
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Enterprise Penetration Testing (Security 560)"
at http://www.giac.org/registration/gpen

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gpen

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks

GIAC (GPEN) Gold Certification

Author: David Brown, mrdavebrown@gmail.com
Advisor: David Fletcher

Accepted: January 6, 2020

Abstract

Increasingly, attackers are relying on trusted Microsoft programs to carry out attacks
against individuals and organizations (Symantec, 2017). The software typically comes
installed by default in Windows and is often required for the essential functionality of the
operating system. These types of attacks are called “living off the land,” and they can be
challenging to detect and prevent. This paper examines the viability of using Microsoft
AppLocker to thwart living off the land attacks without impacting the legitimate
operating system and administrative use of the underlying Microsoft programs.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 2

1. Introduction
Built-in Microsoft Windows programs are increasingly becoming cybercriminals’

go-to tools for perpetuating attacks (Symantec, 2017). These attacks, called living off the

land attacks, are ideal for cybercriminals for several reasons. One reason is that attackers

may not need to place foreign, malicious tools on the target machines. Many of the tools

needed to perpetrate attacks are built-in to Windows by default. Since they are trusted,

built-in Microsoft programs, they can also be used to bypass anti-virus and traditional

application whitelisting deployments (Carbon Black, 2019). Another reason is that

attackers’ use of the built-in Microsoft programs can be difficult to distinguish from the

legitimate operating system and administrative use of the built-in programs. This allows

attackers to comingle their activities amongst regular system and administrative logs and

thus hide their activity (Rapid7, 2019).

The quantity of living off the land attacks are increasing. CrowdStrike stated that

“LOTL (living off the land) tactics, which do not involve malware, have picked up

significantly in the world of cyber espionage in recent years” (CrowdStrike, 2019). A

CrowdStrike report went on to assert that 40% of all global attacks they observed in 2018

were malware-free, meaning that they relied entirely on built-in programs (CrowdStrike,

2019). Living off the land attacks also pose a unique security challenge in that they are

often able to bypass traditional application whitelisting deployments. Application

whitelisting is held up as a gold standard in preventing malicious attacks (Australian

Cyber Security Centre, 2019). However, a quick peruse through the MITRE ATT&CK

Framework and the LOBAS Project reveals many built-in Microsoft programs that can be

used specifically to evade application whitelisting (MITRE, n.d.) (LOBAS, n.d.).

The challenge of these powerful built-in Microsoft programs is that the Windows

operating system and administrators legitimately use them and that cybercriminals

maliciously abuse them. Many modern tools, such as Windows Defender, seek to solve

the problem by analyzing the behavior of the built-in programs. If the built-in program

behaves in a particular way that is known to be malicious or seems to be malicious,

Windows Defender blocks the action. While this is a significant step forward, the

malicious behavior would still be allowed to execute if it behaved in a way that did not

David Brown, mrdavebrown@gmail.com

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 3

appear to Windows Defender as malicious. Another solution must be found to truly

prevent living off the land attacks.

This research seeks to develop ways to prevent living off the land attacks using

application whitelisting. The application whitelisting techniques used in this paper

specifically utilize Microsoft’s AppLocker in a user-aware context. By creating user-

based rules to block built-in Microsoft programs, legitimate operating system and

administrative use of the programs should not be impacted, but regular users’ use of the

abused Microsoft programs should be prevented. Thus, when cybercriminals take over a

regular user account, they will be prevented from executing the programs.

2. Research Method
A fully patched Windows 10 Enterprise virtual machine is configured with three

regular users. The first user, named Regular, is set up as a regular user with no

AppLocker restrictions. The second user, named Default, is set up as a regular user with

default AppLocker rules enforced. The default AppLocker rules are created by selecting

the “Create Default Rules” option for Executable Rules, Windows Installer Rules, Script

Rules, and Packaged app Rules. These rules can be referenced in Appendix C

(AppLocker Default Rules). The third user, named LotL, is set up as a regular user with

default AppLocker rules enforced plus additional AppLocker rules designed to prevent

living off the land attacks. These rules are referred to in the paper as LotL rules and can

be found in Appendix B (AppLocker LotL Rules). The user LotL is also given group

membership to a security group called Employees. At the foundational level, the LotL

rules are designed to restrict members of the Employees group from executing built-in

Windows programs that are abused by attackers. The LotL rules only add restrictions for

members of the Employees group. This distinction allows administrators and the

operating system to maintain access to the built-in Windows programs. For additional

details about the virtual machine, see Appendix A (Virtual Machine Setup).

