
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

Author: Jack Jekeon Cha, jackcha83@gmail.com
Advisor: Lenny Zeltser

GIAC (GLEG) Gold

Accepted: Nov 18, 2019

Abstract

When using Software-as-a-Service (SaaS) products, customers are asked to store and entrust a
large volume of personal data to SaaS companies. Unfortunately, consumers are living in a world
of numerous data breaches and significant public privacy violations. As a result, customers are
rightfully skeptical of the privacy policies that businesses provide and are looking for service
providers who can distinguish their commitment to customer data privacy. This paper examines
the viability of building an accurate audit engine to detect, record, and validate internal
employees’ reasons for accessing a particular customer’s data. In doing so, businesses can gain
clear visibility into their current processes and access patterns to meet the rising privacy demand
of their customers.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

2

Jack	Jekeon	Cha,	jackcha83@gmail.com	

1. Introduction
The Software as a Service (SaaS) product architecture requires that customer data be

collected and stored under the service provider's domain. SaaS products are now widely used for

many reasons. Enterprise customers continue to accelerate the staggering adoption of SaaS

products ("Gartner" 2018; Preimesberger, 2019) for the benefit of not having to manage their

own IT assets to operate an on-premise version of the same service. The general consumer

market has also embraced SaaS services, ranging from early email accounts to social media and

music streaming services. Consumers get to enjoy either the freemium or low monthly

subscription payments that come with a continuous software update. For this great price and the

undeniable overall benefit, some consumers have been willing to waver their privacy concerns.

(Gashami, Chang, Rho, & Park, 2016).

However, with the rising of SaaS businesses, along came a series of data breaches and

stronger customer data security/privacy concerns (Data, 2018; Privacy, 2018; Soofi, 2014). By

the nature of SaaS service, customers have to allow their data to reside within the business’s

control. SaaS businesses have the responsibility not only to protect customer data but to fulfill

their data privacy policy promises (Chang, Wong, Libaque-Saenz, & Lee, 2018; Wu, Huang,

Yen, & Popova, 2012) sold to the customers. Privacy laws, such as the General Data Protection

Regulation (GDPR) and California Consumer Privacy Act (CCPA), are furthermore asserting

legal duties on corporations to meet formally. Especially with CCPA's compliance deadline of

Jan 2020, many US-based SaaS companies are now undertaking a significant privacy capability

modernization.

Successful software start-up companies are known for their exponential growth (Peechu,

2017). Growth is not only representing in the number of customers but also in the number of

employees that handle customer growth, success and care (“KeyBanc”, 2019). What began as a

small circle of core employees quickly grows into a substantial distributed workforce with

specialized roles and functions. In an attempt to limit access to customer data, an organization

would typically rely upon a role-based access control (RBAC) system with various permission

policy patterns (Rochaeli & Eckert, 2005) to mitigate the organization’s perceived security risk.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

3

Jack	Jekeon	Cha,	jackcha83@gmail.com	

However, to fully utilize an RBAC system as an effective access control mechanism, one

must continuously fine-tune the permission sets assigned to a role; a process known as role

mining (Das, Mitra, Atluri, Vaidya, & Sural, 2018). Without the investment to regularly adjust

the roles and the included permissions (i.e. continually mining and updating roles), an

organization faces the risk of slowly drifting towards an over-provisioned state. The drifted state

also leads to unclear ownership of the roles.

In practice, maintaining this fine-tuned state is often tricky. First, a role that is supposed

to represent a particular job function often does not receive appropriate permission adjustments

as the job function changes over time. Even with an attempt at updating a role, role owners are

often content only to add new permissions and very reluctant to remove permissions in fear of

potentially breaking one of the role assignees’ access. Similarly, RBAC system owners often do

not create a new role but instead add new permissions to an existing role for convenience, which

results in some role assignees to possess more than the minimal set of permissions. Lastly, a

statistical usage analysis of given permissions in a role is often not available. As a result,

administrators have a difficult time figuring out whether the permissions are over-provisioned for

an individual assigned to a particular role.

Even with the assumption that an RBAC system is finely tuned regularly, there is yet

another weakness. Another shortcoming of an RBAC system is that "minimum necessary” access

is not evaluated. For example, a customer support agent may be authorized to look up customer

information for his or her daily job functions. Therefore, he or she would be assigned to a role

that allows the action of accessing customer accounts. However, without a specific customer

issue to solve, the agent does not need to look up a particular customer's data.

