
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Supplementing Windows Audit, Alerting, and
Remediation with PowerShell

GIAC (GCWN) Gold Certification

Author: Daniel Owen, ggold@danielowen.com

Advisor: Adam Kliarsky

Accepted: October 20, 2017

Abstract

This paper outlines the use of PowerShell to supplement audit, alerting, and remediation

platform for Windows environments. This answers the question of why use PowerShell

for these purposes. Several examples of using PowerShell are included to start the

thought process on why PowerShell should be the security multi-tool of first resort.

Coverage includes how to implement these checks in a secure, automatable way. To

demonstrate the concepts discussed, small code segments are included. The intent of the

included code segments is to inspire the reader’s creativity and create a desire to use

PowerShell to address challenges in their environment. Finally, a short section includes

resources for code examples and learning tools. While some knowledge of PowerShell

will aid the reader, the intended audience of this paper is the PowerShell novice.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

1. Introduction

Understanding what exists in the protected environment is the beginning of any

successful defensive security program, and internal auditing is a path toward gaining that

understanding. Audits further allows the testing of assumptions about the existing

security posture and comparison to the expected or documented standard (Christopher,

2010). Studies have shown that implementing the first five CIS Controls, from the Center

for Internet Security, prevent ~85% of attacks seen in the wild. All five of these controls

require an audit component to find success or prove their implementation. CIS further

advises an audit as a foundational step toward developing a plan for implementing the

CIS Critical Controls. (Center for Internet Security, n.d.) While the emphasis of this

paper is practical security improvements, there is overlap with third-party audit controls

such as PCI or HIPAA. As such, references that illuminate their relationship are also

included.

As an extension of point-in-time auditing, it is critical to detect and quickly

remediate changes to standard secure configurations. It is not realistic for an organization

to expect to be able to do this manually. Through Continuous Risk Treatment (CRT), we

can automate the process of detecting, altering, and in some cases remediating

configuration skew (Steffan & Sandage, 2017). To this goal, the paper discusses the

process of taking a script initially used for point in time audits and automating it to

provide continual coverage.

A force multiplier allows an increased output from a given input (Kaufman, 2012,

p. 158-159). A lever, such as a crowbar, is a simple physical world example of a force

multiplier. Spending a relatively small amount of time using PowerShell as a force

multiplier generates dividends many times over in time savings and better outcomes.

This paper explores methods of using PowerShell to supplement existing auditing

tools and for using the data to automate alerting and remediation efforts. Through this

process, system defenses are significantly improved.

One goal of this paper is to introduce the security practitioner to a sampling of

ways to use PowerShell in a defensive manner; however, the larger goal is to inspire the

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

reader to expand upon the examples in this paper and use PowerShell to fill gaps in their

own security infrastructure.

2. Why PowerShell?

2.1 Supplemental tool

PowerShell should not be the only tool used for auditing, alerting, or remediation

but will add to the processional’s toolbox.

PowerShell is one of the more versatile tools currently available while still

retaining an approachable learning curve. In addition, a number of security professionals

are already using PowerShell so it is easy to learn and borrow from the community.

In addition, many third-party tools can use PowerShell to extend their

functionality. As an example, Nessus can use PowerShell for compliance auditing. Paul

Asadoorian demonstrates this in a number of examples for a Tenable blogpost showing

Nessus rules written using PowerShell (Asadoorian, 2012).

In the case of using PowerShell to extend the functionality of Nessus, Tenable has

provided a set of PowerShell cmdlets to integrate directly with the Nessus API (Tenable,

2015). At a more basic level, PowerShell can be used as a data transformation tool using

CSV exports from within Nessus as was demonstrated in a SANS Internet Storm Center

Handler’s Diary by Rob VandenBrink (VandenBrink, n.d.). By combining these two

approaches, relatively complex automation, can be achieved.

PowerShell can be used both as a standalone tool or to fill in holes where existing

tools are incomplete.

2.2 Flexibility

PowerShell is built on the .NET Framework (Microsoft, n.d.a). This presents great

flexibility in that PowerShell scripts have access similar to any other .NET language.