The Findings and Discussion section of this paper explores various attacks that

utilize built-in Windows programs to perpetrate attacks. The attacks are run as the user

Regular to observe the success of the attacks without AppLocker. The attacks are then

David Brown, mrdavebrown@gmail.com

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 4

David Brown, mrdavebrown@gmail.com

run as the user Default to observe the success of the attacks with a default AppLocker

deployment. Finally, the attacks are run as the user LotL to observe if the LotL rules can

successfully thwart the demonstrated living off the land attacks.

AppLocker was used instead of Windows Defender Application Control since

AppLocker is user-aware. The user-aware feature is essential in allowing built-in

Microsoft programs to be used by the operating system and administrators while blocking

the programs for regular users. If the blocks were applied within Windows Defender

Application Control without user-awareness, legitimate operating system and

administrative functionality would be impaired. According to Microsoft, AppLocker

should be used when “you need to apply different policies for different users or groups on

a shared computer” (Microsoft, 2019, January 1). Microsoft goes on to recommend that,

an ideal, real-world deployment solution would use Windows Defender Application

Control for the traditional (base) whitelisting functionality and AppLocker for blocking

programs that need to be user-aware (Microsoft, 2019, January 1).

3. Findings and Discussion
This section explores three types of attacks that are being used in the wild to

bypass traditional application whitelisting deployments. These attacks demonstrate

AppLocker’s ability to block living off the land attacks. There are many more attack

types than just these three. Other illustrative attacks could easily be swapped for the ones

presented in this section. The LOBAS Project, for example, lists over 100 Microsoft

programs that can be used in living off the land attacks (LOBAS, n.d.).

3.1. Code Execution with JavaScript and Visual Basic
3.1.1. Demonstrating Attacks

An attacker can arbitrarily execute unsigned code on a Windows machine by

dropping a JavaScript file (JS) or a Visual Basic file (VBS) and then executing the file

with cscript.exe or wscript.exe.

The JavaScript code to demonstrate this is as follows:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 5

David Brown, mrdavebrown@gmail.com

var cmd = new ActiveXObject("WScript.Shell");
cmd.run("powershell Test-Connection 127.0.0.1 -Count 10 | ft address,

responsetime");

The Visual Basic code to demonstrate this is as follows:

set cmd = CreateObject("WScript.Shell")
cmd.run("powershell Test-Connection 127.0.0.1 -Count 10 | ft address,

responsetime")

On the virtual machine, the above code can be placed in files called

“wscript_powershell_ping.js” and “wscript_powershell_ping.vbs” respectively. The code

can be executed by double-clicking the files or via cscript.exe or wscript.exe. See Figure

1 for example output.

Figure 1. Successful VBS script execution via wscript.exe.

If AppLocker is deployed on the workstation with default settings, only scripts

that reside in the Program Files folder or the Windows folder would be allowed to

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 6

David Brown, mrdavebrown@gmail.com

execute. In this situation, the code execution would fail, and the following error in Figure

2 would appear:

Figure 2. Block of VBS script due to default AppLocker rules.

Figure 3 shows the Event Viewer default block under Applications and Services,

Microsoft, Windows, AppLocker, MSI and Script, Event ID 8007.

Figure 3. Event Viewer details of AppLocker VBS script block.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 7

David Brown, mrdavebrown@gmail.com

One way to bypass AppLocker’s restrictions on scripts is to use Microsoft HTML

Applications (HTA). HTAs are standalone applications that execute outside of a browser,

thus bypassing browser security settings. Mshta.exe is a built-in Microsoft program that

executes HTA files (MITRE, n.d.). HTA files can be downloaded from the Internet,

received in a malicious email attachment, or crafted on a user’s computer. The following

HTA file is crafted to launch PowerShell and ping the localhost (Graham, 2018):

<script LANGUAGE="VBScript">

Set cmd = CreateObject("WScript.Shell")
cmd.run("powershell Test-Connection 127.0.0.1 -Count 10 | ft address,

responsetime")
</script>

On the virtual machine, the above code is placed in an HTA file called

“mshta_powershell_ping.hta”. When executed on the virtual machine with default

AppLocker rules enabled, the HTA file successfully launches a PowerShell window and

begins pinging the localhost. See Figure 4 for example output.

Figure 4. Successful bypass of default AppLocker script rules with HTA execution via
mshta.exe.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 8

David Brown, mrdavebrown@gmail.com

3.1.2. Blocking Attacks with LotL Rules
When the LotL rules are enabled, and mshta_powershell_ping.hta executes, the

attack fails due to a specific LotL Rule that restricts the execution of mshta.exe. This can

be seen in Figure 5.