A SaaS company has many legitimate job functions that require access to customer data.

For example, even though a company may have the maturity to test its product purely with test

data, inevitable situations arise where the customer dataset is required to debug an issue that is

not reproducible without the customer data set. Another obvious and more common workflow is

customer support services. When a customer calls in to seek help, support agents have to pull up

the customer account details to quickly diagnose and aid the customer in resolving their issue.

So, how can we systematically validate the need of a customer support representative/engineer

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

4

Jack	Jekeon	Cha,	jackcha83@gmail.com	

for accessing a particular customer's data on a given day? How can we precisely map each

worker's workflow so the businesses can fine-tune the business practices to meet the rising

privacy demand from customers?

This paper theorizes that for a modern SaaS company, audit trails in Customer

Relationship Management (CRM) and bug tracking systems can be used to validate and justify

all access events by finding an active customer's ticket at the time of the access event.

The author has chosen the above two systems under the belief that they are the de-facto

central repository of audit records that capture the workflow of a metric-based workforce. For

example, key performance indicators (KPIs) such as time to resolve, number of open issues, and

age of open issues are indicators that are commonly tracked within a software company and

which are only possible with systems like CRM and bug tracking systems. Furthermore, by

leveraging the Application Programming Interface (API) functionality that comes with the above

two systems, building an automated audit engine is theorized to be highly viable.

2. Research Method
2.1. Research Subject Organization Profile

A real SaaS company with less than one thousand employees was chosen as the subject

of this research. This SaaS company offers a mature Human Capital Management (HCM)

product to small and medium-sized businesses (SMB). The solution includes the management of

health benefits and payroll management, as well. For the nature of the services offered, frequent

interactions occur between the customer and company representatives. The following functions

require customer data to support the provision of services. This distribution is typical of other

SaaS companies:

Function Example of Customer Data Access Scenarios

1. Customer Support Validating the identity of inbound support requests. Triaging issues

and providing guidance to the customer on how to use the platform.

2. Implementation Implementation supports customers in accelerating the use of the
SaaS platform by assisting with data entry and configuration. This

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

5

Jack	Jekeon	Cha,	jackcha83@gmail.com	

function may also include assisting customers with the integration
of third-party partner services.

3. Customer Advisors Periodically checks customer satisfaction level and help resolve
customer issues before being escalated. Acts as an advocate and
aid for the customer to successfully utilize the SaaS service.

4. Engineering The root cause of a customer reported issue may be the presence of
engineering bug. In such case, customer support team would
escalate to an engineering team. Testing the fix on the customer
data set confirms that the fix can be safely applied in the production
environment.

5. Other Escalation management, legal/compliance inquiries, billing/renewal
inquiry, feature usage evaluation

Table 1: SaaS company’s functional requirements for customer data access

2.2. Three Implementation Options for the Monitor Function
For a large workforce, internal tooling via a restricted web portal is developed to allow

employees to interact with customer data without any direct database-level interaction. This

portal typically provides customer search and data read/write functions to enable the workforce

to carry out their job functions effectively and in a controlled and monitored fashion. The

authentication mechanism is assumed to be built-in, leveraging individual accounts.

The target company has the maturity in controls and processes to provide appropriate

internal tools as the only means to access customer data for its workforce. With this advantage,

this customer data access web portal became the perfect choke point where a monitor function

can be placed to capture access occurrences. The author has considered the following three

architectures for placing the monitor function.

The first option, as illustrated below, was to place the monitoring function between the

web portal and the database read and write transaction layer.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

6

Jack	Jekeon	Cha,	jackcha83@gmail.com	

Figure 1: Access Monitor to Inspect Database Transaction

The advantage of this approach is the complete capture of all read and write transactions

that provides details of not only which customer’s data is being accessed, but also, which

specific data field is being accessed. For example, with this approach, the monitor function

would be able to distinguish whether an internal employee has looked up a particular customer’s

specific data field such as date of birth. However, practical instrumentation requires building in

the knowledge of which database table holds which fields, and also which data row belongs to

which customer account. Also, the monitor function situated at this layer would not know which

portal user account is invoking this database transaction (since the database access is given to the

web application, not to each user). Lastly, inspecting all database transactions with additional

table relation lookups to figure out the customer account to which it is associated, would

introduce some level of performance penalties to the CPU usage (although not quantified in this

study).

