
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
1 of 53

An Introduction to SELinux
For Administrators

GCUX Practical
Version 3.0, Option 2

by Jeff Pike
15 April 2005

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
2 of 53

Table of Contents

An Introduction to SELinux for Administrators 4
Abstract 4
Acknowledgments 4
Introduction 4

The Problem: 4
Traditional Solutions: 7
The SELinux Alternative: 7
A Brief History: 8

Fundamental SELinux Concepts 10
Security Models 10

Discretionary Access Control (DAC) 10
Mandatory Access Control (MAC) 10
Type Enforcement (TE) 11
Role Base Access Control (RBAC) 11
Domain Type Enforcement (DTE) 11
Flask Architecture 12

SELinux Architecture 12
Linux Security Modules (LSM) 13
Security Server 13
Security Policy 14

Fedora Core Targeted 15
Fedora Core Strict 15

Access Vectors 15
Security Contexts 16

Default Users 16
Default Roles 17
Some Important Default Types 17

Miscellaneous Elements 17
Classes 17
Type Attributes 17
Conditional/Policy Booleans 18
Initial SIDs 18
Macros 18

Fundamental SELinux Administration 19
Installation 19
Basic Administration 21

Operating Modes 22
Status 23
Changing Policies 23

Security Policy Administration 25
Logging 26
Policy Tweaking 27
Adding Users 31
Seaudit 35

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3 of 53

Miscellaneous Administration 38
Future Development and Conclusions 40

Future Development 40
Conclusions 41
Appendix A: Glossary 42
Appendix B: Quick Reference 44

Commands 44
Replaced Commands 45
RBAC/TE Policy 46

AV rules 46
FC Files 47
Generic Policy Notation 47
Miscellaneous Policy Keywords 47

Appendix C: List of References 48

Table of Figures
Figure 1: Layered Access Controls 6
Figure 2: Fedora Core Installation 20
Figure 3: system-config-securitylevel 24
Figure 4: Security Level Confirmation 24
Figure 5: Sepcut – mount.te 29
Figure 6: Sepcut – Test Policy 30
Figure 7: Seuserx – Add new user - Properties 32
Figure 8: Seuserx – Add new user – Advanced Options 33
Figure 9: Seuserx – Main Window 34
Figure 10: Seaudit 36
Figure 11: Seaudit – Query Policy 37
Figure 12: Apol – Domain Transition Analysis 39

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
4 of 53

1 Viega and McGraw (2002); p. xix
2 Pomeranz (2003); pp. 2-1 through 2-21

An Introduction to SELinux for Administrators

Abstract
This paper is an introduction to Security Enhanced Linux (SELinux) for Unix
system administrators and analysts. It is assumed that the reader has a
fundamental knowledge of Unix system administration and security issues. The
fist section of this paper will focus on the fundamental concepts of SELinux that
make it a sound choice for secure hosting of applications. The second section
will introduce basic SELinux administration topics and issues. Footnotes are
used for references and other details beneficial to those seeking information not
discussed in the text

Acknowledgments
The author would like to thank Adrienne Payette for the editorial review. Special
thanks are owed to Spring Helligrath for the painstaking technical review.

Introduction
About two years ago the author was asked to provide a vulnerability analysis of
a system running SELinux. The lack of resources written for Unix administrators
made the learning curve steep. The goal of this paper is to provide one such a
resource for Unix administrators and security analysts. SELinux provides an
excellent platform for secure hosting. It deserves consideration as a hosting
option when increased security is required.

The Problem:
The problem is that operating systems do not provided protection from
vulnerabilities constantly being discovered in software. Bruce Schneier says,
“We wouldn’t have to spend so much time, money, and effort on network
security if we didn’t have such bad software security.”1 The CERT archives and
Bugtraq mailing lists are full of software vulnerabilities. Vulnerabilities exist in
routing protocols, hash functions, office applications, web browsers, mail
transfer agents, operating systems, etc. News of new software vulnerabilities is
published daily. Vendors usually release patches for operating systems and
applications a short time after vulnerabilities are publicly disclosed. Even so, all
remain at the mercy of any attacker with knowledge of zero-day vulnerabilities
hidden within their systems. Wouldn’t it be better if operating systems actually
offered some protection?

Hal Pomeranz describes UFS as the Untrustworthy File System.2 This is quite
true of most Unix operating systems. The problem lies in the fact that Unix was
never designed to be a secure operating system. According to Ross Anderson:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
5 of 53

3 Anderson (2001); p. 69
4 Anderson (2001); p. 52
5 Loscocco, Smalley, Muckelbauer, Taylor, Turner, and Farrell (1998); p. 1

Unix…was originally designed as “single-user Multics” (hence the name).
It then became an operating system used by a number of skilled and
trustworthy people in a laboratory who were sharing a single machine. In
this environment, the function of the security mechanism is primarily to
contain mistakes, to prevent one user’s typing errors or program crashes
from deleting or overwriting another user’s files. The original security
mechanisms were quite adequate for this purpose.3

As time passed Unix was extended beyond this environment. Its security
mechanisms were not. Its traditional discretionary access control (DAC) is
effectively an all-or-nothing model. Users and processes can either access files
or they can’t. The principle of least privilege, which states that no process
should be given more privileges than necessary to perform its required function,
is nowhere to be found here. The DAC model is not conducive to building
secure systems in today’s environment. It lacks the granularity required to
adequately enforce the principle of least privilege.

Access control determines what system resources a user or process can utilize
in a system. Access controls as a whole can be thought of in terms of layers.4
Operating system access controls rely on the architecture of the processor.
Databases, system- level services, and shared libraries rely on the access
controls provided by the operating system. Applications rely on access controls
implemented by any service below them which they use. There are even layers
of applications. Mobile code relies upon the access controls and security
mechanisms implemented in the web browser application. Access controls at
each layer are dependent upon the correct function of those below them just like
network protocol models. Peter Loscocco, et al describe the problem best:

The increased awareness of the need for security has resulted in an
increase of efforts to add security to computing environments. However,
these efforts suffer from the flawed assumption that security can
adequately be provided in application space without certain security
features in the operating system. In reality, operating systems security
mechanisms play a critical role in supporting security at higher levels.
This has been well understood for at least twenty five years and
continues to be reaffirmed in literature. Yet today, debate in the research
community as to what role operating systems should play in secure
systems persists. The computer industry has not accepted the critical
role of the operating system to security as evidenced by the inadequacies
of the basic protection mechanisms provided by current mainstream
operating systems.5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
6 of 53

6 Loscocco, Smalley, Muckelbauer, Taylor, Turner, and Farrell (1998); p. 4
7 Anderson (2001); p.52

Mainstream commercial operating systems rarely support the principle of
least privilege even in their discretionary access control architecture.
Many operating systems only provide a distinction between a completely
privileged security domain and a completely unprivileged security domain.
Even in Microsoft Windows NT, the privilege mechanism fails to
adequately protect against malicious programs because it does not limit
the privileges that a program inherits from the invoking process based on
the trustworthiness of the program.6

Figure 1 below depicts a common implementation of Ross Anderson’s concept
of layered access controls.7

Figure 1: Layered Access Controls

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
7 of 53

8 Or privileged and unprivileged.

For many years industry has made up for poor operating system access controls
by attempting to implement them at higher levels. Most modern processor
architectures, such as the i386, support two modes of execution: kernel and
user.8 The privileged kernel mode is used to protect key operating system
components from less privileged user mode processes. Memory is protected by
virtual memory schemes. Above that level are the familiar operating system
discretionary access controls. Any processes, such as databases, services,
and applications rely upon the OS and hardware design as a foundation.
Unfortunately, the discretionary access controls implemented by most modern
operating systems offer an insufficient foundation upon which to build.

Processes run with the privileges of some system or user account.
Unfortunately, most software processes run with privileges far in excess of what
is needed to perform their function. Many run with root privileges. Because this
entire house of cards is built on a foundation that does not enforce least
privilege, it is subject to collapse. An attacker exploiting a vulnerable process
will have access to all its system resources. In some cases that means root.
Because of weakness in the DAC model, the protection offered by other layers
falls through to the OS layer once any process is exploited.

Traditional Solutions:
The principle of least privilege offers sufficient protection when properly applied.
In a nutshell, the principle states that any user, process, application, or service
should have no more privilege than is necessary to complete any required
function. If the principle of least privilege is actually applied to a system hosting
a vulnerable application, the worst that can happen is compromise of that
application rather than the entire system.

Some traditional methods of enforcing least privilege on Unix hosts include
minimizing services, fix-modes, sudo, and chroot(). The principle of least
privilege can also be applied to networks in the form of segregation, packet
filtering, and firewalling. There are less common methods that attempt to
address the heart of the problem in Unix environments including grsecurity, User
Mode Linux, Trusted BSD, Trusted Solaris, and SELinux. Many of these
potential solutions are gaining momentum. The remainder of this paper will
focus on the leading open source solution, SELinux.

The SELinux Alternative:
As delineated by Loscocco, et al, “If security practitioners were to more openly
acknowledge their security solution’s operating system dependencies as
requirements for future operating systems, then the increased demand for
secure operating systems would lead to new research and development in the
area and ultimately to commercially viable secure systems.”9 An organizations

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
8 of 53

9 Loscocco, Smalley, Muckelbauer, Taylor, Turner, and Farrell (1998); p. 10
10 National Security Agency, “Security-Enhanced Linux”
11University of Utah, (2000); “The Distributed Trusted Operating System (DTOS) Home Page”
12 University of Utah, (2000); “Flask: Flux Advanced Security Kernel”
13 National Security Agency, “Historical Versions of SELinux”

security staff and system administrators cannot correct vulnerabilities in software
that their organization merely licenses from another party. However, there are
operating systems that offer some protection in the form of stronger access
controls. One leading alternative is SELinux.

In traditional DAC, the owner of an object (or file) is able to grant permissions to
other users. Mandatory Access Control (MAC), by contrast, is a system-
enforced mechanism that cannot be overridden by the owner. Role Based
Access Control (RBAC) controls access to resources through the use of profiles
and roles. SELinux augments the traditional DAC model in Linux with MAC and
RBAC. This provides a powerful yet flexible mechanism for controlling access
to the system.

