
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org


©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Benjamin Eason
GCUX 2.0 Option 1
Submitted: May 2, 2004

OpenBSD “Escorting Firewall” Step by Step Guide

Abstract
This step by step guide will help you to both design and deploy your own

escorting firewall. An escorting firewall escorts remote access users on trusted
networks and revokes their authorization if they violate network security policies.
Many organizations allow remote access even without an effective means to
secure the network from remote access users. Combining a bridging firewall,
signature-based network attack detection, proactive policy compliance auditing,
vulnerability scanning, and dynamic response, it is this risk that the “escorting 
firewall” attempts to mitigate. 

Introduction

Written security policies at most organizations deem the act of connecting
foreign systems to the network as insecure. However, in the cases of user dial-in
and VPN remote access, those same policies permit such insecure actions.
Connecting foreign systems to networks for the purpose of remote user access is
a risk that managers commonly accept; in many cases it is the only way to
collaborate with traveling sales persons and field engineers. Combining a
bridging firewall, signature-based network attack detection, proactive policy
compliance auditing, vulnerability scanning, and dynamic response, it is this risk
that the “escorting firewall” attempts to mitigate. 

This step-by-step guide will help you to both design and deploy your own
escorting firewall. The difficulty in implementing the system as documented here
depends on the complexity of your security policies, network design, and
scripting skills. On most small networks, successful implementation of this
system will be easily attainable with very Spartan hardware and with limited
technical skills. If your remote access server is actually a Cisco PIX 500 series
firewall terminating IPSec tunnels, then you absolutely must read this guide.

What is an escorting firewall? The escorting firewall server proactively and
reactively enforces two different aspects of network policy: system configuration
compliance and acceptable network usage (these two network policies will be
repeatedly referenced throughout this paper). Imagine a bouncer at a nightclub
that lets people in if they are dressed properly, but kicks them out if they
misbehave. Similarly, this special purpose firewall dynamically blocks policy
violators from accessing the network. Why not call it a bouncer firewall? The
name escorting firewall sounds friendlier; you may call it whatever you like.

As network perimeters become increasingly porous and threats from
Internet worms and hackers increase, security administrators are forced to look
for creative ways to compensate for weaker perimeter security. Many



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

organizations have begun hardening internal workstations, deploying host based
firewalls, and implementing aggressive patch management systems. These are
necessary first steps to avoiding the beetle complex–hard on the outside, soft
and gooey on the inside. However, one area that has remained thorny for
security strategists is remote user access.

The business benefits of remote access for employees, executives, and
contractors are often very high. Administering these remote users and their
systems has however always been expensive. Often the connecting systems are
not owned by the company and may require configurations that aren’t normally 
supported by IT staff. Additionally, their hours of operation and physical locations
may further increase support costs. Not surprisingly, even as the cost benefit
analysis of attempting to support remote users is negative, the risk benefit
analysis of allowing this type of access is still positive and the business must
therefore choose to accept the risk.

For most organizations escorting firewalls should offer a positive cost
benefit method for reducing the risks associated with allowing remote user
access. Progressive and well-organized security departments might even be able
to offer a choice to remote access users; connect from a machine the business
has full administrative control over or be escorted while on the network.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Specification

The requirement is to create a mechanism that enforces the local network
configuration compliance and acceptable network usage policies for remote
access users. This specification defines a specific technical approach to meeting
this requirement.

The “escorting firewall” server is a mechanism to reduce the risk of 
allowing remote users, access to trusted networks. This specification is a high-
level description of the functioning of the server under different conditions;
specifically, it states what the server is allowed and not allowed to do. In addition
to the specification, this section of the practical will cover the design of the
server. Many assumptions have been made about the operating environment
and site policies. A note will be made where important design decisions are
introduced and based on assumptions that may not apply to your environment.

Where possible all descriptions will be environment neutral, however, if a`
section is difficult to follow, refer to the example network diagram in appendix A
as it may reveal an underlying assumption that hasn’t been clearly stated. As 
shown in the diagram, the escorting firewall bridges the link between the remote
access server and rest of the trusted network. If complete transparency is
desired, the Nessus daemon can run on a separate system and a third network
interface may be used to connect the escorting firewall to an administration
network. Look at the second network diagram in appendix A for an example.
(This creates transparency because the escorting firewall can be configured
without an IP address on all but the special network interface that connects it to
the Nessus daemon. The Nessus server then performs scans against new users
when they connect and the users only see the IP address of the Nessus server.)

Please note that the escorting firewall does not ever authenticate or
authorize any user or system to perform an action. In this design, the escorting
firewall is positioned behind a router or remote access server that is responsible
for ensuring the authenticity and authorization of the traffic that it passes to the
network. The escorting firewall merely attempts to detect policy violations (the
aforementioned, configuration compliance and acceptable network usage
policies) and respond by locking out the policy violators -- effectively revoking
authorization. This is not a remote access solution; it is a remote access
supplement.

This server performs operations based on four conditions:
1. When no users are connected
2. When users are connected
3. When a new user connects
4. When a user violates policy

Conditions 1 & 2:
When users are and are not connected the server will:

1. Scan all network traffic and check for policy violations



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. Wait for new users to connect
3. Bridge two network segments, allowing authorized traffic between them
4. Update the revoked user authorization list

Condition 3:
When new users connect the server will:

1. Verify that the user has not had its authorization to access the network
revoked

2. Scan the system of the connecting user for policy violations

Condition 4:
When a user violates policy the server will:

1. Add the user to revoked user authorization list with the time of policy
violation

2. Drop that user’s traffic 
3. Inform administration of the policy violation

Conditions All:
At no time will the server perform the following operations:

1. Bridge traffic for a user with revoked authorization
2. Permanently revoke a user’s authorization to connect
3. Drop traffic for a user not in the revoked authorization list

In order to satisfy the specifications of the server, the server has been
designed with the following components:

Hardware
Dell PowerEdge 600SC with 1.8 GHz Intel Celeron Processor
128MB RAM
40GB IDE HDD
1 additional 10/100 Intel Ethernet Controller (1 already on the motherboard)

This system assumes a low-traffic network. More CPU and RAM may be needed
depending on use and security policy; less may work also. Depending on the
configuration of the signature based scanning tools, disk performance usually
limits the sustained maximum throughput before processors fail to keep up.
However, testing showed that memory consumption attacks caused CPU
utilization to reach levels so high that all traffic bridging stopped and even the
local console became effectively unresponsive. Fortunately, to the best of the
testing measurements ability to determine, the blocking functions continued to
perform correctly up to the point when all network traffic stopped. Though risk
mitigation will be covered in the next section, lightweight hardware is acceptable
for fulfilling most of the specifications of this server. Faster and more robust
memory, disk, and network configurations will increase the server’s ability to 
withstand denial of service attacks, thus enabling it to fulfill its specified
requirement to always bridge authorized traffic.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Software
OpenBSD version 3.5 (snapshot) http://www.openbsd.org
SNORT 2.0.0 (build 72) http://www.snort.org
NESSUS 2.0.10 for OpenBSD http://www.nessus.org
Custom scripts based on Snort2pf 3.2.

OpenBSD was chosen over other free operating systems for several reasons:
1. OpenBSD has a proven track record for security
2. OpenBSD provides kernel level support for the excellent pf firewall
3. OpenBSD has recently implemented several stack protection techniques

to mitigate the risks of buffer overflows
4. OpenBSD has lower hardware requirements when compared to most

popular Linux distributions
5. OpenBSD in this 3.5 release has implemented CARP, the Common

Address Redundancy Protocol, which creates the potential for fault-
tolerant escorting firewalls!

6. As opposed to other Unix-like operating systems it is completely free.

Snort was chosen because it is the definitive attack detection engine. It is
licensed under the GPL and is therefore mostly free.

Nessus was chosen because it is a very robust vulnerability-scanning tool, is
highly configurable, has a large user community, and also because it is GPL
licensed. The Nessus client server design also adds the ability of the escorting
firewall to be invisible to the systems it bridges as it can send scan requests out
to a different system running the Nessus server on a third network interface. The
design of the system in this step by step does not however rely on a second
system running the Nessus daemon and as such, will not be invisible to the
remote access users.

Snort2pf is a PERL script that monitors the snort alert file and dynamically adds
block statements, using an anchor in the pf config file, for hosts that Snort
detects are attacking the network. Snort2pf has an amnesty feature that removes
the blocks after a configurable amount of time, default of three minutes. Snort2pf
is really well written but lacks some important features that other similar tools
have implemented. The first glaring feature omission is that it has no support for
white lists -- lists of addresses or networks that should never get blocked. White
lists are important because they prevent malicious users from launching denial of
service attacks using network address spoofing. Additionally, as its name
suggests, it only supports the pf firewall.

Before deploying the exact escorting firewall described here, look at using
SnortSam, www.snortsam.net, as it features a client server design and an
impressive list of supported firewalls.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network Services
Inspects, filters, and passes traffic across interfaces in a bridging firewall
capacity.
Syslog (514/udp)*
OpenSSH (22/tcp)*

*Access to these ports will be restricted to certain designated hosts. It is possible
that neither of these services will be required in your environment. OpenSSH
exists solely for remote administration and syslog is only used in this example to
receive messages from the remote access server when new users connect. In
your setup, you might choose to use SNMP or even pf to detect when new users
connect. Don’t limit your imagination to the technique that this guide uses. 
Though the focus so far has been on reducing the risks of allowing remote user
access, technically the design could almost as easily be used to secure wireless
access points, and publicly accessible Ethernet drops. From a technical point of
view you are designing a simple automated system that enforces network
security policies.

User Management
Other than the normal user accounts created for any administrators that are
responsible for the management of the system, no other user accounts are
needed. Technically Nessus requires that a user account be created but this is
not an actual shell account; Nessus maintains its own user database.
Additionally, as long as the Nessus daemon is running on the escorting firewall
itself, then it is possible to bind it to the loopback interface–further reducing its
significance.

Risk Mitigation Plan

A good risk mitigation plan is one that defines controls and procedures
that are proportionate to the risks they mitigate. Just as you must weigh the costs
of deploying and maintaining this server against the risk of leaving remote access
users unchaperoned, you must also weigh the costs of each configuration
decision against the risk that it reduces. Developing models to aid in practically
and accurately determining risk in information technology environments is the
subject of many dissertations. Regardless of the method you chose to analyze
your risk, you will at some point have to identify what assets you have, the
threats they face, the potential costs if those threats are realized, and the
likelihood that they will be. It is this measurement that determines appropriate
response. In the absence of sufficient data or human resources to accurately
make this measurement, industry accepted standards and best practices should
be used to determine response. The following risk mitigation plan is based on
both best practices and generalizations about the threats, costs, and likelihood of
certain attacks.

Fortunately, the net cost of risks from partial compromises, including
avoiding detection of system configuration compliance and acceptable network



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

usage policy violations, are only the investment and opportunity costs of
deploying and maintaining this system less the positive value added with each
successful policy violation detection and response. Ideally, the costs of deploying
and maintaining this system will be so low that if the system only stops one
malicious attack or prevents one destructive worm outbreak on your trusted
network, it will have paid for itself. However, depending on your configuration, in
the worst-case scenario, total compromise of this machine allows an attacker to
more easily find vulnerabilities in other systems, disrupt remote user access,
monitor the traffic of other users, and distract security administrators from other
tasks. Depending on your assessment of the costs and likelihood of total system
compromise, these additional risks introduced by this system may or may not be
a significant concern for your organization.

What are the sources of threats? The escorting firewall has only two main
sources of threats, malicious attackers and Internet worms. Internet worms are a
special case threat source and will be discussed later. Because the purpose of
the escorting firewall is to prevent attackers from accessing the trusted network,
malicious users already on the trusted network will be ignored as sources of
threats. Though malicious users on the trusted network may very well attack the
system out of malice, ignorance, or to abet an outside attacker, their mere
existence implies a partial compromise.

Your escorting firewall implicitly already has some level of protection
because it is positioned behind your remote access server that should only be
allowing network access to presumably trustworthy authorized and authenticated
users. From this you can already infer quite a lot about your attacker. First and
obviously, they either fully compromised the remote access server or they
already have at least one set of valid credentials, legitimately or not. Second,
your attacker is probably highly motivated. Third, there is a good chance that
they have probed other systems and people and know a lot about the design of
the network and the location of their ultimate targets. In summary, you face a low
probability of a highly motivated, well-informed, well-equipped attacker reaching
the escorting firewall with goals of compromising one or more high-value targets
on the trusted network; plan accordingly.

Skilled attackers are excited by security systems that implement
automated response. The attackers like them because they create an opportunity
to be used against the systems they are designed to protect. In addition to the
inherent risks associated with automated response, sensitive information might
be stored in logs and configurations that could aid the attacker in attempts to
compromise other network resources. The keys to mitigating the risks associated
with a compromise of this system are to reduce its threat surface with system
hardening and to minimize its known vulnerabilities with aggressive patch
management. These two keys will be repeatedly referenced throughout this
paper.

For a weak force to succeed in asymmetric warfare it must find ways to
use the stronger opponents advantages against them; your opponent will try to
use this system against you. However, even accounting for its inherent
attractiveness, your escorting firewall will be a high-cost, medium-low reward



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

target for an attacker. If an attacker fails to find an easily exploitable vulnerability
quickly it will try to go around this system rather than through it. Nevertheless, it
is necessary to assess the specific threats posed by full and partial compromises
of your escorting firewall that is not only an automated response system but also
a critical network link, bridging remote access users to your trusted network.

