
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Automating Information Security with Python (Security 573)"
at http://www.giac.org/registration/gpyc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gpyc

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in
Tenable IO Using Python

GIAC GPYC Gold Certification

Author: Jeff Holland, jeff.a.holland@gmail.com

Advisor: Hamed Khiabani, Ph.D.

Accepted: 26 July 2020

Abstract

Enterprise vulnerability scanning traditionally makes use of multiple scanners, runs scans

against targets in a parallel manner for maximum efficiency, and uses substantial

amounts of bandwidth. However, a particular scanning use case exists that involves

scanning targets in a sequential, or "chained", manner so as to conserve bandwidth.

Tenable IO and the Tenable-supported PyTenable library do not currently support

chained scanning. Using Tenable IO and a collection of Python scripts, an application by

which to scan targets in a chained manner will be presented. Additional features such as

the automation of scan creation, deletion and execution will be demonstrated, as well as

the use of configuration files to define scans and logging parameters. The culmination of

these application features will address and satisfy the use case of deploying chained scans

in Tenable IO using Python and the Tenable IO REST API.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 2

Jeff Holland, jeff.a.holland@gmail.com

1. Introduction

Vulnerability scanning, in the context of information security, is inherently at

odds with itself in terms of scanning as many computing assets as possible, and in as

many parallel scans as possible, while not consuming all available network bandwidth.

Ideally, vulnerability scans can be run in parallel using multiple scanners to

achieve efficiency. This is especially important for densely populated network subnets

where scanning windows are perhaps small due to scanning being restricted to off or

maintenance hours. However, sometimes a network does not have sufficient bandwidth to

accommodate parallel scans. Other times, scanning resources (e.g. scanners) are in short

supply and scans cannot be distributed to multiple scanners configured in a scanner group

that are able to share the scan load in parallel.

Such use cases lead to the conclusion that running dependent, or chained, scans is

a potential solution. As described in his forum post, Steven Weedman inquired of the

Tenable IO Forum community: "Is it possible to set up dependent scan triggers in

Tenable.IO? I want to chain a series of scans during off-hours. If not, is this a feature that

can be requested?" (Weedman, 2020).

The answer to this question resulted in the conclusion, by several posters, that this

was not possible using Tenable IO (Gillham, 2020) or PyTenable (Tenable's Python

Library) (Holland, 2020). Gillham suggests using the IO API in a Python script (Gillham,

2020), and Holland elaborates on this suggested solution and offers to share a solution

upon completion and employer management approval to share the code (Holland, 2020).

The solution to Steven Weedman's question is presented herein as a collection of

scripts and configuration files. The original question of how to run dependent scans,

referred to as "chained" scans going forward, is specifically addressed. In addition, other

useful features are built into the code. One such feature includes being able to query the

IO API for customer specific information needed to build the scan configuration file.

Another feature is the automation of scan creation, deletion and execution, either

manually or from a cron job, via the Tenable IO API. Incorporation of the Python

ArgParse module to present usage information and flag/argument validation, and the

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 3

Jeff Holland, jeff.a.holland@gmail.com

Python ConfigParser module to parse the scans definition file, are supported features as

well. Finally, robust error checking for misconfigured scans in the scan definition file and

use of the Python Logging module to log to both STDOUT and log flat-files, is

supported.

The code presented here assumes use of Python version 3.7.4 and running said

code on Linux or Windows. Some discussion and examples assume Linux is used as the

OS for the application deployment (e.g. chmod commands and cron jobs). Windows will

respect os.chmod directives in the application code and will set the read-only bit, but not

the other bits (docs.python.org, 2020). If running the code on Windows, configure the file

and directory permissions and ownership as necessary.

2. Vulnerability Scanning

2.1. What is Vulnerability Scanning?

To avoid any ambiguity or confusion, this paper shall describe vulnerability

scanning, or assessment, as: "… a process that identifies and evaluates network

vulnerabilities by constantly scanning and monitoring your organization's entire attack

surface for risks." (Tenable, 2020).

2.2. What is “Chained” Vulnerability Scanning?

As posed by Steven Weedman in the context of dependent scanning by chaining a

series of scans (Weedman, 2020), and rebranded as "chained scanning" (Holland, 2020),

"chained" vulnerability scanning is defined as the running, or execution, of a predefined

set of vulnerability scans, in order, in a sequential manner, where the scan n+1 runs only

after scan n has completed.

2.3. Chained Vulnerability Scanning Use Cases

As described previously, chained vulnerability scanning has several use cases.

The first use case would include scanning a low bandwidth network where parallel

scanning would result in an unacceptably high usage of available bandwidth. The second

use case would be scanning a network where there are insufficient scanning resources for

parallel scanning, such as a single scanner (Weedman, 2020). The final use case

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 4

Jeff Holland, jeff.a.holland@gmail.com

addresses scanning a network where sequential scanning is required, but scheduling scans

in IO based upon prior scan times is imprecise due to changing network usage patterns,

routine asset additions and deletions, etc (Holland, 2020).

While chained scanning could be applied to external public-facing assets using

Tenable's cloud-hosted scanners, herein it is focused on scanning internal assets and

networks. However, it's entirely possible to apply this concept to external scans, if

desired, by simply using a cloud-hosted scanner or scanner group in the scans config file.