Cmdlets are the building blocks of PowerShell scripts. They use a basic verb-noun

naming convention and accept parameters to control their usage. As an example, Get-

ADUser is the cmdlet used to query Active Directory to retrieve user objects.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

Additional cmdlets that expose more functionality in the underlying .NET

Framework are included in each new version of PowerShell. It is also possible to call

.NET Framework classes directly (Wilson, 2010).

There are 1285 cmdlets in PowerShell 5 (Wilson, 2015). With this wide array of

cmdlets, a process that cannot be audited or automated exclusively with PowerShell

cmdlets is a rare challenge.

2.3 Part of the Operating System

PowerShell was first released as an optional feature of Windows 2008 (Vanover,

2009). For later versions of Windows, it became a standard part of the install. PowerShell

is now part of the operating system for all supported versions of Windows and does not

require any additional software to be loaded.

This is an advantage in that other scripting languages require additional

interpreters. Installing and maintaining interpreters outside the standard Microsoft

patching cycle adds additional management overhead, complexity, and cost, while

expanding the attack surface. Bruce Schneier summed this issue up succinctly in Secrets

and Lie when he said “Simply put, complexity is the worst enemy of security. As systems

get more complex, they necessarily get less secure” (Schneier, 2015, p.3).

2.4 The future of Windows administration

 The future of Windows Server administration has less to do with the Graphical

User Interface (GUI) today than it did prior to the release of PowerShell. This becomes

more obvious with each new Windows release. Server Core for Windows 2008 is

Microsoft’s first attempt at a server operating system without a GUI. The stated goal for

Server Core is that it is a lighter weight installation requiring less server resources, less

management, and a smaller attack surface. The central concept behind Server Core

management is that the system is primarily managed using PowerShell or remote

administration tools (Microsoft, n.d.b).

With each subsequent Windows Server release, Microsoft has evolved the Server

Core option. In Windows Server 2016, Microsoft has taken the minimalist operating

system even further with Nano. For heavily virtualized and cloud environments Nano is

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

an even lighter operating system (Ferrill, 2016). Due to Nano Server’s minimalist nature

many tools that Windows administrators have become accustomed to do not work. This

includes many Microsoft standbys such as Group Policy and System Center

Configuration Manager. Even the version of PowerShell in Nano has limitations

(Poggemeyer & Jaimeo, 2017). This is all to say that for Nano Server, custom scripting

may be the only option for management and automation, at least in the short term.

Microsoft is trying to change the administration of Windows servers. Simply

stated, PowerShell is the future of Windows administration and automation. Furthermore,

the speed at which a competent scripter can complete and automate tasks relative to the

repeated time cost of someone manually repeating tasks is significant. Between these two

truths, PowerShell is the way of Windows administration going forward. The only

remaining question is how long, not if, those who refuse to learn PowerShell can survive

in their profession. While this may affect Windows administrators first, security

professionals should not expect any less radical a change.

2.5 Other Scripting Languages

 There are a number of other scripting languages that can be used for development

on Windows. These include Visual Basic, batch scripts, Python, Perl, and Bash. For the

reasons outlined above, this paper concentrates on PowerShell as the preferred language

for scripting on Windows. Development in other scripting languages can use many of

these same concepts, but other languages may be more limited in functionality. Carefully

consider the significant advantages to using PowerShell for Windows automation before

making a decision to use an alternative development language.

3. Uses of PowerShell

3.1 Administrative Group Members

There are a number of highly privileged groups in Active Directory that are

critical to its operation. For this reason, they are tempting targets for attackers. For

example, the Domain Admins group is described by Microsoft as having “complete

control over all domain controllers and all directory content stored in the domain” and

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

“can modify the membership of all administrative accounts in the domain” (Microsoft,

n.d.c). This makes the Domain Admins group a tempting target for attackers.

 Following the concept of least privilege, which requires granting the user the

minimum possible access so that they can still complete their tasks (Bishop, 2002), there

should be as few people in privileged groups, such as the Domain Admins group, as

possible. A Domain Admin’s primary role is as a database administrator for Active

Directory; therefore, it is not desirable to have users logged in as a Domain Admin for

other tasks. For this reason, quick alerting for Domain Admins group changes is critical.

This allows quick remediation when someone who is not authorized is added to the

group, which, in turn, helps to protect the company from rogue or malicious acts as well

as mistakenly overprovisioned users.

