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Abstract 
 

 

The components that make Linux containers possible have been available for several 
years, but recent projects, such as LXC and Docker, have made the technology much 
more accessible to users.  Containers allow for even more efficient utilization of server 
resources through greater density and faster provisioning.  However, securing containers 
is much more challenging than traditional virtualization methods, including KVM. The 
isolation layer between the container and the kernel, as well as between each container, is 
extremely thin.  Weaknesses in the kernel or the container configuration can lead to 
compromises of containers or the entire system.  The responsibility of managing the 
operating system within the container can also become blurry with time, and that can also 
lead to compromises of the container.  Fortunately, Linux security modules, such as 
SELinux and AppArmor, along with careful configuration and container operating 
system management, can strengthen the thin walls around each container.  Organizations 
that use mature Dev/Ops practices can also improve security within each container by 
automating the creation and deployment of container images.  This paper will discuss the 
best strategies for securing a system running containers and the trade-offs that come with 
each. 
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1. Introduction 
Linux containers provide a virtualized environment for processes on Linux 

servers with less overhead than virtual machines.  System administrators can deploy 

containers quickly while using fewer server resources. 

Multiple technologies come together to make containers possible on Linux, but 

the majority of the work is centered on a concept called namespace isolation.  Namespace 

isolation allows a server to isolate a process so that it cannot see certain portions of the 

overall system.  For example, process ID (PID) isolation can be used to make a process 

think that it is the only process running on the server.  It would have no access to know 

that other processes exist, and it would not have the ability to send signals to any of those 

processes.  In addition, a container could run its own init process as PID 1 while the host 

system sees that process as an entirely different PID.  (Kerrisk, 2013) 

While namespaces provide some security for containers, many people argue that 

namespaces do not do enough to truly contain a container.  Namespaces do not cover all 

aspects of a Linux system the way a KVM virtual machine does.  In addition, processes 

within a container still have some level of access to certain kernel-based filesystems, such 

as procfs and sysfs.  Kernel capabilities reduce the amount of things that can be done 

within a container, even by the root user.  Combining namespaces and kernel capabilities 

definitely improves container security, but it is still not enough. (Walsh, 2015) 

Mandatory Access Control (MAC) is a key technology for securing containers.  

The most commonly used MAC technologies for Linux are SELinux and AppArmor.  

Both are implemented using the kernel’s Linux Security Modules (LSM) framework.  

SELinux provides policy-based security controls that define what processes are able to do 

on a system regardless of any discretionary access controls (DAC) in use.  For example, a 

directory may be configured with the correct permissions for a particular daemon to 

create files within it, but a SELinux policy can specify that the daemon not be permitted 

to write files there.  The MAC policy would override the DAC filesystem permissions 

and the writes would be denied.  (Wikipedia) 
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Control groups, more commonly known as cgroups, provide system 

administrators with tools that limit resource usage for processes.  These limits apply to 

containers as well since the kernel sees them as processes.  Limiters are available for 

various resources, including CPU usage, disk I/O, network throughput, and memory 

consumption.  A control group contains multiple resource limits, and then multiple 

processes can be added to the control group.  All of those processes will share the 

resources allocated to the control group.  (Menage, n.d.) 

Tying all these technologies together to deploy containers involves a new way of 

thinking about infrastructure.  Many software projects, including LXC and Docker, make 

container deployment easier through simple command line tools and integrations with 

existing virtualization management platforms.  Other projects that assist with deploying 

large container environments are Kubernetes and Mesos. 

Deploying containers also requires a new way of thinking about security.  The 

isolation layer between containers and the host system is extremely thin.  This requires 

careful thought about people, process, and technology.  The efficiency gains from 

running containers can disappear quickly without appropriate security controls and 

processes.  

2. About Linux containers 
A container is a way to isolate Linux applications with very little overhead.  All 

containers share the same host kernel, but they have their own virtualized network 

adapters and filesystems.  Containers allow for efficient application deployment and 

management, but they are not preferred for all workloads.  Depending on the application, 

there are various compatibility, performance, and security limitations that come with 

containers. 