Figure 5. Block of HTA execution due to AppLocker LotL rules.

Figure 6 shows the Event Viewer LotL block under Applications and Services,

Microsoft, Windows, AppLocker, EXE and DLL, Event ID 8004.

Figure 6. Event Viewer details of AppLocker mshta.exe block.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 9

David Brown, mrdavebrown@gmail.com

The first two JavaScript and Visual Basic attacks also fail with the LotL rules

enabled. When double-clicking on “wscript_powershell_ping.js” or

“wscript_powershell_ping.vbs”, the LotL rules block wscript.exe. In fact, the LotL rules

block the attack before the default AppLocker script rules have a chance to evaluate, as

seen in Figure 7 and Figure 8.

Figure 7. Block of VBS script due to AppLocker LotL rules.

Figure 8. Event Viewer details of wscript.exe block.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 10

3.1.3. Summary of Behavior
The following chart (Table 1) summarizes how the attack demonstrations behaved

for each user. For reference, the Regular user does not have AppLocker enabled. The

Default user has the default AppLocker rules enabled and a listing of these rules is

located in Appendix C (AppLocker Default Rules). The LotL user has the custom

AppLocker LotL rules enabled and a full listing of these rules is provided in Appendix B

(AppLocker LotL Rules).

Demonstration of Attack Regular User Default User LotL User

wscript_powershell_ping.js Executed
Blocked
JS file

Blocked
wscript.exe

wscript_powershell_ping.vbs Executed
Blocked
VBS file

Blocked
wscript.exe

mshta_powershell_ping.hta Executed Executed
Blocked
mshta.exe

Table 1

See Section 3.1.5 for the implementation of the specific LotL rules that relate to the

above attacks.

3.1.4. Real-World Examples
A variant of ransomware called RAA demonstrates a real-world example of this

attack. RAA is written purely in JScript and delivered to victims via email attachments.

When a user opens the attachment, wscript.exe automatically launches and executes the

JScript within the JS file. From there, the RAA ransomware is released on the system

(Trend Micro, 2016). With AppLocker LotL rules enabled, the RAA attack fails when

AppLocker prevents wscript.exe from running.

A variant of ransomware called Sodinokibi is another real-world example.

Described by security researchers as “highly evasive,” Sodinokibi uses various built-in

Windows programs to perpetuate a ransomware attack. The attack begins a maliciously

crafted JavaScript file delivered over email. As seen in the RAA attack, when a user

double-clicks the attachment, wscript.exe automatically launches and executes the

JavaScript within the JS file. From there, powershell.exe is automatically called to

David Brown, mrdavebrown@gmail.com

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 11

David Brown, mrdavebrown@gmail.com

execute a malicious PowerShell script, and attempts privilege escalation through

modifying the registry and launching compmgmtlauncher.exe (Cybereason Nocturnus,

2019). With AppLocker LotL rules enabled, this attack fails when AppLocker blocks the

initial wscript.exe execution as well as the subsequent powershell.exe execution.

3.1.5. Specific LotL rules to Prevent the Attacks
To implement the specific AppLocker LotL rules that prevent the above attacks,

create the following AppLocker Executable rules set to Deny for “Employees”:

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: MICROSOFT® WINDOWS® OPERATING SYSTEM
File name: POWERSHELL.EXE
File version: *

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: MICROSOFT® WINDOWS® OPERATING SYSTEM
File name: POWERSHELL_ISE.EXE
File version: *

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: MICROSOFT ® WINDOWS SCRIPT HOST
File name: CSCRIPT.EXE
File version: *

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: MICROSOFT ® WINDOWS SCRIPT HOST
File name: WSCRIPT.EXE
File version: *

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: INTERNET EXPLORER
File name: MSHTA.EXE
File version: *

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 12

David Brown, mrdavebrown@gmail.com

3.2. Code Execution with .NET Applications
3.2.1. Demonstrating Attacks

.NET applications are an essential component of Microsoft Windows.

Installutil.exe, for example, is a built-in Microsoft program that allows for the installation

of resources via the .NET Framework. Installutil.exe allows attackers to execute

untrusted code via the trusted Microsoft program (MITRE, n.d.). The attack discussed in

this section is based on an attack demonstrated by Black Hills Information Security that

leverages installutil.exe (Fehrman, 2016). If application whitelisting is not blocking

malicious uses of installutil.exe, the attacker can run a malicious PowerShell script.

