentation that tells you the protection measures are working. This means that all of
the logging implemented in preceding steps must be reviewed. If you find this to be an
intolerable burden, several tools are available that might help. These include swatch55 and
logcheck.56

Step 7.3 Testing

Throughout the preceding steps, at times explicitly and at times not, each and every
security-related feature was tested for functionality. Such testing should be repeated
periodically, especially after any system software upgrades, in order to make sure the
security functionality remains. The testing can be extended, however, to include network-
based vulnerability testing with nmap, Nessus, CyberCop, SATAN, SARA, or SAINT.

Step 7.4 Reevaluating security design

Any time the purpose a computer is used for changes, all of the assumptions that went
into assembling a suite of protection elements need to be reevaluated. For example, if the
machine that was the subject of this paper were to be reapplied to serve as a typical
workstation, an additional layer of protection could be gained by adding a stateful packet-
filtering firewall like iptables, and linking it up with PortSentry. Periodic reevaluation
of the design is called for in any case, however, due to the speed with which IT
technologies are changing.

Step 8. Postscript
The introduction to this paper alluded to the fact that the primary purpose of the Linux
installation discussed herein was to setup a PowerBook G4 laptop is a portable network
testing and security monitor. The principle program to support this function is called
tcpdump, which is able to capture and print out the headers of packets seen by a network
interface. Using tcpdump is as simple as entering the command `tcpdump`, although it is
also powerful enough to screen traffic based on many parameters including source or
destination network, host and port, and protocol (the man pages provide good
documentation). The SuSE distribution provides a copy of tcpdump, although you may
want to check out the latest at www.tcpdump.org.

55 http://www.oit.ucsb.edu/~eta/swatch/ See also discussion at http://www.enteract.com/~lspitz/swatch.html
56 http://www.psionic.com/abacus/logcheck/

