
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Enterprise Penetration Testing (Security 560)"
at http://www.giac.org/registration/gpen

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gpen

Powercat

GIAC (GPEN) Gold Certification

Author: Mick Douglas, mick.douglas@gmail.com
Advisor: Richard Carbone

Accepted: February 21, 2015

Abstract:

Powercat brings the functionality and power of Netcat to all recent versions of Microsoft
Windows. It accomplishes this goal by using native PowerShell version 2 components.
This allows easy deployment, use, and little chance of being caught by traditional anti-
virus solutions. Additionally, the latest versions of Powercat include advanced
functionality that goes well beyond those found in traditional forms of Netcat. This paper
will acquaint the reader with the original proof-of-concept version, developed by Mick
Douglas; the current release, developed by Luke Baggett; and the outline of the planned
future features that will be developed by anyone who wishes to join Team Powercat.
Perhaps even you!

Powercat is freely available at Github.com:
https://github.com/besimorhino/powercat/blob/master/powercat.ps1

Powercat 2

Mick Douglas, mick.douglas@gmail.com

Acknowledgements

Powercat started as a proof-of-concept tool that I initially developed. However, the
recent work has been done by the talented Luke Baggett. He has implemented almost all
of the “Future Enhancements” first listed in the earliest versions of Powercat. In addition
to Luke, I would like to thank my other coworkers at Black Hills Information Security for
their support, encouragement, and constant challenges for me to always bring my “A
game”. Last, but certainly not least, I owe a special debt to John Strand, for believing in
me well before I became a member of Black Hills Information Security.

I am blessed in both my professional and personal life. I know it, and for these
wonderful gifts I am both humbled and grateful.

Powercat 3

Mick Douglas, mick.douglas@gmail.com

1. Introduction
Knowledgeable defenders are aware of the risks that attackers pose. In an attempt

to halt malicious use, they will create segmented networks with various detection tools

that are often signature based. This in turn, creates a demand for new attacker tools that

can bypass signature detection while still being able to operate in highly segmented

networks. As defenders learn about these new attack tools, attackers adjust their tools

and techniques accordingly which creates yet another round of demand for “new and

improved” attack tools that are eventually made. Thus, the lifecycle of attack and defend

continues.

Defenders are continuing to get better at monitoring networks. As they do so, the

attackers must become more stealthy, and able to navigate the environment in novel

ways. While this allows defenders to gain the upper hand against less skilled attackers,

this has the unintended consequence of pushing the most skilled attackers into areas of

the network where they cannot be easily detected. This means that skillful attackers now

have a distinct advantage. If an attacker is able to conduct successful reconnaissance and

has a solid working knowledge of how a network and its component nodes are

configured, they can effectively fly below the defender’s radar. A perfect example of this

is the trend where attackers make maximum use of the built-in features and functionality

of the systems they have compromised. Two very powerful talks on this matter are “AT

is the New Black” (Fuller and Gates, 2013) and “Living Off the Land” (Campbell and

Graeber, 2013) which were given at DerbyCon 3.0. Both of these talks focused on using

built-in OS commands as part of penetration testing. The bottom line is that by using

built-in functionality, attack detection becomes exceptionally difficult. Because these are

tools that are used as part of the OS stack, it is not practical to create a signature detection

rule for them. Additionally, they are using expected ports and protocols; this makes it

hard to identify malicious use from “normal.” It is in this spirit that Powercat was

developed.

Powercat is a PowerShell script that makes use of stock .Net components and

PowerShell commandlets. It only uses items available to PowerShell version 2. This

Powercat 4

Mick Douglas, mick.douglas@gmail.com

allows the script to run on any system from Windows 7 to Windows Server 2012. Until

Microsoft officially deprecates the use of the PowerShell version 2 components used,

Powercat will be able to work on any and all future Windows OS released without

additional modification.

2. Powercat
2.1. Powercat History
 Powercat was initially created as a “proof-of-concept” tool to determine if a

PowerShell native backdoor listener and reverse shell (a.k.a. shell shovel) were practical.

