
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 1

Roberto Sabbi

Running a Secure Kerberos
Server on FreeBSD
GCUX Practical Assignment version 2.0

Option 1 – Securing Unix Step by Step

15 April 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 2

Table of contents

1 Abstract .. 4

2 Introduction.. 4

3 Specification .. 5
3.1 Server role.. 5
3.2 Hardware requirements ..5

3.2.1 CPU ...5
3.2.2 Memory..7
3.2.3 Storage ...7
3.2.4 Networking...7

3.3 Operating system..8
3.4 Software...9

3.4.1 Kerberos...9
3.4.2 Cracklib: a proactive Password Sanity Library........................ 11

3.5 Operating System and Application processes.. 11
3.6 Network services .. 11
3.7 User management...12

4 Risk analysis and mitigation plan .. 12
4.1 Threat analysis ...12
4.2 Data classification .. 12

4.2.1 Confidentiality.. 13
4.2.2 Integrity.. 13
4.2.3 Availability...13

4.3 Network location .. 13
4.4 Risk analysis .. 14
4.5 Mitigation plan...14

5 Installation and hardening .. 15
5.1 Physical installation.. 15
5.2 BIOS setup...16
5.3 Operating system installation.. 16

5.3.1 Booting...16
5.3.2 Disk configuration .. 19
5.3.3 Distribution sets.. 22

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 3

5.3.4 Final configuration ...24
5.3.5 Network services .. 27

5.4 Software installation...45
5.4.1 Package build ...45
5.4.2 Package Installation.. 46
5.4.3 Configuration ...46
5.4.4 Startup.. 48

6 Maintenance ... 57
6.1 Operating system update .. 57
6.2 Application update ...57
6.3 Backups and redundant storage .. 57

7 Auditing .. 58

End of document .. 58

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 4

1 Abstract
This paper will discuss the use of the FreeBSD operating system to implement a
Kerberos Key Distribution Center.

We will:

- perform an analysis of the hardware requirements and show that they are
satisfied by the available machine

- introduce the operating system with some background on the version
chosen

- introduce the software and the protocol it implements

- perform a risk analysis detailing the measures taken to mitigate the risks
given the company requirements

- discuss in detail both the operating system and application installation

- accompany the installation procedures with the corresponding verification
steps

- quickly describe the maintenance and audit procedures

2 Introduction
SabbiCom Servizi is a 20 people company working in the GIS sector that operates
on a tight budget. The most common activity consists in creating and updating
maps and drawings from a wide variety of customers, exchanged in electronic
form. For compatibility reasons SabbiNet needs to work with a number of different
platforms among which Solaris, HP-UX, Linux and FreeBSD.

Over time, SabbiCom acquired and developed software for many tasks. In total 40
hosts are in use although occasionally additional machines are rented to cope with
the workload.

Indeed, in order to keep machines under maximum utilisation, SabbiCom also
employs temp workers (mostly students) for the more clerical tasks such as data
entry. These people work from Monday to Saturday in the following two shifts: 7h-
14h and 14h-19h.

The workflow is managed by supervisors with a smart scheduling that also
allocates machine slots according the software installed in order to limit the number
of licenses. The supervisors are also tasked to manage the temp workers
accounts. As the business expands, this is increasingly difficult since the
supervisors’ working hours do not necessarily overlap with the temps’ schedule.
Furthermore, accounts are created, locked and deleted quite often since the
students adjust their presence on their academic planning.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 5

Regarding the data, the files contain information that must be protected for privacy
and national security reasons (some customers are government agencies).
SabbiCom’s management is therefore unhappy with the current compliance to the
customer’s security standards. The account management takes too much time
from the supervisors and full compliance is not strictly guaranteed.

At first it is considered to hire a dedicated IT person but the idea is abandoned: the
users are quite technical and do not generate enough support demand to justify the
cost.

Upon advice from the consultant currently working for SabbiCom, the management
decides to deploy a centralised authentication system and the choice falls on
Kerberos. The consultant will also be in charge of maintaining the server, taking
care of the security updates for both the operating system and the application.

This paper will describe the processes to setup, configure and maintain the
Kerberos server.

3 Specification

3.1 Server role
The server will act as a single KDC with no slave replication, providing the
authentication services needed to access the workstations and the services on the
network.

3.2 Hardware requirements
The machine chosen is a single Pentium II 400MHz with 384 megabytes of
memory and 20 gigabytes of hard disk. A cd-writer is installed for the backups. The
network interface is a 100Mbit. The motherboard has an onboard dual channel
ATA66 controller.

The machine is obsolete as a CAD workstation will therefore be devoted to the task
of running the KDC. We will do a quick analysis to determine whether the hardware
is sufficient.

3.2.1 CPU
The Pentium II CPU will handle low network traffic since it will only handle the
authentication traffic and will access the network services needed (mostly DNS and
NTP).

Most of the CPU load will be caused by the crypto calculation necessary to handle
Kerberos tickets. Although there will probably be peaks localized at the beginning
of the working shifts, the CPU described above is sufficient.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 6

We can perform a “quick and dirty” verification by using the benchmarking
capabilities of OpenSSL on similar PII machine:

> openssl speed des -elapsed

You have chosen to measure elapsed time instead of user CPU time.

To get the most accurate results, try to run this

program when this computer is idle.

Doing des cbc for 3s on 16 size blocks: 896402 des cbc's in 3.00s

Doing des cbc for 3s on 64 size blocks: 232714 des cbc's in 3.01s

Doing des cbc for 3s on 256 size blocks: 59623 des cbc's in 3.01s

Doing des cbc for 3s on 1024 size blocks: 14963 des cbc's in 3.01s

Doing des cbc for 3s on 8192 size blocks: 1866 des cbc's in 3.01s

Doing des ede3 for 3s on 16 size blocks: 246772 des ede3's in 3.01s

Doing des ede3 for 3s on 64 size blocks: 63019 des ede3's in 3.01s

Doing des ede3 for 3s on 256 size blocks: 15823 des ede3's in 3.01s

Doing des ede3 for 3s on 1024 size blocks: 3954 des ede3's in 3.01s

Doing des ede3 for 3s on 8192 size blocks: 496 des ede3's in 3.01s

OpenSSL 0.9.7c-p1 30 Sep 2003

built on: Tue Apr 6 23:45:21 CEST 2004

options:bn(64,32) md2(int) rc4(idx,int) des(ptr,risc1,16,long) aes(partial) idea(int)
blowfish(idx)

compiler: cc

available timing options: USE_TOD HZ=128 [sysconf value]

timing function used: gettimeofday

The 'numbers' are in 1000s of bytes per second processed.

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

des cbc 4778.93k 4950.07k 5073.04k 5092.42k 5080.27k

des ede3 1312.37k 1340.49k 1346.23k 1345.46k 1349.50k

>

If we compare these results with the size of a sample credential file:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 7

-rw------- 1 root wheel 461B Apr 5 23:39 krb5cc_0

We see that for the encryption that will be used (des3-cbc) the machine should
suffice the target load.

3.2.2 Memory
The application executables running on the system typically have a small memory
footprint and there will not be many of them given the narrow role of the server.
The database used by Kerberos is a simple “dbm” file and most of the network
services do not run as multi-process. The memory described above will be more
than sufficient.

3.2.3 Storage
At any given time it is unlikely that the Kerberos database will hold more than 50
entries, therefore most of the storage space will be occupied by the logs. Neither
the source files nor the “ports” tree will be installed leaving the base installed
system at approximately 200 MB. Thus, the 20 GB will be more than sufficient for
extended log retention.

A boot with a live bootable cdrom confirms the operating system support for the
ATA controller, as can be seen from this excerpt from the dmesg output.

…

atapci0: <VIA 82C596 ATA66 controller> port 0xe000-0xe00f at device 7.1 on pci0

…

3.2.4 Networking
The Kerberos server will serve quite a light traffic, mostly “ntp” updates on a
regular basis and Kerberos traffic with a peak at the beginning of shifts, when the
staff logs in for the first time. The interface is thus adequate to handle the expected
traffic.

We also repeated the same compatibility test for the network card with similar
success:

…

dc0: <ADMtek AN985 10/100BaseTX> port 0xe800-0xe8ff mem 0xd7000000-
0xd70003ff irq 11 at device 8.0 on pci0

dc0: Ethernet address: 00:50:bf:98:fb:1c

miibus0: <MII bus> on dc0

ukphy0: <Generic IEEE 802.3u media interface> on miibus0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 8

ukphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto

…

3.3 Operating system
The operating system chosen is FreeBSD for the following reasons:

- the consultant working for SabbiCom and most of the supervisors are
familiar with it

- this ensures basic troubleshooting without the consultant intervention or by
phone support

- no licenses costs will be sustained given the BSD license that covers
FreeBSD

- the software used, Heimdal Kerberos and Cracklib, are available both as a
port and as a binary package under FreeBSD, making installation and
support easier

- FreeBSD has an excellent reputation for security, stability and network
performance

- FreeBSD runs on the popular Intel platform

- In general, the hardware requirements for running FreeBSD are low

The candidates considered for this implementation are respectively version 5.2.1
and 4.8 of FreeBSD.