To carry out the attack, download the powerup.ps1 script from PowerShellMafia

to the C:\Exploit folder. Powerup.ps1 is a PowerShell script that looks for Windows

privilege escalation vectors (PowerShellMafia, n.d.). Add a line to the end of

powerup.ps1 to automatically call the function “Invoke-AllChecks.”

Invoke-AllChecks -Verbose | Out-File C:\Exploit\allchecks.txt

To begin the attack, compile program.cs found in Appendix D. One way to

compile the code is to use Microsoft’s built-in .NET compiler, csc.exe.

C:\Windows\Microsoft.NET\Framework\v4.0.30319\csc.exe
/r:C:\Windows\assembly\GAC_MSIL\System.Management.Automation\1.
0.0.0__31bf3856ad364e35\System.Management.Automation.dll /unsafe
/platform:anycpu /out:C:\Exploit\powerup.exe C:\Exploit\Program.cs

Create a shortcut to installutil.exe in the C:\Exploit folder and add the following

code after installutil.exe in the “Target” of the shortcut:

/logfile=C:\Exploit\log.txt /LogToConsole=false /U

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 13

David Brown, mrdavebrown@gmail.com

Now drag powerup.exe into the installutil.exe shortcut. The attack is successful

even if the default AppLocker rules are enabled. The default AppLocker executable rules

are bypassed. Microsoft Defender also fails to stop this attack as demonstrated in Figure

9.

Figure 9. Successful bypass of default AppLocker executable rules with powerup.exe via

installutil.exe.

3.2.2. Blocking Attacks with LotL Rules
When LotL rules are enabled, the attack fails. The LotL rules blocked the attack

by restricting regular users from running installutil.exe as seen in Figure 10 and Figure

11.

Figure 10. Block of installutil.exe due to AppLocker LotL rules.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 14

David Brown, mrdavebrown@gmail.com

Figure 11. Event Viewer details of installutil.exe block.

Understanding the steps in the kill chain for each living off the land attack is

essential in building a layered approach to LotL whitelisting rules. If the LotL rules were

not restricting installutil.exe, for example, the attack would fail at csc.exe. While ideal,

building whitelisting rules around each built-in Windows program that attackers are

leveraging may not always be achievable. An understanding of the steps in each kill

chain can help ensure that a LotL rule disrupts at least part of the attack.

If the LotL rule were not blocking installutil.exe, the attack would still fail at the

execution of csc.exe. This can be seen in Figure 12 and Figure 13.

Figure 12. Block of csc.exe due to AppLocker LotL rules.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 15

David Brown, mrdavebrown@gmail.com

Figure 13. Event Viewer details of csc.exe block.

If both the LotL rules did not restrict installutil.exe and csc.exe, the attack would

partially fail at sc.exe as demonstrated in Figure 14 and Figure 15.

Figure 14. Block of sc.exe due to AppLocker LotL rules.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 16

Figure 15. Event Viewer details of sc.exe block.

Understanding the built-in Microsoft tools that are maliciously used becomes vital

to disrupting the attack. Each layer of the attack that is stopped prevents lower layers

from executing. Monitoring logs also presents an opportunity for defenders to be alerted

of the attack as it is in progress. If sc.exe, for example, were the only Microsoft program

that was being restricted by whitelisting, that would be enough to alert a defender of the

attack. However, it would not be enough to block the attack fully.

3.2.3. Summary of Behavior
The following chart (Table 2) summarizes how the attack demonstrations behaved

for each user. For reference, the Regular user does not have AppLocker enabled. The

Default user has the default AppLocker rules enabled and a listing of these rules is

located in Appendix C (AppLocker Default Rules). The LotL user has the custom

AppLocker LotL rules enabled and a full listing of these rules is provided in Appendix B

(AppLocker LotL Rules).

David Brown, mrdavebrown@gmail.com

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 17

David Brown, mrdavebrown@gmail.com

Demonstration of Attack Regular User Default User LotL User

powerup.ps1 via powershell.exe Executed
Blocked
PS file

Blocked
powershell.exe

powerup.exe via installutil.exe Executed Executed
Blocked
installutil.exe

Table 2

See Section 3.2.5 for the implementation of the specific LotL rules that relate to the

above attacks.

3.2.4. Real-World Examples
APT10 carried out real-world attacks using similar tactics. APT10 used .NET

applications to install the QuasarRAT. Specifically, Quasar was installed on the victim

machines using installutil.exe and a custom DLL compiled with .NET (PwC, 2017). The

AppLocker LotL rules stop the attack at the initial installutil.exe execution.