The obvious threat is from an attacker using the system in a denial of
service attack by tricking the system into restricting access to legitimate network
resources. A common example of this is an attacker spoofing attack packets
originating from DNS servers. A poorly designed or configured automated
response system might incorrectly block access to the DNS servers likely having
the effect of bringing everything from E-mail and web surfing to database and
network file access to a halt. Depending on your setup, printing might even be
dependent on DNS. And this is supposed to reduce my risk? Fortunately you’ll 
configure the aforementioned “white lists” that inform the escorting firewall which 
hosts are never allowed to be blocked.

Another important threat stems from the Nessus vulnerability scanner.
Ironically, Nessus is one of the many security tools that are ideally suited for both
attackers and defenders. Attackers will attempt to use your Nessus scanner to
assist their selection of subsequent targets on your network. As security auditors
and administrators, you must use it to find vulnerable network systems that need
software updates. Whether the existence of these tools has ultimately helped or
hurt security overall, the fact they do exist dictates that you use them. It is
essential that you know your network and your systems better than the attackers
targeting them. You will mitigate the risk of attackers using your Nessus daemon
against you in three ways.

First, restrict network access to the Nessus daemon itself. If you are
running the daemon on the same system as the client, bind the daemon to the
loopback adaptor. If you choose to run the daemon on a different system, use
both the Nessus rules file and a host-based firewall to restrict access to only
those systems from which authorized Nessus users are authorized to initiate
scans. Also, depending on your security policy you might wish change the default
TCP port Nessus listens on to something other than the default. There are good
management based arguments for leaving daemons on their default ports, and
they are usually augmented with a clichéd statement, “no security through 
obscurity.” Still, the argument for it is the other buzzword security strategy, 
defense-in-depth.

Secondly, limit the abuse potential of Nessus. Nessus allows you to
specify in its rules file, which target hosts and networks to permit and which to
deny. Additionally, require strong passwords for your Nessus users–remember,
it maintains a user account database completely independent of the local shell
accounts that exist on the server. You should already have security policies that
dictate correct password usage, follow them.

Thirdly, remember to protect the result files that Nessus generates. If you
use the tool regularly but are sloppy about handling the results files, your attacker
won’t even need to make any noise by running the scans because you will have 
already done it for her. Also, remember that if you create cron jobs that run scans



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

automatically and E-mail you the results, make sure those messages aren’t sent 
in cleartext on the wire.

Nessus introduces two other risks in addition to its potential for abuse,
compromise and denial of service. Though the virtues of aggressive patch
management are stressed later, it is especially critical for both Nessus and Snort.
Each time an attacker connects with an unblocked user account he will
automatically get scanned by Nessus. If the Nessus engine is found to expose an
unchecked buffer or other vulnerability that can lead to compromise by the hosts
it scans, an equipped attacker will have root. Though this author has not tested it,
it may be possible for an attacker to create a denial of service attack against the
escorting firewall and potentially access for all remote users by using a tool such
as LaBrea to tie up the scanner. While this would without doubt prevent a
successful scan for configuration compliance, it would only tie up one process as
your scripts will spawn a separate client for each connecting host and the
daemon is designed to fork a new process for each scan request as well. Also
remember that Snort is still looking for attacks and OpenBSD has a very robust
TCP/IP stack that was designed to handle abuse well.

Avoiding detection is a high priority for the attacker. Because of this there
is a risk from the potential that an attacker might attempt to gain access to Snort.
Careful attackers will first attempt to identify your ruleset such that they can avoid
attacks that they know will be identified. If their attack requires actions that will be
identified, their next step will be to manipulate Snort itself by either modifying its
rules file to ignore their actions or by modifying its alert file to hide their activities.
It is not likely that the attacker will outright disable Snort as doing so would draw
the attention of the log monitors. Of course if they can tell from profiling network
traffic that no one actually checks the logs, you have probably already lost.

Other than the remarkable protections afforded by basic OpenBSD system
hardening and patch management, this practical will not detail ways to mitigate
the risks of log manipulation. Strategies you might wish to use however include
regularly refreshing the Snort rules database, backing up your log files to a
remote system, running a secure file monitoring application such as tripwire, and
injecting artificial alerts in an attempt to catch an attacker indiscriminately
deleting log entries using ranges of time. Implementing tripwire is a good idea for
one other important reason -- change management. It is very difficult to maintain
good security without being organized.

An important organizational responsibility that security staff should
impress upon the network and server administrators is that they keep detailed
logs explaining what, when, and why changes are made. Please note that
Tripwire is not a change management system. Tripwire provides the ability to
efficiently and effectively audit your change management system whether it is
trouble-ticket based or version control oriented, simply by recording changes to
the files you configure it to watch. Again, you should already have written security
policies and procedures that define change management for your organization.
While, Tripwire isn’t configured in this practical, using OpenBSD’s/etc/changelist
file and /etc/security script will provide a rudimentary form of this functionality. In
many cases, the OpenBSD system is more than sufficient for this task. However,



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the OpenBSD system lacks most of the security features that make the
commercial Tripwire system the de facto standard tool for this purpose.

As stated earlier, this risk mitigation plan relies on two basic strategies:
reducing the server’s threat surface and minimizing known vulnerabilities with 
aggressive patch management. Keeping Snort, Nessus, and OpenBSD patched
are critical to preventing system compromise. On Friday March 19, 2004 at 8:45
pm PST a destructive worm named Witty, efficiently infected a relatively small
population of Internet connected systems running vulnerable firewalls just one
day after the vulnerability announcement. Almost all of the vulnerable systems
had been compromised within 45 minutes. This is a great time to reassess your
vulnerability management strategy and your patch management procedures.

Before Witty it was reasonable to wait a week or longer to patch
moderately obscure Internet connected daemons with publicly documented
vulnerabilities. A week gave enough time for patch testing and an opportunity to
bring down the servers during regularly scheduled maintenance windows. At this
point, patches lead to more vulnerability related downtime than attackers’ 
exploits. Usually however, problems relating to bad patches can be resolved
relatively quickly or rolled back. Best practices dictate that all incidents involving
remote vulnerability exploitation require an investigation, rebuild, and restore of
the affected system. In many cases, if it is not detected quickly, it might not even
be possible to determine the original vulnerability that allowed the intrusion or to
accurately assess exactly which assets were compromised. Again, risk is
unavoidable. However, if you are the person held accountable when a major
incident occurs, remember that after Witty–while it may not be cost
advantageous–it might be considered reasonable to deploy patches for critical
and exposed systems within a time frame as short as two to eight hours. Do
yourself a favor and remind your management in writing of the costs and risks
associated with your patch management policies and procedures.

One of the reasons for implementing an escorting firewall is to prevent the
systems of authorized remote access users from spreading Internet worms to the
systems behind your firewall on your trusted network. Keeping your Snort rules
current up to the minute, possibly by subscribing to the Snort rules mailing, is an
essential part of keeping you escorting firewall significant. The other escorting
firewall configuration to limit the spread of Internet worms to your trusted network
is pf. Just because you let your remote access users have an IP address on your
LAN does not mean that you have to give them all of the layer four through seven
opportunities that come with it. Identify what kinds of access the remote users will
need, permit it, but then use a default deny to prevent all other types of traffic.
Would you not hate it if the next Internet worm, based on a vulnerability in
Microsoft’s Universal Plug and Play port, made it to your network before you had 
the Snort rule for it?

Also, remember the significance of that hardware. It is amazing that a
system that does this much can work so well 99.99% of the time on junk
hardware too slow to run turn of the millennia version of Microsoft Office.
However, when a determined attacker finds your escorting firewall in the path to
its target, you are now dealing with the .01% of the time. Start off with the



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

hardware available, but remember that more network interfaces, RAM, and faster
disks will be needed when the expert cracker finds you.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Steps to Install and Harden the Server

Installing OpenBSD can be very simple; it can also be very difficult.
OpenBSD has a very good FAQ and its man pages have a very strong
reputation. One thing that OpenBSD does not have, that can be quite crippling, is
a publicly active user community filled with zealots that are willing to do whatever
is needed to make it work for you. In fact, the OpenBSD community’s reputation 
for brash arrogance and a general lack of concern with whether anyone uses
OpenBSD or not, far exceeds the reputation of its thorough man pages. If you try
to install OpenBSD and have hardware problems, or software you like has issues
compiling or running, finding help may be difficult and while others will not -- this
author probably cannot, help you. OpenBSD was not selected for its ease of
installation but rather for its security and ease of management once the wrinkles
of setup have been conquered.

Setting up your escorting firewall server -- summary of steps:

Step 0: Assess your network, site policies, procedures, and government
laws. Compile all relevant information and have it available; many of the
configurations made in steps 1 through 8 will require customization for your
particular environment. Running Snort monitors and logs network traffic, it might
not be legal to do so where you live, or it may require notifying your users.
Nessus scans will likely register as attacks on the systems of the users you are
targeting, this may be illegal and if improperly configured are quite likely to crash
the systems you are scanning. Super DMCA states such as Illinois, Florida,
Arkansas, Delaware, and Pennsylvania
(http://www.eff.org/IP/DMCA/states/#affectedstates) have laws that probably
make some of these actions illegal for anyone living in them. Getting legal advice
before setting up this system is a terrific idea.

Step 1: Creating bootable CD-ROMs for installation.
Step 2: Configuring the installation environment, filesystem, base

packages, and installing.
Step 3: Post install tasks, including user setup, basic hardening, and patch

installation.
Step 4: Configuring the system for the network including configuring pf.
Step 5: Installing Snort, Nessus, and PERL scripts.
Step 6: Configuring Snort.
Step 7: Configuring Nessus and the PERL scripts.
Step 8: Verifying the correctness of the design and auditing the system.

Step 1
Unlike many other popular UNIX-like operating systems, OpenBSD does

not provide CD-ROM ISO image download files. Instead, if you are in the US, for
$40 USD plus shipping from Canada, you may purchase a CD-ROM set and
have it mailed to you, or alternatively you can download the files for your
system’s architecture and possibly create your own bootable CD-ROM.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

If you download the files, be sure to check the MD5 sums before burning
your CDs. Best practices dictate that you get the MD5 sums from a site other
than the one you downloaded your files from. By the time you read this, after May
1, 2004, OpenBSD 3.5 will have been released.

The OpenBSD project releases new versions every six months. Because
of the proximity to the 3.5 release date this guide has been written using multiple
development snapshots of OpenBSD 3.5. As there have been no changes during
the last month that have impacted the steps outlined in this guide, hopefully
nothing will change in the final release that prevents successful installation using
only these steps. If you want to support great security and you haven’t used 
OpenBSD much in the past, you should consider buying a CD-ROM set as they
are quite useful. If you have used OpenBSD in the past then you probably
already have a ton their tee shirts, posters, and stickers and can manage to put
together your own CD sets easily. Here is what the OpenBSD website has to say
about its CD-ROMs:

 Three CDROMs in a jewel case.
 The complete install components for SIX architectures: i386, vax, amd64, macppc,

sparc, sparc64.
 The following architectures only available via FTP download: alpha, hppa, hp300,

mvme68k, mvme88k, mac68k, cats.
 The CDs are bootable on i386, amd64, macppc, sparc, and sparc64.
 A funky and surprisingly artistic CD insert sheet which contains installation instructions.

The information on this piece of paper makes OpenBSD somewhat easier to install than if
you do an FTP install.

 A full source tree (ready for AnonCVS use).
 The latest reliable XFree86 binaries for all architectures
 The latest XFree86 source code with small modifications by us to make it prettier and

more secure.
 Our own ports tree which has improved an insane amount since OpenBSD 3.4. Almost all

packages work on almost all architectures.
 Several pre-built binary packages for the most common architectures, which are very

easy to install directly off the CDROM.
 As always, stickers included!
 And many other things...

Creating bootable CD-ROMs for the i386 platform isn’t terribly difficult if 
you have the following tools: a fast Internet connection, 600MB of free disk
space, a device capable of writing CD-ROMs, and a program such as Ahead’s 
Nero that is capable of creating bootable CD images using 2.88 MB floppy-disk
emulation. A list of methods and mirrors for downloading OpenBSD is available
at: http://www.openbsd.org/ftp.html. Using whichever method is most convenient
for you get at least your platform’s base, packages and tools directories. If you 
are in the US near Boulder, Colorado and have an i386 machine you might want
to do the following:

Create a directory called 3.5 on your computer.
In it, download the i386 directory found at:

ftp://ftp3.usa.openbsd.org/pub/OpenBSD/3.5/
In the local 3.5 directory create an additional directory called packages.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In it, download the i386 directory found at:
ftp://ftp3.usa.openbsd.org/pub/OpenBSD/3.5/packages/

Back in the local 3.5 directory, download the tools directory found at:
ftp://ftp3.usa.openbsd.org/pub/OpenBSD/3.5/

And if you area fan of the ports system, you’ll want to get the ports tree, 
found at: ftp://ftp3.usa.openbsd.org/pub/OpenBSD/3.5/ports.tar.gz

Once the above are copied, download the MD5 sums from at least one
additional mirror and the main OpenBSD site itself. After ensuring the MD5 sums
you are using match the md5 sums on the other servers, compute your own md5
sums and compare with the servers. As long as everything matches it is
reasonable to assume that the files have not been altered since they were
posted. If anything doesn’t match, investigate and pending nothing was corrupted 
during transfer, inform Theo de Raadt of the problem: deraadt@openbsd.org.

If you use Ahead’s Nero software to write CD-ROMs, start a “new 
compilation,” selecting “CD-ROM (Boot)” to set the defaults. Under the boot tab 
of the compilation configuration screen, select image file. The image file you want
to use is in the 3.5/i386 directory that you just downloaded and is named
cdrom35.fs, be sure to select “2.88MB Floppy Emulation.” To prevent 
compatibility and installation problems, try not to use any features that are not
strictly supported by the basic ISO9660 standard. Add the 3.5 directory to new
compilation but remove the file bsd.rd from the 3.5/i386 directory. The bsd.rd file
is the kernel for embedded systems and failing to remove it from the CD-ROM
will make selecting your base sets very annoying. At this point cross your fingers
and start writing the CD.