2.1 Server management strategies 
System administrators have several methods for hosting applications on a server.  

Selecting the best one depends on what is best for the application and the business.  For 

example, a business operating in a high-risk environment might choose a hosting strategy 



Securing Linux Containers   4 

 

Major Hayden, major@mhtx.net   

that favors security or isolation over performance.  Another business might place a higher 

value on performance and scalability. 

2.1.1 Multiple servers with one application on each server 

The simplest method for hosting applications is to host one application per server.  

A simple deployment may have a physical database server connected to a physical 

application server that resides in a network DMZ.  This solution has the best security 

strategy. 

If an attacker compromises the application server, they must find a way to break 

into the database server through the limited access provided through the firewall.  

SELinux can be used to enforce MAC policies and help reduce the impact of any 

potential vulnerability on the server. 

Hosting one application on each server also provides the best performance since 

applications would not be in conflict with one another for resources.   

Unfortunately, the management costs for this type of deployment can be higher 

than the other strategies.  A large capital expenditure is required, and system 

administrators must maintain multiple separate servers along with network devices.  

Highly available solutions will require additional servers and network devices since 

replacing a device involves downtime and physical intervention. 

2.1.2 Multiple servers with multiple applications on each server 

Hosting multiple applications on a single server reduces cost but leads to greater 

security challenges.  An example of this deployment type is running Linux, Apache, 

MySQL, and PHP (LAMP) on a single server.  This is often the case for various PHP 

blogging and content management-based system projects, such as WordPress or Drupal. 

If this server is compromised, there is a good chance that the attacker will have 

access to many parts of the system if not the entire system.  Using SELinux is strongly 

advised since it provides a level of isolation between sensitive processes, including 

Apache and MySQL, and could limit the extent of a compromise.  However, if an 

attacker finds a usable kernel vulnerability, they can gain access to the entire system. 
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An example of a SELinux policy mitigating a vulnerability on a single system 

with multiple applications running is referenced in CVE-2007-3304.  The vulnerability 

allows an attacker to modify some internal arrays in Apache that could cause the daemon 

to send kill signals to other processes on the system.  SELinux policies denied access to 

those processes, and the vulnerability could not be exploited on systems with SELinux in 

“enforcing” mode with the most recent targeted security policy updates.  (RHSA-

2007:0556-2, 2007) 

Performance can vary when multiple applications run on a single server.  The 

“noisy neighbor” effect of additional processes on the system makes it more difficult for 

system administrators to hunt down performance bottlenecks, but there are tools1 

available to help with this.  It also creates unpredictable response times for latency-

sensitive applications.  Real-time kernels can alleviate some of the problems with jitter 

and latency, but using them involves some large, system-wide changes.  (Williams, 2008) 

2.1.3 Multiple servers with virtual machines, one application per VM 

Deploying with virtual machines provides greater isolation between applications 

without significantly raising costs.  Replacing a virtual machine is much easier than 

replacing physical machines, and it takes much less time.  In one phase of a virtualization 

implementation at Southwestern Illinois College, the cost of ownership dropped 50% 

over three years.  Additional savings came from reduced datacenter space usage, utility 

expenses, and hardware administration.  (Leja, 2010) 

KVM provides strong isolation between virtual machines mainly through its 

default use of MAC policies.  All KVM virtual machines run as a process and those 

processes are confined using SELinux policies.  In addition, KVM has an API for sVirt 

that allows for an even more granular application of policies.  sVirt ensures that all 

processes related to a single virtual machine can only manipulate files and devices 

                                                        

1 
 The simplest tools, such as htop and top, will show applications consuming a 

significant amount of CPU time or memory.  Network congestion is easily diagnosed 

with aggregate tools, including bwm-ng and iptraf-ng, and can be further refined 

with iftop and tcpdump.  The sysstat scripts record fine-grained resource usage 

statistics over time and allow administrators to tackle performance problems before 

they become a serious issue. 
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associated with that virtual machine.  If an attacker breaks out of a KVM virtual machine, 

they can only change files that the virtual machine has access to change via SELinux 

policies.  (IBM, 2011) 

VENOM (CVE-2015-3456) was the codename for a serious vulnerability that 

appeared in 2015 on systems running KVM with Qemu.  A vulnerability in the floppy 

disk controller allowed attackers to write to memory that would cause a guest crash in the 

best case and execution of arbitrary code on the host in the worst case.  The floppy disk 

controller is rarely used in modern systems but it is enabled by default in most Qemu 

implementations.  Since the vulnerability affected a virtualized floppy disk controller, it 

did not matter if the physical system had an actually floppy disk drive or controller.  