One such external scanner would be, for example: "US West Cloud Scanners" (Tenable,

2020).

3. Vulnerability Scanning using the Tenable IO REST API

3.1. What is a REST API

As defined by Margaret Rouse (Rouse, 2020), "A RESTful API is an application

program interface (API) that uses HTTP requests to GET, PUT, POST and DELETE

data.". Tenable IO, Tenable's cloud-based vulnerability scanning product, utilizes a REST

API for configuring customer-specific instances of IO. Specifically, the Tenable IO API

allows a customer to create vulnerability scans, delete them, and run (or execute) them by

way of API calls using API keys allocated to a user in a specific customer's IO instance.

Many other actions can be taken via the API, some of which are described in the next

section.

3.2. Tenable IO API Endpoints

An API endpoint is a term used to describe a web-based service that utilizes an

API (Application Program Interface) and advertises its service via a URL (RapidAPI,

2020). For example, the Tenable IO API endpoint for creating a scan is:

url = "https://cloud.tenable.com/scans”

This particular endpoint is described in their IO API Explorer at

https://developer.tenable.com/reference#scans-create (Tenable, 2020). The IO API

explorer is an invaluable reference and tool for using the API and creating automation

scripts. Part of its feature set is to allow the user to enter their API keys and test the

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 5

Jeff Holland, jeff.a.holland@gmail.com

endpoint by way of the explorer actually effecting a change in their IO instance. The code

used to run the API endpoint command is shown in the selected programming language,

as well as the results of the API call (successful or not). What is left to the user is to write

the middleware to tie the results from API endpoint calls together into a fully functioning

application.

The programming language support is extensive, including but not limited to:

Python, cURL, Java, Go, Ruby, and Powershell (Tenable, 2020).

The API endpoints used throughout the code include:

Endpoint Name Endpoint URL(s)

Folders url = "https://cloud.tenable.com/folders"

Scanners url = "https://cloud.tenable.com/scanners"

url = "https://cloud.tenable.com/scanners/scanner_id"

Policies url = "https://cloud.tenable.com/policies"

Tags url = "https://cloud.tenable.com/tags/values"

Scans url = "https://cloud.tenable.com/scans"

url = "https://cloud.tenable.com/scans/scan_id"

url = "https://cloud.tenable.com/scans/scan_id/launch"

Note that the "scanner_id" and "scan_id" in the URLs above are placeholders for

the actual scanner ID and scan ID to be passed to the API endpoint call as a variable

within scripts.

4. Chained Scanning Using chain.py

4.1. Overview of chain.py Processing

4.1.1. Wrapper script: chain.py

The main, or wrapper, script for the application is called chain.py. This script is

the entry point for running the application to create, delete, run and/or query IO for

instance information. This script will parse the command line arguments supplied, and if

there is an error, report on the error and supply usage information. This is accomplished

using the ArgParse module. Usage information can be obtained by using the "-h/--help"

option as shown below:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 6

Jeff Holland, jeff.a.holland@gmail.com

 Figure 1: chain.py -h output

Chain.py performs other actions as listed below:

- Uses the dotenv library (which will likely need to be installed using pip as it's not in

the Python standard library) to create environment variables for the API keys from the

.env file. More discussion on this topic occurs in section 4.4.

- Creates the subdirectory "logs" in the "chain" directory where chain.py is run from if

it doesn’t already exist. Then it chmod's the directory 700 (read-write-execute for

owner only). This directory will contain two logs files, log.chain and log.info. The

log.chain log file will contain all the logs from three scripts that are imported from

chain.py: create.py, delete.py, and run.py. The log is created in append mode, and

rotates once it reaches 100,000 bytes and saves 5 backup copies before deleting the 6th

one in a FIFO manner. The log.info file contains the IO instance specific information

needed to build and modify the scan configuration file, scans.ini. See section 4.2 for

instructions on building scans.ini. Because this information is mutable within the IO

instance, log.info does not rotate and is clobbered every time info.py is run. Every

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 7

Jeff Holland, jeff.a.holland@gmail.com

time log data is written to one of the two logs, the chain.py script will chmod that log

file 600 (read-write for owner only) as a means of programmatically ensuring the

permissions stay read-write for the owner only.

- The chain.py script will call one or more of the "action" scripts, so called because of

the command line flag "--action" that invokes them. These scripts are passed the IO

API keys "access_key" and "secret_key" as arguments for use in API calls in their

functions. This results in API keys never being written to disk anywhere but the .env

file. See section 4.4 for a more comprehensive discussion of API keys and how

chain.py secures them.

