
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCUX Program
Unix System Administration

Secure access to mail resources for remote users

Pierre Amoudruz
January 29th, 2004

Version 1.9: securing Unix Step by Step

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 2

Abstract
This document describes a solution to provide access to messaging resources

for remote users of a company. In others words, how remote users who can connect
from anywhere on the Internet can have access to their mailboxes? In addition, as the
information exchanged by e-mail might contain some confidential information, an
appropriate level of security is required.

A mail server located in the company Internet enclave (Internet demilitarized
zone) offer messaging service to remote. The solution includes a robust mail transfer
agent Postfix to ensure emission and reception of messages; the mail server Cyrus
IMAP manages mailboxes access. These 2 applications provide the basic
functionalities of the system.

The identity of the users has to control very closely. We use digital certificate to
authenticate users and restrict access to the mail server for only the appropriate
users. Without a valid certificate, it will not be possible for a user to simply open a
connection to the mail server. The second level of authentication lies on user
credentials that are verify against a central repository.

The last step of the architecture resides in ensuring that the data exchanged
between the users and the server is securely exchanged. The digital certificates help
in setting up an SSL (Secure Socket Layer) tunnel between the 2 machines and a
consequence ensuring data integrity and non-disclosure.

What can we do to increase the overall level of security of the system? First of
all, the default installation of the operating system Red Hat Linux 9 has to be improve:
we are talking here about OS patching, startup service control, host-based firewall…
Second, we perform deep analysis of the system on a regular basis, including for
example log analysis and crucial file changes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 3

Table of Content

1 Introduction ...5
2 Description of the system..6

2.1 Architecture..6
2.1.1 Overall presentation ..6
2.1.2 Functionalities..7
2.1.3 Authentication..7
2.1.4 Data protection ..7

2.2 Hardware description ...8
2.3 Software description ..8
2.4 Details for hardware and software ...8

3 Risk Analysis...9
3.1 Asset protection ...9
3.2 Access to the server ..9
3.3 Threats description ..9

4 Step-by-step guide..11
4.1 Linux RedHat 9 ..11

4.1.1 Pre-requisite ..11
4.1.2 Linux RedHat 9 installation..11

4.2 Locking down...15
4.2.1 OS patching...15
4.2.2 Restrict boot services ..16
4.2.3 Access control ...17
4.2.4 Prevent shutdown..18
4.2.5 IP stack..18
4.2.6 Remove unneeded user and group accounts19
4.2.7 Banners ...19

4.3 Core applications setup ...19
4.3.1 Development environment...19
4.3.2 Pre-requisite ..20
4.3.3 Cyrus SASL ...20
4.3.4 Cyrus IMAP ...22
4.3.5 Postfix..25
4.3.6 Stunnel installation ..29

4.4 Post-installation tasks ..35
4.4.1 SSH configuration..35
4.4.2 TCP Wrapper configuration ...37
4.4.3 Sudo configuration...38
4.4.4 File system security ...38
4.4.5 Firewall configuration...39
4.4.6 Syslog configuration ..41
4.4.7 Tripwire configuration ..42

5 Ongoing maintenance...45
5.1 System review..45
5.2 Backup requirement...45

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 4

5.3 System analysis ...46
5.3.1 Log analysis: daily ...46
5.3.2 Tripwire report: ..46
5.3.3 Periodic scan: monthly ..46

6 Testing the configuration...47
6.1 Cyrus IMAP..47

6.1.1 Cyradm utility...47
6.1.2 User mailboxes creation ..47
6.1.3 IMAP functionning ...47

6.2 Postfix ..48
6.2.1 Sender authenticating..48
6.2.2 Reject message sent by a non-authenticated user........................49
6.2.3 Delivery capability..49

6.3 Stunnel...50
6.3.1 Client configuration..50
6.3.2 Valid client certificate...51
6.3.3 Invalid client certificate ..52

6.4 Syslog configuration...53
6.5 Tripwire ..53
6.6 Scan of the system ..54

6.6.1 Production network..54
6.6.2 Management network ..54

7 Conclusion ..56

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 5

1 Introduction
Nowadays, the electronic mail has become a major means of exchanging

information between people. For many companies, e-mail is so tied to their day-to-day
activities that it can be considered critical to their business. While it is easy for
employees located inside the company’s private network to access their messaging
resources, the situation tends to be much harder for roaming users who might want to
access their mail system from different locations.

This document is written as part of the SANS Institute GCUX program. We
intend to describe a solution for the issue mentioned above: how to provide remote
users with a secure access to their messaging system. We shift from an “out of the
box” machine to a system capable of terminating SSL tunnels that gives remote users
the ability to send and receive electronic message in a secure way.

This system is setup on a dedicated Intel platform running the RedHat Linux 9
operating system. The steps include the configuration of Postfix for mail delivery,
Cyrus IMAP for mail storage and retrieval. The protection of the data being sent over
the network is performed using Stunnel to build the SSL tunnel.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 6

2 Description of the system

2.1 Architecture

Internal Network

Internet

Out-of-band Management
Firewall

Internet Facing
Firewall Corporate

Mail Relay
192.168.2.5

Mercury

Mail Server for
Remote users
192.168.2.7

Jupiter

Internal Mail Server
10.1.1.5

Mars

Remote
Client

Public DMZ
Management Network

Public DMZ
Production Network

SSL Tunneling

Others Public
Services

192.168.2.x/24

Internal Network

Management Network
10.10.10.0/24

Mnt 192.168.10.5 Mnt 192.168.10.7

2.1.1 Overall presentation
The system to set up has to provide access with messaging resources for

roaming users with an appropriate level of security. These users are susceptible to
connect to their mail server - let’s call the mail server for remote users Jupiter - from
anywhere on the Internet. They also possibly need to connect to it from the internal
network. As a consequence, the server Jupiter needs to reside in the public DMZ
where it can be visible from both the Internet and the corporate network. This enclave
being separated from the rest of the corporate network by a firewall, the traffic flows at
this level can be properly controlled and monitored.

In addition to its production interface that connects to the public DMZ, the mail
server requires a second interface dedicated for out-of-the-band management. All
administration traffic and supervision should go through this management interface.

The solution detailed in the document lies on 3 main applications: Postfix,
Cyrus IMAP and Stunnel. In addition, several specific libraries like OpenSSL or Cyrus
SASL are required for the applications to work properly. Finally, a toolkit of security
tools like Tripwire or IP Table helps in tightening up the system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 7

2.1.2 Functionalities
The 2 basics functionalities a mail server provides are emission and reception

of electronic messages. The mail server Jupiter should offer the ability for the users to
send electronic message using SMTP 1. After reception of a message, the mail server
should either keep it locally for messages destined to local recipients or forward it to
the appropriate remote server for messages destined to non-local recipients. All traffic
to outside recipients should be forwarded to the corporate mail relay called Mercury.
Postfix was selected as a good candidate to perform these tasks.

Then comes mail retrieval. Using a standard mail client, remote users need to
connect to Jupiter using either POP or IMAP 2 in order to retrieve their messages. The
server has to properly authenticate the user based on the credentials he provides.
Upon successful authentication, the server delivers the messages to the user.

2.1.3 Authentication
The protocols POP or IMAP require an authentication mechanism, whereas the

SMTP protocol does not natively support nor require authentication. This means that
anybody can send a message without the need to prove his identity to the mail server.
We would like to avoid this behavior in our architecture and as a consequence, we
decided to force the authentication of remote users before allowing them to send a
message to the mail server. We use the Cyrus SASL 3 library that offers several
authentication mechanisms for protocols like IMAP or SMTP. Cyrus IMAP server
comes with build-in SASL support whereas Postfix must be compiled to support SASL.
Both use the SASL library to authenticate users against a central database used as a
user password repository.

2.1.4 Data protection
As critical data might be sent over an insecure network like the Internet

between remote users and our mail server, an SSL tunnel is established as a way to
protect the information. Running Stunnel on the mail server to terminate the SSL
tunnel at the server side provides some interesting functionalities. First, it ensures a
first level of authentication based on the certificate the client is presenting when trying
to open a new connection. Second, Stunnel guarantees the confidentiality and the
integrity of the data being exchanged using strong cryptography.

As mentioned above, we use a two-factors authentication system. The first
level of authentication relies on client certificate when building a new SSL tunnel. The
second level of authentication is based on the traditional UserName/Password
credentials verification. This is performed at the protocol level (both SMTP or
POP/IMAP) using a central credentials repository looked up through SASL.

1 SMTP : Simple Message Transfert Protocol
2 POP : Post Office Protocal / IMAP : Internet Message Access Protocol
3 SASL: Simple Authentication Security Layer

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 8

2.2 Hardware description
The first target for this system was around 100 remote users but might be

gradually extended upon demand. Sizing the hardware for a mail server can be a
difficult task. In our case, we choose an entry-level Dell server like a Dell PowerEdge
600SC with sufficient CPU and memory to offer adequate performance. We include an
additional network card along with a Tape Backup Unit for local backup of the
machine.

2.3 Software description
The operating system running on the mail server is RedHat Linux 9, which

includes the Linux Kernel 2.0.20.
The mail server is running the Postfix Mail Transfer Agent. Postfix was

designed to offer an alternative to the old Sendmail program. Unlike Sendmail, Postfix
was build from the beginning with security and manageability in mind according to its
developer. Postfix is relatively easy to configure. Cyrus IMAP is the implementation of
the IMAP standard by Carnegie Mellon University and is recognized to be a robust
IMAP server with many successful large deployments.

Finally, we use Stunnel as an SSL wrapper. The new 4.x branch of Stunnel
offers text-based configuration method instead of a command line interface like the
former and now obsolete (but still supported) 3.x branch. Stunnel does not provide any
encryption mechanism by itself but relies on the capabilities of the OpenSSL library for
this.

2.4 Details for hardware and software

Hardware Description
CPU Intel Pentium4 2.4Ghz
RAM 512 MB DDR SDRAM
Hard drive 36GB 10K RPM Ultra 320 SCSI Drive
CD Rom 48X IDE Internal CD ROM Drive
Network card On board NIC + Intel Pro 100S NIC
Tape Backup Unit PV100T DDS4 20/40GB Internal TBU
Tape Backup Media Tape, Media for DDS4, 20/40GB

Application Version Description
Postfix 2.0.16 Mail Transfer Agent
Cyrus IMAP 2.1.14 IMAP/POP server
Stunnel 4.0.4 Certificate-based authentication and SSL tunneling
Cyrus SASL 2.1.16 Library used for authentication purpose
BerbleyDB 4.0 Used for credential storage (RedHat distribution patched)
OpenSSL 0.9.7 Library for encryption functionality (RedHat distribution patch)
OpenSSH 3.5 Remote administration (RedHat distribution patched)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 9

3 Risk Analysis
A risk analysis of the system includes a good understanding of the assets

hosted on the system that we need to protect. Once the valuable assets are defined,
we need to list the different ways that can be used to access the system. Finally, we
should be able to define the risk profile of the system in a production phase.

A proper assessment of the risks to the system at the very beginning of the
conception of the infrastructure can help setting up countermeasures and therefore
minimize attacks on the system. In our case, we consider the following major risks:
physical access abuse, unauthorized remote access, inherent risk to the application
being set up, information eavesdropping, mail abuse.

3.1 Asset protection
The need for providing access to a mail server for remote users is principally

lead by business reasons, as remote users need to exchange messages with their
colleagues and partners for their day-to-day work.

The information being sent by users might include confidential pieces of
information related to their activities that should not be disclosed. These data are the
main asset of our system.

The repository of users passwords is also a greatly valuable asset. In case of
compromision, the authentication of users might be corrupted.

3.2 Access to the server
In addition to the physical access to the server, we need to pay attention to the

way the server can be accessed over the network. This means that the services
running on the server and offering remote access to the machine should be kept as
the only ones necessary.

On its production interface, the mail server is running POP, IMAP and SMTP
but should only accept SSL-enabled communication for these mail protocols, meaning
POPS, IMAPS and SMTPS. In addition, the mail server need to exchange SMTP
traffic with the corporate mail relay for messages between its local recipients and the
outside recipients.

The management of the server is performed on its management interface using
the protocol SSH.

3.3 Threats description
Physical protection should be the first step when building a properly secured

system. Controlling physical access to the machine prevents unauthorized and
possibly harmful actions on the system. For example, an intruder with physical access
to the machine might reboot the system to access the single-user mode level and then
gain root access if no protections are in place. He might also take the hard drive of the
server, mount it to an outside machine to obtain the root password and put the hard
drive back in place. Physical protection also includes protection against all natural
disasters like fire or flood. In order to protect our system against this type of threats, it
will be installed in the computer room. Access is restricted to IT team and controlled

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 10

by badges with sufficient privileges. The computer room is equipped with adequate fire
protection.

The protocols the mail server is running can be used to gain inappropriate
remote access on the system. As a consequence, we need to filter the traffic at the
host level to only accept mandatory traffic. This brings a second level of traffic filtering
as the traffic is properly filtered at the corporate firewall level. In addition, a host-based
firewall solution can be of great help in the eventuality of a server located on the public
DMZ being compromised, as the corporate firewall would be useless in this case.

The solution we set up includes Cyrus IMAP, Postfix and Stunnel. Even if the
POP, IMAP and SMTP ports are not directly accessible from the Internet, we should
be using the last version of this software in our infrastructure. Stunnel is used in the
termination of the SSL tunnel initiated by remote users, so it needs to be kept up-to-
date. As Stunnel relies on the OpenSSL library that has shown some vulnerabilities in
the past, this library should also be updated as needed.

The system can encounter fake authentication from users. We mitigate this risk
by using 2-factors authentication, one based on digital certificates and the second
using login/password validation. The access to secret elements like server private key
or user credential database is restricted to system daemons that need to perform
operation with them. In addition, these elements are included in the Tripwire list of files
that are controlled for integrity on a regular basis.

Information eavesdropping needs to be taken into consideration. E-mail can be
used to send confidential information that should not leak outside the company. When
sent over the Internet, this type of information may be intercepted or modified.
Cryptography is an appropriate response to this threat and using SSL guarantees the
integrity and confidentiality of the traffic flows.

