
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Free Centralized Event Log Collection and Analysis Solution for Windows

GIAC Certified Windows Security Administrator (GCWN)
Practical Assignment Version 4.0

Option 1; Identify a Windows Security Challenge, Assess Risk, Determine
Mitigation, and Script a Solution

Submitted May 2, 2004
Barron Mertens

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2

Barron Mertens; 2 of 44 GCWN v4

Table of Contents

ABSTRACT ... 3
1.1 Identification and Description of a Windows Security Challenge 4
1.2 Assess Risk and Identify Mitigation .. 7

Table 1 Examples of commercial solutions .. 9
1.3 Solve a Windows Security Challenge ... 14
1.4 Scripting / Automation of the Solution... 16

Code Block 1 EventSink.vbs .. 16
Code Block 2 create-tblInBound.sql ... 20
Code Block 3 mail-errors.vbs ... 20
Code Block 4 display-all-comp-events.vbs .. 22

1.5 Validate Tool Functionality.. 24
Figure 1 Enterprise Manager view of tblInBound 24
Figure 2 Scheduled Tasks configuration.. 25
Code Block 5 Sample of captured events .. 26
Code Block 6 Example alert email generated 26
Code Block 7 Example output from display-all-comp-events.vbs......... 27
Figure 3 Performance with remote pull architecture............................. 27
Figure 4 Performance with local push architecture 28
Figure 5 Single machine doing pull and push 28

Conclusions ... 29
References .. 31
Appendix A Software Code Listings .. 32

EventSink.vbs .. 32
create-tblInBound.sql ... 33
mail-errors.vbs ... 33
display-all-comp-events.vbs... 34

Appendix B WMI connection setttings ... 36
Authentication Settings for WMI connection... 36
Impersonation Setting for WMI connection .. 36

Appendix C Other Software Mentioned ... 37
Appendix D Listing of event codes .. 38

Table 9.1 Logon Events That Appear in the Security Event Log.......... 38
Table 9.2 Account Logon Events That Appear in the Event Log.......... 39
Table 9.3 Account Management Events Appear in the Event Log 39
Table 9.4 Object Access Events That Appear in the Event Log........... 40
Table 9.5 How to Perform Auditing Actions Object Access Event 560. 40
Table 9.6 Privilege Use Events That Appear in the Event Log............. 40
Table 9.7 Process Tracking Events That Appear in the Event Log 42
Table 9.8 System Events That Appear in the Event Log...................... 42
Table 9.9 Policy Change Events That Appear in the Event Log........... 43

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3

Barron Mertens; 3 of 44 GCWN v4

ABSTRACT
The lack of built-in centralized event log collection and analysis in a

standard Windows network is addressed. An approach utilizing VBScript, WMI,
and a SQL back-end is fully explored, described, and implemented. The
performance and functionality of this solution is then explored in a production
environment. All code required to implement this solution is provided and the
solution is implemented using only free tools or those already included with
Windows. The architecture is such that an exchange or publishing of analysis
logic between Administrators should be relatively easy.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4

Barron Mertens; 4 of 44 GCWN v4

1.1 Identification and Description of a Windows Security
Challenge

It is impractical to expect a System Administrator to be actively monitoring
the event logs on all servers at all times in their infrastructure. As the number of
machines grow this becomes an increasing problem. Even an Administrator who
some how finds the time to check event logs regularly, will still likely only be
checking once a day or some similar period. In today’s security climate where
viruses spread around the globe in a matter of hours, this type of interval is not
adequate.

One of the distinct differences between large IT organizations and small IT
organizations is often the emphasis placed on processes by the larger
organizations. In a large operation there are often operators dedicated to
monitoring the current logs of running servers and equipment. In a large
infrastructure with many servers there will likely be the means, people, and
resources to justify an add-on tool to assist with this task. Unfortunately, many
Windows infrastructures are small, less than 20 servers, and often have only one
Administrator. It is difficult to justify the cost of these“Enterprise Grade” tools with
their “Enterprise Grade” price tags. In some industries, such as Non-Profit
Organizations or Educational Institutions, there may be a large number of servers
being maintained with a very small budget. These“Enterprise Grade” tools all
have one thing in common, they cost significant amounts of money. Some
examples would be ~$700 per server and this is one of the root causes of the
security challenge/issue being discussed. If a small Windows network can buy
modest servers for $2000 - $3000, the cost of monitoring events represents a
major additional cost component of 20% - 35%. The combination of cash
strapped organizations and the relatively high price of current solutions tends to
generate a situation where“Enterprise Grade” solutions are seen as too
expensive and typically many organizations end up with no solution put in place
at all.

The very verbose nature and lengthy process of sifting through the current
log system manually using the Event Viewer in Windows is part of the reason
most Administrators do not have time to do it. A means to describe a pattern or
footprint that can then be searched for and alerted on would be a huge
improvement. This would also allow the work/wisdom of a single Administrator to
be utilized by others in their group and potentially shared within On-line
Communities such as SANS, NTBUGTRAQ, TechNet etc.

In a modern complicated infrastructure it is not sufficient to simply monitor
the “Security” log and think that you have an adequate solution. With security
threats taking on so many forms (DoS, Trojans, Brute Force) a good “Security”
solution will need to be able to collect and analyze not just “Security” logs but all
the Windows Event logs, and if possible, a number of other Application specific

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5

Barron Mertens; 5 of 44 GCWN v4

logs (IIS, FTP, SMTP, ICF). An intelligent analysis involving multiple logs at
once will then be required to provide good results without generating a high
number of “False Positives”. A condensed view without the “False Positives” and
high levels of noise is a crucial factor for success.

Without the ability to centrally collect and analyse security and event logs
there is a high chance that a network is essentially being driven “hands-off” and
security issues will only be detected after the fact (if at all) and this will lead to
security incidents becoming larger and more expensive due to the undetected or
slowly detected nature. Early or pro-active detection of problems will always be
the most cost-effective and most secure approach when you look at the big
picture.

In many infrastructures the real-time monitoring is only for faults, not for
activity. For example, if my network we very aggressively monitor for the
availability of services and servers from multiple points inside and outside of our
network. What we do not do, is actively monitor the current correct functioning of
our network and try to determine when there is an abnormality. If someone was
trying brute force password cracking on a single non-essential server, how long
could it go unnoticed? If they are working on the Administrator account most
networks do not have the tweak (for network logins) in place to allow this account
to lockout due to failed password attempts so they could work on this account for
as long as it takes. It they are trying thousands of attempts in a short time, and
are locking out accounts, the activity will likely be noticed relatively quickly
because it generates a fault (the locked out account). However if they are willing
to work slowly and not cause many entries in the security log, this type of activity
will likely not be detected even by a quick manual inspection of the security logs.
A hacker wanting to try a null session exploit generates a footprint in the event
logs, but how many Administrators are reading their logs carefully enough or
often enough to notice? If a hacker has obtained a legitimate set of account
credentials (through social engineering for example) and is illegally accessing
your systems, a casual and manual inspection of event logs is unlikely to
highlight this activity. If an Administrator has made an error in configuration and
users (or hackers) are accessing resources that they should not, most monitoring
systems will not highlight this as it is not a broken service, it is simply un-
expected activity. The ability to sort out the noise in the Windows Event Logs
would allow you to obtain a condensed view where unusual activity could be
detected without manually reading thousands of log entries.

Essentially, without a central log collection/analysis system, the Admin will
always be stuck looking at a partial, isolated, post-incident view of what is
happening in their infrastructure. To have an increased level of security it is
necessary to move into a nearly real-time, centrally collected and analyzed
method of watching their infrastructure. To make the solution truly effective it
needs to pro-actively seek notification of the system Administrator through
whatever means are available. This not a very exciting or impressive security

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6

Barron Mertens; 6 of 44 GCWN v4

challenge, but it is nonetheless a crucial area for improvement that most if not all
organizations could pursue. It will be of primary importance to any organizations
not currently running an add-on package with these capabilities such as
Microsoft Operations Manager. This will likely mean most small Windows
networks are in need of a solution such as this.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

7

Barron Mertens; 7 of 44 GCWN v4

1.2 Assess Risk and Identify Mitigation

The chosen security challenge is the lack of an affordable central pro-
active log monitoring and analysis program in most Windows networks.

By resolving this challenge we will mitigate a major flaw in process that
allows a great deal of activity to occur on Windows hosts without a pro-active
method of noticing unusual or inappropriate activity. Much like an IDS (Intrusion
Detection System) at the gateway, a central pro-active log monitoring and
analysis program will comb through the wealth of information available looking for
interesting activity at the host level. As an improvement in process, addressing
this challenge has the potential to mitigate multiple current and future
vulnerabilities and provide a means to detect inappropriate/interesting activity in
general. This type of activity could take on a multitude of forms, everything from
“password grinding”to un-authorized use of Administrator credentials. It would
include hardware/software issues that could have relevance to security such as
the failure of host-based firewall or anti-virus software to startup or even an
unexpected shutdown of such a service.

Resolving this challenge introduces only a few new vulnerabilities into an
existing Windows network. Having a rich central data store with scattered bits of
information about all your servers means that a hacker wishing to learn about
your network or hide illegal access would want access to your data store and
would gain a great deal of useful info very quickly if they were to succeed. For
example, you can generally tell which accounts are privileged and what privileges
they hold from the security logs. Of course, a hacker would already need to have
broken through a networks security layers somewhat if they are able to access a
data store. I think the best approach here would be to keep a copy of the logs in
their normal location and simply transfer a copy of the information to the central
data store. This would actually make it less likely for a hacker who has some
success at penetrating security being able to cover their tracks as there would be
two copies of logs that would need to be deleted and they may be unaware of the
second copy’sexistence or may not have gained access to it. The transfer of log
info across the network from all the monitored servers back to the central data
store is a potential issue, a hacker would not need to gain access to the data
store itself if they can successfully packet capture the network conversion
between servers and the central data store. Once again the ability of a hacker to
packet capture this conversation would in most cases represent a network that
has already been compromised. It would be a good practice here to enable some
encryption such as IPSec to encrypt the conversation between server and central
data store so that even someone doing packet capture within your network would
still only get encrypted packets. A properly implemented IPSec solution would be
very effective at protecting the data in transit and could be done entirely with
tools included with Windows.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

8

Barron Mertens; 8 of 44 GCWN v4

The systems threatened by this challenge would range from the relatively
unimportant to potentially mission-critical systems; this will vary from site to site.
In general though, all Windows systems not being properly monitored are
threatened by this challenge.