SELinux and sVirt prevented attackers from gaining access to other parts of the system 

by restricting what the Qemu process was able to do on the host.  (Walsh, 2015) 

Server hardware also provides additional security through technologies in the 

CPU.  Intel’s VMX and AMD’s SVM are examples of hardware-assisted virtualization 

technologies that are found in desktop and server CPU’s.  VMX allows a system to 

execute root and non-root operations in the CPU.  Typical root operations would come 

from within the host system while non-root operations come from the guest.  This allows 

KVM to avoid switching between rings2 constantly in software that increases 

performance and security.  The CPU limits which operations can be called in non-root 

mode.  These restrictions keep root users in a virtual machine from running as root on the 

host system itself.  (Intel, 2011) 

Virtual machines also support complex network configurations.  System 

administrators can attach virtual machines to different VLANs or apply bridge filtering 

controls so that virtual machines can only communicate with certain hosts.  Stateful 

firewall rules can be placed between virtual machines and the external network or 

between individual virtual machines themselves.  (IBM, 2011) 

                                                        

2 
 Kernel rings are arranged from most privileged to least.  As an example, the 

kernel typically runs in ring zero while most applications run in ring three.  If an 

application in ring three wants to perform an operation with escalated privileges, it 

must pass through special “gates.”  Special applications, like init, can run in both 

rings at the same time. 
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2.1.4 Multiple servers with containers, one application per container 

Containers provide a lighter-weight alternative to virtual machines.  Processes 

within containers run within a namespace and control group.  This ensures isolation from 

the rest of the system and places limits on resource usage with less overhead than virtual 

machines.  However, containers utilize the existing Linux kernel on the host system, and 

they boot directly into an init system, such as systemd.  This allows system administrators 

to fully bring functional containers online, often in less than a few seconds. 

Security isolation for containers relies upon namespaces, control groups, and 

MAC policies.  This differs from KVM in that there is no hardware assistance involved 

and processes within containers can talk directly with the host system kernel.  This 

thinner layer of isolation provides additional performance and lower resource usage since 

there is no need for an entire operating system to be running in each container.  (Walsh, 

2013) 

Properly configured containers have a security profile that is slightly more secure 

than multiple applications on a single server and slightly less secure than KVM virtual 

machines.  As with multiple applications on one server, a compromise of one container 

could lead to compromise of the entire system.  For that attack to be successful, the 

attacker would need to subvert SELinux policies (with MCS separation3) and exploit an 

existing kernel vulnerability to subvert namespace isolation. (Walsh, 2013) 

Containers also support the complex networking configurations found in KVM, 

including bridge filtering, stateful firewalling, and VLANs.  Network namespaces ensure 

that each container has the exclusive use of a virtual network device. 

2.2 Container frameworks 
Assembling all of the virtualization building blocks for virtual machines and 

containers is challenging.  Many container frameworks are available as open source 

projects, and that makes it much easier to manage the various namespaces, cgroups and 

                                                        

3 
 Multi-category separation, or MCS, provides a way to make more specific sub-

policies or categories that apply tighter restrictions to what a process can do with certain 
files and objects.  This is explained in detail in Section 3.4. 
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security controls.  These frameworks include LXC, Docker, systemd-nspawn, and 

Rocket. 

One of the first projects created for managing containers is LXC.  It contains 

libraries and command line tools that help system administrators quickly create 

containers without needing to be experts in the underlying technology.  LXC’s command 

line tools can create containers with all available namespaces, cgroups, and SELinux 

policies set.  Users can easily add and remove certain kernel capabilities or adjust 

cgroups depending on the needs of the application.  Libvirt can also manage containers 

using an LXC library, and it will use MCS separation via the sVirt API for additional 

security.  (Graber, 2014) 

Docker is another container management project, and it aims to make container 

deployment more automated.  It provides an API for remote management, and it 

automatically configures networks when containers are built.  Docker utilizes a layered 

image format that allows users to add their application and its dependencies onto an 

existing trusted image.  As with LXC, Docker configures namespaces, cgroups, and 

SELinux by default. 