An alternative option was to place the monitoring function as a passthrough HTTP

reverse proxy module, as illustrated below.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

7

Jack	Jekeon	Cha,	jackcha83@gmail.com	

Figure 2: Alternative design for a monitor placement – HTTP Reverse Proxy

NGINX is a popular open-source web server that can be configured to be an HTTP

reverse proxy. A reverse proxy, in simple terms, takes requests between a client and a server.

The advantage of this approach would be relatively simple instrumentation cost as a plug-and-

play module, especially if an organization already has a reverse proxy component deployed for

its web portal (Sommerlad, 2003). This monitor can certainly be built as a plug-and-play module

for an existing reverse proxy server.

For detecting customer data access events, the monitor function can inspect HTTP

request paths and extract customers' unique identifiers directly. As an

example, https://portal.saascompany.com/customer_info/12345 can indicate a customer data read

event to a customer account whose ID is 12345.

Implementing path inspection would be a relatively low effort task and parsing the path

string as a regular expression pattern match would require minimal compute power. By

appointing a few common URL paths that include a particular customer's unique identifier,

recording a complete list of accessed customer accounts is possible. However, unlike the first

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

8

Jack	Jekeon	Cha,	jackcha83@gmail.com	

approach discussed, this approach does not grant the monitor function to gain visibility into

which individual customer data fields are being accessed. The monitor function will simply

record which customer’s data is being accessed.

One additional drawback of using simple HTTP reverse proxy deployment is that user

authentication/list synchronization with the portal would not be part of the out-of-the-box

configuration of a typical HTTP reverse proxy server. In such a case, the monitor can only record

which customer's data was accessed, but not who accessed the data. Configuring a shared source

of user list/authentication may require a more significant amount of effort than initially thought,

making this architecture less attractive.

The third and the last option places the monitor function within the portal web application

itself, as shown below.

Figure 3: Access monitor embedded within the customer data access web portal

This approach requires making an application code change. However, as an integrated

component to the web portal, such architecture provides many benefits. First, the monitor

function can take the same approach as the second option in parsing the request path URLs to

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

9

Jack	Jekeon	Cha,	jackcha83@gmail.com	

extract the accessed customers' unique identifiers. Additionally, since the monitor function and

the rest of the web portal logic is in a monolith environment, the monitor can also find the

relationship between tertiary objects and the owning customer to increase the scope of access

audit coverage. For example, https://portal.saascompany.com/address_info/67890 has an

address_info data object with a unique identifier of 67890. The monitor function can query to

figure out to which particular customer this address_info object belongs to. By building in the

known tertiary object URL paths and relationship-finding logic, the monitor function can be

more thorough in compiling a list of customer data accessed.

Another advantage is the ability to record the user identity that is already authenticated to

the portal web application. Hence, an authenticated user would not be able to repudiate the

recorded customer data access events.

Below is a summary of the three options discussed, with the last option chosen to be the

best fit for the test subject company.

Monitor
Location
Options

Accessed
Data Field
Detection
Granularity

Implementation
Complexity

Performance
Penalty

Confidence
of Capturing
All
Customer
Data Access

Can capture
user identity
context for
non-
repudiation

1. Between
Database and
Web Portal

Very High Moderate Some Very high No

2. As an
HTTP
Reverse
Proxy

Low Easy Negligible High No

3. Embedded
Within Web
Portal
Application

Low Moderate Negligible Very High Yes

Table 2: Considered Options for Monitor Function Architecture

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

10

Jack	Jekeon	Cha,	jackcha83@gmail.com	

2.3. Access Reason Validation – As a Batched Run
For this study, the author has chosen 24 hours, from midnight to midnight, for the

monitor function to collect a list of customers accessed by internal employees. At the end of the

monitoring period, the validation function picks the recorded customer list. The validator

function makes API calls to the two systems (CRM and bug tracking) to locate any tickets

associated with the recorded customer IDs.

Instead of conducting individual validation runs on each user separately, the validator

function processes the combined list of all accessed customers as a batch process. Batch

processing shortens the overall time taken to validate all access events because multiple users

may have a common subset of customer account accessed. Such a scenario occurs as team

members help each other by swarming to solve customer issues as a team.