- The chain.py script, as do all the action scripts, contains logic to prevent them from

being invoked directly without arguments. In other words, invoking create.py with the

command "./create.py" or "python ./create.py" will result in the script exiting as shown

below:

Figure 2: Chain.py output when run without arguments

Proper syntax for running chain.py with the "info" argument is shown in Figure 3

(output redacted):

Figure 3: chain.py --info output with redacted data

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 8

Jeff Holland, jeff.a.holland@gmail.com

Python modules from the standard library used in chain.py include:

Module Intended Use

argparse Enables use friendly command-line interfaces and parses them

(Python.org, 2020)

textwrap Among other uses, removes common leading whitespace

characters from lines in a text string (Python.org, 2012)

os Enables Python to utilize operation system functionality, such as

chmod'ing a file to change its permissions (Python.org, 2020)

Python libraries used in chain.py that may need to be installed include:

Module Intended Use

dotenv Reads values from a .env file for use in creating environment

variables (Pypi.org, 2020)

4.1.2. Action scripts: run.py, create.py, delete.py, info.py

The action scripts perform as they are named with respect to scans. Create.py

creates scans in an automated fashion using the API and the scans.ini config file in its

entirety. Delete.py deletes scans based on the names of the scans in scans.ini, and

similarly run.py runs the scans based on scan names defined in scans.ini. The info.py

script, as mentioned previously and demonstrated in Figure 3 above, queries for the

customer specific IO instance information needed to build or update scans.ini. It also

queries for the various ID values needed to create a scan and passes that data to create.py.

This was implemented to achieve code deduplication between info.py and create.py.

Note that because the four action scripts are imported as modules in the chain.py

script, bytecode versions of each are created. These bytecode versions of each script

(with the .pyc extension) allow for faster subsequent execution times (Bennett, 2018).

Once imported in chain.py, the main function within each action script is called and is

passed the API keys as variables that were declared with the value of the environment

variables from the .env file as shown below in Figure 4.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 9

Jeff Holland, jeff.a.holland@gmail.com

 Figure 4. Snippet of chain.py showing action scripts being imported as modules

Python modules from the standard library used in create.py, delete.py, and/or

run.py include:

Module Intended Use

Fileconfig Creates class instances out of config file sections (Pypi.org, 2019)

Configparser Enables configuration files to be used by Python and easily

updated by end users (Python.org, 2020).

Json Enables encoding and decoding of JSON blobs in Python

(Python.org. 2020)

logging Implements logging for applications that is flexible and works

with configuration .ini files (Python.org, 2020)

Re Enables use of regular expression methods in Python similar those

operations found in Perl's regular expressions (Python, 2020)

requests Enables Python to easily send HTTP requests (Requests: HTTP

for Humans, 2020)

Sys Enables Python to access interpreter variables and functions

(Python.org, 2020)

Time Enables Python to access time-related functions (Python.org,

2020)

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 10

Jeff Holland, jeff.a.holland@gmail.com

Python modules from the standard library used in info.py include:

Module Intended Use

Fileconfig Creates class instances out of config file sections (Pypi.org, 2019)

Json Enables encoding and decoding of JSON blobs in Python

(Python.org. 2020)

Logging Implements logging for applications that is flexible and works

with configuration .ini files (Python.org, 2020)

Requests Enables Python to easily send HTTP requests (Requests: HTTP

for Humans, 2020)

4.1.3. Special features: “Clobber” prevention in run.py

The run.py action script has logic to prevent "clobbering". What this means is that

when run.py is executed, and is still running its first instantiation, a subsequent execution

of the script will not be allowed to execute the same scans a second time. This was

implemented to address the following use case:

Assume chain.py was configured to run every hour from a cron job and scan a

few high value assets or modestly sized subnets (remember, chained scanning implies

scanning at least two assets and/or subnets using at least two scans). Knowing when new

vulnerabilities are discovered for any of these assets/subnets is key as they contain

critically sensitive data. Such a discovery will be reported via a scheduled report in IO

that runs a few minutes after each hour.

If the chained scans that were run at 1200 hours were still running at 1300 hours

when run.py was scheduled to execute again, the script will detect a running or pending

scan already in progress (via recursive polling of the scan status from the API scans

endpoint) and exit. Hence, the scans scheduled to run at 1300 hours will not "clobber" the

scans still running from the invocation of run.py at 1200 hours. Doing so would be

counter to the very premise of chained scanning, which is running one scan at a time and

waiting for it to complete before running the next scan.

Now, this feature is not without imperfections. There are small windows of time

where an API call is made to execute scans defined in scans.ini, but the Tenable IO

instance has not yet processed the API endpoint request (in the form of an HTTP PUT).

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 11

Jeff Holland, jeff.a.holland@gmail.com

This results in a race condition. It is an unfortunate byproduct of having a cloud-based

server that utilizes a multi-tenant API (meaning multiple customers share the public API

engine and are subject to queueing and rate limiting) (Tenable, 2020).

However, run.py does provide protection against clobbering a currently running

chained scan with another set of scans a majority of the time. Furthermore, logging of

any such clobbering prevention, or a lack of clobbering protection having taken place, is

logged in the log.chain file for postmortem analysis. A demonstration of clobber

protection will be presented in section 4.5.

4.2. Building the scans.ini Config File

Scans must be defined in the scans.ini file prior to running create.py, delete.py,

and/or run.py, and there must be at least two scans defined. There is guidance in the

comments along with scan definition examples in scans.ini (and is included in its entirety

in the Appendix). The fields required for each scan definition are as follows:

Folder name

Scanner, or scanner group, name

Scan policy name

Launch frequency (should always be ON_DEMAND) as chain.py runs manually or

via a cron job

Comma-delimited list of email addresses to send scan completion emails to (optional)

Scan description (optional)

Scan name (must be unique)

Comma-delimited list of scan targets (can use IP's, CIDR subnet notation, or both)

One or more tag name:value pairs, comma-delimited. If tag name is "Office" and the

tag value is "London", the pair is "Office:London". For multiple tag name:value pairs,

the format would be:

 Office:London,Office:Berlin,Servers:Mail

There should be no spaces before/after the colons and commas, however the code will

remove any that are added by mistake. Spaces in the tag name or value is allowed.