To accomplish this audit and remediation goal, users in the Domain Admins

group are compared to a list of users who are authorized to be members of the group. To

complete this in a script, there are two easy ways to define the authorized list. The list can

be either a file that the script reads or a comparison group from Active Directory. Both

approaches have advantages and disadvantages. The advantage of using an Active

Directory “authorization” group is that it is easy to manage and document. This may be

of limited use since the script protects against an adversary who already has rights in

Active Directory. As an example, frequently, attackers clone an existing Domain Admin

group member as a form of persistence. The authorizing group is also included in the

copied account. For this reason and simplicity, this script uses a text file stored outside of

Active Directory. Registry hives, SQL databases, or a number of other solutions would

also be options for storing the authorized users.

Figure 1 - This sample script is included in Appendix A as get-admins.ps1

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

The 16 lines of sample code above demonstrate a simple script for detecting

unauthorized additions to the Domain Administrators group. Once the script detects an

unauthorized user, it disables the Active Directory account and removes the user from the

group. Finally, the script writes a log file to the system’s Application log to allow for

auditing. In order to keep the code as tight as possible, there is no white space, and there

are additional steps that would typically be included for maintainability as well as

additional remediation. A more complete version of this script is included in Appendix A

as get-admins.ps1.

3.2 Identifying outdated local account password

Many security practitioners believe that regular password changes are part of

good account hygiene. Further, some regulatory or best practices frameworks require

changing of passwords on a regular basis. For example, PCI DSS Version 3.2

requirement 8.2.4 states that users must “change user passwords/passphrases at least once

every 90 days” (PCI Security Standards Council, 2016). Item 1.1.2 of the CIS Microsoft

Windows Server 2016 RTM (Release 1607) Benchmark requires “Ensure 'Maximum

password age' is set to '60 or fewer days, but not 0'” (Center for Internet Security, 2017).

A simple PowerShell script can test both these regulatory requirements as well as to

assure that old passwords do not linger for longer than policy allows.

The script that follows looks at every enabled Active Directory account and

creates a Comma Separated Values (CSV) file listing all accounts that are beyond the

desired password age. The sample script is four lines with documentation and coding

styled for ease of reading, but if one was to give up these niceties, this could become a

one-line script. PowerShell makes this type of reporting simple.

Figure 2 – An extended version of this script is included in Appendix A as get-old password.ps1

This can further be expanded by adding a few more lines of code that create a

Help Desk ticket or send an email to review accounts that are beyond their timeouts.

Scheduling this to run as frequently as needed will close the loop on automation. This last

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

option is a good example of the flexibility of PowerShell which is to a great extent

limited only by the user’s imagination and skill unlike more traditional audit tools that are

limited by their developer’s imagination and desires. Appendix A houses this sample

script as get-oldpassword.ps1.

3.3 Identify unauthorized email forwards

Email has made communication within and between companies easier, but with

ease comes risk of unauthorized data leakage. One example of that unauthorized

communication is the automated forwarding of company email to an account outside the

company’s control. This can happen when a user wants to use a non-company account

and forwards email to their preferred platform or when an attacker does the same.

While the first may be a policy violation, the second is potentially more worrying

as it allows an attacker to begin to profile a target user and organization. The attacker is

able to see what typical organizational emails look like as well as collect insider

communications about the company and their clients. Using the collected data, other

attacks such as phishing, ransomware, or financial fraud can be launched (Cidon, 2017).

There are two approaches the defender can take when looking at this issue.

Assuming forwarding is never allowed, fully automated attack detection and remediation

can be achieved. This will follow a process similar to:

1) Detect creation of a forward.

2) Remove the email forward.

3) Disable the account or change the account password.

4) Contact the user to determine whether this was an external attack or a user

action. Depending on the answer, other internal processes for security

incidents or policy compliance remediation will follow.

Obviously, which, if any, of these steps receive automation in a given company

are determined by different risk acceptance levels. In a company with a higher risk

tolerance, a lower tolerance for impacting end users, or that allows users to auto-forward

their email a more restrained approach must be taken. In this case, a regular list is created

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

so the user can be contacted outside of email to confirm they created the forward rule.

The security incident process is initiated if the user did not create the rule.

Multiple single line scripts to identify accounts in Exchange or Office365 that

have been configured to forward email can be found with a simple web search (Grogan,

2011). This code can be used as is, for a one-time test, or built upon as part of a larger

script that generates automated alerting and remediation as previously described. Once

again, only the imagination and needs of the script’s author limit this script.