This challenge is generally a process issue and is not specific to a single
vulnerability, it really represents the inability to detect or notice problems as they
are occurring. Potentially it encompasses very lethal threats through to relatively
benign threats and general informational events.

Management needs to understand that all those servers that they paid for
and pay to maintain are generating a real-time stream of essential information.
This information stream is a potential gold-mine that can be used to avoid and
contain security/system problems all across the network. The challenge though is
that it is cost-prohibitive to have staff manually monitor all the available
information and it is even harder to intelligently analyses and combine
information from multiple machines together to diagnose system-wide issues. By
having a central data store with intelligent analysis and pro-active
monitoring/alerting this wealth of information can be tapped into in a cost-
effective manner and the objectives of tighter security and better uptime can be
achieved. Management should also understand that large existing solutions exist
such as Microsoft Operations Manager that addresses these issues quite well.
The cost of these solutions though tends to be a major hurdle, Microsoft
Operations Manager pricing is approximately $350 US per processor at retail and
there are additional modules to pay for in order to monitor some apps such as
Exchange Server. There are other commercial solutions available (see list
elsewhere) and while they may or may not be slightly cheaper, there does not
seem to be any commercial solutions available that come with a very low per
server price. This causes problems for smaller operations in that capital is rarely
available to purchase such software tools. The short take-home message for
management is to deal with better monitoring up front and you will reap the
rewards in reduced costs and improved operations down the road.

The behind the scenes nature of logs gathering will have little direct effect
on users. The servers sending events to the central data store will bear the
burden of some additional workload to submit events. If these servers are heavily
loaded this additional workload could be noticed by end users as slower
response times. The central data store will have an additional workload (if it is not
put in place specifically for this task) and once again end users could notice a
slowdown in response times. It is unlikely that any communication with end-users
would be required unless the additional workload is causing response issues on
overloaded servers. Hopefully the only difference end users would notice is an
increased awareness on the part of the network administrators of the functioning
of the network and a decrease in incidents that affect the network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

9

Barron Mertens; 9 of 44 GCWN v4

There are a number of commercial applications available that address this
challenge, some more completely than others, but in general this is not a new or
secret issue and vendors have responded with a number of tools to choose from.

Table 1 Examples of commercial solutions

Event Archiver www.doriansoft.com/totalsolution/index.htm

Event Archiver Enterprise www.eventarchiver.com/download.asp

Event Log Monitor www.tntsoftware.com/Products/ELM/

EventReader www.strongsoftware.net/eventrd/

EventReporter version 4.0 www.eventreporter.com/en/

GFI LANguard Security Event Monitor www.gfi.com/lanselm/

LogCaster www.rippletech.com/main.php

Microsoft Operations Manager www.microsoft.com/mom/

NTLast www.ntobjectives.com/ntlastv2.htm

Table 1 is not intended to be a complete listing of products of this type and
they are simply listed alphabetically. It is outside the scope of this paper to review
and critique these products. For a discussion of auditing and some of the third
party software mentioned here see http://www.giac.org/practical/Steven_Toy.doc

These commercial tools all address this challenge with varying degrees of
success but all cost significant amounts when you look at monitoring 2-20
servers and become very expensive if you were to consider monitoring
workstations as well.

There are some tools available from Microsoft that can address some of
the issues within the challenge but do not address the whole problem.

Dumpel.exe from Windows 2000 Resource Kit:
Dump Event Log is a command-line tool that dumps event logs from local/remote
systems into tab-delimitated text files. This tool can also be used to filter certain
events. The Windows Scheduler service could be used with batch files calling
Dumpel.exe to try to automate the collection of event logs but there are several
problems. The program cannot filter just portions of the event logs based on
timestamps or event numbers forcing you to take the whole event log each time.
To maintain this approach over time it usually becomes necessary to clear the
event log after dumping it using Dumpel.exe so that you do not have redundant
data on the next dump. This causes several issues, it means that the actual
server no longer has a redundant copy of the events. As well, local/manual
inspection of the event logs becomes troublesome. The wholesale nature of this
process also means that each dump cycle must be run less frequently than
would be ideal, perhaps on the order of hours or days instead of minutes or
seconds.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10

Barron Mertens; 10 of 44 GCWN v4

Eventquery.pl from The Windows 2000 Resource Kit, Supplement One:
This Perl script displays events from the Event Viewer logs on local/remote
computers running Windows 2000 and can also be used to filter for specific
events.

EventCombMT from Microsoft Windows Server 2003 Resource Kit Tools
EventCombMT will parse event logs from multiple local/remote servers at the
same time, and can also be used to filter for certain events.

None of these tools provide a complete solution to the challenge. However
they could be utilized to address parts of the challenge if a custom scripting
solution was pursued. Dumpel.exe could be used for the initial event collection
from the servers and some custom method could be used to move the event data
from the tab-delimitated text files into a central data store where the rest of the
custom solution could work with the data. The functionality of Data
Transformation Services in SQL Server 2000 might be able to handle this type of
task.

Eventquery.pl could also be used for the initial event collection from the
servers and then some custom Perl code could transfer this info to a central data
store. Eventquery.pl requires ActiveState ActivePerl Build 521 be installed on the
central computer pulling events from the remote servers.

EventCombMT is a very capable tool and includes a useful collection of
intelligent filters right out of the box but can only generate text files as output and
you would still need to move the results into a data store for further analysis.
EventCombMT is also designed to simply “comb” through data residing on
multiple remote computers and does not actually move the event log data to a
central data store, it only creates a text file of its own output. This limitation would
severely limit the use of EventCombMT for any type of audit or archival
objectives.

There are also some similar components available from non-Microsoft
sources

Dumpevt.exe Somarsoft (www.somarsoft.com/)
Command line utility to dump local or remote event logs to delimited text files
suitable for import to database

ELDump.exe Jesper Lauritsen (www.ibt.ku.dk/jesper/ELDump/default.html)
Command line utility to dump local or remote event logs

Win32::EventLog Jesse Dougherty (search.cpan.org/search?dist=libwin32)
Perl module for processing of Windows event logs from Perl scripts

The Dumpevt.exe and ELDump.exe products allow more control over
what is dumped into text files alleviating some of the drawbacks of Dumpel.exe
(having to clear whole log to achieve an effective dump each time). Dumpevt.exe
is a commercial product while ELDump.exe is free. The Win32::EventLog module

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11

Barron Mertens; 11 of 44 GCWN v4

provides similar functionality to Eventquery.pl. All three of these tools have the
same general uses and limitations as the tools from Microsoft, they are only for
the collection of event log data, and they do not directly transfer it to a central
data store or provide a means for analysis. They are all however possible
components to be used as part of a custom batch/script solution.

Another approach would be to modify the Windows servers to support the
pushing of their event log data to a central Syslog server. Syslog is a widely used
approach in the world of Unix and network devices to push all event log type of
data to a centralized logging system. This approach is the most comprehensive
available (as it could include non-Windows devices) and has many benefits and
much merit. However, there are a couple of issues that made it less desirable for
our network and will likely apply to many other networks as well. In my reading
(www.sans.org/rr/papers/index.php?id=713) it was discovered that HP ProCurve
Switches do not support Syslog, our network consists solely of a dozen HP
ProCurve Switches. Our network is a “departmental” type of network (actually a
faculty at a University) and we do not really have a security perimeter and
certainly do not maintain our own, meaning we have no firewalls, routers or other
networking equipment to gather Syslog data from. All these types of devices are
managed by the IT group at the core of the University’s network. Our network is
also a homogenous collection of a dozen Windows 2003 and Windows 2000
servers. My reading also suggested that while at least some of a Syslog on
Windows solution could be done for free there seemed to be little available for
free to do analysis and alerting. In fact after reading
www.sans.org/rr/papers/index.php?id=713 I discovered that even the commercial
Syslog package used in the paper was unable to analyze log data from any
device other than ones running its Syslog provider, meaning that while they had
central log collection from all devices (HP excluded) they couldn’t analyze the
data from all those network devices anyway, only the servers running the
commercial Syslog provider. When I translated these shortcomings into our
network I realized that the Syslog approach would simply be a cross-platform
approach that would cost a significant amount of money and have no advantages
over a dedicated Windows package for our network.

The approach chosen was to develop a custom solution that would copy
event log data from all our Windows servers to a central MS SQL Server data
store where it could be analyzed and used for alerting/reporting/auditing. In the
case of our network and our IT group, I worked through our choice of
technologies from the back-end to the front. We had existing expertise in SQL
Server driven ASP web development using VBScript, so we had a high degree of
comfort and confidence using SQL Server and VBScript to deliver the
analysis/alerting/reporting/auditing aspects. The challenge for me would be how
to get the data into SQL Server from all those servers. My experience at SANS
2003 in New Orleans (Track 5 Securing Windows) gave me a great exposure to
the use of VBScript for administration of Windows machines and demonstrated
the incredible power available with WMI. One of the scripts presented there

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12

Barron Mertens; 12 of 44 GCWN v4

(WMI_Events_Consumer.vbs, Version: 1.1, Jason Fossen) demonstrated the
crucial core functionality that I would need, how to get event log data loaded into
VBScript where I knew I would be able to handle it appropriately. It also offered
me the realization that I could make a solution that was nearly real-time and non-
invasive/non-destructive to the existing Event logs. While the same basic
functionality was available using Perl it was decided that VBScript had several
advantages; I was comfortable with it, Microsoft promotes it as the preferred
language for Windows administration, it interacts directly and gracefully with WMI
and I preferred the approach where my collection code and any analysis/alerting
code would be done all in the same programming language. Another benefit to
using VBScript was that basically the same code could be used in an “on-
demand” manner in ASP web pagesor the command line with .vbs files and then
the same code could also be used for “scheduled” processes using .vbs files and
the Windows Scheduler.

I also soon discovered that having the option to run VBScript event
consumers on each of our servers would give me a chance to implement a push
style approach to getting all the data into our central SQL data store. This push
approach would make it much easier to integrate my solution into our hardened
servers, in particular our Web Farm machines that supported no standard types
of remote management. The push approach had some additional merit in my
opinion as it would mean that our production SQL Server would still only be doing
SQL work and not running lots of VBScript components to pull data into SQL. A
push approach also means the event log data only travels across the network
once, not once from the source to a monitoring station and once more from there
to the data store. The workload of collecting event data and submitting it to a
central data store would also be distributed to each of the servers in our network
more evenly with a push approach. We would also have greater resiliency with
this approach as the code would be running an independent copy on each server
so that the only single point of failure would be our big clustered SQL Server
production system that we were very comfortable relying on (three years of
>99.9% uptime).