Servers running systemd can use built-in functionality to launch containers with 

very little configuration.  The systemd-nspawn tool will start a container with a single 

daemon or a full init system.  It will also configure all of the underlying container 

isolation technologies by default.  (Edge, 2013) 

Rocket was introduced in late 2014 as a competitor to Docker.  It utilizes systemd 

for launching containers and it has an image management mechanism.  The developers of 

Rocket are also working to standardize a container specification with a goal of providing 

greater security and compatibility.  (Polvi, 2014) 

2.3 Container infrastructure management 
The container management frameworks from the previous section are helpful for 

managing smaller container deployments, but many businesses are eager to manage large 

fleets of container-based infrastructures.  As the number of containers per server 
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increases, additional strain is placed on the network and the system administrators that 

manage all of it. 

Google conceived the idea of Kubernetes after managing its own large container 

infrastructure for many years.  It has three main concepts: pods, replication controllers, 

and services.  Pods may consist of a single container or multiple containers.  Replication 

controllers ensure that a certain number of containers are running within pods.  Finally, 

services help make the link between a “service,” which could be a website, and the pods 

that are running containers that contain the website content.  Networking with Kubernetes 

can become quite complex, and another project, Flannel, is under active development to 

make this process easier.  (Paris, n.d.) 

3. Securing the container host system 
Creating separation and isolation is the key to securing any system since it limits 

the impact caused by a compromise.  Working with a container system is no different.  

Since processes in containers are just processes on the host, a defense in depth strategy is 

mandatory. 

For example, if a user is root (UID 0) in a container, they are root on the host.  If 

they find a way to escape the confines of the container, they will have full root access to 

the underlying host.  This can quickly lead to compromise of other containers on the host 

and other physical systems on the same network segment. 

3.1 Discretionary and Mandatory Access Control 
Securing containers requires a deep understanding of Discretionary Access 

Control (DAC) and Mandatory Access Control (MAC). 

As the name implies, DAC policies can be overridden depending on the user 

running a process.  The kernel can use its discretion to determine if access should be 

allowed.  Filesystem permissions are a good example of DAC.  If a user owns a particular 

file and they set the mode of the file to 0600, then no other users can read or write to that 

file.  However, the root user could venture into that directory and manipulate the file at 

any time.  The kernel used its discretion to say that another user could not access the file 
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(based on filesystem ownership and permissions), but the root user could access the file 

because of its superuser privileges.  There is an exception: if a user marks a file as 

immutable, even root cannot manipulate the file until the immutable attribute is removed. 

DAC provides good security, and it is very easy to use.  Users can list files in a 

directory and quickly understand which ones they are able to access.  In situations where 

a process may be controlled by an attacker, DAC simply is not enough. 

Filesystem access control lists, or ACLs, are helpful as they allow administrators 

to set more specific DAC policies for accessing files.  Once the filesystem is mounted 

with ACL support, administrators can apply ACL policies to directories and files.  For 

example, a file might be owned by one user with filesystem permissions that only allow 

that user to edit the file.  An administrator could set an ACL that allowed a second user to 

edit the file without changing the filesystem permissions.  This helps avoid using wide-

open Linux permissions, such as 0777, in situations where an administrator wants to 

allow access for one additional user. 

In contrast, MAC policies are called mandatory because they cannot be 

overridden unless the policies are changed or disabled completely.  These policies are not 

as visible on the system and can be difficult to troubleshoot.  As an example, an Apache 

server may have the correct filesystem permissions (DAC) to write to a particular 

directory but the access is denied due to a MAC policy.  This creates a frustrating 

situation for many system administrators because the reason for the denial is not entirely 

obvious.  Fortunately, all of the denied access is logged in the kernel audit logs.  

Administrators can install setroubleshoot to see simpler explanations of the denials and 

multiple options on how to allow the access. 