Step 2
With the system disconnected from the network, boot off of your new

OpenBSD CD-ROM. The first installation task that will have a bearing on security
is the configuration of OpenBSD partitions. OpenBSD’s featureless fdisk utility is
not one of the operating system’s greatest strengths. Before continuing, you 
need to ensure that you are familiar with OpenBSD’s partitioning lexicon and 
peculiarities. From the OpenBSD FAQ at
http://www.openbsd.org/faq/faq4.html#Disks:

4.5.2 - Setting up disks
Setting up disks in OpenBSD varies a bit between platforms. For i386 and macppc, disk

setup is done in two stages. First, the OpenBSD slice of the hard disk is defined using fdisk(8),
then that slice is subdivided into OpenBSD partitions using disklabel(8).

Some users may be a little confused by the terminology used here. It will appear we are
using the word "partition" in two different ways. This observation is correct. There are two layers
of partitioning in several OpenBSD platforms, the first, one could consider the Operating System
partitioning, which is how multiple OSs on one computer mark out their own space on the disk,
and the second one is how the OpenBSD partition is sub-partitioned into individual filesystems.
The first layer is visible as a disk partition to DOS, Windows, and any other OS that can coexist
with other Operating Systems on the IBM AT descended machines. The second layer of
partitioning is visible only to OpenBSD and those OSs which can directly read an OpenBSD
filesystem.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In OpenBSD’s defense, the term partition when applied to computer hard 
disks has no clear specific meaning; just look at Google’s definition search for the 
word partition: http://www.google.com/search?q=define:partition. From this point
forward, ‘slice’ refers to the A6 OpenBSD primary partition and ‘partition’ refers to 
any sub-partition of an OpenBSD slice that are used to store its filesystems and
swap space.

The Dell Poweredge servers come with a handy maintenance partition
that you might not want to delete. Unfortunately, OpenBSD’s fdisk utility is the 
most user-unfriendly disk preparation tool this author has ever used. The easiest
situation is when you can give the entire disk to OpenBSD. If, as in this case, you
have a Dell utility partition you want to keep, hopefully this fdisk output will help.

# /sbin/fdisk wd0
Disk: wd0 geometry: 4863/255/63 [78124095 Sectors]
Offset: 0 Signature: 0xAA55

Starting Ending LBA Info:
#: id C H S - C H S [ start: size ]
------------------------------------------------------------------------
0: DE 0 1 1 - 6 254 63 [ 63: 112392 ] Dell Maint
*1: A6 7 0 1 - 4862 254 63 [ 112455: 78011640 ] OpenBSD
2: 00 0 0 0 - 0 0 0 [ 0: 0 ] unused
3: 00 0 0 0 - 0 0 0 [ 0: 0 ] unused

There really should not be any reason why you would want to load other
operating systems on a production escorting firewall. If however you just want to
mess around, these sites may help you with the trickiness that is multi-booting
OpenBSD and anything else:

 http://www.gainesville2600.org/stuff/obsd_linux_win2k_howto.htm
 http://geodsoft.com/howto/dualboot/
 http://www.openbsd.org/faq/faq4.html#Disks

The installer recommends that you at least create separate partitions for /,
swap, /tmp, /var, /usr, and /home. Later you might want to mount both / and /usr
read-only in an attempt to defeat malicious code and the lesser skilled attackers
that rely on it. Nodev, noexec and nosuid mount options will also be applied to
certain partitions. The trickiest partition is /var as it will store logs and backups
and will certainly be targeted for attack.

Giving /var its own partition will allow your system to be more fault-tolerant
against log flooding via Snort and syslog as well as other disk consumption
attacks. However, given the role of this system it might be preferable to have the
system halt because the automated blocking functionality of this system is
dependent on reading new messages out of the log files on /var. The distinction
here is between failing open and failing closed. If this were a network database
or file server you would not want a crash to occur that could corrupt important
data, you would want the system to fail open for this kind of attack. The escorting
firewall server’s primary purpose is to enforce network policy, which it can no 
longer do effectively when /var goes down. Nevertheless, this author
recommends creating a separate partition for /var and implementing procedures
for monitoring its disk usage.

Format all partitions using the OpenBSD filesystem except swap, which
performs better without the overhead of a filesystem. The following are partition



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

recommendations for servers, such as the escorting firewall, that that do not
need to provide much space for normal users:
Device
Name

Mount
Point

Minimum
Size

Max needed Special Mount
Options

Role

wd0a / 60MB 1GB -ur (Read-Only) Stores /, /bin,
/boot, /bsd,
/dev, /etc, /mnt,
/root, /sbin,
/stand, /sys

wd0b swap Equal to
RAM

Twice RAM Serves as
slower primary
storage

wd0d /tmp 120MB 35% if used for
full backups

-uw -o nodev, nosuid,
noexec

Stores
temporary files
of some
programs
including ports
compiler and
also for backups

wd0e /usr 500MB 10% -ur -o nodev Stores
applications and
scripts

wd0f /home 100MB 2GB -uw -o nodev, nosuid Individual profile
and file storage

wd0g /var 4GB Remaining or
50%

-uw -o nodev, nosuid,
noexec

Stores logs and
backups

# disklabel /dev/wd0c
# using MBR partition 1: type A6 off 112455 (0x1b747) size 78011640 (0x4a65cf8)
# /dev/wd0c:
type: ESDI
disk: ESDI/IDE disk
label: IC35L040AVVA07-0
flags:
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 16383
total sectors: 78125000
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

16 partitions:
# size offset fstype [fsize bsize cpg]
a: 163737 112455 4.2BSD 2048 16384 162 # (Cyl. 111*- 273)
b: 614880 276192 swap # (Cyl. 274 - 883)
c: 78125000 0 unused 0 0 # (Cyl. 0 - 77504*)
d: 1228752 891072 4.2BSD 2048 16384 328 # (Cyl. 884 - 2102)
e: 6291936 2119824 4.2BSD 2048 16384 328 # (Cyl. 2103 - 8344)
g: 8388576 8411760 4.2BSD 2048 16384 328 # (Cyl. 8345 - 16666)
h: 61323759 16800336 4.2BSD 2048 16384 328 # (Cyl. 16667 - 77504*)
i: 112392 63 unknown # (Cyl. 0*- 111*)

Do not try to setup the special mount options until after the install is
complete and the system reaches a stable state. Once the file systems have
been formatted you’ll be asked for a hostname and then asked if you wish to 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

configure the network. Do not configure the network at this time. Next you will
need to create a password for the root account. Follow your organization’s 
password policy and attempt to exceed its minimum requirements. If you do not
already have a password policy, pick a password that is at minimum eight
characters and contains mixed case, punctuation, and numerals. If you prefer
something easier to remember but more difficult to type, choose an easy to
remember passphrase that exceeds twenty characters but may be all lowercase
and not contain any punctuation or numerals. The latter is actually more secure
for three reasons: 1) 95^8 is way less than 26^20, 2) easier to remember
passwords are less likely to be written down and lost, 3) it is less likely to be
reused to protect other systems because most systems will not support 20
character long passwords.

The password space estimates assume that the attacker knows which
types of characters are and are not being used but believes them to be random.
The 95 potential characters per position is derived from ten numerals, 26
lowercase letters, 26 uppercase letters, and thirty-three math and punctuation
characters. Extended ASCII characters are not included. Obviously a dictionary
could be created to attack common phrases or only use English words but this
author has yet to find any. In the interest of full disclosure a two-fish generated
twenty-character password was included, it is clearly impossible to memorize.

jTz^qAjK = 95^8 = 6634204312890625 (generated by two-fish)
maryhadalittlelamb = 26^18 = 29479510200013918864408576
everywherethatmarywent = 26^20 = 19928148895209409152340197376
eaxuqqpypdduuoysdlut = 26^20 = 19928148895209409152340197376

When selecting the install sets, use the defaults minus game35.tgz and
misc35.tgz. No one needs to play games on the escorting firewall server and no
one should need X to read logs and edit PERL scripts. Following that, the
installer will ask if you wish to start OpenSSH by default, to which you will answer
yes. Answer the X question with no, unless you really need it. Select your local
time zone and you are done.

Step 3
In step 3 you’re going to handle a number of post-installation tasks that

include system hardening, configuring the system for users, and installing
patches. Every single configuration file that you modify should be added to
/etc/changelist if it isn’t already there. /etc/security creates a backup of every file 
listed in /etc/changelist each day as scheduled by cron (actually /etc/daily is
scheduled by cron and it starts /etc/security).

Restart and login as root. Use the /usr/sbin/adduser command to setup
adduser.conf and then create your users. You will like OpenBSD a lot more if you
use ksh for your default shell. Setting it as the default shell for all new users in
adduser.conf will win favor with other administrators. Using default for the default
login class is safe. If you are only going to allow administrators to have shell
accounts as suggested, you may want to set the default to staff as it imposes
fewer restrictions, look at the sample /etc/login.conf file and man pages for more



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

details. If you choose to copy the dot files (.cshrc, .login, .mailrc, .profile, .rhosts)
from /etc/skel by default, make sure to look at each one and ensure that they are
configured to your satisfaction. Since you’ll be editing PERL scripts later you may
want to install vim which will colorize the scripts if TERM=xterm-color is in the
.profile. Definitely use blowfish for password encryption.

If you want to change root’s shell to ksh, do that now with the command 
/usr/bin/chsh. After you’ve created the needed normal user accounts for your 
administrators, and placed them in wheel, logoff. Log back in as the normal user
account you created for yourself and su to root. As soon as you added the first
normal user account to the wheel group, all other normal accounts, not in group
wheel, lost their ability to su. If administration has been delegated more
granularly than the all or nothing wheel group, now is the time to setup the
sudoers file using /usr/sbin/visudo. It is always a good idea to uncomment the
line “# %wheel  ALL=(ALL)   ALL”. Uncommented, that line allows users in the 
wheel group to run commands as root without actually starting a new shell as
root. That is useful because of the temptation to stay logged in with su all of the
time, defeating the purpose of creating normal user accounts.

It should go without saying that unrestricted physical access to this system
will result in a full compromise. There may be situations however where even
your most secured office space allows limited access to persons not authorized
to operate the server. No matter what steps you take, if an attacker gets access
to the data on the hard drive, you will eventually lose. With this in mind you
should secure your system in such a way that all possible methods of accessing
the data on the hard drive take at least as long as removing the hard drive and
copying its contents to another system. Limiting boot devices to the hard drive,
physically removing unneeded removable storage devices, password protecting
the bios, and using a case lock will help. The more an attacker knows about the
configuration of the system prior to their physical access attack, the less likely
you will be able to detect it. Again, if an insider is assisting in the attack, there
has already been at minimum a partial compromise.

If an attacker is only able to achieve restricted physical access, meaning
they aren’t able to open the case or restart the system, it might be valuable to 
remove root’s ability to log in locally, or at least restrict root to an obscure
terminal such as ttyc5 (ctrl-alt-6). You may do this by editing the /etc/ttys file and
removing the secure at the end of each of the ttyCn lines. If you want to force a
root password to be entered for single user mdoe, add secure to the end of the
console line. You might also want to consider restricting local access to only the
serial port.

Next you will want to take some basic network hardening steps prior to
configuring the network interfaces. These steps will include locking down sshd,
disabling unneeded services, and loading up some basic pf rules.

Secure Shell (SSH) is a critical tool for securely administering computers.
SSH is an extremely powerful replacement for insecure protocols and services
such as telnet, ftp, and many of the “r” utilities. There are a number of things to 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

consider when configuring the /etc/ssh/sshd_config file. The first and easiest
change to make is to uncomment the line “# PermitRootLogin yes” and change 
its value to no. Also adjust the way OpenSSH handles attackers attempting to
deny service to the sshd daemon. With the default configuration an attacker only
needs to open 10 connections to the sshd daemon to prevent any other users
from accessing the daemon. OpenSSH will allow each connection to remain
open without a login attempt for two minutes. This means that it is trivial for an
attacker to prevent an administrator from gaining access to the system.

There are two values in the sshd_config that you can use to increase the
difficulty of tying up sshd for an attacker. First, uncomment and decrease the
value of  “#LoginGraceTime 2m” to thirty seconds, “LoginGraceTime 30”. This 
gives you more chances to beat the attacker by forcing his connections to
timeout faster. Second adjust the value of “# MaxStartups 10” to either something 
much higher or alternatively enable early random drops. Configuring early
random drops instructs the sshd server to start dropping a percentage of new
connections after a certain threshold of startups is reached until another higher
specified threshold is reached whereby all new connections are dropped. The
line “MaxStartups 4:70:20” instructs sshd to drop 70% of new connections after 
four unauthenticated connections are established and once there are twenty
unauthenticated connections, drop all new connection attempts.

For reference, each unauthenticated connection requires a new instance
of sshd that itself consumes approximately 312KB of memory (text, data, and
stack) and about 1108KB of resident memory. It follows that 20 unauthenticated
connections tie up over 22MB of resident memory. In the case of this escorting
firewall with 128MB of memory running Snort, Nessusd, and the PERL scripts
resulted in a peak memory consumption of about 90MB during multiple Nessus
scans with one interactive user. To prevent an SSH attack from tying up too
much memory and slowing down Snort or the Nessus scans, the value “4:70:20” 
was selected for MaxStartups on this Dell.