It was created by Mick Douglas during the Offensive Countermeasures class being taught

at Black Hat USA 2014. The 0.1 version of Powercat was exceptionally limited in

functionality. It could only perform listener or allow client connections which is the core

of the Netcat family of applications. Its one redeeming feature was that it had the ability

to natively send or receive a cmd.exe shell. One of the major drawbacks of this version

of the tool was that it was using synchronous TCP sockets. The synchronous nature of

the tool meant that Powercat had to make extensive use of while loops and sleep

functions in order to determine if there was any output from either STDERR or

STDOUT. This design lead to many performance issues. Specifically, from the user’s

standpoint, it was exceedingly slow. The command would have to complete before

feedback of any kind could be sent to the Powercat user. This meant that if a command

took a long time to run1 the user would have to wait for the entire command to finish

before getting any indication that the command was successfully received by the listener

and executed. In spite of these limitations, it worked and was a welcomed tool used by

the few who knew about it. Powercat’s big breakthrough happened when Luke Baggett

began actively working on the “Future Features” and implementing components of his

own design into the tool. Luke’s involvement in Project Powercat began shortly before

DerbyCon 4.0, around September of 2014. Since this time, Mick Douglas has

1 Some commands such as WMIC queries using WMI Query Language across an entire domain
can take a long time to run. Depending on the number of nodes in the domain, complexity of the
query, and network speed, it is reasonable to assume at least a half-hour run time. This feels very
long when staring at the empty end of a remote command shell.

Powercat 5

Mick Douglas, mick.douglas@gmail.com

unfortunately not been able to contribute to the current development efforts. All

enhancements discussed for the remainder of this paper have been implemented by Luke.

It is Mick’s hope to return to the development of this project soon.

2.2. Powercat Features
2.2.1. Modular Script

One of the first improvements that Luke Baggett made to Powercat was to make it

a modular script. This ensures maximum portability, simplifies the evasion of

PowerShell local execution restriction policies, and brings Powercat into alignment with

other PowerShell penetration testing tools (such as the PowerSploit Framework). This

flexibility has a minor cost in terms of use. Prior to running Powercat for the first time

on a host, the module must be imported. This is done by using the Import-Module

PowerShell commandlet.

Import-Module Powercat

From this point forward, until the PowerShell context is destroyed2 (or the

Powercat module is manually unloaded via the Remove-Module commandlet) the user

can invoke Powercat at the PowerShell prompt:

Powercat [Powercat options]

Perhaps the greatest advantage to using this method is that PowerShell supports

the loading of remote modules. This means that a user can have PowerShell retrieve the

Powercat script for them:

IEX (New-Object
System.Net.Webclient).DownloadString("https://raw.githubuserconte
nt.com/besimorhino/powercat/master/powercat.ps1")
; powercat [options]

2 PowerShell context is most often the PowerShell window that the script or module in which it is
working. Closing the PowerShell prompt window or rebooting the system are just one of many
ways the current working PowerShell context can be destroyed.

Powercat 6

Mick Douglas, mick.douglas@gmail.com

While the above command is quite a bit to type, it would be reasonably assumed

that a user would copy/paste this command. URL shortening services such as bit.ly3

could make this a less arduous task if one is in a situation where they must type this URL

in by hand. Finally, it should be stressed that this remote download technique can only

work in situations where the host the user is attempting to invoke Powercat from has both

Internet connectivity and the ability to access the remote resource. This technique is used

in tools like Powercat and PowerSploit. Because of this, defenders should ensure that

they have a properly configured web proxy. To offer maximum protection, the proxy

should be configured to restrict access on an as-needed-basis for URLs, or at the very

least domains, that serve a business use.

2.2.2. Asynchronous Communication
 Currently, Powercat supports many features that give it a large degree of

flexibility. The single biggest performance improvement was moving Powercat to an

asynchronous communications model. This meant that one end of the wire (the listener

or client) could receive any input from STDIN or output from STDERR or STDOUT,

and the script would immediately perform the appropriate I/O update. This makes the

user experience significantly more responsive. With a high speed and low latency

network link, it would feel as if one is working with a normal – and local – cmd.exe shell

(or the shell was invoked, e.g. PowerShell, wmic, netsh, etc.)

Powercat supports the use of either TCP or UDP sockets on any port, assuming

the port is not already in use by another program, and the user or invoking process has

permissions to the port. For instance, only elevated accounts, such as root on UNIX or

administrator on Windows, are able to use any of the “low order” ports (ports 0-1024).