The last factor looked at, although perhaps the most pivotal, was cost; all
the tools required are included with Windows or available for free downloads.
The only additional component required that would cost money would be SQL
Server 2000 and I felt comfortable that the availability of MSDE and MySQL
would mean that I could develop a custom solution using free tools that just
about any Windows administrator should be able to plug into their existing
Windows network and take advantage of without spending any money. This lack
of cost would appropriately address one of the factors (high cost of “Enterprise
Solutions” like Microsoft Operations Manager) previously discussed that leads
many smaller Windows networks to operate without the appropriate degree of log
monitoring and analysis to properly secure their infrastructures.

To address the portability of the solution to any R.D.M.S. I decided to
attempt to write the solution using no MS SQL Server specific features if
possible. This approach would also help in the feasibility of analysis logic (mostly
SQL) being sharable and portable from one network to another. To also help this

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

13

Barron Mertens; 13 of 44 GCWN v4

issue it was decided to try to leave the data as close to its original format as
possible in the data store so that the data structure would hopefully remain
identical in everyone’s implementation of the solution. I felt that any optimizations
I would make for my network would likely be wrong for someoneelse’snetwork
and they would likely start changing data structures leading to a loss of the
complete portability.

To summarize my approach was chosen based on the following criteria;
 Cost of the entire solution
 Technologies used
 Minimal impact on existing infrastructure and practices
 Ability to integrate into varied and complex security configurations
 Ability to have an open system that would support sharing of work
 Support a secured or hardened configuration

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

14

Barron Mertens; 14 of 44 GCWN v4

1.3 Solve a Windows Security Challenge

My chosen solution was based on using VBScript/WMI to move event data
into a central data store where it could be analyzed/audited/alerted using
VBScript. This approach had a software cost of zero; VBScript and WMI are free
as part of Windows. While I would use SQL Server 2000 (we already had this
licensed and running), I decided to make sure the solution would be portable to
free database packages like MSDE and MySQL so this would be a zero software
cost approach for everyone. To further my goals of making this a free solution I
decided to make sure the architecture was optimized for the efficient collection of
the event data so this new workload would have a minimal effect (no new servers
required) on an existing infrastructure. The analysis, reporting, auditing, and
alerting on functions would all be handled by SQL and VBScript so that automatic
processes could be controlled using Windows Scheduler (free), any web
interface would use IIS (free), and the command line functionality would of
course, also be free.

The technologies chosen (VBScript, WMI, SQL and built-in Windows
components like IIS and Scheduler) were all chosen not just because they are
free but because they are commonly used and well supported technologies that I
was familiar with and knew that I could find support for and would leave my
solution accessible to thousands of other Windows Administrators who are also
familiar with the same products.

When I thought about all the different Windows networks out there that
might consider using my solution, I realized that there would be a large range of
sizes, capacities, security and level of spare server horsepower available for new
projects. Realizing that if I wanted to provide a free solution that would be
embraced by many networks not currently running something like it, I had to
make it scalable, easy to install/integrate, and as efficient as possible. By
choosing SQL Server as the backend data store (or MySQL), I knew I was using
the right architecture to allow the analysis/reporting/auditing functionality as this
type of work on a large collection of text file based data would be very inefficient.
The choice also meant that I should be able to support the collection of large
amounts of log data as SQL Server and MySQL regularly support databases
larger than 1 TB in size and are capable of bulk load rates of over 100,000 rows
per second (http://www.microsoft.com/sql/techinfo/administration/2000/scalabilityfaq.asp and
http://www.mysql.com/).

Choosing VBScript/WMI/Scheduler helped me to achieve my goal of
making my solution easy to install/integrate. The changes required on each
server were very minor; simply place a .vbs file on a network share, create a
scheduled task pointed at that file and configured to run on system startup, and
create a DSN pointing at the central data store. This setup was required on each
server that I wanted to push events from. An alternative approach was to have a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

15

Barron Mertens; 15 of 44 GCWN v4

single machine collect events from multiple machines and submit them to the
central data store. My testing showed that on machines with very high rates of
event logging there was a noticeable load generated by the VBScript code that
was collecting events and sending them to the data store. By using machines
that were not heavily loaded to collect events from those that were heavily loaded
I could significantly decrease the incurred load.

The ability to support both push and pull models not only helped the
solution integrate easily, it also helped to support unusual configurations
including our hardened load-balanced Web Farm (runs e-commerce apps) that
would not respond to a push approach for a number of reasons. Since we did not
want to make any significant changes to this audited setup, having the choice of
installing code onto the machine and pushing data out was critical. Having these
two choices was enough for me to get my solution working with all my servers
(with minimal changes) but I could foresee that some setups (such as a fire-
walled data store machine and fire-walled source servers) would likely require a
user to write firewall rules to allow the data to flow.

Several changes were required for the security of the process itself. I
created a new Domain Administrator account specifically for this task with a long
and complex password, shared it with no one (we keep a sealed copy in a safe)
and used it only for these scheduled tasks. In our network only Domain
Administrator accounts have the logon as batch job and logon as a service rights
as Admin rights are also need to audit security logs. Finally I created a unique
login for that account in SQL Server and assigned it datawriter privileges in that
database and denied access to all other databases. By using built-in Windows
Authentication for access to the SQL server I had no need to store username and
password information in a connection string in my .vbs scripts (see
http://www.sans.org/rr/papers/index.php?id=1371 for background) where it could
be easily compromised on any of the remote servers. By using SQL Server and a
System Data Source Name (ODBC link) to connect my VBScript to my data store
I was able to only store a chosen name for the DSN in my script, there was no
server name and no username and password (see script appendix). This way if
someone did gain access to the script file they could only inspect the process,
not gain any valuable account or server location information. Just in case
someone did get the username and password, that account only had rights to
input data into the central data store, they could not read any data, so they could
not further their penetration by sifting through event logs for useful information
like accounts with elevated privileges. This approach seemed to generate the
least amount of risk and offered multiple layers of security with good containment
in place.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

16

Barron Mertens; 16 of 44 GCWN v4

1.4 Scripting / Automation of the Solution

To see the actual solution in production I will present several scripts
showing examples of what is running at each stage of the solution. The first script
will be the VBScript that loads the event log data and sends it to the database. I
will then show the SQL script to generate tblInBound the database table that
stores all the events. Now that we have data loaded into the database I will show
an example script (mail-errors.vbs) that uses this data store and sends email to
an Administrator when ever a error occurs.

Code Block 1 EventSink.vbs

What follows is the actual VBScript code (EventSink.vbs) that runs on
each machine doing the uploading of event data to the data store. A discussion
of what is occurring will follow each block of data. I will attach the complete and
un-interrupted code at the end of the paper.

OPTION Explicit
DIM strEventSinkDBConn, strComputers, objEventSinkDB, strDBQuery, objWMIconn, objSink
DIM intRecordNumber, strLogFile, intEventIdentifier, intEventCode, strSourceName
DIM strType, strCategory, strCategoryType, strUser, strComputerName, strMessage
DIM dtTimeGenerated, dtTimeWritten

This block simply sets the VBScript Option to Option Explicit forcing me to
declare all variables before using them and then DIMs all the variables used in
the script.

strEventSinkDBConn="DSN=EventSink" 'Set the connection string to the name of the DSN
'IP address or computer name, comma separated

strComputers=Array("127.0.0.1") 'names within quotes eg ("machine1","127.0.0.1")

The above block first defines the connection string used to connect to the
data store. Notice the use of a system DSN (called EventSink) and Windows
Authentication to connect to the SQL Server so that the server name and no
account credentials appear in the connection string. The variable strComputers is
of the subtype variant and has an array assigned to it using the Array() function.
This is a rather odd approach but VBScript allows you to assign an array to a
variant data type and treat it like an array without going through the effort of
determining the dimensions of the array. The real advantage though is the use of
the Array() function which automatically assigns comma separated values to
array elements. When this script is modified to monitor more than one machine
you enter a comma separated list of machine names on this line with each
machine name enclosed in quotes.

strComputers=Array("127.0.0.1","DC1", “Server2”, “192.168.1.1”)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

17

Barron Mertens; 17 of 44 GCWN v4

It doesn’t matter if there are spaces after the comma; a TRIM function is
used later to remove them.

Set objEventSinkDB=CreateObject("ADODB.Connection") 'Create an ADODB connection object
objEventSinkDB.Open strEventSinkDBConn 'Open that connection
CreateEventSink(strComputers) 'Sets up EventSink

The three lines above accomplish two major tasks. First, they create an
ADODB connection and then open that connection to the database specified in
the connection string defined earlier. The third line calls the user subroutine
CreateEventSink (discussed late this page) and sends the array of computers to
be monitored along as a parameter.

Do While True 'this loop is designed to run forever
WScript.Sleep(5000) 'checking for events at interval

Loop 'low impact delay between checks, in milliseconds

This three line loop with no exit is actually the main block of executing
code, it simply goes to sleep for 5 seconds at a time and then wakes up long
enough to handle any events. The use of the WScript.Sleep function allows for
an efficient script that does not create a big draw on system resources while the
script is doing no work. The only way to exit this script when run from the
command line is to hit‘control c’. When run as a scheduled task under another
users credentials you must use the Task Manager to kill the process.

SUB CreateEventSink(strComputers)
DIM intCounter, strComputerName
On Error Resume Next
FOR intcounter = 0 TO UBound(strComputers)

strComputerName = TRIM(strComputers(intCounter))
Set objWMIconn = GetObject("WinMgmts:{impersonationLevel=impersonate,”&_

“authenticationLevel=PktPrivacy, (security)}!\\"&strComputerName)
If Err <> 0 Then

WScript.Echo Err.Number & VbCr
WScript.Echo Err.Description
Err.Clear
Exit Sub

End If
Set objSink = WScript.CreateObject("WbemScripting.SWbemSink","objSink_")
objWMIconn.ExecNotificationQueryAsync objSink, "select * from “&_
“__instancecreationevent where targetinstance isa 'Win32_NTLogEvent'"

If Err <> 0 Then
WScript.Echo Err.Number & VbCr
WScript.Echo Err.Description
Err.Clear
Exit Sub

End If
NEXT
On Error Goto 0

END SUB

Here is the previously called user subroutine CreateEventSink that is
passed the array of computers to monitor. First, I DIM two local variables. Then I
turn off standard error handling so that I can trap any errors in this area manually.
Next I create a standard For Next loop that goes from 0 (all arrays in VBScript

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18

Barron Mertens; 18 of 44 GCWN v4

start at 0) to the upper boundary of the array determined by the UBound function,
this will be 0 when the script is only monitoring one machine. This will result in
the For Next loop only going through one iteration. I then TRIM any spaces left
around the computer name in this array element and assign the name to the
variable strComputerName. The following line is the WMI connection object and
it carries the Security option that allows only appropriate users to access critical
components like the Security Event Log. This statement also has the
authentication parameter set to PktPrivacy and the impersonationLevel
parameter set to impersonate. Please refer to Appendix B for a listing and
explanation of these two settings.