SELinux can be used anywhere increased access controls are required.
Increased granularity in access controls gives administrators and architects the
ability to enforce least privilege with increased vigor. SELinux is a sound choice
for bastion hosts in a DMZ such as web and DNS servers. SELinux also makes
a good host operating system for security appliances such as firewalls and
intrusion detection systems. When vulnerabilities are discovered against
applications running on SELinux, the worst likely result is denial of service
against that application. SELinux provides the MAC high security environments.
SELinux comes installed and enabled by default on Fedora Core 3 (FC3).

A Brief History:
Much research was conducted by the government on security models in the
1970’s. The government has always had an interest in developing secure
operating systems for military applications. The National Security Agency (NSA)
has long been involved in operating systems security research as part of its
information assurance mission.10 SELinux incorporates the results of several
previous research projects including DTMach, DTOS,11 and Flux. Each of these
projects borrowed from their ancestors and the resulting architecture was
Flask.12 SELinux is an implementation of the Flask architecture.

SELinux was developed by the NSA, Secure Computing Corporation (SCC), and
the University of Utah’s Flux research group. It was first released to the public
on December 22nd, 2000 based on the Linux kernel version 2.2.12 and RedHat
6.1 utilities. It was designed to provide a MAC architecture in an effort to
address confidentiality and integrity requirements not met by existing
mainstream operating systems.

There have been four major releases of SELinux:13

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
9 of 53

Original Implementation - Pre-LSM kernel patch:
Before Linux Security Module (LSM) framework was integrated into the Linux
kernel, SELinux was installed as a kernel patch. This version supported Linux
2.2 and Linux 2.4

Old LSM SELinux:
The LSM hooks were made use of in this release. Extended attributes were
used for security labeling. This release was the first step in preparing SELinux
for integration into mainline Linux. SELinux was still installed as a patch against
the 2.4.21 or 2.5.66 kernels.

2.4-based SELinux (2.6 version back-ported):
This version is no longer supported or maintained. It was based on 2.6 SELinux
and back ported for those still using 2.4 based kernels. It still had to be installed
as a kernel patch, and the last one was the 2.4.26 kernel. It contains all the
features of current 2.6 SELinux, but it does not have any recent improvements.

Current 2.6-based SELinux:
SELinux is included in the mainline 2.6 kernel. NSA’s patch against the kernel
could be applied to get the latest enhancements providing the required kernel
sources are present. For most users of Fedora Core, RedHat Enterprise Linux,
or other 2.6 based distributions there will be no compelling reason to keep up
with the latest.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10 of 53

14 It is important to note that process can be both subjects and objects in SELinux.

Fundamental SELinux Concepts
This first of two main sections will discuss the security features and underlying
mechanisms of SELinux that make it a more secure OS. SELinux and relevant
security models have a language all their own. “Appendix A: Glossary” of this
document makes a handy reference while reading this section.

Security Models
To understand how SELinux works, it is necessary to have a basic concept of
several security models which play a part in its overall architecture. These
models are made up of abstract ideas and virtual components.

Discretionary Access Control (DAC)
DAC is the traditional all-or-nothing security model used in Unix and Windows
systems. Each user is able to assign permissions to objects they own.
Because of this, system-wide security policies cannot be enforced. Essentially,
there are two levels of permissions with this model: root and non-root. Software
and processes are often given permissions far in excess of what they require to
perform their functions. DAC does a poor job of implementing the concept of
least privilege.

Within SELInux the standard DAC architecture implemented by Linux is still
used. Standard Linux permissions are checked for all actions first. If actions
are permitted by DAC, then control is passed to the SELinux security server.

Mandatory Access Control (MAC)
Mandatory access control has its roots in the Bell-Lapadula model and multi-
level security (MLS) systems used within the DOD. The Bell-Lapadula model
itself was introduced in 1973. Within Bell-Lapadula, users and processes are
considered subjects. Processes and files are considered objects.14 Subjects
are said to be granted permission to act on objects as pre-defined by the
security policy. Any action not explicitly permitted by the pre-defined security
policy is denied.

There are reasons MAC has not been widely adopted outside the government.
The traditional multi-level security implementation of the government is too
limiting for most environments. Additionally, every organization will would to
implement a different MAC policy depending upon their environment and
applications to accurately apply the principle of least privilege.

Although SELinux is said to implement a form of MAC, it overcomes some of
the limitations of vintage MAC by implementing the policy-flexible Flask
architecture.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
11 of 53

15 Secure Computing Corporation, “Sidewinder G2 Firewall Type Enforcement Technology”
16 Ferraiolo and Kuhn (1992)
17 Badger, Sterne, Sherman, Walker, Haghighat (1995)
18 Badger, Sterne, Sherman, Walker, Haghighat (1995)
19 Walker, Sterne, badger, Petkac, Sherman, Oosendorp (1996)
20 Loscocco and Smalley (2001); “Integrating Flexible Support for Security Policies into the Linux

Type Enforcement (TE)
Type Enforcement is an access control mechanism originally developed in
1985. Like MAC it deals with subjects and objects. Subjects such as users and
processes are associated with domains. Objects such as files and directories
are associated with types. The Domain Definition Table (DDT) controls access
between domains and types. The original type enforcement model was
considered difficult to implement in practice. Challenges included the difficulty
in labeling objects with type attributes and the inherent complexity of large
tables.

Type Enforcement® technology is actually a registered trademark of Secure
Computing Corporation15. Note that Secure Computing Corporation’s highly
regarded Sidewinder firewall appliance is built on a type enforcement model. It
is said that Sidewinder has never been vulnerable.

Role Base Access Control (RBAC)
RBAC was developed16 in 1992 as a means to address the reality that most
organizations have unique security requirements that cannot be met through
DAC and MAC alone. Access to system resources is determined by a user’s
assignment to a role in an organization or membership in a group. RBAC is
actually a type of MAC not strictly based on MLS requirements of the Bell-
LaPadula model.

This is the secondary access control model in SELinux. It is used to add
flexibility to SELinux’s domain type enforcement, introduced below.

Domain Type Enforcement (DTE)
Domain and Type Enforcement is an extended version of type enforcement that
was added17 in 1995. DTE introduced two improvements to overcome the
challenges of previous TE concepts. First, it introduced the Domain and Type
Enforcement Language (DTEL) as high level language for defining security
policy. This is a user-friendly language that allows administrators to customize
the security policy to meet their requirements. Second, DTE security labels are
not stored one-to-one with files on the hard disk, but are instead maintained
implicitly based on directory hierarchy.18

SELinux implements a form of domain type enforcement19 as its primary access
control mechanism. The policy configuration language for SELinux is somewhat
different than the original DTEL mentioned here,20 but it is equally intuitive.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
12 of 53

Operating System”; p. 10
21 or MAC policies
22 Loscocco and Smalley (2001), “Integrating Flexible support for Security Policies into the Linux Operating
System”; pp. 2-3
23 Loscocco and Smalley (2001), “Integrating Flexible support for Security Policies into the Linux Operating
System”; p. 3
24 Loscocco and Smalley (2001), “Integrating Flexible support for Security Policies into the Linux Operating
System”; p. 3

Flask Architecture
The Flask security architecture grew out of several other projects and was
integrated with Linux to put the ‘SE’ in SELinux. Unlike traditional MAC, the
Flask architecture provided MAC can support many different security policies.21
The security policy is encapsulated in the security server (kernel) which makes
all security policy decisions. The security policy may be modified and reloaded
into the security server, which provides flexibility. Enforcing components called
object managers include other kernel subsystems. These are the components
that actually enforce the security policy after the security decision has been
made. Examples include IPC, sockets, and file management. The security
server itself is a kernel subsystem.22

Flask also includes the access vector cache (AVC), which caches security
decisions. This caching of security decisions allows the security policy to be
enforced with minimal impact on performance. According to Loscocco and
Smalley, most permission checks do not even incur the cost of an extra function
call.23

The Flask architecture supports labeling using security contexts and SIDs. The
security context is an actual representation of the security label. A security
identifier (SID) is a pointer to the security context. Individual object managers
(kernel subsystems) handle the labeling of their associated objects.

The Flask architecture should not be confused with its SELinux implementation.
As described by Smalley and Loscocco:

The Flask architecture merely specifies the interfaces provided by the
security server to the object managers. The implementation of the
security server, including any policy language it may support, are not
specified by the architecture.24

SELinux Architecture
SELinux is a specific implementation of the Flask architecture and more.
SELinux supports a variety of security models. It more-or-less incorporates
elements from all of the previously mentioned models. The sections that follow
provide an overview of the current implementation of SELinux.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
13 of 53

25 Smalley, Vance, and Salmon (2004); pp 6-7
26 Smalley, Vance, and Salmon (2004), pp. 9-17
27 Love, (2003), p. 197
28 Smalley (2005); p. 5
29 Smalley, Frasier (2001); p. 5

Linux Security Modules (LSM)
LSM allow support for SELinux to be built into the Linux 2.6 mainline kernel.
This is the framework upon which the current version of SELinux is built. In
March of 2001, the NSA gave a presentation about SELinux at the 2.5 Linux
Kernel Summit. Smalley, Vance, and Salmon explain the results:

In response to the NSA presentation, Linus Torvalds made a set of
remarks that described a security framework we would be willing to
consider for inclusion in the mainstream Linux kernel. He described a
general framework that would provide a set of security hooks to control
operations on kernel objects and a set of opaque security fields in the
kernel data structures for maintaining security attributes. This framework
could then be used by loadable kernel modules to implement any desired
model of security. The Linux Security Modules (LSM) project was started
by Immunix to develop such a framework.25

Because of LSM, SELinux is now integrated into the mainline kernel, so no
patching is necessary. LSM improved the SELinux implementation in
interesting and well documented ways26 from the original SELinux kernel patch.

SELinux makes use of the extended attributes feature of the 2.6 kernel for
labeling files with name/value pairs.27 The setxattr, getxattr, listxattr, and
removexattr system calls can be used by programs to manipulate extended
attributes.