This means that once the Powercat user has conducted a thorough review of the ports and

protocols permitted between two systems, they should be able to bypass any router ACL

or firewall rule using permitted ports. Furthermore, it also means that port sweeps via the

3 Bit.ly is just one of many URL shortening services. This is accomplished by creating a shorter
link which points to long or difficult URLs. When a user clicks a shortened link, the URL
shortening service will send a 300 series status (a.k.a. redirection) code to the user’s browser,
causing the original link to load.

Powercat 7

Mick Douglas, mick.douglas@gmail.com

use of tools such as Nmap’s Firewalk NSE script might be the only readily detectable

indicator prior to the use of Powercat.

2.2.3. Interoperability with Other Applications
Of course, Powercat supports both client and listen (a.k.a. server) modes. Listen

mode permits Netcat or Powercat clients to connect to the computer that is running the

listener. This means that Powercat can be used to connect to any Netcat listener, or

another Powercat instance listening on a remote host. It was a deliberate choice to allow

other Netcat-like programs to interact with Powercat. It is hoped that this will speed its

adoption and permit for a more flexible use of Powercat, in conjunction with the rest of

its “relatives.” Users have the flexibility to ‘consume’ Powercat network traffic as they

see fit. This design choice should allow Powercat to be easily added to existing toolkits

and further augment the methodologies of penetration testers without having to retool in

order to better accommodate it.

2.2.4. DNSCat2 Protocol Compliance
Powercat has functional requirements that go well beyond compatibility and ease

of adoption. Some of the major objectives behind the Powercat project are stealth, being

able to get information out of networks that have tight egress controls, and allowing

remote command and control through restrictive ingress/egress4 filtering. To facilitate

these three functional demands, Powercat has implemented the DNSCat2 protocol as

specified by Ron Bowes (Bowes, 2015).

The DNSCat2 protocol provides a framework for creating clients or servers that

are able to send data or command and control traffic over standard DNS traffic. For this

technique to be viable, the Powercat user must have a domain for which they have control

over the authoritative DNS server. Instead of running a standard DNS service daemon,

the DNSCat2 user will run any DNSCat2 compliant server. In addition to the DNSCat

4 Ingress filters are firewall rules that filter network traffic which is considered “inbound” or
coming into your network from some other zone. Egress filters are for “outbound” traffic that has
a destination not belonging to your zone. Through careful configuration of the rules governing
both inbound and outbound traffic flows, network administrators control how the various points
of a network can communicate.

Powercat 8

Mick Douglas, mick.douglas@gmail.com

program, there is an experimental Metasploit module that can be used. This module can

be found at https://blog.skullsecurity.org/blogdata/dnscat-shell-win32.rb.

 It is important to note that under normal use the DNSCat2 protocols do not create

a direct connection over port 53. Instead, what is done is far more subtle, and in many

instances a bit harder to track. The communication takes place over DNS record requests

and responses that are encoded via various methods. This means for any network that

allows external name resolution and recursion, the DNSCat2 protocol option will be a

viable method to interact with remote systems, even in situations where there are no

direct external outbound ports between the client system and the DNSCat listener. This

remote access and control works in such a tightly controlled environment, because all

traffic is happening over the DNS server infrastructure. After all, the ports and protocols

must be permitted outbound from the DNS server if external (i.e. Internet) name

resolution is to work. This technique makes one’s DNS server infrastructure act as a

proxy for the traffic or data the Powercat user choses to send over the connection.

2.2.5. Persistent Listener Built-in
Unlike the UNIX traditional Netcat implementation, Powercat has the ability to

create “persistent” listeners. Those familiar with the Windows version of Netcat will

note the similar functionality to the “listen harder” mode. The developers have opted to

move away from the “-L” invocation method in the traditional Windows Netcat implementation.

This was a deliberate choice, since PowerShell scripts and commandlets tend to be more

verbose than their UNIX equivalents. By adopting a longer argument it is hoped that this

‘feels’ more akin to the native PowerShell commandlets. Additionally, Microsoft

operating systems and their applications, including PowerShell, are not case sensitive

(Microsoft, 2009). While it would be technically possible to create a command line

parameter check that does accomplish case sensitivity on the listener parameter (capital L

vs. lowercase l), it is not in keeping with standard Windows conventions and likely to

confuse those who are not expecting this behavior.