The last threat we consider is the threat related to the mail exchange itself and
principally includes viruses and spam. These controls are performed on the corporate
mail relay in order to reduce the load on the local mail server. This brings security to
the exchange between the company users and the external recipients, but nothing to
protect exchange inside the company. We mitigate this risk with a strong anti-virus
policy in place at the desktop level making it difficult for users to send harmful files. In
addition, depending on the performance of the system, the installation of a local anti-
virus solution on the local mail server may be considered.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 11

4 Step-by-step guide

4.1 Linux RedHat 9

4.1.1 Pre-requisite
Linux RedHat 9 has been chosen as the operating system for this mail server.
We decided to have the RedHat distribution CDs shipped directly from a retailer

to our company. This avoids having to download large distribution files from a RedHat
mirror site.

Once we receive the CD sets, it is crucial to be sure that those CDs have not
been tampered with or corrupted in any ways. A tool like GPG 4 can greatly help in this
task as it enables to verify the checksums and digital signature of the CD sets. The
validation of the checksums ensures that the CD sets have not been altered. The next
step at this point is to guarantee the validity of the checksums. We have to verify the
digital signature of the checksums to be sure that they were effectively signed by
somebody that we trust –in this case the RedHat security team. The owner of the key
used to provide digital signature of the RedHat distribution is security@redhat.com,
the key ID is: GPG#db42a60e. You might need to download these keys at:
http://www.redhat.com/solutions/security/news/publickey.html for use with GPG.

During the installation of the operating system, the system is not connected to
any other machine. No network cable should be plug-in the system before the
appropriate OS patches have been installed on the machine.

4.1.2 Linux RedHat 9 installation
We insert the CD 1/3 of the distribution to the machine and then boot on the CD

to start the installation process. We choose the TEXT installation method.
The first screen is a simple welcome screen so we can click on OK. Then we

are presented with language, keyboard and mouse selection.

Language selection English
Keyboard US English
Mouse 2 Mouse Button PS/2

Once the appropriate options are selected, another welcome screen is

displayed and we are prompted for the type of installation we want to perform. As we
intend to take full control of the packages that will be installed on the machine, we
opted for a “Custom” installation mode.

DiskDruid is used for disk partition. If the disk contains any existing partitions,
we are prompted to keep this partition schema or delete it. As we are building a
completely fresh system, we do not need to preserve any existing partition, so we can
select the “Remove all existing partition” option.

4 GPG : Gnu Privacy Guard

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 12

Perform a new Linux installation
Installation Type Custom
Disk Partitioning Manually partition with DiskDruid
Remove all existing partition

Defining an appropriate partition schema for the system we are building is a key

part of the installation process. We do not select auto-partitioning and define manually
the entire partition schema. The partition we create are /, swap, /boot, /usr, /var and
/home. This permits to control several options when mounting these partitions and
then improve the security of the system. For example, we mount the /usr partition
where all the binaries live with the “read-only” mount option to prevent harmful
modifications.

First, we set up a root partition with 1024 Mbytes, mounted under /.
The kernel images used for booting are stored on the dedicated /boot partition

with 512 Mbytes allocated. This allows to keep several images of the Linux kernel.
We allocate twice the amount of memory, hence a 1024 Mbytes for the swap

space.
The /usr partition will contains all the binaries of the application installed on the

system.
The /var partition will host user mailboxes and mail queues. It will also store all

the log files. This partition requires all the remaining disk space on the hard drive
available, around 30GByes.

The /home partition host user home directories and does not require a lot of
disk space as only administrative account will be set up on the system. A 1024 Mbytes
is appropriate for this use.

All the partitions will be formatted using the ext3 file system and have to be
checked for errors.

Mount point Size(MBytes)° Partition type
/ 1024 Force to be a primary partition
/boot 512 Force to be a primary partition
swap 1024
/usr 4096 Force to be a primary partition
/home 512
/var ~30Gbytes (Fill all the remaining

space)

The installation process continues with the boot loader configuration. We select

Grub and set a password for the boot loader. This prevents edition of the boot
parameters by inadequate people.

Boot loader parameters
Boot loader Grub
Boot from /dev/hda2 (partition /boot)
Use a boot loader password XXX
Configure advance boot loader option Choose boot from MBR

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 13

It is now time to configure the network settings of the system. This includes IP

address, network, gateway, name of the machine and DNS server. We assign a free
IP of the public DMZ on the management network.

Network settings
Manually assigned IP address 192.168.10.7
Netmask 255.255.255.0
Manually assigned hostname jupiter.example.com
Gateway 192.168.2.1
Primary DNS 192.168.2.10

We will configure the firewalling capabilities later so we do not edit the firewall

configuration parameters at that time.
We then select the appropriate language and time zone for the system.

Firewall configuration No firewall
Additional language support English US
System clock uses UTC UTC +02

The root password choice should follow the company standards. The means for

example a password with 8 characters, a mix of upper and lower case, numbers and
symbol. Once the 2 passwords entered match, the system validates the choice.

Root Password XXX

Next is the configuration of the authentication features. We can leave the

default here enabling shadow and MD5 password. We will not be using NIS, LDAP or
Kerberos functionality.

Authentication Leave default

Enable MD5
Enable shadow

No NIS, LDAP, Kerberos, SMB

The package selection is performed so that we keep the OS relatively small.

There is no need to installed packages that will be of no use on the system. A good
rule a that point is: “do not to install packages if you are not sure but install it later if
you need it”.

We uncheck all packages and then go to the individual package selection. This
enables us to select only the required packages for our system.

After package selection is complete, the system checks for dependencies
between packages. If a dependency test fails, the system will prompt for the missing

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 14

packages and ask to install them or not. If no error appears here, the system starts
installing the selected packages. It will ask for CD2 or CD3 if needed.

Category Section Off On
Amusements Games All off
 Graphics All off
Applications Archiving All off

CPAN All off
Communications All off
Databases All off
Editors All off
Engineering All off
File All off
Internet Keep Ethereal

Openssh-clients
Tcpdump
Telnet

Wget
Multimedia All off
Productivity All off
Publishing All off Groff
System Keep Logwatch, GnuPG

sudo
 tripwire

Text All off
Development Debuggers Keep lsof

ltrace
strace

Languages Keep Perl
Libraries Keep perl-filter
 libpcap
System Keep All off

Tools Keep All off
Documentation Keep Man Page
System environment Base quota

crontabs
devlabel
eject
logrotate

Man
Daemons Keep Ntp
 Tcp_wrappers
Kernel All off
Libraries Keep libstdc++

libtool-libs
compat-libstdc++

libgtop2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 15

 lipcap
Shells All off

User Interface Desktops All off
X All off
X hardware support All off

It is a good practice to create a boot disk for a recovery purpose. This enables

to boot off this disk and perform administrative tasks on a broken system.
We can then reboot the system and log in for the first time to the system.

4.2 Locking down
This part intends to describe the steps to perform in order to improve the

default configuration settings of the newly installed system. This includes applying the
latest patches to the OS, turning off the services that will not be used, improving the
behavior of our network parameters.

4.2.1 OS patching
Following the fresh installation of our system, we need to keep our system up to

date with the latest versions of the installed packages.
The latest patches for RedHat 9 systems are available from the RedHat update

web site at http://updates.redhat.com/9/en/os/. From there, you should download all
available packages in the i386 and i686 directories. We download from the RedHat
update web site in a properly up and running dedicated system. Once the download is
completed, we have to verify the integrity of the patches that have been downloaded
as we did for the distribution files. If this test is successful, we can pursue the patches
installation.

We directly connect our server to the dedicated machine where the upgrades
resides using a crossover cable. Then we copy all the updated packages to our
system. This ensures that our system, which is not properly patched and configured at
that time will not be eventually comprised when connected to the network.

At the time of writing, there were several application patches available along
with a single kernel patch that we can install on our system. The kernel patch is copied
to /var/install/kernel-patch whereas the applications patches are copied to
/var/install/app_patch.

We need first to install the kernel patch and then reboot the machine for the
changes to take effect. We use the “-i” option when installing the new kernel as we
want to keep a copy of the old kernel in case something went wrong during the
upgrade.

Then we edit the boot loader configuration file and specify to boot on the newly
installed kernel. So we edit the /boot/grub/grub.conf file and check that an entry for the
new kernel is created. In order to specify which kernel should be used at boot time, we
have to change the parameter called “default” and have it point to the new kernel. In
our case, we set default to 1 to boot on the kernel called “title Red Hat Linux (2.4.20-
20.9)”.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 16

cd /var/install/kernel-patch
/bin/rpm –ivh kernel-2.4.20-20.9.i686.rpm

vi /boot/grub/grub.conf
<…skip…>
default 1
title Red Hat Linux (2.4.20-20.8)
 root (hd0,0)
 kernel /vmlinuz-2.4.20-20.8 ro root=LABEL=/
 initrd /initrd-2.4.20-20.8.img
title Red Hat Linux (2.4.20-20.9)
 root (hd0,0)
 kernel /vmlinuz-2.4.20-20.9 ro root=LABEL=/
 initrd /initrd-2.4.20-20.9.img
<…skip…>

init 6

We only want to install updated versions of our currently installed packages. As

a consequence, we will use the –F option of the rpm utility that enables to only install
updated versions of the previously installed packages (-F stands for freshen).

cd /var/install/app-patch
rpm -Fvh *.rpm

We now have a system properly patches and we can start working on its

configuration.

4.2.2 Restrict boot services
The utility chkconfig shipped with RedHat permits to control services started at

boot time. This utility manages the various links between the run level directories –ie
/etc/rc[1-6].d and the standard repository of startup scripts –ie /etc/init.d. chkconfig
ensures that the service under its control has an appropriate start and kill script in
every run entry

As we greatly reduce the number of selected packages during the installation of
the mail server, only a few services have been enabled by default during the boot
sequence. They should however be disabled using the chkconfig utility. So, we turn off
xinetd as there is no need for it to be running on the system. We also turn off kudzu
(used for new hardware detection), netfs (used for network file sharing), rawdevices
(used to assign raw devices to block devices), pcmcia (as there is no pcmcia devices
attached). Only the necessary services will be turned on at boot time including for
example the SSH daemon.

We will add later some services under the control of chkconfig. In our case, the
startup of the mail services will be controlled using chkconfig..

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 17

For the services that we need to turn off, we use the –level option of chkconfig
to specify the running level where to turn off the service. We can check the remaining
services that are start up at boot time with the –list option.

/sbin/chkconfig --level 2345 xinetd off

/sbin/chkconfig --list
kudzu 0:off 1:off 2:off 3:off 4:off 5:off 6:off
syslog 0:off 1:off 2:on 3:on 4:on 5:on 6:off
netfs 0:off 1:off 2:off 3:off 4:off 5:off 6:off
network 0:off 1:off 2:on 3:on 4:on 5:on 6:off
random 0:off 1:off 2:on 3:on 4:on 5:on 6:off
rawdevices 0:off 1:off 2:off 3:off 4:off 5:off 6:off
pcmcia 0:off 1:off 2:off 3:off 4:off 5:off 6:off
keytable 0:off 1:off 2:off 3:off 4:off 5:off 6:off
sshd 0:off 1:off 2:on 3:on 4:on 5:on 6:off
xinetd 0:off 1:off 2:off 3:off 4:off 5:off 6:off
ntpd 0:off 1:off 2:off 3:off 4:off 5:off 6:off
iptables 0:off 1:off 2:on 3:on 4:on 5:on 6:off

Even if disable the xinetd daemon from automatic startup at boot time, we can

go further by completely removing the files and directories tied to xinetd.
Consequently, we remove /etc/xinetd.conf and /etc/xinetd.d.

rm -fR /etc/xinetd*

4.2.3 Access control
A system can be accessed by several means; one of them is the serial

connection. Even if this might be handy, we opt for disabling access to our system
through the serial port. This is achieved by removing the adequate entries in the
/etc/inittab file, which controls the way the init process setup the system when it enters
a run level.

We comment out the tty[2-6] to only keep the tty1 line. This ensures that only
the standard system console device is available.

vi /etc/inittab
Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1
#2:2345:respawn:/sbin/mingetty tty2
#3:2345:respawn:/sbin/mingetty tty3
#4:2345:respawn:/sbin/mingetty tty4
#5:2345:respawn:/sbin/mingetty tty5
#6:2345:respawn:/sbin/mingetty tty6

By default, RedHat does not prompt for the root password when entering in

single-user mode. This prevents an attacker with physical access to the machine to
access the single-user mode without knowing the root password. This parameter is
also controlled by the /etc/inittab file

vi /etc/inittab

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 18

sum:S:wait:/sbin/sulogin

With the view to facilitate the accounting of the system, we would like to control

the way the users can enter the system using the root account. We configure the
system to only allow access for the root account to the system console device. The file
/etc/securetty has to be cleared of all its entries except the tty1. We detail later in the
document how to control root login remotely via SSH.