Sequre Ransomware is another example of a real-world attack that uses .NET

applications to perpetuate an attack. In the case of Sequre, csc.exe compiled and executed

malicious C# code directly on the victims’ machines. The Sequre Ransomware attack

compiles and runs in memory, making the malicious activity much harder to detect

(Vipre, 2018). With AppLocker LotL rules enabled, csc.exe would be blocked, and the

attack would fail.

3.2.5. Specific LotL rules to Prevent the Attacks
To implement the specific AppLocker LotL rules that prevent the above attacks,

create the following AppLocker Executable rules set to Deny for “Employees”:

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: MICROSOFT® WINDOWS® OPERATING SYSTEM
File name: POWERSHELL.EXE
File version: *

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: MICROSOFT® WINDOWS® OPERATING SYSTEM
File name: POWERSHELL_ISE.EXE
File version: *

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 18

David Brown, mrdavebrown@gmail.com

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: MICROSOFT® .NET FRAMEWORK
File name: INSTALLUTIL.EXE
File version: *

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: MICROSOFT® .NET FRAMEWORK
File name: CSC.EXE
File version: *

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: MICROSOFT® WINDOWS® OPERATING SYSTEM
File name: SC.EXE
File version: *

3.3. Code Execution with DLLs
3.3.1. Demonstrating Attacks

There are several built-in Microsoft programs used to execute DLLs. DLLs can be

full-blown malicious applications. However, Microsoft warns that using AppLocker to

restrict unwanted DLLs can impact user performance (Microsoft, 2018, August 26). If

whitelisting is not used to protect against malicious DLLs, traditional built-in Microsoft

programs that execute DLLs should be restricted. A sample Microsoft AppLocker DLL

performance warning can be seen in Figure 16.

Figure 16. Microsoft’s AppLocker notice of potential adverse performance associated
with DLL rules.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 19

The attack in this section focuses on the PowerShdll attack library to demonstrate

malicious DLLs. On a machine that blocks PowerShell, the code below can give access to

a PowerShell command line. To run the attack, download the 64-bit version of

powershdll.dll to C:\Exploit on the virtual machine (p3nt4, n.d.).

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\regasm.exe /U
C:\Exploit\PowerShdll.dll

If cmd.exe is not available, create a link to regasm.exe and use the above code in

the “Target” of the link. If AppLocker’s default DLL rules are disabled due to

performance concerns, execution of the command succeeds in giving an attacker a

PowerShell command prompt. Note that Windows Defender must be disabled for this

attack to succeed since Microsoft has previously tagged powershdll.dll as malicious.

Successful execution is demonstrated in Figure 17.

Figure 17. Successful bypass of default AppLocker rules with DLL via regasm.exe if DLL

rules are disabled due to performance concerns.

3.3.2. Blocking Attacks with LotL Rules
When LotL rules are enabled, the attack fails. The attack fails even if AppLocker

is not being used to block DLLs. AppLocker blocks regasm.exe from executing due to

the LotL rules as seen in Figure 18 and Figure 19.

David Brown, mrdavebrown@gmail.com

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 20

Figure 18. Block of regasm.exe due to AppLocker LotL rules.

Figure 19. Event Viewer details of regasm.exe block.

For reference, many other built-in Windows programs can be used to abuse DLLs,

including rundll32.exe, installutil.exe, regsvcs.exe, regsvr32.exe, msiexec.exe,

mavinject.exe, and odbcconf.exe, among others (MITRE, n.d.). Ideally, if AppLocker is

not being used to restrict DLLs, all programs that can abuse DLLs should be restricted by

the LotL rules to protect against malicious DLLs.

However, depending on the environment, there can be unique problems associated

with restricting some of these DLL-executing programs. For example, the Windows

David Brown, mrdavebrown@gmail.com

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 21

operating system may call rundll32.exe in the context of the current user when a user logs

into Windows. If rundll32.exe were to be restricted by LotL rules, any DLLs that the

Windows system calls in the context of the current user would be blocked, which could

potentially lead to degraded user experience. Closely monitoring AppLocker blocks in

the Windows Event Viewer alerts the defender to any unintended blocks. If there are

unintended blocks, the defender needs to choose between restricting the offending

Windows program, rundll32.exe in this example, or enabling whitelisting restrictions to

block all unknown DLLs. One of these two options should be chosen, or an attacker can

easily bypass the application whitelisting deployment by utilizing malicious DLLs as

demonstrated in the real-world attacks seen in Section 3.3.4 and by Casey Smith at

ShmooCon 2015 (Smith, 2015).