These two settings were put in place to ensure that the data sent to the
event sink came only from the proper WMI provider and that no-one could
intercept the data in transmission in an easily interpreted form.Microsoft’s DCOM
is using standard SSPI services to protect the RPC and it is using 40 or 128 bit
encryption depending on which version of Windows you are running. Since I am
running Windows 2003, I took it to mean that I was running 128 bit encryption
and therefore just about anyone would have that level on encryption available to
them if they had at minimum a fully patched Windows 2000 system. One of the
reasons I used the PktPrivacy setting here is that we did not have IPSec
encryption in place in our network, only IPSec packet signing.

I then have a little error trapping block that would simply write the error out
on the screen (if it is running at the command prompt) and clear the error. I then
create the Sink object and perform an asynchronous query for all the Windows
Event Logs. This approach is slightly different and I believe more efficient than
the approach demonstrated in WMI_Events_Consumer.vbs v1.1 by Jason
Fossen. My approach utilizes an asynch call that essentially batches the work
and goes to sleep in between batches. I believe this is a more efficient approach
than used by Jason who handles the events in a continuous synchronous
manner using the ExecNotificationQuery call instead of the
ExecNotificationQueryAsync call I used. I then go into another error trapping
section before turning back on normal error handling and exiting the For Next
loop and then the subroutine.

SUB objSink_OnObjectReady(objWMIObject, objWMIAsyncContext)
strComputerName =(objWMIObject.TargetInstance.ComputerName)
strLogFile =(objWMIObject.TargetInstance.LogFile)
IF LEN(strLogFile)=0 THEN strLogFile=""
intRecordNumber =(objWMIObject.TargetInstance.RecordNumber)
IF NOT ISNUMERIC(intRecordNumber) THEN intRecordNumber=0
strSourceName =(objWMIObject.TargetInstance.SourceName)
intEventIdentifier =(objWMIObject.TargetInstance.EventIdentifier)
intEventCode =(objWMIObject.TargetInstance.EventCode)
strType =(objWMIObject.TargetInstance.Type)
strCategory =(objWMIObject.TargetInstance.Category)
strCategoryType =(objWMIObject.TargetInstance.CategoryString)
dtTimeGenerated =FixDateFormat(objWMIObject.TargetInstance.TimeGenerated)
dtTimeWritten =FixDateFormat(objWMIObject.TargetInstance.TimeWritten)
strUser =(objWMIObject.TargetInstance.User)
strMessage =CleanString(objWMIObject.TargetInstance.Message)
WriteToDB objEventSinkDB

END SUB

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

19

Barron Mertens; 19 of 44 GCWN v4

This subroutine is automatically called whenever the event sink has
events and it simply assigns each of the values available from the event log to a
variable. I do some checking for empty fields and such here but only on fields
that have generated errors in my testing. I then call the user sub WriteToDB and
pass along which connection object to use. All the data from the event is in
variables accessible outside this sub so I do not need to pass those values
directly.

SUB WriteToDB(ByRef objEventSinkDB)
strDBQuery ="INSERT INTO tblInbound (EventDateTime, ComputerName, LogFile, “&_
“RecordNumber, SourceName, EventIdentifier, EventCode, Type, " &_
"Category, CategoryString, TimeGenerated, TimeWritten, [User], Message)”&_
“ VALUES (GETDATE(), '"&strComputerName&"', '"&strLogFile&_
"', "&intRecordNumber&", '"&strSourceName&"',"&intEventIdentifier&", "&_
intEventCode &", '"&strType&"', '"&strCategory &"', '"&strCategoryType&_
"', '"&dtTimeGenerated&"', '"&dtTimeWritten&"', '"&strUser&_
"', '"&strMessage&"');"

'WScript.Echo "Writing Event to DB at:" & NOW() & VbCr 'uncomment for debug
On Error Resume Next
objEventSinkDB.Execute(strDBQuery)

If Err <> 0 Then
WScript.Echo "Error# " & Err.Number & VbCr
WScript.Echo "Error: " & Err.Description & VbCr
WScript.Echo "SQL Query: " & strDBQuery
Err.Clear
Exit Sub

End If
On Error Goto 0

END SUB

The user sub WriteToDB while messy looking is very simple, it
concatenates together a long string containing a complete SQL insert statement
and it then executes the query. An example of the finished string would be;

“INSERT INTO tblInbound (EventDateTime, ComputerName, LogFile, RecordNumber, SourceName,
EventIdentifier, EventCode, Type, Category, CategoryString, TimeGenerated,
TimeWritten, [User], Message) VALUES (GETDATE(), 'ComputerName', 'System', 1729,
'Service Control Manager',1073748860, 7036, 'information', '0', '', '5/1/2004
12:31:41 AM', '5/1/2004 12:31:41 AM', '', 'The Alerter service entered the stopped
state.');”.

The statement or Query is always the same, just the values of each field
change with each event.

FUNCTION FixDateFormat(objEventDateFormat) 'converts date/time 4 VBScipt/SQL
FixDateFormat = CDate(DateSerial(Left(objEventDateFormat,4),

Mid(objEventDateFormat,5,2),
Mid(objEventDateFormat,7,2)) +
TimeSerial(Mid(objEventDateFormat,9,2),
Mid(objEventDateFormat,11,2),
Mid(objEventDateFormat,13,2)))

END FUNCTION

FUNCTION CleanString(strForCleaning)
CleanString = REPLACE(strForCleaning,"'","`") 'swaps ` for '

END FUNCTION

The two user functions at the end here simply correct an incompatible
data/time format and remove any single quotes from the event data as it would

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

20

Barron Mertens; 20 of 44 GCWN v4

cause an error when submitting the query. This is all the script code involved in
getting all your event log data to a central data store.

Code Block 2 create-tblInBound.sql
The SQL code used to create the table in the database that receives all

the Windows Event Logs is listed below. Some of the field sizes are very
generous and some fine-tuning may be possible to conserve storage space. The
actual syntax here may have some SQL Server specific content but given this
script it would be easy to clean up for another database engine.

BEGIN
CREATE TABLE [dbo].[tblInBound] (

[id] [bigint] IDENTITY (1, 1) NOT NULL ,
[EventDateTime] [datetime] NULL ,
[ComputerName] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[LogFile] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[RecordNumber] [bigint] NULL ,
[SourceName] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[EventIdentifier] [bigint] NULL ,
[EventCode] [bigint] NULL ,
[Type] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[Category] [bigint] NULL ,
[CategoryString] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[TimeGenerated] [datetime] NULL ,
[TimeWritten] [datetime] NULL ,
[User] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[Message] [varchar] (4000) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

) ON [PRIMARY]
END

The following code is an example of a small .vbs script called mail-
errors.vbs that is designed to parse all the event log data since it was last run
and send an email to an Administrator if it finds any events marked as an Error. I
use this as a scheduled task that runs once a minute (very small load generated
by this job) and it checks to see if there have been any errors in the last minute.
To setup my processes like this I followed the principles of least privilege and
created another Domain Account and gave it read-only access to the table of
event data in SQL Server 2000 since the job only needed to read data, not write
any.

Code Block 3 mail-errors.vbs

OPTION EXPLICIT
DIM strMailServer, strMailTo, strMailFrom, strMailSubject, strMailBody
DIM strEventSinkDBConn, objEventSinkDB, rsCheck4Errors, intCheckInterval

Once again here I use the Explicit option to force all variable to be named
and then I DIM all the variables.

intCheckInterval=1 'Interval is in minutes, same as scheduled task interval
strMailServer= "smtp.yourdomain.com" ‘set to your SMTP server
strMailTo= “theAdmin@yourdomain.com” ‘set to destination
strMailFrom= “theCode@yourdomain.com” ‘set to source
strMailSubject= "Test of Alert on Error" 'This is just here for testing
strMailBody= "This is a test message body." 'This is just here for testing

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

21

Barron Mertens; 21 of 44 GCWN v4

The block above sets the time windows that the SQL query looks back at.
It is in minutes and this number should match the interval you set in the
scheduled task setup. This use of a sliding window is so that the query only looks
at the most recent data and that you do not generate an alert for events more
than once. There are more robust ways to address these challenges but they
would all involve writing data to a file or changing data in the database and I was
looking for the lowest possible impact here so I stuck with only doing a read
operation. I then set a bunch of values for the mail server used; the destination of
the email, and who the email should say it is from.

strEventSinkDBConn="DSN=EventSink" ‘connection string = system DSN
Set objEventSinkDB=CreateObject("ADODB.Connection") 'Create ADODB connection object
objEventSinkDB.Open strEventSinkDBConn 'Open that connection

These three lines are exactly the same as the EventSink.vbs file and they
simply define a connection to the database and then open that connection up.

SET rsCheck4Errors=objEventSinkDB.Execute("SELECT * FROM tblInBound WHERE ”&_
“EventDateTime >= DATEADD(n,"& intCheckInterval*-1 &",GETDATE()) AND ”&_
“Type='Error';")

This line fills a recordset with the results of the SQL query. Note the use of
DateAdd with the intCheckInterval*-1 to get SQL to restrict the results to entries
from the last minute and having a Type of Error. The small line of SQL is really
the smarts of the whole page and this is the part that I would envision being
shared. The two following blocks of code simply create the email and then send it
to the user. They know nothing about the query except that if they got data in the
recordset to make and send the messages. These blocks could then be re-used
over and over without modification. If someone else wrote an SQL query that
return complete event log entries that we of interest, all I would have to do is
paste it into this line that creates the recordset, make sure it is fed any
parameters it needs and save the file under a new name. This would then add a
completely new function to the solution. There is really no limit to the possible
querys that could be constructed but I will only be discussing two examples of the
many I am using in our complete solution.