Another sshd configuration options to consider disabling is ssh protocol 1.
This can be accomplished by changing the line “#Protocol 2,1” to “Protocol 2”. 
This author feels that SSH protocol 1 as implemented in OpenSSH 3.8.1 is
secure and may be left enabled. That said, most security experts recommend
disabling it, and protocol version 2 is cleaner and more structured anyway. In the
risk mitigation plan, the outlined strategy defined two goals: reducing the threat
surface and eliminating known vulnerabilities. Disabling protocol 1 reduces the
threat surface with minimal cost so it should be done. If your server configuration
policy requires that you change the default port of daemons when possible then
you can make the sshd daemon listen on a more obscure port by uncommenting
and changing the line “#Port 22”. 

If you only need access to the sshd daemon from an internal or
administrative network, then in addition to restricting access with pf, you can
force sshd to listen only on your internal or administration network IP address(-
es). To do this, uncomment and change the line “#ListenAddress 0.0.0.0”. Read 
the sshd_config man page to avoid making mistakes with the port configuration.
A feature of ssh that’s awesomeness is surpassed only by its scariness is TCP 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

forwarding. TCP forwarding allows clients to proxy TCP traffic through the sshd
daemon. There are an infinite number of cool uses for this feature; read the many
practicals on setting up bastion hosts with SSH. In this example, disabling tcp
forwarding does not improve security significantly because anyone that can login
to the escorting firewall through sshd can probably already setup forwarding with
/usr/bin/nc or some other utility. If you want to turn it off uncomment and change
the line “#AllowTcpForwarding yes” to “AllowTcpForwarding no”. Verbose logging
can be enabled and might be useful. The default logging parameters are
“#SyslogFacility AUTH” and “#LogLevel INFO”. If your site policy requires login 
banners, sshd has them, “Banner /path/to/file”.

SSH protocol 2 gives you more control over the encryption and hashing
algorithms used to protect the integrity and confidentiality of the connection. If
laws or your site policies dictate specific algorithms or key sizes, use the Cipher
and MACs commands. The defaults are not included in the sshd_config file by
default but if they were the would look like:

#Cipher aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour,aes192-cbc,aes256-cbc,aes128-
ctr,aes192-ctr,aes256-ctr

#MACs hmac-md5,hmac-sha1,hmac-ripemd160,hmac-sha1-96,hmac-md5-96
Read the sshd_config man page. Every setting might be important

depending on your environment. If you have setup Kerberos, RADIUS, a PKI, or
some other central authentication authority on your network you will want to
configure sshd to use it. Also read the sshd man page. Some of the sshd flags
are not easily configurable in the sshd_config file. To enable them, add them in
the /etc/rc.conf.local file on the line “sshd_flags=""”. Setting sshd_flags=”-4” 
forces IP version 4 addresses only.

Other network changes to make are in the /etc/inetd.conf file. If you do not
need the ident, daytime, or echo ports remove them by commenting out their
respective tcp and tcp6 lines. In the past, rstatd and rusersd were enabled by
default. You will notice that they are now commented out by default. The portmap
value in /etc/rc.conf was set to no as well. These values control rpc, which is
used to provide access to NFS and yp. To be really thorough you will want to
comment out the portmap lines in /etc/rc as well. As you go through these files
you will notice that sendmail is configured to run as a daemon by default. Here is
what George Shaffer, author of the excellent but out of dated geodsoft.com
OpenBSD hardening guide (http://geodsoft.comhowto/harden), wrote about it:
“Prior to OpenBSD 3.0, I always disabled sendmail as a daemon by changing the
sendmail_flags to NO in /etc/rc.conf and also commenting out the /etc/rc lines that started
sendmail. Now there is a change that requires sendmail to run as a daemon. I find this
odd and annoying but it seems to be fact and apparently a Sendmail version issue, not
an OpenBSD issue. There were serveral references to this in misc@openbsd.org.” 

This author leaves sendmail enabled because it leaves intact the primary
method that the /etc/daily script delivers its reports to the administrators. The
security benefit outweighs the additional risk. A “/usr/bin/netstat -na |
/usr/bin/grep "\.25"” reveals that sendmail is only listening on 127.0.0.1 and its 
IPv6 equivalent by default. However, a more careful observation of the output
from “/usr/bin/netstat –na” reveals that a daemon is listening on tcp 587, the RFC 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2476 MTA submission port, and udp 512, the comsat/biff mail notification port.
These are also related to sendmail, but it again is only listening on the IPv4 and
v6 loopback addresses. If you see any “*.” lines other than  “*.22” in the 
“/usr/bin/netstat –na” output, investigate. At this point, you are almost ready to 
configure the network.

On a separate computer, check the OpenBSD website for security alerts,
http://www.openbsd.org/security.html#35. As of now there are no vulnerabilities
for 3.5, if there were, you would download the patches, verify the md5sums, and
install them on your escorting firewall server.

Step 4
In this step you will configure the system for the network. This step

includes setting up bridging, configuring your interfaces, and configuring pf.

First, restart the server and verify that any previous changes you made
were effective. Next, login and su to root. Enter the “/sbin/ifconfig –a” command 
to see what network interfaces OpenBSD has detected and installed. To
configure an interface create a file in /etc called hostname.INTERFACE where
INTERFACE is the name of an interface that shows up in ifconfig. For this server
the following was configured:

# /bin/cat /etc/hostname.em0
up
# /bin/cat /etc/hostname.fxp0
inet 192.168.6.22 255.255.255.0 NONE
#

If you have an administration network interface you would configure that
interface as well. Notice that fxp0 was configured with an IP address. This is the
“outside” interface. In this example the outside interface needs an IP address to 
receive syslog messages from remote access device, the PIX firewall. Also note
that the “outside” interface is actually on the same subnet as the internal network, 
so it is only outside relative to the other interface. Since the Nessus daemon is
going to be configured on this machine as well it also needs an address from
which Nessus scans will be sent. Hopefully, you will be able to have a separate
administrative network interface and a Nessus server running on a different
system such that the escorting firewall can run in a stealthier configuration, thus
further reducing its threat surface.

To configure bridging you need to make at most three changes. First
uncomment the line “# net.inet.ip.forwarding=1” in the file /etc/sysctl.conf. This 
should be the only uncommented line in the file. Second, create the file
/etc/bridgename.bridge0. In the file write a line adding the interfaces you want to
bridge. See the example below. Third, if any of the interfaces listed in the bridge
file haven’t yet been configured create their respective /etc/hostname.inteface file 
and if no IP address is needed, merely insert the line “up”.

# /bin/cat /etc/bridgename.bridge0
add fxp0 add em0 up



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

At this point, the bridge is configured and before you restart you should
write your pf rules and enable pf. To enable pf to start on reboot, edit the file
/etc/rc.conf and set pf=yes. Next edit the /etc/pf.conf file. If you are not familiar
with pf, read the faq: http://www.openbsd.org/faq/pf/ and the man pages for
pf.conf, pf, and pfctl. Alternatively you can look at the config file configured for
this example, as it is fairly intuitive.

# /bin/cat /etc/pf.conf
# $OpenBSD: pf.conf,v 1.27 2004/03/02 20:13:55 cedric Exp $
#
# See pf.conf(5) and /usr/share/pf for syntax and examples.

# Interface aliases should be created for ease of administration.

outside_if="fxp0"
inside_if="em0"

#"Scrubbing" is the normalization of packets so there are no ambiguities in interpretation by the ultimate
# destination of the packet. The scrub directive also reassembles fragmented packets, protecting some operating
# systems from some forms of attack, and drops TCP packets that have invalid flag combinations.

scrub in all

#For traffic coming from the trusted network, allow all.
# pf rules are best match and exit not first match and exit. The quick parameter forces first match behavior.
pass in quick on $inside_if all
#Each packet traversing the pf firewall is actually processed twice. First, the traffic comes ‘in’ on an interface.
# Next, the traffic is processed again going ‘out’ on a differentinterface.
#Allow all traffic to leave out on the inside interface.
pass out quick on $inside_if all

# Block and LOG everything coming in and going out on the outside interface by default
# Note that we specified both drop and log but not quick.
# The drop command instructs pf to silently drop matching requests not reset them.
# The log command tells pf to log the dropped packet.
# Quick isn’t specified because we don’t want to filter everything, only the packets, that don’t have better
# matches.
block drop in log on $outside_if all
block drop out log on $outside_if all

########
# This section allows traffic to traverse from the least trusted interface (outside) to the other interfaces (inside)
########

# Allow ssh
pass in quick on $outside_if proto tcp from any to any port = ssh keep state

# Allow NTP and syslog
pass in quick on $outside_if proto udp from any to any port = ntp keep state
#192.168.6.1 is the remote access server and 192.168.6.69 is the RADIUS server, both need to send syslog to the
# escorting firewall
pass in quick on $outside_if proto udp from {192.168.6.1, 192.168.6.69} to 192.168.6.22 port = 514 keep state

# Allow ICMP (echo request)
pass in quick on $outside_if inet proto icmp all icmp-type 8 code 0 keep state

########
# This section allows traffic to traverse from the trusted (inside) interface to the other (outside) interfaces
########



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

# Allow ICMP (echo-request)
pass out on $outside_if inet proto icmp all icmp-type 8 code 0 keep state

# Allow all UDP/TCP OUT and keep state
pass out on $outside_if proto udp all keep state
pass out on $outside_if proto tcp all modulate state

#This anchor is needed for the PERL scripts
anchor snort2pf
#

Also take a look at these two excellent pf sites:
 http://www.benzedrine.cx/pf.html
 https://www.solarflux.org/pf/ - Many of the ideas for this practical were

inspired by the links found on solarflux, specifically Snort2pf and
SnortSam.

Step 5
Step 5 does not involve too much security configuration. You will install

Snort, Nessus, and the PERL scripts. Remember to add any important file to the
/etc/changelist for backup. For binary files just add a + in front of the path and
filename to indicate that you only want an md5sum of the file backed up, as in
“+/usr/local/sbin/nessusd”. 

First, reboot the server. Use nmap from other machines to verify that your
pf rules are actually working the way you intended. Looking at both the output of
nmap and the output of “/usr/bin/netstat –na” verify that no daemons other than 
those that you intended are still running. Once you have ensured that the server
is configured correctly, connect it to the network. The process of installing Snort
and Nessus in chroot-ed environments will not be detailed or performed in this
example, as it is not deemed necessary given the role of this server. It is
however a recommended best practice and is possible with both the Snort and
Nessus daemons.

The order you install Snort and Nessus is not important. Nessus has at
least one compile time option that has security implications. For nessus-core use
“./configure --disable-gtk” before make. As an alternative to compiling your own 
you might want to try the OpenBSD package nessus-2.0.9-no_x11.tgz. Note
however that the current version is Nessus 2.0.10a. If you downloaded the
sources from the web, as always, verify the md5sum of the tgz files with at least
one server that is not the server from which you downloaded the files.

Copy the three PERL scripts from Appendix C to files in your
/usr/local/sbin folder. The permissions on those files should be group wheel
owned by root and 0760. Actually, if special members of your administrative team
are usually responsible for maintaining scripts, create a special group for them
using /usr/sbin/groupadd, add their normal user accounts to that group using
/usr/sbin/usermod, and make these files belong to that group instead with
/usr/sbin/chown. Verify the sanity of the permissions of the other files in
/usr/local/sbin at this point also. Does world really need read permissions on
nessusd? Given that you do not have normal users, think critically about all of the



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

default file and directory permissions on the partitions /var, /usr, /tmp, and /.
Once you have everything configured the way you like it, add the settings to the
/etc/mtree/special file and the /etc/security script that is run daily will let you know
if any of these permissions get changed.

Step 6
In step 6 you will configure Snort to alert when it detects traffic that

violates your site’s acceptable network usage policy. Basic Snort configuration 
requires that you add and make changes to the snort.conf and Snort rules files
as well as add it to your /etc/rc.local script to start it on boot. You will also need to
add the snort directory to /var/log/ for its alert file.

To get the current rules, go to http://www.snort.org/dl/rules/. There are
three rules files available and you need to make sure that you get the right one
based on the version of the source you compiled. As with everything you
download, check the md5. Also note the file date. The rules files are usually
updated daily, adding rules for the latest threats. Once downloaded, uncompress
the rules file into the folder /etc/snort/rules.

First open the file snort.conf in /etc/snort/rules. The file is very well
commented and is used to set the values for variables that will be referenced in
all of the .rules files. In addition to the variables you also need to configure the
preprocessors as well. Remember that the escorting firewall is not an Internet
connected system and as such is less likely to trigger false positives even with
the default rules. The most important lines are “var HOME_NET 192.168.6.0/24” 
and “var EXTERNAL_NET any”. Snort will only alert on attacks against 
addresses specified by HOME_NET from systems that match EXTERNAL_NET.
Note that the default any value for EXTERNAL_NET will alert on attacks within
your subnet, which is exactly what we need for this example. Since you will be
configuring white lists in snort2pf it isn’t as critical to remove trusted addresses 
from the EXTERNAL_NET but in the interest of saving processor cycles you
might want to anyway. The cost of doing so is that should one of the trusted
systems be compromised you will not even be able to refer to the Snort log to
see what the trusted machine had been doing. In this example the following
addresses on the 192.168.6.0/24 network are to be trusted no matter what .105,
.22, .69, and .1. To configure EXTERNAL_NET to avoid processing and alerting
on these, use the following:
 “var EXTERNAL_NET [!192.168.6.105/32,!192.168.6.22/32,!192.168.6.69/32,!192.168.6.1/32]”

In addition to the default preprocessors consider enabling portscan.
Carefully read the portscan comments however as it behaves a little differently.
Snort2pf has regular expressions to match portscan alerts. Also, don’t let the 
portscan.log at the end of the line fool you, portscan will still alert as normal in the
/var/log/snort/alert file, the portscan.log file simply exists to show the actual
portscan details. Finally, add the following to the end of your /etc/rc.local file,
obviously you may need to adjust the–i value:

# Snort stuff
if [ -x /usr/local/bin/snort ]; then

echo -n ' snort'; /usr/local/bin/snort -D -A FULL -i fxp0 -c /etc/snort/rules/snort.conf
fi



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

If you are very familiar with your network traffic and with configuring Snort
rules, you may want to make some adjustments now. In this example, the default
rules are fine. The assumption being made is that the default Snort rules will
enforce the site policy. In most cases, the default Snort rules will enforce only
parts of the acceptable network usage policy and there is a small chance that
some authorized uses might mistakenly be identified as policy violations. One
important point to be aware of is that this setup is using a tool designed to detect
attacks, to detect acceptable network usage policy violations. If your policy
defines the use of telnet as a policy violation, you wouldn’t want to alert only on 
"TELNET login incorrect" or “TELNET Solaris memory mismanagement exploit 
attempt", you would want to alert on every attempted use of telnet. Fortunately,
Snort is still the right tool for the job, but you will need to write your own Snort
rules. While writing Snort rules is beyond the scope of this practical read any of
the many great SANS GIAC GCIA pracitcals for a better introduction to Snort.