SELinux and AppArmor are the two most common implementations of MAC for 

the Linux kernel.  Both have policies that define what a particular process can do on a 

Linux system but they differ greatly in their implementation.  One common element they 

have is that they work well with libvirt’s sVirt API and provide strong levels of 

separation for containers.  They also feed their information about denials into auditd for 

collection and review.  Both of them have “learning” modes that log potential denials 

without actually blocking access. 
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SELinux is a labeling system where everything receives a label, including 

processes, files, directories, and other objects.  It comes with various policy sets that 

define how a process with one label can interact with something else that has another 

label.  The kernel enforces those policies.  The configuration is extremely granular and 

can be a challenge to adjust.  Fortunately, many common adjustments are done via 

Booleans that can be quickly toggled on and off.  For example, if an Apache server needs 

to talk to a remote database server, toggling a single Boolean enables that access.  

(Walsh, 2014) 

AppArmor does not apply labels but instead relies on policy files that specify file 

paths to protect.  Policy files contain a reference to a particular executable and what that 

executable is allowed to do.  For example, an application could be limited to certain 

kernel capabilities or gain permissions to send raw network packets across the network.  

The configuration and policies are less granular but easier to integrate into existing 

systems.  This is similar to Trusted Solaris.  (Wikipedia) 

Systems running Red Hat-based distributions, including CentOS and Fedora, will 

have SELinux available and in its enforcing state by default.  Debian-based systems, 

including Ubuntu, will have AppArmor available but the default enforcement setting 

differs between versions. 

3.2 Kernel updates 
One of the biggest weaknesses of any container system is a kernel vulnerability.  

Since processes in containers are really just isolated processes on the host, any kernel 

vulnerabilities that allow an attacker to break out of the namespace isolation can be 

disastrous.  Container systems should receive regular kernel updates whenever they are 

made available by the upstream Linux project or by the Linux distribution currently in 

use. 

Updating a kernel is a two-phase process.  The first step is to update the kernel 

code itself and the second step is a reboot.  A new project, Ksplice, has recently been 

merged into upstream Linux, and its goal is to enable kernel updates without requiring a 
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reboot.  This involves carefully compiling a patch and using client tools to load the 

patched kernel code into the running kernel.  (Poimboeuf & Jennings, 2014) 

Some system administrators may want to custom compile their kernel to remove 

certain unneeded features or add experimental functionality.  These users may want to 

consider some of the advanced functionality included in the Grsecurity and PaX kernel 

patch sets.  They can add additional protection for containers as well as other processes 

on the system that run outside of containers.  However, as with MAC, it can become 

difficult to troubleshoot why a particular application is denied access certain elements of 

the system. 

3.3 Kernel capabilities 
The first set of Linux capabilities appeared in the kernel in the late days of kernel 

2.14, and their goal was to split up root privileges into multiple pieces.  At the time, some 

applications were run with setuid root -- which allows a regular user to run an application 

with root-level privileges.  This was required for some applications, such as ping, that 

required raw access to the network.  (Bacarella, 2002) 

These capabilities allowed normal users to run certain applications with restricted 

root privileges.  In the ping example, the executable receives the CAP_NET_RAW 

capability.  That allows it to use raw network sockets without gaining any additional 

privileges.  This is extremely helpful for executables with a vulnerability such as a buffer 

overflow.  In the old model, where executables similar to ping were setuid root, a 

vulnerability in ping could allow a normal user to execute arbitrary code as root on the 

system. (Bacarella, 2002) 

Containers also have capabilities applied to them when they start.  Frameworks, 

such as LXC and Docker, choose a minimal set of capabilities to start with and system 

administrators can choose to add or remove capabilities from the default setting if 

needed.  If a container needs to create a special file with mknod, a system administrator 

might add the CAP_MKNOD capability to the container.  That capability remains with 

the container as long as it is running. (Bacarella, 2002) 

3.4 sVirt and MCS separation 
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sVirt adds powerful separation to a virtualized system in conjunction with MAC 

implementations such as SELinux and AppArmor. 

In the case of SELinux, custom policies are generated per container.  This is 

called Multi-Category Security (MCS).  SELinux policies already exist that define what a 

container’s processes can do on a system, but MCS takes it a step further and 

dynamically creates an additional sub-policy (called a category) that is specific to one 

container.  MCS applies sub-policies, called categories that limit the access from a 

specific container to specific files or objects.  (Walsh, 2009) 

This is challenging to understand without a simpler example, and the SELinux 

coloring book provides a great, if not humorous example.  Consider a dog and a cat as 

well as their respective bowls of food.  The dog should eat the dog food and the cat 

should eat the cat food.  If the dog tries to eat the cat food, the dog must be denied access.  

