
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Enterprise Penetration Testing (Security 560)"
at http://www.giac.org/registration/gpen

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gpen

!!
!

!

Hunt Teaming

GIAC (GPEN) Gold Certification

Author: Joff Thyer, jsthyer@gmail.com
Advisor: Dominicus Adriyanto
Accepted: November 25, 2014

Abstract

In today's world of persistent threats, and multiple compromise attack vectors, defenders
are losing the battle. Mobile platforms, and cloud computing have broken the
traditional defense model. Data assets are becoming increasingly spread and harder to
maintain control of. Traditional defense models are breaking down. In the penetration
testing profession, we are all too proud of the idea that we can gain access to
environments and "win" in our engagements. But we should be honest with ourselves,
its just not that difficult anymore. Sure we need sophisticated techniques, and depth of
knowledge but our human targets continually succumb to our methods. So why don't we
offer a new paradigm? Let's assume that enterprise X is already compromised and try to
help them find out what the telltale signs are, how bad it might be, and help them assess
the appropriate response. Let's arm our friends with new techniques, and become
hunters of compromise activity within an environment.

Hunt Teaming! 2
!

Joff!Thyer,!jsthyer@gmail.com!

Acknowledgements

The content of this paper is derived from my research, and my associations with many
very talented people. Specifically I would like to thank John Strand, and all of the
talented employees of Black Hills Information Security. I acknowledge the work of Seth
Misenar and Eric Conrad in continuous security monitoring. There is no “I” in this
industry but the collective “we” to make this digital world a more secure place.

Hunt Teaming! 3
!

Joff!Thyer,!jsthyer@gmail.com!

Introduction

Over the past several years, the information technology industry has dramatically

shifted from a desktop workstation centric, corporate owned computing asset model to a

model of performing business processing tasks from anywhere with any capable device.

This is evident through the dramatic increase in tablet, and smartphone use by

organizational employees, and demand of employees to be able to use their own devices

to manage daily business tasks. (Gartner, 2014)

While some organizations are resisting the change and retaining all critical

business processing tasks on corporate managed endpoints, a great many others are

adopting a hybrid model of enabling mobile devices to access a restricted set of business

data. In many cases, a model of enabling email access natively on mobile devices, and

using a form of virtual desktop technology to access business data remotely on mobile

devices has emerged. (Tom’s IT Pro, 2014)

Software vendors driving the mobile device revolution have well understood that

the traditional organizational domain boundaries are blurring, and have positioned

themselves as cloud solution providers to take advantage of this new computing

paradigm, and to extend the services model for less capable smaller entities.

The traditional model of organizational information security defense is based on a

hard shell exterior, perimeter based, approach whereby the boundary between the Internet

and the organization is heavily fortified through the use of firewall, and intrusion

detection/prevention technologies. This is usually complemented by desktop workstation

protections such as host based intrusion detection, application whitelisting, and anti-virus

solutions. The traditional model of information security defense is premised on the idea

that the defenses will prevent system compromise a significant percentage of the time

leaving organization staff to deal with the few systems that are compromised and need

appropriate incident response and remediation processes applied.

In the context of today’s threat environment, the outdated prevention-based model

is dramatically failing. Compromise has become the norm, often discovered by third

Hunt Teaming! 4
!

Joff!Thyer,!jsthyer@gmail.com!

party notification by which time is pervasive, widespread and data having already been

ex-filtrated. (Schneier on Security, 2013)

It is well understood by information security professionals that an initial

compromise of an environment is not something difficult to achieve. Many penetration

testing professionals will use a social engineering based ruse, such as a targeted phishing

based email with URL content or file attachment, that delivers malware to a system to

achieve a command and control (C2) channel. Content is now designed to evade email

delivery filters, and to not trip antivirus solutions. Some antivirus vendors have already

admitted that their technology is failing. (Arstechnica, 2014)

Initial compromise only delivers a beachhead within a computing environment.