If the overall validation run did not occur as a batch process, the run could repeat the

same APIs calls multiple times. For example, User 1 accessed customer data belonging to

customers [A, B, C] and User 2 accessed customers [B, C, D]. If the validation ran for each user

separately, a total of six API calls for [A, B, C, B, C, D] would be made. But a batch run would

only have to make four APIs calls for [A, B, C, D] as a combined single unique list, which would

shorten the total daily validation time significantly.

Figure 4: Validator Function

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

11

Jack	Jekeon	Cha,	jackcha83@gmail.com	

2.4. Access Justification Definition
Fast-moving SaaS businesses require their employees’ workflows to stay agile and

nimble to serve the customer faster and with the most efficiency. Customer support

representatives and engineers often work as a team to solve customer issues quickly. Even

though one particular representative may be the primary point person in handling a customer

ticket, there may be multiple employees helping to solve a complex issue. For this reason,

whether a customer recently has had an active issue ticket open is taken as the primary indicator

for a customer data access to likely occur by multiple representatives. In the context of this

study, a reasonably justified customer data access event is:

• When an unresolved/open CRM or a bug tracking ticket(s) exists for a particular

customer or

• When a recently (with a short grace period) resolved/commented/updated CRM or bug

tracking ticket exists for a particular customer

The second condition mentioned above gives portal users a few days grace period for

situations such as following up on a customer whose issue may have been resolved (hence a

closed ticket) but who may require further follow up.

Below is the flowchart depicting the validation priority. Each validation condition in blue

requires an API call made to the two systems (CRM and bug tracker). Each API call comes with

added delays which make an authenticated connection, a query processing time, and then a

network delay between the request and response. The validation run is sped up by stopping if a

record in found in the CRM system and not checking the bug tracking system. The author has

assumed that the CRM system would have the highest probability of holding customer associated

case records since the CRM system is supposed to capture interactions with customers as the first

line contact.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

12

Jack	Jekeon	Cha,	jackcha83@gmail.com	

Figure 5: Data Access Reason Validation Flow

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

13

Jack	Jekeon	Cha,	jackcha83@gmail.com	

Below is a sample of a validation run. In the example, an employee has accessed six

customer accounts. All but one customer account ID of 55555 has found records of customer

tickets, either active or recently closed within the grace period. The “Who Else Accessed”

column provides a hint of whether multiple representatives worked on the ticket or not. In this

sample validation run, the representative appears to have worked with Jack, Brenda, and Joyce

on the customer account of 33333 and 55555 together. Perhaps, the team has noticed that

customer 55555 might be experiencing a similar issue to what customer 33333 has reported,

although not yet noticed and reported by customer 55555.

Figure 6: Sample Validation Run

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

14

Jack	Jekeon	Cha,	jackcha83@gmail.com	

Through an interview process with employees, and by confirming with more verbose

application request log, false positives were identified and trimmed. These false positives came

from taking unique identifiers from request URL paths that were thought to be the customer ID

but were not. For example, the path of */payroll_customer_id/12345 was generating customer

data access event for customer 12345. However, 12345 referred to a unique identifier of a

payroll account instance, not the customer account.

3. Findings and Discussion
The chart below depicts the validation result as percentage composition. The validation

results are from a 72-hour period belonging to power users of the portal (i.e., those who accessed

the highest number of customer accounts) in each department. The composition is rounded up to

the nearest percentage.

Department
Group

Access
Volume
(relative
number of
customer
account
accessed)

Open or
recently
updated
case found
in the CRM
System

Open or
recently
updated
ticket
found in
the bug
Tracking
System
(Skipped
if CRM
record is
found)

Accessed
Customer
Account
is a Test
Account

Combine
d
Captured
Workflow

Uncaptur
ed
Workflow

Customer
Support

High 81% 0% 14% 95% 5%

Customer
Advisors

Medium 90% 5% 0% 95% 5%

Engineering Low 75% 8% 0% 83% 17%

Other Low 38% 19% 8% 57% 35%
Implementation Highest 5% 40% 11% 56% 44%

Table 3: Customer Data Access Reason Validation Composition Per Department

Customer support, customer advisor, and engineering group members show a high

percentage of their customer data access workflow captured either in the CRM system or in the

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

15

Jack	Jekeon	Cha,	jackcha83@gmail.com	

bug tracking system. In contrast, both other, and implementation group members seem to have

workflows involving customer data outside of CRM and the bug tracking system. The

implementation team had the highest relative volume of customer data access, showing that the

implementation managers work as embedded customer representatives during the

implementation. Engineering and other team members had a low volume of access events, as

expected for their job function.