FreeBSD 5.2.1 would provide some useful security features not present in 4.8, like
filesystem ACLs and Mandatory Access Control (an extension to the kernel access
control capabilities).

Unfortunately at the time of deployment the version 5 of FreeBSD is not yet
considered as production-ready. This means that the FreeBSD team still plans
some fundamental changes before version 5.3 which is planned to be the
Production Release.

This could complicate maintenance since system update via “make world” could
break or require elaborate manual intervention. Additionally it contains much new
code that needs to be exercised for security and stability1.

For more information see: The FreeBSD Release Engineering Team. “Early
Adopter's Guide to FreeBSD 5.2.1-RELEASE”. 25 Feb. 2004.

URL: http://www.freebsd.org/releases/5.2.1R/early-adopter.html (09 Apr. 2004).

The chosen version will be 4.8, in particular following the 4.8-RELEASE cvs tag,
thus only the security updates will be added. Also, according to the FreeBSD

1 The FreeBSD Release Engineering Team. “Early Adopter's Guide to FreeBSD 5.2.1-RELEASE”.
25 Feb. 2004. URL: http://www.freebsd.org/releases/5.2.1R/early-adopter.html (09 Apr. 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 9

website2 it will be probably the 4.x release with the longest support (March 2005),
meaning that a RELEASE upgrade (that constitutes heavy maintenance) will not be
required for some time.

3.4 Software

3.4.1 Kerberos

3.4.1.1 The Kerberos protocol

The Project Athena was established in May 1983 with support from a consortium of
computer vendors to develop strategies and software aimed at integrating the use
of computers in the MIT curriculum. MIT Kerberos was one of the various
packages developed in the context of the project; its goal was providing
authentication services to a distributed network consisting of servers and untrusted
client machines.

The goal of the Kerberos protocol is to centralise authentication on a single server,
the Key Distribution Center. The users (both human and applications) are called
principals and their authentication domain is called realm.

The KDC stores each principal data including the pass-phrase in a database. This
server, after authenticating the users or applications with their respective pass-
phrase, provides them a TGT (for “Ticket Granting Ticket”).

This ticket is actually two copies of the same information: the identity (principal),
the lifetime of the ticket and a session key. One copy is encrypted with the
principal’s pass-phrase, the other with the KDC pass-phrase. The client verifies the
identity of the server by verifying that he can decrypt the first copy and will use the
other to prove his identity on all further ticket requests to the KDC.

Now the client is ready to connect to other servers within the same realm (that is
the “jurisdiction” of the KDC):

- the client contacts the KDC sending a service ticket request. To prove his
identity, he also sends the encrypted copy of the TGT. He also sends along
an Authenticator: this is basically his name and IP address with a timestamp
encrypted with the session key from the TGT.

- The KDC verifies he can decrypt the TGT with his key (which proves the
client has been authenticated). He also decrypts the Authenticator to make
sure the timestamp falls within the allowed time skew (usually 5 minutes).

- The KDC sends back a service ticket to the client, again encrypted in two
copies: one with the client key, the other with the server key. The session
key will be used to communicate between the client and the server.

2 The FreeBSD Release Engineering Team. “FreeBSD Security Information”. 25 Feb. 2004. URL:
http://www.freebsd.org/security/ (09 Apr. 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 10

- The client decrypts the first copy of the service ticket to verify the KDC
identity and sends the other to the server along with an authenticator.

- If the client requests the server to prove his identity, the server increments
the timestamp by one and sends it back to the client.

At this point, the client and the server are mutually authenticated and share a
session key. This key can be used directly within an application or to exchange
further sub-session keys.

While Kerberos provides the framework for all successive exchanges, they are
entirely application dependent.

A few points to retain for the security analysis later:

- all the pass-phrases are stored in the KDC

- service tickets follow the same concept and structure of the TGT

- the KDC is the centre of all authentication exchanges as said above

- the authenticators ensure protection against replay attacks

3.4.1.2 Heimdal Kerberos

Protocols are amazing creations, but they would be useless without software
implementing them.

The current reference Kerberos implementations are the MIT Kerberos, from the
original creators of the protocol and the Heimdal Kerberos distribution, a free
Swedish implementation.

They are both complete implementation of the basic authentication protocol.
However, they differ in the administration part regarding replication, password
change and database manipulation since these topics were not covered in the
initial specification3.

They both support the same encryption algorithms such as des, triple des and the
newest aes. However, MIT Kerberos is subject to export restrictions outside the
U.S. since cryptography is considered as weaponry by the U.S. government.

Since SabbiCom is an Italian company, the implementation chosen for this project
is Heimdal. The current version is 0.6.1, recently released to fix a vulnerability.

3 The book used for this paper covers Kerberos in detail: Garman, Jason. Kerberos, The Definitive
Guide. Sebastopol: O’Reilly & Associates, Inc, August 2003. Another interesting reading is: Steiner,
Neuman,Schiller. Kerberos:An Authentication Service for Open Network System. 30 Mar. 1988.
URL: http://www.pdc.kth.se/kth-krb/kerberos.ps (09 Apr. 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 11

3.4.2 Cracklib: a proactive Password Sanity Library
Cracklib is a library that can be easily used by applications to ensure adequate
password strength4.

The FreeBSD port of Heimdal can be compiled with cracklib support, which results
in the “kpasswdd” daemon to use it for password quality check.

In our case this is very useful since the users themselves are responsible for
periodically changing their password.

3.5 Operating System and Application processes
The server will run the following operating system processes:

- The init process

- The adjkerntz utility for local time correlation

- the syslogd daemon for logging

- the cron daemon for task scheduling

- the sshd daemon for remote login

- sendmail for local mail delivery

- the inetd daemon for running the kadmind application daemon

And the following application processes:

- the kdc daemon that is the authentication server

- the kpasswd daemon used for providing the password change service to
users

- the kadmind daemon for the Kerberos database administration

3.6 Network services
The server will be listening on the following ports:

- 22/tcp for ssh connections

- 88/tcp and udp for Kerberos authentication request

- 464/udp for password change requests

- 749/tcp for administrative connections

- 25/tcp only locally for mail delivery

4 For more information: Muffet, Alec. “CrackLib: A ProActive Password Sanity Library.” 14 Oct.
2003.URL: http://www.crypticide.org/users/alecm/security/cracklib,2.7.txt (09 Apr. 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 12

3.7 User management
The only users allowed interactive access through “ssh” will be the supervisors.
They will then be able to check the logs for problems and the Kerberos logs. They
will not be included in the “wheel” group, to prevent them from “su-ing” to root.

The supervisors will also be allowed to connect with the “kadmin” utility to perform
account management.

The other users will only be able to change their passwords connecting via the
“kpasswd” utility.

4 Risk analysis and mitigation plan

4.1 Threat analysis
The outer security layer of any host is represented by the network services. The
highest threat is an attack to the “sshd” server since password enumerating activity
could provide a shell to an attacker that would then try to escalate to the root
account. This potential threat is mitigated by the fact that once the user has
successfully logged in, the “sshd” daemon runs with the user privileges. We must
also keep into account that the “sshd” daemon provides file transfer capabilities
that are useful to an attacker.

An alternative attack would be trying to directly exploit the service to run code as
root or obtain a shell. This requires the service to be vulnerable.

The Kerberos services do not provide any direct shell access, therefore they can
only be attacked if remotely vulnerable. An exception could be “kadmind” since it is
a client/server application that accepts user input.

All the network services can also be simply attacked with a denial of service.

Moving closer to the inside we note that the supervisors will have shell access via
“ssh”. The mitigating factor is that they do not have root access nor they can “su”
by default, even if having root password.

Then we can list the physical attack, starting from account enumeration at the
console, to the possibility of inserting medias and/or trying to reboot the machine
and enter into sinlge user mode.

The denial of service attack can also be physical.

4.2 Data classification
The KDC itself does not contain any customer files nor internally developed
software (both of which are the most valuable asset for the company). However, it
contains the credentials allowing access to the hosts on the network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 13

Thus, the data are by the KDC database.

4.2.1 Confidentiality
A compromise of the credentials confidentiality would give access to the data and
software.

As said above, the company has a contractual obligation to privacy given the fact
that most files being worked contain demographic information.

If some of the information contained was revealed this would cause great
embarrassment for the company. For a small company like SabbiCom, this is more
sensitive than financial information.

If, for example, one file was posted on the Internet, the impact could be the loss of
a contract, immediately threatening the company survival.

4.2.2 Integrity
The introduction of forged credentials, basically recreates the scenario discussed
above.

4.2.3 Availability
The availability of the data is not a critical factor. SabbiCom is currently operating
without a central authentication server and would for sure be able to continue
operating in case of unavailability. Considering that procedures exist to operate
without central authentication, the unavailability of the server would cause loss of
productivity but would not be a blocking factor.