The real work for an attacker, or professional penetration tester, begins after the

beachhead is established. This work is that of learning the environment, spreading access

across to other systems, becoming administrative, and exfiltration of data. This is work

that takes much longer to achieve, sometimes measured in days, weeks, or even months.

If we assume that initial compromise and establishment of a beachhead of

reasonably trivial, occurring in a short period of time, and we have a context of a

traditional perimeter defense model which might not even have detected this activity,

then the traditional model is not correctly focused.

As security defenders, and security solution providers, we should re-focus on the

much longer window of time that is presented post the initial compromise situation. We

should focus our efforts on examining the indicators of established C2 channels,

indicators of escalation, and spreading (pivoting) access within an environment.

This idea is known as a continuous security monitoring model, and begins with a

very important assumption of already being compromised and working from there. The

activities to search for indicators of compromise within an environment are known as

“Hunt Teaming”. (Securosis Research, 2013)

Hunt Teaming! 5
!

Joff!Thyer,!jsthyer@gmail.com!

1. Hunt Teaming

Hunt Teaming is the process of executing techniques within a computing

environment to locate enterprise network indicators of compromise. When performing

hunt teaming activities, ideally the team needs to:

• Identify command and control (C2) channels

o Identify unusual domain name system (DNS) queries

o Identify patterns of C2 traffic

o Identify unusual HTTP agent strings

• Identify intruder pivoting activity

• Identify evidence of persistence, and unusual registry keys

• Identify software installations on systems that deviate from baseline

• Identity unusual code signing certificates

For the purposes of this paper, we are going to assume that the content is a mid-sized

enterprise network environment of Windows 7 domain joined endpoints. We will also

assume that while mobile devices are likely in use, the mobile device primary access

mechanism to business processing data is via some form of remote access using a virtual

desktop technology.

!
!

1.1. Command and Control (C2) Channel Identification

Successful compromise of an organizational workstation is typically going to

occur through social engineering, or inadvertent web browsing compromise. (The human

OS: Overdue for a social engineering patch, 2014) In the social engineering category,

electronic mail delivery of an HTML formatted email that contains targeting and

compelling information is quite typical. An HTML URL/link will commonly be

Hunt Teaming! 6
!

Joff!Thyer,!jsthyer@gmail.com!

employed that takes the user to some form of Java applet, or browser compromise

malware. Alternatively, a richer document format such as PDF, or Microsoft Office

macro based malware will be employed.

After successful initial workstation compromise, it is very common for an

outbound command and control (C2) channel to be established. When establishing this

channel, an attacker will typically use an outbound TCP port that is permitted through

perimeter defenses. It is not unusual to see outbound C2 channels using TCP 443 over

HTTPS, or other TCP ports such as 22, 25, 80, and 143 for example. While some C2

channels may be encrypted, there still remains a tremendously amount of C2 activity that

is unencrypted, with some channels even using the Internet Relay Chat (IRC) protocol.

1.1.1. Examining DNS Server Cached Data

Organizations typically will use an internal DNS server that often is configured in

a split DNS topology. Split DNS is where an internal DNS server is used to service the

internal network clients, but is configured to forward any unresolved requests to an

external caching server. Only the internal DNS will hold authoritative copies of the

internal network zones. The internal/intranet DNS infrastructure will cache external

records for the appropriate time to live (TTL) received after first resolution.

A DNS cache can be examined by dumping the data out of the DNS server. In the

case of a BIND9 Linux based server, this is achieved using the “rndc dumpdb –cache”

command. In the case of a Windows domain name server, “dnscmd” can be used. In

Windows server 2008-R2 and beyond, a Powershell 4.0 cmdlet named “Show-

DnsServerCache” is available.

After extracting DNS cache data, one method that can be used is to look for any

suspicious Internet domains that are contained within the cache to detect evidence of

potential botnet or C2 channel activity. One text-formatted list of suspicious domains is

available at https://isc.sans.edu/suspicious_domains.html.

Hunt Teaming! 7
!

Joff!Thyer,!jsthyer@gmail.com!