4.2.4 Prevent shutdown
Linux comes with a keyboard sequence CTRL+ALT+DEL that enables to

reboot the system. This behavior is unwanted and must be disabled. The /etc/inittab
should be modified by commenting out the following line.

vi /etc/inittab
ca::ctrlaltdel:/sbin/shutdown –t3 –r now

4.2.5 IP stack
The file /etc/sysctl.conf is used to control the behavior of the IP stack. The

contents of this file are parsed at boot time and then set the parameters defined in this
file. Below is the output of this file with some comments on the different parameters.

vi /etc/sysctl.conf

We do not perform routing
net ipv4.ip_forward=0

Disable Smurf attack. Pinging broadcast/multicast addresses not allowed
net.ipv4.icmp_echo_ignore_broadcasts = 1

#No ping requests against network mapping
net.ipv4.icmp_echo_ignore_all = 1

Interface configuration
Our routing is symmetric
Internal traffic on internal interface; External traffic on external
#interface
net.ipv4.conf.all.rp_filter = 1

Log Martians packets
net.ipv4.conf.all.log_martians = 1

Disable source routing
net.ipv4.conf.all.accept_source_route = 0
net.ipv4.conf.all.send_redirect = 0
net.ipv4.conf.accept_redirect = 0
net.ipv4.conf.secure_reditect = 0

Set this parameters as default
net.ipv4.conf.default.rp_filter = 1
net.ipv4.conf.default.log_martians = 1
net.ipv4.conf.default.accept_source_route = 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 19

net.ipv4.conf.default.send_redirect = 0
net.ipv4.conf.default.accept_redirect = 0
net.ipv4.conf.default.secure_reditect = 0

4.2.6 Remove unneeded user and group accounts
User accounts and group accounts are set up by default when installing a new

RedHat system. It is recommended to remove the unnecessary accounts in order to
make the /etc/passwd or /etc/group files shorter and then facilitates accounting of our
system.

for user in pcap ntp games gopher news; do /usr/sbin/userdel $user; done

for group in XXX; do /usr/sbin/groupdel $group; done

4.2.7 Banners
Banners can be configured at several locations on the system. For our mail

server, we want a banner to be displayed at the console and when connecting
remotely using SSH. So we configure the file /etc/issue with the appropriate corporate
banner. In addition, the /etc/motd should also be displayed after a successful logon.

4.3 Core applications setup

4.3.1 Development environment
The applications to install on our server come as a zipped tarball that we need

to compile to create the corresponding binaries. However, when installing the base OS
of our mail server, we reduce to the minimum necessary packages, which do not
include a development environment. Our server does not use these development tools
on a daily basis, so there is no reason to install them. In addition, we want to make the
life of a potential intruder a (little) bit harder by not installing the tools he may need to
install harmful applications like Tojans or backdoors.

We setup a complete development environment on a dedicated development
server to compile our applications. Once we get the binaries on the development
server, we can easily transfer them to Jupiter, our production server.

The listing of the applications that we need to compile gives the following
output. The directory /var/install is used as a base directory for compiling operation.
This includes Cyrus SASL, Cyrus IMAP, Postfix and Stunnel. All of these tarballs
come with checksums and signatures that have to be process in order to ensure the
integrity and validity of the binaries. The tool GPG can be used in the same way as the
validation of the Red Hat distribution and patches. This step is not luxury and really
worth spending some time on it.

$ ls /var/install
cyrus-imapd-2.1.14.tar.gz postfix-2.0.14.tar.gz cyrus-sasl-2.1.15.tar.gz
stunnel-4.04.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 20

In order to perform a painless compiling task, we need to properly indicate to
the system where to find the various libraries needed to compile our application. So
we add the Berkley DB, Kerberos libraries to the /etc/ld.so.conf file. Then we run the
utility ldconfig for the changes to take effect.

Note that the SASL lib has also to be added once it has been compiled. Here is
the output of the ld.so.conf

#vi /etc/ld.so.conf
/usr/lib
/usr/local/lib
/usr/local/lib/sasl2
/usr/kerberos/lib

ldconfig

In addition, we need to create several symbolic links to indicate the place for

Kerberos headers files. By default the compiler look for them in the /usr/include though
they reside in /usr/Kerberos/include, so we create the following appropriate symbolic
links for these header files.

#ln -s /usr/kerberos/include/krb5.h /usr/include/krb5.h
#ln -s /usr/kerberos/include/com_err.h /usr/include/com_err.h
#ln -s /usr/kerberos/include/profile.h /usr/include/profile.h

4.3.2 Pre-requisite
Cyrus SASL and Cyrus IMAP require the use of a database for storage. We

use the Berkley database 4.0 shipped with the RedHat 9 distribution as backend
storage.

4.3.3 Cyrus SASL
SASL stands for Simple Authentication Security Layer and offers protocols

some mechanisms to perform an authentication task. In our case, the SMTP or IMAP
protocol uses the authentication mechanism the SASL library offers in order to
authenticate users. During the configuration of SASL, we select a PLAIN mechanism,
meaning that the server has to authenticate the client based on its username and
password. A major point to note is that a PLAIN mechanism should be used in
coordination with some protections at the transport layer in order to avoid sending the
clear-text version of the user password over the network. SSL is our candidate to
perform this task (the configuration of the configuration of SSL is detailed below).

We select the auxiliary plugin called sasldb shipped with the SASL library as
our plain mechanism. This mechanism is used to validate the credentials provided by
the user against the credentials stored in the database file /var/db/sasldb2. What is
really interesting in this architecture is that remote users do not need to have a regular
Unix account on the system but only an account on the sasldb2 user credentials
database. Only the system administrator of the system requires a local user account
on the mail server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 21

For more details on Cyrus SASL, you might want to have a look at the system
administrators guide at: http://asg.web.cmu.edu/cyrus/download/sasl/sysadmin.html.

To install the SASL library, we start by unzipping and extracting the Cyrus

SASL archive.

$ gzip -d /var/install/cyrus-sasl-2.1.15.tar.gz
$ tar xf /var/install/cyrus-sasl-2.1.15.tar
$ cd /var/install/cyrus-sasl-2.1.15

Then we run the configure script with several options in order to control what

will be installed. In particular, we disable the authentication mechanisms that will not
be used. These ones are for example digestMD5, which is an authentication
mechanism based on shared secret keys. As explained above, we only keep the plain
mechanism for authentication. The directory for storage of user credentials is
/var/db/sasldb2 (option –with-dbpath).

$ /var/install/cyrus-sasl-2.1.15/configure \
--disable-krb4 --disable-digest – disable-otp --disable-gssapi \
--disable-anon --disable-cram --disable-digest –disable-ntlm \
--with-dbpath=/var/db/sasldb2

$ make
make install

The SASL libraries is installed in /usr/local/lib/sasl2 and look for plugin in

/usr/lib/sasl2. Then we need to link /usr/local/lib/sasl2 to /usr/lib/sasl2. You may want
to read the SASL sysadmin guide for more information.

ln -s /usr/local/lib/sasl2/ /usr/lib/sasl2

Note: if needed, you need to add /usr/local/lib to /etc/ld.so.conf and run ldconfig

as explained above in 3.1.

The access to the database where the users credentials are stored should be

properly controlled. As a consequence, we set up the ownership of this directory to
root with read and write permissions. This ensures that only root can add new users to
the database.

The group ownership is set to the group “mail” with read only permissions. We
will add later the users “cyrus” and “postfix” to this group “mail” as they need read
access to the database file in order verify user credentials. These accounts “cyrus”
and “postfix” are the ones used to run the IMAP and STMP daemons.

chown root:mail /var/db/sasldb2
chmod 640 /var/db/sasldb2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 22

Cyrus SASL comes with several useful administrative tools to perform
operations on the sasldb2 credential database. These utilities called saslpasswd2 and
sasldblistusers2 are located under /usr/local/sbin. These are administrative tools
needed to add users or list the inserted users from the authentication database.

We then create 2 accounts, one for the administrator “admin1” in charge of the
database and a second account for the “testmail” user.

/usr/local/sbin/saslpasswd2 –c admin1
Password: <admin1 password>
Again (for verification): <admin1 password>

saslpasswd2 –c testmail
Password: <testmail user password>
Again (for verification): <testmail user password>

sasldblistusers2
admin@branch1.example.com: userPassword
testmail@branch1.example.com: userPassword

Due to the conception of Cyrus SASL, the passwords inside sasldb2 database

are stored in clear text. We take some precautions to set up the appropriate level of
security for the system:

Ø Only users with administrative privileges can log on to the system (root
and admin1) and access the credential file.

Ø An intruder cannot get access to the box using a stolen user password
as there are no user accounts defined on the box.

Ø Set strong permissions on the credentials database file.

However, some security policy won’t allow clear text password storage. An

alternate solution is to use an LDAP database for backend storage and store hashed
version of the password. This brings some modifications in our architecture. First the
version 4.1 of the Berkley DB (not shipped with RedHat 9) is required to work with the
latest version of OpenLdap 2.1.22. In addition, instead of using the sasldb auxiliary
plugin, we need to use a specific OpenLdap auxiliary plugin called ldapdb. This plugin,
though working properly, is still in “experimental” mode.

For the rest of the document, we stick with our architecture of sasldb2 database
file.

4.3.4 Cyrus IMAP
The installation of Cyrus IMAP server is pretty straightforward. We first

unzipped and extract the archive.

$ gzip -d /var/install/cyrus-imapd-2.1.14.tar.gz | tar xf cyrus-imapd-
2.1.14.tar
$ cd /var/install/cyrus-imapd-system

We run the configure script with several options. First, we would like to use

/usr/local/cyrus as the base directory for Cyrus IMAP server binaries. Then we want to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 23

run the server as the user “cyrus”. Finally we disable Sieve support, as we don’t want
to use it. Sieve performs controls on messages transiting through the IMAP server.

$./configure --with-auth=unix --with-cyrus-prefix=/usr/local/cyrus \
–with-cyrus-user=cyrus --disable-sieve

$ make clean
$ make all

make install

The Cyrus IMAP server binaries are located in the /usr/local/cyrus/bin directory.

This directory contains the IMAP and POP3 and master application. (This one is used
as a wrapper to launch other Cyrus processes, typically imapd or pop3d).

Others Cyrus utilities that come with the server are installed in /usr/local/bin.
These are principally administrative and testing tools like “cyradm” used for mailboxes
creation or “imtest” used to test IMAP connection.

The next step is the configuration of our IMAP server.
The first thing to do is the creation of the user “cyrus” under which the cyrus

imap daemon runs as. This user does not need to log in to the system; as a
consequence we set its home directory to /dev/null and do not provide him with a valid
shell access. The primary group “cyrus” for the user “cyrus” is created as well. Note
that uid/gid below 500 are typically reserved for RedHat build-in accounts. We choose
uid/gid starting with 5555 to fulfill our needs.

In addition, we need to make the user “cyrus” member of the group “mail”. This
will ensure that the IMAP daemon running as the user “cyrus” can verify users
credentials stored in the sasldb2 database. (the –G option is used to set the
“alternative” group for a given user).

/usr/sbin/groupadd –g 55551 cyrus
/usr/sbin/useradd -u 55551 –g 55551 –d /dev/null -s /bin/NOshell cyrus
/usr/sbin/usermod –G mail cyrus

Configuration file: /etc/imapd.conf
The configuration files of the IMAP server is /etc/imapd.conf. We specify the

directory that contains the configuration of the IMAP server and the directory that store
user mailboxes (/var/spool/imap). These are to be located on the /var partition,which
provide enough disk space. The user “admin1” has administrative rights to configure
the IMAP server.

In addition to directory locations, we specify the way the cyrus IMAP server will
authenticated its users. The SASL auxiliary plugin (Note the keyword:
sasl_pwcheck_method=auxprop stated for “auxiliary”) “sasldb” is our candidate for this
job.

vi /etc/imapd.conf
configdirectory: /var/imap
partition-default: /var/spool/imap

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 24

servername: CGUX IMAP server
admins: admin1
sasl_pwcheck_method: auxprop
sasl_plugin: sasldb

Master process
The master process configuration file /etc/cyrus.conf is read at the startup by

the Cyrus master process and is used to control the Cyrus services that are launched.
In our case, we stick with only imap and pop services. In addition, it contains the Unix
socket path (/var/imap/socket/lmtp) used by the MTA (Postfix in our case) for message
delivery.

Cyrus IMAP server comes with several templates of control file that are handy
to use. Here is an output of this file with the above-mentioned parameters. A complete
copy of our /etc/cyrus.conf can be found in Appendix B.

more /etc/cyrus.conf
Standard standalone server implementation

<…skip…>

UNIX sockets start with a slash and are put into /var/imap/sockets
SERVICES {
 # add or remove based on preferences
 imap cmd="imapd" listen="imap" prefork=0
 pop3 cmd="pop3d" listen="pop3" prefork=0

 # LMTP is required for delivery
 lmtpunix cmd="lmtpd" listen="/var/imap/socket/lmtp" prefork=0

<…skip…>

Configuration directory /var/imap
This directory stores information of the IMAP server as a whole. For example, it

contains the directory “socket/lmtp” used by Postfix for local delivery of messages.
The ownership of this directory is granted to the user “cyrus” and the group

ownership to mail. Accordingly, we set the permissions to 750.

cd /var
mkdir imap
chown cyrus:mail imap
chmod 750 /var/imap/

Spool directory /var/spool/imap
This directory is used for storage of user mailboxes.

cd /var/spool
mkdir imap
chown cyrus:mail imap
chmod 750 imap/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 25

Finalize the directories structure
Once we have the base directories for the server configuration and user

mailboxes, we can run a Perl script provided with the Cyrus server. This simple script
creates the remaining directory structure for the Cyrus IMAP server to work properly. It
creates /quota and /socket under /var/imap for respectively user quota configuration
and LMTP socket directory. In addition, it creates the directory user under
/var/spool/imap for user mailboxes.

Once the script is executed, we can set the ownership to the user and group
cyrus.

/var/install/cyrus-imap- cyrus-imapd-2.1.14/tools/mkimap
/bin/chown –R cyrus:cyrus /var/imap/*
/bin/chown cyrus:cyrus –R /var/spool/imap/*

Access to the LMTP socket
The Cyrus IMAP server expects to receive messages in the

/var/imap/socket/lmtp. Remember that we set permission 750 on /var/imap with group
ownership to “mail”. As the user “postfix” belongs to the group “mail”, it is allowed to
drill down through /var/imap and socket as well (permissions 755) to finally access the
specified socket file for message delivery.