-42-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

Appendix A – installed packages
3ddiag-0.149-13 glib-1.2.8-90 mol-0.9.58-1 textutils-2.0.10-13
aaa_base-2001.9.1-0 glibc-2.2-13 mtools-3.9.7-57 timezone-2.2-13
aaa_dir-2001.1.23-2 glibc-devel-2.2-13 ncurses-5.2-16 tix-8.1-12
aaa_skel-2001.2.20-0 glibc-nssv1-2.2-13 ncurses-devel-5.2-16 tk-8.3.2-12
acct-6.3.5-101 glibc-profile-2.2-13 net-tools-1.57-13 tripwire-1.2-263
allman-2001.1.15-3 gperf-2.7.2-37 netcat-1.10-263 ttmkfdir-noversion-109
arpwatch-2.1a10-8 gpg-1.0.6-0 netcfg-2000.12.14-2 type1inst-0.6.1-12
asl-1.42build9-15 gpgaddon-1.1-8 netscape-4.70-92 udf-0.9.1-115
autoconf-2.13-271 gpm-1.18.1-157 nkitb-2001.8.14-0 unzip-5.41-13
autolog-0.35-197 gpp-2.95.2-28 openmotif-2.1.30MLI4-15 usbmgr-0.4.1-9
automake-1.4-267 gppshare-2.95.2-28 openssh-2.9p1-6 util-linux-2.10q-9
base-2001.1.9-8 groff-1.16.1-13 openssl-0.9.6a-14 vim-5.7-21
bash-2.04-76 gs_fonto-5.50-140 pam-0.72-156 vlock-1.3-20
bc-1.06-15 gs_fonts-5.50-140 pam_devperm-2000.12.1-9 xautolck-pl10-280
bdflush-1.5-272 gs_lib-5.50-140 patch-2.5.3-232 xaw3d-1.5-192
bindutil-8.2.3-81 gs_x11-5.50-140 pciutils-2.1.8-66 xbanner-1.31-8
binutils-2.10.0.33-12 gsview-1.5-254 pcmcia-3.1.22-13 xcolors-91.10.4-265
bison-1.28-13 gv-3.5.8-276 pdisk-0.8a-28 xdevel-4.0.2-15
bwbasic-2.20.2-104 gzip-1.3-12 pdksh-5.2.14-195 xdmbgrd-0.4-113
bzip-1.0.1-13 hfsutils-3.2.6-123 perl-5.6.0-16 xf86-4.0.2-15
calctool-2.4.12-281 hwinfo-1.95-3 perl-Digest-MD5-2.12-13 xf86_3x-3.3.6-115
catdoc-0.90.3-165 hwinfo-devel-1.95-3 perl-HTML-Parser-3.13-13 xfbdev-3.3.6-115
compat-2001.1.24-6 icons-100.0-5 perl-MIME-Base64-2.11-13 xfine-2.8-184
compress-4.2.4-275 indent-2.2.6-12 perl-Storable-0.6.11-13 xfnt100-4.0.2-15
cpio-2.4.2-283 iputils-20001110-6 perl-URI-1.09-15 xfntscl-4.0.2-15
cracklib-2.7-241 kbd-1.03a-13 perl-gettext-1.01-13 xgrabsc-2.41-260
cron-3.0.1-295 lclint-2.5q-8 perl-libnet-1.0703-13 xkeycaps-2.46-14
ctags-2000.5.18-12 less-358-13 perl-libwww-perl-5.48-15 xli-1.16-304
db-3.1.17-15 libelf-0.7.0-157 perl_tk-800.014-195 xloader-4.0.2-15
ddd-3.2.1-135 libgpp-2.95.2-28 pmake-2.1.33-181 xlock-4.16-106
devs-2001.1.2-9 libjpeg-6.2.0-138 popt-1.6-0 xmods_3x-3.3.6-115
diffutils-2.7-12 libmikmo-3.1.9-60 procmail-3.15.1-6 xmodules-4.0.2-15
dump-0.4b20-12 libpng-2.1.0.8-9 ps-2001.1.24-6 xosview-1.7.3-133
e2fsprogs-1.19-15 libtiff-3.5.5-82 rawio-2-166 xpdf-0.91-10
e2fsprogs-devel-1.19-15 libtool-1.3.5-54 rpm-3.0.6-19 xsfb-2.8-52
ed-0.2-266 libz-1.1.3-264 sash-3.4-160 xshared-4.0.2-15
eject-2.0.2-173 lsof-4.52-13 scslog-2.2-7 xtermset-0.5-11
elm-2.4.60-208 lukemftp-1.5-8 sendmail-8.11.2-15 xv-3.10a-280
fbset-2.1-180 lvm-0.9.1_beta4-5 sh-utils-2.0-13 y2t_inst-packages-2.1.28-11
fetchmail-5.6.5-3 lx_suse-2.4.2.SuSE-1 shadow-20000902-61 y2t_inst-update-2.1.26-11
file-3.32-8 mailx-8.1.1-258 sharutils-4.2c-14 y2t_inst-x11-2.1.25-11
fileutils-4.0.35-12 make-3.79.1-61 strace-4.2-110 y2t_lan-2.1.32-3
findutils-4.1.6-14 makedev-2.5.3-81 sudo-1.6.3p6-5 y2t_menu-2.1.19-3
flex-2.5.4-282 makewhat-2001.1.24-5 syslogd-1.3.33-186 y2t_online_update-2.0.25-4
freetype-1.3.1-142 man-2.3.10d69s-162 sysvinit-2.78-133 y2t_prnt-2.1.21-3
freetype2-2.0.1-13 man-pages-1.34-3 tcl-8.3.2-12 y2t_rc_config-2.0.24-3
fvwm2-2.2.4-70 man9-98.2.14-55 tclx-8.3-12 y2t_snd-2.1.23-7
gawk-3.0.6-14 mesa-3.4-13 tcpd-7.6-99 y2t_spkg-2.1.20-3
gcc-2.95.2-28 mesasoft-3.4-13 tcpdump-3.4a6-284 y2t_update-2.0.24-3
gccmesg-2.95.2-28 metamail-2.7.19-269 tcsh-6.09.00-138 yacc-91.7.30-267
gdb-5.0-14 mgdiff-1.0-306 termcap-2.0.8-278 yast-1.09.3-1
gdbm-1.8.0-211 mkisofs-1.9-5 terminfo-5.2-16 zip-2.3-147
gettyps-2.0.7j-95 modutils-2.4.2-9 texinfo-4.0-158 ziptool-1.2-201

-43-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

Appendix B – PAM configuration files
#%PAM-1.0
#/etc/pam.d/chfn
auth required /lib/security/pam_unix.so
auth required /lib/security/pam_tally.so no_magic_root
account required /lib/security/pam_tally.so deny=5 no_magic_root
session required /lib/security/pam_unix.so

#%PAM-1.0
#/etc/pam.d/chsh
auth required /lib/security/pam_unix.so
auth required /lib/security/pam_tally.so no_magic_root
account required /lib/security/pam_tally.so deny=5 no_magic_root
session required /lib/security/pam_unix.so

#%PAM-1.0
#/etc/pam.d/login
auth required /lib/security/pam_unix.so
auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_nologin.so
account required /lib/security/pam_tally.so deny=5 no_magic_root
account required /lib/security/pam_unix.so
account required /lib/security/pam_access.so
session required /lib/security/pam_unix.so

#%PAM-1.0
#/etc/pam.d/other
auth required /lib/security/pam_warn.so
auth required /lib/security/pam_deny.so
account required /lib/security/pam_deny.so
password required /lib/security/pam_warn.so
password required /lib/security/pam_deny.so
session required /lib/security/pam_deny.so

#%PAM-1.0
#/etc/pam.d/passwd
auth required /lib/security/pam_unix.so
auth required /lib/security/pam_tally.so no_magic_root
account required /lib/security/pam_tally.so deny=5 no_magic_root
account required /lib/security/pam_unix.so
password required /lib/security/pam_pwcheck.so md5 use_cracklib
password required /lib/security/pam_unix.so md5 use_first_pass use_authtok
session required /lib/security/pam_unix.so