3.4 Identify Inactive Accounts

Much as it is important to disable unused services, it is also critical to disable or

remove unneeded Active Directory accounts. This helps to identify users who may have

left employment, service accounts for applications that are no longer in use, or other

accounts that have become dormant.

This type of cleanup may also be a direct or indirect regulatory requirement. PCI

DSS version 3.2 section 8.1.4 states unequivocally “remove/disable inactive user

accounts within 90 days” (PCI Security Standards Council, 2016). HIPPA is somewhat

less prescriptive with regulation 164.308(a)(3)(ii)(C) that states, “Implement procedures

for terminating access to electronic protected health information when the employment of

a workforce member ends” (Public Welfare, 2007).

Using a script that reviews Active Directory for last login date meets both the

compliance and the regulatory requirements. While PCI DSS may be comfortable with an

unused account being active for 90 days, a high security environment may require shorter

timeouts. Canned tools may not provide the flexibility to change timeouts easily, but

PowerShell allows the automation to meet the security needs of the company using the

script rather than a third-party compliance standard. This could include, but are not

limited to, such unique items as different policies based on Organizational Unit, group

membership, manager, or time of year.

Since this is a common need for security professionals and systems

administrators, searching popular code repositories identifies multiple scripts to automate

this search. As an example, Microsoft partner TSO has created GetInactiveComputer.ps1

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

and made it available through TechNet (TSO, 2013). This simple script is both functional

and a good starting point for a more complex script. On the other end of the complexity

continuum, Luca Sturlese of 9to5IT has published PS-ManageInactiveAD to GitHub.

Included in that package is Find-ADInactiveUsers.ps1 which has more included

functionality and can be controlled using runtime variables (Sturlese, 2016). Scheduling

this script can provide automated remediation efforts.

PowerShell skills are valuable, but this use case demonstrates leveraging

PowerShell without writing the first line of code since suitable solutions were already

available. Further, it is often far more efficient to use or modify existing free scripts

rather than writing code.

3.5 Business Logic Errors

There are a number of business specific errors that can have a negative effect on

security, but are unlikely to be addressed in a canned security audit solution. These are

excellent opportunities for PowerShell to show its flexibility.

There are often Active Directory groups whose membership is based on some

other attribute of the account. This could be as simple as all members of a group must be

located in a specific geographic location or could be more complex and include all users

who report directly or indirectly to a specific manager, have a specific title level, and are

located in a specific location. As mentioned before, this is an esoteric set of requirements,

but with PowerShell, it is trivial to produce a report of users who are out of compliance or

even auto remediate the situation.

For the first example, a group made up of members of a specific geographic

location, a sample script can easily be created. The first step to writing this script is to

decide on the desired result. For this example, the script is looking for any Active

Directory user in the “US_Associates” group whose account object does not show their

location as United States. There might be other constraints such as excluding service

accounts or users of a specific job title but for simplicity, this example is limited.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

Figure 3 - This sample script is included in Appendix A as get-invalidgroupmembers.ps1

By adding the single line “Remove-ADGroupMember -Identity 'US_Associates' -

Members $invalidmembers -Confirm:$false”, this script can be taken a step further. This

automates the removal of the users from the group.

It may be desirable when automating the removal of users from a group to send an

audit log to a human for final review. This can be completed easily through email by

using the Send-MailMessage cmdlet. For usability, this is wrapped in a conditional so an

email is sent only if an object has been removed from the group.

Figure 4 – This is an extension to get-invalidgroupmembers.ps1

This demonstrates how a script can be extended after it is completed to add

functionality or can be built in parts as new needs are discovered. The code for this script

is reproduced in Appendix A as get-invalidgroupmembers.ps1.

Taking the second more esoteric example from before, this next example creates a

list of users who report directly or indirectly to a specific manager, have a specific title

level, and are located in a specific location.