The author approached each group member to discuss the accessed customer accounts not

found in the CRM or the bug tracking system. The following section discusses the insights from

the interview sessions about each team’s edge workflows cases that were not capturable in the

CRM or the bug tracking system.

3.1. Customer Support Team’s Uncaptured Workflow
As expected, the Customer Support team had a very high percentage of their customer

data access accounted for in the CRM record. The uncaptured workflow of 5% included

situations like triaging a customer issue where another customer had experienced a similar issue

in the same time period. In such a case, support team members look for similarities between the

two accounts. The other customer who had a similar issue before might have had a CRM ticket

in the past. However, if the past case got closed beyond the grace period, the validation run

would not count the closed ticket and the customer data access would be flagged as unvalidated.

3.2. Customer Advisor Team’s Uncaptured Workflow
The Customer Advisor team had the highest percentage of its customer data access event

captured in the CRM system, which was a pleasant surprise. The initial interview with one of the

customer advisor team members indicated that each advisor manager has a book of business (i.e.,

a list of customers they are responsible for). A customer advisor manager would have regularly

scheduled calls with his or her designated set of clients. The author was warned that for those

regular calls, the customer's data may be accessed without any open CRM ticket associated. It

seems that such case is only 5% of their workflow in real life, and the remaining 95% is

associated with customers who have an active customer ticket.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

16

Jack	Jekeon	Cha,	jackcha83@gmail.com	

3.3. Engineering Team’s Uncaptured Workflow
Although the CRM and the bug tracking system captured the majority of the engineering

team’s workflow (83%) that involved customer data access, the other 17% uncaptured

workflows had several scenarios. First, when an engineer debugs an issue that one customer

encounters, there could be other customer accounts that may be experiencing the same bug,

although they may not have reported it yet. To confirm the manifestation of the issue, sometimes

another customer account with matching bug dataset is accessed.

Another insight gained from the interviews is a scenario involves new feature

development. Although the standard practice of preparing a test data set exists, sometimes the

test data set itself has to be modeled after a real dataset from customer accounts to account for a

realistic distribution of data points.

Also, another uncaught workflow scenario is the Engineering team directly interacting

with platform developers who are also customers (e.g. paid development accounts). SaaS

companies typically have open APIs for its users and partners to securely interact with the

platform. To provide quick technical support, a developer support forum is often set up for

engineers to answer technical questions quickly. The inquiries made through the forum space

may sometimes lead to an engineer to check the inquirer’s dataset to root cause the issue that the

customer/partner developer faces.

3.4. Other Users’ Uncaptured Workflow
Escalation managers and product team members often analyze customer issues to identify

product gaps. This workflow represents 38% of their access event captured in the CRM system.

It is interesting to note that this group accessed test accounts (8%), presumably to get a view of

the current product. The uncaptured workflow scenarios included analyzing feature usage and

feature requests coming from customers who did not have an active CRM ticket. Feature

requests would typically come from customer community forums with any CRM interaction tied.

This group also contained uncaptured workflow for customers who are in the contract

renewal period, where billing/renewal representatives have to familiarize themselves with the

customer details and their use of the product for renewal or upsell purposes.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

17

Jack	Jekeon	Cha,	jackcha83@gmail.com	

3.5. Implementation Team’s Uncaptured Workflow
Naturally, the implementation team had a high percentage of uncaptured workflow

because, during an onboarding phase, customers would not have an open CRM ticket. The

implementation team had the highest volume of customer data access events.

3.6. Usage of Internal Instant Messaging Application
During the interviews with the users to understand their workflows, communication done

between team members through an instant messaging application to seek help from others was

mentioned significantly. This communication pattern that results in customer data access action

by different actors was more prevalent than anticipated. For example, customer support team

members often reach out to senior members through messaging to consult on customer issues

that they could triage themselves. The senior members who decided to help end up looking up

the customer’s data.