This is how SELinux policies work. 

However, what if there are two dogs: a Dachshund and a Great Dane?  They will 

both have dog food in their bowls but they will likely receive different quantities or types 

of dog food.  How do we deny them access to the wrong food when both dogs are labeled 

as dogs and all of the food is dog food?  This is where MCS separation comes into play.  

We can label the Dachshund and its food as dog:dachshund and dog_food:dachshund.  If 

the Great Dane is labeled as dog:great_dane, it would be denied access to 

dog_food:dachshund because the sub-policy, or category, does not match even though it 

is still dog food.  (Duffy & Walsh, n.d.) 

MCS separation ensures that a particular container is only allowed to access the 

resources that are assigned to it.  The sVirt functionality within libvirt ensures that the 

appropriate labels and categories are applied to the container, its processes, and its system 

resources as soon as it starts.  If container A is compromised, it cannot manipulate the 

host’s resources due to standard SELinux policies.  It also cannot manipulate container 

B’s resources due to MCS separation. 
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3.5 User namespacing 
The newest namespace in the Linux kernel deals with the isolation of UIDs.  The 

goal is to ensure that a root user in the container is not actually equivalent to root on the 

host.  This is done through a UID mapping and administrators can choose which UIDs in 

the container map to a particular UID on the host.  As an example, a root user within a 

container might see themselves as UID 0 while on the host a system administrator sees 

that root user as UID 31337.  These mappings should be done carefully to avoid overlaps 

and management headaches on highly dense systems. 

In the case of a container compromise, this would deny root access on the host to 

the root user within the container.  The attacker would need to find a new method for 

gaining escalated privileges on the host system.  (Kerrisk, 2013) 

3.6 Secure Computing Mode (seccomp) 
Another option to provide additional security on container systems is to limit the 

syscalls, or system calls, that processes inside a container can make.  The seccomp 

project allows limits to be placed on which syscalls can be made by those processes.  

When a process makes a call that is not allowed, the default action is to kill the process.  

There are user-configurable options that send more friendly signals to the process instead. 

Creating a set of allowed syscalls for an application is challenging for two 

reasons: there are a large set of syscalls available, and it can be difficult to determine 

which syscalls an application will make when it runs.  As of Linux 4.1, the Linux kernel 

has 378 syscalls, and the list continues to grow.  If system administrators do not have an 

accurate list of the syscalls a particular application might make, they may cause the 

application to throw errors or crash. 

System administrators can use strace or ptrace to profile an application and get a 

list of syscalls that are made during normal operation.  The accuracy of the list largely 

depends on the workloads being handled by the application.  Users should profile their 

applications while they are handling regular workloads to get the most complete list of 

required syscalls.  (Edge, 2012) 
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4. Security within Linux containers 
Securing the container host is critical but is only half the battle.  The data inside 

the container, including the application, configuration files, and the operating system, is 

just as critical to the overall security of the environment. 

4.1 Trusted images 
All containers start with software that needs to run inside the container.  Some 

containers, such as the ones started with systemd-nspawn, can simply re-purpose an 

existing executable from the host system and launch it in a container.  Other containers 

are built using trusted packages from the host system’s distribution with package 

management tools including debootstrap, yum, or dnf.  This allows administrators to 

install the base OS from trusted sources and cryptographically verify each package. 

Docker takes a different approach.  Users can simply download an existing image 

from Docker’s public facing index using the docker pull command and apply 

customization on top of it.  It is as simple as pulling a CentOS 7 image, writing a short 

file of customization instructions (called a Dockerfile), and telling Docker to build the 

container.  Docker stores the results of customizations, such as adding new packages or 

configuration files, as layers and applies those layers onto the original base image. 