4.3 Network location
Except for some servers containing data and therefore well hardened, most of the
hosts are workstations. These are allowed to talk to the KDC server since they
need to use its authentication services.

These workstations are not allowed to talk directly to the Internet. They fetch
software updates from a server.

The only server connecting outside the firewall protecting the network is the one
that co-hosts “dns” and time server. For its role, it connects to the upstream
services provided by the ISP.

This host is used by the KDC for “dns” and time services.

Other hosts are the executive’s laptops that fetch mail from the ISP.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 14

4.4 Risk analysis
Let us first consider an attack coming from the outside. This would have
necessarily to come through the DNS/Time server.

Unfortunately they are the only instances available and must be relied upon. Also,
this scenario would not pose more risk to the KDC than to the servers actually
containing the data.

Second we have the managers’ laptops: since they cannot be used to surf the
Internet, the only possible attack would be an e-mail worm. The ISP is therefore
relied upon to make sure that e-mails are properly scanned for viruses in addition
to the antivirus installed locally on the laptops. This would also be an off-line attack
and therefore is not of great concern.

The most probable scenario is thus the internal attack. Occasionally some
customers come on site to preview the work being done and connect to the
network.

The rest of the users are the supervisors and the temp workers using the
workstations. These workstations are also used for development therefore,
although not connected to the Internet, there is the potential for installing malicious
tools and attacking the server.

Given the role of the server, though, it is not possible to prevent the supervisors
from accessing it. In fact, all the traffic happens on the same network and almost
all the hosts need to access the KDC.

The features of the Kerberos protocol should prevent theft of in-transit credentials.

The supervisors will also be accessing the KDC as administrators and their
credentials could be stolen and used to create or modify accounts. Therefore we
must make sure that their admin accounts as well as any other are well protected.

The supervisors will also be interactively accessing the KDC to do log monitoring,
thus even the interactive accounts will have to be protected. With one of their
accounts, an attacker could try to wander around in the system, transfer data to or
from it, or filling the disk.

The host will not have other interactive accounts beside those and the consultant
one. This and the root password will be changed after every maintenance activity.

The remaining risks will have to be mitigated with an adequate logging policy.

Finally, the physical exposure of the host cannot be tolerated and measures will
have to be taken.

4.5 Mitigation plan
In order to mitigate the remaining risks, the following measures will be taken:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 15

- the host will be physically secured

- the BIOS will be adequately configured

- the unused drivers will be disabled

- the partitions will be well sized and spread to prevent denial of service
attacks and ensure long term log retention

- the operating system components and the server software installed will be
the minimum required to run the server as a KDC

- unused network services will be turned off

- necessary network services will be hardened

- time synchronization will be used to prevent replay attacks

- unused local services will be turned off

- the console will be hardened against password-guessing activity or session
hijacking

- single user mode will be password protected

- remote logins will also be hardened

- the default password policy will be tighetened

- the filesystem mount parameters will be hardened

- this will be complemented by a “securelevel” setup, making this immutable
without reboot and preventing drastic time changes

- the software installed will also enforce password quality and provide access
on a need-to-have basis

5 Installation and hardening

5.1 Physical installation
SabbiCom does have a dedicated server room but other servers and telecom
equipment are located in it.

This is taken as an opportunity to install a wire cage on which this system and the
ones containing the data will be placed. The room has no windows which prevents
shoulder surfing from the outside.

The chassis has a door with lock protecting access to media drives.

During the installation, the host will only be connected to a small hub, together with
a laptop used to test the system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 16

5.2 BIOS setup
The BIOS, after the first reboot of the installation will be configured with hard disk
as the first booting media, followed by cdrom and floppy. Unfortunately, this BIOS
does not offer the possibility of directly excluding devices. On the other hand, the
BIOS is rather old and does not allow booting from the network or usb ports.

After this modification, a setup (not boot) password is entered and also put in an
envelope that will be put in a locked tray.

The boot password will not be set since this would prevent a quick recovery in case
of system crash.

The parallel port and the floppy drive are also disabled.

The setup password is kept in the company safe.

These measures, together with the physical ones, prevent an attack based on
booting on a removable media or dumping the credentials.

5.3 Operating system installation

5.3.1 Booting
It is now time to insert the FreeBSD cd and boot the system; after some hard disk
activity, some console messages and some beeping,

we are presented with three options to do kernel configuration:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 17

We will move on the second option: “Start kernel configuration in full-screen visual
mode”, and press “Enter”.

On the next screen we will press “X” which will present us with the list of the
detected hardware grouped by driver category.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 18

The kernel used for installation is compiled with support for several devices and
this menu is used to enable/disable in-kernel drivers that may conflict.

It is useful to perform this step initially because the configuration will be saved and
we will not have to do it later. We also minimise the chances of an aborted install.

Moving with the arrow keys and removing devices with the delete key we will
delete the scsi devices, the network controllers and the pc-card controller.

We will not delete the ATA/ATAPI entries or our machine will not boot further.

When done, we will press “Q” to exit and “Y” to save the configuration and the boot
sequence will continue until the main installation menu.

Note that even if we connected a non-US keyboard, the OS still uses a US layout
thus, on the next screen we will move over the “Keymap” option and select the
appropriate layout.

We will then exit and move over the “Express” installation option and hit enter and
will be presented with the FDISK partition editor.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 19

5.3.2 Disk configuration

In this screen we will create the FreeBSD partition: using the “A” key, we will
allocate the entire disk to the FreeBSD partition.

We move now over the newly allocated partition, hit “S” to make it bootable and
exit with “Q”.

Note that in the BSD operating systems family, all the installation is contained in a
partition further divided into slices. The slices will be initialised and mounted under
the root tree.

The next menu will prompt us for the boot manager installation:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 20

We hit “Enter” to confirm installation of the boot manager.

Having the boot manager installed has an indirect security implication. We may
need to recompile the kernel for example to exclude a vulnerable subsystem for
which no patch is still out. If something went wrong and the newly compiled kernel
does not boot we still have the option of booting the old one. Without a boot loader,
we would have to perform a complex recovery procedure, prolonging the
unavailability of the system.

We are now on the disklabel editor menu, where we will divide the disk in slices.
We now have to decide the number and size of our filesystems.

Keeping into account our mitigation plan:

- we will allocate 1G of space to the root partition. Typically FreeBSD will not use
more than 50~70 Mb of space even with multiple kernels and modules installed
(upon install of a new kernel, the old one and the modules directory are renamed to
“.old”. We want to make sure that it is not easy to fill the root partition, be it
because of malicious intent or system manipulation error.

- to calculate the swap file size for a server a good rule of thumb is to make it the
double of the physical memory. Actually a network server, especially when
providing interactive services, should never have to swap. This would make
response time unbearable for the user. A Kerberos server does not provide
interactive services but would cause the same effect for a user requesting a
service ticket to access one.

- the home directory will not be used much since the server will only be accessed
for monitoring or maintenance purposes. Again, 1Gb will provide a basic assurance
against denial of service. Furthermore, having it as a separate partition, prevents a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 21

denial of service opportunity: by default FreeBSD creates the “/home” tree as a
symbolic link of the “/usr/home” partition. A user could then fill up the “/usr” partition
and at the next “make installworld” run, the system would be only partially update.
This could leave the machine in an inconsistent or unbootable state.

- since the system will undergo long periods without qualified maintenance from the
consultant and for eventual historical research, it is decided to keep the logs for as
long as possible. Therefore 8Gb will be allocated to the “/var” filesystem that also
contains mail files that may accumulate over rtime.

- we will dedicate Heimdal a separate filesystem for the data directory,
“/var/heimdal”, that will contain only the principals database, the master key and
the kadmin acl file. The log will go into “/var/log”. For this reason 4Gb is more than
enough. We stay on the very safe side, because filling up this partition would likely
cause the KDC to crash.

- FreeBSD uses “/bin”,“/sbin” and “/usr” (and some other) trees for the base system
and “/usr/local” for the third party packages. This, among other advantages,
prevents any dangerous overlapping between a third party package and the base
system. Our case is a good example: the FreeBSD base system already comes
with a basic Heimdal Kerberos installation. Even if most executables have different
names, we will be sure that the daemons under “/usr/local/libexec” belong to our
Heimdal package. The same goes for “/usr/local/bin” and “/usr/local/sbin”. The
remaining space will be then allocated to the “/usr” filesystem. This tree will remain
stable in size since no application will be installed other than those initially planned.

Before committing our layout we can have one last look:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 22

After having allocated all the slices and setup the mount points, we exit hitting ‘Q’.

5.3.3 Distribution sets
In the next step we can apply the “minimal installation” policy discussed earlier.
The installation presents us the choice of predefined sets of the base installation.

We will chose the “Custom” option that will allow us to specify exactly which
components we want to install.

Of the options in the next menu we will choose the following:

Bin – the binary base distribution, it is mandatory.

Crypto – encryption services that we will need. OpenSSH is an example of a
component that will use those services.

Dict – contains spell checker dictionaries we will need for password quality
checking.

Info – the Info format documentation system, we will need it since part of the
Heimdal documentation comes in this format.