Security Server
In traditional security architecture, domains generally refer to subjects such as
users and processes, while types generally refer to objects like files and
devices. Within SELinux the terms type and domain are often used
interchangeably. This is particularly noticeable when defining and administering
the security policy. Stephen Smalley describes the relationship best: “The
SELinux TE model differs from the traditional TE model in that it uses a single
attribute in the security context for both processes and objects. A domain is
simply a type that can be associated with a process.”28

Optional type attributes can be used to associate multiple types with the
properties they share.29 Their names are self-descriptive and include such
examples as domain, privuser, auth, device_type, and unrestricted. There are
about 80 type attributes in the FC3 implementation of SELinux.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
14 of 53

30Smalley (2005); pp 7-24

Security Policy
Security policy is the heart of SELinux. It is compiled from numerous source
files and loaded into the security server (or kernel), which compares it to
appropriately labeled objects for access decisions. It can be customized as
needed to suit the needs of varied organizations. Several example policies are
available as a starting point. Security policies are made up of the following
elements:30

Flask definitions: define security classes, initial SIDS, and access vector •
permissions. These are built into SELinux. Most people will have no
need to change these
TE statements: define the fine-grained type enforcement rules for •
subjects and objects. These make up the largest component of SELinux
policy. They include: type declarations, type transition rules, type
changes rules, access vector rules, assertions
RBAC statements: define roles, hierarchical relationships between roles, •
and authorized transitions. Statement types consist of role declarations,
role dominance definitions, and allow rules
user declarations: define the SELinux user identities and associate the •
users with various roles. Note that these are different than Unix users.
All users must be declared to be recognized within a security context
constraint definitions: define restrictions on access vector rules based •
on a broad combination of information that can be evaluated in the form
of a boolean expression. Most people will have little reason to change
these
security context specifications: provide security context information for •
general objects such as initial SIDS, persistent and non-persistent
filesystems, and network objects

Each business has unique needs, and these needs can be reflected in its
SELinux security policy. For example, if SELinux is chosen as a hosting
platform for a device such as a security appliance, a strict, well-tested policy
could ensure that each service has no more privileges than the minimum
required to perform its function. On the other hand, an everyday user might only
desire a few server processes to be constrained by SELinux. Perhaps a bastion
host providing name services might require a strict policy with some
customization to allow for regular upgrades of BIND. NSA provides an example
policy, and the Fedora Core distribution comes with two diverse policies that can
be used as a starting point

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
15 of 53

31 Fedora Core 3 SELinux FAQ
32 The version is policy-1.22 at the time of this writing
33 Hally (2004)
34 Where ~ represents the root of the policy source tree such as /etc/selinux/strict/src/policy

Fedora Core Targeted
Because of the difficulties in trying to apply the somewhat strict NSA example
policy to the wide range of Fedora users, the Targeted policy was created. This
policy focuses on locking down specific daemons including dhcpd, httpd,
named, ncsd, ntpd, portmap, snmpd, squid, and syslog. Each of these secured
daemons runs in its own domain. The rest of the system is allowed to run
transparently under the standard Linux security model. Unsecured processes
run under the unconfined_t domain, which is not constrained by the SELinux
policy. As addressed in the Fedora Core 3 SELinux FAQ:

Specific network daemons have policy written for them, and the
unconfined_t policy transitions to those policies when the application
starts. For example, on system boot, init runs under the unconfined_t
policy, but when named starts it is transitioned to the named_t domain
and is locked down by the appropriate policy.31

Fedora Core Strict
The Fedora Core Strict is an implementation of the NSA example policy, which
is available at the NSA website.32 As the name suggests, the strict policy
applies access controls to all objects rather than a few specific processes. It is
based closely on the original example policy developed by NSA for SELinux,33

and it will need to be customized for each environment in which it is installed in.
The strict policy demonstrates the full power of the access control mechanisms
provided by SELinux.

Access Vectors
There are about 192 different permissions defined in ~/flask/access_vectors
grouped into about 53 object classes in ~/flask/security_classes.34 In SELinux
the type enforcement policy is managed using the higher level concept of roles.
It is important to remember that domains and types are interchangeable in
SELinux.

Access vector may be thought of as one of four actions the kernel can take with
a request. The syntax is domain type:class operation. Possibilities are:

allow – allow the operation and don’t log it1)
auditallow – allow the operation and log it2)
auditdeny – deny the operation and log it3)
dontaudit – deny the operation and don’t log it. 4)
neverallow – not an access vector per se; defines policy constraints5)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
16 of 53

35 The id, ps, and ls commands include a –Z option that displays SELinux security context information.
36 Note that the metasploit tarball is labeled with a type according to the directory it is located in as defined
by the security policy. For example, if it were copied to the root directory it would have the default_t type.
Files copied to the /root directory are labeled with the staff_home_t type. Objects in the /var/log directory
receive the var_log_t type.

Security Contexts
Security contexts are the primary elements of security policy. Each user,
process, file, and device has a security context that determines what access can
be granted. The subject/requestor of an action has the source context. The
object/type acted on has the target context. Security contexts are made up of
three elements:

identity (sometimes called user)1)
role2)
type (sometimes called domain)3)

An example of a security context can be seen below. In this case the user pike
has an identity of user_u, a role of user_r, and a type of user_t.

[pike@localhost ~]$ id –Z35

user_u:user_r:user_t

As a separate example, the user pike lists the contexts of the metasploit
subdirectory under his home directory. The objects have an identity of
system_u, a role of object_r, and a type of user_home_t.36

[pike@localhost metasploit]$ ls –aslZ metasploit
total 1320
drwxrwxr-x pike pike system_u:object_r:user_home_t .
drwx------ pike pike system_u:object_r:user_home_dir_t ..
drwxr-xr-x pike 408 system_u:object_r:user_home_t
framework-2.2
-rw-rw-r-- pike pike system_u:object_r:user_home_t
framework-2.2-snapshot.tar.gz

The listings that follow describe the default elements that make up SELinux
security contexts.

Default Users
cyrus: set aside for the Cyrus IMAP Daemon (Fedora specific)•
root: the system administrator•
system_u: user account for system processes•
user_u: unprivileged user account•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
17 of 53

37 There are 1287 default types on the author’s system when using the strict policy.
38 There are 53 default object classes on the author’s system when using the strict policy.
39 There are 80 type attributes on the author’s system when using the strict policy.
40 McCarty (2004); p. 134
41 See the sections on Security Policy and Fedora Core Targeted for further clarification.

Default Roles
cyrus_r: role for the Cyrus IMAP daemon (Fedora specific)•
object_r: default object role in strict policy•
staff_r: default role for sysadmins; authorized to enter sysadm_r •
sysadm_r: role used to perform administrative tasks•
system_r: used by processes•
user_r: unprivileged user role•

Some Important Default Types37

default_t: default domain for objects in strict policy•
staff_home_t: default type for objects in user home directories•
sysadm_t: domain for administrative tasks•
staff_t: default domain for system administrators; authorized to transition •
to sysadm_t
unconfined_t: a domain without enforcement for unrestricted apps in the •
target policy
user_t: domain for user_r role•

Miscellaneous Elements
Although the security context of a subject or object is the primary consideration
when modifying security policy, there are some other elements that round out
the SELinux architecture.

Classes38

Classes are logical groupings of objects. For the targeted policy in FC3 they are
defined in /etc/selinux/targeted/src/policy/flask/security_classes. Examples of
classes include:

processes: a class for process (recall that processes can be objects)•
tcp_socket: all tcp sockets•
netif: a class for network interfaces•

Type Attributes39

Type attributes are names bound to one or more types that are used to define a
set of types sharing some property.40 For the targeted policy41 in FC3 they are
defined in /etc/selinux/targeted/src/policy/attrib.te. Examples of type attributes
include:

privrole: identifies domains that can change roles•
admin: identifies administrator types/domains•
proc_fs: identifies types/domains that may be assigned to files under •

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
18 of 53

/proc

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
19 of 53

42 There are 27 conditional Booleans defined on the author’s system by default using the strict policy.
43 There are 27 initial SIDS defined on the author’s system by default using the strict policy.
44 The initial SIDs are the same for both the targeted and strict policies.
45 The exact number of macros is unknown. On the author’s system 171 were counted under the
/etc/selinux/strict/src/policy/macros and /etc/selinux/strict/src/policy/macros/programs using the following
kludged command string: grep define * |grep –v undefine |cut –f1 –d\’ |sort –u |wc -l
46 See Dunne (2000) for a good overview of M4.
47 McCarty (2004); p. 140

Conditional/Policy Booleans42

Booleans are true/false conditional values that can be used to tune a policy.
There values can be retrieved with the getsebool command and set with the
setsebool command. They can be found in the /selinux/booleans directory.
Examples of booleans include:

httpd_enable_cgi: allows httpd cgi support•
httpd_ssi_exe: allows httpd to run SSI executable in the same domain as •
system CGI scripts.
portmap_disable_trans: disables SELinux protection for portmap •
daemon.

Initial SIDs43

Initial SIDs are predefined values used to define security contexts during system
initialization. For the FC3 strict policy, these values are contained in the
/etc/selinux/strict/src/policy/initial_sid_contexts file.44 Example of initial SIDs
include:

fs: system_u:object_r:fs_t•
sysctl: system_u:object_r:fs_t•
policy: system_u:object_r:unlabeld_t•

Macros45

There are several types of macros including global, administrative, user, policy,
and program macros. They are used to ease the burden of defining users,
types, domains, transitions, and access vector rules. These M446 macros make
administering the security policy more manageable. For the strict policy on FC3
they are mostly defined under the /etc/selinux/strict/policy/macros directory.
Examples of macros include:

use_games: a policy macro that, if defined, will allow users to run games •
domain_auto_trans: a global macro that specifies and authorizes a •
transition related to the execution of a program defined as a domain entry
point.47

in_user_role: A user macro used to permit roles to access a domain•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
20 of 53

48 SE Linux for Distributions Project, “SELinux for Distributions”
49 Lemuria.org, “Installing a 2.6SELinux Kernel/System”
50 Gentoo.org, “Installing Gentoo SELinux”
51 Bleher, “Thomas’ SELinux-Pages”
52 Wood, “SE Linux”
53 RedHat, “SELinux”
54 Fedora Project, “SELinux”
55 RedHat is the sponsor of the Fedora Core project.
56 National Security Agency, “SELinux Mailing List”
57 National Security Agency, “Download 2.6-based SeLinux” Note that the development is very active and
version numbers of NSA components change frequently.
58 Enforcing mode actually “enforces” the security policy as described in figure 2.
59 Coker, Russell “SELinux Play Machine”

Fundamental SELinux Administration
This section will introduce fundamental SELinux installation, configuration, and
administration issues. The goal is to provide enough information to allow the
reader a running start into further exploration of SELinux. “Appendix B: Quick
Reference” may be useful to readers of this section.