This simplicity leads to security issues for administrators.  Docker has 

implemented some initial checks for images when they are downloaded to ensure they 

were not altered during transit, but they do not vouch for the actual content found within 

the images themselves.  It is up to the user to determine which images are trustworthy for 

their environment.  A recent automated study of images available in the public Docker 

showed that 30% of images contained serious security vulnerabilities.  (Gummaraju, 

Desikan & Turner, 2015) 

It is possible for a determined attacker to place an intentional vulnerability or 

backdoor into in image, and it could go undetected.  If the image is used widely in 

container deployments, it could lead to serious compromises in user data or denial of 

service.  Anyone who builds a container must be able to verify its source or they must 

build their own containers using trusted tools and packages. 
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4.2 Container operating system updates 
Unlike virtual machines, containers do not provide simple methods for applying 

operating system updates.  Containers are generally considered immutable once they are 

built, and any updates to the container are often done by building a new container.  

Docker makes this process easier since the user can simply rebuild the container image 

with the same Dockerfile and get the latest operating system updates, so long as the 

Dockerfile contains commands for updating the operating system. 

Deploying the new container with the updated images to replace the old container 

can occur via a number of methods.  For one-off or small container deployments, the old 

container could be stopped and the new container could be started in its place.  Downtime 

is minimal due to the short time required to stop and start containers. 

A more automated approach would be to start a new container, or group of new 

containers, alongside the old containers.  Monitoring systems would check the new 

containers to verify that they are responding properly, and then a quick load balancer 

change would shift traffic over to the new containers.  Kubernetes has features that allow 

new pods to start alongside old ones, and then the service can be adjusted to point to the 

new containers. 

4.3 Communication between containers 
Host protections, such as namespaces and MAC policies, provide strong 

protection between containers on the host, but it is important to consider how containers 

can communicate with each other and with the host outside of those protections. 

Containers with unfiltered network access can communicate with each other and 

the host if they are on the same network segment.  Since containers have their own virtual 

network interface (thanks to network namespaces), users can attach the network interface 

to a variety of network devices. 

The simplest solution could be to use a Linux bridge and place all of the 

containers on the bridge.  Communication is simple and fast, but not secure.  A stronger 

solution would be to place containers on bridges with filtering applied or use VLANs to 
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carve up new network segments.  Modern systems may be able to use virtual network 

switching via OpenvSwitch on the host and achieve greater network separation. 

It is also important to consider other objects that may be shared between 

containers, including sockets or shared storage devices.  System administrators should 

carefully consider the consequences of sharing objects between containers to limit the 

spread of a compromise. 

4.4 Security responsibility 
Developers appreciate containers because they can package their application, test 

it alongside its libraries, and verify that it will work in production.  Operations teams 

appreciate containers because they get the applications in a cohesive package along with 

their dependencies and configurations.  However, who owns the security of the container 

operating system, configuration files, and the application in this new world of containers? 

The responsibility of securing the operating system normally falls onto the 

operations team.  However, if developers are writing applications and building a 

container with their application in it, how do operations teams ensure that the base 

operating system is secure? 

This is where frameworks with layered images, including Docker, can help.  

Operations teams can carefully maintain a base image with appropriate security controls, 

configurations, and package updates.  As part of that configuration, they can specify 

where the package manager will receive trusted packages.  Development teams can use 

that base image as the foundation for their containers and then add packages from those 

trusted repositories.  If a serious vulnerability appears, the operations team would quickly 

update the base image and let the development team know that a container rebuild and 

redeployment is needed.  (Walsh, 2015) 

5. Guide: Implementing a secure container 
There are many different methods for implementing secure containers, and they 

vary according to the complexity and size of the deployment.  This guide takes a simple 

approach and uses only free and open source software.  At the end of the guide, the 
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reader will have built a secured container running on a Linux host using libvirt’s LXC 

driver. 

5.1 Requirements 
This example will use a CentOS 7 system with a small package set.  The reader 

will also need a system on which to run the CentOS operating system.  Any compatible 

hardware, virtual machine, or remotely hosted cloud instance will be sufficient so long as 

it has 10GB of disk space and at least 512MB of RAM. 

5.2 Installation 
Install CentOS with a minimal package set.  There is no need for a graphical 

interface for this guide.  Once the system is installed, verify that SELinux is in the default 

“enforcing”mode.  Run the getenforce command to verify the SELinux status.  If the 

command returns Permissive, run setenforce 1 to change to “enforcing” mode. 