While NOT rsCheck4Errors.EOF
strMailSubject = "Error: " & rsCheck4Errors("ComputerName") & " " &_

rsCheck4Errors("SourceName")
strMailBody = rsCheck4Errors("id") &VbCrLf& rsCheck4Errors("EventDateTime")&_

VbCrLf& rsCheck4Errors("ComputerName") &VbCrLf& rsCheck4Errors("LogFile")&_
VbCrLf& rsCheck4Errors("RecordNumber") & VbCrLf& rsCheck4Errors("SourceName")&_
VbCrLf& rsCheck4Errors("EventIdentifier") & VbCrLf&_
rsCheck4Errors("EventCode") & VbCrLf& rsCheck4Errors("Type") & VbCrLf&_
rsCheck4Errors("Category") & VbCrLf& rsCheck4Errors("CategoryString")&_
VbCrLf& rsCheck4Errors("TimeGenerated") & VbCrLf&_
rsCheck4Errors("TimeWritten") & VbCrLf& rsCheck4Errors("User") & VbCrLf&_
rsCheck4Errors("Message") & VbCrLf

funSendMail strMailServer, strMailTo, strMailFrom, strMailSubject, strMailBody &_
rsCheck4Errors.MoveNext

WEND

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

22

Barron Mertens; 22 of 44 GCWN v4

The above block is simply a loop that will only fire if there are events in the
recordset and it will loop for as many times as there are events. All that happens
inside the loop is we concatenate a mail subject and mail body together, the body
contains all the data from the event log entry. I then call the function that actually
sends the mail, passing along the data it needs.

FUNCTION funSendMail(strMailServer,strMailTo,strMailFrom,strMailSubject,strMailBody)
DIM objMail
SET objMail = WScript.CreateObject("CDO.Message")
objMail.From = strMailFrom
objMail.To = strMailTo
objMail.Subject = strMailSubject
objMail.TextBody = strMailBody
objMail.Configuration.Fields("http://schemas.microsoft.com/cdo/configuration/”&_

“smtpserver") = strMailServer
objMail.Configuration.Fields("http://schemas.microsoft.com/cdo/configuration/”&_

“sendusing") = 2
objMail.Configuration.Fields.Update
objMail.Send
SET objMail=Nothing

END FUNCTION

This last chunk of code simply sends an email to whomever it is told to,
with whatever subject and body is passed into it.

The next program is called display-all-comp-events.vbs and it is
designed to query the data store and return all events involving a particular
computer for a given interval. This script has some additional power as it brings
back events not just from the computer you specified but also events from other
computers that contained the computer name in the event. This is an example
where some simple scripting can accomplish something that would be nearly
impossible to do manually using the Event Viewer. The Event Viewer will not let
you search the actual message contents for a specific string such as computer
name so the only way to find events involving computer B when you are looking
at the event logs on computer A is to manually read every event. By centrally
collecting the logs we are able to blur the distinctions between machines and
view our systems as much more of an intergrated whole.

Code Block 4 display-all-comp-events.vbs

OPTION EXPLICIT
DIM strEventSinkDBConn, objEventSinkDB, rsCheck4Errors
DIM strComputerName, intCheckInterval

If WScript.Arguments.Count <> 2 Then
WScript.Echo "Usage: display-all-comp-events.vbs <computername> <time window>"
WScript.Quit

End If

strComputerName = TRIM(WScript.Arguments(0)) 'Computername like DC1 or 192.168.0.0
intCheckInterval = CINT(WScript.Arguments(1)) 'Interval is in minutes

The block of code above is pretty standard. I DIM my variables, perform a
check that the user supplied the right number of arguments at the command line,
and then assign those arguments to variables.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

23

Barron Mertens; 23 of 44 GCWN v4

strEventSinkDBConn = "DSN=EventSink" 'connection string
Set objEventSinkDB = CreateObject("ADODB.Connection") 'ADODB connection object
objEventSinkDB.Open strEventSinkDBConn 'Open that connection

SET rsCheck4Errors = objEventSinkDB.Execute("SELECT * FROM tblInBound WHERE “&_
”(ComputerName = '"& strComputerName&"' OR Message like '%"&strComputerName&_
"%') AND EventDateTime >= DATEADD(n,"& intCheckInterval*-1 &",GETDATE()) ;")

Once again we see the standard three lines to handle the connection to
the database and then the actual query. I used the same name for the recordset
here so that I could use either the email functions previously shown or command
line output functions that I will show here. Notice that the query looks not just in
the ComputerName column but also checks for occurrences of the computer
name in the Message column of all messages. It then restricts the results to
those that occurred within the interval.

While NOT rsCheck4Errors.EOF
funDisplayEvent()
rsCheck4Errors.MoveNext

WEND

FUNCTION funDisplayEvent()
WScript.Echo "###"&VbCr
WScript.Echo "ID: " &rsCheck4Errors("id") &VbCr
WScript.Echo "DB Time: " &rsCheck4Errors("EventDateTime") &VbCr
WScript.Echo "ComputerName: " &rsCheck4Errors("ComputerName") &VbCr
WScript.Echo "LogFile: " &rsCheck4Errors("LogFile") &VbCr
WScript.Echo "RecordNumber: " &rsCheck4Errors("RecordNumber") &VbCr
WScript.Echo "SourceName: " &rsCheck4Errors("SourceName") &VbCr
WScript.Echo "EventIdentifier: " &rsCheck4Errors("EventIdentifier") &VbCr
WScript.Echo "EventCode: " &rsCheck4Errors("EventCode") &VbCr
WScript.Echo "Type: " &rsCheck4Errors("Type") &VbCr
WScript.Echo "Category: " &rsCheck4Errors("Category") &VbCr
WScript.Echo "CategoryString: " &rsCheck4Errors("CategoryString") &VbCr
WScript.Echo "TimeGenerated: " &rsCheck4Errors("TimeGenerated") &VbCr
WScript.Echo "TimeWritten: " &rsCheck4Errors("TimeWritten") &VbCr
WScript.Echo "User: " &rsCheck4Errors("User") &VbCr
WScript.Echo "Message: " &VbCrLf &rsCheck4Errors("Message") &VbCr
WScript.Echo "##"&VbCrLf&VbCrLf

END FUNCTION

Here we see the same type of While loop that will iterate through the
recordset calling the display function each time. The function funDisplayEvent
simply writes to the command line all the data contained with the event.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24

Barron Mertens; 24 of 44 GCWN v4

1.5 Validate Tool Functionality

The “installation” of the various components is very quick and quite
painless. The first stage is to get the database ready by creating a fresh
database and then the tblInBound using the supplied script. For quick reference
and those that are used to working with a GUI in SQL Server here is the design
table panel. Here it is very easy to see all the column names and datatypes.

Figure 1 Enterprise Manager view of tblInBound

The next step is creating the required AD accounts, I created
srv_EventSinkW for the processes that populate the database and
srv_EventSinkR for any process that needs to read the database. Using
Enterprise Manager I assigned appropriate access permissions within SQL
Server so these accounts could do what they needed and nothing more. Next I
needed to create a scheduled task to run EventSink.vbs, I configured this task
to run on system startup and assigned the appropriate user account for the task
to run as. It is necessary to make sure that these accounts have the “logon as a
batch job” user account rights on all the required machines. I handled this using a
Group Policy in Active Directory.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

25

Barron Mertens; 25 of 44 GCWN v4

Figure 2 Scheduled Tasks configuration

This task should start manually if you right-click on the task and
choose “run”. If this is successful you should now be collecting events in your
database. When I needed to test, I would restart a non-essential service (Alerter)
and look for the event entry to appear in the database. You can also start the
same script from the command line and uncomment the line that echos a line to
the screen each time it writes to the database.

An example of a single event log entry as captured would be:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

26

Barron Mertens; 26 of 44 GCWN v4

Code Block 5 Sample of captured events
299 5/1/2004 12:31:42 AM ComputerName System 1729 Service Control Manager

1073748860 7036 information 0 5/1/2004 12:31:41 AM 5/1/2004
12:31:41 AM "The Alerter service entered the stopped state.”

The first field (299) is an automatically created unique ID column created
by SQL Server. The next field is also created by SQL Server and it is a
timestamp generated on the SQL Server itself when the query was received. This
is followed by the ComputerName, LogFile, RecordNumber, SourceName,
EventIdentifier, EventCode, Type, Category, CategoryString, TimeGenerated,
TimeWritten, User and finally the Message itself.

I then created another scheduled task for mail-errors.vbs, this time using
the srv_EventSinkR account and configured to run once a minute for 24 hours a
day. Whenever this process detects an error event in in its query it sends an
email to the configured account that looks like this.

Code Block 6 Example alert email generated

From: "theAdmin" < theAdmin@yourdomain.com >
Date: Sun, 2 May 2004 15:57:01
To:< theAdmin@yourdomain.com >
Subject: Error: MachineWithError Service Control Manager
621215
5/2/2004 3:56:27 PM
MachineWithError
System
63477
Service Control Manager
-1073734790
7034
Error
0

5/2/2004 3:56:26 PM
5/2/2004 3:56:26 PM

The BrowserHawk BDF service terminated unexpectedly. It has done this 1 time(s).

In production, in our network this script typically deliverers a less than two
minute lag between the original error generation and successful notification of the
on-call Administrator who carries a Blackberry PDA that will receive any email
within about 30 seconds of us creating the SMTP message. This seems to have
achieved the design goal of nearly real-time proactive notification of the
Administrator.

Here is an example of the output generated by the display-all-comp-
events.vbs script at the command line, you would see one block like this for
each event that matches the query.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

27

Barron Mertens; 27 of 44 GCWN v4

Code Block 7 Example output from display-all-comp-events.vbs
###
ID: 298
DB Time: 5/1/2004 12:00:37 AM
ComputerName: TABLET-PC1
LogFile: Application
RecordNumber: 647
SourceName: MSSQLSERVER
EventIdentifier: 1073759001
EventCode: 17177
Type: information
Category: 2
CategoryString: Server
TimeGenerated: 5/1/2004 12:00:37 AM
TimeWritten: 5/1/2004 12:00:37 AM
User:
Message:
This instance of SQL Server has been using a process id of 1892 since 4/29/2004
11:19:14 AM (local) 4/29/2004 3:19:14 PM (UTC).