PowerShell does not have a way to natively, recursively create a list of a

manager’s direct and indirect reports, nor is this a trivial scripting exercise. As has been

mentioned previously, when a script is going to require significant code it is often best to

leverage an existing script if possible. In this case, Microsoft MVP, François-Xavier Cat

has already written the code to recurse management levels and posted it to TechNet as

Get-ADDirectReports (Cat, 2015). As part of the custom script, it is imported. This is a

good example of mixing existing code with new custom scripting in PowerShell. This

script remains very small and simple by using existing code.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

Figure 5 - This sample script is included in Appendix A as get-recursivemanager.ps1

There are hundreds of examples of very specific business logic issues for which

an existing security application is unlikely to be found. As demonstrated, PowerShell can

make quick work of those issues.

4. Automating Scripts

As has been alluded to earlier, running a PowerShell script on an as needed basis

can be extremely useful but automating the script adds a new dimension to the force

multiplier effect.

Automation opens up new opportunities such as regularly generated reports,

generating automated tickets for remediation, and fully automated remediation efforts

among other options. As has been said before, the developer’s imagination and needs are

the only limiting factor in the opportunities for automation.

There are a number of ways to automate scripts and this paper looks at two of the

most common. Security concerns introduced by automation are also considered.

4.1 Scheduled Tasks

Using the Windows Task Scheduler to run a PowerShell script is likely the easiest

and most common way to automate the running of a PowerShell script on a repeating

basis.

Scheduled tasks can be created directly on the machine that runs the task or a

Group Policy can be used to push the scheduled task to remote systems.

Creating tasks locally is useful for tasks that connect remotely to other systems to

make changes or gather information. This can also be useful for scripts that only need to

run on a single system.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

Pushing a scheduled task to remote systems is beneficial for situations where a

script needs to run on a regular basis without interaction with other systems. This can also

be helpful for machines that are not always accessible across the network, such as

laptops. Since Group Policy refreshes on a regulars basis, this has the added benefit of

being self-correcting if the scheduled task is changed or removed.

Using third-party job schedulers can achieve the same goals. Other schedulers are

out of scope for this paper but should be considered in environments that have

standardized on alternate schedulers.

4.2 Automation Security

It is important to consider the security ramifications of running scheduled tasks

using Task Scheduler. Many automated tasks require elevated rights so it is critical to

consider the tradeoffs inherent in automating PowerShell scripts.

PowerShell code can be signed using a code-signing certificate issued by a trusted

internal PKI server or a third-party certificate authority. By setting the Execution Policy

to “AllSigned” PowerShell only executes signed code. Running “Set-ExecutionPolicy

AllSigned –Force” from within PowerShell achieves this goal (Perez, 2013).

Setting the Execution Policy is not a guarantee that unsigned code will not

execute. Scott Sutterland authored the article “15 Ways to Bypass the PowerShell

Execution Policy” (Sutherland, 2014) in which he catalogs a number of ways achieve

this. Even considering this, setting the execution policy does help reduce risk in reference

to automation. Sutterland’s work concentrates on a user who already has access to run

their scripts as an elevated user. In the case of automation, the “AllSigned” setting is

there to reduce the risk of a script on the server’s hard drive being modified and then

executed as a scheduled task.

Credentials may be stored on a system running scheduled tasks. These credentials

can be recovered using tools such as mimikatz (Delpy, 2017). When an attacker gains

admin level access to a system where scheduled tasks are running, the assumption should

be that credentials have been be stolen. For this reason, it is best not to use a full user

account. It is safer to run the scheduled task as Network Service or System since these

services have no password to be stolen and are therefore more secure options. These

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

services, via their Computer object in Active Directory, can still be delegated access to

remote resources. If a true user account must be used, Kerberos S4U (Services for User)

can be used with constrained delegation, which limits the damage of lost credentials

(Fossen, 2014, p. 56).

5. Additional Sources of PowerShell Scripts

There are a number of additional sources of complete code or scripts that can be

built upon. As has been mentioned before, when a viable script exists it is a waste of

resources to write that script again. Similarly, by looking at someone else’s code and

borrowing ideas even challenging scripts can be completed.

Microsoft encourages the use of GitHub repositories for shared coding projects

(Harry, 2017) and many developers have followed this recommendation. This includes

the PowerShell Team’s own repository (Microsoft, n.d.d). Jason Fossen, the lead author

for SANS 505 - Securing Windows and PowerShell Automation, also has a GitHub

repository that included numerous security specific PowerShell scripts (Fossen, n.d.).