Step 7
In this step you will configure the Nessus daemon and PERL scripts.

Nessus configuration is much like the Snort configuration; you will configure a
conf file, a rules file and add the daemon to the /etc/rc.local file. The major
difference is that to configure Nessus you will also need to add a Nessus user
account for your script. The PERL scripts are trickier because a high amount of
customization may be required to get them to work in your environment. Syslog
will need to be configured to get the scripts to work properly in this instance.
Reread the specification, it determines how the scripts are supposed to function.

Adding a user for Nessus is actually the first thing you need to do when
configuring Nessus. Use the command /usr/local/sbin/nessus-adduser to create
your Nessus user. Remember the password recommendations suggested
earlier? Ignore them. You’re going to write this password down in a script and 
never need to remember it. It is to your advantage to make this password the
longest and most obnoxious password possible that will not require using escape
characters to type in. Of course, using escape characters might be an easy way
to fool novice attackers that manage to get access to the script source. I was
able to create a 130-character long password. I then tried a 260-character length
password and though there was not an error when I created the account, I
always received login failed when I tried to use it. When you are adding Nessus
user accounts you may want to configure rules for the account. If the only user
account will be for the script, then wait to make the changes in the nessusd.rules
file.

Before configuring the /usr/local/etc/nessus/nessusd.conf file, add your
rules to your nessusd.rules file. The format for adding rules in the rules file is the
same as adding rules for users. Read the man page for instructions or follow the
rules file used in this example:

# Nessus rules
#
# Syntax : accept|reject address/netmask



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

# Deny servers we never want to allow scans against
reject 192.168.6.1/32
reject 192.168.6.69/32
reject 192.168.6.22/32
reject 192.168.6.105/32
# Allow all other systems on the network
accept 192.168.6.0/24
# Deny by default :
default reject

The conf file for Nessus is in the /usr/local/etc/nessus folder and is named
nessusd.conf. If you do not have a file already, you will after you start Nessud the
first time. The lines that have a significant bearing on security are detailed here:

# Path to the security checks folder :
plugins_folder = /usr/local/lib/nessus/plugins

# Maximum number of simultaneous hosts tested (the script will only attempt to scan 1 at a time):
#max_hosts=10
max_hosts = 1

# Niceness. If set to 'yes', nessusd will renice itself to 10. (not even this value is nice enough if an attacker is able
# to submit more than fifty consecutive scans)
#be_nice=no
be_nice = yes

# Log file (or 'syslog') (you must change this to something on /var if you want to mount /usr read-only later):
#logfile = /usr/local/var/nessus/logs/nessusd.messages
logfile=syslog

# Shall we log every details of the attack (good chance you will want to change this to no to save disk space)?
log_whole_attack = yes

# Dump file for debugging output, use `-' for stdout (again, /usr might get mounted readonly)
# dumpfile = /usr/local/var/nessus/logs/nessusd.dump
dumpfile = /var/log/nessusd.dump

# Read timeout for the sockets of the tests (you are scanning remote access users that might potentially be on high
latency connections, give them time to respond):
# checks_read_timeout =5
checks_read_timeout = 15

Lastly you need to edit /etc/rc.local and add the following lines after the
Snort lines you added in step 6, the–a 127.0.0.1 binds the daemon to the
loopback address:

# Nessus stuff
if [ -x /usr/local/sbin/nessusd ]; then

echo -n ' nessusd'; /usr/local/sbin/nessusd -a 127.0.0.1 -D
fi

Before you just decide to run the included PERL scripts, take a minute to
read them and familiarize yourself with each line. These scripts were not
intended to run on a production server but merely to serve as a proof of concept.
The PERL script Snort2pf was written by Stephan Schmieder http://bsd-
security.org/~ssc/codedocs/snort2pf/. With much help from Gerald Comeaux
GSEC #3060, http://www.giac.org/GSEC_3100.php, I modified the Snort2pf
script to include support for white lists and to interoperate with an entirely new



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

script, conceptually based on Snort2pf, which watches for new remote access
connections and starts Nessus scans against them. Gerald did not actually want
to be credited due to the very proof of concept nature of the scripts. Essentially,
Snort2pf tails the Snort alert file. When Snort logs an attack, Snort2pf takes the
address from the alert and dynamically configures pf to block that host using the
anchor you setup in the pf.conf file.

Scanaccess, the aforementioned second script, operates in a similar
manner. Rather than monitoring the Snort alert file however, scanaccess tails a
syslog file that receives messages from the Cisco PIX 501 firewall and VPN
remote access device. When scanaccess detects a new user it calls a third script
NessusScan. NessusScan launches nessus scans against the VPN user’s VPN-
assigned IP address. Obviously, these scripts are highly environment specific.
Unless, you have a 500 series Cisco Pix, with a very specific vpn configuration
that includes RADIUS authentication to be enabled for IKE phase 1, with
matching vpngroup group and RADIUS user names, you will have to make
changes.

Before continuing please note, in many remote access situations a pool of
addresses is assigned to a group of remote access users. If that is your setup,
you will need to spend some time reengineering both the Snort2pf and the
scanaccess scripts. These scripts are not really user aware. Snort2pf instructs pf
to block IP addresses not users. In the event that a remote access user violating
acceptable network usage policy is detected by Snort and then blocked by pf, it is
the IP address of the remote access user not the user itself that is blocked. In the
case where a pool of addresses is assigned to a group of users, when the
attacking user disconnects and then reconnects it may be possible for them to
get a different IP address. As the scripts are currently written, the policy-violating
user will no longer be blocked because they have a new IP address. Potentially
worse, is that when a user that has not violated connects, if they are assigned an
address that is still being blocked, the legitimate user will be denied access.

To prevent this, the remote access device in the test network has been
configured to assign a single unique IP address for each remote access user. If
you do not have enough addresses to accommodate this model or if you do not
want the additional administrative burden of keeping track of which user is
assigned which IP address, you will need to write a script that maintains a state
table mapping user accounts with their currently assigned IP address. Each time
a user connects this new script will need to update the state table and if
necessary, pf, and the blocked_hosts file also.

Make sure to create a whitelist file that contains the IP addresses of all of
the systems that you do not ever want to block. You can put the file wherever you
want as long as you update the script accordingly. The file should contain one IP
address per line with no extra characters or white space. If you want to add
comments to the file or make the file more tolerant of extraneous characters,
then you will need to rewrite the init_white sub routine.

# /bin/cat /usr/local/sbin/snort2pf
#!/usr/bin/perl -T
# Addittions Copyright Benjamin Eason 2004 <beason@sec-res.com>
# Copyright (c) 2003, 2004
# Stephan Schmieder <ssc@unix-geek.info>. All rights reserved.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY STEPHAN SCHMIEDER AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL STEPHAN SCHMIEDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.

use strict;

#use warnings;
#use diagnostics;

my ( $blockfile, $alertfile, $pfctl, $tail, $amnesty, %bad_hosts, @white_hosts, $tmp,
$alert_size, $block_size, $update, $line, $list, @array, $whiteFile, $cp );

# <configuration>
$alertfile = '/var/log/snort/alert'; # The Snort alert file
$blockfile = '/var/log/escort/blocked_hosts'; #This is just a temp file
$whiteFile = '/etc/escort/white_hosts'; # Put trusted systems in here 1 per line
$pfctl = '/sbin/pfctl';
$tail = '/usr/bin/tail';
$cp = '/bin/cp';
$amnesty = 60 * 60 * 12; # seconds * minutes * hours to wait before unblocking IP
# </configuration>
my $version = "Escort";

# Call the initialize sub routine
&initialize();

# After initialize, run this infinite loop that checks for Snort alerts and unblocks
# based on the amnesty value
while (sleep(1)) {

#unblock old hosts
&unblock( time - $amnesty );

# process alertfile if modified
$tmp = (stat($alertfile))[7];
if ($tmp > $alert_size) {

open( DATA, "$tail -c ".($tmp - $alert_size)." $alertfile |" )
or die("Unable to read last bytes from alertfile ($!)\n");

$alert_size = $tmp;
while ( defined( $tmp = <DATA> ) ) {

chomp $tmp;
if ($tmp) {

&block( &check_for_attack( &check_for_portscan($tmp) ) );
}

}
close(DATA);

}
}

# The initialize sub reads in the white list and gets the intial size of the Snort Alert
# file. It also processes the command line arguments.
sub initialize {

# parse command line
for ( my $i = 0; $i < $#ARGV; $i++ ) {

if ( $ARGV[$i] eq '-s' ) {
if ( $ARGV[++$i] =~ /^(?:\d+)$/ ) {

$amnesty = $1;
} else {

die("insane option for \"-s\"");
}

} elsif ( $ARGV[$i] eq '-f') {



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

if ( $ARGV[++$i] =~ /^([0-9A-z\.\/]+)$/ ) {
$alertfile = $1;

} else {
die("insane option for \"-f\"");

}
}

}

# set/check environment
delete @ENV{qw(PATH IFS CDPATH ENV)};
&update_title();
if ( !-e $blockfile ) { #The blockfile was added to synchronize the two main scripts
system("$cp /dev/null $blockfile"); #I don’t like to touch

}
if ( !-r $alertfile ) {

die("\"$alertfile\" is not readable");
}
if ( !-x $pfctl ) {

die("\"$pfctl\" is not executeable");
}
if ( !-x $tail ) {

die("\"$tail\" is not executeable");
}
$alert_size = ( stat($alertfile) )[7];
$block_size = ( stat($blockfile) )[7];

# Get whitelist, the list of systems to never block
init_white();

}

sub init_white { #This sub loads a list of IP addresses from a file, 1 per line
my ($white_addr,$i);
$i=0;
open (WHITE, "$whiteFile");
while ($white_addr = <WHITE>) {

chomp($white_addr);
$white_hosts[$i] = $white_addr;
$i+=1;

}
close (WHITE) || die("Unable to close white_hosts file ($!)");

}

sub update_title {
# update the string that's shown by ps(1) – Very cool feature
my $hosts = scalar keys %bad_hosts;
$0 = 'snort2pf '.$version.' :: blocking '.(scalar keys %bad_hosts).' hosts';

}

sub check_for_attack {
if ( $_[0] =~

/^(?:\d{2}(?:\/|-|:|\.)){5}\d{6} ((?:\d{1,3}\.){3}\d{1,3})[: ]/ )
{

$_[0] = $1;
}
return ( $_[0] );

}

sub check_for_portscan { #Portscan preprocessor not enabled by default, see snort.conf
if ( $_[0] =~ /PORTSCAN DETECTED from ((?:\d{1,3}\.){3}\d{1,3})[: ]/i ) {

$_[0] = $1;
}
return ( $_[0] );

}

sub block {

# reset $update
my $update = 0;

# this hash is unique to this sub
my %block_array;

# validate IPv4 address
my $tmp = $_[0];
if ( $tmp =~ /^(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})$/ ) {

if ( $1 >= 1
and $1 <= 255
and $1 != 127
and $2 >= 0
and $2 <= 255
and $3 >= 0



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

and $3 <= 255
and $4 >= 1
and $4 <= 254
and ! check_if_white($tmp) ) # Added check for whitelist
{

# block host
$bad_hosts{$tmp} = time;
# write this to a file
open( BLOCK, "+< $blockfile");

# Take the current file, read it in to a hash. $block_array[ip] time of block
while ($line = <BLOCK>) {

chomp($line);
@array = split(/ /,$line);
$block_array{$array[0]} = $array[1];

}

# If the ip is already in the list, don't add it again, just update the time
foreach $list (keys (%block_array)) {

if ($tmp eq $list) {
$block_array{$list} = time;
$update=1;

}
}

# clear the file, and repopulate it with the current info from the hash
seek(BLOCK,0,0);
foreach $list (keys (%block_array)) {

print BLOCK "$list $block_array{$list}\n";
}
truncate(BLOCK,tell(BLOCK));

# finally, if we didn't update a time, add the ip and time to the end of the
# file
if (!$update) {

print BLOCK "$tmp $bad_hosts{$tmp}\n";
print "adding $tmp $bad_hosts{$tmp}\n";

}
close( BLOCK ) || die ("Can't close blockfile ($!)\n");

# after it's been recorded in the file, do the actual blocking
open( PFCTL, "| $pfctl -a snort2pf:$tmp -f -" )

or warn("Can't block $tmp($!)\n");
print PFCTL "block in quick from $tmp to any\n";
close(PFCTL) or die("Can't write to pfctl pipe($!)\n");

} # closing if=properly formatted and not white host
} # closing if=proper numbers
&update_title();