Ideally, AppLocker’s default DLL rules are enabled along with LotL rules that

restrict the majority, if not all, of the DLL-executing programs. The two combined

provide a much greater attack surface reduction.

3.3.3. Summary of Behavior
The following chart (Table 3) summarizes how the attack demonstrations behaved

for each user. For reference, the Regular user does not have AppLocker enabled. The

Default user has the default AppLocker rules enabled and a listing of these rules is

located in Appendix C (AppLocker Default Rules). The LotL user has the custom

AppLocker LotL rules enabled and a full listing of these rules is provided in Appendix B

(AppLocker LotL Rules).

Demonstration of Attack Regular User Default User LotL User

powershdll.dll via regasm.exe Executed
Blocked
DLL file

Blocked
regasm.exe

powershdll.dll via regasm.exe
without AppLocker DLL rules Executed Executed

Blocked
regasm.exe

Table 3

See Section 3.3.5 for the implementation of the specific LotL rules that relate to the

above attacks.

David Brown, mrdavebrown@gmail.com

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 22

David Brown, mrdavebrown@gmail.com

3.3.4. Real-World Examples
Locky ransomware is a real-world attack where attackers used rundll32.exe to

execute the malicious ransomware DLL. This attack distributes malicious JavaScript to

victims through an email attachment. When a victim opens the email attachment,

wscript.exe executes the JavaScript file, which launches rundll32.exe. Rundll32.exe then

runs the malicious DLL (Lawrence, 2016). AppLocker LotL rules block wscript.exe from

being executed, which causes the attack to fail when the user opens the JavaScript

attachment. However, if the attacker had access to the machine or another means of

executing rundll32.exe, the wscript.exe step could be skipped. This attack would then be

blocked by the LotL rules when rundll32.exe executes.

Another real-world attack is the PureLocker ransomware attack. This ransomware

attack disguises itself as a DLL cryptography library called Crypto++ and launches when

an attacker executes regsrv32.exe to run a malicious DLL file (Kajiloti, 2019). With

AppLocker LotL rules enabled, regsrv32.exe is blocked, and the attack fails.

3.3.5. Specific LotL rules to Prevent the Attacks
To implement the specific AppLocker LotL rules that prevent the above attacks,

create the following AppLocker Executable rules set to Deny for “Employees”:

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: MICROSOFT® WINDOWS® OPERATING SYSTEM
File name: POWERSHELL.EXE
File version: *

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: MICROSOFT® WINDOWS® OPERATING SYSTEM
File name: POWERSHELL_ISE.EXE
File version: *

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: MICROSOFT® WINDOWS® OPERATING SYSTEM
File name: RUNDLL32.EXE
File version: *

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 23

S=WASHINGTON, C=US
Product name: MICROSOFT® WINDOWS® OPERATING SYSTEM
File name: REGSRV32.EXE
File version: *

Publisher: O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON, C=US

Product name: MICROSOFT® .NET FRAMEWORK
File name: REGASM.EXE
File version: *

4. Recommendations and Implications
The AppLocker rules referred to in this paper as LotL rules were successful at

preventing the living off the land attacks explored in this research. The LotL rules in

Appendix B are designed to prevent a wide variety of living off the land attacks, not

limited to the living off the land attacks explored in this paper. As seen in the MITRE

ATT&K Framework and the LOBAS Project, over 100 Microsoft programs have the

potential to be abused by attackers (MITRE, n.d.) (LOBAS, n.d.). Designing strong LotL

rules comes down to understanding which Microsoft programs are abused by attackers

and then creating specific rules to restrict regular users from executing those programs.

One key to designing LotL rules is to apply them to a user security group and not

to “Everyone.” In this paper, that security group was called “Employees.” This allows the

Windows operating system and administrators to have access to the built-in Windows

programs while preventing regular users from executing the abused programs. One

implication of this design is that administrative users have full access to the abused

Microsoft programs. If an attacker gains control of an administrative account, the LotL

rules cease to be effective.

4.1. Understanding the Kill-Chain

As explored in the Findings and Discussion section of the paper, certain built-in

Windows programs that attackers abuse, such as rundll32.exe, may have a legitimate use

for regular users. This makes the decision to restrict specific built-in Windows programs

more complicated. Understanding various kill chains for living off the land attacks

becomes essential in developing effective LotL rules. If specific programs, such as

David Brown, mrdavebrown@gmail.com

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 24

rundll32.exe, are not restricted, AppLocker should be used to block unknown DLLs, or

LotL rules should be designed to thwart known attacks at other points in the kill chain.