###

The performance impact of this solution was a very important issue in our
network as we have very few spare resources or processing power on our
servers for this task. I checked the performance impact first with a remote pull
configuration then with local push configuration and lastly with a combination of
both running. I also briefly checked for the impact of the solution on our database
server but soon realized that this load was overwhelmed by a huge factor by the
current load on our system to the point where it was difficult to identify.

Figure 3 Performance with remote pull architecture

In Figure 1 examine the summary numbers for the highlighted (white line)
process (wmiprvse) from a Performance Monitor trace, this process averaged
0.381% of CPU time in the 10 minute trace period and generated 2283 events.
This configuration is a remote server (trace shown) having events harvested
remotely by another machine. In this setup the traced machine doesn’t really

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

28

Barron Mertens; 28 of 44 GCWN v4

have any VBScript running, the application is calling on the WMI provider service
directly.

Figure 4 Performance with local push architecture

In Figure 2 examine the highlighted (white line) process (cscript) from a
Performance Monitor trace, this process averaged 4.511% of CPU time in the 10
minute trace period and generated 2357 events. This push approach also
generated peaks of up to 28% CPU time while the pull approach from Figure 1
produced peaks of only 2% CPU time. This configuration is the original approach
and it involves a machine harvesting its own event log data and submitting it
directly to the database server.

Figure 5 Single machine doing pull and push

In Figure 3 we see a slightly different setup, this machine is monitoring
itself and a remote machine (remote machine generated 99% of events) and
submitting both to a remote data store. The time period traced here was based
on a 10 second sample giving a period of 16:40 and that period contained 5817
events. The average load generated by the script process was 3% with a peak of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

29

Barron Mertens; 29 of 44 GCWN v4

10% so you can see that this approach of pulling events from the busiest
machines seems to be the most efficient and effective.

Based on these results we have implemented the solution using a mix of
approaches; machines with a very high volume of event generation and high
loads are being collected remotely by a designated monitoring station while the
rest of our infrastructure is submitting their own events to the central database.

Conclusions

The goal of this project was to create a tool that met as many of the following
objectives as possible;

 Free
 Centralized collection of as many Event Logs as possible
 Simple to install
 Easily integrated into any infrastructure
 Minimal processing power required
 Easy to secure the tool
 Worked in real-time or near real-time
 Proactively attempt to contact the Administrator
 Facilitated easy sharing of work with peers
 Able to analyse data across all computers and logs
 Intelligent and flexible analysis
 Utilized common technologies

The solution implemented was free for myself and anyone without SQL
Server 2000 can easily replace it with a free database server such as MySQL or
MSDE. I was able to collect from all the Event Logs that appear in Event Viewer,
including the Security, Application, System, DNS Server, Active Directory, and
File Replication Service. With further work more logs could be integrated but this
will be somewhat challenging to make other logs conform to the existing data
schema. The install process certainly was simple with only a couple of steps and
no true install program, just some simple configuration steps like creating a
scheduled task. If the machine was having its events collected remotely there
was no direct contact with the machine at all. The solution fit into my
infrastructure by utilizing multiple approaches; push, pull, and a combination of
both. If an organization makes heavy use of host firewalls there could be some
problems but I feel they are relatively easily overcome. The combination of push
and pull approaches seems to be able to deliver a solution with a minimal impact
on server resources. Accumulating all these logs centrally though could tax your
storage capacity on your database server over time and some type of flushing or
archiving capability would need to be scripted. Securing the solution itself was
straight-forward using the built-in mechanisms in DCOM and IPSec could also be
added or used as an alternative. Securing the Active Directory accounts and
database was also quite straight-forward for any experienced Administrator. The

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

30

Barron Mertens; 30 of 44 GCWN v4

rate of log collection through to generating alerts received by an Administrator in
such a short time period (less than 2 minutes) exceeded my expectations. Using
SMTP mail to try to proactively contact the Administrator was a perfect solution
for our organization but some alternate methods might need to be added for
others. The exchanging of SQL queries that return recordset of interest seems
like it will be reasonably effective at facilitating sharing of work between fellow
Administrators. The single table data structure makes it transparent to analyse
data across all logs and computers. The intelligence and flexibility of the analysis
will only be as good as the queries the Administrator can write or obtain from
others. I believe the choice of VBScript/WMI/SQL was appropriate and that many
others share experience with these common and free tools. I believe the project
as a whole was a great success but will need ongoing effort to develop more
queries to fully realize the potential of this approach.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

31

Barron Mertens; 31 of 44 GCWN v4

References

Dessiatnikov, Dmitry. Securing SQL Connection String. URL:
http://www.sans.org/rr/papers/index.php?id=1371 (8/1/2004).

Lavy, Matthew. Meggitt, Ashley. Windows Management Instrumentation (WMI).
New Riders. ISBN: 1578702607. URL:
http://www.scribblin.gs/computing/wmibook.html (17/10/2001)

Maples, Wayne. SysLog Servers for NT/2000/XP. URL:
http://is-it-true.org/nt/nt2000/atips/atips105.shtml (21/11/2003)

Microsoft. Microsoft Solution for Securing Windows 2000 Server, Chapter 9 -
Auditing and Intrusion Detection v1.4. URL:
http://www.microsoft.com/technet/Security/prodtech/win2000/secwin2k/09detect.mspx
(5/8/2003).

Microsoft. Platform SDK, Windows Management Instrumentation. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_start_page.asp

Roger R. McLaren. Central Auditing of Windows NT Using Windows Script Host.
URL: http://www.giac.org/practical/Roger_McLaren_GCNT.zip (3/30/2001).

Spencer, Ken. WMI 101: Event Logging. URL:
http://www.winnetmag.com/Article/ArticleID/20581/20581.html (06/2001)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

32

Barron Mertens; 32 of 44 GCWN v4

Appendix A Software Code Listings

EventSink.vbs
OPTION Explicit
DIM strEventSinkDBConn, strComputers, objEventSinkDB, strDBQuery, objWMIconn, objSink
DIM intRecordNumber, strLogFile, intEventIdentifier, intEventCode, strSourceName
DIM strType, strCategory, strCategoryType, strUser, strComputerName, strMessage
DIM dtTimeGenerated, dtTimeWritten

strEventSinkDBConn="DSN=EventSink" 'Set the connection string to the name of the DSN
'IP address or computer name, comma separated

strComputers=Array("127.0.0.1") 'names within quotes eg ("machine1","127.0.0.1")
Set objEventSinkDB=CreateObject("ADODB.Connection") 'Create an ADODB connection object
objEventSinkDB.Open strEventSinkDBConn 'Open that connection
CreateEventSink(strComputers) 'Sets up EventSink

'***
Do While True 'this loop is designed to run forever

WScript.Sleep(5000) 'checking for events at interval
Loop 'low impact delay between checks, in milliseconds
'***

'***
SUB CreateEventSink(strComputers)

DIM intCounter, strComputerName
On Error Resume Next
FOR intcounter = 0 TO UBound(strComputers)

strComputerName = TRIM(strComputers(intCounter))
Set objWMIconn = GetObject("WinMgmts:{impersonationLevel=impersonate,”&_

 “authenticationLevel=PktPrivacy, (security)}!\\"&strComputerName)
If Err <> 0 Then

WScript.Echo Err.Number & VbCr
WScript.Echo Err.Description
Err.Clear
Exit Sub

End If
Set objSink = WScript.CreateObject("WbemScripting.SWbemSink","objSink_")
objWMIconn.ExecNotificationQueryAsync objSink, "select * from “&_
 “__instancecreationevent where targetinstance isa 'Win32_NTLogEvent'"
If Err <> 0 Then

WScript.Echo Err.Number & VbCr
WScript.Echo Err.Description
Err.Clear
Exit Sub

End If
NEXT
On Error Goto 0

END SUB
'***

'***
SUB objSink_OnObjectReady(objWMIObject, objWMIAsyncContext)

strComputerName =(objWMIObject.TargetInstance.ComputerName)
strLogFile =(objWMIObject.TargetInstance.LogFile)
IF LEN(strLogFile)=0 THEN strLogFile=""
intRecordNumber =(objWMIObject.TargetInstance.RecordNumber)
IF NOT ISNUMERIC(intRecordNumber) THEN intRecordNumber=0
strSourceName =(objWMIObject.TargetInstance.SourceName)
intEventIdentifier =(objWMIObject.TargetInstance.EventIdentifier)
intEventCode =(objWMIObject.TargetInstance.EventCode)
strType =(objWMIObject.TargetInstance.Type)
strCategory =(objWMIObject.TargetInstance.Category)
strCategoryType =(objWMIObject.TargetInstance.CategoryString)
dtTimeGenerated =FixDateFormat(objWMIObject.TargetInstance.TimeGenerated)
dtTimeWritten =FixDateFormat(objWMIObject.TargetInstance.TimeWritten)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

33

Barron Mertens; 33 of 44 GCWN v4

strUser =(objWMIObject.TargetInstance.User)
strMessage =CleanString(objWMIObject.TargetInstance.Message)
WriteToDB objEventSinkDB

END SUB
'***

'***
SUB WriteToDB(ByRef objEventSinkDB)
 strDBQuery ="INSERT INTO tblInbound (EventDateTime, ComputerName, LogFile, “&_
 “RecordNumber, SourceName, EventIdentifier, EventCode, Type, " &_

"Category, CategoryString, TimeGenerated, TimeWritten, [User], Message)”&_
 “ VALUES (GETDATE(), '"&strComputerName&"', '"&strLogFile&_

"', "&intRecordNumber&", '"&strSourceName&"',"&intEventIdentifier&", "&_
intEventCode &", '"&strType&"', '"&strCategory &"', '"&strCategoryType&_
"', '"&dtTimeGenerated&"', '"&dtTimeWritten&"', '"&strUser&_
"', '"&strMessage&"');"

'WScript.Echo "Writing Event to DB at:" & NOW() & VbCr 'uncomment for debug
On Error Resume Next
objEventSinkDB.Execute(strDBQuery)

If Err <> 0 Then
WScript.Echo "Error# " & Err.Number & VbCr
WScript.Echo "Error: " & Err.Description & VbCr
WScript.Echo "SQL Query: " & strDBQuery
Err.Clear
Exit Sub