Update all packages and then install the packages needed for container 

management: 

# yum -y upgrade 

# yum -y install libvirt virt-install 

In addition, ensure that the libvirt daemon is running: 

# systemctl start libvirtd 

5.3 Bootstrapping the container 
The container needs an operating system, and it should be installed using the 

trusted package manager and packages.  This command will install a small CentOS 7 

distribution into a directory where libvirt can manage it: 

# yum -y installroot=/var/lib/libvirt/filesystems/centos7 \ 

--releasever=7 install systemd passwd yum \ 

centos-release vim-minimal procps-ng iproute \ 

net-tools dhclient policycoreutils 

Our container operating system is now installed and ready to be configured.  A 

password must be set for the root user: 

# chroot /var/lib/libvirt/filesystems/centos7/bin/passwd root 
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Also, console access must be allowed: 

# echo “pts/0” >> \ 

/var/lib/libvirt/filesystems/centos7/etc/securetty 

5.4 Launching the container 
Before launching the container, libvirt needs to know that it exists: 

# virt-install --connect lxc:// \ 

--name centos7 --ram 256 \ 

--filesystem /var/lib/libvirt/filesystems/centos7,/  

 In a few seconds, the container should fully boot and stop at a login prompt: 

CentOS Linux 7 (Core) 

Kernel 3.10.0-229.4.2.el7.x86_64 on an x86_64 

 

containers login:  

The root password set in the earlier section should work at the prompt. 

5.5 Inspecting the container 
After logging in, running getenforce should show Disabled.  However, 

SELinux is running on the host and is protecting the container.  To verify, hold the CTRL 

key and press “]” to escape the container’s console.  The container will still be running, 

but the current console will switch back to the host system. 

Review the process list to verify the SELinux labels: 

# ps efxZ | grep libvirt_lxc | awk ‘{print $1}’ 

system_u:system_r:virtd_lxc_t:s0-s0:c0.c1023 

The context applied to each process of the container is virtd_lxc_t.  SELinux 

has policies that determine what a process running with this context on the system can do.  

However, the additional information in the process listing is the category and is used for 

MCS.  The s0-s0:c0.c1023 string is the category label applied to the process.  If 

additional containers are running on the host, different MCS labels would be used for 

each container. 
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A virtual network device should also appear on the host: 

# ip link show vnet0 

This virtual network device was created automatically by libvirt when the 

container was instantiated with virt-install. 

In addition, PID namespacing can be verified by inspecting the container’s init 

process from the host’s perspective: 

# ps aufx | grep init 

root      1638  0.0  0.3  53584  3432 ?        Ss   03:53   0:00  

\_ /sbin/init 

The container thinks that /sbin/init is running as PID 1, but the host sees it 

as PID 1638. 

6. Conclusion 
Containers give businesses the opportunity to reduce resource usage, manual 

deployment work, and downtime.  They also force businesses to be more nimble and 

make their actions more repeatable.  Containers have changed the game of how 

development and operations teams work together by creating a deployment mechanism 

that pulls together the strengths of both teams.  Developers have the opportunity to see 

their applications in production running as they intended, and operations teams gain the 

redundancy and reliability they need. 

Businesses must evaluate if their applications are currently compatible with 

container technology and if the application is built to scale out to multiple containers.  

Monolithic applications that require local state are probably not good candidates for 

containers, but many other applications are.  Business processes must also be mature and 

nimble enough to make containers a reality.  The technology is growing stronger every 

day, and each business must consider if their people and processes have grown in equal 

amounts. 

However, as with any new technology, containers present challenges to our 

existing security strategy.  Traditional defense in depth strategies still work at a high 

level, but the low-level touch points must be revised.  Upstream work in the Linux kernel 
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and various container frameworks continues to push the boundaries of performance and 

security.  As more standardization and automation evolves, securing containers will 

become a more straightforward process. 

Some security technology in container environments is non-negotiable.  Using 

Mandatory Access Control implementations, such as SELinux or AppArmor, must be a 

first step for securing all systems running containers.  Users must carefully consider all 

available avenues for communication between the containers and their host, as well as 

between the containers themselves. 

 Security within the containers is often forgotten, but it is just as critical as 

securing the host.  Users must know and trust the source of their container images, their 

application, and its dependencies.  Operations and development teams must communicate 

about security responsibility, and every piece of the container should have an owner from 

the time it is built to the time when it is finally decommissioned.  
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