For example, these tag name:value pairs are legitimate:

 Office:New York,Windows Hosts:Mail Servers.***

 *** One, or both, of scan_targets and tag_target_pair must be defined. Conversely, if both are

undefined, the script will exit with an error.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 12

Jeff Holland, jeff.a.holland@gmail.com

Figure 5 shows the format for two scans using our (redacted) instance information

from log.info:

Figure 5. Sample scans.ini config file

To run three scans, simply add a [Scan3] section and define the parameters as

desired. Referring back to Figure 3, note that based on the names in the dictionaries

(folder_dict, scanner_dict, etc), the create.py action script will use the names in Figure 5

as the key to obtain the corresponding ID/UUID value in the dictionary. Said another

way, if the folder_name for the scans in Figure 5 is "Adhoc Scans", the create.py action

script will use that string to obtain the folder_dict ID value of "35". These lookups occur

programmatically inside of create.py by importing info.py and returning the dictionaries

as parameters at the end of the script for create.py to use. This is reflected in Figure 4,

where the create.main function is passed "info.folder_dict" as an argument.

As noted previously, one can define both scan_targets and tag_target_pair. For

example, assume [Scan2] is defined to have both scan_targets and tag_target_pair

populated as shown below in Figure 6.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 13

Jeff Holland, jeff.a.holland@gmail.com

Figure 6. Sample scans.ini config file with both scan_targets and tag_target_pair defined

This config will run and scan both the 10.1.1.1 IP and the London office using the

IPs/subnets defined in that tag.

If neither scan_targets nor tag_target_pair is defined, running "./chain.py --action

create" would result in a fatal error as shown below in Figure 7:

Figure 7. Redacted output from chain.py when both scan_targets and tag_target_pair are

undefined

It is worth emphasizing that create.py supports use of tags in scan creation. If a

tag name has been created called "Office", with the tag value of "London", and has an

associated IPv4 rule with all the IP's and/or subnets allocated to the London office,

defining each IP/subnet to "scan_targets" in scans.ini is unnecessary. Using the tag is a

"single source of truth" within IO and is much more maintainable when creating scans,

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 14

Jeff Holland, jeff.a.holland@gmail.com

reports, etc. for the London office. An example of how this tag would be created in the

Tenable IO UI is shown below:

Figure 8. Tag creation in Tenable IO UI

Using tags is the preferred method of defining targets in IO scans, and is

supported and encouraged when using chain.py. See

https://developer.tenable.com/docs/manage-tag-based-scans-tio for a full discussion

(Tenable, 2020).

4.3. Logging Config File: logging.ini

Logging for the application is achieved by using the Python Logging module and

a logging configuration file named logging.ini. This provides a centralized logging

configuration definition and all the flexibility (and complexity) that comes with the

fileConfig function.

The logging.ini file configures three handlers. The first is a StreamHandler (for

printing script output to STDOUT on the console), and the second is a FileHandler for

info.py to print its output to a log file in write mode. The third handler is a

RotatingFileHandler and is used by the create.py, delete.py and run.py action scripts to

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 15

Jeff Holland, jeff.a.holland@gmail.com

print to log.chain using append mode. File rotation of log.chain is supported with a

setting of 5 backup files each with a max of 100,000 bytes.

This results in each action script only having one logging declaration for each

message that gets logged to both STDOUT and a log file. The statements take the form of

one of the following, where all the logging statements have the log severity of "INFO"

and logger statements that use variables make use of Python f-strings:

logger.info('<text to log>')

OR

logger.info(f'<text to log {variable_name}>')

See the Appendix for the full logging.ini config file format. The format of the log

files themselves is as follows:

 <Timestamp> :: <Action Script Name> :: <Severity Level> :: <Message>

The contents of log.info is shown below in Figure 9 illustrating this format

(redacted and condensed for presentation). For log.info alone, a blank line is placed

between the log entries for flat-file readability when using it as a reference to build the

scans.ini file.

 Figure 9. log.info file after running "./chain.py --action info"

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 16

Jeff Holland, jeff.a.holland@gmail.com

The format of log.chain is shown below in Figure 10 (redacted for presentation):

Figure 10. log.chain file after running "./chain.py --action create-run"

4.4. Securing API Keys

Storing API keys (also referred to as "secrets") for scripts to run without having to

provide them on the command line as an argument is fraught with risk. Let's be clear:

API keys are passwords. They are typically complex and of significant length, but

passwords nonetheless. There are a number of options for securing API keys, some of

which have less inherent risk than others with respect to exposure of the API keys to

unauthorized persons or processes. They are discussed below, as well as to why chain.py

uses the option that it does.