Automatic startup
We create a startup file in /etc/init.d used to run the server master process

located at /usr/local/cyrus/bin/master. In addition, we add support for the chkconfig
utility, which is used to start the IMAP server at boot time. This adds start and kill
entries for the Cyrus startup script along with a definition for the Cyrus services.

more /etc/init.d/cyrus
#!/bin/bash
chkconfig: 2345 20 80
description: startup script for the Cyrus IMAP server
<…skip…>

/usr/local/cyrus/bin/master &

<…skip…>

4.3.5 Postfix
Before starting to work with Postfix, it can be worthwhile checking some of the

basic configuration options at: http://www.postfix.org/basic.html
As a pre-requisite for the Postfix installation, we need to create the directories

where Postfix needs to store its files (ie /usr/local/postfix).
We also need to create a user “postfix” with a primary group “postfix”. This is

the user the postifx system runs as. As for the cyrus user, the Postfix user does not
need to have home directory and shell access. A supplementary group called
“postdrop” needs also to be setup to ensure the proper operation of the postfix
system. Note: the installation is likely to fail if these pre-requisites are not met.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 26

The user “postfix” should be able to access the local database password file
sasldb2 along with the Cyrus IMAP socket. We therefore assign it to the “mail” group.

/bin/mkdir /usr/local/postfix

/usr/sbin/groupadd –g 55552 postfix
/usr/sbin/groupadd –g 55553 postdrop

/usr/sbin/useradd -u 55552 –g 55552 –d /dev/null -s /bin/NOshell postfix

/usr/sbin/usermod –G mail postfix

We unzipped and extract the archive. Our Postfix server has to be compiled

with SASL support, so we have to specify the location of the SASL include files and
libraries to the compiler.

$ gzip -d postfix-2.0.14.tar.gz
$ tar xvf postfix-2.0.14.tar
$ cd postfix-2.0.14

$ make makefiles CCARGS="-DUSE_SASL_AUTH -I/usr/local/include/sasl"
AUXLIBS="-L/usr/local/lib -lsasl2"

The installation process is interactive and prompts us for several key features

of Postfix: location of the configuration files, location of daemon programs, location of
the queue directory. We present the responses we provide below.

make install

Please specify the prefix for installed file names. Specify this ONLY
if you are building ready-to-install packages for distribution to other
machines.
install_root: [/]

Please specify a directory for scratch files while installing Postfix. You
must have write permission in this directory.
tempdir: [/var/install/postfix-2.0.14] /var/tmp

Please specify the final destination directory for installed Postfix
configuration files.
config_directory: [/etc/postfix]

Please specify the final destination directory for installed Postfix
daemon programs. This directory should not be in the command search path
of any users.
daemon_directory: [/usr/local/postfix/bin]

Please specify the final destination directory for installed Postfix
administrative commands. This directory should be in the command search
path of adminstrative users.
command_directory: [/usr/sbin] /usr/local/bin

Please specify the final destination directory for Postfix queues.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 27

queue_directory: [/var/spool/postfix]

Please specify the final destination pathname for the installed Postfix
sendmail command. This is the Sendmail-compatible mail posting interface.
sendmail_path: [/usr/sbin/sendmail]

Please specify the final destination pathname for the installed Postfix
newaliases command. This is the Sendmail-compatible command to build
alias databases for the Postfix local delivery agent.
newaliases_path: [/usr/bin/newaliases]

Please specify the final destination pathname for the installed Postfix
mailq command. This is the Sendmail-compatible mail queue listing command.
mailq_path: [/usr/bin/mailq]

Please specify the owner of the Postfix queue. Specify an account with
numerical user ID and group ID values that are not used by any other
accounts on the system.
mail_owner: [postfix]

Please specify the group for mail submission and for queue management
commands. Specify a group name with a numerical group ID that is
not shared with other accounts, not even with the Postfix mail_owner
account. You can no longer specify "no" here.
setgid_group: [postdrop]

Please specify the destination directory for the Postfix on-line manual
pages. You can no longer specify "no" here.
manpage_directory: [/usr/local/man]

Please specify the destination directory for the Postfix sample
configuration files.
sample_directory: [/etc/postfix]

Modify various options in the Postfix configuration file
/etc/postfix/main.cf

In order to deliver mail to Cyrus, Postfix need to access the socket lmtp.
We need to set appropriate rights on this directory. See paragraph above on
the permissions set on this directory.

mailbox_transport = lmtp:unix:/var/imap/socket/lmtp

The postfix daemon program are stored in /usr/local/postfix/bin and the

administrative commands to flush the queue for example are stored in /usr/local/bin.
The configuration files are located under /etc/postfix.

The configuration of Postfix is performed using the main.cf file located in

/etc/postfix.
The options that we set are detailed below (extract from our main.cf).

vi /etc/postfix/main.cf
<…skip…>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 28

#The Postfix server should only listen on its production interface
inet_interfaces = 192.168.2.7

#The name of the machine and domain of the machines
myhostname = jupiter.example.com
mydomain = example.com

#The SMTP banner
smtpd_banner = Jupiter.example.com Mail Server
<…skip…>

Messages handling
The mail server handles messages for branch1.example.com for local delivery,

so we set accordingly the “mydestination” parameter.
Only the corporate mail relay Mercury and the properly authenticated users

should be authorized to relay messages through the mail server, so we set “my
networks” to 192.168.2.5 and 127.0.0.1. We will detail below how we can restrict to
only authenticated users the ability to send messages.

The messages not destined to local recipients should be sent to the corporate
mail relay called Mercury with a 192.168.2.5 @ IP. The standard SMTP port 25 is
used for message exchange.

vi /etc/postfix/main.cf
<…skip…>
mydestination = branch1.example.com
mynetworks = 127.0.0.1, 192.168.2.5
relayhost = 192.168.2.5:25
<…skip…>

We need to verify that the proper Unix socket is configured for message

delivery. The option in the main.cf file is mailbox_transport, which should target the
appropriate directory. LMTP 5 is used for delivery of messages by Postfix to the back
end store, bringing higher performance.

vi /etc/postfix/main.cf
<…skip…>
mailbox_transport = lmtp:unix:/var/imap/socket/lmtp
<…skip…>

Configure Postfix for SASL authentication
We compile Postfix with SASL support with the view to authenticate senders

using the SASL auxiliary pluging sasldb. The configuration for SMTP AUTH is quite
simple and requires the creation of a file called “smtp.conf” located in the directory
“/usr/local/sasl2”. This file controls the behavior of Postfix when using the SASL
library. We indicate in this file the method to use –ie the auxiliary plugin- , the name of
the plugin along with the type of mechanism to use –ie only plain mechanism in our
case.

5 LMTP : Local Mail Transport Protocol

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 29

more /usr/local/lib/sasl2/smtp.conf
pwcheck_method: auxprop
auxprop_plugin: sasldb
mech-list: plain

In addition, we need to activate the SASL option in the main.cf file. The

corresponding option to perform SASL authentication is smtpd_sasl_auth_enable that
needs to be set to yes. In addition, we want to restrict the capability of sending a
message to the users that have been previously authenticated by the server. In
addition, we want to authorize only our mail relay Mercury (see my_networks
parameter) to send messages. So we set appropriately the
smtpd_recipient_restrictions.

vi /etc/postfix/main.cf
<…skip…>
smtpd_sasl_auth_enable = yes
smtpd_sasl_local_domain =
smtpd_sasl_security_options = noanonymous

smtpd_recipient_restrictions =
 permit_sasl_authenticated,
 permit_mynetworks
<…skip…>

4.3.6 Stunnel installation
Some critical information might be contained in the messages exchanged

between our remote users and their mail server Jupiter. In addition, as we use a
PLAIN authentication mechanism, the user password for access to the mailboxes is
sent over the Internet in clear-text. Using an SSL tunnel between the client and its mail
server offers an adequate level of protection at that point. We setup Stunnel to run on
the server side and offers SSL support for the applications that needs it. We intend to
use this functionality to protect the IMAP/POP and SMTP traffic.

First, SSL provides support for authentication. We would like to authorize our
remote clients to connect to the mail server Jupiter only if they have been previously
authenticated at the SSL layer. May a client failed to pass this step, it should be
impossible for him to simply open an IMAP or STMP connection to the server. On the
server side, Stunnel offers an option to validate the certificate provided by the client
and therefore controlling the users with potential access to the messaging resources.
Clients should be able to validate the certificate of the mail server, which guarantees
that they are speaking to the proper server.

In addition to support authentication, SSL brings encryption features as well.
The data sent from the client to the server is encrypted on the client side; then send
over the Internet in an encrypted form. Once the traffic reach the client side, the
Stunnel daemon decrypts it and then forwards the decrypted data flow to the
appropriate final destination port, either the IMAP/POP or the SMTP. This ensures that
no data travel in clear over the network and as a consequence the confidentiality of
the data is not compromised.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 30

We need first to create a user stunnel who is used to run the Stunnel binaries.

This user does not need a home directory and a shell account.

/usr/sbin/groupadd –g 55554 stunnel
/usr/sbin/useradd -u 55554 –g 55554 –d /dev/null -s /bin/NOshell stunnel

Then comes the unzipped and extraction of the Stunnel archive.

$ /usr/bin/gzip -d /var/install/stunnel-4.04.tar.gz
$ /bin/tar xf /var/install/stunnel-4.04.tar
$ cd /var/install/stunnel-4.04

We use the prefix option to specify the base directory /usr/local/stunnel for the

Stunnel application. Then we run make to compile Stunnel and make install to install
the binaries at the appropriate location.

$./configure --prefix=/usr/local/stunnel --sysconfdir=/etc
$ make
$ make install

The stunnel executable is install in /usr/local/stunnel/sbin and the sytem

configuration directory is /etc/stunnel. This is where resides the stunnel.conf, which is
read by the stunnel daemon at startup.

Creation of a local CA
When it comes to certificate-based authentication, trust between parties should

be detailed. We want to setup our own local “certificate authority”. The CA is only used
to sign certificates for the mail server Jupiter and the remote users certificates. The
OpenSSL binaries are used to assist us in this task.

The first step is to create the proper directory architecture. The base directory is

/var/ca.

cd /var
mkdir ca
cd ca
mkdir certs crl newcerts private
echo "01/n" > serial
touch index.txt

Then we create the local CA private and public keys, the private key being used

to sign its own certificate along with server and user certificates. Note: for all the
certificate creation, we use a template stored at /var/ca/example.cnf. This is a
customized version of the default OpenSSL template and can be found in Appendix B.
Keys and certificates of this local CA must not be modified so permissions of 400
should be set on these elements, root being the owner. Special care should be paid
on the CA private key as its compromising would result in the compromising of all the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 31

certificates that were signed by this private key. Once the initial setup of the
infrastructure is complete, it is a good practice to store a copy of the CA private key on
a secure box using a floppy for example.

We use 1024 bits RSA keys that are considered enough long at that time.

#/usr/bin/openssl req -new -x509 -config /var/ca/example.cnf -keyout
./private/cakey.pem -out /ca/cacert.pem
Generating a 1024 bit RSA private key
......++++++
............++++++
writing new private key to './private/cakey.pem'
Enter PEM pass phrase: whatever passphrase
Verifying - Enter PEM pass phrase: the same one

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [FR]:
State or Province Name (full name) [Ile-de-France]:
Locality Name (eg, city) [Paris]:
Organization Name (eg, company) [Example Company]:
Common Name (eg, your name or your server's hostname) []:Certificate
Authority Server
Email Address []:admin-ca@branch1.example.com

Now that we have built a CA private key and associated certificate, we can

create certificate requests for the mail server Jupiter, the user “testmail”. We only
provide the output for the mail server Jupiter, as the procedure is similar for the other
operations.

It is important to note the use of the “-nodes” option in the certificate request for
server and user requests. This indicates to OpenSSL not to protect the private key
with a passphrase. The passphrase is used to protect the private key and needs to be
provided every time access to the private key is required. For example, as the mail
server will use its private key every time a new SSL connection is opened, it is
impossible for somebody just to sit here and wait for entering the server passphare…

#/usr/bin/openssl req -new -nodes -config /ca/example.cnf -keyout
/ca/private/jupiterkey.pem -out /ca/reqs/jupiterreq.pem Generating a 1024
bit RSA private key
........++++++
..++++++
writing new private key to '/ca/private/jupiterkey.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 32

Country Name (2 letter code) [FR]:
State or Province Name (full name) [Ile-de-France]:
Locality Name (eg, city) [Paris]:
Organization Name (eg, company) [Example Company]:
Common Name (eg, your name or your server's hostname) []:jupiter.example.com
Email Address []:admin-jupiter@branch1.example.com

Now that we have a brand new certificate request, we can have it signed by our

private CA key. OpenSSL CA mode would do that for us. The CA private key
passphrase is required to sign the certificate request (Access to CA private key). We
enter yes to sign the certificate request for the server.

openssl ca -config /ca/example.cnf -policy policy_example -out /ca/certs/mailkey.pem -infiles
/ca/reqs/mailreq.pem
Using configuration from /ca/example.cnf
Enter pass phrase for /ca/private/cakey.pem: CA private key passphrase
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number: 3 (0x3)
 Validity
 Not Before: Aug 20 06:04:51 2003 GMT
 Not After : Aug 19 06:04:51 2004 GMT
 Subject:
 countryName = FR
 stateOrProvinceName = Ile-de-France
 localityName = Paris
 organizationName = Example Company
 commonName = jupiter.example.com
 emailAddress = admin-mail@branch1.example.com
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 90:DE:34:50:90:79:1A:13:A8:8F:51:EB:D7:C8:52:BC:B6:5C:D4:6A
 X509v3 Authority Key Identifier:

keyid:35:8C:0F:BB:47:F4:BC:3F:96:F6:78:7F:4A:59:5A:CB:C5:2C:CD:E7
 DirName:/C=FR/ST=Ile-de-France/L=Paris/O=Example Company/CN=Certificate Authority
Server/emailAddress=admin-ca@branch1.example.com
 serial:00

Certificate is to be certified until Aug 19 06:04:51 2004 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 33

Now we can verify that our certificates are valid with the OpenSSL “-verify”
option.

#/usr/bin/openssl verify -verbose -CApath /ca -CAfile /ca/cacert.pem
/ca/certs/jupitercert.pem
/ca/certs/jupitercert.pem: OK
#/usr/bin/openssl verify -verbose -CApath /ca -CAfile /ca/cacert.pem
/ca/certs/testmailcert.pem
/ca/certs/testmailcert.pem: OK

Delivery to the users
Once generated the user private key and certificate should be deliver to the

final user. We do not setup a complete PKI (Public Key Infrastructure), which includes
procedures that can be time and resource consuming. This is not the purpose of the
document to detail that part.