In addition to seeking out suspicious domains, it is possible to independently

perform DNS lookups on the extracted cache data (for external Internet resources only),

and validate that the results in the cache match the real-time resolution being performed.

Any mismatches would be a potential indicator of DNS cache poisoning.

1.1.2. Detecting DNS Covert Channels

Another method of creating a C2 channel is to use DNS to tunnel the command and

control data out of the secured enterprise network. Examples of DNS tunneling tools

include OzymanDNS, Dns2tcp, Iodine, Heyoka, Dnscat, NSTX, and Dnscapy. (DNS

Tunneling, InfoSec Institute) DNS can also used as a mechanism to ex-filtrate data from

a network, and are commonly used to transfer files from an organization. (Psichron)

 When a DNS covert channel is established, there will be specific characteristics of

the DNS traffic that are not typical of normal DNS traffic. For example, the size of the

response packet may be unusually large, or uncommon DNS record types will be used

(such as a TXT record), or the number of NXDomain responses might be unusually high.

It is also fairly common in many implementations for DNS covert channels to have fairly

unusual query names such as “dnscat.29.a.b.c.d.domain.tld” for example. (Detecting

DNS Tunneling, 2014)

In order to perform this sort of analysis, we either are required to have live network

data access in the form of a network tap and analyze network data passing by, or we can

also enable DNS logging on internal DNS servers and analyze log data.

Hunt Teaming! 8
!

Joff!Thyer,!jsthyer@gmail.com!

Figure 1: Enabling DNS logging on Windows domain controller

Other methods that might be employed include the frequency of DNS traffic detected

on a per client basis. For example, if a sizable sample of endpoints in an environment

send an average DNS query rate of ten queries per minute, however one workstation is

suddenly performing 60 queries per minute, a statistical standard deviation of a core

network traffic capture of DNS traffic would clearly show an outlier.

Aside from frequency on overall DNS record queries, and responses, the DNS

logging data gives us the ability to total up individual query types, response types, and

response codes. After totaling this data, a mean and standard deviation can be calculated.

If any of these totals are more than two standard deviations away from the mean, we can

flag these records and display them as outliers for further examination.

1.1.3. Examining HTTP User-Agent Strings

In an environment where web proxy logs are available, or perhaps using a

network packet trace utility such as “tcpdump”, or “ngrep”, it is possible to look at all

HTTP protocol user-agent strings being used in web requests. Since there are only a

Hunt Teaming! 9
!

Joff!Thyer,!jsthyer@gmail.com!

limited number of browser technologies, the most common user-agent strings should be

identifiable and have a high transaction frequency count. Other agent strings such as

those generated from Anti-Virus engines, and gaming products may also be visible with a

relatively high frequency. (Identifying Malware via User-Agent Headers, 2010)

If we gather a relatively long period (at least one full day) of data capture, or logs,

we can count the HTTP user-agents by frequency and possibly source address. Then we

can sort the frequencies and look for the most infrequent requests that will likely be

highly unusual user-agent strings. Assuming that we retain the internal source address

that the request is transmitted from, the unusual infrequent requests can be traced back to

specific devices for further analysis.

1.2. Identifying Pivoting Activity

A very typical sequence of events, after a beachhead is established, is for an attacker

to seek administrative escalation on a local workstation and then examine opportunities

for expanding access. There are numerous methods for attempting to find a locally

administrative credential which range from examining group policy preferences (GPP)

data, examining unattended installation data, keystroke logging, extracting desktop

application credentials, and dictionary, or brute force attacks. A domain level

administrative credential is even more useful for escalation; if this data is discoverable

through one of the common escalation methods.

Additionally, it is quite common in many organizations for a locally administrative

credential to exist on many Windows endpoints, often designed for recovery in the event

that a workstation become disjoined from the domain environment. It is also relatively

common for this locally administrative credential to be the same username, and password

across multiple client endpoints. It should be noted here that changes to Microsoft

Windows in the form of KB2871997 (May 2014) were implemented to prevent remote

logon of any local credential that does not have relative identifier (RID) of 500.