There are many PowerShell scripts as well as extensive guides and advice

available as part of the Microsoft TechNet web pages. This includes the “Hey, Scripting

Guy!” blog which covers topics in a start to finish learning style that can be helpful for

both the novice and experienced scripter.

Numerous individuals and companies are publishing PowerShell scripts and

advice as well as dozens of books on the topic. The challenge is easily too much

information rather than a lack of coverage for the topic of PowerShell. Defensive

PowerShell security is less well covered but the topic is gaining interest. These scripts

often closely intersect with the more generalist systems administration topics found in

non-specialist areas.

6. Conclusion

PowerShell works as a force multiplier to allow security professionals be more

efficient in their efforts. For the IT audit professional, it allows for efficient collection of

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

data. For the analyst, it allows efficient review of data. For the defensive generalist it

allows for automated alerting and remediation.

As has been said repeatedly, only the imagination and the needs of the user, limit

the benefits of PowerShell for the security professional. This paper has covered a small

number of use cases as examples, but only scratches the surface of what is possible.

The quickest way to prove the value of PowerShell in an environment is to pick a

problem that current tools are not adequately identifying or that requires repeated manual

intervention and spend a day with PowerShell. At the end of that time, the utility of

PowerShell as leverage should be obvious. PowerShell quickly becomes the easy route to

better Windows security efforts once a professional starts utilizing it and discovers its

multiple uses.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

References

Asadoorian, P. (2012, April 26). Compliance Auditing with Microsoft PowerShell.

Retrieved from http://www.tenable.com/blog/compliance-auditing-with-

microsoft-powershell

Bishop, M. (2002). Design principles. In Computer security: Art and science. Retrieved

from https://www.safaribooksonline.com/library/view/computer-security-

art/0201440997/ch13.html#ch13lev2sec1

Cat, F. (2015, February 2). Get-ADDirectReports (Recursive DirectReports). Retrieved

from https://gallery.technet.microsoft.com/scriptcenter/Get-ADDirectReport-

962616c6

Center for Internet Security. (2017, March 31). CIS Microsoft Windows Server

benchmarks. Retrieved from

https://www.cisecurity.org/benchmark/microsoft_windows_server/

Center for Internet Security. (n.d.). Guide to the first 5 CIS Controls (v6.1). Retrieved

from https://learn.cisecurity.org/first-five-controls-download

Christopher, L. J. (2010). The principles of auditing. In Network security auditing: The

complete guide to auditing network security; measuring risk; and promoting

compliance. Retrieved from

https://www.safaribooksonline.com/library/view/network-security-

auditing/9781587059407/

Cidon, A. (2017, August 30). Threat spotlight: Office 365 account compromise — the

new “insider threat”. Retrieved September 2, 2017, from

https://blog.barracuda.com/2017/08/30/threat-spotlight-office-365-account-

compromise-the-new-insider-threat/

Delpy, B. (2017, January 3). Howto ~ scheduled tasks credentials.

Retrieved September 3, 2017, from

https://github.com/gentilkiwi/mimikatz/wiki/howto-~-scheduled-tasks-credentials

Ferrill, T. (2016, July 23). Windows Server 2016 feature highlight: Nano Server.

Retrieved from http://www.tomsitpro.com/articles/windows-server-2016-nano-

server,2-897.html

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

Fossen, J. (2014). Securing Windows and resisting malware - Server hardening &

dynamic access control. Bethesda, MD: The SANS Institute.

Fossen, J. (n.d.). Enclave Consulting LLC. Retrieved from

https://github.com/EnclaveConsulting

Grogan, A. (2011, October 20). Get all users who have a forwarding address set.

Retrieved from

http://www.msexchange.org/kbase/ExchangeServerTips/ExchangeServer2010/Ma

nagementAdministration/Getalluserswhohaveaforwardingaddressset.html

Harry, B. (2017, March 31). Shutting down CodePlex. Retrieved September 3, 2017,

from https://blogs.msdn.microsoft.com/bharry/2017/03/31/shutting-down-

codeplex/

Kaufman, J. (2012). Value delivery. In The personal MBA: Master the art of

business (pp. 158-159). New York, NY: Penguin Group.