It is important to continually update LotL rules as attackers begin to abuse

additional Windows programs. Defenders should create new rules to disrupt the attacks

as new kill chains are understood. It is also important to note that AppLocker is only

available on Windows Enterprise edition.

4.2. Alerting on Attacks
Setting up alerts on the LotL rules lets defenders know of attacks as they are

disrupted by AppLocker so that they can investigate for further signs of malicious

activity. Alerts also help identify rules that may need to be turned off in a given

environment, such as rundll32.exe.

When initially rolling out the LotL rules, set AppLocker to Audit mode. Watch

AppLocker event codes 8003 and 8006. These codes show which applications

AppLocker would have blocked if AppLocker were set to Enforce mode. Once LotL

rules have been fine-tuned not to disrupt normal system usage, set AppLocker to Enforce

mode and begin watching event codes 8004 and 8007. These codes show which

applications AppLocker is actively blocking (Microsoft, 2017, September 20).

4.3. Non-Built-In Microsoft Programs
Microsoft programs that are not built-into Windows by default are another

essential consideration in designing a whitelisting solution that prevents living off the

land attacks. Some whitelisting solutions rely on trusting all program signed by

Microsoft. When all Microsoft certificates are trusted, application whitelisting rules

designed to prevent living off the land attacks must also block other, non-default

Microsoft programs that are abused, such as psexec.exe and bginfo.exe. If these tools

aren’t already present on the target machine, cybercriminals may download them to the

target machine to perpetuate an attack (Palo Alto Networks, n.d.).

David Brown, mrdavebrown@gmail.com

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 25

David Brown, mrdavebrown@gmail.com

5. Conclusion
Living off the land attacks are on the rise (Symantec, 2017). These attacks can be

difficult for antivirus vendors to detect since they utilize legitimate built-in Windows

programs. Fortunately, AppLocker can be used to detect and thwart living off the land

attacks. As seen in this paper, user-based AppLocker rules that restrict abused Windows

programs can effectively disrupt these attacks. There should be a significant reduction in

successful living off the land attacks as the industry adopts user-based whitelisting rules

explored in this research and as the industry continues to migrate towards next

generational, behavior-based security tools, such as Windows Defender ATP.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 26

David Brown, mrdavebrown@gmail.com

References
Australian Cyber Security Center (2019). Implementing Application Whitelisting.

Retrieved from https://www.cyber.gov.au/sites/default/files/2019-

12/PROTECT%20-

%20Implementing%20Application%20Whitelisting%20%28April%202019%29.p

df

Carbon Black (2019, June 4). How Carbon Black is Prioritizing Living Off the Land

Attacks Part 1. Retrieved from https://www.carbonblack.com/2019/06/04/how-

carbon-black-is-prioritizing-living-off-the-land-attacks-part-1/

CrowdStrike (2019). 2019 Global Threat Report. Retrieved from

https://www.crowdstrike.com/resources/reports/2019-crowdstrike-global-threat-

report/

CrowdStrike (2019, May 7). Going Beyond Malware: The Rise of "Living off the Land"

Attacks. Retrieved from https://www.crowdstrike.com/blog/going-beyond-

malware-the-rise-of-living-off-the-land-attacks/

Cybereason Nocturnus (2019, August 5). Sodinokibi: The Crown Prince of Ransomware.

Retrieved from https://www.cybereason.com/blog/the-sodinokibi-ransomware-

attack

Fehrman, B (2016, August 21). Powershell Without Powershell - How To Bypass

Application Whitelisting, Environment Restrictions & AV. Retrieved from

https://www.blackhillsinfosec.com/powershell-without-powershell-how-to-

bypass-application-whitelisting-environment-restrictions-av/

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 27

David Brown, mrdavebrown@gmail.com

Graham, J (2018, October 26). Pentesting and .hta (bypassing PowerShell Constrained

Language Mode). Retrieved from https://medium.com/tsscyber/pentesting-and-

hta-bypassing-powershell-constrained-language-mode-53a42856c997

Lawrence, A (2016, August 26). Locky / Zepto Ransomware now being installed from a

DLL. Retrieved from https://www.bleepingcomputer.com/news/security/locky-

zepto-ransomware-now-being-installed-from-a-dll/

LOLBAS (n.d.). Living Off The Land Binaries and Scripts (and also Libraries). Retrieved