 Assuming that either a domain level or locally administrative credential has been

obtained, it is very common to test logon against neighboring workstation authentications

Hunt Teaming! 1
0 !

Joff!Thyer,!jsthyer@gmail.com!

using an SMB logon method, and then use either PSEXEC or “wmic process call create”

as a method to achieve a login session on a remote workstation.

 To provide some context surrounding figures 2 through 10 depicted below, a

beachhead workstation with IP address of 10.10.1.198 has been compromised and in turn

being used to examine the surrounding sub-network for remote login opportunities. It is

assumed that a locally administrative credential has already been discovered and that the

encrypted NT hash is being used for attempted login.

 Depending on the audit policies deployed in the Windows environment, the

PSEXEC scenario can produce a significant amount of information in event logs. In the

example entries below, audit policies were enabled for logon, process tracking, object

access, privilege use, and system events on a Windows 7 system. Admittedly, a stock

audit policy under Windows 7 typically logs only the account logon event however this is

still sufficient to detect pivoting activity. Notably, in August 2014, Microsoft

Sysinternals (Mark Russinovich) released a process and file event-logging tool called

sysmon which logs full process creation details along with an MD5, or SHA hash.

Figure 2: SMB scanning for a Windows system that accepts our credentials

Hunt Teaming! 1
1 !

Joff!Thyer,!jsthyer@gmail.com!

Figure 3: Using Metasploit “psexec_psh” to remotely login and start a service

 Figure 2 shows how a penetration tester or attacker might use the Metasploit

“smb_login” module to scan for neighboring systems to attack. Figure 3 shows at

attacker setting up the “psexec” method with a Powershell based payload to attempt

remote system login, and the delivery of shellcode starting as a service. This shellcode

will create a TCP connection from the exploited workstation back to the attacker

controller server.

Figure 4: “Credential validation” event entry with unusual Workstation name

Hunt Teaming! 1
2 !

Joff!Thyer,!jsthyer@gmail.com!

Figure 5: “Logon” event entry showing source IP address

Figure 6: “File share” event showing target name of “svcctl”

 In figures 4 through 9, we see that when a “psexec” method is used, the Windows

event log on the remote system will show multiple different entries offering a lot of

evidence of “pivoting” activity. This evidence includes events showing logon activity

from a peer / neighboring workstation, the IPC$ file share access event, a service creation

event, PowerShell process creation event, and logoff event.

Hunt Teaming! 1
3 !

Joff!Thyer,!jsthyer@gmail.com!

Figure 7: “Sensitive privilege use” event showing SC Manager access

Figure 8: “Process creation” event showing PowerShell being executed

Figure 9: “Logoff” event showing Administrator username

Hunt Teaming! 1
4 !

Joff!Thyer,!jsthyer@gmail.com!

Figure 10: Sysinternals “Sysmon” server process creation event entry

The Microsoft SysInternals project named “Sysmon” takes process event logging a

step further by showing more detailed process creation information which includes the

full arguments of the process being created. Depicted in figure 10, we see the

PowerShell process created with an encoded Base64 command. This data can be

extracted and decoded to discover exactly what nature PowerShell script is being

executed.

Based on the examination of this captured event information, there are numerous

Windows event identifiers that stand out, and could be periodically examined for

evidence of pivoting activity. These identifiers include:

- 4624: Logon success

- 4625: Logon failure

- 4776: Credential validation

- 7035: Service control manager (start service)

Hunt Teaming! 1
5 !

Joff!Thyer,!jsthyer@gmail.com!

Using either Windows Management Instrumentation (WMI) or Windows Remote

Management in PowerShell, in combination with LDAP information about a Windows

domain, specific event identifiers of interest can be retrieved and examined. An example

PowerShell script that can perform this task is as follows in figure 11:

Figure 11: Example PowerShell script to retrieve security events

1.3. Identifying Evidence of Persistence

In most cases, Windows malware is going to use the typical mechanisms of installing

a registry key to ensure that the software starts again upon system boot. Commonly the

registry entries used are either in the local machine registry hive (HKEY Local Machine /

HKLM), and/or in the user registry hive (HKEY Current User / HKCU). When looking

for this sort of data, we should also account for the 64-bit variants of the registry keys.