SELinux is known to work on many distributions48 including: Debian,49 Gentoo,50

SUSE,51 Slackware,52 and RedHat Enterprise Linux.53 However, SELinux on
Fedora54 Core 3 will be the focus of this paper for the following reasons:

It is one of the most popular Linux distributions.1)
SELinux comes installed by default on FC3.2)
SELinux was built based on RedHat style utilities.553)
The FC3 DVD has everything required to get started.4)

Installation
NSA is the root source of SELinux just like kernel.org is the route source of
Linux. SELinux is under active development as evidenced by the developers’
mailing.56 This discussion will focus on Fedora, which is both a leading
distribution of Linux and SELinux. While version numbers may differ, Fedora-
distributed components are generally aligned with the NSA distribution.57 The
most notable exceptions are that that NSA’s example policy equates to the FC 3
strict policy, and NSA does not have a targeted policy.

When SELinux is run in enforcing mode58, the power of root is removed. It is
possible to be logged in as root, without having significant administrative
privileges. In fact Russell Coker has run several SELinux boxes with root as the
guest account59.

SELinux in FC3 comes installed by default enforcing the targeted policy. During
the installation of Fedora Core, the option is provided to set the operating mode.
Figure 2 shows the installation screen:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
21 of 53

Figure 2: Fedora Core Installation

If the default of Active is chosen, SELinux will boot in enforcing mode. Any
actions not explicitly permitted by the SELinux security policy will be prohibited.
The Warn setting configures SELinux to boot into permissive mode. In this
mode actions that would have been prevented by the security policy will only be
logged. Permissive mode is designed for troubleshooting and testing the
security policy. If Disabled is chosen, the security server and policy are not
loaded into the kernel at all. Any files created during this time will not be
labeled with a security context. If SELinux is needed at some later point, the
system should be booted into permissive mode and the file system should be
relabeled prior to attempting to run in enforcing mode.

The default installation of Fedora Core 3 includes the following packages:
libselinux-1.17.14-1: provides interfaces for security-aware •
applications
libselinux-devel-1.17.14-1: required to recompile policy•
libsepol-1.17.1-2: library for policy creation•
checkpolicy-1.17.5-1: the policy compiler•
policycoreutils-1.17.6-2: the core command line administrative utilities•
selinux-policy-targeted-1.17.30-2.19: the unrestrictive default policy •
setools-1.4.1-5: policy administration utilities created by Tresys

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
22 of 53

60 The RedHat Package Manager (RPM) automatically labels files with appropriate security context
information. This behavior is referred to as “SELinux aware.”

Additional packages included with the Fedora Core distribution can be installed
using the rpm command.60 Additional RPM packages on the Fedora Core
installation media are as follows:

libsepol-devel-1.1.1-2.i386.rpm: contains static libraries and header •
files needed to develop SELinux enabled applications. Also includes
the chkcon and genpolbools tools
selinux-doc-1.14.1-1.noarch.rpm: documentation including build •
instructions, porting information, and some NSA white papers
selinux-policy-strict-1.17.30-2.noarch.rpm: strict policy for FC3; based •
on NSA’s example policy
selinux-policy-strict-sources-1.17.30-2.noarch.rpm: source files •
required to customize the NSA
selinux-policy-targeted-sources-1.17.30.2-19.noarch.rpm: source files •
required to recompile the targeted policy
setools-gui-1.4.1-5.i386.rpm: advanced GUI policy administration •
utilities created by Tresys. Also installs TCL support for the tools

To modify the targeted policy on FC3, the selinux-policy-targeted-sources-
1.17.30.2-19.noarch.rpm must be installed. The package is located in a
directory similar to /media/cdrom/Fedora/RPMS on the installation DVD or fourth
CD in the set. Once it is installed, the /etc/selinux/targeted/src directory tree will
be created. The targeted policy can be customized using the files under this
tree.

To work with the NSA example policy and truly experience the access controls
offered by SELinux, the strict policy and sources can be customized. The
selinux-policy-strict-1.17.30-2.noarch.rpm package can be installed from the
DVD or first CD in the set. Installing this RPM creates the /etc/selinux/strict
directory tree. The policy as loaded into the security server is binary and resides
in the file /etc/selinux/strictp/policy/policy.18. As with the targeted policy, the
sources must be installed before customization or experimentation can occur.
After the binary policy is installed, the sources can be added by installing
selinux-policy-strict-sources-1.17.30-2.noarch.rpm from the DVD or fourth CD
in the set. This will create the /etc/selinux/strict/src directory tree as expected.

Basic Administration
This section will provide an overview of the most basic SELinux administration
concepts.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
23 of 53

61 Coker, Russell (2004); “SE Linux Implementation LINUX20”; p. 12
62 This will not work on kernels compiled without the NSA SELinux boot parameter option. McCarty,
(2004); p. 67

Operating Modes
Essential to administering SELinux is knowledge of how to enable it, disable it,
and set the operating mode as previously discussed. The files
/etc/sysconfig/selinux and /etc/selinux/config define the SELinux mode at boot
time. If the defaults were accepted during installation, the default entries would
be as follows:

SELINUX=enforcing (other possible values: disabled, permissive)
SELINUXTYPE=targeted (other possible values: strict)

The /selinux filesystem is similar to the /proc filesystem in that it is a virtual
filesystem that provides access to process state. It is primarily used for loading
policy, setting the mode, and querying the kernel policy database.61
/selinux/enforcing indicates the current mode (0 for permissive; 1 for enforcing).
The getenforce command can be used to retrieve the enforcing mode.
Likewise, the setenforce command can be used to set it by passing a ‘0’ for
permissive or a ‘1’ for enforcing.

There are a number of ways to improperly configure SELinux when using the
strict policy. In order to recover from the most severe configuration errors,
SELinux must be disabled62 at boot time. Passing selinux=0 to the kernel will
achieve this. Below is a simple procedure for disabling SELinux at boot time on
Fedora Core 3:

Hit the <Esc> key at the Grub boot loader screen to stop the boot 1)
sequence.
Press the <e> key to edit the configuration.2)
Add selinux=0 to the end of the second line, which begins with the 3)
word ‘kernel’.
Press <Enter> to save the change for this boot session.4)
Press the key to boot using the specified configuration.5)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
24 of 53

63 Coker, Faye (2004)
64 Historically in Fedora Core 2 and other SELinux implementations there were interoperability
problems with certain graphical environments. Things have gotten much better in Fedora Core 3.

Status
SELinux provides the sestatus command line tool to provide relevant status
information. Sample output is below:

[root@localhost policy]# sestatus
SELinux status: enabled
SELinuxfs mount: /selinux
Current mode: enforcing
Policy version: 18

Policy booleans:
allow_ypbind active
<… output truncated …>

The output above was truncated for the sake of brevity. The sestatus command
can be run with the –v switch to view security context information relevant to
system files and processes.

Changing Policies
There are several ways to change policies; two will be discussed here. The first
is an example of a procedure that can be used to select the policy and set the
operating mode manually:

In /etc/sysconfig/selinux set SELINUXTYPE=strict and 1)
SELINUX=permissive. This will select the strict policy and set the mode
to permissive at the next reboot. (The system could hang if the mode is
not set to permissive.)
Type touch /.autorelabel from the command line. This file is read by 2)
/etc/rc.sysinit during boot. If it exists, the filesystem is relabeled early in
the boot process.63

Log in as a normal user and assume root privileges. Type setenforce 13)
from the command line to enter enforcing mode. Run the sestatus
command to ensure the system is running in enforcing mode.
Reboot to ensure that processes start normally as a precautionary 4)
measure.64

A new policy could be created using one of the others as a template. Running
cp –R /etc/selinux/strict /etc/selinux/tester and setting INSTALLDIR=
$(DESTDIR)/etc/selinux/test in the Makefile creates a new policy called tester.

Typing system-config-securitylevel in FC3 will launch a GUI tool to assist in
configuring SELinux and Netfilter as shown in Figure 3.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
25 of 53

Figure 3: system-config-securitylevel

Deselecting the Enabled checkbox will completely disable SELinux.
Deselecting the Enforcing checkbox will set the operating mode to permissive.
The items under Modify SELinux Policy are policy-specific boolean values that
may be set for common customizations. There are booleans available for
tweaking the strict policy for the following services: Apache, Cron, FTP, Mozilla,
DNS, NFS, NIS, SSH, spam assassin, Xserver, and various user privileges.
Lastly, changing the policy type from targeted to strict yields the self-explanatory
message in Figure 4 below.

Figure 4: Security Level Confirmation

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
26 of 53

Security Policy Administration
Like programs, security policy is compiled from many source files into a single
binary file. The two digit numeric suffix at the end of the policy.xx file indicates
the version of the policy language. The default binary policy file for FC3 is
displayed below:

[root@localhost policy]# pwd
/etc/selinux/targeted/policy
[root@localhost policy]# file policy.18
policy.18: SE Linux policy v18 6 symbols 7 ocons

The sysadm_r role must be assumed in order to modify the security policy. The
main directory tree for the policy is /etc/selinux/targeted/src/policy, where
targeted is the name of the policy. The various source files are concatenated
into the policy.conf file. The checkpolicy command is used to compile the
policy from the policy.conf file into object form. The load_policy command is
used to load a newly compiled policy into the kernel. Both the checkpolicy and
load_policy commands are called from the Makefile. The default target for
make is install. The descriptions of the primary targets below are taken from the
Makefile and README:

clean enables ‘dontaudit’ rules
enableaudit disables ‘dontaudit’ rules
install compile and install the policy configuration
load compile, install, and load the policy configuration
reload compile, install, and load/reload the policy

configuration
relabel relabel filesystems
policy compile the policy only
check-all check policy files in domains/program/unused
checkunused/FILE.te check a single FILE from domains/program/unused

The following describes some of the policy configuration files located in the
base directory of the policy source (for example /etc/selinux/targeted/src/policy):

README useful information about the files in the policy
directory tree

tmp/all.te defines the Type Enforcement configuration (auto-
generated)

flask the files in this directory define sids, classes and
access vectors used by the kernel

macros global, user, admin, and program macros
type general types – not associated with a particular

domain
domains user, administrator, program, kernel and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
27 of 53

65 If SELinux and checkpolicy were built with MLS enabled, the policy can be configured with MLS by
setting MLS = y in the Makefile. MLS support is still considered experimental. It is not enabled by default.
66 AVC messages can also appear in /var/log/dmesg. These are the messages that occurred during the boot
process; however they are also duplicated in /var/log/messages.

miscellaneous domains defined in .te files
assert.te assertions evaluated after the entire TE configuration
rbac role based access control

configuration
mls multi-level security configuration65

users users recognized by the security policy
constraints used to restrict changes in identity or role
initial_sid_contexts security context for each initial SID
fs_use defines labeling behavior for supported file systems
genfs_contexts defines security contexts for non-persistent file

system types like proc, vfat, iso9660, ntfs, etc.
file_contexts security contexts for persistent files. The program

subdirectory includes contexts such as mozilla.fc,
snort.fc, ssh.fc, etc.