 The simple reason for having a persistent listener is that it creates a listener that

will automatically restart itself if the process or connection is stopped for any reason. By

having this built-in capability, it saves the user the effort of having to create a while loop,

Powercat 9

Mick Douglas, mick.douglas@gmail.com

cron entry, or use some other facility to restart the listener process upon termination.

This is a common task users of the traditional UNIX Netcat will likely be familiar with.

While it is not that difficult to do any of those tasks, the developers’ find these restart

“hacks” to be irksome and sidestep this issue altogether by providing a method for

restarting the listener without bothering the user. As handy as this capability is, not every

listener will require this behavior. In fact, many will never need or use this; as such, this

feature is an optional item that the user can select upon invoking it with the “–rep”

argument (short for repeating). The command line syntax for that is as follows:

powercat -l –rep –p [port]

2.2.6. Relay Built-in
One significant advantage that Powercat brings to its users is built-in relays.

Using traditional Netcat, one can create a pivot (think host-based proxy for Netcat

traffic), but it is not exactly the most “user friendly” method. The “easiest” method for

creating Netcat relays in UNIX requires the use of piped nodes. An example for creating

a listener to client is shown below (Skoudis, 2014):

$ mknod backpipe p

$ nc -l -p [localport] 0<backpipe | nc [targetIP]

[port] | tee backpipe

While this is workable, it does generate some evidence that could be used as part

of a forensics investigation. Specifically, the creation of a named pipe node file is odd.

Not only does this command exist in the history file of the account used to create it, the

file itself resides on disk in the directory the user was in when the mknod command was

run. It is important to note that the file created, in the example above named ‘backpipe’,

is a file type called a named pipe5. While named pipes can be of great use to systems

administrators on UNIX machines, the author of this paper cannot think of a single

reason a ‘normal’ user would need to create a named pipe. Because these file types are

5 Named pipes are linkage files which allow inter-process communication between different
running commands. Unlike the standard UNIX pipe character “|”, named pipes will persist after a
command completes execution. Additionally, named pipes permit communication between
different hosts, which unnamed pipes traditionally cannot (Aoki, 2013).

Powercat 1
0

Mick Douglas, mick.douglas@gmail.com

so atypical, any incident responder with a modicum of UNIX familiarity should quickly

zero in on this named pipe as needing further investigation no matter how innocuous a

name it was given.

Powercat attempts to make things easier, and stealthier, for the user by natively

including the relay functionality. Users do not have to create piped nodes or make use of

odd command line redirects. Simply invoke Powercat as follows and the system this

command was executed on will become a relay (proxy, pivot, etc.):

Client Relay Format:

powercat -r <protocol>:<ip address>:<port>

Listener Relay Format:

powercat -r <protocol>:<port>

DNSCat2 Client Relay Format:

powercat -r dns:<dns server>:<dns port>:<domain>

2.2.7. Self-Generating Payloads
One major drawback and area of concern is the monolithic nature of Powercat.

All features and functions are in a single script. The current version of Powercat is over

900 lines of code and comments. It is expected to grow quickly as the code is built up as

new features are introduced. While it is exceptionally convenient to have everything in

one script, this does present several drawbacks. For a start, it is likely to be easier to

detect. Were Powercat a static file, detecting it could be as simple as a single MD5 file

checksum. This means it would be trivial for traditional signature-based tools to discover

the script.

To avoid these issues, Luke Baggett implemented a payload generation feature in

Powercat. By using the payload generator, Powercat will create a string that is a stripped

down version of the script with only the code that is absolutely necessary to support the

command line arguments that the user supplied:

powercat [listener or client options] -g

Powercat 1
1

Mick Douglas, mick.douglas@gmail.com

This ‘lean and mean’ version of Powercat now can potentially go places and be

used in situations where the full version simply would not work. A hypothetical use case

for this functionality could be a command injection flaw in a web application where the

attacker is able to echo to a file one line at a time. By using this method, the attacker is

able to “upload” the Powercat script up to the remote web server.

echo “some text” >> sample-file.txt

Attempting this sort of file transfer with the full version of Powercat would be

exceptionally tedious, and could not be realistically accomplished without the use of

some additional script to manage the line-by-line file transfer. By using the generated

payload, again only containing the features one needs for a given invocation, the script

would be significantly smaller in line count, thus making this hypothetical file transfer

much more reasonable for the attacker.

2.3. Future Enhancements
Powercat is still a work in progress. Some additional features that are currently

being tested but have not yet been released as “stable” include using SSL/TLS to mask

data in transit, additional protocol encoding/enveloping schemes, and authentication

modules.