Requiring the API keys to be read from the command line as an argument results

in not having to hardcode the secrets in each script, or a single file that gets parsed by all

scripts. However, this results in not being able to run them from a cron job. They must be

run manually. Also, the secrets could be written to the user's .bash_history file if supplied

as a command line argument (assuming execution occurs on Linux and using the bash

shell). A more complicated byproduct of running scans manually could result in logging

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 17

Jeff Holland, jeff.a.holland@gmail.com

the commands via syslog to the SIEM. Now the secrets are in the SIEM, and SIEM logs

are not meant to be purged on a one-by-one basis. One option for keeping secrets out of

.bash_history and SIEM databases is to use the getpass module to query for secrets from

inside the script at runtime, hence never writing them to disk (only to memory).

However, the inability to cron the script execution remains.

Hardcoding API keys in scripts is the most risky and least palatable of all the

options. Hardcoding is when secrets are declared in a single file that gets parsed by

scripts, or in every script that utilizes them. With this option, the importing of secrets into

a GitHub or other repo along with code is a significant risk that could lead to them being

exposed to unauthorized persons. Also, the secrets rely upon the file permissions of the

script file(s), which may not always be as restrictive as they should and need to be.

Storing secrets in a "dot file", such as .env, and then using a Python library like

dotenv to create environment variables is still hard coding secrets. However, there's some

mitigating controls that makes this more palatable than hard coding secrets in scripts.

This is the option that chain.py uses.

First off, chain.py chmod's the .env file 600 (read-write for owner only). This

mitigation uses file permissions to keep the file from being viewed by unauthorized users.

Then chain.py chmods .env 600 every time it is invoked, regardless of what the

permissions are currently set to. While this is most likely an unnecessary action after the

first time the file's permissions are set, it does provide a programmatic way to change the

permissions to the correct setting should a user ever change them to a more permissive

state on purpose or by accident.

Secondly, if a GitHub repo is created for the code, a .gitignore file can be created

and configured so the .env file does not get inserted into the repo (FreeCodeCamp, 2020).

By creating environment variables and then passing those environment variables as

arguments to the main function of the action scripts from chain.py, secrets are never

written to disk anywhere but the .env file. For additional security, the environment

variables can be "unset" (or deleted) at the end of any action script execution (Pypi.org,

2020).

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 18

Jeff Holland, jeff.a.holland@gmail.com

The final potential option to be briefly discussed here is using a password vault,

such as Hashicorp Vault (HashiCorp, 2020) or CyberArk AAM (CyberArk, 2020). This

is the ideal and most secure option. However, this option requires a license for

commercial use of these enterprise tools, and the configuration of them is beyond the

scope of the topic being presented here.

4.5. Using chain.py

Using chain.py, addressed previously in demonstrating other aspects of the scripts

such as logging, is addressed formally and in its entirety here. There are a combination of

action script command variations supported by chain.py. These include:

Command Result

./chain.py --action info Obtain IO instance data and write to

STDOUT and log.info

./chain.py --action create Create scans defined in scans.ini and write to

STDOUT and log.chain

./chain.py --action delete Delete scans defined in scans.ini and write to

STDOUT and log.chain

./chain.py --action run Run scans defined in scans.ini and write to

STDOUT and log.chain

./chain.py --action create-run Create and then run scans defined in scans.ini

and write to STDOUT and log.chain

./chain.py --action delete-create-run Delete, create, and run scans defined in

scans.ini and write to STDOUT and log.chain

./chain.py --action delete-create Delete and create scans defined in scans.ini

and write to STDOUT and log.chain

./chain.py -h

./chain.py --help

Print usage information of chain.py to

STDOUT

Note: The following arguments to chain.py are not supported as they are either

unnecessary or nonsensical: create-delete, delete-run, run-create-delete, run-delete, and

run-delete-create.

As briefly discussed in section 4.1.3, chain.py works, at a high level, by parsing

scans.ini to obtain all parameters needed to create scans, or just the scan names required

to either run or delete scans. To run or delete scans, the run.py and delete.py action

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 19

Jeff Holland, jeff.a.holland@gmail.com

scripts (when called by chain.py) lookup the scan ID's (based on the scan names from

scans.ini) and use the API scans endpoint to delete or run the scan.

The chaining functionality occurs only in run.py. The create and delete action

scripts also run sequentially and one at a time, as each scan is created or deleted based

upon a single API call to the scans endpoint with a single unique scan ID value.

However, create.py and delete.py have no specific chaining logic in their code.

Based on scan names parsed from scans.ini and the scan ID's associated with the

scan names, run.py builds a Python list of the ID's. For the first scan ID in the list, run.py

launches the scan using that ID with the scans API endpoint. Then run.py calls the

check_scan_status function to poll the status of the scan using the scan ID. If the scan

status is "pending" or "running", run.py sleeps for 30 seconds in an infinite while-loop

inside the check_scan_status function. When the scan status is marked as "completed" by

the API, run.py breaks out of the while-loop, exits the check_scan_status function, and

launches the next scan in the list based on the scan ID list's second index value.

The "clobber" protection is effected by keeping track of the scan status values for

each scan in a separate list. If any status is "pending" or "running", a second instantiation

of run.py is terminated. Consider Figure 11 below:

Figure 11. Demonstration of clobber protection by running a second instantiation of run.py

while the first instantiation is still executing

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 20

Jeff Holland, jeff.a.holland@gmail.com

On lines (1) through (12) run.py was executed via the command "./chain.py --

action run" based upon the log message (note the "run.py" string in each log entry). The

prior history status for these two scans was, as shown on lines (8) and (9), "[]" or "Null".