Man – the manual pages, needed for both the base system and the software.

Even though info and man are not strictly required they add only a few binaries
between executables and libraries and are contained in dedicated directories

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 23

After completing the selection, we will exit selecting the “Exit” option twice and
select the “CD/DVD” media option:

At the next screen we are given our last chance to back out before any changes
are made,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 24

We hit the “Y” key and the installation starts first initialising the disk layout
previously configured then the distribution sets are installed and the devices
created.

The installation asks now if we want to do more configuration. We will choose
“Yes” in order to configure all we can before rebooting.

5.3.4 Final configuration
Our last choice brings us back to the Main installation screen where we will set the
root password.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 25

Next, we will choose “Networking” and will enable “ntpdate”. From the list of time
servers, we will choose “Other” and we will enter “time.sabbi.it”, the hostname of
the internal timeserver.

Now, every time the system will boot, the system clock will be synchronised. After
having configured the “securelevel” later on, no clock adjustment of more than one
second will be allowed. This ntpdate run, though, is done before the system enters
the “securelevel” (which is irreversible). In other words, if the system clock goes
beyond the limit where successive adjustments are not able to bring it back on
time, a simple reboot will fix it, waiting for more troubleshooting.

This can be done by simply accessing the console of the system and hitting
“ctrl+alt+del”. In this option there is of course the potential for misuse, but being
able to reboot cleanly the system without using the root password can be an
advantage. If for some reason the system becomes unstable, a supervisor will be
able to gain physical access under control from the management (who has sole
access to the safe holding the key of the cage and the IT room) and perform the
operation.

In conclusion: the root password will not be exposed and physical access control is
ensured.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 26

Finally we will disable the last item in the list, named “TCP Extensions”.

The RFCs 1323 and 1644 define extensions to the TCP protocol in order to
improve network performance by looking into reducing TCP overhead and adapting
to changing traffic conditions. According to “The FreeBSD Handbook:”:

This enables the TCP Extensions defined in RFC 1323 and RFC 1644.
While on many hosts this can speed up connections, it can also cause some
connections to be dropped. It is not recommended for servers, but may be
beneficial for stand alone machines5.

Furthermore this has some benefit only if both ends implement the extensions.

We are now ready to reboot. We exit from the configuration menu, then we choose
“Exit install” and after a confirmation prompt, the machine reboots.

We will follow carefully the boot messages to make sure no errors are reported and
we will login with root. So far it is the only account present.

5 The FreeBSD Documentation Project. “The FreeBSD Handbook” System Documentation. URL:
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/book.html#INSTALL-POST (01 Apr.
2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 27

5.3.5 Network services
It is time now to have a look the network services running on the host:

netstat –na
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 *.587 *.* LISTEN
tcp4 0 0 *.25 *.* LISTEN
tcp4 0 0 *.22 *.* LISTEN
tcp46 0 0 *.22 *.* LISTEN
udp4 0 0 *.514 *.*
udp6 0 0 *.514 *.*
Active UNIX domain sockets
Address Type Recv-Q Send-Q Inode Conn Refs Nextref Addr
d659cc80 dgram 0 0 0 d6569f00 0 d659cf00
d659cf00 dgram 0 0 0 d6569f00 0 d659cd20
d659cd20 dgram 0 0 0 d6569f00 0 d659ce60
d659ce60 dgram 0 0 0 d6569f00 0 0
d6569f00 dgram 0 0 d6563b80 0 d659cc80 0 /var/run/log

The first thing to note is that sendmail is running and listens both on port 25 and
587. As said earlier, we only want local mail to be delivered for system reporting
purposes.

Another thing to note is that “sshd” and “syslogd” are also listening for both IPv4
and IPv6 addresses (we will address that later on).

5.3.5.1 Sendmail

Let’s start from sendmail configuration:

In FreeBSD the “/etc/defaults/rc.conf” file, controls among other things, what
services are started at boot. Let’s have a look at the sendmail section:

Mail Transfer Agent (MTA) options ######################

mta_start_script="/etc/rc.sendmail"

sendmail_enable="YES"

sendmail_flags="-L sm-mta -bd -q30m"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 28

sendmail_submit_enable="YES"

sendmail_submit_flags="-L sm-mta -bd -q30m

-ODaemonPortOptions=Addr=localhost"

sendmail_outbound_enable="YES"

sendmail_outbound_flags="-L sm-queue -q30m"

sendmail_msp_queue_enable="YES"

sendmail_msp_queue_flags="-L sm-msp-queue -Ac -q30m"

The “sendmail_..._enable” variables control the start of the different sendmail
instances, in the following order:

- the one listening for incoming e-mail from the outside

- the one listening for incoming mail from the localhost

- the one flushing the outbound queue

- the one flushing the submission queue

We do not want the first one or we would have port 25 listening on the network.

We need a delivery agent so we need to enable the second, and it listens only on
localhost.

We do not want mail to go outside so the third is to be disabled.

We would need the 4th one but there is already a script in the
“/etc/periodic/daily/500.queuerun” doing the same work once per day. Since we do
not need immediate delivery, we can run one daemon less.

Before changing the options, we need to stop sendmail. In FreeBSD there is a
practical makefile that is used to generate the “.cf” files and to stop/start the
daemons. Since the makefile uses the rc.conf variables, we need to issue the
“make stop” before changing them.

We execute:

cd /etc/mail

make stop

The system confirms the daemons have stopped.

Now we can turn off those options by putting the following in “/etc/rc.conf”:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 29

sendmail_enable="NO"

sendmail_submit_enable="YES"

sendmail_outbound_enable="NO"

sendmail_msp_queue_enable="NO"

We will try as much as possible not to touch “/etc/default/rc.conf” because when
updating the system, this file is updated from time to time. Putting the variables in
“/etc/rc.conf” ensures the integrity of the configuration.

We can now restart the mail system:

make start

Starting: sendmail-submit.

We verify again the listening ports:

netstat –na
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 127.0.0.1.25 *.* LISTEN
tcp4 0 0 *.22 *.* LISTEN
tcp46 0 0 *.22 *.* LISTEN
udp4 0 0 *.514 *.*
udp6 0 0 *.514 *.*
Active UNIX domain sockets
Address Type Recv-Q Send-Q Inode Conn Refs Nextref Addr
d659cf00 dgram 0 0 0 d6569f00 0 d659cd20
d659cd20 dgram 0 0 0 d6569f00 0 d659ce60
d659ce60 dgram 0 0 0 d6569f00 0 0
d6569f00 dgram 0 0 d6563b80 0 d659cf00 0 /var/run/log

We verify that only one instance of sendmail is running:

ps -ax -o pid,user,command

 PID USER COMMAND
 0 root (swapper)
 1 root /sbin/init --
 2 root (taskqueue)
 3 root (pagedaemon)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 30

 4 root (vmdaemon)
 5 root (bufdaemon)
 6 root (syncer)
 7 root (vnlru)
 70 root /usr/sbin/syslogd -s
 78 root /usr/sbin/inetd -wW
 80 root /usr/sbin/cron
 82 root /usr/sbin/sshd
 85 root sendmail: accepting connections (sendmail)
 101 root login [pam] (login)
 112 root -csh (csh)
 178 root ps -ax -o pid,user,command
 102 root /usr/libexec/getty Pc ttyv1
 103 root /usr/libexec/getty Pc ttyv2
 104 root /usr/libexec/getty Pc ttyv3
 105 root /usr/libexec/getty Pc ttyv4
 106 root /usr/libexec/getty Pc ttyv5
 107 root /usr/libexec/getty Pc ttyv6
 108 root /usr/libexec/getty Pc ttyv7

5.3.5.2 Syslogd

Now, beside sshd we still have port 514 used by syslogd. FreeBSD syslogd has an
interesting feature: by supplying the flag “-ss” it is possible to disable all network
capabilities. Thus syslog does not even connect to remote hosts.

We just have to add the line below to “/etc/rc.conf”:

syslogd_flags=”-ss”

5.3.5.3 OpenSSH

With the setup done so far and after configuring the networking we will have only
SSH listening after the next reboot. So, before we proceed to configure sshd, let’s
review the default FreeBSD configuration. We will only discuss the parameters that
need to be changed and those with particular relevance for security:

The strategy used for options in the default sshd_config shipped with
OpenSSH is to specify options with their default value where
possible, but leave them commented. Uncommented options change a
default value.

This configuration file is useful because we can compare inline the default settings
with our target configuration.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 31

#Protocol 2,1

We have no use for the version 1 of the protocol therefore we will modify this
option to prevent downgrading to version 1. It will be:

Changed on 04/04/2004
Protocol 2

We added the comment date because on system update this file could be subject
to merging and having the comment will help deciding what to do.