2.3.1. SSL/TLS
SSL/TLS is a natural choice for helping to covertly move data or command shells.

Since it provides the point-to-point encryption of data in transit, once this feature is

available, it will allow users to hide their communications. Unless defenders are

terminating all SSL/TLS traffic in every direction, Powercat’s future SSL/TLS

functionality will allow attackers a greater level of stealth than currently available to most

versions of Netcat (Ncat by the Nmap project being a notable exception).

At the time of this writing, SSL library support native to PowerShell version 2

appears to be somewhat limited. There is ongoing research to determine the best method

for invoking SSL/TLS encrypted communication. However, given the wealth of options

the .Net framework offers PowerShell, it is only a matter of time until the necessary

components are discovered. Several methods are available and it is only a matter of

Powercat 1
2

Mick Douglas, mick.douglas@gmail.com

testing to determine if the features will work as needed for this script. While this “getting

by” in a limited environment may be vexing for some developers, the author of this paper

has taken a semi-defiant attitude toward those who claim something cannot be done.

After all, at the time Powercat was first written, it was ‘conventional wisdom’ that

PowerShell was not able to support asynchronous communication. The author of this

paper takes great delight in that Luke Baggett was able to decisively and definitively

prove everyone wrong.

2.3.2. User Authentication Methods
Shortly after the SSL/TLS features are implemented, an area of intense focus will

be providing various authentication options. When conducting a penetration test, it is

imperative that the network and systems being tested are not in any way harmed or have

their security degraded. Doing so is not only sloppy work on the penetration tester’s part,

but this exposes the client to potential liability and needless risk that they otherwise

would not have ever had to deal with. Yet many are doing just this when they are

creating backdoor listeners in Netcat. If an attacker knows what port and IP address to

interact with, they will get access. It is the author’s opinion that having unauthenticated

backdoor listeners is an unacceptable risk, and this practice should be terminated across

the penetration testing industry as soon as practical.

In an attempt to make Powercat a ‘safer’ alternative, there are several

developments already underway. With the implementation of SSL/TLS, Powercat will

be able provide mutual authentication for both listener and client. Additional certificate-

based login methods are being investigated. The goal is to implement something similar

to a SSH key-based login. While certificate logins will be the preferred method for

authentication, the developers understand that not everyone will adopt this higher security

standard. In order to improve the current situation username and password-based

authentication will be enabled as well.

2.3.3. File level encryption
As another method of providing protection to data in transit, different encryption

methods can be used. If SSL/TLS is not selected by the user, they can choose to encrypt

the data using other encryption methods including AES or ECC. While this mode could

Powercat 1
3

Mick Douglas, mick.douglas@gmail.com

be considered for interactive shell use, it would be a very powerful protection mechanism

for data moved via Powercat. One could think of this as file-level protection for

traditional Netcat file push or pull methods.

2.3.4. Protocol-Based Hiding
With the exception of SSL/TLS protected traffic, Netcat style communication

often stands out as being distinct from expected network data flows. So that this

communication channel is better obscured, future versions of Powercat will include some

form of protocol-enveloping. That is, the data stream will be sent over a specific data

element inside a carrier protocol. Some of the protocols that the Powercat developers are

currently investigating include HTTP and SMTP.

Techniques such as this already exist in many tools. For example, the freely

available tool Naisho DeNusumu (Japanese for “hidden stealing” available for download

at https://github.com/3nc0d3r/NaishoDeNusumu) by Adam Crompton, offers several

techniques to conceal the movement of data in highly monitored networks. One of the

exfiltration methods employed by Naisho DeNusumu is the use of web browser request

cookie session ID values to conceal traffic. Since session IDs are typically long and

appear to be random, this data field is a strong candidate for hiding encoded or encrypted

communications.

By enveloping Powercat connectivity over expected ports and protocols, users of

the tool will likely be able to remain beneath the radar of the defensive network

monitoring team. The intention behind this functionality is to highlight how imperative it

is for monitoring teams to deeply understand what constitutes “normal” network traffic.