Finalize the Stunnel configuration
CA certificate:
The Stunnel daemon needs to read the CA certificate, which should be copied

in “/etc/stunnel/stunnel.pem”. The CA certificate is used to validate the certificates a
client or server is presented to the Stunnel daemon. The digital signature of a
certificate is the fingerprint of the certificate signed by the CA private key. By running
the same hash algorithm on the submitted certificate and encrypting the
corresponding digital signature with the CA public key, we should obtain the same
piece of data, which then guarantees the integrity of the certificate. The controls that
need to be operated on the certificate are integrity check (the certificate has not been
altered), the date check (the certificate has not expired) and the validity check (the
certificate is not on a revocation list). Note that Stunnel does not support revocation
list checking but another mechanism, which is detailed below.

cp /ca/cacert.pem /etc/stunnel/stunnel.pem

Jupiter server requirements:
Stunnel requires the location of the private key and certificate for the mail

server Jupiter. This certificate has to be provided to the client when requesting for an
SSL.

In order to work properly, Stunnel requires one single file that contains both
element –ie private key and certificate. We use the command cat to create the
concatenated version of the 2 files.

cat /ca/private/jupiterkey.pem mailcert.pem >
/etc/stunnel/servercert/jupitercert.pem
cp /ca/private/jupiterkey.pem /etc/stunnel/servercert/

Client requirements:
The Stunnel daemon needs to know which client certificates are valid and

which are not. Generally, when a user looses its private key or in case of a
compromising of this key, it should refer this to the administrator. This should lead to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 34

the publication of a CRL (Certificate Revocation List) containing all the certificates that
are not valid any longer. Stunnel does not support CRL checking at that time.
However, Stunnel does provide certificate validity check through a simple repository
that contains all the certificates considered as trusted. This seems to fit our needs in a
small to medium architecture.

To perform certificate checking, Stunnel parse the content of the repository and
look for specific file name. The certificate inside the repository should be named
according to the result of an OpenSSL hash function. As a consequence, we generate
a hash for the client certificate in order to rename the certificate with it, as per what is
expected by Stunnel.

We define the directory containing the certificate that we trust to
/etc/stunnel/trustedcerts.

In the example below, the result of the hashed function is 81dbaa70.0.

/usr/bin/openssl x509 -hash -noout -in testmailcert.pem
81dbaa70
mv /etc/stunnel/trustedcerts/testmailcert.pem
/etc/stunnel/trustedcerts/81dbaa70.0

Completing the configuration of Stunnel
There are some points in the configuration file of Stunnel

(/etc/stunnel/stunnel.conf) that need to be detailed:

Ø We specify the location of the Jupiter server certificate and key, along

with the path for the CA certificate (CAfile).
Ø As indicated, the Stunnel daemon runs as the user “stunnel”.
Ø We set the verify attribute to the level of 3 in order to perform

authentication based on the certificate the client presents, and we
specify the location of the directory that contains the certificates that we
trust (CApath).

Ø Stunnel runs in server mode. This means that for each services we want
to SSL-enabled (POP, IMAP or SMTP), we specify an accept option.
This means that the Stunnel daemon listens for SSL connection on this
interface/port. Stunnel listens on 192.168.2.7 on the port 995, 993 and
465.

Ø Once Stunnel receives a connection on one of this port, it should decrypt
the traffic flow and forward it to the appropriate service. This is the goal
of the instruction “connect”. For the IMAP service, once Stunnel receives
an encrypted flow on the port 993, it forwards the decrypted flow to the
port 143.

Ø As detailed in the previous section, the IMAP server and Postfix listens
on port 25, 110 and 143. These ports are all used for the Stunnel
“connect” parameter.

more stunnel.conf
#Configuration file for example.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 35

key = /etc/stunnel/servercert/jupiterkey.pem
cert = /etc/stunnel/servercert/jupitercert.pem
CAfile = /etc/stunnel/stunnel.pem

pid = /var/stunnel/stunnel.pid

setuid = stunnel
setgid = stunnel

#Authentication attributes
verify = 3
CApath = /etc/stunnel/trustedcerts/

Some debugging stuff
debug = 2
output = /var/log/stunnel.log

Service-level configuration
[pop3s]
accept = 192.168.2.7:995
connect = 192.168.2.7:110
TIMEOUTclose=0

[imaps]
accept = 192.168.2.7:993
connect = 192.168.2.7:143
TIMEOUTclose=0

[smtps]
accept = 192.168.2.7:465
connect = 192.168.2.7:25
TIMEOUTclose=0

4.4 Post-installation tasks

4.4.1 SSH configuration
The remote administration of the system must be performed using SSH. The

SSH server provides encryption of traffic between the administrator machine and our
server. This is a great advantage compared to a protocol like telnet, which can only
support exchange of non-encrypted data traffic between 2 hosts.

However, the configuration of SSH demands some work to be done properly
thus avoiding the setting up a poorly protected system:

Ø The SSH daemon should only listen on the management interface of the

server.
Ø The default port to connect to the SSH server is 22. In order to increase

the level of security, it can be changed to another dedicated port, which
is only known by the administrators of the system. Note that we stick
with port 22 in the rest of the paper.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 36

Ø Force to use SSH v2 only instead of SSH v1, as some limitations and
vulnerabilities was discovered in the first release of SSH.

Ø Privilege separation using the pseudo-user “sshd" should be used.
Ø Administrators must authenticate to the server using their certificate. As

a consequence, we disable the password-based authentication and
make only public key mechanism available to connect to the server. In
addition, we disable the parameters controlling the host-based
authentication mechanism.

Ø Disable root login. Administrator should log in using their personal
account and then if needed “su” to root. This ensures a better
accountability on the system as we can trace which account has
elevated its privilege to root.

Ø The access to the SSH daemon should be restricted only to the
machines of the corporate management LAN, ie 10.10.10.0/24. This part
is detailed later on the TCP Wrapper configuration.

Ø Only authorized users should be able to log in to the system.

The file that triggers these parameters is /etc/ssh/sshd_config
What is configured is depicted below.

vi /etc/ssh/sshd_config
General configuration parameters
Port 22
Protocol 2
ListenAddress 192.168.10.7

HostKeys for protocol version 2
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_dsa_key
AuthorizedKeysFile .ssh/authorized_keys

Authentication features: only public key is enabled
PubkeyAuthentication yes
HostBasedAuthentication no
PasswordAuthentication no
PermitEmptyPasswords no

Loging
SyslogFacility AUTH
LogLevel INFO

Control the users who can log in
AllowUsers admin1 admin2
PermitRootLogin no

the SSH server should be run as the SSH users
UsePriviledeSeparation yes

General parameters
Compression yes
Banner /etc/issue
PrintMotd yes

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 37

KeepAlive yes

Public/private key pair for the SSH server:
We use 1024 bits DSA and RSA key pair for the server SSH daemon and store

them as specified in the configuration file (respectively, /etc/ssh/ssh_host_rsa_key and
/etc/ssh/ssh_host_dsa_key). We do not have to set a passphrase to protect these
keys. We modify access control on these files: the owner should be root and the
permissions should be set to 400.

Creation of public/private key pair for the administrator “admin1”:

MachineAdmin1$ /usr/sbin/ssh-keygen -t dsa -b 1024
Generating public/private dsa key pair.
Enter file in which to save the key (/home/admin/.ssh/id_dsa):
Created directory '/home/admin/.ssh'.
Enter passphrase (empty for no passphrase): Any Passphrase
Enter same passphrase again: Any Passphrase
Your identification has been saved in /home/admin/.ssh/id_dsa.
Your public key has been saved in /home/admin/.ssh/id_dsa.pub.
The key fingerprint is:
cf:07:79:24:f9:ef:4a:4a:46:bc:ed:52:c6:1d:2c:3e admin1@jupiter.example.com

The user private DSA key is located under /home/admin/.ssh/id_dsa and the

public key is located under /home/admin/.ssh/id_dsa.pub. It is important to set up a
passphrase that acts as a password to protect the private key used for each SSH
connection.

Following this, in order for the user “admin1” to be authenticated to our server,
he needs to copy its public key to his own home directory on the Jupiter server where
he has access: /home/admin1/.ssh/authorized_keys.

Admin1 can now log on to the server after successful authentication using its
private key/certificate.

4.4.2 TCP Wrapper configuration
TCP Wrapper is used to control network access to resources on our mail

server. Some executables like SSH are compiled with the support of the TCPWrapper
library.

Fist we can verify that our SSH server was properly compiled for using
TCPWrapper library. Just issue a ldd /usr/sbin/sshd and verify that libwrap.so.0 is
present. (The ldd utility enables to check which loadable module an executable was
compiled with).

TCPWrapper performs access control after consultation of 2 files: first the
/etc/hosts.allow file, which contains any pairs of daemon/IP address that have access
to the system; second the /etc/hosts.deny file, which contains pairs of daemon/IP
address that are not allowed access to the system. The first match stops the lookup.

A good practice is to explicitly define in the hosts.allow what pairs is granted
access and prevent anything else from accessing the system in the hosts.deny file.

As a consequence, we configure TCPWrapper as follow:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 38

Ø Permit full access from localhost 127.0.0.1 and permit access to the
sshd daemon from the management network 10.10.10.0/24

more /etc/hosts.allow
ALL: 127.0.0.1
sshd: 10.10.10.0/24

Ø Deny all other access

/etc/host.deny
ALL: ALL

The TCPWrapper library provides an additional layer of security to our host in

addition to the host-based firewall configuration that will be detailed below.

4.4.3 Sudo configuration
Sudo - superuser do - can be used to provide certain users the ability to run a

set of commands with root level privilege. In addition, Sudo permits to log the
commands run by users on the system. The behavior of the Sudo utility is controlled
by the /etc/sudoers file. A specific command (run as root) called visudo enables to
configure the “sudoers” file.

How it works is relatively simple: if a user want to run a command that requires
more privilege that he has, he use the command “sudo” followed by the command he
want to run. For example, he might want to edit the /etc/passwd, so in this case, he
would type “sudo /etc/passwd”. The system prompts him for his own password (NOT
the root password). If the password he enters is correct and the access control permits
it, he gains access the desired file. The obvious advantage here is that the root
password does not need to be known by the user.

In our case, we would like to permit the administrators, who are members of the
group wheel to run any command on the system. With the NOPASSWD option
enabled, the administrator will not be prompted for his password every time they try to
call Sudo.

Here is what we need to add in the sudoers file using the visudo:

visudo
%wheel ALL=(ALL) NOPASSWD: ALL

4.4.4 File system security
The /usr partition should be mounted as ro in order to protect binaries from

being potentially tampered. /home; /var should be mounted as rw, nosuid, nodev. As
explained in SANS GCUX practicum, the root file system cannot be mounted with any
of these options as some SUID binaries reside in /bin or /lib, which makes it
impossible to use the nosuid option. The file to modify is /etc/fstab, which is read for
mounting the partition during the boot of the machine.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 39

4.4.5 Firewall configuration
The kernel version 2.4.20 supports the use of the Netfilter iptable filtering

module. IPtable is a host-based firewall and control traffic entering and leaving the
network interfaces of the machines.

We implement a “Deny everything except what is explicitly authorized” policy
based on the following traffic flow definition:

Ø Production interface: accept the traffic from anywhere to the server for

the IMAPS, POPS and SMTPS. This ensures that the remote users can
access only the secured network services running on the machine
whether they are connected outside the company or on the corporate
network. The second point is not lead by a security purpose as traffic
from the corporate network to a server in DMZ can go unencrypted.
However, it is convenient to have the same configuration for the 2
situations on the client side.

Ø Production interface: the SMTP traffic is allowed inbound and outbound
between the mail relay Mercury and the mail server Jupiter. The mail
coming from the Internet first flows through Mercury where several check
are performed (anti-virus scanning, anti-spam…) before reaching
Jupiter. Messages send from Jupiter to outside recipients have to pass
through the mail relay Mercury before delivery (again virus scanning…).

Ø Production interface: The SMTP traffic is allowed inbound and outbound
between the mail relay Jupiter and the internal mail server called Mars.
This reduces the load on the mail relay by directly delivering the
messages between the company users to the internal mail server.

Ø Management interface: Only SSH is allowed from the management
network to the management interface of the server.

Ø Production interface: Outbound DNS and NTP traffic is allowed to the
appropriate servers.

Ø Both interfaces: Inbound and Outbound ICMP is permitted for
troubleshooting purpose.