} # closing sub

sub check_if_white {
my ($passed_target) = @_;
my ($other_white_addr);
print "checking if whitelisted\n";
foreach $other_white_addr (@white_hosts) {

if ($other_white_addr eq $passed_target) {
return 1;

}
}
return 0;

}

sub unblock {
# idea: we don't want to be constantly reading from the drive every second.
# we need to have a way to keep the records in a hash (%bad_hosts?)
# and only update if the file's been changed, a la the original snort2pf

# this hash is unique to this sub
my %block_array;

# process blockfile if modified

$tmp = ( stat($blockfile) )[7];
if ( $tmp > $block_size ) {

open( DATA, "$tail -c ".($tmp - $block_size )." $blockfile |")
|| die("Unable to read from blockfile ($!)\n");

$block_size = $tmp;
while ( defined( $tmp = <DATA> )) {

chomp $tmp;
# read it into an array again
@array = split(/ /,$tmp);



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

$block_array{$array[0]} = $array[1];
}

#after populating the %block_array, add new stuff to %bad_hosts
#at this point, the file should always be the more up to date of the two
foreach $list (keys %block_array) {

if (!exists ($bad_hosts{$list})) {
$bad_hosts{$list} = $block_array{$list};

}
}

#finally, check for and perform unblocks,and update file
seek(DATA,0,0);
truncate(DATA,tell(DATA));
foreach $tmp ( keys %bad_hosts ) {

if ( $bad_hosts{$tmp} <= $_[0] ) {
delete $bad_hosts{$tmp};
!system("\"$pfctl\" -a snort2pf:$tmp -F rules")

or warn("Can't unblock $tmp($!)\n");
} else {

print DATA "$tmp $bad_hosts{$tmp}\n";
}

}

close( DATA ) || die("Could not close blockfile ($!)\n");

} #this closes the 'if' loop commented out above

&update_title();
}

Before scanaccess will work, several configurations must be made. First,
you will need to devise a way to get a notification when new users connect from
your remote access server. In this example, the Cisco PIX was configured to
send syslog messages to the escorting firewall. The file syslog.conf was
configured to put local4 messages into a separate file, “local4.debug 

/var/log/ciscolog”. When a VPN user connects they are required to login 
via RADIUS to complete the initial key exchange, IPSec phase 1. Upon
successful authentication the PIX sends a syslog message to the escorting
firewall that includes the name of the successfully authenticated user. As
mentioned earlier, each VPN user has an IP address assigned to them when
they connect and that IP address never changes. Unfortunately, the PIX does not
also include the IP address of the successfully authenticated user (actually the
user has yet to receive its IP address which is the last step of phase 1). To
account for this, the script relies on a file called userlist that enables the script to
match user accounts with IP addresses. You will need to create this file. The
scanaccess initialize function expects the userlist file to be in the following
format:

# /bin/cat /etc/escort/userlist
Administrator
192.168.6.200
Barbara
192.168.6.201
Tina
192.168.6.209
John
192.168.6.205

# /bin/cat /usr/local/sbin/scanaccess
#!/usr/bin/perl
# The –T parameter should be used for perl. This proof of concept script
# sometimes however has difficulties with insecure system calls.
# Addittions Copyright Benjamin Eason 2004 <beason@sec-res.com>
# Copyright (c) 2003, 2004
# Stephan Schmieder <ssc@unix-geek.info>. All rights reserved.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY STEPHAN SCHMIEDER AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL STEPHAN SCHMIEDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.

use strict;

#use warnings;
#use diagnostics;

my ( $username, $pfctl, $loginfile, $whiteFile, $tail, %bad_hosts, %user_list, $tmp,
$size, $name, $ip_address, $userlist, @fields, @white_hosts, $echo, $NessusScan,
$nessustargetpath );

# <configuration>
$loginfile = '/var/log/ciscolog';
$tail = '/usr/bin/tail';
$pfctl = '/sbin/pfctl';
$echo = '/bin/echo';
$NessusScan= '/usr/local/sbin/NessusScan';
$userlist = '/etc/escort/userlist';
$whiteFile = '/etc/escort/white_hosts';
$nessustargetpath = '/var/log/escort';
# </configuration>

&initialize();

while (sleep(1)) {

# check diff in bytes, then read it in
$tmp = ( stat($loginfile))[7];
open( DATA, "$tail -c ".($tmp - $size)." $loginfile |" )

or die("Unable to read last bytes from loginfile ($!)\n");
# save that position for later
$size = $tmp;
while ( defined( $tmp = <DATA> ) ) {

chomp ($tmp);
if ($tmp) {

@fields = split(/ /,$tmp);
if (($fields[5] eq "Authen") and ($fields[7] eq "Start:")) {

print "$fields[9]";
$username = substr($fields[9],1,30);
chop ($username);
chop ($username);
$ip_address = $user_list{$username};
print "Username: $username\n";
if (! check_if_white($ip_address)) {

#nessus wants to read it's target from a file, so put it there.
system("$echo $ip_address > $nessustargetpath/$ip_address-target");
system("$NessusScan $ip_address &");

} # End If not on white list
}

}
}
close(DATA);

}

sub initialize {

# set/check environment
delete @ENV{qw(PATH IFS CDPATH ENV)};
if ( !-r $loginfile ) {



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

die("\"$loginfile\" is not readable");
}
if ( !-x $tail ) {

die("\"$tail\" is not executeable");
}
$size = ( stat($loginfile) )[7];

open (USERLIST, "$userlist");
while ($name = <USERLIST>) {

chomp ($name);
$ip_address = <USERLIST>;
chomp ($ip_address);
$user_list{$name} = $ip_address;

}
close (USERLIST);
init_white();

}

sub init_white {
my ($white_addr,$i);
$i=0;
open (WHITE, "$whiteFile");
while ($white_addr = <WHITE>) {

chomp($white_addr);
$white_hosts[$i] = $white_addr;
$i+=1;

}
close (WHITE) || die("Unable to close white_hosts file ($!)");

}

sub check_if_white {
my ($passed_target) = @_;
my ($other_white_addr);
print "\nChecking if $passed_target is on whitelist\n";
foreach $other_white_addr (@white_hosts) {

if ($other_white_addr eq $passed_target) {
print "$passed_target is on whitelist.\n";
return 1;

}
}
print "$passed_target is NOT on whitelist.\n";
return 0;

}

NessusScan is called by scanaccess. NessusScan accepts an IP address
as an argument and uses it to create the Nessus target and result files.
NessusScan only accepts 1 IP address. This design decision was made in an
attempt to multi-thread scanaccess. Because Nessus scans can take more than
five minutes against systems connected on a LAN, you definitely do not want to
wait for a scan to complete against a remote user. You will certainly have to
change the $scan variable to include your Nessus username and password
information, the port as well if you changed it from the default tcp 1241.

# /bin/cat /usr/local/sbin/NessusScan
#!/usr/bin/perl

use strict;

my ($holes_threshold, $warnings_threshold, $targetFile, $resultsFile, $blocked_hosts,
@bfields, $bfields, $line, $scan, $rm, $nessus, $rfields, @rfields, $time, $warnings );

$holes_threshold = 3;
$warnings_threshold = 7;
$targetFile = "/var/log/escort/$ARGV[0]"."-target";
$resultsFile = "/var/log/escort/$ARGV[0]"."-results";
$blocked_hosts = "/var/log/escort/blocked_hosts";
$rm = "/bin/rm";
$nessus = "/usr/local/bin/nessus";
$scan = "$nessus -q 127.0.0.1 1241 escortscript thescriptpassword";

check_if_blocked();
run_scan();



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

check_results();

sub check_if_blocked {
print "checking if blocked\n";
open (BLOCKED, "$blocked_hosts")

|| die("Unable to open blocked_hosts file ($!)\n");
while ($line = <BLOCKED>) {

chomp ($line);
@bfields = split(/ /,$line);
if ($bfields[0] eq "$ARGV[0]") {

system("rm $targetFile");
die("$bfields[0] is already blocked\n");

}
}
close (BLOCKED) || die("Unable to close blocked_hosts file ($!)");

}

sub run_scan {

print "scanning $ARGV[0]\n";
system("$scan $targetFile $resultsFile -T text > /dev/null");
system("$rm $targetFile");

}

sub check_results {
open ( RESULTS, "$resultsFile")

|| die("Unable to open results file ($!)\n");
while (($line = <RESULTS>) && ($rfields[1] ne "HOSTS")) {

chomp ($line);
@rfields = split(/ /,$line);
if ($rfields[5] eq "holes") {

$holes = $rfields[8];
}
if ($rfields[5] eq "warnings") {

$warnings = $rfields[8];
}

}

close ( RESULTS ) || die("Unable to close results file ($!)\n");
if (($holes ge $holes_threshold) || ($warnings ge $warnings_threshold)) {

print "Host exceeds threshold, blocking\n";
open(BLOCK, ">>blocked_hosts");
$time = time;
print BLOCK "$ARGV[0] $time\n";
close( BLOCK ) || die("Can't close blockfile ($!)\n");

}
}

Once all three scripts have been correctly configured for your environment
you will need to add the two main scripts in the /etc/rc.local file. It is very
important that both scripts are added after Snort and Nessus. Notice that the
ampersands are required to send the scripts into the background. Without the
ampersand Snort2pf would start but scanaccess and any boot up procedures
that are to occur later would not until Snort2pf crashes or is killed.

# Snort2pf stuff
if [ -x /usr/local/sbin/snort2pf ]; then

echo -n ' snort2pf'; /usr/local/sbin/snort2pf &
fi

# Scanaccess stuff, reads syslog and nessus scans VPN users
if [ -x /usr/local/sbin/scanaccess ]; then

echo -n ' scanaccess'; /usr/local/sbin/scanaccess &
fi

Step 8
The final step in this step by step is verifying the correctness of the design

and auditing the system. To analyze the correctness of this system you will want
to review the specification written at the beginning of the project. Step 8 is
continued in the last section of this paper entitled, Test & Verify Procedures.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Once your configuration is verified, you may want to make a complete backup
image of the system in its known good state and then enable the advanced
partition mounting options that were detailed in step 2.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Maintenance Procedures

The two keys of the strategy outlined in the risk mitigation plan were to
reduce the threat surface of the escorting firewall and to quickly eliminate all
known vulnerabilities. As important as making intelligent hardening decisions was
to reducing the threat surface during setup, intelligent maintenance procedures
are critical to eliminating vulnerabilities and maintaining security.

 Sign up for the mailing lists so you know when you need to patch.
o OpenBSD security announce mailing list:

mailto:majordomo@OpenBSD.org with a message body of
“subscribe security-announce”

o Snort announcement mailing list:
http://lists.sourceforge.net/lists/listinfo/snort-announce

o Nessus announcement mailing list:
http://mail.nessus.org/mailman/listinfo/nessus-announce

o Other mailing lists such as Full-Disclosure (high volume)
http://lists.netsys.com/mailman/listinfo/full-disclosure

 Read root’s messages every day, “/usr/bin/mail –u root” (or setup an alias 
to your normal user account).

 Read /var/log/failedlogin, /var/log/authlog, /var/log/secure,
/var/log/snort/alert, /var/log/messages.

 Read /var/log/escort/blocked_hosts

Just as important as installing patches, is reading root’s mail everyday. 
The security script that is run by /etc/daily, a cron job that runs daily, sends
reports to root’s mailbox. This author is willing to bet that if you’ve followed the 
suggestions in this hardening guide, three times out of five an attacker that has
compromised the system will cause something out of the ordinary to show up in
the daily security report and not delete it. If you do nothing else, follow the first
two maintenance procedures. There really is not much that needs to be done.
OpenBSD is very easy to manage and this is one of the reasons it was chosen to
host the escorting firewall. The /etc/security script performs the following actions:

 Check the master passwd(5) and group(5) files for syntax, empty
passwords, partially closed accounts, suspicious UIDs, suspicious GIDs,
and duplicate entries.

 Check root's home directory and login environment for insecure
permissions, suspicious paths, and umask commands in the dotfiles.

 Check that root and uucp are in /etc/ftpusers.
 Check for suspicious commands in /etc/mail/aliases.
 Check for insecurities in various trust files such as /etc/hosts.equiv,

/etc/shosts.equiv, and /etc/hosts.lpd.
 Check user .rhosts and .shosts files for open access.
 Check user home directory permissions.
 Check many user dotfile permissions.
 Check user mailbox permissions.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Check NFS exports(5) file for global export entries.
 Check for changes in setuid/setgid files and devices.
 Check disk ownership and permissions.
 Check for changes in the device file list.
 Check for permission changes in special files and system binaries listed in

/etc/mtree/special and /etc/mtree/*.secure. Note: This is not complete
protection against Trojan horsed binaries, as the miscreant can modify the
tree specification to match the replaced binary. For details on really
protecting yourself against modified binaries, see mtree(8).

 Check for content changes in those files specified by /etc/changelist. See
changelist(5) for further details.

You might have noticed that absent from that list is a check for new
network daemons. No problem. Create the file /etc/daily.local. Add the line
“/bin/netstat -na | /usr/bin/egrep ̂..p.+LISTEN > /var/log/networkports” Then add 
the file “/var/log/networkports” to the file /etc/changelist, and you will now know 
when your system is listening on new ports.