January 9, 2020, from https://lolbas-project.github.io/#

Kajiloti, M (2019, December 11). PureLocker: New Ransomware-as-a-Service Being

Used in Targeted Attacks Against Servers. Retrieved from

https://www.intezer.com/blog-purelocker-ransomware-being-used-in-targeted-

attacks-against-servers/

Microsoft (2017, September 20). Using Event Viewer with AppLocker. Retrieved from

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-

defender-application-control/applocker/using-event-viewer-with-applocker

Microsoft (2018, August 26). Working with AppLocker rules. Retrieved from

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-

defender-application-control/applocker/working-with-applocker-rules

Microsoft (2019, January 1). Application Control. Retrieved from

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-

defender-application-control/windows-defender-application-control

MITRE (n.d.). Enterprise Techniques. Retrieved January 9, 2020, from

https://attack.mitre.org/techniques/enterprise/

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 28

David Brown, mrdavebrown@gmail.com

p3nt4 (n.d.). PowerShdll. Retrieved January 9, 2020, from

https://github.com/p3nt4/PowerShdll

Palo Alto Networks (n.d.). What Are Fileless Malware Attacks and “Living Off the

Land”? Unit 42 Explains. Retrieved January 9, 2020, from

https://www.paloaltonetworks.com/cyberpedia/what-are-fileless-malware-attacks

PowerShellMafia (n.d.). PowerSploit. Retrieved January 9, 2020, from

https://github.com/PowerShellMafia/PowerSploit/blob/master/Privesc/PowerUp.p

s1

PwC (2017). Operation Cloud Hopper. Retrieved from https://www.pwc.co.uk/cyber-

security/pdf/cloud-hopper-annex-b-final.pdf

Rapid7 (2019, November 19). Quarterly Threat Report: Q3 2019. Retrieved from

https://www.rapid7.com/research/report/2019-q3-threat-report/

Smith, C (2015). Simple Windows Application Whitelisting Evasion [Video file].

Retrieved from https://www.youtube.com/watch?v=XVuboBH5TYo

Symantec (2017). Living off the land and fileless attack techniques. Retrieved from

https://www.symantec.com/content/dam/symantec/docs/security-center/white-

papers/istr-living-off-the-land-and-fileless-attack-techniques-en.pdf

Trend Micro (2016, June 16). New RAA Ransomware Uses Only JavaScript to Infect

Computers. Retrieved from

https://www.trendmicro.com/vinfo/nl/security/news/cybercrime-and-digital-

threats/new-raa-ransomware-uses-only-javascript-to-infect-computers

Vipre (2018, May 25). Sequre Ransomware compiles its own source code. Retrieved

from https://labs.vipre.com/sequre-ransomware-compiles-its-own-source-code/

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 29

Appendix A (Virtual Machine Setup)

Windows Enterprise edition is required for AppLocker. To run AppLocker,

launch services.msc from the command prompt and set “Application Identity” to

Automatic.

Figure 20. Winver.exe for virtual machine used in testing.

Figure 21. Compmgmt.msc view of users used in testing.

Figure 22. View of Employees group membership used in testing.

David Brown, mrdavebrown@gmail.com

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 30

David Brown, mrdavebrown@gmail.com

Appendix B (AppLocker LotL Rules)

Executable Rules:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 31

David Brown, mrdavebrown@gmail.com

Figure 23. AppLocker Executable LotL rules used in testing.

DLL Rules:

Figure 24. AppLocker DLL LotL rules used in testing.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 32

David Brown, mrdavebrown@gmail.com

Appendix C (AppLocker Default Rules)

Executable Rules:

Figure 25. Default AppLocker Executable Rules used in testing.

Windows Installer Rules (note – deleted default “Everyone” rules to enhance the security

of default rules):

Figure 26. Default AppLocker Installer Rules used in testing.

Script Rules:

Figure 27. Default AppLocker Script Rules used in testing.

DLL Rules (note – added Windows Defender path to allow Defender to run properly):

Figure 28. Default AppLocker DLL Rules used in testing.

Package app Rules (note – removed default “Everyone” rule and added Microsoft signed

rules to enhance the security of default rules):

Figure 29. Default AppLocker Package App Rules used in testing.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Preventing Living off the Land Attacks 33

David Brown, mrdavebrown@gmail.com

Appendix D (program.cs)

Figure 30. Program.cs source code (Fehrman, 2016, August 21).