IPtable was part of the initial OS installation. The initialization script looks for

the IPtable configuration file in /etc/sysconfig/iptables to start the application. The
chkconfig utility is used to start IPtable when the server boots. So we build the IPtable
configuration file based on the ruleset detailed above and save it in
/etc/sysconfig/iptables.

more /etc/sysconfig/iptables

Production interface eth0 configuration
Authorized new connection to the server for SMTPS, IMAPS and POPS
/sbin/iptables -A INPUT -p tcp --dport 465 \
-m state --state NEW,ESTABLISHED -i eth0 --j ACCEPT
/sbin/iptables -A OUTPUT -p tcp --sport 465 \
-m state --state ESTABLISHED -o eth0 --j ACCEPT

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 40

/sbin/iptables -A INPUT -p tcp --dport 993 \
-m state --state NEW,ESTABLISHED -i eth0 --j ACCEPT
/sbin/iptables -A OUTPUT -p tcp --sport 993 \
-m state --state ESTABLISHED -o eth0 --j ACCEPT

/sbin/iptables -A INPUT -p tcp --dport 995 \
-m state --state NEW,ESTABLISHED -i eth0 --j ACCEPT
/sbin/iptables -A OUTPUT -p tcp --sport 995 \
-m state --state ESTABLISHED -o eth0 --j ACCEPT

Authorized SMTP traffic between Jupiter and Mercury
/sbin/iptables -A INPUT -p tcp --dport 25 -s 192.168.2.5 \
-m state --state NEW,ESTABLISHED -i eth0 --j ACCEPT
/sbin/iptables -A OUTPUT -p tcp --dport 25 -d 192.168.2.5 \
-m state --state NEW,ESTABLISHED -o eth0 --j ACCEPT

Authorized SMTP traffic between Jupiter and Mars
/sbin/iptables -A INPUT -p tcp --dport 25 -s 10.1.1.5 \
-m state --state NEW,ESTABLISHED -i eth0 --j ACCEPT
/sbin/iptables -A OUTPUT -p tcp --dport 25 -d 10.1.1.5 \
-m state --state NEW,ESTABLISHED -o eth0 --j ACCEPT

Authorized outbound DNS request
/sbin/iptables -A OUTPUT -p udp -dport 53 -d 192.168.2.10 \
-m state --state NEW,ESTABLISHED -o eth0 --j ACCEPT
/sbin/iptables -A INPUT -p udp -sport 53 -d 192.168.2.10 \
-m state --state ESTABLISHED -i eth0 --j ACCEPT

Authorized outbound NTP request
/sbin/iptables -A OUTPUT -p udp -dport 123 -d 192.168.2.10 \
-m state --state NEW,ESTABLISHED -o eth0 --j ACCEPT
/sbin/iptables -A INPUT -p udp -sport 123 -d 192.168.2.10 \
-m state --state ESTABLISHED -i eth0 --j ACCEPT

Log and Drop rules
/sbin/iptables -A INPUT -j LOG -i eth0 \
--log-prefix "Iptable eth0 IN Packet"
/sbin/iptables -A INPUT –i eth0 -j DROP

/sbin/iptables -A OUTPUT -j LOG -o eth0 \
--log-prefix "Iptable eth0 OUT Packet"
/sbin/iptables -A OUTPUT –o eth0 -j DROP

Configuration for the Management interface eth1
Allow inbound SSH connection from the management LAN
/sbin/iptables -A INPUT -p tcp --dport 22 -s 10.10.10.0/24 \
-m state --state NEW,ESTABLISHED -i eth0 --j ACCEPT
/sbin/iptables -A OUTPUT -p tcp --sport 22 -d 10.10.10.0/24 \
-m state --state ESTABLISHED -o eth0 --j ACCEPT

Log and Drop rules
/sbin/iptables -A INPUT -j LOG -i eth1 \

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 41

--log-prefix "Iptable eth1 IN Packet"
/sbin/iptables -A INPUT –i eth1 -j DROP
/sbin/iptables -A OUTPUT -j LOG -o eth1 \
--log-prefix "Iptable eth1 OUT Packet"
/sbin/iptables -A OUTPUT –o eth1 -j DROP

4.4.6 Syslog configuration
The syslog daemon listens for syslog messages and store them according to its

configuration file /etc/syslog.conf. Syslog is a great tool for monitoring and performing
accounting tasks on a system. The syslog daemon is configured to log messages
based on a facility (auth for authentication messages for example) and a severity
(from info to emergency). Based on these 2 values, we implement several entries in
the configuration file to store log messages in the appropriate file (/var/log/auth.log of
authentication message for example).

Syslog is configured to log messages as follow:

vi /etc/syslog.conf
<…skip…>
Auth generated by SASL logged to /var/log/auth.log with auth facilities
auth.log /var/log/auth.log

IMAP logged to /var/log/imap.log with local6 facilities
local6.* /var/log/imap.log

All mail log are stored in /var/log/maillog
mail.* /var/log/maillog
<…skip…>

The files specified in the syslog configuration should be created prior restarting

the syslog daemon. All space in the configuration file should be TAB.
Once the configuration is finalized, it is time to restart the syslog daemon and

make some testing with the logger command.

pkill -HUP syslogd
logger -p authpriv.info -t TEST-Syslog Test to authpriv facility with info
severity

tail -f /var/log/secure
<…skip…>
Nov 10 07:04:39 mail TEST-Syslog: Test to authpriv facility with info
severity

The syslog messages should be both send to the local syslog server and to a

remotely centralized syslog server. Another entry labeled “loghost” should be added in
the /etc/hosts file for the centralized syslog server in addition to the loopback address
127.0.0.1. For the messages that are logged locally, they have to be archived or
simply purged every week for example using a utility like logrotate (shipped with the
Linux distribution)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 42

4.4.7 Tripwire configuration
Tripwire is a file integrity checker that aids in the detection of unauthorized

changes of files. Tripwire enables system administrators to monitor any changes that
might happen on a set of crucial files to the system.

The way it works is rather simple:
Ø Generate an initial fingerprint of critical files and directories on the

system and store this information inside a local database.
Ø Get the same fingerprint of the system on a daily basis and compare it

with the one initially generated.
Ø Look for any discrepancies between the 2 fingerprints.
Ø In case of difference between the 2 files, notify the administrator for

further analysis.

The first step is to generate a local and site keys that are used to protect the

Tripwire files using digital signature. The local key is used to sign the database file
containing the fingerprint of the system. The site passphrase is used to protect
Tripwire information that can be shared between machines. This can be for example
the Tripwire configuration file, which can be the same for a large number of machines
of the same company.

These 2 keys are protected using a passphrase that will be asked by Tripwire
whenever it needs access one of these keys.

So let us generate these keys and protect them with 2 passphrases. We store
these keys in the /etc/tripwire.

twadmin --generate-keys –-local-keyfile /etc/tripwire/tw-local.key \
--local-passphrase local-pass -–site-keyfile /etc/tripwire/tw-site.key \
–- site-passphrase site-pass

Using supplied passphrases.
Generating site key: /etc/tripwire/tw-site.key
Generating key (this may take several minutes)...Key generation complete.
Generating local key: /etc/tripwire/tw-mail.key
Generating key (this may take several minutes)...Key generation complete.

The second step includes the creation of the Tripwire configuration and policy

files that will be signed using the previously generated site key. We edit manually the
clear text version of these 2 files as they serve as inputs in the generation of the
digitally signed version of these files (configuration + policy).

The configuration file “tw.cfg” contains several variables required for Tripwire to
run properly. This includes the location of the keys, database files to store reports…

The policy file “tw.pol” contains the files that need to be inspected by Tripwire.
Every time it runs, Tripwire captures the fingerprint of these files, so this file has to be
configured correctly. The default Tripwire policy file that is shipped with the RedHat
distribution is a good starting point for building the new policy.

In particularly, this includes:

Ø Binaries located under /bin, /sbin, /usr/local/bin.
Ø Root profile /.profile.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 43

Ø Configuration files located under /etc. This includes the configuration
files for Cyrus IMAP, Postfix, Stunnel.

Ø Log file in /var/log.
Ø Devices files.

twadmin --create-cfgfile --cfgfile tw.cfg --site-keyfile tw-site.key --
site-passphrase site-pass /etc/tripwire/twcfg.txt
Wrote configuration file: /etc/tripwire/tw.cfg

twadmin --create-polfile -v --cfgfile tw.cfg --polfile tw.pol --site-
keyfile tw-site.key --site-passphrase site-pass twpol.txt
Opening configuration file: /etc/tripwire/tw.cfg
This file is encrypted.

Opening key file: /etc/tripwire/tw-site.key
Using plaintext policy file: /etc/tripwire/twpol.txt
Opening key file: /etc/tripwire/tw-site.key
Wrote policy file: /etc/tripwire/tw.pol

Step 3: once we have our policy file, we can initiate the database

tripwire --init -v --cfgfile tw.cfg --local-passphrase local-pass

<skip>

--- Generating information for: /dev/tty6
Processing: /dev/urandom
--- Generating information for: /dev/urandom
Processing: /dev/initctl
--- Generating information for: /dev/initctl
Wrote database file: /etc/tripwire/tw.db
The database was successfully generated.

Based on the policy file that was used, some tuning may be required. For

example, if some files included in the policy file are not present on the machine, this
can generate some non-useful alert.

Step 4: we can then compare the state of our system with the baseline that we

capture in the initialization of the database.

tripwire --check -v -– cfgfile /etc/tripwire/tw.cfg
<…skip…>

You would receive some messages from Tripwire telling that the file is trying to

access does not exist. All these non-existing files that generate errors when running
an integrity check must be remove from the twpol.txt file. Then a new initialization of
the database and a new integrity test would solve the problem.

This will generate a report called Jupiter-date.twr in /var/tripwire/report digitally
signed using the local key file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 44

Step 5: Print the report generated

twprint --print-report --twrfile /var/tripwire/report/Jupiter-20031126-
073252.twr | more

Tripwire(R) 2.3.0 Integrity Check Report

Report generated by: root
Report created on: Wed 26 Nov 2003 07:54:24 AM GMT+2
Database last updated on: Never

==
===
Report Summary:
==
===

Host name: Jupiter.example.com
Host IP address: 127.0.0.1
Host ID: None
Policy file used: /etc/tripwire/tw.pol
Configuration file used: /etc/tripwire/tw.cfg
Database file used: /var/tripwire/twdbfile.twd
Command line used: tripwire --check --cfgfile tw.cfg

==
===
Rule Summary:
==
===

--

 Section: Unix File System
--

 Rule Name Severity Level Added Removed
Modified
 --------- -------------- ----- ------- ------
--
 Invariant Directories 66 0 0 0
 Temporary directories 33 0 0 0
 Tripwire Data Files 100 0 0 0
 Critical devices 100 0 0 0
 User binaries 66 0 0 0
 Tripwire Binaries 100 0 0 0
 Critical configuration files 100 0 0 0
 Libraries 66 0 0 0
<…skip…>

This type of reports displays the modifications that might appear to the files and

directories that are monitored using Tripwire.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 45

5 Ongoing maintenance
The maintenance operation helps keeping the system in an appropriate working

state. After a fresh installation, the system is correctly patched and the applications
that we are running do not present any known vulnerabilities. This is likely to change
during the life of the system, so an active monitoring of the vulnerabilities being
discovered for the OS and the applications is required to keep the system up to date.

Another major point for the maintenance is the day-to-day operation system
administrators need to perform on the system. This includes –but is not restricted- to
backup policy, log analysis, Tripwire check verification, periodic scan.

5.1 System review
Looking for new patches for a RedHat system brings to RedHat Errata web site

(https://rhn.redhat.com/errata/rh9-errata-security.html), where the latest advisories
related to new discovered vulnerabilities are published. It is always a good thing to
spend some time here and seek for information.

Registering to a few Security Alert mailing lists can greatly help when it comes
to patch management. It is a good idea to register to the CERT advisories
(www.cert.org), SANS web site (www.sans.com).

We can choose between 2 solutions for keeping our RedHat 9 distribution at
the most current patch level. The first one is downloading the new patches from the
errata web site and apply them to the server. The procedure for applying new patches
is detailed in 4.2.1. A test server –if available-- where we can install a patch before
implementation on the production server can be a good practice. The second way for
keeping the OS up to date is to register the machine to the RedHat Network at
www.rhn.com. This enables to use the up2date utility that comes with the RedHat
distribution and enables the automatic download of the OS patches. This service
comes for free for individual, but you will have to pay for it for the computer of your
company. As this is a convenient way to keep the system up-to-date, we think it is
worth paying for the RedHat Network service.

Note that RedHat has announced that the support for RedHat 9 will end in the
middle of 2004. As we start working on the project before this announcement, we keep
on working on this version of RedHat. For any other project, it should be interesting to
spend some time on the Enterprise version of the RedHat distribution or or another
distribution of Linux.

Now that our RedHat distribution is properly patched, we have to keep our
applications up to date as well. In addition to the mailing list mentioned above, the
application web site and mailing list for Postfix, IMAP and Stunnel assist in deciding
whether of not an application upgrade is required.

The bottom line is to be sure that both the OS and the applications installed are
reviewed on a regular basis.

5.2 Backup requirement
As this system contains user mailboxes with potentially valuable data, we

should pay a special attention to the backup policy. The 2 things that we have to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 46

define are: what are the data that we have to be archived on the machine and what is
the frequency to perform the backup operations.

The backup policy recommends archiving all the configuration files and user
data. The OS and applications binaries can be rebuilt during a new installation of a
new system. As a consequence, here is a list of what has to be backup for our mail
server:

Ø /var/imap and /var/spool/imap: IMAP server configuration and user data.
Ø /etc/postfix: Postfix configuration files.
Ø /etc/cyrus.conf ; /etc/imap.conf : Cyrus IMAP configuration files.
Ø /etc/stunnel : Stunnel configuration files and trusted certificates

repository.
Ø /var/sasldb2 : database for user credentials information
Ø /etc/tripwire : Tripwire configuration file and database
Ø /etc/ssh: ssh configuration and keys. These may be regenerated after a

new install of the system
Ø /etc/syslog.conf: syslog configuration file
Ø /etc/hosts.allow, /etc/hosts.deny : TCP Wrapper policy file

Due to the criticality of the data on the system, the backup operation is run daily

after peak hours. The routine operation is performed every day at midnight and sends
all the data to archive to a tape drive. This ensures that in case of a hardware crash,
users will not loose a great amount of data.

5.3 System analysis

5.3.1 Log analysis: daily
A common task for system administrator is an active analysis of the logs

generated by the system. A specific attention should be paid to authentication logs.

5.3.2 Tripwire report:
We automate the check performed by Tripwire on a daily basis. An alert

generated by Tripwire may result of a system compromise or a modification performed
without notification. In any case, this has to be investigated every time Tripwire pops
up for an alert.

5.3.3 Periodic scan: monthly
After the initial setup of the system is complete, we run a scan to check that

only the appropriate ports are opened on the machine. We should run the same type
of scan every month to check if no other port has been turn on by a potential intruder.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 47

6 Testing the configuration

6.1 Cyrus IMAP
We need to test that our IMAP server authenticate properly the users and

enables them to retrieve their message.