#%PAM-1.0
#/etc/pam.d/su
auth required /lib/security/pam_unix.so
auth required /lib/security/pam_tally.so no_magic_root
account required /lib/security/pam_tally.so deny=5 no_magic_root
account required /lib/security/pam_unix.so
session required /lib/security/pam_unix.so

-44-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

#%PAM-1.0
#/etc/pam.d/vlock
auth required /lib/security/pam_unix.so
#vlock can't seem to handle pam_tally
#"pam_tally[1147]: Error opening /var/log/faillog for update"
#auth required /lib/security/pam_tally.so no_magic_root
#account required /lib/security/pam_tally.so deny=5 no_magic_root
session required /lib/security/pam_unix.so

#%PAM-1.0
#/etc/pam.d/xdm
auth required /lib/security/pam_unix.so
auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_nologin.so
auth required /lib/security/pam_tally.so no_magic_root
account required /lib/security/pam_tally.so deny=5 no_magic_root
account required /lib/security/pam_unix.so
account required /lib/security/pam_access.so
session required /lib/security/pam_unix.so

#%PAM-1.0
#/etc/pam.d/xlock
auth required /lib/security/pam_unix.so
#xlock can't seem to handle pam_tally
#"pam_tally[1147]: Error opening /var/log/faillog for update"
#auth required /lib/security/pam_tally.so no_magic_root
#account required /lib/security/pam_tally.so deny=5 no_magic_root
session required /lib/security/pam_unix.so

-45-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

Appendix C—PortSentry startup script
#! /bin/sh
#/etc/init.d/portsentry
System startup script for Portsentry:
/usr/local/psionic/portsentry/portsentry

BEGIN INIT INFO
Provides: portsentry
Required-Start: $local_fs $syslog network
Required-Stop:
Default-Start: 2 3 5
Default-Stop: 0 1 6
Description: Start port monitoring
END INIT INFO

Source SuSE config (looking for START_PORTSENTRY="yes" or "no")
. /etc/rc.config

Determine the base and follow a runlevel link name.
base=${0##*/}
link=${base#*[SK][0-9][0-9]}

Force execution if not called by a runlevel directory.
test $link = $base && START_PORTSENTRY=yes
test "$START_PORTSENTRY" = yes || exit 0

PORTSENTRY_BIN=/usr/local/psionic/portsentry/portsentry
TCP_PARAMS=atcp
UDP_PARAMS=audp

test -x $PORTSENTRY_BIN || exit 5

Shell functions sourced from /etc/rc.status:
rc_check check and set local and overall rc status
rc_status check and set local and overall rc status
rc_status -v ditto but be verbose in local rc status
rc_status -v -r ditto and clear the local rc status
rc_failed set local and overall rc status to failed
rc_reset clear local rc status (overall remains)
rc_exit exit appropriate to overall rc status
. /etc/rc.status

First reset status of this service
rc_reset

-46-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

Return values acc. to LSB for all commands but status:
0 - success
1 - misc error
2 - invalid or excess args
3 - unimplemented feature (e.g. reload)
4 - insufficient privilege
5 - program not installed
6 - program not configured
7 - program is not running

Note that starting an already running service, stopping
or restarting a not-running service as well as the restart
with force-reload (in case signalling is not supported) are
considered a success.

case "$1" in
 start)
 echo -n "Starting Portsentry"
 $PORTSENTRY_BIN -$TCP_PARAMS
 $PORTSENTRY_BIN -$UDP_PARAMS

 # Remember status and be verbose
 rc_status -v
 ;;
 stop)
 echo -n "Shutting down Portsentry"
 ## Stop daemon with killproc(8) and if this fails
 ## set echo the echo return value.

 killproc -TERM $PORTSENTRY_BIN

 # Remember status and be verbose
 rc_status -v
 ;;
 *)
 echo "Usage: $0 {start|stop}"
 exit 1
 ;;
esac
rc_exit

-47-

GCUX Practical Assignment Version 1.7 Option 1 David F. Beck

Appendix D—Tripwire configuration file
/bin
/boot
!/cdrom
/dev R-mc
!/dev/pts
!/dvd
/etc R-mc
!/etc/ioctl.save
!/etc/mtab
!/floppy
=/home
/lib
=/lost+found
!/mac
!/macboot
!/macos
!/mnt
/opt
!/proc
=/root
/sbin
=/tmp R-mc
/usr
/usr/local
/usr/local/psionic/portsentry/portsentry.blocked.atcp R-mc
/usr/local/psionic/portsentry/portsentry.blocked.audp R-mc
/usr/share/zoneinfo R-mc
/var R-mc
!/var/adm/tripwire
/var/adm/tripwire/bin/siggen
/var/adm/tripwire/bin/tripwire
/var/adm/tripwire/bin/twdb_check.pl
=/var/cache R-mc
=/var/lib/xdm/authdir/authfiles R-mc
=/var/lock R-mc
/var/log L
/var/log/boot.msg L-i
/var/log/boot.omsg L-i
=/var/lost+found R-mc
=/var/mail R-mc
=/var/run R-mc
=/var/spool R-mc
=/var/tmp R-mc

-48-