Policy may be tuned by using macros in the
/etc/selinux/targeted/src/policy/tunable.te file or by setting booleans. The M4
macros used by the tunable.te file should look familiar to sendmail
administrators. Various macros and booleans are set for common tweaks.
Available booleans may be viewed in the /selinux/booleans directory. As
previously discussed, booleans may be conveniently set through system-config-
securitylevel on Fedora installations.

Logging
During initial deployment of SELinux, much of the work is put into browsing the
logs for AVC denied entries. AVC messages will appear in /var/log/messages
courtesy of syslog.66 Once some experience is gained in using these messages
to troubleshoot, policy customization is quite easy.

Format of AVC messages:

perm op pid exe path dev ino scontext tcontext tclass

perm either granted or denied
op one of nearly two hundred operations such as read, load_policy
pid the process that caused the message
exe executable that spawned the process
path what the process is trying to access (could also be name)
dev related device
ino inode number of path
scontext source security context; context of the source process

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
28 of 53

67 The audit2allow utility is a Perl script.
68 McCarty, (2004); p. 91

tcontext target security context; context of the target object
tclass target security class

One helpful way to think of these messages is: pid was perm permission to
perform op on class/path/name because pid’s context of scontext was perm
access to class/path/name in the context tcontext.

A sample message is shown below:

Mar 25 01:51:17 localhost kernel: audit(1111733477.244:0): avc:
denied { relabelfrom } for pid=5509 exe=/bin/mount
scontext=user_u:user_r:user_mount_t
tcontext=system_u:object_r:dosfs_t tclass=filesystem

Plugging the values from the sample message into the introductory formula
yields:

pid 5509 was denied permission to perform relabel on filesystem
because pid 5509’s context of user_u:user_r:user_mount_t was denied
access to filesystem in the context system_u:object_r:dosfs_t.

It appears that a process run by a typical user was denied permission to relabel
or mount a filesystem. The audit2allow67 utility can be used to suggest policy
rule for prevent denied AVC messages. The seaudit utility can be used to
analyze the policy file for statements that may relate to an AVC message. Use
of these tools to tweak the policy is demonstrated in latter sections.

For initial policy troubleshooting, SELinux maintains a cache and logs each
denial entry only once in permissive mode. The cache can be cleared by
reloading the security policy (make reload) or by switching to enforcing mode
and then back to permissive. SELinux developers hope to implement a logging
facility designed specifically for SELinux rather than relying on syslog.68

Policy Tweaking
Essentially any program configured to run in the strict policy needs two types of
configuration files. The file context (fc) files specify how objects such as files
and directories are labeled. For the strict policy, these files are located in the
/etc/selinux/strict/src/policy/file_contexts/program directory. The type
enforcement (te) files specify the domains, allowed transitions, access vector
rules and role authorizations. These are essentially the meat of the security
policy for each individual program. For the strict policy, they are located in
/etc/selinux/strict/src/policy/domains/program.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
29 of 53

69 McCarty (2004); pg 181

With the strict policy installed, some applications, especially those not natively
supported by FC3, will need the policy customized in order to function properly.
To demonstrate the types of issues one is likely to encounter with the strict
policy, a simple example is in order.

A laptop loaded with FC3 was configured with the strict policy in enforcing
mode. Afterwards it was discovered that the USB drive was not automatically
mounted after logging in using the ‘pike’ username. Although this problem is
just a minor annoyance, correcting it will provide an excellent introductory
example of policy tweaking.

1) The tail –f command was run against /var/log/messages as the USB drive
was being connected. The following AVC entry was noted:

Mar 23 17:33:07 localhost kernel: audit(1111617187.068:0): avc:
denied { search } for pid=4799 exe=/bin/mount name=console dev=hda1
;ino=507953 scontext=user_u:user_r:user_mount_t
tcontext=system_u:object_r:pam_var_console_t tclass=dir

2) The noted AVC entry was copied and pasted into a file named ‘file.’ The
audit2allow script was run on file to determine a recommended AV rule.

[root@localhost pike]# audit2allow –i file
allow user_mount_t pam_var_console_t:dir { search };

The audit2allow utility looks for denied rules from specified input files and
suggests rules that would allow the denied operations. These rules can be
added to the policy to permit a specific required function that the policy is
preventing. Caution should be used when using audit2allow, because it
indiscriminately suggests allow rules for all AVC denied entries it finds.69 Each
allow rule weakens the access control policy a tiny bit. It only makes sense to
add an allow rule if the function it permits is absolutely necessary for business.
Excessive use of audit2allow can weaken the security policy considerably. The
principle of least privilege should always govern access control decisions.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
30 of 53

70 Tresys Technology, “SE Linux Policy Customization and Editing Tool Help File”
71 While the steps completed with sepcut can easily be accomplished using vi, make policy, and make
reload, the GUI makes it easier to keep track of things when working on policy files.

3) The previously suggested AV rule was added to
/etc/selinux/strict/src/policy/domains/program/mount.te using the sepcut tool70

as shown in Figure 5.71

Figure 5: Sepcut – mount.te

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
31 of 53

4) After editing the TE file, the Test Policy tab was selected. Clicking the Test
Policy button caused the policy to be compiled and checked for errors. Finally,
clicking the Load Policy button caused the policy to be loaded into the kernel,
producing the output shown in Figure 6.

Figure 6: Sepcut – Test Policy

5) The USB drive was reseated, and the following AVC entry was noted:

Mar 25 01:48:39 localhost kernel: audit(1111733319.021:0): avc:
denied { getattr } for pid=4771 exe=/bin/mount
path=/var/run/console/pike dev=hda1 ino=512872
scontext=user_u:user_r:user_mount_t
tcontext=system_u:object_r:pam_var_console_t tclass=file

6) The observed entry was appended to the end of ‘file’ in the current working
directory. The audit2allow utility was run once again.

[root@localhost pike]# audit2allow –i file
allow user_mount_t pam_var_console_t:dir { search };
allow user_mount_t pam_var_console_t:file { getattr };

7) The recommended allow rule was appended to mount.te and the policy was

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
32 of 53

72 Tresys, “SELinux User Manager Help File”

reloaded. Upon reseating the USB drive, the following AVC denied entries were
observed:

Mar 25 01:51:17 localhost kernel: audit(1111733477.244:0): avc:
denied { relabelfrom } for pid=5509 exe=/bin/mount
scontext=user_u:user_r:user_mount_t
tcontext=system_u:object_r:dosfs_t tclass=filesystem
Mar 25 01:51:17 localhost kernel: audit(1111733477.358:0): avc:
denied { relabelfrom } for pid=5509 exe=/bin/mount
scontext=user_u:user_r:user_mount_t
tcontext=system_u:object_r:dosfs_t tclass=filesystem

8) The output was appended to ‘file’ and audit2allow was run once more:

[root@localhost pike]# audit2allow –i file
allow user_mount_t pam_var_console_t:dir { search };
allow user_mount_t pam_var_console_t:file { getattr };
allow user_mount_t dosfs_t:filesystem { relabelfrom };

9) The suggested rule was appended to mount.te and the policy was reloaded.
Upon reseating the USB drive, it automatically mounted with no AVC denied
messages generated.

There are many methods that can be used to customize and tweak policy. It’s
more of an art than a science. Those experienced with day-to-day SELinux
administration may prefer working from the command line. For those less
experienced with SELinux, GUI tools like sepcut, seaudit, seuserx, and apol
can help reinforce how SELinux works.

Adding Users
Adding users is a common function. The standard useradd, usermod, and
userdel utilities do not modify the SELinux policy after performing their functions.
In order for the user to be recognized by the security policy, a newly created user
would need to be manually added to the /etc/selinux/strict/src/policy/users file,
and the policy would need to be recompiled and reloaded.

User management tasks can be completed with greater ease using the seuser72

tools. The seuseradd, seusermod, and seuserdel command line utilities can be
used in the same ways as their non-SELinux-enabled counterparts. Below is an
example of adding an administrative user ‘test’ using the seuserx graphical
utility.

1) Before running seuserx, login as the root user and assume the sysadm_r
role.

[root@localhost ~]# newrole –r sysadm_r
Authenticating root.
Password:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
33 of 53

73 The staff_r role is the default. The sysadm_r role is required for policy administration.

[root@localhost ~]# seuserx

Figure 7: Seuserx – Add new user - Properties

2) After clicking Add from the main window, the appropriate values can be filled
in under the Properties tab as shown in Figure 7. A generic account is a Linux
user account not defined in the SELinux security policy. The roles assigned to
the user are staff_r, and sysadm_r.73

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
34 of 53

3) Figure 8 shows the Advanced Options tab. These options are largely self-
explanatory. Note that the Create System Account checkbox would be
deselected for user accounts existing on the system but not included in the
policy.

Figure 8: Seuserx – Add new user – Advanced Options

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
35 of 53

4) After creating the new user, click the Exit button from the Add new user
window. After all users are added to the policy source, clicking the Exit button
on the main SE Linux User Manager window in Figure 9 causes the policy to be
updated before the window is closed.

Figure 9: Seuserx – Main Window

5) After the account is added it can be tested.

root@localhost policy]# su - test
Your default context is test:staff_r:staff_t.

Do you want to choose a different one? [n]
[test@localhost ~]$ id -Z
test:staff_r:staff_t
[test@localhost ~]$ newrole –r sysadm_r
Authenticating test.
Password:
Warning! Could not open /dev/pts/0.
[test@localhost ~] id –Z
test:staff_r:staff_t
[test@localhost ~] cd /etc/selinux/strict/src
bash: cd: /etc/selinux/strict/src: Permission denied
[test@localhost ~]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
36 of 53

74 Tresys, “Audit Log Analysis Tool for Security Enhanced Linux.”

6) Note above that the user ‘test’ is lacking permission to open the console. In
order to accurately test the new user account it should be used to login. Once
the ‘test’ account is actually used to login, it may assume the sysadm_r role.