This means these scans had not run previously and had no history in the IO instance

backend. Tenable IO keeps a scan’s history for as long as that scan is defined (or in other

words, until it's deleted from the IO instance).

Line (13) shows the command to execute run.py was issued again from another

shell (or cron job) that caused run.py to execute while the first instantiation was still

running. Then run.py detected that the first scan (Discovery Scan: 10.1.1.1) with scan ID

5224 from the first invocation of run.py was still pending on line (19).

The second instantiation of run.py then checked the status of all the scans that

were launched sequentially in the first run.py execution on line (20). The result was

"['pending']", as scan ID 5224 was still queued to run, and scan ID 5223 was waiting to

be launched when 5224 finished. Ignore the fact that scan ID 5224 was queued to run

before 5223, it's not relevant that the scan ID's run in numerical order, only that they run

one at time and in the order as defined in the Python list on line (6).

Line (21) indicates the second instantiation of run.py detected the scan for ID

5224 was still pending, running or a second instantiation. The first and third of those

three possibilities was true, and hence the second instantiation of run.py terminated itself

at that point as indicated on line (23).

4.6. Processing Quirks in chain.py

There are some processing quirks to using chains.py to delete and create scans

while updating scans.ini between executions.

Assume scans.ini is configured to create scans for 10.1.1.1 and 10.2.2.2 and place

them in the "DataCenter Scans" folder with scans names reflecting their IP address (e.g.

Discovery Scan: 10.1.1.1). Then "./chain.py --action create" is executed to create the

scans in IO. Next scans.ini is updated to create scans 10.3.3.3 and 10.4.4.4 and place

them in "DataCenter Scans" (replacing 10.1.1.1 and 10.2.2.2. in the config file with

10.3.3.3 and 10.4.4.4). Again, "./chain.py --action create" is executed to create the scans

in IO. Finally, "./chain.py --action delete" is executed to delete the scans.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 21

Jeff Holland, jeff.a.holland@gmail.com

Which scans get deleted? Only 10.3.3.3 and 10.4.4.4, as the delete.py script reads

the scan names to be deleted from the scans.ini file, looks up their scan ID in the

scans_dict dictionary, and then uses the scan API endpoint to delete them. So what's left

in the "DataCenter Scans" folder are the scans for 10.1.1.1 and 10.2.2.2.

Why was chain.py implemented this way? The reasoning is that there might be

scans in the "DataCenter Scans" folder that were not created by the chain.py script.

Deleting all scans in the "DataCenter Scans" folder could result in some scans having to

be recreated and the history of those scans being purged from the IO instance.

To prevent this quirk from occurring, delete scans before modifying scans.ini and

creating scans with different names, if applicable. Worst case, if a number of scans were

created after iterations of modifying scans.ini and running chain.py, go into the IO web

UI and select the scans to delete and move them to the trash. Then empty the trash. This

deletes the scan resource and its ID from the IO backend (which means if any of these

scripts are recreated, their history will be NULL and their scan ID will almost surely

change, which will be reflected in the log.chain log file).

If this quirk wasn't a concern and the application user simply wanted every scan

to be deleted from a specific folder every time the delete.py script was executed,

delete.py could be modified to do so. Simply obtain a list of all scans from the API scans

endpoint to obtain the scan ID's. Then query the scan details for each scan based on the

Scan ID from the API scans endpoint. Next, parse out the scans IDs for all scans that live

in the folder "DataCenter Scans", for example, and place them in a Python list (or tuple).

Each scan may then be deleted based on its scan ID from IO, one at time in a loop, using

the API scans endpoint.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 22

Jeff Holland, jeff.a.holland@gmail.com

5. Conclusion

With chain.py and its associated actions scripts (create.py, delete.py, run.py, and

info.py) efficient scan creation, deletion and chained running/executing can be

accomplished using Tenable IO. Having a library of scans defined in scans.ini for

specific folder, scanner, and policy combinations would allow the application to automate

all scan creations. Some scans could be ON_DEMAND, such as the chained scans that

would run from a scheduled (cron) job. Other scans could be scheduled to run directly

from IO itself and not be chained. Just a few script modifications would be required to

pass the additional parameters to the scan creation function. Remember, chain.py's

modular action scripts create.py, delete.py, and run.py operate independently from each

other. Creating a script using chain.py is not coupled to running or deleting chained

scans.

It bears acknowledging that the Tenable-supported PyTenable library provides a

framework to enable scan creation/deletion/execution automation as well, with just a little

bit of middleware code written to tie various methods together. However, PyTenable does

not support chained scanning and clobber prevention like chain.py does. Further, utilizing

PyTenable would abstract much of the programmatic interaction with the IO API

endpoints. This would be counter to gaining as much experience with Python scripting

and Tenable IO API automation as possible, which is the point of this paper.

 A link to the GitHub repo containing all the code mentioned above is located at

the end of the Appendix. A few assumptions and required steps to configure the

application are listed below, as well as in README.md in the repo:

- The code was written on and for both Windows and Linux using Python 3.7.4.

- Make sure all necessary modules and libraries are installed, including the dotenv

library (with all other modules required being resident in the standard Python library).