The daily and weekly cron jobs do some very cool things as well.
/etc/daily

 Runs the script /etc/daily.local, if it exists.
 Removes scratch and junk files from /tmp and /var/tmp.
 Removes stale files from the rwhod(8) database.
 Checks for core dumps.
 Removes system messages older than 21 days for the msgs(1) utility.
 Purges accounting records from /var/account, if they exist. See accton(8)

and sa(8).
 Creates a backup root file system which is updated daily. This only

happens if the following conditions are met:
1. ROOTBACKUP must be set to 1. It should be added to root's

crontab(5):
ROOTBACKUP=1

2. The mount directory /altroot must exist, and there must be an /etc/fstab
entry specifying `xx' for the mount options, e.g. /dev/wd0j /altroot ffs xx
0 0

 Checks disk status. Reports on the amount of disk used/available via
df(1).

 Reports on which file systems need to be dumped via dump(8).
 Reports on the status of the mail queue via mailq(8).
 Reports networking statistics via netstat(1).
 Gives an uptime for every machine which exists in /var/rwho, via the

ruptime(1) utility.
 Runs the calendar(1) utility unless the environment variable CALENDAR

is set to 0 in root's crontab(5) or the host is a yp(8) client.
 If CHECKFILESYSTEMS is set to 1 in root's crontab, runs fsck(8) with the

no-write flag (-n).



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 If the file /etc/Distfile exists, runs the rdist(1) utility.
 Runs the system security check script, /etc/security. See security(8) for

further details.
/etc/weekly

 Runs the script /etc/weekly.local, if it exists.
 Rebuilds the locate(1) database, if there is an existing

/var/db/locate.database file.
 Rebuilds the whatis(1) database(s) via makewhatis(8).

Other than reading the messages generated by the cron scripts there are
very few administrative tasks that cannot be scripted. For instance, if you want to
make remote backups, just tgz the /var/backups folder and scp the file onto a
remote file server. If it is annoying to read root’s mail, you can have root’s 
messages forwarded to one or more mailboxes by changing the line, “# root:” in 
the file /etc/mail/aliases and then running the command /usr/bin/newaliases.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Test & Verify Procedures

1. Root login locally
2. Root login through SSH
3. Nessus rules
4. scannaccess
5. NessusScan
6. Snort
7. snort2pf

To verify that the root cannot login to the locally, log out. Enter root for the
username and then enter root’s password. If your changes were successful, then 
you will get an error message that says, “.” Next, look in the file 
/var/log/failedlogin and verify that failure appears there as well.

Root login through SSH should be denied. To try it now type “ssh 
root@127.0.0.1”. It should be impossible to distinguish a mistyped password 
from a correctly typed password; you will get the message “Permission denied,
please try again.” In the /var/log/authlog file, a similar message in syslog will 
resemble, “Failed password for root from 127.0.0.1”. If you were able to login, 
verify that “PermitRootLogin no” is not commented and is in your 
/etc/ssh/sshd_config file.

To verify that Nessus is configured and running properly, type “netstat –n”. 
If netstat shows that the system is listening on *.1241, or *.whichever port you
configured the Nessus daemon to run on, then you have a problem and need to
check the–a argument in the /etc/rc.local file. If however the system only reports
listening on 127.0.0.1.1241, then everything is okay. Still check to make sure that
Nessus does not allow you to scan targets you did not explicitly write rules for it
to accept. Create a target file that contains the IP address of a system that
should never get scanned. Next using the–q argument to specify batch mode
scanning, 127.0.0.1, your port number, your nessus username and password,
the target file you just created, and some results file, run /usr/local/bin/nessus.
Nessus will return no error and output nothing in the specified results file. This
message will be placed in the file you specified for logfile in
/usr/local/etc/nessus/nessusd.conf, “Date Time hostname nessusd: user 
username : rejected attempt to scan 192.168.6.69”, where 192.168.6.69 is the 
address you entered in the target file. If the scan was successful, review your
/usr/local/etc/nessus/nessus.rules file and ensure it is configured properly.

The scanaccess script should launch a Nessus against the IP address of
the user that has connected. To verify that this is functioning properly, connect
and login to the remote access server from a user account that does not match a
whitelisted IP address. On the escorting firewall, run the “/bin/ps ax” command. In 
the out put you should see a line containing the following: “/usr/local/bin/nessus -
q -T text 127.0.0.1 1241 /var/log/escort/192.168.6.200-target



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

/var/log/escort/192.168.6.200-results”, where the IP address is theremote
access server assigned IP address of the system from which you connected.

If the NessusScan script functioned properly there should be a log file
when the scan is finished in /var/log/escort. The output of the log file should look
similar to this one (some whitespace and superfluous new lines removed):

# /bin/cat /var/log/escort/192.168.6.200-results
Nessus Scan Report
------------------
SUMMARY

- Number of hosts which were alive during the test : 1
- Number of security holes found : 0
- Number of security warnings found : 5
- Number of security notes found : 5

TESTED HOSTS

192.168.6.200 (Security warnings found)

DETAILS

+ 192.168.6.200 :
. List of open ports :
o ssh (22/tcp) (Security warnings found)
o netbios-ssn (139/tcp) (Security notes found)
o epmap (135/tcp)
o general/tcp (Security warnings found)
o general/udp (Security notes found)
o general/icmp (Security warnings found)
o netbios-ns (137/udp) (Security warnings found)

. Warning found on port ssh (22/tcp)
The remote SSH daemon supports connections made
using the version 1.33 and/or 1.5 of the SSH protocol.

These protocols are not completely cryptographically
safe so they should not be used.

Solution :
If you use OpenSSH, set the option 'Protocol' to '2'
If you use SSH.com's set the option 'Ssh1Compatibility' to 'no'

Risk factor : Low

. Information found on port ssh (22/tcp)
An ssh server is running on this port

. Information found on port ssh (22/tcp)
Remote SSH version : SSH-1.99-OpenSSH_3.8p1

. Information found on port ssh (22/tcp)
The remote SSH daemon supports the following versions of the
SSH protocol :
. 1.33
. 1.5
. 1.99
. 2.0

. Information found on port netbios-ssn (139/tcp)
An SMB server is running on this port

. Warning found on port general/tcp
The remote host uses non-random IP IDs, that is, it is
possible to predict the next value of the ip_id field of
the ip packets sent by this host.

An attacker may use this feature to determine traffic patterns
within your network. A few examples (not at all exhaustive) are:

1. A remote attacker can determine if the remote host sent a packet
in reply to another request. Specifically, an attacker can use your
server as an unwilling participant in a blind portscan of another
network.

2. A remote attacker can roughly determine server requests at certain



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

times of the day. For instance, if the server is sending much more
traffic after business hours, the server may be a reverse proxy or
other remote access device. An attacker can use this information to
concentrate his/her efforts on the more critical machines.

3. A remote attacker can roughly estimate the number of requests that
a web server processes over a period of time.

Solution : Contact your vendor for a patch
Risk factor : Low

. Warning found on port general/tcp
Your machine answers to TCP packets that are coming from a multicast
address. This is known as the 'spank' denial of service attack.

An attacker may use this flaw to shut down this server and
saturate your network, thus preventing you from working properly.

Solution : contact your operating system vendor for a patch.
Filter out multicast addresses (224.0.0.0/4)

Risk factor : Medium

. Information found on port general/udp
For your information, here is the traceroute to 192.168.6.200 :
192.168.6.22
192.168.6.200

. Warning found on port general/icmp
The remote host answers to an ICMP timestamp request. This allows an
Attacker to know the date which is set on your machine.

This may help him to defeat all your time based authentication protocols.

Solution : filter out the ICMP timestamp requests (13), and the outgoing
ICMP timestamp replies (14).

Risk factor : Low
CVE : CAN-1999-0524

. Warning found on port netbios-ns (137/udp)
The following 2 NetBIOS names have been gathered :
CHANGEME = This is the computer name registered for workstation
services by a WINS client.
TEMP = Workgroup / Domain name
The remote host has the following MAC address on its adapter :

0x00 0x05 0x9a 0x3c 0x78 0x00

If you do not want to allow everyone to find the NetBios name
of your computer, you should filter incoming traffic to this port.

Risk factor : Medium
CVE : CAN-1999-0621

------------------------------------------------------
This file was generated by the Nessus Security Scanner
#

If the number of holes or the number of warnings exceeded the threshold
values that you specified in the /usr/local/sbin/NessusScan script, defaults 3 and
7 respectively, then you should also see the IP address in the
/var/log/escort/blocked_hosts file. If you see the address in the
/var/log/escort/blocked_hosts file but the thresholds were not exceeded, verify
that the address was not blocked by Snort2pf, using the command “/bin/cat

/var/log/snort/alert | /usr/bin/egrep 'PORT.+from 192.168.6.200|^.+:..:.+192.168.6.200:.+\-'”. If it shows up, and 
the timestamps on the alerts are within the amnesty time, then it was most likely
Snort2pf that blocked you. Also note that /var/log/messages should contain many
lines pertaining to the Nessus scan if you configured
/usr/local/etc/nessus/nessusd.conf to send its messages to syslog, otherwise
they will be wherever you specified with the logfile value.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Assuming that you did not discover that your IP address had been blocked
in the previous test, now you will want to test Snort. From a system that should
not be on the whitelist, run an nmap stealth scan, -sS, against the escorting
firewall with–T5 and–p 900-950 parameters. This will very very quickly scan
TCP ports 900 through 950 on the escorting firewall. If you enabled the Snort
portscan preprocessor, then running “/bin/cat /var/log/snort/alert | /usr/bin/egrep 'PORT.+from

192.168.6.200'”, where the IP address is the IP address from which you were running 
nmap, will produce a message such as the following: “[**] [100:1:1] spp_portscan: PORTSCAN

DETECTED from 192.168.6.200 (THRESHOLD 5 connections exceeded in 0 seconds) [**]”.

Finally, if Snort2pf was properly configured the IP address from which you
were running nmap will appear in /var/log/escort/blocked_hosts. If the IP address
does not appear there run “/bin/ps ax | /usr/bin/grep snort2pf”. Check the number 
of hosts that Snort2pf believes that it is blocking. Verify that number against the
number of IP addresses in /var/log/escort/blocked_hosts less the number of
Nessus results files in /var/log/escort/ that exceed your NessusScan specified
thresholds. Unfortunately with the current proof of concept scripts, there is no
way to be certain whether or not Snort2pf and NessusScan both added the
systems to the blocked_hosts file but you can compare the time for each host in
the blocked_hosts file with the timestamps on the logs; this is admittedly a
terrible procedure.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Conclusion

If you have read this far hopefully you have been inspired to rethink your
approach to securely allowing remote users access to your network. This project
was a lot fun writing about and hopefully the SANS community will benefit from
this work. OpenBSD is a great platform for providing security services because it
has been very well designed and because it is easy to maintain. PERL is easy to
learn and is a good tool for automating security. If you have resisted automating
your administrative tasks because you do not have a programming background
and are intimidated by scripting, this is a great project to use to begin learning the
PERL scripting language. Maybe the next feature you can add is a way to
determine if your remote access users have the latest anti-virus definitions
installed. Perhaps your policy forbids VPN split-tunneling, you could write a script
to see if the user’s public IP address responds to ICMP echo requests, or TCP 
connect scans. Whatever new problem you solve, be creative and add something
useful to the community.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendices



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix A: Network Diagram

Example Network

Remote User Portal

Trusted Network

Accounting

Internet

Switch

501 PIX Firewall

192.168.6.22

Escorting
Firewall

RADIUS
Server

Border Router

PIX Switch

Switch

192.168.6.69

192.168.6.1

192.168.6.105



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Transparent Design Model

Remote User Portal

Trusted Network

Accounting

Internet

Switc

501 PIX Firewall

Escorting
Firewall

RADIUS
Server

Border Router

PIX Switch

Linksys Switch

192.168.6.69

192.168.6.1

192.168.6.105

Nessus
Scanner

192.168.6.22



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix B: System Under Fire

This image was taken during the vulnerability testing of Nessus. I started over 100
Nessus scans in an attempt to analyze how the system behaved during a resource attack.
In this example I stopped sending new scan requests once the consoles became totally
unresponsive. About ten hours later I checked the system and other than a few Nessus
processes that had hung forever the system was fine. Later on I enabled the be_nice value
in the nessus.conf file and generated twice as many scans. Ten hours later I power cycled
the system because it still had not recovered. Hopefully you will only ever see this in a
lab.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix C: Proof of Concept PERL Scripts

Snort2pf–Written by Stephan Schmieder. Modified by Gerald Comeaux and Benjamin
Eason

#!/usr/bin/perl -T
# Addittions Copyright Benjamin Eason 2004 <beason@sec-res.com>
# Copyright (c) 2003, 2004
# Stephan Schmieder <ssc@unix-geek.info>. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
the
# documentation and/or other materials provided with the
distribution.
#
# THIS SOFTWARE IS PROVIDED BY STEPHAN SCHMIEDER AND CONTRIBUTORS ``AS
IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL STEPHAN SCHMIEDER OR CONTRIBUTORS
BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF
# SUCH DAMAGE.

use strict;

#use warnings;
#use diagnostics;

my ( $blockfile, $alertfile, $pfctl, $tail, $amnesty, %bad_hosts,
@white_hosts, $tmp, $alert_size, $block_size, $update, $line, $list,
@array, $whiteFile, $cp );

# <configuration>
$alertfile = '/var/log/snort/alert'; # The Snort alert file
$blockfile = '/var/log/escort/blocked_hosts'; #This is just a temp file
$whiteFile = '/etc/escort/white_hosts'; # Put trusted systems in here 1
per line
$pfctl = '/sbin/pfctl';
$tail = '/usr/bin/tail';
$cp = '/bin/cp';
$amnesty = 60 * 60 * 12; # seconds * minutes * hours to wait before
unblocking IP
# </configuration>
my $version = "Escort";



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

# Call the initialize sub routine
&initialize();

# After initialize, run this infinite loop that checks for Snort alerts
and unblocks
# based on the amnesty value
while (sleep(1)) {