Microsoft. (n.d.a). Windows PowerShell Overview. Retrieved from

https://technet.microsoft.com/en-us/library/cc732114(v=ws.10).aspx

Microsoft. (n.d.b). About server core. Retrieved from https://msdn.microsoft.com/en-

us/library/ee391626(v=vs.85).aspx

Microsoft. (n.d.c). Securing Active Directory administrative groups and accounts.

Retrieved from https://technet.microsoft.com/en-us/library/cc700835.aspx

Microsoft. (n.d.d). PowerShell team. Retrieved from https://github.com/powershell

PCI Security Standards Council. (2016, April). Payment Card Industry (PCI) Data

Security Standard requirements and security assessment procedures version 3.2.

Retrieved from https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-

2.pdf

Perez, C. (2013, March 5). PowerShell basics - Execution policy and code signing part 1.

Retrieved from https://www.darkoperator.com/blog/2013/3/5/powershell-basics-

execution-policy-part-1.html

Poggemeyer, L., & Jaimeo. (2017, February 28). Install Nano Server. Retrieved from

https://docs.microsoft.com/en-us/windows-server/get-started/getting-started-with-

nano-server

Public Welfare, 45 C.F.R. § 164.308 (2007).

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

Schneier, B. (2015). Introduction. In Secrets and lies: Digital security in a networked

world; 15th anniversary edition (p. 3). Retrieved from

https://www.safaribooksonline.com/library/view/secrets-and-lies/9781119092438/

Steffan, T., & Sandage, T. (2017). Automating security operations. In Automating

security in the cloud: Modernizing governance through security design. Retrieved

from https://www.safaribooksonline.com/library/view/automating-security-

in/9781491960745/

Sturlese, L. (2016, September 2). PS-ManageInactiveAD. Retrieved September 2, 2017,

from https://github.com/9to5IT/PS-ManageInactiveAD

Sutherland, S. (2014, September 9). 15 ways to bypass the PowerShell execution policy.

Retrieved from https://blog.netspi.com/15-ways-to-bypass-the-powershell-

execution-policy/

Tenable. (2015, January 21). Posh-Nessus: PowerShell module for automating Tenable

Nessus vulnerability scanner. Retrieved from https://github.com/tenable/Posh-

Nessus

TSO. (2013, August 27). Get inactive computer in domain based on last logon time

stamp. Retrieved September 2, 2017, from

https://gallery.technet.microsoft.com/scriptcenter/Get-Inactive-Computer-in-

54feafde

Vanover, R. (2009, April 13). Enabling PowerShell on Windows Server 2008. Retrieved

from http://www.techrepublic.com/blog/the-enterprise-cloud/enabling-

powershell-on-windows-server-2008/

VandenBrink, R. (n.d.). Nessus and Powershell is like chocolate and peanut butter!

Retrieved from

https://isc.sans.edu/forums/diary/Nessus+and+Powershell+is+like+Chocolate+an

d+Peanut+Butter/20431/

Wilson, E. (2010, October 26). Learn how to use .NET Framework commands inside

Windows PowerShell. Retrieved from

https://blogs.technet.microsoft.com/heyscriptingguy/2010/10/26/learn-how-to-

use-net-framework-commands-inside-windows-powershell/

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

Wilson, E. (2015, August 2). Weekend scripter: Exploring Windows PowerShell 5.0.

Retrieved from

https://blogs.technet.microsoft.com/heyscriptingguy/2015/08/02/weekend-

scripter-exploring-windows-powershell-5-0/

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

Appendix A

It should be noted, for readability of sample code, these scripts have been kept simple.

Minor changes will make these more flexible at the expense of simplicity. As an

example, looping through an array of groups rather than checking one hard coded group

in get-admins.ps1 is more useful in production. Further, the scripts use a number of

constants that are expedient for small sample scripts, but variables would better handle

these settings as the complexity and re-usability of the scripts grow.

A.1 Sample code for get-admins.ps1
#Script to identify unauthorized accounts added to the Domain Admins group

#region variables
$allowed = Import-Csv 'C:\scripts\get-admins\allowed.csv' #Path to file
containing SIDs of users allowed to be a member of Domain Admins
$group = "Domain Admins" #Group being protected
$members = Get-ADGroupMember $group #Get members of the group we are protecting
#endregion

if ($allowed.count -eq 0) {exit} #Failsafe to kill the script if the text file
does not contain any data or is not read for some reason.