End If
On Error Goto 0

END SUB
'***

create-tblInBound.sql

BEGIN
CREATE TABLE [dbo].[tblInBound] (

[id] [bigint] IDENTITY (1, 1) NOT NULL ,
[EventDateTime] [datetime] NULL ,
[ComputerName] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[LogFile] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[RecordNumber] [bigint] NULL ,
[SourceName] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[EventIdentifier] [bigint] NULL ,
[EventCode] [bigint] NULL ,
[Type] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[Category] [bigint] NULL ,
[CategoryString] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[TimeGenerated] [datetime] NULL ,
[TimeWritten] [datetime] NULL ,
[User] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[Message] [varchar] (4000) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

) ON [PRIMARY]
END

mail-errors.vbs
OPTION EXPLICIT
DIM strMailServer, strMailTo, strMailFrom, strMailSubject, strMailBody
DIM strEventSinkDBConn, objEventSinkDB, rsCheck4Errors, intCheckInterval
intCheckInterval=1 'Interval is in minutes, same as scheduled task interval
strMailServer= "smtp.yourdomain.com" ‘set to your SMTP server
strMailTo= “theAdmin@yourdomain.com” ‘set to destination
strMailFrom= “theCode@yourdomain.com” ‘set to source
strMailSubject= "Test of Alert on Error" 'This is just here for testing

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

34

Barron Mertens; 34 of 44 GCWN v4

strMailBody= "This is a test message body." 'This is just here for testing
strEventSinkDBConn="DSN=EventSink" ‘connection string = system DSN
Set objEventSinkDB=CreateObject("ADODB.Connection") 'Create ADODB connection object
objEventSinkDB.Open strEventSinkDBConn 'Open that connection

SET rsCheck4Errors=objEventSinkDB.Execute("SELECT * FROM tblInBound WHERE ”&_
“EventDateTime >= DATEADD(n,"& intCheckInterval*-1 &",GETDATE()) AND ”&_
“Type='Error';")

While NOT rsCheck4Errors.EOF
strMailSubject = "Error: " & rsCheck4Errors("ComputerName") & " " &_

rsCheck4Errors("SourceName")
strMailBody = rsCheck4Errors("id") &VbCrLf& rsCheck4Errors("EventDateTime")&_

VbCrLf& rsCheck4Errors("ComputerName") &VbCrLf& rsCheck4Errors("LogFile")&_
VbCrLf& rsCheck4Errors("RecordNumber") & VbCrLf& rsCheck4Errors("SourceName")&_
VbCrLf& rsCheck4Errors("EventIdentifier") & VbCrLf&_
rsCheck4Errors("EventCode") & VbCrLf& rsCheck4Errors("Type") & VbCrLf&_
rsCheck4Errors("Category") & VbCrLf& rsCheck4Errors("CategoryString")&_
VbCrLf& rsCheck4Errors("TimeGenerated") & VbCrLf&_
rsCheck4Errors("TimeWritten") & VbCrLf& rsCheck4Errors("User") & VbCrLf&_
rsCheck4Errors("Message") & VbCrLf

funSendMail strMailServer, strMailTo, strMailFrom, strMailSubject, strMailBody &_
rsCheck4Errors.MoveNext

WEND
FUNCTION funSendMail(strMailServer,strMailTo,strMailFrom,strMailSubject,strMailBody)

DIM objMail
SET objMail = WScript.CreateObject("CDO.Message")
objMail.From = strMailFrom
objMail.To = strMailTo
objMail.Subject = strMailSubject
objMail.TextBody = strMailBody
objMail.Configuration.Fields("http://schemas.microsoft.com/cdo/configuration/”&_

“smtpserver") = strMailServer
objMail.Configuration.Fields("http://schemas.microsoft.com/cdo/configuration/”&_

“sendusing") = 2
objMail.Configuration.Fields.Update
objMail.Send
SET objMail=Nothing

END FUNCTION

display-all-comp-events.vbs

OPTION EXPLICIT
DIM strEventSinkDBConn, objEventSinkDB, rsCheck4Errors
DIM strComputerName, intCheckInterval

If WScript.Arguments.Count <> 2 Then
WScript.Echo "Usage: display-all-comp-events.vbs <computername> <time window>"
WScript.Quit

End If

strComputerName = TRIM(WScript.Arguments(0)) 'Computername like DC1 or 192.168.0.0
intCheckInterval = CINT(WScript.Arguments(1)) 'Interval is in minutes
strEventSinkDBConn = "DSN=EventSink" 'connection string
Set objEventSinkDB = CreateObject("ADODB.Connection") 'ADODB connection object
objEventSinkDB.Open strEventSinkDBConn 'Open that connection

SET rsCheck4Errors = objEventSinkDB.Execute("SELECT * FROM tblInBound WHERE “&_
”(ComputerName = '"& strComputerName&"' OR Message like '%"&strComputerName&_
"%') AND EventDateTime >= DATEADD(n,"& intCheckInterval*-1 &",GETDATE()) ;")

While NOT rsCheck4Errors.EOF
funDisplayEvent()
rsCheck4Errors.MoveNext

WEND

FUNCTION funDisplayEvent()

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

35

Barron Mertens; 35 of 44 GCWN v4

WScript.Echo "###"&VbCr
WScript.Echo "ID: " &rsCheck4Errors("id") &VbCr
WScript.Echo "DB Time: " &rsCheck4Errors("EventDateTime") &VbCr
WScript.Echo "ComputerName: " &rsCheck4Errors("ComputerName") &VbCr
WScript.Echo "LogFile: " &rsCheck4Errors("LogFile") &VbCr
WScript.Echo "RecordNumber: " &rsCheck4Errors("RecordNumber") &VbCr
WScript.Echo "SourceName: " &rsCheck4Errors("SourceName") &VbCr
WScript.Echo "EventIdentifier: " &rsCheck4Errors("EventIdentifier") &VbCr
WScript.Echo "EventCode: " &rsCheck4Errors("EventCode") &VbCr
WScript.Echo "Type: " &rsCheck4Errors("Type") &VbCr
WScript.Echo "Category: " &rsCheck4Errors("Category") &VbCr
WScript.Echo "CategoryString: " &rsCheck4Errors("CategoryString") &VbCr
WScript.Echo "TimeGenerated: " &rsCheck4Errors("TimeGenerated") &VbCr
WScript.Echo "TimeWritten: " &rsCheck4Errors("TimeWritten") &VbCr
WScript.Echo "User: " &rsCheck4Errors("User") &VbCr
WScript.Echo "Message: " &VbCrLf &rsCheck4Errors("Message") &VbCr
WScript.Echo "##"&VbCrLf&VbCrLf

END FUNCTION

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

36

Barron Mertens; 36 of 44 GCWN v4

Appendix B WMI connection setttings
Authentication Settings for WMI connection

From: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/setting_client_application_process_security.asp

Moniker
name

Description

Default WMI uses the default Windows Authentication setting.
None Uses no authentication.
Connect Authenticates the credentials of the client only when

the client establishes a relationship with the server.
Call Authenticates only at the beginning of each call when

the server receives the request.
Pkt Authenticates that all data received is from the

expected client.
PktIntegrity Authenticates and verifies that none of the data

transferred between client and server has been modified.
PktPrivacy Authenticates all previous impersonation levels and

encrypts the argument value of each remote procedure call.

Impersonation Setting for WMI connection
From: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/setting_client_application_process_security.asp

Moniker
name

Description

Anonymous Hides the credentials of the caller. Calls to WMI may
fail with this impersonation level.

Identify Allows objects to query the credentials of the caller.
Calls to WMI may fail with this impersonation level.

Impersonate Allows objects to use the credentials of the caller.
This is the recommended impersonation level for Scripting
API for WMI calls.

Delegate Windows 2000 and later: Allows objects to permit
other objects to use the credentials of the caller. This
impersonation will work with Scripting API for WMI calls but
may constitute an unnecessary security risk.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

37

Barron Mertens; 37 of 44 GCWN v4

Appendix C Other Software Mentioned
Event Archiver; http://www.doriansoft.com/totalsolution/index.htm
Event Archiver Enterprise; http://www.eventarchiver.com/download.asp
Event Log Monitor; http://www.tntsoftware.com/Products/ELM/
EventReader; http://www.strongsoftware.net/eventrd/
EventReporter version 4.0; http://www.eventreporter.com/en/
GFI LANguard Security Event Monitor; http://www.gfi.com/lanselm/
LogCaster; http://www.rippletech.com/main.php
Microsoft Operations Manager; http://www.microsoft.com/mom/
NTLast; http://www.ntobjectives.com/ntlastv2.htm
Dumpel.exe; Windows 2000 Resource Kit
Eventquery.pl; Windows 2000 Resource Kit, Supplement One
EventCombMT; Windows Server 2003 Resource Kit Tools
Dumpevt.exe; Somarsoft; http://www.somarsoft.com/

ELDump.exe; Jesper Lauritsen; http://www.ibt.ku.dk/jesper/ELDump/default.html
Win32::EventLog; Jesse Dougherty; http://search.cpan.org/search?dist=libwin32

WMI_Events_Consumer.vbs, Version: 1.1, Jason Fossen
MySQL; http://www.mysql.com/
MSDE; http://www.microsoft.com/sql/msde/
SQL Server; http://www.microsoft.com/sql/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

38

Barron Mertens; 38 of 44 GCWN v4

Appendix D Listing of event codes

This whole appendix comes from
http://www.microsoft.com/technet/Security/prodtech/win2000/secwin2k/09detect.mspx and is included here as
a reference for anyone trying to extract meaningful information from the event
logs.

Table 9.1 Logon Events That Appear in the Security Event Log

Event
ID

Description

528 A user successfully logged on to a computer.
529 The logon attempt was made with an unknown user name or

a known user name with a bad password.
530 An attempt was made to log on with the user account outside

of the allowed time.
531 A logon attempt was made using a disabled account.
532 A logon attempt was made using an expired account.
533 The user is not allowed to log on at this computer.
534 The user attempted to log on with a logon type that is not

allowed, such as network, interactive, batch, service, or remote
interactive.

535 The password for the specified account has expired.
536 The Net Logon service is not active.
537 The logon attempt failed for other reasons.
538 A user logged off.
539 The account was locked out at the time the logon attempt

was made. This event can indicate that a password attack was
launched unsuccessfully resulting in the account being locked out.

540 Successful Network Logon. This event indicates that a
remote user has successfully connected from the network to a local
resource on the server, generating a token for the network user.

682 A user has reconnected to a disconnected Terminal Services
session. This event indicates that a previous Terminal Services
session was connected to.