#unblock old hosts
&unblock( time - $amnesty );

# process alertfile if modified
$tmp = (stat($alertfile))[7];
if ($tmp > $alert_size) {

open( DATA, "$tail -c ".($tmp - $alert_size)." $alertfile |" )
or die("Unable to read last bytes from alertfile ($!)\n");

$alert_size = $tmp;
while ( defined( $tmp = <DATA> ) ) {

chomp $tmp;
if ($tmp) {

&block( &check_for_attack( &check_for_portscan($tmp) ) );
}

}
close(DATA);

}
}

# The initialize sub reads in the white list and gets the intial size
of the Snort Alert
# file. It also processes the command line arguments.
sub initialize {

# parse command line
for ( my $i = 0; $i < $#ARGV; $i++ ) {

if ( $ARGV[$i] eq '-s' ) {
if ( $ARGV[++$i] =~ /^(?:\d+)$/ ) {

$amnesty = $1;
} else {

die("insane option for \"-s\"");
}

} elsif ( $ARGV[$i] eq '-f') {
if ( $ARGV[++$i] =~ /^([0-9A-z\.\/]+)$/ ) {

$alertfile = $1;
} else {

die("insane option for \"-f\"");
}

}
}

# set/check environment
delete @ENV{qw(PATH IFS CDPATH ENV)};
&update_title();
if ( !-e $blockfile ) { #The blockfile was added to synchronize the

two main scripts
system("$cp /dev/null $blockfile"); #I don’t like to touch

}
if ( !-r $alertfile ) {

die("\"$alertfile\" is not readable");
}
if ( !-x $pfctl ) {

die("\"$pfctl\" is not executeable");
}



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

if ( !-x $tail ) {
die("\"$tail\" is not executeable");

}
$alert_size = ( stat($alertfile) )[7];
$block_size = ( stat($blockfile) )[7];

# Get whitelist, the list of systems to never block
init_white();

}

sub init_white { #This sub loads a list of IP addresses from a file, 1
per line

my ($white_addr,$i);
$i=0;
open (WHITE, "$whiteFile");
while ($white_addr = <WHITE>) {

chomp($white_addr);
$white_hosts[$i] = $white_addr;
$i+=1;

}
close (WHITE) || die("Unable to close white_hosts file ($!)");

}

sub update_title {
# update the string that's shown by ps(1) – Very cool feature
my $hosts = scalar keys %bad_hosts;
$0 = 'snort2pf '.$version.' :: blocking '.(scalar keys %bad_hosts).'

hosts';
}

sub check_for_attack {
if ( $_[0] =~

/^(?:\d{2}(?:\/|-|:|\.)){5}\d{6} ((?:\d{1,3}\.){3}\d{1,3})[: ]/ )
{

$_[0] = $1;
}
return ( $_[0] );

}

sub check_for_portscan { #Portscan preprocessor not enabled by default,
see snort.conf

if ( $_[0] =~ /PORTSCAN DETECTED from ((?:\d{1,3}\.){3}\d{1,3})[: ]/i
) {

$_[0] = $1;
}
return ( $_[0] );

}

sub block {

# reset $update
my $update = 0;

# this hash is unique to this sub
my %block_array;

# validate IPv4 address
my $tmp = $_[0];
if ( $tmp =~ /^(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})$/ ) {

if ( $1 >= 1
and $1 <= 255
and $1 != 127
and $2 >= 0
and $2 <= 255



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

and $3 >= 0
and $3 <= 255
and $4 >= 1
and $4 <= 254
and ! check_if_white($tmp) ) # Added check for whitelist
{

# block host
$bad_hosts{$tmp} = time;
# write this to a file
open( BLOCK, "+< $blockfile");

# Take the current file, read it in to a hash.
$block_array[ip] time of block

while ($line = <BLOCK>) {
chomp($line);
@array = split(/ /,$line);
$block_array{$array[0]} = $array[1];

}

# If the ip is already in the list, don't add it again, just
update the time

foreach $list (keys (%block_array)) {
if ($tmp eq $list) {

$block_array{$list} = time;
$update=1;

}
}

# clear the file, and repopulate it with the current info from
the hash

seek(BLOCK,0,0);
foreach $list (keys (%block_array)) {

print BLOCK "$list $block_array{$list}\n";
}
truncate(BLOCK,tell(BLOCK));

# finally, if we didn't update a time, add the ip and time to
the end of the

# file
if (!$update) {

print BLOCK "$tmp $bad_hosts{$tmp}\n";
print "adding $tmp $bad_hosts{$tmp}\n";

}
close( BLOCK ) || die ("Can't close blockfile ($!)\n");

# after it's been recorded in the file, do the actual blocking
open( PFCTL, "| $pfctl -a snort2pf:$tmp -f -" )

or warn("Can't block $tmp($!)\n");
print PFCTL "block in quick from $tmp to any\n";
close(PFCTL) or die("Can't write to pfctl pipe($!)\n");

} # closing if=properly formatted and not white host
} # closing if=proper numbers
&update_title();

} # closing sub

sub check_if_white {
my ($passed_target) = @_;
my ($other_white_addr);
print "checking if whitelisted\n";
foreach $other_white_addr (@white_hosts) {

if ($other_white_addr eq $passed_target) {
return 1;

}
}



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

return 0;
}

sub unblock {
# idea: we don't want to be constantly reading from the drive every
second.
# we need to have a way to keep the records in a hash (%bad_hosts?)
# and only update if the file's been changed, a la the original
snort2pf

# this hash is unique to this sub
my %block_array;

# process blockfile if modified

$tmp = ( stat($blockfile) )[7];
if ( $tmp > $block_size ) {

open( DATA, "$tail -c ".($tmp - $block_size )." $blockfile |")
|| die("Unable to read from blockfile ($!)\n");

$block_size = $tmp;
while ( defined( $tmp = <DATA> )) {

chomp $tmp;
# read it into an array again
@array = split(/ /,$tmp);
$block_array{$array[0]} = $array[1];

}

#after populating the %block_array, add new stuff to %bad_hosts
#at this point, the file should always be the more up to date of

the two
foreach $list (keys %block_array) {

if (!exists ($bad_hosts{$list})) {
$bad_hosts{$list} = $block_array{$list};

}
}

#finally, check for and perform unblocks,and update file
seek(DATA,0,0);
truncate(DATA,tell(DATA));
foreach $tmp ( keys %bad_hosts ) {

if ( $bad_hosts{$tmp} <= $_[0] ) {
delete $bad_hosts{$tmp};
!system("\"$pfctl\" -a snort2pf:$tmp -F rules")

or warn("Can't unblock $tmp($!)\n");
} else {

print DATA "$tmp $bad_hosts{$tmp}\n";
}

}

close( DATA ) || die("Could not close blockfile ($!)\n");

} #this closes the 'if' loop commented out above

&update_title();
}



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

scanacces–Written by Gerald Comeaux and Benjamin Eason. Inspired by Stephan
Schmieder’s Snort2pf.

#!/usr/bin/perl
# The –T parameter should be used for perl. This proof of concept
script
# sometimes however has difficulties with insecure system calls.
# Addittions Copyright Benjamin Eason 2004 <beason@sec-res.com>
# Copyright (c) 2003, 2004
# Stephan Schmieder <ssc@unix-geek.info>. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
the
# documentation and/or other materials provided with the
distribution.
#
# THIS SOFTWARE IS PROVIDED BY STEPHAN SCHMIEDER AND CONTRIBUTORS ``AS
IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL STEPHAN SCHMIEDER OR CONTRIBUTORS
BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF
# SUCH DAMAGE.

use strict;

#use warnings;
#use diagnostics;

my ( $username, $pfctl, $loginfile, $whiteFile, $tail, %bad_hosts,
%user_list, $tmp, $size, $name, $ip_address, $userlist, @fields,
@white_hosts, $echo, $NessusScan, $nessustargetpath );

# <configuration>
$loginfile = '/var/log/ciscolog';
$tail = '/usr/bin/tail';
$pfctl = '/sbin/pfctl';
$echo = '/bin/echo';
$NessusScan= '/usr/local/sbin/NessusScan';
$userlist = '/etc/escort/userlist';
$whiteFile = '/etc/escort/white_hosts';
$nessustargetpath = '/var/log/escort';
# </configuration>



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

&initialize();

while (sleep(1)) {

# check diff in bytes, then read it in
$tmp = ( stat($loginfile))[7];
open( DATA, "$tail -c ".($tmp - $size)." $loginfile |" )

or die("Unable to read last bytes from loginfile ($!)\n");
# save that position for later
$size = $tmp;
while ( defined( $tmp = <DATA> ) ) {

chomp ($tmp);
if ($tmp) {

@fields = split(/ /,$tmp);
if (($fields[5] eq "Authen") and ($fields[7] eq "Start:")) {

print "$fields[9]";
$username = substr($fields[9],1,30);
chop ($username);
chop ($username);
$ip_address = $user_list{$username};
print "Username: $username\n";
if (! check_if_white($ip_address)) {

#nessus wants to read it's target from a file, so put it
there.

system("$echo $ip_address > $nessustargetpath/$ip_address-
target");

system("$NessusScan $ip_address &");
} # End If not on white list

}
}

}
close(DATA);

}

sub initialize {

# set/check environment
delete @ENV{qw(PATH IFS CDPATH ENV)};
if ( !-r $loginfile ) {

die("\"$loginfile\" is not readable");
}
if ( !-x $tail ) {

die("\"$tail\" is not executeable");
}
$size = ( stat($loginfile) )[7];

open (USERLIST, "$userlist");
while ($name = <USERLIST>) {

chomp ($name);
$ip_address = <USERLIST>;
chomp ($ip_address);
$user_list{$name} = $ip_address;

}
close (USERLIST);
init_white();

}

sub init_white {
my ($white_addr,$i);
$i=0;
open (WHITE, "$whiteFile");
while ($white_addr = <WHITE>) {



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

chomp($white_addr);
$white_hosts[$i] = $white_addr;
$i+=1;

}
close (WHITE) || die("Unable to close white_hosts file ($!)");

}

sub check_if_white {
my ($passed_target) = @_;
my ($other_white_addr);
print "\nChecking if $passed_target is on whitelist\n";
foreach $other_white_addr (@white_hosts) {

if ($other_white_addr eq $passed_target) {
print "$passed_target is on whitelist.\n";
return 1;

}
}
print "$passed_target is NOT on whitelist.\n";
return 0;

}



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

NessusScan–Written by Gerald Comeaux and Benjamin Eason. Inspired by Stephan Schmieder’s Snort2pf

#!/usr/bin/perl

use strict;

my ($holes_threshold, $warnings_threshold, $targetFile, $resultsFile,
$blocked_hosts, @bfields, $bfields, $line, $scan, $rm, $nessus,
$rfields, @rfields, $time, $warnings );

$holes_threshold = 3;
$warnings_threshold = 7;
$targetFile = "/var/log/escort/$ARGV[0]"."-target";
$resultsFile = "/var/log/escort/$ARGV[0]"."-results";
$blocked_hosts = "/var/log/escort/blocked_hosts";
$rm = "/bin/rm";
$nessus = "/usr/local/bin/nessus";
$scan = "$nessus -q 127.0.0.1 1241 escortscript thescriptpassword";

check_if_blocked();
run_scan();
check_results();

sub check_if_blocked {
print "checking if blocked\n";
open (BLOCKED, "$blocked_hosts")

|| die("Unable to open blocked_hosts file ($!)\n");
while ($line = <BLOCKED>) {

chomp ($line);
@bfields = split(/ /,$line);
if ($bfields[0] eq "$ARGV[0]") {

system("rm $targetFile");
die("$bfields[0] is already blocked\n");

}
}
close (BLOCKED) || die("Unable to close blocked_hosts file ($!)");

}

sub run_scan {

print "scanning $ARGV[0]\n";
system("$scan $targetFile $resultsFile -T text > /dev/null");
system("$rm $targetFile");

}

sub check_results {
open ( RESULTS, "$resultsFile")

|| die("Unable to open results file ($!)\n");
while (($line = <RESULTS>) && ($rfields[1] ne "HOSTS")) {

chomp ($line);
@rfields = split(/ /,$line);
if ($rfields[5] eq "holes") {

$holes = $rfields[8];
}
if ($rfields[5] eq "warnings") {

$warnings = $rfields[8];
}

}

close ( RESULTS ) || die("Unable to close results file ($!)\n");
if (($holes ge $holes_threshold) || ($warnings ge

$warnings_threshold)) {
print "Host exceeds threshold, blocking\n";



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

open(BLOCK, ">>blocked_hosts");
$time = time;
print BLOCK "$ARGV[0] $time\n";
close( BLOCK ) || die("Can't close blockfile ($!)\n");

}
}



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

Felton, Ed. “State-Level "Super DMCA" Initiatives Archive: Affected States.” Electronic Frontier 
Foundation. 2003. URL: http://www.eff.org/IP/DMCA/states/#affectedstates (2 May 2004).

Holland, Nick. “Documentation and Frequently Asked Questions.” OpenBSD. 30 April 2004. URL: 
http://www.openbsd.org/faq/index.html (2 May 2004).

Schmieder, Stehpan. “Snort2pf.” SSC. 10 April 2004. URL: http://bsd-
security.org/~ssc/codedocs/snort2pf/ (2 May 2004).

Shaffer, George. "Hardening OpenBSD Internet Servers." Geodsoft. 15 Dec 2001. URL:
http://geodsoft.com/howto/harden/ (2 May 2004).

Slow2Show. “Mini-HOWTO on setting up Win2k, OpenBSD, and Linux for a triple boot system.” 
Gainesville2600. September 2002. URL:
http://www.gainesville2600.org/stuff/obsd_linux_win2k_howto.htm