#ListenAddress 0.0.0.0

The “Listen” statement is useful to decide to which address and port sshd will bind.
We do not really want to change that (it could be useful if we had multiple
interfaces) but un-commenting that line has the positive effect of preventing sshd
from listening for IPv6 addresses.
We will then change it to:

Changed on 04/04/2004
ListenAddress 0.0.0.0

We will only review the next parameter:

Logging
#obsoletes QuietMode and FascistLogging
#SyslogFacility AUTH
#LogLevel INFO

The level of logging and the facility is appropriate. We will instead change the next
one:

Authentication:
#LoginGraceTime 120

To:

Changed on 04/04/2004
LoginGraceTime 60

with the effect of aborting the login if not completed within 1 minute. This makes
the network login a little bit more resistant. In case of malicious activity the attacker
has less time to fiddle with the initiated login. Next parameter:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 32

#PermitRootLogin no

This is a sensible default setting; we will leave it as it is. We want that, if the root
account has to be used, there is a record of who did it. The next one too, is
appropriate:

#StrictModes yes

With this setting sshd accepts login only if no world-writable directories or files are
in the user home directory. We will change the next one:

#PubkeyAuthentication yes

To:

Changed on 04/04/2004
PubkeyAuthentication no

Since we are not going to use Public Key authentication there is no reason to leave
it in place. An attacker could create a backdoor on a compromised account by
placing a public key in the account home directory known_hosts and later login
without being detected by the owner of the account. Note that this also prevents
host-based authentication since it works together with public key authentication.

To disable tunneled clear text passwords, change to no here!
#PasswordAuthentication yes
#PermitEmptyPasswords no

In line with what was said above, we leave password authentication enabled and,
of course, prevent the creation of null password accounts. Furthermore we will
disable the authentication method controlled by the next parameter:

Change to no to disable PAM authentication
#ChallengeResponseAuthentication yes

To:

Change to no to disable PAM authentication
Changed on 04/04/2004
ChallengeResponseAuthentication no

The default value allows authentication to go through the Pluggable Authentication
Modules mechanism. This could, in fact, override the authentication we chose to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 33

use (password-based) with another one. A similar motivation applies to the next
parameter:

Kerberos options
#KerberosAuthentication no
#KerberosOrLocalPasswd yes
#KerberosTicketCleanup yes

This controls whether the Kerberos protocol can be used to authenticate users. We
decided to dissociate the account used by supervisors to do their daily work
(authenticated through Kerberos), from the one they use to check logs on this
machine. They will also have a different one to manage Kerberos accounts (via a
different Kerberos instance). This way, if their daily account gets compromised, the
attacker will not be able to compromise the Kerberos database. If the Kerberos
admin account is compromised they will not be able to compromise the KDC.

We will then leave these parameters untouched.

Note that from a user perspective, this adds only the inconvenience of further
password to remember for the supervisors because even if we used Kerberos
authentication, ssh would re-authenticate users to establish the connection and
they would have to retype their Kerberos password. As said when describing the
Kerberos protocol, a kerberised application can still decide to re-authenticate the
client.

#X11Forwarding yes

Even though we did not install the X11 software, we disable forwarding for good
measure.

Changed on 04/04/2004
X11Forwarding no

We also want ssh to use the login and session limitations that we will define later
on:

#UseLogin no

Will become:

Changed on 04/04/2004
UseLogin yes

Finally, we also disable the sftp subsystem since we do not want someone to be
able to upload anything to the server. Thus the next parameter:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 34

override default of no subsystems
Subsystem sftp /usr/libexec/sftp-server

Will be changed to:

override default of no subsystems
Changed on 04/04/2004
#Subsystem sftp /usr/libexec/sftp-server

There is one more parameter we need to change, not listed in the default config:
“AllowTcpForwarding”. This controls the tunneling of connections over ssh and is
enabled by default. While a useful feature in certain cases, it could be used
maliciously to attack another hosts while disguising as the KDC.

We will turn it off by adding:

Added on 04/04/2004
AllowTcpForwarding no

5.3.5.4 Network Interface

We will now configure the network interface first by adding the lines below to
“/etc/rc.conf”:

ifconfig_lnc0="inet 192.168.1.5 netmask 255.255.255.0"
defaultrouter="192.168.1.1"
hostname="giac.sabbi.net"

then creating “/etc/resolv.conf” with the following content:

domain sabbi.net
nameserver 192.168.1.20

And finally adding the following to “/etc/hosts”:

192.168.1.5 giac.sabbi.net giac
192.168.1.5 giac.sabbi.net.

At the next reboot, the interface will be brought up.

5.3.5.5 Adding a user

Now that the networking is configured, we will reboot the host to make sure that
our network configuration is correct. After reboot the machine will be reachable via

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 35

ssh and we will be able to leave the console (usually located in an uncomfortable
location). Before that, though, we need to create a normal user account or we will
not be able to login. Remember that we have disabled direct root logins and root is
still the only interactive account in the host.

Below is the input sequence to create the account, with comments on interesting
points:

giac# adduser

Use option ``-silent'' if you don't want to see all warnings and questions.

Since it is the first time we create a user, the system asks questions in order to set
default parameters for user account creation.

Check /etc/shells

Check /etc/master.passwd

Check /etc/group

Usernames must match regular expression:

[^[a-z0-9_][a-z0-9_-]*$]: <enter>
Enter your default shell: csh date no sh tcsh [sh]: tcsh

Your default shell is: tcsh -> /bin/tcsh

Enter your default HOME partition: [/home]: <enter>

Copy dotfiles from: /usr/share/skel no [/usr/share/skel]: <enter>

Send message from file: /etc/adduser.message no

[/etc/adduser.message]: <enter>

Use passwords (y/n) [y]: <enter>

Write your changes to /etc/adduser.conf? (y/n) [n]: y

We confirm we want to make these the defaults for user creation. Now we can go
on and create the user:

Ok, let's go.

Don't worry about mistakes. I will give you the chance later to correct any input.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 36

Enter username [^[a-z0-9_][a-z0-9_-]*$]: roby

Enter full name []: Roberto Sabbi

Enter shell csh date no sh tcsh [tcsh]: <enter>

Enter home directory (full path) [/home/roby]: <enter>

Uid [1000]: <enter>

Enter login class: default []: <enter>

Login group roby [roby]: <enter>

Login group is ``roby''. Invite roby into other groups: guest no

[no]: wheel

We have included the user into the wheel group otherwise he will not be allowed to
“su” to root.

Enter password []: <hidden>

Enter password again []: <hidden>

Name: roby

Password: ********

Fullname: Roberto Sabbi

Uid: 1000

Gid: 1000 (roby)

Class:

Groups: roby wheel

HOME: /home/roby

Shell: /bin/tcsh

OK? (y/n) [y]: y

Added user ``roby''

Send message to ``roby'' and: no root second_mail_address [no]: <enter>

Roberto Sabbi,

your account ``roby'' was created.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 37

Have fun!

See also chpass(1), finger(1), passwd(1)

Add anything to default message (y/n) [n]: <enter>

Send message (y/n) [y]: n

Copy files from /usr/share/skel to /home/roby

Add another user? (y/n) [y]: n

Goodbye!

giac#

After rebooting the machine we login as the normal user created above and “su” to
root. We will start by checking once again if our configuration was successful and
then move into local services:

giac# netstat -na

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp4 0 0 192.168.1.5.22 192.168.1.100.1041 ESTABLISHED

tcp4 0 0 127.0.0.1.25 *.* LISTEN

tcp4 0 0 192.168.1.5.22 *.* LISTEN

Active UNIX domain sockets

Address Type Recv-Q Send-Q Inode Conn Refs Nextref Addr

d658fc80 stream 0 0 0 d658fd20 0 0

d658fd20 stream 0 0 0 d658fc80 0 0

d658fe60 dgram 0 0 0 d6569f00 0 d658ff00

d658ff00 dgram 0 0 0 d6569f00 0 0

d6569f00 dgram 0 0 d6563ac0 0 d658fe60 0 /var/run/log

giac#

The output confirms that sendmail is listening only locally on port 25 for IPv4, sshd
on 22 and syslogd in no longer listening. We can also see our ssh connection.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 38

5.3.5.6 Time Syncronisation

The typical time drift observed on another machine of the same model is in the
order of 5 seconds per day. Since later we will configure the securelevel to allow
only 1 second time correction, we need to adjust at least 5 times per day. We will
stay on the safe (but reasonable) side and adjust every hour.

The following entry will be put in the root crontab:

@hourly root /usr/sbin/ntpdate time.sabbi.net > /dev/null

We also need to set the timezone since the system clock will be running in
localtime:

giac# cp /usr/share/zoneinfo/Europe/Rome /etc/localtime

giac#

We have decided to run on local time rather than GMT to make life easier for the
users when checking logs.