6.1.1 Cyradm utility
The cyradm utility helps creating and managing users mailboxes. We need to

modify the cyradm perl script to indicate the path for the Perl modules.

vi /usr/local/bin/cyradm
<…skip…>
x) exec perl -I/usr/local/lib/perl5/site_perl/5.8.0/i386-linux-thread-multi/
-MCyrus::IMAP::Shell -e shell -- ${1+"$@"} ;;
*) exec perl -I/usr/local/lib/perl5/site_perl/5.8.0/i386-linux-thread-multi/
-MCyrus::IMAP::Shell -e shell -- "$@"
;;
<…skip…>

6.1.2 User mailboxes creation
We can create a mailbox for our “testmail” user. To do so, we login as the

“admin1” user (this admin1 user is defined in /etc/imapd.conf) to the cyrus server. The
credentials for the “admin1” users are validated against the sasldb2 credentials
database.

The command “cm user.testmail” creates a brand new mailbox for the “testmail”
user. We can take the opportunity to limit the size of this mailbox to 50MBytes.

$ cyradm --user admin --auth plain 192.168.2.7
Password: <enter admin password here>
IMAP Password: <enter admin password here>
192.168.2.7> cm user.tesmail
192.168.2.7> setquota user.testmail 50000

6.1.3 IMAP functionning
We can now test that the “testmail” user can authenticate using its SASL

password “testmail” to the Cyrus mail server.

$ imtest -a testmail -w testmail -v -m login 192.168.2.7
S: * OK Jupiter.example.com Cyrus IMAP4 v2.1.14 server ready
C: C01 CAPABILITY
S: * CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ MAILBOX-REFERRALS
NAMESPACE UIDPLUS ID NO_ATOMIC_RENAME UNSELECT CHILDREN MULTIAPPEND SORT
THREAD=ORDEREDSUBJECT THREAD=REFERENCES IDLE
S: C01 OK Completed
C: L01 LOGIN testmail {8}
S: + go ahead

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 48

C: <omitted>
S: L01 OK User logged in
Authenticated.
Security strength factor: 0

6.2 Postfix
This part of the test includes the testing of the authentication of the users

before sending a message, the proper delivery of message for local recipients and the
proper relaying of messages to outside recipients.

We intend to only test here the Postfix configuration. However, we need to
connect to the Postfix server using the port 465 used for SMTP over SSL instead of
the classical port 25. We detail this part later in the document when testing the
configuration of Stunnel.

6.2.1 Sender authentication
When sending his credentials to the Postfix server for authentication purpose,

the server expects the base 64 endoded form of the user password instead of its clear
text form “testmail”. (The message is not encrypted but just encoded, no security is
added by the use of a 64 encoded message). The-mail client program performs this
encoding operation prior to send user credential to the server. However, as we are
doing some manual testing here, we need to create the base 64 encoded form of the
password using a perl module.

$ perl -MMIME::Base64 -e 'print
encode_base64("testmail\0testmail\0testmail")'
dGVzdG1haWwAdGVzdG1haWwAdGVzdG1haWw=

We can now connect to the Postfix server and verify that only a plain

authentication mechanism is provided as configured. A first test with a wrong
password returns an error. Providing the encoded version of the appropriate password
for the “testmail” user ensures a successful authentication.

After a successful authentication, the Postfix server properly accepts the
message for delivery to a local recipient (ie: tesmail1@branch1.example.com).

$ telnet 192.168.2.7 465
220 jupiter.example.com mail server
ehlo test@example.com
250-jupiter.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-AUTH PLAIN
250 8BITMIME
auth plain BadTest
535 Error: authentication failed
auth plain dGVzdG1haWwAdGVzdG1haWwAdGVzdG1haWw=

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 49

235 Authentication successful
mail from: testmail@branch1.example.com
250 Ok
rcpt to: testmail1@ branch1.example.com
250 Ok
Data
354 End data with <CR><LF>.<CR><LF>
From: testmail@ branch1.example.com
To: testmail1@ branch1.example.com
This is mail sent after been successfully authenticated.
.
250 Ok: queued as 29E90FA48

6.2.2 Reject message sent by a non-authenticated user
A user that has not being authenticated should not be able to send a message

using the Postfix server. Let’s test this using the same sender/recipient couple as
previously but without providing credentials.

$ telnet 192.168.2.7 465
Trying 192.168.2.7...
Connected to 192.168.2.7.
Escape character is '^]'.
220 jupiter.example.com mail server
ehlo me
250-jupiter.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-AUTH PLAIN
250 8BITMIME
mail from: testmail@branch1.example.com
250 Ok
rcpt to: testmail1@ branch1.example.com
554 <testmail1@example.com>: Recipient address rejected: Relay access denied
quit
221 Bye
Connection closed by foreign host.

6.2.3 Delivery capability
The Postfix server should sent messages to non-local recipients to the

corporate mail relay Mercury 192.168.2.5.

$ telnet 192.168.2.7 465
Trying 192.168.2.7...
Connected to 192.168.2.7.
Escape character is '^]'.
220 jupiter.example.com mail server
ehlo me
250-jupiter.example.com
250-PIPELINING

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 50

250-SIZE 10240000
250-VRFY
250-ETRN
250-AUTH PLAIN
250 8BITMIME

<…skip authentication part…>

mail from: tesmail@branch1.example.com
250 Ok
rcpt to: outside-rcipient@yahoo.com
250 Ok
data
354 End data with <CR><LF>.<CR><LF>
From: testmail@branch1.example.com
To: outside-recipient@yahoo.com
This is a message destined to an outside recipient.
.
250 Ok: queued as 1B453FA48

We monitor the connection opened from the mail server using the netstat

command.

$ netstat -an | grep 25
<…skip…>
tcp 0 0 192.168.2.7:32778 192.168.2.5:25 CONNECTED
<…skip…>

6.3 Stunnel
When testing Stunnel, we need to be sure that the only the clients that we

considered as trusted are authorized to initiate SSL connection to the mail server. In
addition to this, the traffic between the user and the server should be encrypted.

6.3.1 Client configuration
Many mail clients provide SSL support. An alternative solution is to use Stunnel

in client mode. In client mode, Stunnel accepts clear text data connection from the
local machine, encrypts it and sends it to the remote server, where Stunnel is running
in server mode.

For an SMTP connection, the mail client program sends in clear the SMTP flow
locally to port 25. The Stunnel daemon listens locally on port 25, then gets the
connection, encrypts the flow and sent it to the public IP of the mail server.

Here is an example of an stunnel.conf file set up on the client machines:

more /etc/stunnel/stunnel.conf
key = /etc/postfix/stunnel/testmailkey.pem
cert = /etc/postfix/stunnel/testmailcert.pem

Some debugging stuff
debug = 7
output = C:\stunnel.log

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 51

Use it for client mode
client = yes

Service-level configuration

[pop3s]
accept = 110
connect = <mailserverpublicIP>:993
TIMEOUTclose=0

[imaps]
accept = 143
connect = <mailserverpublicIP>:995
TIMEOUTclose=0

[smtps]
accept = 25
connect = <mailserverpublicIP>:465
TIMEOUTclose=0

6.3.2 Valid client certificate
As explained above when describing the configuration of Stunnel, we add in the

“trustedcerts” directory the certificate for the “testmail” user; which should authorized
him to connect to the mail server Jupiter using an SSL connection.

After initiating a telnet connection on port 465, we check the logs on the mail
server. We highlight the part of the log related to the establishment of the successful
verification of the client certificate that enables to pursue the SSL connection
establishment

$ tail –f /var/log/stunnel.log
2003.08.20 08:16:47 LOG7[1357:1075930272]: smtps accepted FD=9 from clienttest:1355
2003.08.20 08:16:47 LOG7[1357:1075930272]: FD 9 in non-blocking mode
2003.08.20 08:16:47 LOG7[1357:1084382400]: smtps started
2003.08.20 08:16:47 LOG5[1357:1084382400]: smtps connected from clienttest:1355
2003.08.20 08:16:47 LOG7[1357:1084382400]: SSL state (accept): before/accept initialization
2003.08.20 08:16:47 LOG7[1357:1084382400]: SSL state (accept): SSLv3 read client hello A
2003.08.20 08:16:47 LOG7[1357:1084382400]: SSL state (accept): SSLv3 write server hello A
2003.08.20 08:16:47 LOG7[1357:1084382400]: SSL state (accept): SSLv3 write certificate A
2003.08.20 08:16:47 LOG7[1357:1084382400]: SSL state (accept): SSLv3 write certificate request A
2003.08.20 08:16:47 LOG7[1357:1084382400]: SSL state (accept): SSLv3 flush data
2003.08.20 08:16:47 LOG7[1357:1084382400]: waitforsocket: FD=9, DIR=read
2003.08.20 08:16:47 LOG7[1357:1084382400]: waitforsocket: ok
2003.08.20 08:16:47 LOG5[1357:1084382400]: VERIFY OK: depth=1, /C=FR/ST=Ile-de-
France/L=Paris/O=Example Company/CN=Certificate Authority Server/emailAddress=admin-
ca@branch1.example.com
2003.08.20 08:16:47 LOG5[1357:1084382400]: VERIFY OK: depth=0, /C=FR/ST=Ile-de-
France/L=Paris/O=Example Company/CN=testmail/emailAddress=testmail@branch1.example.com
2003.08.20 08:16:47 LOG7[1357:1084382400]: SSL state (accept): SSLv3 read client certificate A
2003.08.20 08:16:47 LOG7[1357:1084382400]: SSL state (accept): SSLv3 read client key exchange A
2003.08.20 08:16:47 LOG7[1357:1084382400]: SSL state (accept): SSLv3 read certificate verify A
2003.08.20 08:16:47 LOG7[1357:1084382400]: SSL state (accept): SSLv3 read finished A

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 52

2003.08.20 08:16:47 LOG7[1357:1084382400]: SSL state (accept): SSLv3 write change cipher spec A
2003.08.20 08:16:47 LOG7[1357:1084382400]: SSL state (accept): SSLv3 write finished A
2003.08.20 08:16:47 LOG7[1357:1084382400]: SSL state (accept): SSLv3 flush data
2003.08.20 08:16:47 LOG7[1357:1084382400]: 1 items in the session cache
2003.08.20 08:16:47 LOG7[1357:1084382400]: 0 client connects (SSL_connect())
2003.08.20 08:16:47 LOG7[1357:1084382400]: 0 client connects that finished
2003.08.20 08:16:47 LOG7[1357:1084382400]: 0 client renegotiatations requested
2003.08.20 08:16:47 LOG7[1357:1084382400]: 1 server connects (SSL_accept())
2003.08.20 08:16:47 LOG7[1357:1084382400]: 1 server connects that finished
2003.08.20 08:16:47 LOG7[1357:1084382400]: 0 server renegotiatiations requested
2003.08.20 08:16:47 LOG7[1357:1084382400]: 0 session cache hits
2003.08.20 08:16:47 LOG7[1357:1084382400]: 1 session cache misses
2003.08.20 08:16:47 LOG7[1357:1084382400]: 0 session cache timeouts
2003.08.20 08:16:47 LOG6[1357:1084382400]: Negotiated ciphers: AES256-SHA SSLv3 Kx=RSA
Au=RSA Enc=AES(256) Mac=SHA1
2003.08.20 08:16:47 LOG7[1357:1084382400]: FD 10 in non-blocking mode
2003.08.20 08:16:47 LOG7[1357:1084382400]: smtps connecting 192.168.2.7:25
2003.08.20 08:16:47 LOG7[1357:1084382400]: remote connect #1: EINPROGRESS: retrying
2003.08.20 08:16:47 LOG7[1357:1084382400]: waitforsocket: FD=10, DIR=write
2003.08.20 08:16:47 LOG7[1357:1084382400]: waitforsocket: ok
2003.08.20 08:16:47 LOG7[1357:1084382400]: Remote FD=10 initialized

6.3.3 Invalid client certificate
For this test, we delete the certificate for the testmail user from the

“trustedcerts” directory, which mean that we do not trust any longer the testmail user.
As a consequence, he should not be authorized to open an SSL connection to the
mail server, as the Stunnel daemon on the server side would not be able to verify his
certificate.

$ tail –f /var/log/stunnel.log
2003.08.20 08:23:32 LOG7[1368:1075930272]: smtps accepted FD=9 from clienttest:1357
2003.08.20 08:23:32 LOG7[1368:1075930272]: FD 9 in non-blocking mode
2003.08.20 08:23:32 LOG7[1368:1084382400]: smtps started
2003.08.20 08:23:32 LOG5[1368:1084382400]: smtps connected from clienttest:1357
2003.08.20 08:23:32 LOG7[1368:1084382400]: SSL state (accept): before/accept initialization
2003.08.20 08:23:32 LOG7[1368:1084382400]: SSL state (accept): SSLv3 read client hello A
2003.08.20 08:23:32 LOG7[1368:1084382400]: SSL state (accept): SSLv3 write server hello A
2003.08.20 08:23:32 LOG7[1368:1084382400]: SSL state (accept): SSLv3 write certificate A
2003.08.20 08:23:32 LOG7[1368:1084382400]: SSL state (accept): SSLv3 write certificate request A
2003.08.20 08:23:32 LOG7[1368:1084382400]: SSL state (accept): SSLv3 flush data
2003.08.20 08:23:32 LOG7[1368:1084382400]: waitforsocket: FD=9, DIR=read
2003.08.20 08:23:32 LOG7[1368:1084382400]: waitforsocket: ok
2003.08.20 08:23:32 LOG5[1368:1084382400]: VERIFY OK: depth=1, /C=FR/ST=Ile-de-
France/L=Paris/O=Example Company/CN=Certificate Authority Server/emailAddress=admin-
ca@branch1.example.com
2003.08.20 08:23:32 LOG4[1368:1084382400]: VERIFY ERROR ONLY MY: no cert for /C=FR/ST=Ile-de-
France/L=Paris/O=Example Company/CN=testmail/emailAddress=testmail@branch1.example.com
2003.08.20 08:23:32 LOG7[1368:1084382400]: SSL alert (write): fatal: certificate unknown
2003.08.20 08:23:32 LOG3[1368:1084382400]: SSL_accept: 140890B2: error:140890B2:SSL
routines:SSL3_GET_CLIENT_CERTIFICATE:no certificate returned
2003.08.20 08:23:32 LOG7[1368:1084382400]: smtps finished (0 left)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 53

6.4 Syslog configuration
We can check that the system properly logs messages from Postfix, IMAP,

Stunnel in the adequate file.