(Journey Into Incident Response: Tracking Down Persistence Mechanisms, 2013)

!
- \HKLM\Software\Microsoft\Windows\CurrentVersion\Run
- \HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnce
- \HKCU\Software\Microsoft\Windows\CurrentVersion\Run
- \HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce

- \HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run
- \HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunOnce
- \HKCU\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run

- \HKCU\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunOnce!

In much the same way as the path redirection feature for system DLL files

(C:\Windows\SYSWOW64), when a 32-bit application requires a 32-bit version of a key

it will query within the “Wow6432Node” key portion of the associated hive.

 Using PowerShell within an environment, we can again query all systems on a

domain wide basis to fetch all of the registry run keys and place them in a central

Hunt Teaming! 1
6 !

Joff!Thyer,!jsthyer@gmail.com!

location. Our goal should be to sort the run keys and count frequencies across the

domain. We are looking for low frequency count, atypical run keys belonging to

machines we can perform deeper forensic examination upon. An example PowerShell

script for fetching a run key is listed below. For brevity, this example script is written for

only a single run key.

Figure 12: PowerShell example to obtain registry “run” key

1.4. Identifying Deviations from Software Baseline

Using a method that is very similar to the registry key information presented above,

we can iterate across our domain and examine the Win32_Product WMI class to get a

sense of what the installed base of software across an environment looks like. Assuming

a well-managed environment with appropriate security policies, and no locally

administrative users, it is safe to assume a degree of uniformity for all operating

endpoints. Where our endpoints deviate from this uniformity indicates an area that

should be flagged for further examination.

In consideration of this, we should seek to obtain frequency counts of unique software

installation information and maintain the source workstation information from where

each item of information was obtained. As an additional measure, we should consider

examining the “C:\Program Files”, and “C:\Program Files (X86)” directory listings

Hunt Teaming! 1
7 !

Joff!Thyer,!jsthyer@gmail.com!

across the environment. Below is a sample script to fetch the appropriate information on

a domain wide basis. In this example, we are using the Win32_Product WMI class rather

than the registry key, however a registry key enumeration method could also be

employed.

Figure 13: PowerShell example to obtain installed software list

Once this information has been retrieved, our goal should be to answer some

questions for ourselves, such as:

o Are there unusual or unexpected software packages installed?

o Are the software publisher names consistent?

o Are there unexpected software versions installed?

o Are there unexpected install locations, or unexpected vendor strings present?!
!

1.5. Identify Unusual Code Signing Certificates
!

There are a number of past examples that exist whereby malware has accidentally

been code signed, fraudulent code signing companies created, or there has been theft of

code signing private keys, and certificates. (HP accidentally signed malware, will

revoke certificate, 2014)

Through PowerShell, we can leverage access to the entire certificate store on

individual domain joined endpoints. This enables us to examine machine, user / personal

certificates which includes the root certificate store, intermediate certificate stores, and

code signing information.

Hunt Teaming! 1
8 !

Joff!Thyer,!jsthyer@gmail.com!

Using a combination of scripting to retrieve the certificate information, and a

statistical post processing approach, we should create totals on the number of code

signing certificates. Sub-totals should be created on publisher information, publisher

URL information, and timestamps (certificate lifetime). Questions to be answered

include the following:

o Are there endpoints with statistical variance in the overall total and type of code

signing certificates?

o Is the lifetime signing flag set? Is the timestamp valid?

o Can the certificate be verified / validated?

o What is the certificate revocation status?

! A combination of certificate revocation list checking, and online

certificate status protocol (OCSP) should be employed to answer this

question.

From the PowerShell perspective, retrieving the certificate store is a little more

challenging. The reason is that we can use administrative access to pass our credentials

to the remote workstation to enumerate the store, but we require some form of credential

to write the results back to another central location. We could take the approach of

offering up an open file share to write the results back to, or write results to individual

stations and then gather the data in a second pass back to the central location.