5.3.5.7 Local Processes

It is time to turn off any unneeded local services, we will first list them:

giac# ps ax -o pid,user,command

 PID USER COMMAND

 0 root (swapper)

 1 root /sbin/init --

 2 root (taskqueue)

 3 root (pagedaemon)

 4 root (vmdaemon)

 5 root (bufdaemon)

 6 root (syncer)

 7 root (vnlru)

 73 root /usr/sbin/syslogd -ss

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 39

 81 root /usr/sbin/inetd -wW

 83 root /usr/sbin/cron

 85 root /usr/sbin/sshd

 88 root sendmail: accepting connections (sendmail)

 112 root sshd: roby [priv] (sshd)

 114 roby sshd: roby@ttyp0 (sshd)

 115 roby -tcsh (tcsh)

 117 root _su (csh)

 134 root ps ax -o pid,user,command

 104 root login [pam] (login)

 122 root -csh (csh)

 105 root /usr/libexec/getty Pc ttyv1

 106 root /usr/libexec/getty Pc ttyv2

 107 root /usr/libexec/getty Pc ttyv3

 108 root /usr/libexec/getty Pc ttyv4

 109 root /usr/libexec/getty Pc ttyv5

 110 root /usr/libexec/getty Pc ttyv6

 111 root /usr/libexec/getty Pc ttyv7

giac#

A first observation: the services inside round brackets are actually kernel tasks
(e.g. the syncer is the task that flushes the disk buffer).

The second thing to note is that, although not listening on any port, inetd is still
running. We will disable it by adding:

inetd_enable=”NO”

To “/etc/rc.conf”.

5.3.5.8 Console and accounts settings

In the output above we then notice that there are 7 virtual consoles running (the
“getty” processes). They are too many and we do not want someone operating on

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 40

the console forgetting a session logged in because he switched to another virtual
console. If the console freezes, there is still the option of connecting via the
network and viceversa. If this is not possible then the whole operating system is
frozen.

A further concern is the single user mode: with the present settings, no password is
asked. This means that having access to the console and the power button or
cable (thus not necessarily the chassis), yields root access. We will prevent that as
a complement to the physical measures already in place. Also we want to prevent
someone that has stolen the root password (and is not in the wheel group) to use
it. In other words, we want to prevent direct root login at the console even in multi-
user mode.

On a higher level, we want to make sure that every use of the root password,
passes from the envelope stored in the safe.

To summarise we replace the corresponding lines on the “/etc/ttys” file with the
ones below:

If console is marked "insecure", then init will ask for the root password

when going to single-user mode.

console none unknown off insecure

ttyv0 "/usr/libexec/getty Pc" cons25 on insecure

Virtual terminals

ttyv1 "/usr/libexec/getty Pc" cons25 off secure

ttyv2 "/usr/libexec/getty Pc" cons25 off secure

ttyv3 "/usr/libexec/getty Pc" cons25 off secure

ttyv4 "/usr/libexec/getty Pc" cons25 off secure

ttyv5 "/usr/libexec/getty Pc" cons25 off secure

ttyv6 "/usr/libexec/getty Pc" cons25 off secure

ttyv7 "/usr/libexec/getty Pc" cons25 off secure

ttyv8 "/usr/X11R6/bin/xdm -nodaemon" xterm off secure

We have turned off all virtual consoles except one, and marked it insecure together
with the single user mode.

We will now harden the login security parameters by editing the “default:” section in
“/etc/login.conf”. We enforce a minimum password length of 8 characters.
Remember that the most recurring logins will be those of the supervisors to check
logs.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 41

The first addition will be:

Changed on 04/04/2004

:login-backoff=5:\

After 3 unsuccessful login attempts, the system will introduce a delay after each
new login attempts. This is very useful to prevent password guessing activity.

:login-retries=5:\

We limit the number of wrong password typed in before returning to the login
prompt. Note that the two parameters described above are overridden by sshd
(they will be enforced at the console).

:sessiontime=1h:\

:warntime=5m:\

:sessionlimit=1:\

The supervisors normal activity will not require more than 1 session open for a
maximum of 1 hour. They will be warned 5 minutes before their session expires.

:autodelete=1w:\

:minpasswordlen=8:\

:passwordtime=90d:\

:warnexpire=1w:\

With the above settings, accounts will be automatically deleted after one week from
expiration if not re-activated. Passwords must have 8 characters minimum, must
be changed every 90 days and a warning will be given one week in advance.
These are reasonable settings for md5 passwords and take into account the
human factor: if we forced the supervisors (that also do normal CAD work) to
change more often, we would create the risk of having them write passwords.

This takes into account the fact that they will also have their normal Kerberos login
plus the administrative one. The “autodelete” feature, avoids having “zombie”
accounts in the host.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 42

:idletime=5:\

This parameter would be very useful since it would automatically logoff idle
sessions. Unfortunately the “login.conf” man page informs us that this parameter is
not enforced.

5.3.5.9 Filesystems

We will now try to enforce some measures to protect the integrity of the filesystems
by modifying the “/etc/fstab” mount options for the following entries:

/dev/ad0s1e /home ufs rw,nodev,noexec,nosymfollow

In our installation, home directories should not be used very much, preventing
device files from functioning, any executable from being run, and symlinks from
being followed. These are all opportunities for malicious activity.

/dev/ad0s1h /tmp ufs rw,nodev,noexec,nosymfollow

We only have one application running thus the temporary system directory will not
be used much, if at all.

/dev/ad0s1d /usr ufs rw,nodev

There is not much we can restrict on “/usr”, since most executables are located
there and symlinks are used, among other, for libraries. However, device files have
no purpose in there.

/dev/ad0s1f /var ufs rw,nodev,noexec,nosymfollow

Under “/var”, there should only be data and symlinks in our machine will not be
used.

/dev/ad0s1g /var/heimdal ufs rw,nodev,noexec,nosymfollow

The Heimdal directory is similar to the rest of the “/var” filesystem.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 43

/dev/acd0c /cdrom cd9660 ro,noauto,nosuid

We will use the cdrom for system updates, with a privileged account, therefore we
will disable suid so that when the disc will be mounted, unprivileged users will not
be able to run executables with more privilege then their own.

To confirm our settings we will reboot and verify:

giac# mount

/dev/ad0s1a on / (ufs, local)

/dev/ad0s1e on /home (ufs, local, nodev, noexec, nosymfollow, soft-updates)

/dev/ad0s1h on /tmp (ufs, local, nodev, noexec, nosymfollow, soft-updates)

/dev/ad0s1d on /usr (ufs, local, nodev, soft-updates)

/dev/ad0s1f on /var (ufs, local, nodev, noexec, nosymfollow, soft-updates)

/dev/ad0s1g on /var/heimdal (ufs, local, nodev, noexec, nosymfollow, soft-updates)

procfs on /proc (procfs, local)

giac#

5.3.5.10 Securelevel

These settings could be changed on the fly by root, by remounting the filesystems.
To prevent this from happening we have to use the “securelevel” feature. It is a
state on which certain kernel runtime parameters become unalterable even by root.
Only by modifying the “securelevel” settings and rebooting, the situation can be
modified.

We will use a value of 2 which prevents disc devices from being written. In other
words it prevents also unmounting and remounting them and using newfs. It also
prevents the time from being changed by more than one second. This is very
important in our case since validation of Kerberos tickets relies on accurate time
synchronisation. We will enable securelevel 2 by adding the following to
/etc/rc.conf:

kern_securelevel_enable="YES"

kern_securelevel="2"

Let us verify if the setup is effective (via ssh):

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 44

giac# mount -u –o rw /var/heimdal/

mount: not currently mounted /var/heimdal/

giac#

A word of caution: repeating the same command sequence directly from the
console still works (note the “/var/heimdal” entry below).

giac# mount -u –o rw /var/heimdal/

giac# mount

/dev/ad0s1a on / (ufs, local)

/dev/ad0s1e on /home (ufs, local, nodev, noexec, nosymfollow, soft-updates)

/dev/ad0s1h on /tmp (ufs, local, nodev, noexec, nosymfollow, soft-updates)

/dev/ad0s1d on /usr (ufs, local, nodev, soft-updates)

/dev/ad0s1f on /var (ufs, local, nodev, noexec, nosymfollow, soft-updates)

/dev/ad0s1g on /var/heimdal (ufs, local, soft-updates)

procfs on /proc (procfs, local)

giac#

Let us see if we can change the time by putting it back five minutes as if we were
trying a replay attack:

giac# date

Tue Apr 13 08:20:52 GMT 2004

giac# date 200404130815

Tue Apr 13 08:15:00 GMT 2004

giac# date

Tue Apr 13 08:21:40 GMT 2004

giac# dmesg

…

<Output omitted>

…

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 45

Time adjustment clamped to -1 second

giac#

This time repeating from the console yields the same result.

5.4 Software installation

5.4.1 Package build
We can proceed now to software installation. This host does not have access to
the Internet, so the installation can only be done from the laptop of the installer.
This computer is running the same version of FreeBSD and has “cvsup” installed. It
is the most practical way to update the FreeBSD sources. One of this source tree
is the ports source tree, a sophisticate system of scripts to compile software
automatically from sources.

Basically, by “cd”-ing into a port main directory and issuing a “make && make
install” the source code of the corresponding software is downloaded from the
Internet, patched for the FreeBSD platform (if needed) and installed on the system.
All dependencies are also recursively built using the same mechanism.