Interestingly, almost all posted messages had a CRM case involved and the channel

members were following an unspoken rule of message convention to include a web link to the

CRM record containing a customer’s unique identifier. Perhaps as future research, instant

messages can be analyzed to find strong audit record for tracking why a certain employee ended

up accessing which customer’s data. Interestingly, when the customer data access events across

multiple users were correlated, it became apparent which customer issue required team

collaboration. For example, the validation run below displays many other users who looked up

the same customer 33333’s data.

Figure 7: Example customer issue that involved team collaboration

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

18

Jack	Jekeon	Cha,	jackcha83@gmail.com	

3.7. Self-Reporting Through Instant Messaging Application Bot
If the validator function can guarantee capturing greater than 95% of each team’s

workflow, the validator function could also be used to trigger an access challenge. Perhaps such

higher coverage percentile can be achieved by expanding its validation scope beyond the CRM

and bug tracking systems.

With prevalent usage of instant messaging applications like Slack, an automated bot

interaction mechanism can be used to build a speedier challenge and response communication

path, and/or as an exception filing pathway. Contrary to a traditional ticket-based exception

filing process, which involves waiting for supervisory approval, workflow designed for a

messaging application can be an effective and culturally accepted process for today’s modern

workforce.

The workflow through bot interactions within the messaging application has the potential

to speed up the approval process significantly. At the same time, digital audit trails would be

discoverable at scale with API instrumentation. Furthermore, the messaging app bot can be

configured to auto generate an organization’s traditional exception workflow ticket if desired.

Such an easy, speedy, and psychologically well-accepted process could gain the cooperation of

the workforce and be an essential key to validating all customer access events.

4. Limitation and Direction for Future Research
The overall findings indicate that even for job functions with well-defined customer

interactions, CRM, and the bug tracking systems alone did not contain all audit records to

validate 100% of customer data access events. Through post-validation interviews with the users,

this study has discovered many different workflows that were not capturable in those two

systems. It seems that customer status states (like whether the customer is onboarding, offboard,

or in between renewal period) can and must supplement the validation process to increase the

audit record coverage. As an example, a sales representative may be expected to look up

information about a particular customer if he or she is developing a renewal contract. Hence,

even without an active CRM case, the data access event may be marked as justified due to

customer status.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

19

Jack	Jekeon	Cha,	jackcha83@gmail.com	

Furthermore, as an organization’s workforce grows, more unexpected workflows that

involve customer data access would arise. For example, during the research, it was discovered an

individual whose job was to educate and train customer support agents on how to use the

customer data access web portal effectively. The educator’s daily activity involved building

customer issue scenarios with test accounts – seeding dataset and feature configurations that

would cause a customer issue. Although the educator built most of the scenarios without using

any real customer account data, some scenarios required researching prior customer issues to

build test datasets that would represent complex customer issues. Hence, for a growing

workforce, a flexible exception filing pathway for ever changing workflow requirements is much

needed, especially for scenarios that are not capturable in traditional issue tracker systems like

CRM and bug tracking.

4.1. Future Research: Data Access Behavior Analytics Engine
With the daily history of each employee’s customer data access activity captured, it may

be possible to build a baseline profile of each employee’s daily workload expected with the

following input:

• The average number of customer data access events per day

• Time of the day in which customer data access events occur at

• Peak business season where the user’s workload is much higher than average

• Book of business / customer segments assigned (if applicable)

Future research into building an accurate baseline profile for each job function would be

a valuable topic for detecting an abnormality in access event patterns.

4.2. Future Research: Active Gating Mode
For most of, if not for all of the security controls, fine-tuning the detection algorithm to

the healthy balance of false-positive and true-negative is the most crucial part. With such a

healthy balance, and perhaps in combination with the access behavior analytics engine assisting,

the validator function may be able to detect unauthorized data access attempts in real-time with

low false-positive rates. An active block mode may interrupt workflows, but it would prevent the

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

20

Jack	Jekeon	Cha,	jackcha83@gmail.com	

inappropriate data access events from ever occurring in the first place. Future research into

developing policy rules on when to trigger the hard-gating challenge dialog to block proceeding

to customer data access without significantly affecting the productivity of teams would be

another valuable endeavor. Such effort will propel the gating algorithm to become an Attribute-

Based Access Control (ABAC) system that can dynamically regulate an employee's access to

customer data (Das, Mitra, Atluri, Vaidya, & Sural, 2018; Hu, Kuhn, Ferraiolo, & Voas, 2015;

“Axiomatics" 2019).