- Create and populate the .env file in the "chain" subdirectory of the cloned/forked

repo with the API keys. The contents of the .env file is shown below, with stub values

for the API keys there for replacement.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 23

Jeff Holland, jeff.a.holland@gmail.com

ACCESS_KEY=<access_key>

SECRET_KEY=<secret_key>

Replace <access_key> and <security_key> with the corresponding user API keys from

IO. Then chmod the file 600 (chmod 600 ./.env) if using Linux. For Windows, set the

repo file and directory permissions and ownership as required to protect the .env file at

a minimum.

- Run "./chain --action info" and use the information in log.info in the logs

subdirectory to configure scans.ini. As many scans can be defined as desired, but there

needs to be at least two defined.

- Run chain.py either manually or from cron, or both, as necessary.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 24

Jeff Holland, jeff.a.holland@gmail.com

References

Citefast, Citefast automatically formats citations: APA 6th edition, MLA 7th ed. and

Chicago 16th ed. (n.d.). Retrieved July 29, 2014, from http://www.citefast.com/

Weedman, S. (2020, June 11). Tenable.IO - Dependent Scans. Tenable

Community. https://community.tenable.com/s/question/0D53a000073PwS2/tenab

leio-dependent-scans

Gillham, S. (2020, June 12). Tenable.IO - Dependent Scans. Tenable

Community. https://community.tenable.com/s/question/0D53a000073PwS2/tenab

leio-dependent-scans

Holland, J. (2020, June 13). Tenable.IO - Dependent Scans. Tenable

Community. https://community.tenable.com/s/question/0D53a000073PwS2/tenab

leio-dependent-scans

Tenable. (2020, Paragraph 1). What is Vulnerability

Assessment? https://www.tenable.com/vulnerability-assessment

Rouse, M. (2020, April 7, Paragraph 1). What is a restful api (Rest api) and how does it

work? SearchAppArchitecture. https://searchapparchitecture.techtarget.com/defini

tion/RESTful-API

RapidAPI. (2020, May 11, Paragraph 2). Endpoint - What is an API endpoint? The Last

Call - RapidAPI Blog. https://rapidapi.com/blog/api-glossary/endpoint/

Tenable. (2020). Navigate the APIs. Tenable.io Developer

Hub. https://developer.tenable.com/reference#scans-create

Bennett, J. (2018, April 23, Paragraph 1). An introduction to Python bytecode.

Opensource.com. https://opensource.com/article/18/4/introduction-python-bytecode

Tenable. (2020, Paragraph 1). Rate limiting. Tenable.io Developer

Hub. https://developer.tenable.com/docs/rate-limiting

FreeCodeCamp. (2020, March 31). Gitignore explained: What is Gitignore and how to

add it to your repo.

freeCodeCamp.org. https://www.freecodecamp.org/news/gitignore-what-is-it-

and-how-to-add-to-repo/

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 25

Jeff Holland, jeff.a.holland@gmail.com

HashiCorp. (2020). Manage Secrets and Protect Sensitive Data. Vault by

HashiCorp. https://www.vaultproject.io/

CyberArk. (2019, March 1). CyberArk secrets management | DevOps secret

security. https://www.cyberark.com/products/privileged-account-security-

solution/application-access-manager/

Tenable. (2020). Cloud scanners (Tenable.io web application scanning). Documentation

CenterTenable™. https://docs.tenable.com/tenableio/webapplicationscanning/Con

tent/Scans/CloudScanners.htm

Tenable. (2020). Manage tag-based scans. Tenable.io Developer

Hub. https://developer.tenable.com/docs/manage-tag-based-scans-tio

Python.org. (2020, June 21). Argparse — Parser for command-line options, arguments

and sub-commands — Python 3.8.3 documentation. 3.8.3

Documentation. https://docs.python.org/3/library/argparse.html

Python.org. (2012, April 9). 7.5. textwrap — Text wrapping and filling — Python v3.1.5

documentation. https://docs.python.org/3.1/library/textwrap.html

Python.org. (2020, June 21). OS — Miscellaneous operating system interfaces — Python

3.8.3 documentation. https://docs.python.org/3/library/os.html

Pypi.org. (2020, April 16). Python-dotenv. https://pypi.org/project/python-dotenv/

Pypi.org. (2019, December 25). Fileconfig. https://pypi.org/project/fileconfig/

Python.org. (2020, June 21). Configparser — Configuration file parser — Python 3.8.3

documentation. https://docs.python.org/3/library/configparser.html

Python.org. (2020, June 21). JSON — JSON encoder and decoder — Python 3.8.3

documentation. https://docs.python.org/3/library/json.html

Python.org. (2020, June 21). Logging — Logging facility for Python — Python 3.8.3

documentation. https://docs.python.org/3/library/logging.html

Python.org. (2020, June 21). Re — Regular expression operations — Python 3.8.3

documentation. https://docs.python.org/3/library/re.html

Requests: HTTP for Humans™. (2020). Requests: HTTP for Humans™ — Requests

2.23.0 documentation. https://requests.readthedocs.io/en/master/

Python.org. (2020, June 21). Sys — system-specific parameters and functions — Python

3.8.3 documentation. https://docs.python.org/3/library/sys.html

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 26

Jeff Holland, jeff.a.holland@gmail.com

Python.org. (2020, May 21). Time — Time access and conversions — Python 3.8.3

documentation. https://docs.python.org/3/library/time.html

OS — Miscellaneous operating system interfaces — Python 3.8.3 documentation. (2020,

July 6). 3.8.3 Documentation. https://docs.python.org/3/library/os.html

Python-dotenv. (2020, July 3). PyPI. https://pypi.org/project/python-dotenv/

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 27

Jeff Holland, jeff.a.holland@gmail.com

Appendix

Scans.ini Config File

##

Config file for scan creation

See: https://wiki.python.org/moin/ConfigParserExamples
https://docs.python.org/2/library/configparser.html

##

Fields described in order below.