It is also possible to pass compile options along with those defined in the system-
wide” /etc/defaults/make.conf” or in the “/etc/make.conf”.

Note also that the integrity of the downloaded sources is verified by calculating an
md5 hash to be compared with the one pre-existing in the distinfo file located in the
port directory.

Alternatively by passing the “package” target to the make utility, the port is also
packaged in a “.tgz” file that can be installed in a system without ports and access
to the Internet.

On the laptop we will run the following:

cvsup –g –L 2 –h cvsup.fr.freebsd.org /usr/share/examples/cvsup/ports-supfile

After much output we will have the whole /usr/ports tree up-to-date to the latest
version.

We have said that we will use Cracklib support option for Heimdal. We will simply
include it by issuing:

frodo # cd /usr/ports/security/cracklib

frodo # make

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 46

frodo # make package

and then:

frodo # cd /usr/ports/security/heimdal

frodo # make –DWITH_CRACKLIB

frodo # make –DWITH_CRACKLIB package

In both cases we will see the sources downloading and building. In the end in each
port directory a “.tgz” package will be present.

5.4.2 Package Installation
We will now copy these packages on a directory on our server and install them:

giac # pkg_add cracklib-2.7_2.tgz

giac # pkg_add heimdal-0.6.1.tgz

giac# pkg_info

cracklib-2.7_2 Password-checking library

heimdal-0.6.1 A re-implementation of Kerberos V

giac#

The “pkg_info” utility, invoked with no options reports the installed packages.

5.4.3 Configuration
The two packages are installed so we can proceed to the Kerberos configuration.
There is no default Kerberos configuration file so we will create one:

[libdefaults]

 default_realm = SABBI.NET

 forwardable = yes

 krb4_get_tickets = no

[realms]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 47

 SABBI.NET = {

 kdc = giac.sabbi.net

 admin_server = giac.sabbi.net

 }

[logging]

 kdc = FILE:/var/log/kdc.log

 kadmind = FILE:/var/log/kadmind.log

 kpasswdd = FILE:/var/log/kpasswd.log

 default = FILE:/var/log/Kerberos.log

[kdc]

 enable-kerberos4 = no

 require-preauth = yes

 check-ticket-addresses = yes

 allow-null-ticket-addresses = no

 kdc_warn_pwexpire = 7d

[domain_realm]

 .sabbi.net = SABBI.NET

[kadmin]

 require-preauth = yes

[libdefaults]

Even the KDC needs to use Kerberos authentication for its operations so, like any
other client, it must know the default realm it should assume to belong to.

He will try to obtain “forwardable” tickets so they will be usable directly for
application authentication (subject to applications will).

No Kerberos IV tickets will be requested: since we have are setting up a realm
from scratch there is no need to support the previous version of the protocol . This
is because all client hosts support Kerberos v5.

[realms]

Again a section in common with clients, its purpose being the addresses of the
KDC and the Kadmin server (usually they are on the same machine). The Kadmin
service allows remote management of principals without having to interactively
login on the KDC.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 48

The Kpasswd service allowing users to change their password, if not specified it is
assumed to be co-located with the Kadmin service.

[logging]

The KDC logs will also be used to check temp workers presence and activity, and
regular change of password by the supervisors. Thus we want to have all the logs
centralised in 4 dedicated files.

[kdc]

Our KDC will not provide tickets to v4 clients. This may be needed in the future to
support some operating system. For now we avoid it since we would be giving out
tickets encrypted with the 56-bit single DES algorithm with a risk of brute force,
offline attack. Even to v5 hosts.

We will also mandate clients pre-authentication: by default Heimdal provides a
ticket to any client requesting it for a given principal. This can be used to mount an
offline attack. With the above setting an additional exchange is requested to the
client to prove its identity.

As said in the protocol description, IP addresses are part of the tickets. The last
two options make sure that only tickets with addresses are used and that those
addresses are the ones for which the ticket can be used. This option provides a
marginal security improvement since IP addresses can be faked and it is turned off
when NAT has to be traversed. In our case we operate on the same network.

We also give a warning to users when their password is about to expire.

[domain_realm]

Kerberos needs to map the realm to a DNS domain. By convention the realm is the
domain name all in uppercase. Beside an evident need to avoid confusion, it is
also useful when client are only partially configured: the Kerberos libraries can
figure out the realm from the domain.

[kadmin]

We obviously want to require pre-authentication for administrative connections too.

It has to be noted that no entries about realms or domains would be needed with
an appropriate DNS setup. In our case the choice was deliberately made to rely as
little as possible on network services.

5.4.4 Startup
Now we need to make the necessary in order to automatically startup the KDC.
The installation has copied the startup script in the “/usr/local/etc/rc.d/” directory.

We need to edit the sample kdc.sh.sample script.

One of `none', `master', or `slave'

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 49

KDC_ROLE=none

This will become:

KDC_ROLE=master

Next we will enable Cracklib support:

Uncomment to use CrackLib

#KPASSWDD_FLAGS="--check-library=${PREFIX}/lib/kpasswdd-cracklib.so"

As suggested we will uncomment the above line.

Apparently, either the Heimdal developers or the FreeBSD port maintainer do not
envisage the possibility of running a single KDC with no slave. Thus we need to
comment out the next line:

IPROPD_MASTER="${PREFIX}/libexec/ipropd-master"

In order to prevent “ipropd-master” from starting. This is the daemon responsible
for propagating the Kerberos database to the slave KDC.

For automatic startup we need to remove the “.sample” extension and to make the
script executable for both the owner and group.

The script does not start “kadmind” the remote administration daemon. This could
be due to the fact that it can be both run standalone or from “inetd”. We will go for
the first option, since the Heimdal info page advises against the inetd option. We
will then insert:

Changed on 04/04/2004

/usr/local/libexec/kadmind &

before the last “exit 0” statement, on the kdc.sh startup script.

As usual we will verify immediately with a reboot the effectiveness of our
configuration:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 50

giac# ps ax -o pid,user,command

 PID USER COMMAND

 0 root (swapper)

 1 root /sbin/init --

 2 root (taskqueue)

 3 root (pagedaemon)

 4 root (vmdaemon)

 5 root (bufdaemon)

 6 root (syncer)

 7 root (vnlru)

 28 root adjkerntz -i

 72 root /usr/sbin/syslogd -ss

 82 root /usr/sbin/cron

 84 root /usr/sbin/sshd

 87 root sendmail: accepting connections (sendmail)

 126 root sshd: roby@ttyp0 (sshd)

 128 roby -tcsh (tcsh)

 130 root _su (csh)

 132 root ps ax -o pid,user,command

 110 root login [pam] (login)

 111 roby -tcsh (tcsh)

 113 root _su (csh)

 103 root /usr/local/libexec/kdc

104 root /usr/local/libexec/kpasswdd --check-library=/usr/local/lib/kpasswdd-

giac#

As we were expecting both the “kdc and “kpasswdd” are running. We do not see
kpasswd since we run it with “inetd”. We need again “netstat”:

giac# netstat -a

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 51

tcp4 0 0 giac.ssh 192.168.1.100.1109 ESTABLISHED

tcp4 0 0 localhost.kerberos-sec *.* LISTEN

tcp4 0 0 giac.kerberos-sec *.* LISTEN

tcp6 0 0 localhost.kerberos *.* LISTEN

tcp4 0 0 *.kerberos-adm *.* LISTEN

tcp46 0 0 *.kerberos-adm *.* LISTEN

tcp4 0 0 localhost.smtp *.* LISTEN

tcp4 0 0 giac.ssh *.* LISTEN

udp4 0 0 localhost.kerberos-sec *.*

udp4 0 0 localhost.kpasswd5 *.*

udp6 0 0 localhost.kpasswd5 *.*

udp4 0 0 giac.kpasswd5 *.*

udp4 0 0 giac.kerberos-sec *.*

udp6 0 0 localhost.kerberos *.*

Active UNIX domain sockets

Address Type Recv-Q Send-Q Inode Conn Refs Nextref Addr

d6593e60 dgram 0 0 0 d656df00 0 d6593f00

d6593f00 dgram 0 0 0 d656df00 0 0

d656df00 dgram 0 0 d6568940 0 d6593e60 0 /var/run/log

giac#

Everything is running as expected.

There is just one more step needed in order to have proper passwords. We will
setup a symbolic link named /etc/krb5.dict pointing at /usr/share/dict/words.

According to the FreeBSD Handbook:

When setting up a krb5.dict file to prevent specific bad passwords from
being used (the manual page for kadmind covers this briefly), remember
that it only applies to principals that have a password policy assigned to
them6.

6 The FreeBSD Documentation Project. “The FreeBSD Handbook” System Documentation. URL:
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/book.html#KERBEROS5 (01 Apr.
2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 52

Unfortunately, the author has not found any documentation on how to set policies
for users.

We can now test our server by creating the master key and then the Kerberos
database:

giac# kstash

Master key:

Verifying - Master key:

kstash: writing key to `/var/heimdal/m-key'

giac#

The “kstash” command creates a key that will be used by Kerberos to
encrypt/decrypt the database. Being in the same directory it is clear that the
security provided against an attacker is relatively little. This, in fact it is aimed at
backups security, provided that the key is not stored in the same media.