[test@localhost ~]$ newrole –r sysadm_r
Authenticating test.
Password:
[test@localhost ~]$ id –Z
test:sysadm_r:sysadm_t
[test@localhost src]$ cd /etc/selinux/strict/src
[test@localhost src]$

Seaudit

The seaudit tool74 can be used to analyze the policy for statements that may be
relevant to specific AVC messages. To illustrate an example using this tool,
recall the AVC denied message received in step 5 of the previous section. The
output below shows a grep command that could be used to locate the entry and
launch of the seaudit utility.

[root@localhost ~]# grep '/dev/pts/0' /var/log/messages
grep: /var/log/messages: Permission denied
[root@localhost ~]# newrole -r sysadm_r
Authenticating root.
Password:
[root@localhost ~]# grep '/dev/pts/0' /var/log/messages
Mar 29 17:39:23 localhost kernel: audit(1112135963.964:0): avc:
denied { ioctl } for pid=22934 exe=/bin/bash path=/dev/pts/0
(deleted) dev=devpts ino=2 scontext=root:staff_r:staff_t
tcontext=root:object_r:sysadm_devpts_t tclass=chr_file
[root@localhost ~]# seaudit

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
37 of 53

75 Only one entry may be selected at a time.
76 /etc/selinux/strict/src/policy/policy.conf.
77 Friedl (2002)

AVC messages displayed within seaudit are sortable by fields including source
type, target type, class, date, permission and executable. Figure 10 is sorted by
permission. There is only one denied ioctl action in this file. The Query policy
button launches a tool in a separate window that allows for searching of
statements related to selected entry75 in the combined policy source file76 using
regular expressions.77

Figure 10: Seaudit

Launching the Query Policy function automatically populates the Source type

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
38 of 53

78 In the author’s case the concatenated policy.conf file is 227,244 lines of code.

regular expression, Target type regular expression, and Object Class fields based
on the entries previously selected. Clicking the Query Policy button in this new
window starts a search through the policy file78 for related rules and produces
output similar to that shown in Figure 11.

Figure 11: Seaudit – Query Policy

As shown line 77,850 of policy.conf allows processes in the staff_t domain to
perform the getattr operation on objects in the chr_file class of the ttyfile, ptyfile,
or tty_device_t types. Perhaps adding the ioctl operation and the
sysadm_devpts_t types would prevent the denied message. If the test user
actually required access to root’s console this might be an option, however; the
principle of least privilege dictates otherwise. AVC denied entries can be a
good thing.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
39 of 53

79 McCarty (2004); pg 168
80 Smalley (2005); pp. 27-32 – provides details on creating domains, types, and roles

Miscellaneous Administration
Domains can be created to support new applications or to address specific
permission problems on installed applications. A domain for a program within
the strict policy would be defined in the /etc/selinux/strict/src/policy/domains/
directory in a file such as domain_name.te. Roles can be created to address
system and organizational operating requirements. However, according to
McCarty, “It’s generally not necessary to create a new SELinux role.”79 Unlike
domain declarations, which only appear in one file for a given domain, role
declarations appear in the .te file for each domain they are authorized to enter.
Details on creating domains, types, and roles are beyond the scope of this
introductory text.80

The seinfo command can be used to provide detailed information about the
current SELinux policy. To view each type and its associated attributes, the –t
and –x switches can be used:

[root@localhost contexts]# seinfo –t –x |more

Types: 1287
device_t

file_type
dev_fs

null_device_t
device_type
dev_fs
mlstrustedobject

zero_device_t
<output truncated…>

The seinfo command supports the –c (classes), –t (types), –a (attributes), –r
(roles), –u (users), –b (booleans), –i (initial-sids), –A (all), –x (expand), –s (stats),
–h (help), and –v (version) switches. For example, the –s switch can be used:

[root@localhost ~]# seinfo -s

Statistics for policy file:
/etc/selinux/strict//src/policy/policy.conf
Policy Version: v.18
Policy Type: source

Classes: 53 Permissions: 192
Types: 1287 Attributes: 80
Users: 6 Roles: 6
Booleans: 27 Cond. Expr.: 30
Allow: 33173 Neverallow: 55
Auditallow: 14 Dontaudit: 3622
Type_trans: 1358 Type_change: 17
Role allow: 8 Role trans: 97
Initial SIDs: 27

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
40 of 53

81 Whereas sepcut can traverse the source directory, apol can only be used on the policy.conf or policy.xx
file. Although apol may be used on the policy.xx file, it is recommend to compile the policy first and
analyze the policy.conf file.
82 RedHat, “Using apol for Policy Analysis;” Additional information may also be found under the
/usr/share/doc/setools-1.4.1 directory in apol_help.txt, dta_help.txt, and iflow_help.txt.

The apol utility can be used for advanced policy analysis and customization.
Forward and reverse domain transition analyses allow the user to walk through
a tree of domains that may be transitioned into from a given starting domain.
Figure 12 shows a forward domain transition analysis in progress.

Figure 12: Apol – Domain Transition Analysis

Transitive (or indirect) and direct information flow analyses can be used to
determine how objects in one domain can be accessed by subjects in another
domain. Rule analysis functionality (under the Policy Rules tab) allows the
policy to be searched for rules relating to selected types, attributes, AV types,
classes, booleans, and roles. The Policy Components tab allows apol to be
used like sepcut to dissect and analyze policy components.81 The Advanced
menu contains an option to edit the permission map. Further specifics
regarding the use of apol for policy analysis are beyond the scope of this
introduction.82

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
41 of 53

83 National Security Agency, “SELinux Mailing List: by date.”
84 See Appendix B for explanations of these utilities.
85 Coker, Faye (2004)
86 Secure Auditing for Linux
87 According to the NSA SELinux FAQ, a trusted operating system is an operating system that provides
sufficient support for Multi Level Security. MLS support for SELinux is still considered experimental.
MLS Systems also have BSM-like auditing requirements.
88 SELinux Symposium

Future Development and Conclusions

Future Development

As evidenced by the SELinux mailing list,83 development of the OS is
accelerating. Many are just getting their first exposure to SELinux. As interest
increases, development of SELinux and SELinux-enabled applications will
continue to increase.

A cursory exploration of Fedora Core 4 Test Candidate 1 reveals a few new tools
and utilities including genhomedircon, open_init_pty, seaduit-report, sediff, and
sediffx.84 In six months version numbers of packages in the 1.17.x range have
incremented to 1.22.x. So have the version numbers of the equivalent NSA core
source libraries and components. The version number of the setools package
has incremented to 2.0.0-1 from 1.4.1-5. A developer’s package for setools,
setools-devel-2.0.0-1.i386.rpm, makes its debut in Fedora Core 4. Clearly,
development of SELinux is moving rapidly.

Faye Coker provides the following comments regarding future development:

Development work is currently underway on making the strict policy more
flexible and on making defaults that will work more easily out of the box.
Work also is being done on Security enhance X, where the aim is to have
control over the X sessions so that, for instance, a hostile X program
can’t interfere with other X programs on the display. Examples of this are
programs not being able to sniff the keyboard and seeing windows or
concealing windows without the X user knowing.85

Currently SELinux is not capable of kernel-level auditing like Solaris, which uses
Sun’s Basic Security Module (BSM). However, development is underway on
this front as well. Secure Auditing for Linux is funded by DARPA to develop a
Common Criteria / TCSEC C2-equivalent kernel-level auditing package for Red
Hat Linux.86 Adding BSM-like auditing capabilities to SELinux could yield a free
“trusted” operating system.87

Many exciting advancements are occurring within the SELinux community. The
inaugural SELinux Symposium was held in March of 2005.88 Russell Coker

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
42 of 53

89 Coker, Russell “SELinux”

even has SELinux patches for the ARM-based IPAQ PDA.89

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
43 of 53

90 TrustedBSD.org

Conclusions

Commercial “trusted” operating systems, such as Trusted Solaris and other
MAC-based systems, are not so prevalent today due to cost. Because the
licenses are expensive, developers are less likely to experiment and develop
new applications for these systems. Few people want to spend a couple
thousand dollars just to play on an OS that is not widely deployed. SELinux is
freely available, enabling motivated individuals to familiarize themselves with
mandatory access controls. Because the limiting factors have been removed,
SELinux and other MAC-based systems, such as TrustedBSD,90 could receive
increased consideration as secure hosting platforms in the future.

SELinux can be used to reduce exposure to all vulnerabilities, including zero-day
vulnerabilities. SELinux is an excellent operating system for bastion hosts on a
service network. Because the configuration of these systems should change
rarely (excluding patch installation) the burden of security policy should be
manageable. SELinux is capable of mitigating the risk associated with zero-day
vulnerabilities because it truly enforces the principle of least privilege.

For those seeking more information, Appendix C is a comprehensive list of
references. The whitepapers available on NSA’s website provide complete
coverage of SELinux implementation and theory. Other particularly useful
references include Bill McCarty’s book, RedHat’s SELinux Guide, Fedora’s
SELinux FAQ, and Russell Coker’s SELinux page.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
44 of 53

Appendix A: Glossary

access decision – determines whether permission is granted based on a pair
of SIDS, the class of the object, and the set of requested permissions.
access vector – a bitmap that is a set of permissions within a class; controls
access to objects within
access vector cache (AVC) – caches access decision computations to improve
performance of the security server
attribute – security-relevant information associated with a subject or object
auditallow – an access vector that audits an action allowed by the security
policy
auditdeny – an access vector that logs an action denied by the security policy
Bell-LaPadula model – security model commonly associated with MAC. Also
known for enforcing the simple security property and * (star) property
boolean – true/false values commonly used within if statements to test and
tweak the policy
class – a logical grouping of objects
confinement – The confinement of an application to a unique security domain
discretionary access control (DAC) – traditional Linux access control model
where users are allowed to set the permissions on the files they own
domain – security attribute; the space a process runs in; determines the access
a process has; similar to type; label for a subject
domain and type enforcement (DTE) – access control type based on the Bell-
LaPadula Model
file context – security context for files specified under file_contexts directory
identity – a security attributed associated with a subject or object that have the
same name as the Unix user, but is distinctly separate; it determines what roles
and domains can be used
identity based access control (IBAC) – access based on user identity
label – synonymous with security context
labeling decision – determines the security context of a newly-created object
Linux security modules (LSM) – an access control extension to the Linux
kernel; SELinux is an LSM
mandatory access control (MAC) – OS-enforced access control using labels
(domains and types) to enforce security policy
multi-level security (MLS) – multiple level security systems are used by the
Department of Defense; possible levels include unclassified, confidential,
secret, and top secret
object – anything that can be acted upon by subject; includes files and
processes
object manager - the component of an access control mechanism that enforces
the decision; synonymous with enforcer
policy – the collection of rules that are enforced by the system. Policy is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
45 of 53

compiled from policy files
policy files – define security contexts and domains for the system
policy flexible – describes an OS that is capable of enforcing a wide variety of
security policies
role – security attribute assigned to users that determines what domains they
can enter or use
role based access control (RBAC) - access control through the use of roles
and profiles
security context – a variable length policy-independent data type containing a
set of labeling information of each object consisting of three components:
identity, role, and type or domain; similar to label
security server – synonymous with decider; component that makes security
policy decisions
security identifier (SID) – a fixed-size value that is associated with each labeled
object; used by the security server to make for security decisions
subject - can perform an action on an object; usually a process or user
transition – determines the security context
trusted operating system – a system that provides sufficient support for MLS
and meets certain other requirements such as Common Criteria / TCSEC C2
auditing requirements
type – security attribute; a logical grouping of objects; type is to files and
directories as domain is to processes; label for an object
type enforcement (TE) – model in which subjects are associated with domains
and objects are associated with types
user – sometimes used interchangeably with identity

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
46 of 53

91 “Extended attributes are a new feature in the 2.6 kernel for pairing name/value tags to files, similar to a
database. Although a few new filesystems currently support them, they have not yet seen widespread use.”
Love (2003); p. 197

Appendix B: Quick Reference
A quick reference of SELinux commands and declarations. Examples are given
where syntax is not obvious. Explanations of examples given for examples that
may not be self-explanatory.