5. Conclusion
Customers face a unique dilemma in the age of SaaS proliferation. SaaS companies

attempt to delight their customers with exceptional product updates and efficient customer

services. The low monthly subscription fee schedule also helps decide with ease in signing up for

the service. However, customers now have to entrust a significant amount of their digital data

and identity to SaaS companies. More and more SaaS enterprises are entrusted with an ever-

growing amount of customer data. After being affected by mega breaches, general consumers

realize the real risk associated with their digital assets being in the hands of SaaS companies.

Understandably, the consumers now are calling for more transparency into how internal SaaS

employees are accessing their data.

This paper has attempted to build an audit record framework that can act as a baseline to

answer not only who accessed which customer’s data, but also why the data access had to occur.

Although the thesis statement was proven to be wrong, this study allowed the author to gain

insights into different workflows of a modern SaaS workforce that were not capturable in

traditional ticketing systems. As the next step, the author hopes to continue researching into the

future topics of building a flexible challenge-response pathway via instant messaging platform,

behavior analytics, and real-time gating capability. Ultimately, the future research effort is to

lead to the full maturity of tying all customer data access to an authorized and documented use

cases. With the augmentation of forcibly gating access control, future research effort hopes to

prevent any inadvertent access events that do not align with a justified and fully documented use

cases.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

21

Jack	Jekeon	Cha,	jackcha83@gmail.com	

References
Axiomatics. 2019. Attribute Based Access Control (ABAC). Retrieved from

https://www.axiomatics.com/attribute-based-access-control/

Chang, Y., Wong, S. F., Libaque-Saenz, C. F., & Lee, H. (2018). The role of privacy policy on

consumers’ perceived privacy. Government Information Quarterly, 35(3), 445–459.

https://doi.org/10.1016/j.giq.2018.04.002

Das, S., Mitra, B., Atluri, V., Vaidya, J., & Sural, S. (2018). Policy Engineering in RBAC and

ABAC. In From Database to Cyber Security (pp. 24-54). Springer, Cham.

Data Breach Investigations Report 2018: the year of ransomware. (2018). Computer Fraud &

Security, 2018(5), 4. https://doi.org/10.1016/S1361-3723(18)30040-X

Gartner Foresees the End of On-Premises ECMs in 2019. (2018). Information Management

Journal, 52(6), 10. Retrieved from

https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=133397571&site=ehos

t-live

Gashami, J. P. G., Chang, Y., Rho, J. J., & Park, M.-C. (2016). Privacy concerns and benefits in

SaaS adoption by individual users. Information Development, 32(4), 837–852.

https://doi.org/10.1177/0266666915571428

Hu, V. C., Kuhn, D. R., Ferraiolo, D. F., & Voas, J. (2015). Attribute-based access

control. Computer, 48(2), 85-88.

Peechu, S. (2017). Re-Imagining the Rule of 40 for Early Stage Startups: The 70 Percent Growth

Efficiency Heuristic. Siliconindia, 69. Retrieved from

https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=127479749&site=ehos

t-live

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Building an Audit Engine to Detect, Record, and Validate
Internal Employees’ Need for Accessing Customer Data

22

Jack	Jekeon	Cha,	jackcha83@gmail.com	

Preimesberger, C. (2019). Key SaaS Trends in the Enterprise. EWeek, N.PAG. Retrieved from

https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=137109930&site=ehos

t-live

Privacy Rights Clearinghouse. 2019. Data Breaches Dataset. Retrieved from

https://www.privacyrights.org/data-breaches

Rochaeli, T., & Eckert, C. (2005). RBAC policy engineering with patterns. In W9: The Semantic

Web and Policy Workshop (SWPW) (p. 148).

Soofi, A. A., Khan, M. I., Talib, R., & Sarwar, U. (2014). Security issues in SaaS delivery model

of cloud computing. International journal of computer science and mobile

computing, 3(3), 15-21.

Sommerlad, P. (2003, June). Reverse Proxy Patterns. In EuroPLoP (pp. 431-458).

Wu, K.-W., Huang, S. Y., Yen, D. C., & Popova, I. (2012). The effect of online privacy policy on

consumer privacy concern and trust. Computers in Human Behavior, 28(3), 889–897.

https://doi.org/10.1016/j.chb.2011.12.008