Now we will initialise the database; this also gives us an opportunity to test the
“kadmin” service:

giac# kadmin -l

kadmin> init SABBI.NET

Realm max ticket life [unlimited]:8h

Realm max renewable ticket life [unlimited]:8h

kadmin>

We have set the default ticket life to the typical duration of a working day for the
supervisors. We also allow another 8 hours extension if the client renews the ticket
before its expiry, since sometime the temps work two shifts in a row. Note that this
does not lower security since a new ticket is issued on the trust of the current one.

kadmin> list *

 default@SABBI.NET

 kadmin/admin@SABBI.NET

 kadmin/hprop@SABBI.NET

 kadmin/changepw@SABBI.NET

 krbtgt/SABBI.NET@SABBI.NET

 changepw/kerberos@SABBI.NET

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 53

kadmin>

Here is a list of the principals needed by the KDC for the services it provides. We
will now be able to create a normal user, an admin user and a admin that will be
able to manage admins.

kadmin> add roby

Max ticket life [1 day]:8h

Max renewable life [1 week]:8h

Principal expiration time [never]:2004-05-01

Password expiration time [never]:2004-04-20

Attributes []:<enter>

roby@SABBI.NET's Password:

Verifying - roby@SABBI.NET's Password:

kadmin> add roby/admin

Max ticket life [1 day]:8h

Max renewable life [1 week]:8h

Principal expiration time [never]:2004-05-01

Password expiration time [never]:2004-04-20

Attributes []:<enter>

roby@SABBI.NET's Password:

Verifying - roby@SABBI.NET's Password:

kadmin> add roby2/admin

Max ticket life [1 day]:8h

Max renewable life [1 week]:8h

Principal expiration time [never]:2004-05-01

Password expiration time [never]:2004-04-20

Attributes []:<enter>

roby@SABBI.NET's Password:

Verifying - roby@SABBI.NET's Password:

kadmin> list *

 roby@SABBI.NET

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 54

 default@SABBI.NET

 roby/admin@SABBI.NET

 roby2/admin@SABBI.NET

 kadmin/admin@SABBI.NET

 kadmin/hprop@SABBI.NET

 kadmin/changepw@SABBI.NET

 krbtgt/SABBI.NET@SABBI.NET

 changepw/kerberos@SABBI.NET

kadmin>

The three users are created. Now we will setup the ACL file
(“/var/heimdal/kadmind.acl”).

giac# cat /var/heimdal/kadmind.acl

roby/admin@SABBI.NET all *

roby2/admin@SABBI.NET all */admin

giac#

This is an example of how the supervisors account will be setup. The principal
“roby/admin” is an example of a normal supervisor. He will be able to perform all
accounts modification but only on users without instance. The principal
“roby2/admin” will be able to manage “/admin” principals.

We will now try to acquire a ticket from another host:

frodo# kinit roby

roby@SABBI.NET's Password:

kinit: NOTICE: ticket renewable lifetime is 8 hours

frodo# klist

Credentials cache: FILE:/tmp/krb5cc_0

 Principal: roby@SABBI.NET

 Issued Expires Principal

Apr 13 17:52:51 Apr 14 01:52:51 krbtgt/SABBI.NET@SABBI.NET

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 55

frodo# ls -la /tmp/

total 8

drwxrwxrwt 3 root wheel 512 Apr 13 17:55 .

drwxr-xr-x 17 root wheel 512 Apr 8 12:24 ..

-rw------- 1 root wheel 451 Apr 13 17:55 krb5cc_0

frodo# kdestroy

Our KDC seems to work well. Now we will look at some kdc.log output:

frodo# cat kdc.log

2004-04-13T18:11:18 AS-REQ roby/admin@SABBI.NET from IPv4:192.168.1.5 for
kadmin/admin@SABBI.NET

2004-04-13T18:11:18 No PA-ENC-TIMESTAMP -- roby/admin@SABBI.NET

2004-04-13T18:11:18 sending 216 bytes to IPv4:192.168.1.5

2004-04-13T18:11:18 AS-REQ roby/admin@SABBI.NET from IPv4:192.168.1.5 for
kadmin/admin@SABBI.NET

2004-04-13T18:11:18 Looking for pa-data -- roby/admin@SABBI.NET

2004-04-13T18:11:18 Pre-authentication succeded -- roby/admin@SABBI.NET

2004-04-13T18:11:18 Using des3-cbc-sha1/des3-cbc-sha1

2004-04-13T18:11:18 sending 627 bytes to IPv4:192.168.1.5

frodo#

The AS-REQ entry is for Authentication Service Request. This is the TGT request.
The “PA-ENC-TIMESTAMP” shows that KDC effectively requires pre-
authentication (PA) and the negotiated encryption is triple des.

Now we will try changing a password into a 4 character one:

frodo# kinit roby

roby@SABBI.NET's Password:

frodo# kpasswd

roby@SABBI.NET's Password:

New password:

Verifying - New password:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 56

Soft error : it is too short

frodo#

Now we will use the word “electric”:

frodo# kpasswd roby

roby@SABBI.NET's Password:

New password:

Verifying - New password:

Soft error : it is based on a dictionary word

frodo#

Now a valid one:

frodo# kpasswd

roby@SABBI.NET's Password:

New password:

Verifying - New password:

Success : Password changed

frodo#

Cracklib seems to do its work. Below the corresponding “kpasswd.log” entries:

2004-04-13T18:24:17 Changing password for roby@SABBI.NET

2004-04-13T18:24:17 it is too short

2004-04-13T18:25:06 Changing password for roby@SABBI.NET

2004-04-13T18:25:06 it is based on a dictionary word

2004-04-13T18:28:07 Changing password for roby@SABBI.NET

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 57

6 Maintenance

6.1 Operating system update
FreeBSD features an automatic build process that allows rebuilding the system
from the source files.

Similarly to the software update process we will update the sources on the laptop:

frodo# cvsup –g –L 2 –h cvsup.fr.freebsd.org \
/usr/share/examples/cvsup/stable-supfile

Frodo# cd /usr/src

Frodo# make buildworld

Frodo# make buildkernel

Then we will copy the “/usr/obj” and the “/usr/src” directories on a cd that we will
mount on the KDC on the respective directories.

Giac# make installkernel

Reboot the KDC:

Giac# make installworld

Followed by another reboot.

6.2 Application update
The application patching process will consist in repeating the one used for the
installation. The only additional step will be to execute a “pkg_delete” prior to the
“pkg_add” of the new package.

6.3 Backups and redundant storage
The following script will be used to backup the Kerberos database. Note that the
master is not copied therefore the backup is encrypted.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 58

!/bin/sh

cd /root

cdcontrol -vf /dev/acd0c close

sleep 30

burncd -v -f /dev/acd0c -s 4 -e blank

sleep 30

cdcontrol -v -f /dev/acd0c close

rm /root/tmp/*

/usr/local/etc/rc.d/kdc.sh stop

cp /var/heimdal/heimdal.db /root/tmp/SC_heimdal.db

/usr/local/etc/rc.d/kdc.sh start

mkisofs -r -J -o /root/tmp

rm /root/tmp/*

sleep 30

burncd -v -f /dev/acd0c -s 4 -e data /root/bck.iso fixate

rm /root/bck.iso

7 Auditing
The verification of the system configuration was done during the installation. The only
configuration not thoroughly tested was the OpenSSH one although some of the
verifications were performed both on the console and via “ssh”. Thus, at least the accounts
parameters can be considered as valid.

8 List of references
The FreeBSD Release Engineering Team. “Early Adopter's Guide to FreeBSD
5.2.1-RELEASE”. 25 Feb. 2004. URL:
http://www.freebsd.org/releases/5.2.1R/early-adopter.html (09 Apr. 2004).

The FreeBSD Release Engineering Team. “FreeBSD Security Information”. 25
Feb. 2004. URL: http://www.freebsd.org/security/ (09 Apr. 2004).

Garman, Jason. Kerberos, The Definitive Guide. Sebastopol: O’Reilly &
Associates, Inc, August 2003.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running a Secure Kerberos Server on FreeBSD Page 59

Steiner, Neuman,Schiller. Kerberos:An Authentication Service for Open Network
System. 30 Mar. 1988. URL: http://www.pdc.kth.se/kth-krb/kerberos.ps (09 Apr.
2004)

Muffet, Alec. “CrackLib: A ProActive Password Sanity Library.” 14 Oct. 2003.URL:
http://www.crypticide.org/users/alecm/security/cracklib,2.7.txt (09 Apr. 2004)

The FreeBSD Documentation Project. “The FreeBSD Handbook” System
Documentation. URL: http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/book.html#KERBEROS5 (01 Apr. 2004)

Also, not directly referenced in the text but of great inspiration in getting started:

Patterson,D. Securing FreeBSD step by step. GCUX Practical (30 May 2003)

End of document