Commands
These are the commands that are available in SELinux. Most support the --help
option. Man pages are available for just a few of them.

apol – A GUI policy analysis tool from the setools-gui rpm
apol & (launches the apol tool)
audit2allow – A utility that analyzes AVC messages in syslog files and returns
suggested rules that could permit currently denied actions
audit2allow /var/log/message > file (recommends allow rules to prevent
denied messages and redirects output to ‘file’)
awish – from the setools-gui package; a TCL/TK wish interpreter with built-in
support for setools libraries
chcon – changes security context of files
checkpolicy – policy compiler; checks and compiles the policy into a binary
representation that can be loaded into the kernel
checkpolicy –d (loads policy configuration and enters debug mode)
chkcon – determines whether or not a context is valid; from libsepol-devel
chckcon /etc/selinux/targeted/policy/policy.18 root:system_r:unconfined_t
genhomedircon – replaces HOME_DIR and HOME_ROOT macros in .fc files
with specific values
genpolbools – generates booleans for a new policy
getenforce – returns the current enforcing mode of SELinux
getfattr – get extended attributes91 of file system objects; can be used to see the
security context of objects when SELinux isn’t running
getfattr –m . –d /etc/xinetd.d/*
(gets extended attributes of all files in the /etc/xinetd.d directory)
getsebool – get the value of a boolean
getsebool –a (gets the value of all booleans)
fixfiles – fix the file security context database; relabel a files or filesystem
fixfiles check
id – modified to display security context information; new options: --context, -Z
id –Z (shows the security context of the current user)
load_policy – loads a policy into the kernel
load_policy policy.18 ../booleans
ls – modified to include security context information; new options: --context, --

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
47 of 53

lcontext, --scontext, -Z
ls –aslZ (long listing showing security context info)
mount – modified to support labeling
open_init_pty – used by run_init to allocate pseudo terminals
newrole – transition to a new authorized role
newrole –r sysadm_r
(transition to the sysadm_r role, which is required to administer policy)
restorecon – set security context on files
runcon – run a command with a specified security context
run_init – run an init script in proper context (/etc/rc.d scripts)
ps – modified to include security context information; new options: --context, -Z
ps –efZ |grep ssh
seaudit – GUI interface for analyzing syslog entries generated by SELinux
seaudit-report – provides customized audit reports in plain text or HTML
sediff –semantic policy difference tool; differentiates two policies
sediffx – graphical version of sediff
seinfo – displays summary info about the SELinux policy, including statistics
about the number of roles, users, classes, booleans, attributes, etc.
seinfo –u –r (prints the users and roles in the current policy)
sepcut – A GUI policy editing tool from the setools-gui package
sesearch – search the policy for information on a particular type
sesearch –a –t default_t (searches for AV rules on default_t)
sestatus – (Fedora and Gentoo) status of SELinux
sestatus –v
setenforce – sets enforcement mode of SELinux; 0=permissive; 1=enforcing
setenforce 1 (immediately sets the SELinux mode to enforcing)
setfiles – set file security contexts; labels files or filesystems
setfiles /etc/selinux/strict/src/policy/file_contexts/file_contexts /tmp/test
(labels /tmp/test as specified in …/file_contexts)
setsebool – sets the value of a boolean
setsebool secure_mode true (sets value of secure_mode to true)
seuser – A GUI (when run with –X) and command line user manager
seuser –X
seuseradd – SELinux-aware useradd command; part of the setools package
seuserdel – SELinux-aware userdel command; part of the setools package
seusermod – SELinux-aware usermod command; part of the setools package
seuserx – launches the SELinux User Manager GUI
system-config-securitylevel – launches a GUI that can be used to set the
SELinux operating mode and policy; also can be used to set booleans for
supported daemons

Replaced Commands
These commands appeared in older versions of SELinux.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
48 of 53

92 RedHat, “Te Rules – Types”

avc_enforcing – returns current mode (enforcing or permissive); replaced with
getenforce
avc_toggle – switches between enforcing and permissive modes; replaced with
setenforce
change_bool – changes the value of a boolean; replaced with setsebool
show_bools – shows the value of a boolean; replaced with getsebool

RBAC/TE Policy
Except where noted these statements appear in .te files

allow – allow role new_role;
permits transitions between roles; appears in /etc/selinux/strict/src/policy/rbac
allow staff_r sysadm_r; (allows staff_r to transition to sysadm_r)
bool - bool identifier true|false;
defines a boolean
bool httpd_unified false;
role – role role_name types domain_or_type_name;
(describes the domains/types the role is authorized to enter)
role system_r types httpd_php_t;
(allows the system_r role to enter the httpd_php_t domain)
type - type name, attribute, attribute, attribute;
defines a type/domain and associates it with attributes
type httpd_config_t, file_type, sysadmfile;
(associates the file_type and sysadmfile attributes with the httpd_config_t type
name)
typealias – typealias type_name alias alias_name;
defines an alias for a type or domain
typealias httpd_sys_content_t alias httpd_user_content_t;
(defines httpd_user_content_t as an alias for httpd_sys_content_t)
type_transition – type_transition source_type target_type:class new_type;
defines what domain and type transitions occur by default92

type_transition sysadm_t sysadm_home_dir_t:dir sysadm_home_t;
(when a process in the sysadm_t domain creates a directory (dir) under a
directory of the home_dir_t type, the new directory is given the type
sysadm_home_t)
user – user username roles roles_assigned;
assigns a role to a user; appears in /etc/selinux/strict/src/policy/users
user test roles { staff_r sysadm_r } ; (assigns staff_r and sysadm_r to test)

AV rules
Access vector rules, which appear in .te files, share the same syntax:

syntax: - av domain type:class operation

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
49 of 53

allow – defines actions allowed and not logged
auditallow – defines actions allowed and logged
auditdeny – defines actions not permitted that are logged
dontaudit – defines actions not permitted and not logged
allow httpd_t user_home_dir_t:dir { getattr search};
(Allows process associated with httpd_t domain to perform the directory related
operations getattr and search on files of the user_home_dir_t type)

FC Files
The syntax of file context files is shown here:

regexp flags context
regexp: a standard Unix regular expression specifying a directory tree or file; by
default it is anchored with ^ at the beginning and $ at the end; this can be
overridden by using .* at the beginning or end
flags: -- for files only, –d for directories only, or empty for both
context: security context to be applied to the files when policy is installed
/var(/.*)? system_u:object_r:var_t
(any files under /var get the specified context)
/var/tmp -d system_u:object_r:tmp_t
(the /var/tmp directory gets the specified context)

Generic Policy Notation
Some of the general logic of the policy files is described below

; terminates a statement
{} group together arguments and code blocks
&& logical and
|| logical or
== equal to
!= not equal to
^ XOR
! not
~ used to complement an attribute (invert)
- used to subtract domains from an access vector
* wildcard; expands to all classes, domains or types

Miscellaneous Policy Keywords
Some miscellaneous keywords found in SELinux policy files are described
below

class defines a class
common used to define access vector components common to a class
constrain defines a constraint

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
50 of 53

genfscon general file system context; contexts for non-persistent file systems
netifcon defines network interface context
nodecon defines the security context of a node on the network
portcon defines the security context of a network port
self the target and the source are the same
sid defines initial sid for an object

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
51 of 53

Appendix C: List of References

Anderson, Ross. Security Engineering. New York, NY: John Wiley & Sons,
Inc., 2001

Badger, Lee, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, Shelia,
A. Haghighat. “A Domain and Type Enforcement Unix Prototype.” (1995) URL:
http://www.usenix.org/publications/library/proceedings/security95/badger.html
(9 Apr 2005)
Bleher, Thomas. “Thomas’ SELinux-Pages.” URL:
http://www.cip.ifi.lmu.de/~bleher/selinux/ (9 Apr 2005)
centos. “Red Hat Enterprise Linux 4: Red Hat SELinux Guide.” URL:
http://beta.centos.org/centos/4.0beta/docs/html/rhel-selg-en-4/selg-part-
0057.html (9 Apr 2005)
Coker, Faye. “Getting Started with SE Linux HOWTO: the new SE Linux.” (6
Dec 2003). URL: http://www.lurking-
grue.org/gettingstarted_newselinuxHOWTO.html (9 Apr 2005)
Coker, Faye. “What’s New in Fedora Core 3 SE Linux.” (09 Nov 2004) URL:
http://www.linuxjournal.com/article/7887 (9 Apr 2005)
Coker, Russell. “NSA Security Enhanced Linux.” URL:
http://www.coker.com.au/selinux/ (9 Apr 2005)
Coker, Russell. “SELinux Play Machine.” URL:
http://www.coker.com.au/selinux/play.html (9 Apr 2005)
Coker, Russell. “SE Linux Policy Writing LINUX21.” (17 July 2004) URL:
http://www.coker.com.au/selinux/talks/ibmtu-2004/LINUX21.pdf (9 Apr 2005)
Coker, Russell. “SE Linux Implementation LINUX20” (7 July 2004) URL:
http://www.coker.com.au/selinux/talks/ibmtu-2004/LINUX20.pdf (9 Apr 2005)
Costales, Bryan, Eric Allman. sendmail. 3rd ed. Sebastopol, CA: O’Reilly
Media, Inc, 2002