In the prototyping scripts, we choose to take the latter approach to ease

implementation complexity. It is also useful to leverage the PowerShell encoded

command feature to pass the script text across WMI for remote execution. Additionally,

our WMI call listed below sets the token impersonation level to allow the remotely

invoked objects to use the source credentials.!
!

Hunt Teaming! 1
9 !

Joff!Thyer,!jsthyer@gmail.com!

!
Figure 14: Example PowerShell script to retrieve remote certificate store

Hunt Teaming! 2
0 !

Joff!Thyer,!jsthyer@gmail.com!

2. Conclusion
!

It is important to understand that all of the methods presented above are focused on

collecting meta-data about an environment to primarily search for anomalies. The

approach to searching for macro-level indicators of compromise is not focused directly

on finding malware, but rather on looking at the high level behavior of an environment

for anomalous behavior. Using statistical analysis for each sub-component of analysis, a

security analyst can then correlate results and use the emerging correlations about

individual endpoints to focus down to individual endpoints.

The environmental data used to search for macro-level indicators of compromise can

not only be systemic logging, and event information but can also be extended to a deeper

level by examining sources of full packet capture on critical network paths. Examining

packet capture data can improve our results by giving a real-time heuristic view of

anomalies, which can be correlated with the non real-time logging data sources.

Ultimately the methods presented offer a complement to traditional penetration

testing resulting not only in clear demonstration of vulnerability, but accompanying

detailed evidence of compromise.

Hunt Teaming! 2
1 !

Joff!Thyer,!jsthyer@gmail.com!

References

Gartner: Top 10 Strategic IT Trends For 2015 - Forbes. (October 2014). Retrieved from

http://www.forbes.com/sites/peterhigh/2014/10/07/gartner-top-10-strategic-it-trends-for-

2015/

Schneier on Security: More on Feudal Security. (June 2013). Retrieved from

https://www.schneier.com/blog/archives/2013/06/more_on_feudal.html

Desktop as a Service vs. VDI - Pros and Cons - Tom's IT Pro. (August 2014). Retrieved

from http://www.tomsitpro.com/articles/vdi-vs-desktop-as-a-service,2-791.html

Antivirus pioneer Symantec declares AV “dead” and “doomed to failure” | Ars Technica.

(May 2014). Retrieved from http://arstechnica.com/security/2014/05/antivurus-pioneer-

symantec-declares-av-dead-and-doomed-to-failure/

Securosis Research |. (September 2013). Retrieved from

https://securosis.com/research/publication/continuous-security-monitoring

The human OS: Overdue for a social engineering patch | CSO Online. (October 2014).

Retrieved from http://www.csoonline.com/article/2824563/social-engineering/the-

human-os-overdue-for-a-social-engineering-patch.html

Hunt Teaming! 2
2 !

Joff!Thyer,!jsthyer@gmail.com!

pwnag3: What Did Microsoft Just Break with KB2871997 and KB2928120. (May 2014).

Retrieved from http://www.pwnag3.com/2014/05/what-did-microsoft-just-break-

with.html

Detecting DNS Tunneling – SANS Institute. (February 2013). Retrieved from

http://www.sans.org/reading-room/whitepapers/dns/detecting-dns-tunneling-34152

DNS Tunnelling - InfoSec Institute. (March 2014). Retrieved from

http://resources.infosecinstitute.com/dns-tunnelling/

Identifying Malware via User-Agent Headers – Intrepidus Group - Insight. (June 2010).

Retrieved from https://intrepidusgroup.com/insight/2010/06/identifying-malware-via-

user-agent-headers/

Journey Into Incident Response: Tracking Down Persistence Mechanisms. (March 2013).

Retrieved from http://journeyintoir.blogspot.com/2013/03/tracking-down-persistence-

mechanisms.html

HP accidentally signed malware, will revoke certificate | Ars Technica. (October 2014).

Retrieved from http://arstechnica.com/security/2014/10/hp-accidentally-signed-malware-

will-revoke-certificate/

!