683 A user disconnected a Terminal Services session without
logging off. This event is generated when a user is connected to a
Terminal Services session over the network. It appears on the
terminal server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

39

Barron Mertens; 39 of 44 GCWN v4

Table 9.2 Account Logon Events That Appear in the Event Log

Event
ID

Description

672 An authentication service (AS) ticket was successfully issued
and validated.

673 A ticket granting service (TGS) ticket was granted.
674 A security principal renewed an AS ticket or TGS ticket.
675 Pre-authentication failed.
676 Authentication Ticket Request failed.
677 A TGS ticket was not granted.
678 An account was successfully mapped to a domain account.
680 Identifies the account used for the successful logon attempt.

This event also indicates the authentication package used to
authenticate the account.

681 A domain account logon was attempted.
682 A user has reconnected to a disconnected Terminal Services

session.
683 A user disconnected a Terminal Services session without

logging off.

Table 9.3 Account Management Events That Appear in the Event Log

Event
ID

Description

624 User Account Created
625 User Account Type Change
626 User Account Enabled
627 Password Change Attempted
628 User Account Password Set
629 User Account Disabled
630 User Account Deleted
631 Security Enabled Global Group Created
632 Security Enabled Global Group Member Added
633 Security Enabled Global Group Member Removed
634 Security Enabled Global Group Deleted
635 Security Disabled Local Group Created
636 Security Enabled Local Group Member Added
637 Security Enabled Local Group Member Removed
638 Security Enabled Local Group Deleted

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

40

Barron Mertens; 40 of 44 GCWN v4

Event
ID

Description

639 Security Enabled Local Group Changed
641 Security Enabled Global Group Changed
642 User Account Changed
643 Domain Policy Changed
644 User Account Locked Out

Table 9.4 Object Access Events That Appear in the Event Log

Event
ID

Description

560 Access was granted to an already existing object.
562 A handle to an object was closed.
563 An attempt was made to open an object with the intent to

delete it. (This is used by file systems when the
FILE_DELETE_ON_CLOSE flag is specified.)

564 A protected object was deleted.
565 Access was granted to an already existing object type.

Table 9.5 How to Perform Key Auditing Actions for Object Access Event
560

Auditing Action How It Is Achieved
Find a specific file, folder or

object
In the Event 560 details, search

for the full path of the file or folder you
wish to review actions for.

Determine actions by a specific
user

Define a filter that identifies the
specific user in a 560 event.

Determine actions performed at a
specific computer

Define a filter that identifies the
specific computer account where the
task was performed in a 560 event.

Table 9.6 Privilege Use Events That Appear in the Event Log

Event
ID

Description

576 Specified privileges were added to a user's access token.
(This event is generated when the user logs on.)

577 A user attempted to perform a privileged system service
operation.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

41

Barron Mertens; 41 of 44 GCWN v4

Event
ID

Description

578 Privileges were used on an already open handle to a
protected object.

Here are examples of some of the event log entries that can exist when
specific user rights are used:

• Act as part of the operating system. Look for Event ID 577 or 578
with the SeTcbPrivilege access privilege indicated. The user account that
made use of the user right is identified in the event details. This event
can indicate a user's attempt to elevate security privileges by acting as
part of the operating system. For example, the GetAdmin attack, where
a user attempts to add their account to the Administrators group uses
this privilege. The only entries for this event should be for the System
account, and any service accounts assigned this user right.
• Change the system time. Look for Event ID 577 or 578 with the

SeSystemtimePrivilege access privilege indicated. The user account that
used the user right is identified in the event details. This event can
indicate a user's attempt to change the system time to hide the true time
that an event takes place.
• Force shutdown from a remote system. Look for Event IDs 577

and 578 with user right SeRemoteShutdownPrivilege access privilege
indicated. The specific security identifier (SID) the user right is assigned
to and the user name of the security principal that assigned the right are
included in the event details.
• Load and unload device drivers. Look for Event ID 577 or 578

with the SeLoadDriverPrivilege access privilege indicated. The user account
that made use of this user right is identified in the event details. This
event can indicate a user's attempt to load an unauthorized or Trojan
horse (a type of malicious code) version of a device driver.
• Manage auditing and security log. Look for Event ID 577 or 578

with the SeSecurityPrivilege access privilege indicated. The user account
that made use of this user right is identified in the event details. This
event will occur both when the event log is cleared and when events for
privilege use are written to the security log.
• Shut down the system. Look for Event ID 577 with the

SeShutdownPrivilege access privilege indicated. The user account that
made use of this user right is identified in the event details. This event
will occur when an attempt to shut down the computer takes place.
• Take ownership of files or other objects. Look for Event ID 577 or

578 with the SeTakeOwnershipPrivilege access privilege indicated. The user
account that used the user right is identified in the event details. This
event can indicate that an attacker is attempting to bypass current
security settings by taking ownership of an object.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

42

Barron Mertens; 42 of 44 GCWN v4

Table 9.7 Process Tracking Events That Appear in the Event Log

Event
ID

Description

592 A new process was created.
593 A process exited.
594 A handle to an object was duplicated.
595 Indirect access to an object was obtained.

Table 9.8 System Events That Appear in the Event Log

Event
ID

Description

512 Windows is starting up.
513 Windows is shutting down.
514 An authentication package was loaded by the Local Security

Authority.
515 A trusted logon process has registered with the Local

Security Authority.
516 Internal resources allocated for the queuing of security event

messages have been exhausted, leading to the loss of some
security event messages.

517 The security log was cleared.
518 A notification package was loaded by the Security Accounts

Manager.

You can use these event IDs to capture a number of security issues:
• Computer Shutdown/Restart. Event ID 513 shows each instance

of when Windows was shut down. It is important to know when servers
have been shut down or restarted. There are a number of legitimate
reasons, such as a driver or application was installed requiring a restart,
or the server was shut down or restarted for maintenance. However, an
attacker may also force a restart of a server in order to gain access to
the system during startup. All cases where the computer is shut down
should be noted for comparison with the event log.

Many attacks involve the restart of a computer. By investigating
the event logs, you can determine when a server has been restarted,
and whether the restart was a planned restart, or an unplanned restart.
Event ID 513 shows Windows starting up, as will a series of other events
which are automatically generated in the system log. These would
include Event ID 6005, which indicates that the Event Log service has
started.

In addition to this entry, look for the existence of one of two
different event log entries in the system log. If the previous shutdown

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

43

Barron Mertens; 43 of 44 GCWN v4

was clean, such as when an administrator restarts the computer, then
Event ID 6006, the Event Log service was stopped, is recorded in the
system log. By examining the details of the entry, you can determine
which user initiated the shutdown.

If the restart was due to an unexpected restart, an Event ID 6008,
the previous system shutdown at <time>on <date> was unexpected is
recorded in the system log. This can be indicative of a denial of service
(DoS) that caused a shutdown of the computer. But remember, it also
can be due to a power failure, or device driver failure as well.

If the restart was made because of a stop error that resulted in a
blue screen, then Event ID 1001, with a source of Save Dump, is
recorded in the system log. The actual stop error message can be
reviewed in the event details.

Note: To include the recording of Event ID 1001 entries, the
check box option Write an event to the system log must be selected to
enable the recovery settings section of the System Control Panel applet.
• Modifying or Clearing of the Security Log. An attacker may try to

modify the security logs, disable auditing during an attack, or clear the
security log to prevent detection. If you notice large blocks of time with
no entries in the security log, you should look for Event IDs 612 and 517
to determine which user modified the audit policy. All occurrences of
Event ID 517 should be compared to a physical log indicating all times
that the security log was cleared. An unauthorized clearing of the
security log can be an attempt to hide events that existed in the previous
security log. The name of the user that cleared the log is included in the
event details.

Table 9.9 Policy Change Events That Appear in the Event Log

Event
ID

Description

608 A user right was assigned.
609 A user right was removed.
610 A trust relationship with another domain was created.
611 A trust relationship with another domain was removed.
612 An audit policy was changed.
768 A collision was detected between a namespace element in

one forest and a namespace element in another forest. (Occurs
when a namespace element in one forest overlaps a namespace
element in another forest.)

The two most important events to look for here are Event IDs 608 and
609. A number of attempted attacks may result in these events being recorded.
The following examples will all generate Event ID 608 if the user right is assigned
or 609 if it is removed. In each case the specific SID that the user right is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

44

Barron Mertens; 44 of 44 GCWN v4

assigned to, along with the user name of the security principal that assigned the
right, is included in the event details:

• Act as part of the operating system. Look for Event IDs 608 and
609 with user right seTcbPrivilege in the event details.
• Add workstations to the domain. Look for the events with user

right SeMachineAccountPrivilege in the event details.
• Back up files and directories. Look for the events with user right

SeBackupPrivilege in the event details.
• Bypass traverse checking. Look for events with user right

SeChangeNotifyPrivilege in the event details. This user right allows users to
traverse a directory tree even if the user has no other permissions to
access that directory.
• Change the system time. Look for events with user right

SeSystemtimePrivilege in the event details. This user right allows a security
principal to change the system time, potentially masking when an event
takes place.
• Create permanent shared objects. Look for events with user right

SeCreatePermanentPrivilege in the event details. The holder of this user right
can create file and print shares.
• Debug Programs. Look for events with user right SeDebugPrivilege

in the event details. A holder of this user right can attach to any process.
This right is, by default, only assigned to administrators.
• Force shutdown from a remote system. Look for events with user

right SeRemoteShutdownPrivilege in the event details.
• Increase scheduling priority. Look for events with user right

SeIncreaseBasePriorityPrivilege in the event details. A user with this right can
modify process priorities.
• Load and unload device drivers. Look for events with user right

SeLoadDriverPrivilege in the event details. A user with this user right could
load a Trojan horse version of a device driver.
• Manage auditing and security log. Look for events with user right

SeSecurityPrivilege in the event details. A user with this user right can view
and clear the security log.
• Replace a process level token. Look for events with user right

SeAssignPrimaryTokenPrivilege in the event details. A user with this user
right can change the default token associated with a started subprocess.
• Restore files and directories. Look for events with user right

SeRestorePrivilege in the event details.
• Shut down the system. Look for events with user right

SeShutdownPrivilege in the event details. A user with this user right could
shut down the system to initialize the installation of a new device driver.
• Take ownership of files or other objects. Look for events with user

right SeTakeOwnershipPrivilege in the event details. A user with this user
right can access any object or file on an NTFS file system disk by taking
ownership of the object or file.