Dunne, Paul. LinuxWorld.com. “Using the m4 Macro Preprocessor.” (25 Apr
2000) URL: http://www.itworld.com/Comp/2378/LWD000425m4/ (9 Apr 2005)
Fedora Project. “SELinux.” URL: http://fedora.redhat.com/projects/selinux/ (9
Apr 2005)
Fedora Project. “The fedora-selinux-list Archives.” URL:
https://www.redhat.com/archives/fedora-selinux-list/ (9 Apr 2005)
Ferraiolo, David, and Richard Kuhn. “Role-Based Access Control.” (1992)
URL: http://csrc.nist.gov/rbac/ferraiolo-kuhn-92.pdf (9 Apr 2005)
Friedl, Jeffrey E. F. Mastering Regular Expressions. 2nd ed. Sebastopol, CA:
O’Reilly & Associates, 2002

Ganguli, Harpreet. Java Security. Cincinnati, Ohio (2002): Premier Press
Gentoo.org. “Installing Gentoo SELinux.” URL:
http://www.gentoo.org/proj/en/hardened/selinux/selinux-x86-
handbook.xml?part=1&chap=0 (9 Apr 2005)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
52 of 53

grsecurity. “grsecurity.” URL: http://www.grsecurity.net (9 Apr 2005)
Hally, Richard. “Re: Difference between policy-sources and policy-strict-
sources.” E-mail to: Fedora SELinux support list for users & developers. (12
May 2004) URL: https://www.redhat.com/archives/fedora-selinux-list/2004-
May/msg00104.html (9 Apr 2005)
Hallyn, Sege Edward. “Domain and Type enforcement in Linux.” (2003) URL:
http://www.cs.wm.edu/~kearns/dissertations.d/serge.pdf (9 Apr 2005)
Immunix. “Linux Security Modules.” URL: http://lsm.immunix.org (9 Apr 2005)
Kilpatrick, Doug, Wayne Salmon, Chris Vance. “Securing the X Window
System With SELinux.” (March, 2003) URL:
http://www.nsa.gov/selinux/papers/X11_Study.pdf (9 Apr 2005)
Lemuria.org. “Installing a 2.6SELinux Kernel/System.” URL
http://selinux.lemuria.org/install-2.6.html (9 Apr 2005)
Love, Robert. Linux Kernel Development. Indianapolis, IA: SAMS Publishing,
2004

Loscocco, Peter A., Stephen D. Smalley, Patrick A. Muckelbauer, Ruth c.
Taylor, S. Jeff Turner, John F. Farrell. “The Inevitability of failure: The flawed
Assumption of Security in Modern Computing Environments.” (1998) URL:
http://www.nsa.gov/selinux/papers/inevitability.pdf (9 Apr 2005)

Loscocco, Peter A., Stephen D. Smalley. “Meeting Critical Security Objectives
with Security-Enhanced Linux.” (2001) URL:
http://www.nsa.gov/selinux/papers/sel_ottawa01.pdf (9 Apr 2005)
Loscocco, Peter, Stephen Smalley. “Integrating Flexible Support for Security
Policies into the Linux Operating System.” (June, 2001) URL:
http://www.nsa.gov/selinux/papers/freenix01.pdf (9 Apr 2005)

McCarty, Bill. SELinux: NSA’s Open Source Security Enhanced Linux.
Sebastopol, CA: O’Reilly Media, Inc, 2005

Mecklenburg, Robert. Managing Projects with GNU Make. 3rd ed. Sebastopol,
CA: O’Reilly & Associates, 2004
National Security Agency. “What’s New With SELinux.” URL:
http://www.nsa.gov/selinux/news.cfm (9 Apr 05)
National Security Agency. “Download 2.6-based SELinux.” URL:
http://www.nsa.gov/selinux/code/download5.cfm (9 Apr 2005)
National Security Agency. “Download Experimental SELinux Code.” URL:
http://www.nsa.gov/selinux/code/download6.cfm (9 Apr 2005)
National Security Agency. “Historical Versions of SELinux.” URL:
http://www.nsa.gov/selinux/code/download1.cfm (9 Apr 2005)
National Security Agency. “Security-Enhanced Linux.” URL:
http://www.nsa.gov/selinux/index.cfm (9 Apr 2005)
National Security Agency. “SELinux Background.” URL:
http://www.nsa.gov/selinux/info (9 Apr 2005)
National Security Agency. “SELinux Frequently Asked Questions (FAQ).” URL:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
53 of 53

http://www.nsa.gov/selinux/info/faq.cfm (9 Apr 2005)
National Security Agency. “SELinux Mailing List.”
http://www.nsa.gov/selinux/info/list.cfm?MenuId=41.1.19 (9 Apr 2005)
National Security Agency. “SELinux Mailing List: by date.”
http://www.nsa.gov/selinux/list-archive/date.cfm?MenuID=41.1.1.9.3 (9 Apr
2005)
Pomeranz, Hal, SANS. Issues and Vulnerabilities in Unix: 6.1. Oakland, CA:
Deer Run Associates, 2003
RedHat. “SELinux.” URL: https://www.redhat.com/security/innovative/selinux/
(9 Apr 2005)
RedHat. “RedHat SELinux Guide.”
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/selinux-guide/
(10 Apr 2005)
RedHat. “TE Rules – Types.” URL:
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/selinux-
guide/rhlcommon-section-0050.html (10 Apr 2005)
RedHat. “Using apol for Policy Analysis.” URL:
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/selinux-
guide/rhlcommon-section-0104.html (12 Apr 2005)
Secure Auditing for Linux. “Secure Auditing For Linux.” URL:
http://secureaudit.sourceforge.net (10 Apr 2005)
Secure Computing Corporation. “Sidewinder G2 Firewall Type Enforcement
Technology.” URL:
http://www.securecomputing.com/pdf/type_enfocement_wp.pdf (10 Apr 2005)
SELinux for Distributions Project. “SELinux for Distributions.”
http://selinux.sourceforge.net/about.php3 (10 Apr 2005)
SELinux Symposium. “SELinux Symposium.” URL: http://www.selinux-
symposium.org (12 Apr 2005)
Smalley, Stephen. “Security-Enhanced Linux 2001 Kernel Summit
Presentation.” (2001) URL: http://www.nsa.gov/selinux/papers/sel.summit.pdf
(10 Apr 2005)
Smalley, Stephen. “NSA Security Enhanced Linux (SELinux).” (2003) URL:
http://www.nsa.gov/selinux/papers/ols2003-selinux.pdf (25 Apr 2005)
Smalley, Stephen. “Configuring the SELinux Policy.” (February, 2005) URL:
http://www.nsa.gov/selinux/papers/policy2.pdf (10 Apr 2005)
Smalley, Stephen, Chris Vance, Wayne Salmon. “Implementing SELinux as a
Linux Security Module.” (March, 2004) URL:
http://www.nsa.gov/selinux/papers/module.pdf (10 Apr 2005)
Smalley, Stephen, Timothy Fraser. “A Security Policy Configuration for the
Security-Enhanced Linux.” (February, 2001) URL:
http://www.nsa.gov/selinux/papers/policy.pdf (10 Apr 2005)
Spencer, Ray, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen,
Jay Lepreau. “The Flask Security Architecture: (August, 1999) System Support
for Diverse Security Policies” URL: http://www.nsa.gov/selinux/papers/flask.pdf
(11 Apr 2004)
Stallings, William. Operating Systems: Internals and Design Principles. 5th ed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
54 of 53

Upper Saddle River, NJ, 2005

Sun Microsystems. “Trusted Solaris Operating System.”
http://www.sun.com/software/solaris/trustedsolaris/index.xml (11 Apr 2005)
Thompson, Kerry. “Security Enhanced Linux.” URL:
http://www.crypt.gen.nz/selinux/ (11 Apr 2005)
Thompson, Kerry. “SELinux.” (March, 2003) URL:
http://www.samag.com/documents/s=7835/sam0303a/0303a.htm (11 Apr 05)
Tresys Technology. “Audit Log Analysis Tool for Security Enhanced Linux.”
URL: http://www.tresys.com/Downloads/selinux-tools/seaudit/seaudit_help.txt
(11 Apr 2005)
Tresys Technology. “Security Enhanced Linux.” URL:
http://www.tresys.com/selinux/ (11 Apr 2005)
Tresys Technology. “SELinux Policy customization and Editing tool Help File.”
URL: http://www.tresys.com/Downloads/selinux-tools/sepcut/sepcut_help.txt
(11 Apr 2005)
Tresys Technology. “SELinux User Manager Help File.” URL:
http://www.tresys.com/Downloads/selinux-tools/seuser/seuser_help.txt (11 Apr
2005)
TrustedBSD.org. “About TrustedBSD.” URL: http://www.trustedbsd.org (11 Apr
2005)
University of Utah. “The Distributed Trusted Operating System (DTOS) Home
Page.” (December, 2000) URL:
http://www.cs.utah.edu/flux/fluke/html/dtos/HTML/dtos.html (11 Apr 2005)
University of Utah. “Flask: Flux Advanced Security Kernel.” (December, 2000)
URL: http://www.cs.utah.edu/flux/fluke/html/flask.html (11 Apr 2005)
User Mode Linux Community Site. “User Mode Linux.” URL:
http://usermodelinux.org (11 Apr 2005)

User-mode Linux Kernel Home Page. “The User-mode Linux Kernel Home
Page.” http://user-mode-linux.sourceforge.net (11 Apr 2005)

Viega, John, Gary McGraw. Building Secure Software. Boston, MA: Addison-
Wesley, 2002

Walker, Kenneth M., Daniel F Sterne, M. Lee Badger, Michael J. Petkac, and
Karen A. Oostendrop. “Confining Root Programs with Domain and Type
Enforcement (DTE).” (1996) URL:
http://www.usenix.org/publications/library/proceedings/sec96/walker.html (11
Apr 2005)

Walters, Colin. “Understanding and Customizing the Apache HTTP SELinux
Policy (Beta Document)” URL: http://fedora.redhat.com/docs/selinux-apache-
fc3/ (11 Apr 2005)
Wood, Timothy. “SE Linux.” URL: http://www.diyab.net/selinux/ (11 Apr 2005)