2.3.5. Testing for IPv6
A final area of research to conduct will be the testing of Powercat over two

different network addressing schemes. To date, all testing has been completed using

IPv4. To ensure that Powercat is ready for the future, additional testing will be carried

out to verify that Powercat is able to handle IPv6 tunneling over IPv4. This is better

known as “Teredo” tunneling (Microsoft, 2003). This transition protocol will likely be

used for a while as networks slowly move to IPv6. Finally, Powercat will need to be

Powercat 1
4

Mick Douglas, mick.douglas@gmail.com

tested under native IPv6. Since Powercat is simply making function calls to existing

libraries to handle the networking, it is highly likely that these tests will pass without

significant issue. Cursory research on Microsoft’s Technet site indicates that everything

should work as expected (Microsoft, 2013).

2.4. Implications of Powercat
The breadth of functionality in Powercat mentioned earlier should serve as a

wakeup call to those who practice network and system defense. Attackers for some time

have been able to hide command and control or data transfers using typically expected

protocols. Powercat’s claim to fame is not one of functionality. Its chief advantages are

twofold: it is freely available and it allows defenders to more accurately model the attacks

they are likely to face. The developers hope that this availability affords defenders the

opportunity to better study the techniques already employed by skilled attackers.

2.5. The Ethics of Creating Powercat
Powercat is a tool with many powerful features. How these capabilities are used

will be entirely up to the individuals who use it. The developers’ hope is that Powercat

will be used responsibly, safely, and lawfully. However, it would be naïve to believe that

this will always be the case.

It is curious that “hacking” tools are subjected to a higher level of criticism or

scrutiny because they are perceived as somehow different from other applications. After

all, a standard web browser can be used to launch a SQL injection attack against a web

server, yet one rarely hears about complaints against browser developers. Microsoft’s

Office products can be used in the commission of crime. Software is simply a tool, a

force multiplier. Whether it is a tool or a weapon is largely up to the wielder of the

software itself.

However, creating a tool with such a strong potential for evil has given the

developers pause. After careful consideration, the developers of Powercat firmly believe

that defensive practitioners, researchers, and others defenders who are within the law

require access and use of tools that allow the modeling of complex attacks. Without this

capability, there is no effective means to adequately test their defenses against the

Powercat 1
5

Mick Douglas, mick.douglas@gmail.com

realistic attacks and tactics their adversaries will use against their infrastructure. In short,

the potential for good outweighs the potential for harm.

The Verizon Data Breach Report has clearly shown that criminals have already

developed their online presence (Verizon et al, 2014). The public and widespread release

of Powercat does little if anything for the attackers, but it could help open defenders’ eyes

to the grim reality as Dan Greer so eloquently put it at the 2014 RSA security conference:

Whether in detection, control, or prevention, we are notching personal bests, but

all the while the opposition is setting world records (Greer, 2014).

Finally, it is worth pointing out that for all the evasion techniques and capabilities

Powercat has, there are no vulnerability exploitation capabilities nor is there any on the

development roadmaps. Powercat has and always will be a tool to highlight what an

attacker could do, not necessarily be the go to tool to be used by attackers. This is a fine

point to be sure, but nevertheless an important one. Powercat could be used for evil, but

this is unlikely as it is limited in its functionality and features as compared to currently

available crimeware

While there is a certain “gallows humor” to the following quote from the TV

Show “All in the Family,” it does accurately sum up the author’s feelings and is highly

apropos on the matter of munitions grade software:

Gloria: Did you know that sixty five percent of the people murdered in the last ten

years were killed by handguns?
Archie Bunker: Would it make you feel any better, little girl, if they was pushed

out of windows (Bloom and Nicholl, 1972)?

3. Conclusion
Current defensive best practices make extensive use of network segmentation and

signature detection. Combined, these two techniques significantly raise the level of

difficulty for penetration testers. By utilizing Powercat, these two controls, which are

common in almost any organization, can be negated by using a single tool. Since

Powercat is based entirely on PowerShell version 2, it contains no binaries to trip

Powercat 1
6

Mick Douglas, mick.douglas@gmail.com

IDS/IPS, anti-virus, or file integrity monitoring to detect. Additionally, it does not, and

will not ever require the user to install dependencies. This means that Powercat is a

flexible and useful tool that should be seriously considered and studied by all penetration

testers. It effectively allows one to test a variety of different attack scenarios.