$ more /var/log/maillog
Aug 20 00:14:55 mail postfix/smtpd[1417]: connect from client.example.com [10.0.0.5]
Aug 20 00:14:55 mail postfix/smtpd[1417]: > client.example.com[10.0.0.5]: 220 jupiter.example.com mail server
Aug 20 00:14:55 mail postfix/smtpd[1417]: watchdog_pat: 0x80785e0
Aug 20 00:15:11 mail postfix/smtpd[1417]: < client.example.com [10.0.0.5]: auth plain
dGVzdG1haWwAdGVzdG1haWwAdGVzdG1haWw=
Aug 20 00:15:11 mail postfix/smtpd[1417]: smtpd_sasl_authenticate: sasl_method plain, init_response
dGVzdG1haWwAdGVzdG1haWwAdGVzdG1haWw=
Aug 20 00:15:11 mail postfix/smtpd[1417]: smtpd_sasl_authenticate: decoded initial response testmail
Aug 20 00:15:11 mail postfix/smtpd[1417]: > client.example.com[10.0.0.5]: 235 Authentication successful
Aug 20 00:15:11 mail postfix/smtpd[1417]: watchdog_pat: 0x80785e0
Aug 20 00:16:10 mail postfix/postfix-script: refreshing the Postfix mail system
Aug 20 00:16:10 mail postfix/master[1284]: reload configuration

$ more /var/log/imap
Aug 28 01:13:56 mail master[2023]: about to exec /usr/local/cyrus/bin/imapd
Aug 28 01:13:56 mail imap[2023]: executed
Aug 28 01:13:56 mail imapd[2023]: accepted connection
Aug 28 01:13:56 mail imapd[2023]: login: client.example.com[10.0.0.5] testmail plaintext
Aug 28 01:13:56 mail imapd[2023]: seen_db: user testmail opened /var/imap/user/t/testmail.seen
Aug 28 01:13:56 mail imapd[2023]: accepted connection
Aug 28 01:13:56 mail imapd[2023]: login: client.example.com[10.0.0.5] testmail plaintext
Aug 28 01:13:56 mail imapd[2023]: open: user testmail opened INBOX
Aug 28 01:14:56 mail master[1610]: process 2023 exited, status 0

$ more /var/log/stunnel.log
2003.08.20 08:23:32 LOG7[1368:1075930272]: smtps accepted FD=9 from clienttest:1357
2003.08.20 08:23:32 LOG7[1368:1075930272]: FD 9 in non-blocking mode
2003.08.20 08:23:32 LOG7[1368:1084382400]: smtps started
2003.08.20 08:23:32 LOG5[1368:1084382400]: smtps connected from clienttest:1357
2003.08.20 08:23:32 LOG7[1368:1084382400]: SSL state (accept): before/accept initialization

6.5 Tripwire
For testing the Tripwire integrity check, we modify a “crucial” file like for
example /etc/postfix/main.cf by adding a new parameter. The output below
shows that Tripwire detects correctly the modification to the configuration file of
the Postfix server.

<…skip…>
--
 Section: Unix File System
--
-
 Rule Name Severity Level Added Removed
Modified
 --------- -------------- ----- ------- ------
--

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 54

 Invariant Directories 66 0 0 0
 Temporary directories 33 0 0 0
 Tripwire Data Files 100 0 0 0
 Critical devices 100 0 0 0
 User binaries 66 0 0 0
 Tripwire Binaries 100 0 0 0
* Critical configuration files 100 0 0 1
 Libraries 66 0 0 0
 <…skip…>

6.6 Scan of the system
Before putting our system in production, we have to be sure that only the

adequate ports are opened. This enables to validate the configuration of the host-
based firewall IP-table.

6.6.1 Production network
A scan from the Public DMZ production network provide the following output.

$ nmap -sS 192.168.2.7

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-11-25 18:53 CET
Interesting ports on jupiter@example.com (192.168.2.7):
(The 1650 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
465/tcp open smtps
993/tcp open imaps
995/tcp open pop3s

Nmap run completed -- 1 IP address (1 host up) scanned in 55.792 seconds

The scan reveals that only the ports enabling SSL to mail services SMTP,

IMAP and POP are opened, which is the expected behavior of the server on the
production network.

It is important to note that the standard port 25 for SMTP is not shown here.
Indeed, only the corporate mail relay Mercury 192.168.2.5 can initiate SMTP
connection towards our mail server. As a consequence, a scan launch from any IP in
the Public DMZ production network is blocked by the host-based firewall.

6.6.2 Management network
A scan from the corporate management network reveals that only the ssh

server is listening on this interface.

$ nmap -sS 192.168.10.7

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-11-25 19:05 CET
Interesting ports on jupiter@example.com (192.168.2.7):
(The 1650 ports scanned but not shown below are in state: closed)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 55

PORT STATE SERVICE
22/tcp open ssh

Nmap run completed -- 1 IP address (1 host up) scanned in 45,92 seconds

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 56

7 Conclusion
We present in this document a proper way to set an effective solution to provide

remote users with access to their messaging resources. We use a Linux RedHat 9
distribution for the operating system. In addition, we select core applications: Cyrus
IMAP server, Postfix and Stunnel that are known to be robust and deployed
successfully at a large scale.

We pay particular attention to the way users are authenticated by the system.
The first level is providing using digital certificate and the second level relies on
traditional user and password. We use a central repository for user passwords storage
that is used for access IMAP and SMTP resources. The protection of the data sent
over the network is performed using Secured Socket Layer to provide encryption.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 57

Annex A: Cyrus IMAP configuration details

more /etc/cyrus.conf
standard standalone server implementation

START {
 # do not delete this entry!
 recover cmd="ctl_cyrusdb -r"

 # this is only necessary if using idled for IMAP IDLE
idled cmd="idled"
}

UNIX sockets start with a slash and are put into /var/imap/sockets
SERVICES {
 # add or remove based on preferences
 imap cmd="imapd" listen="imap" prefork=0
 pop3 cmd="pop3d" listen="pop3" prefork=0

 # LMTP is required for delivery
 lmtpunix cmd="lmtpd" listen="/var/imap/socket/lmtp" prefork=0

 # this is only necessary if using notifications
notify cmd="notifyd" listen="/var/imap/socket/notify" proto="udp"
prefork=1
}

EVENTS {
 # this is required
 checkpoint cmd="ctl_cyrusdb -c" period=30

 # this is only necessary if using duplicate delivery suppression
 delprune cmd="ctl_deliver -E 3" at=0400

 # this is only necessary if caching TLS sessions
 tlsprune cmd="tls_prune" at=0400
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 58

Annex B: OpenSSL configuration file

This definition stops the following lines choking if HOME isn't
defined.
HOME = /
RANDFILE = $ENV::HOME/.rnd

Extra OBJECT IDENTIFIER info:
#oid_file = $ENV::HOME/.oid
oid_section = new_oids

To use this configuration file with the "-extfile" option of the
"openssl x509" utility, name here the section containing the
X.509v3 extensions to use:
extensions =
(Alternatively, use a configuration file that has only
X.509v3 extensions in its main [= default] section.)

[new_oids]

We can add new OIDs in here for use by 'ca' and 'req'.

[ca]
default_ca = CA_default # The default ca section

[CA_default]

dir = /ca # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
new_certs_dir = $dir/newcerts # default place for new certs.

certificate = $dir/cacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/private/cakey.pem# The private key
RANDFILE = $dir/private/.rand # private random number file

x509_extensions = usr_cert # The extentions to add to the cert

Comment out the following two lines for the "traditional"
(and highly broken) format.
name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

Extension copying option: use with caution.
copy_extensions = copy

Extensions to add to a CRL. Note: Netscape communicator chokes on V2 CRLs
so this is commented out by default to leave a V1 CRL.
crl_extensions = crl_ext

default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 59

default_md = md5 # which md to use.
preserve = no # keep passed DN ordering

A few difference way of specifying how similar the request should look
For type CA, the listed attributes must be the same, and the optional
and supplied fields are just that :-)
policy = policy_match

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
commonName = supplied
emailAddress = supplied

For the example.com policy
At this point in time, you must list all acceptable 'object'
types.
[policy_example]
countryName = supplied
stateOrProvinceName = supplied
localityName = supplied
organizationName = supplied
commonName = supplied
emailAddress = supplied

[req]
default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
#attributes = req_attributes
x509_extensions = v3_ca # The extentions to add to the self signed cert

Passwords for private keys if not present they will be prompted for
input_password = secret
output_password = secret

This sets a mask for permitted string types. There are several options.
default: PrintableString, T61String, BMPString.
pkix : PrintableString, BMPString.
utf8only: only UTF8Strings.
nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings).
MASK:XXXX a literal mask value.
WARNING: current versions of Netscape crash on BMPStrings or UTF8Strings
so use this option with caution!
string_mask = nombstr

req_extensions = v3_req # The extensions to add to a certificate request

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = FR
countryName_min = 2
countryName_max = 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 60

stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Ile-de-France

localityName = Locality Name (eg, city)
localityName_default = Paris

0.organizationName = Organization Name (eg, company)
0.organizationName_default = Example Company

commonName = Common Name (eg, your name or your
server\'s h
ostname)
commonName_max = 64

emailAddress = Email Address
emailAddress_max = 64

SET-ex3 = SET extension number 3

#[req_attributes]
#challengePassword = A challenge password
#challengePassword_min = 4
#challengePassword_max = 20

#unstructuredName = An optional company name

[usr_cert]

These extensions are added when 'ca' signs a request.

This goes against PKIX guidelines but some CAs do it and some software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 61

subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer:always

This stuff is for subjectAltName and issuerAltname.
Import the email address.
subjectAltName=email:copy
An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email:move

Copy subject details
issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl
#nsSslServerName

[v3_req]

Extensions to add to a certificate request

basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

[v3_ca]

Extensions for a typical CA

PKIX recommendation.

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid:always,issuer:always

This is what PKIX recommends but some broken software chokes on critical
extensions.
#basicConstraints = critical,CA:true
So we do this instead.
basicConstraints = CA:true

Key usage: this is typical for a CA certificate. However since it will
prevent it being used as an test self-signed certificate it is best
left out by default.
keyUsage = cRLSign, keyCertSign

Some might want this also
nsCertType = sslCA, emailCA

Include email address in subject alt name: another PKIX recommendation
subjectAltName=email:copy
Copy issuer details
issuerAltName=issuer:copy

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 62

DER hex encoding of an extension: beware experts only!
obj=DER:02:03
Where 'obj' is a standard or added object
You can even override a supported extension:
basicConstraints= critical, DER:30:03:01:01:FF

[crl_ext]

CRL extensions.
Only issuerAltName and authorityKeyIdentifier make any sense in a CRL.

issuerAltName=issuer:copy
authorityKeyIdentifier=keyid:always,issuer:always
Add a simple OID like this:
testoid1=1.2.3.4
Or use config file substitution like this:
testoid2=${testoid1}.5.6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 63

Annex C: Tripwire Policy example

Tripwire Policy file

Tripwire Policy file

################################ #

Critical configuration files # #

################################
(
 rulename = "Critical configuration files",
 severity = $(SIG_HI)
)
{
 /etc/crontab -> $(SEC_BIN) ;
 /etc/cron.hourly -> $(SEC_BIN) ;
 /etc/cron.daily -> $(SEC_BIN) ;
 /etc/cron.weekly -> $(SEC_BIN) ;
 /etc/cron.monthly -> $(SEC_BIN) ;
 /etc/default -> $(SEC_BIN) ;

<…skip…>

#################### #

Critical devices # #

####################
(
 rulename = "Critical devices",
 severity = $(SIG_HI),
 recurse = false
)
{
 /dev/kmem -> $(Device) ;
 /dev/mem -> $(Device) ;
 /dev/null -> $(Device) ;
 /dev/zero -> $(Device) ;
 /proc/devices -> $(Device) ;

Tripwire configuration file

ROOT =/usr/sbin
POLFILE =/etc/tripwire/tw.pol
DBFILE =/var/tripwire/jupiter.twd
REPORTFILE =/var/tripwire/report/jupiter-$(DATE).twr
SITEKEYFILE =/etc/tripwire/tw-site.key
LOCALKEYFILE =/etc/tripwire/tw-local.key
EDITOR =/bin/vi
LATEPROMPTING =false
LOOSEDIRECTORYCHECKING =false
MAILNOVIOLATIONS =true
EMAILREPORTLEVEL =3
REPORTLEVEL =3
MAILMETHOD =SENDMAIL

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 64

SYSLOGREPORTING =false
MAILPROGRAM =/usr/sbin/sendmail -oi –t

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pierre Amoudruz SANS GCUX program

 Page 65

References

[1] Red Hat: Red Hat Linux GPG keys
http://www.redhat.com/solutions/security/news/publickey.html

[2] Red Hat: Red Hat Linux Reference Guide
http://www.europe.redhat.com/documentation/rhl9/rhl-rg-en-9/

[3] Red Hat: Red Hat errata web site for Red Hat Linux 9
https://rhn.redhat.com/errata/rh9-errata-security.html

[4] Red Hat: Red Hat Linux 9 updates
http://updates.redhat.com/9/en/os/

[5] SANS institute: secure RedHat Linux SANS GCUX practicum

[6] Carnegie Mellon University: Cyrus SASL for system administrators
http://asg.web.cmu.edu/cyrus/download/sasl/sysadmin.html

[7] Postfix.org: Postfix basic configuration guide
http://www.postfix.org/basic.html

[8] Red Hat: SMTP authentication using Postfix and SASL
http://postfix.state-of-mind.de/patrick.koetter/smtpauth

[10] Carnegie Mellon University: Cyrus IMAP installation guide
http://asg.web.cmu.edu/cyrus/download/imapd/install.html

[11] Stunnel.org: using Stunnel with certificates
http://www.stunnel.org/faq/certs.html

[12] Carnegie Mellon: Software Engineering Institute
http://www.cert.org

[13] SANS Institute : InternetStormCenter
http://isc.sans.org/