ForEach ($m in $members) { #Create a loop to look at each member of the $group
 $account = $m.sid.ToString() #Create a string variable that holds the SID
for the member of $group to be compared. This simplifies code later.
 if ($allowed.sid -notcontains $account) { #Does the $allowed array contain
the member of $group currently being compared? If not take action.
 Disable-ADAccount -Identity $account #Disable the AD account that was
added to $group but is not in the $allowed file.
 Remove-ADGroupMember -Identity $group -Members $account -Confirm:$false
#Remove $account from the $group.
 #This is a good place to send an email alert or write an alert to a
console.
 if ((Get-EventLog -LogName Application -Source "get-admins-script" -
ErrorAction SilentlyContinue) -eq $null) {
 New-EventLog -LogName Application -Source 'get-admins-script'
#Create a new event log type in the Application log if it does not exist.
 }
 Write-EventLog -LogName Application -Source 'get-admins-script' -
EntryType Warning -EventId 0 `
 -Message "$account was removed from $group as part of the get-admins
security process." #Write an event to the local systems Security Event Log.
 }
}

A.2 Sample code for get-oldpassword.ps1
#Script to find users who have not changed their password recently
$maxage = 90 #Maximum days since last password change
$date = (Get-Date).AddDays(-$maxage) #Date of oldest password that does not
require a change
$users = Get-ADUser -Filter {PasswordLastSet -lt $date -and Enabled -eq $true}
#Array that holds accounts that are past due for password change
$users | Export-Csv -NoTypeInformation c:\temp\oldpass.csv #Export all users
who need to change their passwords to a CSV
Send-MailMessage -To "user1@example.com" -From "user2@example.com" -Subject
"Users with old passwords" -Body "See the attached CSV file for a list of users
with passwords over $maxage days old" -Attachments 'c:\temp\oldpass.csv' -
SmtpServer smtp.example.com #Send an email

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Daniel Owen, ggold@danielowen.com

A.3 Sample code for get-invalidgroupmembers.ps1
#Script to find users in the 'US_Associates' group that do not have a country
entry of 'US'
$group = Get-ADGroupMember 'US_Associates' #Create a new variable with all
members of the group we are interested in
$invalidmembers = @() #Initialize the array that will hold invalid users
foreach ($g in $group) { #Check the country for every user who is in the group
 $tuser = Get-ADUser $g.sid -Properties country #Read the AD record for the
current member being reviewed
 if ($tuser.country -notlike 'US') {$invalidmembers =
$invalidmembers+$tuser} #If the user's country is not "US" add it to the
variable invalidmembers
}
$invalidmembers | Export-Csv -NoTypeInformation c:\temp\invalidmembers.csv
#Export the results to a CSV file
if ($invalidmembers.Count -gt 0){ #If there are invalid members cleanup and
repot
 Remove-ADGroupMember -Identity 'US_Associates' -Members $invalidmembers -
Confirm:$false #Remove invalid members from the group
 Send-MailMessage -To "user1@example.com" -From "user2@example.com" -Subject
"Users removed from US_Associates AD group" -Body "See the attached CSV file
for a list of users removed from the US_Associates AD Group" -Attachments
'c:\temp\invalidmembers.csv' -SmtpServer smtp.example.com #Send an email
}

A.4 Sample code for get-recursivemanager.ps1
#Script to find a specific group of users based on manager, title, and
locations
#Get-ADDirectReport.ps1 can be downloaded from
https://gallery.technet.microsoft.com/scriptcenter/Get-ADDirectReport-962616c6
. "C:\scripts\Get-ADDirectReport.ps1" #Dot include script to do recursive
lookup based on manager
$reports = Get-ADDirectReports -Identity user1 -Recurse #Find all direct and
indirect reports for user1
$reportsfinal = @() #Initialize variable
foreach ($r in $reports) { #Create a list of users who will go on the report
 $user = Get-ADUser -Identity $r.SamAccountName -Properties country, title
#Lookup user in AD
 #Final removal of users who do not meet additional requirements
 if (($user.country -like 'US') -and ($user.title -like 'manager'))
{$reportsfinal = $reportsfinal+$user }
}
$reportsfinal | Export-Csv -NoTypeInformation C:\temp\selectreports.csv #Export
to CSV