Defenders must be aware of this tool and its implications. Many of the traditional

defense technologies in use today (anti-virus, firewall, etc.) will not ever be able to mount

effective protections against Powercat. In light of this new reality, it is incumbent on

defenders to know what “normal” network traffic is. One must also be aware of what

expected processes and scripts should be running on a given host under “normal”

conditions. Defense can no longer simply focus on alerting to “known bad” problems.

Instead, defense must pick up the gauntlet thrown and take a more active role. They must

investigate for deviations from baselines and aggressively seek to understand why these

variances are taking place. To do any less is a dereliction of duty!

As a member of Team Powercat, I invite you to download this PowerShell

module, and with appropriate permission, see how your defenses stand up to its use. We

would love to know what you think about this tool. Let us know if you run into any

issues while using it. Chances are you will not be alone in experiencing these problems.

You could be saving your friends from future frustrations. If you have any ideas on how

to improve or extend Powercat, please let us know via Github pull requests. If you have

the time, ability, and inclination to work with the code, we would be delighted to have

your assistance. Finally, we would be eternally grateful if you, dear reader, helped spread

the word about this tool and its capabilities. We firmly believe that defenders need to

know and understand the technical capabilities that the attackers have. In the right hands,

Powercat is uniquely qualified to help shape and create a significant portion of a realistic

and comprehensive view into the technical risks that organizations are facing. Getting

the word out about Powercat so others can more accurately measure their risk exposure is

perhaps the greatest gift you can bestow to the developers.

Powercat 1
7

Mick Douglas, mick.douglas@gmail.com

4. References
Aoki O. (2013) Debian Reference. V2. [website] Debian Foundation.

https://www.debian.org/doc/manuals/debian-

reference/ch01.en.html#_named_pipes_fifos [Accessed 21, Feb. 2015]

Bloom, G and Nicholl, D (Writers), & Campbell, N (Director). (Original broadcast

9/16/1972). Archie and the Editorial [Television series episode]. In N. Lear

(Producer), All in the Family. Los Angeles, CA: CBS Television City (Studio)

Norman Lear/Tandem Productions (now a division of Sony Pictures Television)

(Distributors)

Bowes, R. (2015) [website]Available at: https://wiki.skullsecurity.org/Dnscat#Protocol

[Accessed 21, Feb. 2015]

Campbell, C. and Graeber, M. (2013). [DerbyCon Presentation] Living Off the Land

Recording available at: https://www.youtube.com/watch?v=j-r6UonEkUw

[Accessed 21, Feb. 2015]

 Crompton, A. (2014) [Notacon Presentation] Naisho DeNusumu: Stealing Secretly

Exfiltration Tool Framework Recording available at:

https://www.youtube.com/watch?v=4K_-IUGqGdg [Accessed 21, Feb. 2015]

Gates, C. and Fuller, R. (2013). [DerbyCon Presentation] AT is the New Black. Recording

available at: https://www.youtube.com/watch?v=_8xJaaQlpBo [Accessed 21, Feb.

2015]

Greer, D. (2014). [RSA Presentation] We Are All Intelligence Officers Now Transcript at:

http://geer.tinho.net/geer.rsa.28ii14.txt [Accessed 21, Feb. 2015]

Lyon, G “Fyodor” (date not listed). [website] Ncat Introduction Available at:

http://nmap.org/ncat/ [Accessed 21, Feb. 2015]

Microsoft, et al. (2003) [website] Teredo Overview Available at:
https://technet.microsoft.com/en-us/network/cc917486.aspx [Accessed 21, Feb.
2015]

Microsoft, et al. (2009) [website] Using Cmdlets. Available at:

Powercat 1
8

Mick Douglas, mick.douglas@gmail.com

https://technet.microsoft.com/en-us/library/bb648607(v=vs.85).aspx [Accessed

21, Feb. 2015]

Microsoft, et al. (2013) [website] Net TCP/IP Cmdlets in Windows PowerShell
https://technet.microsoft.com/en-us/library/hh826123.aspx [Accessed 21, Feb
2015]

Skoudis, E. (2014). 1st ed. [ebook] SANS, p.2. Available at:

http://www.sans.org/security-resources/sec560/netcat_cheat_sheet_v1.pdf

[Accessed 21, Feb. 2015]

Verizon, et al. (2014)Verizon Data Breach Report, 2014. 1st ed. [ebook] Verizon.

Available at: http://www.verizonenterprise.com/DBIR/2014/ [Accessed 21, Feb.

2015]