Run the command './chain.py -a info' to get a listing of folder names,
scanner names, policy names, and tag names.

These all print out in the form of dictionaries, with the ID or UUID as the
value and the name as the key. Use the key (or name) of these below in your
scan definition. This of course assumes that folder, scanners, policies and
tags have already been created in IO. Examples are below you can use as
templates.

- folder name
- scanner or scanner group name
- scan policy name
- launch frequency (should always be ON_DEMAND) as chain.py runs manually
or via a cron job
- comma-delimited list of email addresses to send scan completion emails
to (optional)
- scan description (optional)
- scan name (must be unique)
- comma-delimited list of scan targets (can use IP's, CIDR subnet
notation, or both)
- One or more tag name:value pairs, comma-delimited. If tag name is
"Office" and the tag value is "London", the pair is "Office:London". For
multiple tag name:value pairs, the format would be:

Office:London,Office:Berlin,Servers:Mail

There should be no spaces before/after the colons and commas, however
the code will remove any that are added by mistake. Spaces in the tag
name or value is OK. For example, these tag name:value pairs are
legitimate:

Office:New York,Windows Hosts:Mail Servers

NOTE: At least one of scan_targets and tag_target_pair must be declared, or both.
##

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 28

Jeff Holland, jeff.a.holland@gmail.com

Example 1:
[Scan1]
folder_name = Adhoc Scans
scanner_name = Datacenter Scanner Group
policy_name = Host Discovery Scan
launch = ON_DEMAND
email = infosec@acme.com
description = Scan created by the chain.py script
scan_name = Discovery Scan: 10.1.1.1 and 10.2.2.2
scan_targets = 10.1.1.1,10.2.2.2
tag_target_pair =

Example 2:
[Scan2]
folder_name = Adhoc Scans
scanner_name = LONSCANNER12
policy_name = Host Discovery Scan
launch = ON_DEMAND
email = infosec@acme.com
description = Scan created by the chain.py script
scan_name = Discovery Scan: London Office
scan_targets =
tag_target_pair = Office:London

Example 3:
[Scan3]
folder_name = Adhoc Scans
scanner_name = LONSCANNER12
policy_name = Internal Safe Scan
launch = ON_DEMAND
email = infosec@acme.com,server_team@acme.com
description = Scan created by the chain.py script
scan_name = Vuln Scan: London and Berlin Offices, and 10.1.1.1/32
scan_targets = 10.1.1.1/32
tag_target_pair = Office:London,Office:Berlin
##

[Scan1]

[Scan2]

#[Scan3]

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 29

Jeff Holland, jeff.a.holland@gmail.com

Logging.ini Config File

Logging configuration file

[loggers]
keys=root,info,create,delete,run

[handlers]
keys=stream_handler,file_handler,rotating_file_handler

[formatters]
keys=formatter_stream,formatter_file_info,formatter_file_create-delete-run

[logger_root]
level=INFO
handlers=stream_handler

[logger_info]
level=INFO
handlers=file_handler
propogate=0
qualname=info

[logger_create]
level=INFO
handlers=rotating_file_handler
propogate=0
qualname=create

[logger_delete]
level=INFO
handlers=rotating_file_handler
propogate=0
qualname=delete

[logger_run]
level=INFO
handlers=rotating_file_handler
propogate=0
qualname=run

[handler_stream_handler]
class=StreamHandler
level=INFO
formatter=formatter_stream
args=(sys.stdout,)

[handler_file_handler]
class=FileHandler
level=INFO
formatter=formatter_file_info
write to log.info in write mode. Note that log gets cleared when

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Chaining Vulnerability Scans in Tenable IO Using Python 30

Jeff Holland, jeff.a.holland@gmail.com

create/run/delete scripts execute and log to log.chain.
This is fine as the info data is mutable.
args=('./logs/log.info', 'w')

[handler_rotating_file_handler]
class=handlers.RotatingFileHandler
level=INFO
formatter=formatter_file_create-delete-run
write to log.chain in append mode, maxBytes=100000, backupCount=5,
encoding=None delay=False
args=('./logs/log.chain', 'a', 100000, 5, None, False)

[formatter_formatter_stream]
Add a line return so STDOUT is more easily read
format=
 %(message)s

[formatter_formatter_file_info]
format=%(asctime)s :: %(name)s.py :: %(levelname)-4s :: %(message)s

[formatter_formatter_file_create-delete-run]
format=%(asctime)s :: %(name)s.py :: %(levelname)-4s :: %(message)s

GitHub Repo with Chain.py Application Source Code

https://github.com/jeff-a-holland/Chain.py-Tenable-IO-Chained-Scanning-Application

